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Abstract

The study objective is to develop a big spatial data model to predict the epidemiological impact of 

influenza in Vellore, India. Large repositories of geospatial and health data provide vital statistics 

on surveillance and epidemiological metrics, and valuable insight into the spatiotemporal 

determinants of disease and health. The integration of these big data sources and analytics to 

assess risk factors and geospatial vulnerability can assist to develop effective prevention and 

control strategies for influenza epidemics and optimize allocation of limited public health 

resources. We used the spatial epidemiology data of the HIN1 epidemic collected at the National 

Informatics Center during 2009-2010 in Vellore. We developed an ecological niche model based 

on geographically weighted regression for predicting influenza epidemics in Vellore, India during 

2013-2014. Data on rainfall, temperature, wind speed, humidity and population are included in the 

geographically weighted regression analysis. We inferred positive correlations for H1N1 influenza 

prevalence with rainfall and wind speed, and negative correlations for H1N1 influenza prevalence 

with temperature and humidity. We evaluated the results of the geographically weighted 

regression model in predicting the spatial distribution of the influenza epidemic during 2013-2014.
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I. Introduction

The continuing challenge in global public health surveillance is to determine the risk posed 

by the infectious disease outbreaks with improved understanding of their natural geographic 

range. The size of the spatial epidemiology data grows large and utilization of useful 

intelligence in these data has become a priority. They share similar big data characteristics 

of volume, velocity, variety, value and veracity [1]. The spatial epidemiology data 

constitutes a keystone of big data and health analytics challenges in digital epidemiology 

[2]. This study analyzes the spatial big data challenges in infectious disease surveillance, 

with a focus on influenza epidemics.
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A. Mathematical Models of Infectious Disease Epidemics

Mathematical models play a major role in understanding and predicting the spatiotemporal 

dynamics of infectious disease epidemics, and assisting in improving prevention and control 

policies and practices [3-6]. Bayesian networks technique is applied to model the spatio-

temporal patterns of a non-contagious disease (respiratory anthrax infection) in a sample 

population [7-9]. Kulldroff used a spatial cluster method to group the disease cases based on 

location [10]. Spatial movement of individuals between locations and their contacts are 

monitored, grouped and visualized to control the disease spread [11].

B. Spatial Analytics of Infectious Disease Epidemics

Chi et al. summarize the application of statistical models for spatial data analysis and spatial 

regression modeling in population dynamics [12]. Buscema et al. applied topological 

weighted centroid method to predict the outbreak of Escherichia coli [13]. While the 

predicted results depend on the specific properties of the dataset, the parameters used to 

determine the utility of the predictor function are sample size, sample configuration, sample 

variation, distribution shape, spatial heterogeneity and spatial autocorrelation.

C. Influenza Epidemiology in Vellore, India

The influenza H1N1 epidemic initiated at Mexico in March 2009, and spread globally. The 

influenza surveillance program in India monitored for patients with influenza symptoms. 

Symptoms include fever, nasal discharges, cough, headache, sore throat and respiratory 

problems. 10,193 cases were confirmed, with a large proportion of patients in South India, 

especially in Vellore. Vellore district had a high incidence of H1N1 cases, with dynamic 

population moving in and around Vellore. There were 433 cases reported officially; due to 

under-reporting, there is likely to be more than 100,000 cases that were not reported.

D. Public Health Significance

In this study, we have developed an ecological niche model based on geographically 

weighted regression for predicting influenza epidemiological impact in Vellore during 

2013-2014, using the spatial epidemiology and ecological data of the 2009-2010 HIN1 

epidemic collected at the National Informatics Center in Vellore.

II. Methods

A. Spatial Autocorrelation

Tobler's first law of geography (TFL) states “Everything is related to everything else, but 

near things are more related than distant things” [14-15]. Spatial autocorrelation factor is 

used to estimate the trueness of the Tobler’s law by determining the correlation of a variable 

with itself over space [14, 16]. Moran’s I is a statistical measure of spatial autocorrelation 

[17-18]. The variations of Moran’s I include Global Moran’s I and Local Moran’s I. Global 

Moran’s I is used to measure the spatial autocorrelation of the entire global region and Local 

Moran’s I is used to measure the spatial autocorrelation for each local region. Spatial 

autocorrelation at the local region has been used in infectious disease surveillance of 
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dengue, HIV/AIDS and influenza to identify the hot spot locations of high disease incidence 

and prevalence [19-21].

