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ABSTRACT
Amidinobenzimidazole derivatives connected to 1-aryl-substituted 1,2,3-triazole through phenoxymethy-
lene linkers 7a-7e, 8a-8e, and 9a-9e were designed and synthesised with the aim of evaluating their
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anti-bacterial and anti-trypanosomal activities and DNA/RNA binding affinity. Results from anti-bacterial ~ Accepted 31 May 2018

evaluations of antibiotic-resistant pathogenic bacteria revealed that both o-chlorophenyl-1,2,3-triazole and
N-isopropylamidine moieties in 8c led to strong inhibitory activity against resistant Gram-positive bacteria,
particularly the MRSA strain. Furthermore, the non-substituted amidine and phenyl ring in 7a induced a
marked anti-bacterial effect, with potency against ESBL-producing Gram-negative E. coli better than those
of the antibiotics ceftazidime and ciprofloxacin. UV-Vis and CD spectroscopy, as well as thermal denatur-
ation assays, indicated that compounds 7a and 8c showed also binding affinities towards ctDNA. Anti-
trypanosomal evaluations showed that the p-methoxyphenyl-1,2,3-triazole moiety in 7b and 9b enhanced
inhibitory activity against T. brucei, with 8b being more potent than nifurtimox, and having minimal
toxicity towards mammalian cells.
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Introduction there are many areas of therapy that might benefit from DNA-
directed intervention, there is currently an urgent need for new
antimicrobials with novel modes of action.

Antibiotic resistance is a global public threat because of its
effect on health care with prolonged hospitalisations and
increased mortality. The increasing prevalence of hospital and
community-acquired infections caused by multidrug-resistant
(MDR) bacterial pathogens is limiting the options for effective anti-
biotic therapy'>'*. Drug-resistant Gram-positive bacterial patho-
gens, including methicillin-resistant Staphylococcus aureus (MRSA)
and vancomycin-resistant enterococci (VRE), have become a serious
clinical problem that impinges on the treatment of various noso-
comial and community-acquired infections'>'®. In addition, an
increased incidence of MDR Gram-negative bacteria, such as

The benzimidazole derivatives, which contain fused heterocyclic
nuclei within their structures, are structural isosteres of purine
bases. This allows them to interact with biopolymers and they,
therefore, have diverse biological and clinical applications'™.
Much research effort has been aimed at targeting DNA with benzi-
midazole ligands, with the goal of designing agents that have
therapeutic applications®®. Although RNA is a well-established tar-
get of current antibiotics, designing new compounds that select-
ively recognise RNA has also been a difficult task, particularly
when focused on the treatment of a variety of infections'®'2. The
challenge is to produce drug-like molecules with high affinity for
DNA/RNA, while maintaining sufficient sequence selectivity. While
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Figure 1. Representatives of benzimidazoles containing triazole moiety |-V as potential antibacterial agents.
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Figure 2. Aromatic amidines and 1,4-diphenyl-1,2,3-triazole amidine VI as anti-HAT agents.

Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumo-
niae, coupled with the lack of novel antibiotics, represents one of
the biggest threats to the control of respiratory and other infec-
tions'”. In order to overcome these emerging bacterial resistance
problems, novel anti-bacterial drugs need to be developed.
Accordingly, in recent years, numerous efforts have focused on
discovering novel benzimidazole-based anti-bacterial agents'®2*,
The importance of a protonable chemical moiety within anti-
bacterial drugs has been investigated in different studies®>?°.
These have revealed the significant uptake of amidine-containing
DNA ligands into bacteria, and also into the nuclei of eukaryotic
cells?”. In addition, the structural features of 1,2,3-triazole also
enable it to mimic different functional groups, justifying its wide
use as a bioisostere for the design of antimicrobial drug ana-
logs®®?°. For example 1,4-disubstituted 1,2,3-triazoles are good
Z-amide isosteres, because the C-4 atom can act as an electro-
philic site; the CH bond (in the 5-position) acts as a hydrogen
bond donor, and the lone pair of N-3 electrons acts as a hydrogen
bond acceptor®.

