Drozdov, D; Bonaventure, A; Nakata, K; Suttorp, M; Belot, A; (2018) Temporal trends in the proportion of "cure" in children, adolescents, and young adults diagnosed with chronic myeloid leukemia in England: A population-based study. Pediatric blood & cancer. e27422. ISSN 1545-5009 DOI: https://doi.org/10.1002/pbc.27422

Downloaded from: http://researchonline.lshtm.ac.uk/id/eprint/4649179/

DOI: https://doi.org/10.1002/pbc.27422

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/
Table 1 Characteristics of patients (0-24 years) diagnosed between 1980 and 2005 with chronic myeloid leukemia in England by sex, age group and period of diagnosis

<table>
<thead>
<tr>
<th></th>
<th>Alivea (N=233)</th>
<th>Deada (N=305)</th>
<th>Total (N=538)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>147 (63.1)</td>
<td>180 (59.0)</td>
<td>327 (60.8)</td>
</tr>
<tr>
<td>Female</td>
<td>86 (36.9)</td>
<td>125 (41.0)</td>
<td>211 (39.2)</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 5 years</td>
<td>25 (10.7)</td>
<td>57 (18.7)</td>
<td>82 (15.2)</td>
</tr>
<tr>
<td>5 - 14 years</td>
<td>55 (23.6)</td>
<td>62 (20.3)</td>
<td>117 (21.7)</td>
</tr>
<tr>
<td>15 - 24 years</td>
<td>153 (65.7)</td>
<td>186 (61.0)</td>
<td>339 (63.0)</td>
</tr>
<tr>
<td>Period of diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980-1984</td>
<td>10 (4.3)</td>
<td>72 (23.6)</td>
<td>82 (15.2)</td>
</tr>
<tr>
<td>1985-1989</td>
<td>31 (13.3)</td>
<td>71 (23.3)</td>
<td>102 (19.0)</td>
</tr>
<tr>
<td>1990-1994</td>
<td>33 (14.2)</td>
<td>66 (21.6)</td>
<td>99 (18.4)</td>
</tr>
<tr>
<td>1995-1999</td>
<td>49 (21.0)</td>
<td>55 (18.0)</td>
<td>104 (19.3)</td>
</tr>
<tr>
<td>2000-2005</td>
<td>110 (47.2)</td>
<td>41 (13.4)</td>
<td>151 (28.1)</td>
</tr>
</tbody>
</table>

a The vital status of each patients was assessed during the first 15 years of follow-up
Table 2 Results from the univariable mixture cure model: “cure” proportion and median survival time of the “uncured” (in years) with their 95% confidence intervals for each period of diagnosis

<table>
<thead>
<tr>
<th>Period of diagnosis</th>
<th>Proportion of “cured” (95% CI)</th>
<th>Median survival time [years] of “uncured” (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980-1984</td>
<td>0.09 (0.04-0.22)</td>
<td>2.11 (1.34-2.87)</td>
</tr>
<tr>
<td>1985-1989</td>
<td>0.26 (0.16-0.39)</td>
<td>2.72 (1.61-3.84)</td>
</tr>
<tr>
<td>1990-1994</td>
<td>0.32 (0.23-0.42)</td>
<td>2.45 (1.69-3.22)</td>
</tr>
<tr>
<td>1995-1999</td>
<td>0.47 (0.37-0.56)</td>
<td>1.52 (0.97-2.06)</td>
</tr>
<tr>
<td>2000-2005</td>
<td>0.71 (0.62-0.79)</td>
<td>2.00 (0.85-3.15)</td>
</tr>
</tbody>
</table>
Table 3 Results from the multivariable mixture cure model (using the retained final model*):
“cure” proportion and median survival time of the “uncured” (in years) with their 95% confidence intervals for specific age at diagnosis and year of diagnosis

<table>
<thead>
<tr>
<th>Age at diagnosis (years)</th>
<th>Year of diagnosis</th>
<th>Proportion of “cured” (95% CI)</th>
<th>Median survival time [years] of “uncured” (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1980</td>
<td>0.01 (0-0.22)</td>
<td>1.13 (0.58-1.68)</td>
</tr>
<tr>
<td>0.5</td>
<td>1990</td>
<td>0.29 (0.16-0.48)</td>
<td>0.83 (0.44-1.22)</td>
</tr>
<tr>
<td>0.5</td>
<td>2000</td>
<td>0.56 (0.37-0.73)</td>
<td>0.61 (0.27-0.95)</td>
</tr>
<tr>
<td>0.5</td>
<td>2005</td>
<td>0.81 (0.61-0.92)</td>
<td>0.52 (0.20-0.85)</td>
</tr>
<tr>
<td>5</td>
<td>1980</td>
<td>0.01 (0-0.27)</td>
<td>2.00 (1.18-2.82)</td>
</tr>
<tr>
<td>5</td>
<td>1990</td>
<td>0.34 (0.24-0.46)</td>
<td>1.47 (1.02-1.93)</td>
</tr>
<tr>
<td>5</td>
<td>2000</td>
<td>0.61 (0.49-0.71)</td>
<td>1.09 (0.69-1.48)</td>
</tr>
<tr>
<td>5</td>
<td>2005</td>
<td>0.84 (0.71-0.92)</td>
<td>0.93 (0.53-1.34)</td>
</tr>
<tr>
<td>15</td>
<td>1980</td>
<td>0.01 (0-0.25)</td>
<td>4.08 (2.45-5.72)</td>
</tr>
<tr>
<td>15</td>
<td>1990</td>
<td>0.30 (0.20-0.42)</td>
<td>3.01 (2.15-3.87)</td>
</tr>
<tr>
<td>15</td>
<td>2000</td>
<td>0.56 (0.47-0.65)</td>
<td>2.21 (1.47-2.95)</td>
</tr>
<tr>
<td>15</td>
<td>2005</td>
<td>0.82 (0.69-0.90)</td>
<td>1.90 (1.12-2.68)</td>
</tr>
<tr>
<td>24</td>
<td>1980</td>
<td>0.01 (0-0.32)</td>
<td>3.14 (1.73-4.56)</td>
</tr>
<tr>
<td>24</td>
<td>1990</td>
<td>0.39 (0.27-0.52)</td>
<td>2.32 (1.49-3.15)</td>
</tr>
<tr>
<td>24</td>
<td>2000</td>
<td>0.65 (0.54-0.76)</td>
<td>1.71 (1.02-2.39)</td>
</tr>
<tr>
<td>24</td>
<td>2005</td>
<td>0.87 (0.75-0.93)</td>
<td>1.46 (0.78-2.15)</td>
</tr>
</tbody>
</table>

* Multivariable model with a linear effect of year of diagnosis on survival of the “uncured” and a non-linear effect of year of diagnosis on the proportion of “cured”, and a non-linear effect of age at diagnosis on both the survival of the “uncured” and on the proportion of “cured”.