B. Clustering by Hot Spot - Cold Spot Analysis

Spatial distribution of H1N1 cases are statistically calculated and clustered by Getis-Ord G 

statistics. It groups the spatial distribution of disease prevalence in terms of high values and 

low values. Clustering of high disease prevalence is referred as hotspots and clustering of 

low disease prevalence is referred as cold spots [22]. The hot spots and cold spots of HIN1 

cases are clustered based on G score values. The computations of Getis-Ord G statistics, 

including the expected value are shown below.

 = G Statistic value

Wij = Weight matrix

d = Euclidean distance

yj = Number of infected in each location

C. Prediction by Geographically Weighted Regression Model

Traditional regression models are focused on global parameters, but the Geographically 

Weighted Regression (GWR) model is used to estimate the local parameters. Non-

stationarity models like the geographically weighted regression model account for modeling 

the different observations in different locations of the study area. The geographically 

weighted regression model generates regression coefficients that vary over space, by 

estimating a separate regression coefficient for each location. Parameter yi denotes the 

prevalence of H1N1 cases in each location. It is calculated by summing up the past 

observations with dissimilar weights [23-24]. The model is represented as follows.

βi(Ai, Bi) is a function of latitude and longitude coordinates of location i, and is calculated 

using weighted least square procedure. Specific coefficient can be calculated for each 

location i by,
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βi = Coefficient for each location i

Ai = Latitude

Bi = Longitude

 = [XiW(i)X]−1X′W(i) i=1, 2,…, n

Spatial observations are weighted based on the Euclidean distance between the locations i 

and j. Weights Wij are calculated using the distance function dij between the particular 

location i and other locations, as shown below.

Wij = Weight of the data point j at location i

dij = Distance between the locations and i and j

b = Bandwidth

Fig. 1 illustrates the geographically weighted regression model to predict the H1N1 

influenza epidemic for 2013-2014 given the H1N1 prevalence and climatic data of August 

2009 to July 2010. The geographically weighted regression model finds the local regression 

model for each region i, and uses the local regression coefficient to estimate the influenza 

prevalence for 2013-2014. Diagnostics block are used to validate our model based on the 

Akaike information criteria and R2 value. Coefficient and prediction blocks are used to 

generate the predicted values. The results of the geographically weighted regression model 

are evaluated in terms of residuals and regression coefficient. The model and simulation is 

implemented in ArcGIS 10.0 [25].

III. Results

A. Study Area

The study area is Vellore district of Tamil Nadu state, which is located in southern India. 

The latitude and longitude for the Vellore district is 12.9202° N, 79.133° E. Fig. 2 depicts 

the prevalence of H1N1 influenza in each administrative division of Vellore district during 

August 2009 to July 2010.

B. Climate Conditions

Climate condition attributes of temperature, humidity, wind speed and rainfall are collected 

division wise from the Vellore Agriculture Department for August 2009 to July 2010, as 

shown in Table I; population and H1N1 prevalence are also included in the table.
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C. Correlation Analysis using Scatter plots

Scatter plots are used to analyze the degree of correlation between temperature, humidity, 

wind speed, rainfall and population with H1N1 influenza prevalence, as shown in Fig. 3. We 

observed positive correlations between H1N1 influenza prevalence and rainfall, and between 

H1N1 influenza prevalence and wind speed. We observed negative correlations between 

H1N1 influenza prevalence and temperature, and between H1N1 influenza prevalence and 

humidity.

D. Clustering by Hot Spot – Cold Spot Analysis

Fig. 4 depicts the hot spot and cold spot locations for the H1N1 epidemic during the winter 

season. The hot spot is observed in Arani and the cold spot in Sriperumbudur.

E. Parameter Values

The values of the parameters used for prediction are shown in Table II.