A wide range of pharmacological activities has been attributed
to the unusual chemical features of azole rings, such as benzimida-
zole and 1,2,3-triazole. These are able to interact in a non-covalent
way with a range of targets, due to the presence of an electron-
rich aromatic system and heteroatoms®'*?, and act as promising
moieties for the design of novel scaffolds with anti-bacterial activ-
ity. Thus, among the series of [1,2,4-triazolyllphenyl-substituted
4,6-difluorobenzimidazoles I*3, analogues with electronegative sub-
stituents emerged as promising antimicrobials, while 2-thiobenzimi-
dazole with [(1,2,4-triazolyl)ethylthiolphenyl moiety II’* exhibited
anti-bacterial properties that were selective for Helicobacter pylori
(Figure 1). Benzimidazole-1,2,3-triazole conjugates Il with aromatic
(p-chlorophenyl and p-fluorophenyl) 4-substituted triazoles exhib-
ited selective anti-Moraxella catarrhalis activity®>>. Furthermore,

triazole-bearing monobenzimidazoles IV and V inhibited growth of
Gram-positive bacteria, including two MRSA strains, and displayed
E. coli DNA topoisomerase | inhibition®.

The increasingly important role of benzimidazole and triazole
derivatives has been also demonstrated by their in vivo evalua-
tions against Gram-positive®”’*? and Gram-negative bacteria®>.
Bis-benzimidazole compound (ridinilazole, SMT-19969)** recently
entered phase Il human clinical trials for the treatment of
Clostridium difficile.

Besides anti-bacterial activity, benzimidazole containing com-
pounds have shown good anti-protozoal potency®™°. Human
African trypanosomiasis (HAT), also known as sleeping sickness, is
a fatal parasitic disease caused by two subspecies of Trypanosoma
brucei. It has been estimated that over 50 million people are at
risk of infection with HAT in more than 30 African countries, and
there remains a clear need to develop new, safer, and more
affordable agents to combat this fatal infection®®. The efficacy of
diarylamidines, such as pentamidine®’, berenyl®> and its orally
active prodrug pafuramidine®? (Figure 2), in the treatment of
protozoal diseases, especially trypanosomiasis, has been known
for many years.

However, current drugs have problems, such as toxicity, poor
efficacy, and increasing resistance by the parasites. Although the
precise anti-protozoan mechanisms of action of aromatic diami-
dines have not been fully elucidated, there is considerable
evidence that direct interaction with the pathogen genome is
important for activity. Recently, a diamidine containing a 1,2,3-tri-
azole ring as central core was synthesised, which displayed better
anti-trypanosomal efficacy than melarsoprol, curing all infected
mice>®. It was found that incorporation of different hydrophobic
aromatic head groups linked to the rest of the molecule by an
amidine moiety improved both anti-bacterial activity and affinity
to DNA%’.
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Figure 3. Design and synthesis of amidinobenzimidazoles connected to 1-aryl-substituted 1,2,3-triazole via phenoxymethylene unit.

In view of the wide applications of the benzimidazole and
1,2,3-triazole moieties in drug development, and encouraged by
the activity profile of both scaffolds®>>®, we synthesised molecules
that contained both units attached through a phenoxymethylene
linker as the central core, thereby expanding the electronic envir-
onment of chemical space (Figure 3).

Targeted compounds were designed to contain a non-substi-
tuted amidine, N-isopropylamidine, and imidazoline moiety at the
C-5 position of the benzimidazole core, as the hydrophilic end,
and an aromatic unit at the N-1 position of the 1,2,3-triazole ring,
as the hydrophobic end. It was anticipated that selected 5-amidi-
nobenzimidazoles connected to 1-aryl-substituted 1,2,3-triazole
would exhibit enhanced affinity for DNA/RNA compared to other
aromatic amidines that we have recently studied®®>’. Therefore,
interactions between 5-amidinobenzimidazoles 7a-7e, 8a-8e, and
9a-9e and DNA/RNA were assessed and their activities against
Gram-positive, Gram-negative, and antibiotic-resistant, as well as
their trypanocidal properties, were evaluated.