F. Residuals

The residuals measure the difference between the predicted and actual values using ordinary 

least squares. Fig. 5 shows the spatial distribution of the residuals. In order to validate the 

parametric values within the neighborhood, geographically weighted regression and spatial 

autocorrelation is applied. GWR spatial autocorrelation significance is shown in Table III 

and proves to have a correlation with the derived GWR model.

G. Regression Coefficient Prediction

After identifying the correlations using data from 2009-2010, regression coefficients are 

used to predict the H1N1 prevalence in each location during 2013-2014. Regression 

coefficients are calculated and shown in Table IV and Table V.

The spatial distribution of the coefficient values for rainfall, temperature, wind speed and 

humidity are shown in Fig. 6, Fig. 7, Fig. 8 and Fig. 9 respectively.

The spatial distribution of H1N1 influenza prevalence is predicted for each location, and is 

shown in Fig. 10. The predictions for 2013-2014 are based on the regression coefficients 

estimated using the data from 2009-2010.

IV. Discussion

We developed an ecological niche model based on geographically weighted regression 

method to predict the epidemiological impact of H1N1 influenza during 2013-2014 season. 

We integrated the spatial epidemiology data of H1N1 influenza prevalence and 

environmental data from 2009-2010 season. We inferred that H1N1 influenza prevalence 

has positive correlations with rainfall and wind speed, and negative correlations with 

temperature and humidity.
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A. Limitations

The ecological niche model based on geographically weighted regression is used to predict 

the spatial distribution of H1N1 influenza prevalence. While the environmental variables of 

rainfall, wind speed, temperature and humidity correlate to the risk of influenza incidence 

and prevalence in different regions, biological and socio-behavioral attributes of H1N1 

influenza transmission dynamics are not incorporated in the model.

B. Public Health Implications

The ecological niche model based on geographically weighted regression is used to predict 

the epidemiological impact of H1N1 influenza in different regions. Thereby, high risk areas 

for H1N1 influenza can be prioritized for implementation of prevention interventions.

C. Conclusion

Epidemiological models of infectious diseases are useful to predict the epidemiological 

morbidity and mortality, identify vulnerable populations, assess the beneficial impact of 

available interventions, compare different implementation options, and improve public 

understanding of infectious disease dynamics [26]. We presented the ecological niche model 

based on geographically weighted regression to predict the incidence and prevalence of 

H1N1 influenza in different regions of Vellore, India, thereby assisting in prioritizing high 

risk areas for implementation of optimal prevention interventions.

The integration of health, climate and environmental data, supported by geographical 

information systems and satellite imagery, and combined with computational tools facilitate 

the design and development of early warning systems for influenza epidemics, and can be 

adapted to control and prevent epidemics of other infectious diseases.
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Fig. 1. Geographically Weighted Regression Model of H1N1 Influenza Epidemic
The geographically weighted regression model is calibrated using the H1N1 influenza 

prevalence and ecological data during 2009-2010, and used to predict the epidemiological 

impact of H1N1 influenza during 2013-2014.
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Fig. 2. H1N1 influenza prevalence during August 2009-July 2010
Prevalence of H1N1 influenza in each administrative division of Vellore district during 

August 2009-July 2010. Results show an outbreak in Katpadi, Arcot and Gudiyatham.
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Fig. 3. Correlation analysis using scatter plots
Analysis of the scatter plots infer that rainfall and windspeed have a positive correlation, 

whereas temperature and humidity have a negative correlation on H1N1 influenza 

prevalence.
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Fig. 4. H1N1 hotspot – cold spot analysis
Arani is identified as the hot spot and Sriperumbuthur is identified to be a cold spot for 

H1N1 influenza.
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Fig. 5. Ordinary least squares residuals
The spatial distribution of the residuals is mapped.
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Fig. 6. Rainfall coefficient
Rainfall is positively correlated with the prevalence of H1N1 influenza. Areas around 

Chengalpatu has high rainfall coefficients compared to other locations, and the 

neighbourhood locations of Krishnagiri has lower rainfall coefficients.
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Fig. 7. Temperature coefficient
Temperature is negatively correlated with the prevalence of H1N1 influenza.TV Malai, 