Materials and methods
General

All chemicals and solvents were purchased from Aldrich and
Acros. Pre-coated Merck silica gel 60F-254 plates and Fluka
(0.063-0.2 mm) silica gel using an appropriate solvent system were
employed for thin layer chromatography (TLC) and column chro-
matography, respectively. Melting points were determined using
Kofler micro hot-stage (Reichert, Vienna, Austria). 'H and '>C NMR
spectra were recorded on a Varian Gemini 300 and 600 spectrom-
eters. All NMR spectra were recorded in DMSO-dg at 298 K. Mass
spectra were recorded on an Agilent 6410 instrument with electro-
spray interface and triple quadrupole analyser. Microwave-assisted
syntheses were carried out in a microwave oven (Milestone start
S) at 80°C and pressure of 1bar. The ultrasound-assisted reactions
were performed in a bath cleaner (Bandelin, Sonorex digital 10P,
Berlin, Germany) with frequency of 35 kHz and power of 1000 W.

Experimental procedures for the synthesis of compounds

Amidino-substituted o-phenylenediamines (4-6)%, 4-(prop-2-yny-
loxy)benzaldehyde (2)°°, 4-(1,2,3-triazol-4-yl)methoxy)benzaldehyde
(3b)%°, 4-(1,2,3-triazol-4-yl)methoxy)benzaldehydes (3a, 3d), and 5-
amidinobenzimidazoles (7a, 7d, 8a, 8d, 9a, and 9d)>> were pre-
pared according to described procedures.

General procedure for the synthesis of compounds 3a-e

The reaction mixture of compound 2, Cu(0) (0.8 eq), TM CuSO,
(0.3 eq) and the corresponding azide (1.2 eq) was dissolved in
1ml DMF and a mixture of t-BuOH: H,O=1: 1 (3ml). Method A:
The reaction mixture was stirred under microwave irradiation
(300W) at 80°C during 1.5h. Method B: The reaction mixture was
placed in an ultrasonic bath cleaner (1000W, 35 kHz) at 80°C for
1.5h. The solvent was removed under reduced pressure and puri-
fied by column chromatography with CH,Cl,.

4-((1-(4-Methoxyphenyl)-1H-1,2,3-triazol-4-yl)methyleneoxy)benzal-
dehyde (3b)

Compound 3b was prepared using the above mentioned proced-
ure from 2 (200mg, 1.15mmol) and 1-azido-4-methoxybenzene
(2.76 ml, 1.38mmol) to obtain 3b as white crystals (Method A:
149.3 mg, 42%; Method B: 271.2mg, 76%; m.p. 127-130°C) (m.p.
lit.%® = 126-127°C). '"H NMR (300 MHz, DMSO) & 9.89 (1H, s, CHO),
8.87 (1H, s, H5'), 7.90 (2H, d, J=8.8Hz, Ph), 7.81 (2H, d, /=9.1Hz,
Ph), 7.28 (2H, d, J=8.7Hz, Ph), 7.14 (2H, d, J=9.1Hz, Ph), 5.36
(2H, s, OCH,), 3.83 (3H, s, OCHs). >C NMR (75MHz, DMSO) §
191.55, 162.99, 159.49, 143.08, 131.96, 130.03, 130.00, 123.25,
122.03, 115.35, 115.03, 61.47, 55.68.

4-((1-(2-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)benzalde-
hyde (3c)

Compound 3¢ was prepared using the above mentioned proced-
ure from 2 (200mg, 1.15mmol) and 1-azido-2-chlorobenzene
(276 ml, 1.38mmol) to obtain 3c as white solid (Method A:
194.2mg, 53%; Method B: 231.67 mg, 64%; m.p.=127-129°C). H
NMR (600 MHz, DMSO) 6 9.90 (1H, s, CHO), 8.76 (1H, s, H5'), 7.91
(2H, d, J=8.7Hz, Ph), 7.79 (1H, dd, J=8.0, 1.2Hz, Ph), 7.73 (1H,
dd, /=7.8, 1.6 Hz, Ph), 7.65 (1H, td, /=7.8, 1.6 Hz, Ph), 7.60 (1H, td,
J=7.6, 13Hz, ph), 730 (2H, d, J=87Hz, Ph), 540 (s, 2H,
OCH,)."*C NMR (151 MHz, DMSQ) & 191.84, 163.15, 142.48, 134.54,
132.14, 132.10, 130.84, 130.19, 128.81, 128.74, 128.63, 127.35,
115.54, 61.40.

4-((1-((Phenylthio)methyl)-1H-1,2,3-triazol-4-yl)methoxy)benzalde-
hyde (3e)

Compound 3e was prepared using the above mentioned proced-
ure from 2 (200mg, 1.15mmol), azidomethyl phenyl sulfide
(0.19ml, 1.38mmol), Cu (0) (59.8mg, 0.94mmol), 1M CuSO,
(0.24 ml, 0.05mmol) in DMF (1 ml), t-BuOH: H,O=1: 1 (4ml) to
obtain 3e as yellow oil (Method A: 2143 mg, 57%; Method B:
273.6 mg, 73%). "H NMR (300 MHz, DMSO) § 9.88 (1H, s, CHO), 8.21
(1H, s, 1H, H5'), 7.87 (2H, d, J=8.8Hz, Ph), 7.43-7.26 (5H, m, Ph),
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7.21 (2H, d, J=8.7Hz, Ph), 5.96 (2H, s, 2H, CH,), 5.26 (2H, s, CH,).
3C NMR (75 MHz, DMSO) & 191.58, 162.94, 142.57, 132.36, 131.92,
130.68, 129.98, 129.43, 127.90, 124.72, 115.36, 61.33, 51.87.

General procedure for the synthesis of compounds 7a-7e, 8a-8e,
and 9a-9e

The reaction mixture of 4-triazolylbenzaldehyde derivatives
(3a-3e), o-phenylenediamine (4, 5, or 6) and 40% NaHSOs; was
dissolved in 15ml EtOH and stirred under reflux for 6-8 h. After
completion of the reaction NaHSOs (aq) was filtered and the reac-
tion mixture was evaporated to dryness. Water was added (5 ml)
and the mixture was stirred overnight and filtered. The crude resi-
due was dissolved in HCl saturated MeOH (8-10ml) and stirred
overnight. Addition of ether resulted in precipitation of products
7a-7e, 8a-8e, and 9a-9e. Solid was collected by filtration, washed
with anhydrous ether, and dried under vacuum.

2-(4-((1-(4-Methoxyphenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-
1H-benz[d]imidazole-5-carboximidamide dihydrochloride (7b)
Compound 7b was prepared using the above described method
from 3b (200mg, 0.65mmol) and 4 (87.39mg, 0.58 mmol) to
obtain 7b as white powder (122.7 mg, 53%, m.p.=195-197°C). 'H
NMR (600 MHz, DMSO) ¢ 9.35 (2H, s, NH), 8.94 (2H, s, NH), 8.90
(1H, s, H5'), 8.26 (2H d, J=8.2Hz, Ph), 8.15 (1H, s, H4), 7.84-7.80
(3H, m, Ph; H7), 7.71 (1H, d, J=8.0Hz, H6), 7.34 (2H, d, J=8.7 Hz,
Ph), 7.15 (2H, d, J=9.0Hz, Ph), 537 (2H, s, OCH,), 3.84 (3H, s,
OCHs). "*C NMR (75MHz, DMSO) & 165.85, 160.58, 159.42, 153.78,
143.21, 140.84, 134.73, 129.97, 129.13, 123.14, 122.69, 121.93,
120.61, 115.55, 114.97, 61.34, 55.63. MS (ESI, m/z) 440.1 [M+H]".
Anal. calcd. for Cy4H3;N;O, x2 HCl x25H,0 (Mr=557.44): C
51.71, H 5.06, N 17.59; found: C 51.60, H 4.72, N 17.34%.