Krishnagiri, Thirupattur has low temperature coefficients while Arakonam and Thambaram 

have high temperature coefficients.
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Fig. 8. Windspeed coefficient
Windspeed is positively correlated with the prevalence of H1N1 influenza. Areas around 

Krishnagiri have high windspeed and areas near Thambaram have low windspeed.
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Fig. 9. Humidity coefficient
Humidity is negatively correlated with the prevalence of H1N1 influenza. Areas near 

Krishnagiri and Tirupattur have high humidity and Chengalpattu has low humidity.
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Fig. 10. Prediction of H1N1 influenza
The spatial distribution of H1N1 infuenza prevalence for 2013-2014 is predicted.
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TABLE I

Climate conditions in Vellore. Climate data are derived from the Vellore Agriculture Department to include 

the environmental parameters that may impact the H1N1 influenza epidemic.

FID NAME_3 Infected Temperature Humidity Windspeed Rainfall Population

0 Kelambakkam 6 24.56 64.21 6 63 23453

1 Thambaram 22 20.76 54.23 9 85 174787

2 Koyambedu 1 35.56 64.98 4 56 12323

3 Vandalur 1 35.24 63.45 4 59 13311

4 Krishnagiri 8 25.02 66.34 7 71 1879809

5 Chengalpattu 11 24.12 65.96 8 75 571254

6 Kanchipuram 2 35.23 63.23 5 62 3998252

7 Sriperumbudur 7 35.23 57.04 6 65 486063

8 Arani 14 28.43 63.12 9 79 63671

9 TV Malai 15 29.45 63.34 9 81 144278

10 Arakkonam 12 32.65 64.85 9 76 101626

11 Arcot 38 24.3 60.4 11 105 95955

12 Gudiyattam 9 33.56 65.34 8 74 91558

13 Tiruppattur 24 26.2 62.34 9 89 500455

14 Ambur 16 27.3 52.76 10 83 114608

15 Katpadi 43 22.3 58.57 12 112 387922

16 Walajapet 32 25.4 61.34 11 95 32397

17 Vaniyambadi 19 20.23 65.87 9 84 95061

18 Bagayam 12 22.12 53.32 8 75 23145

19 Vellore 58 20.3 65.01 13 124 177230

20 Vallalar 7 35.1 64.98 7 68 25092

21 Hosur 8 35.023 65.34 7 72 1879809

22 Bargur 5 35.22 63.3 5 63 1879809
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TABLE II

Parameters’ Estimation Using Ordinary Least Squares. Linear regression analysis of correlation between 

H1N1 influenza prevalence and rainfall, wind speed, humidity and temperature using ordinary least squares 

estimation method.

Variable Co-efficient P value

OLS

Rainfall 0.2013 0.0012

Wind speed 1.0232 0.0032

Humidity −1.0197 0.0234

Temperature −1.3423 0.0487

R 2 0.924875

Adjusted R2 0.914620

AIC 124.5678
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TABLE III

Spatial autocorrelation for residuals in geographically weighted regression model. The p-value is statistically 

significant and the z-score is positive, thereby inferring spatial autocorrelation between the spatial locations 

and the feature values.

GWR Moran’s Index 0.249226

Expected Index 0.050000

Variance Z score 0.009890

Z score 1.003338

P value 0.045141
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Lopez et al. Page 21

TABLE IV

Coefficient prediction for August 2009-July2010. The coefficients are predicted using the data from the 

2009-2010 H1N1 influenza season.

FID LocalR2 Predicted Intercept C2_Rainfall C3_Wind C1_Hum C1_Temp

0 0.941536 4.272267 65.96521 0.20191 1.569884 −1.01122 −1.2123

1 0.941347 7.57038 65.8725 0.20017 1.57597 −1.01176 −1.20799

2 0.941604 7.218828 65.97145 0.201849 1.387915 −1.0117 −1.21268

3 0.941484 4.096468 65.89729 0.200351 1.474089 −1.01174 −1.20928

4 0.976791 7.394924 72.69193 0.399978 1.513415 −1.01295 −1.55314

5 0.94231 15.50616 66.18829 0.205244 1.390119 −1.01159 −1.22327

6 0.944341 5.702962 67.2873 0.227909 1.461877 −1.01125 −1.27439

7 0.942483 4.272507 66.45469 0.211483 1.55629 −1.01147 −1.23504

8 0.962413 13.89707 72.5177 0.339014 1.513841 −1.01297 −1.53259

9 0.968666 4.273444 73.07605 0.372021 1.570263 −1.01258 −1.56524

10 0.945692 12.46897 67.96397 0.242234 1.570797 −1.01119 −1.30589

11 0.954576 36.2268 70.6383 0.297585 0.62999 −1.01189 −1.43766

12 0.971071 8.998451 73.36439 0.383539 1.431956 −1.01276 −1.57934

13 0.975043 9.083651 72.81947 0.39311 1.583877 −1.01264 −1.55772

14 0.973581 5.962924 73.01804 0.389487 1.497208 −1.01253 −1.56559

15 0.967572 61.02714 73.34657 0.369609 1.451583 −1.0131 −1.57601

16 0.95332 15.50215 70.38698 0.292211 1.526968 −1.01177 −1.42401

17 0.974829 7.566075 72.92495 0.393613 1.426165 −1.01264 −1.56218

18 0.972607 4.273573 73.07329 0.386307 1.540191 −1.0125 −1.56748

19 0.970729 45.7655 73.24372 0.381163 1.26015 −1.01263 −1.57387

20 0.972231 7.394772 73.14261 0.385677 1.518715 −1.01253 −1.57031

21 0.97651 5.877111 72.65238 0.397816 1.494516 −1.01289 −1.55128

22 0.977283 2.671446 72.63378 0.40186 1.419994 −1.01307 −1.55091
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TABLE V

Predicted values of H1N1 influenza prevalence during 2013-2014. The epidemiological impact of H1N1 

influenza during 2013-2014 is predicted by the geographic weighted regression model.

FID LocalR2 Predicted Intercept C2_Rainfall C3_Wind C1_Hum C1_Temp

0 0.941536 9.796861 65.96521 0.20191 1.569884 −1.01122 −1.2123

1 0.941347 11.67607 65.8725 0.20017 1.57597 −1.01176 −1.20799

2 0.941604 −0.92398 65.97145 0.201849 1.387915 −1.0117 −1.21268

3 0.941484 1.967236 63.39729 0.200351 1.474089 −1.01174 −1.20928

4 0.976791 4.567098 72.69193 0.399978 1.513415 −1.01295 −1.55314

5 0.94231 19.17416 66.18829 0.205244 1.390119 −1.01159 −1.22327

6 0.944341 1.003856 67.2873 0.227909 1.461877 −1.01125 −1.27439

7 0.942483 5.944097 66.45469 0.211483 1.55629 −1.01147 −1.23504

8 0.962413 13.78208 72.5177 0.339014 1.513841 −1.01297 −1.53259

9 0.968666 16.70506 73.07605 0.372021 1.570263 −1.01258 −1.56524

10 0.945692 13.87228 67.96397 0.242234 1.570797 −1.01119 −1.30589

11 0.954576 3.91911 70.6383 0.297585 0.62999 −1.01189 −1.43766

12 0.971071 5.358784 73.36439 0.383539 1.431956 −1.01276 −1.57964

13 0.975043 15.49282 72.31947 0.39311 1.583877 −1.01264 −1.55772

14 0.973581 21.45832 73.01804 0.389487 1.497208 −1.01253 −1.56559

15 0.967572 23.1736 73.34657 0.369609 1.451583 −1.0131 −1.57601

16 0.95332 18.11901 70.38698 0.292211 1.526968 −1.01177 −1.42401

17 0.974829 21.43777 72.92495 0.393613 1.426165 −1.01264 −1.56218

18 0.972607 7.055796 73.07329 0.386307 1.540191 −1.0125 −1.56748

19 0.970729 29.55596 73.24372 0.381163 1.26015 −1.01263 −1.57387

20 0.972231 13.92465 73.14261 0.385677 1.518715 −1.01253 −1.57031

21 0.97651 4.135098 72.65238 0.397816 1.494516 −1.01289 −1.55128

22 0.977283 1.119658 72.63378 0.40186 1.419994 −1.01307 −1.55091
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