2-(4-((1-(2-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-
1H-benz[d]imidazole-5-carboximidamide dihydrochloride (7c)
Compound 7c was prepared using the above described method from
3¢ (200 mg, 0.64 mmol) and 4 (96.51 mg, 0.64 mmol) to obtain white
powder 7¢ (210.3mg, 58%, m.p.=176-177°C). '"H NMR (300 MHz,
DMSO) ¢ 9.36 (2H, s, NH), 8.96 (2H, s, NH), 8.77 (1H, s, 1TH, H5'), 8.28
(2H, d, J=8.8Hz, Ph), 8.16 (1H, s, H4), 7.88-7.55 (6H, m, Ph; H5; H6),
7.36 (2H, d, J=8.9Hz, Ph), 540 (2H, s, OCH,). *C NMR (151 MHz,
DMSO) 6 165.62, 161.33, 152.72, 142.25, 134.41, 131.84, 131.26,
130.60, 129.84, 128.51, 127.23, 123.76, 123.22, 122.24, 115.90, 115.70,
114.82, 61.23. MS (ESI, m/z) 444.0 [M+H]". Anal. calcd. for
Cy3H18CIN;O x 2 HCl x3 H,0 (Mr=570.86): C 48.39, H 4.59, N 17.17;
found: C48.11,H 4.47,N 17.38%.

2-(4-((1-((Phenylthio)methyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-
1H-benz[d]imidazole-5-carboximidamide dihydrochloride (7e)
Compound 7e was prepared using the above described method
from 3e (200mg, 0.64mmol) and 4 (96.51 mg, 0.64 mmol) to
obtain 7e as white powder (324.8 mg, 90%, m.p.=173-176°C). 'H
NMR (300 MHz, DMSO) 6 9.46 (2H, s, NH), 9.08 (2H, s, NH), 8.34
(2H, d, J=8.9Hz, Ph), 8.25 (1H, s, H5'), 8.20 (1H, d, J=1.1Hz, H4),
7.89 (2H, t, J=7.8Hz, Ph), 7.80 (1H, dd, J=8.6 Hz, H6), 7.45-7.29
(6H, m, H7; Ph), 599 (2H, s, CH,), 530 (2H, s, CH,).”>*C NMR
(75 MHz, DMSO) ¢ 165.70, 161.12, 153.11, 142.62, 139.17, 132.38,
131.84, 130.59, 129.59, 129.38, 127.82, 124.66, 123.55, 122.98,
115.72, 115.30, 61.27, 51.80. MS (ESI, m/z) 456.1 [M+HI". Anal.
caled. for C54H57N;,OS x2 HCl x1.7H,0 (Mr=559.09): C 51.56, H
4.76, N 17.54; found: C 51.80, H 4.68, N 17.22%.

N-isopropyl-2-(4-((1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl)
methoxy)phenyl)-1H-benz[d]imidazole-5-carboximidamide dihydro-
chloride (8b)

Compound 8b was prepared using the above described method
from 3b (200mg, 0.65mmol) and 5 (115.2mg, 0.65mmol) to
obtain 8b as brown powder (225.8 mg, 58%, m.p.=188-191°C).
"H NMR (300 MHz, DMSO) 6 9.66 (1H, d, J=7.7 Hz, NH), 9.51 (1H, s,
NH), 9.08 (1H, s, NH), 8.92 (1H, s, H5'), 8.39 (2H, d, J=8.7 Hz, Ph),
8.08 (1H, s, H4), 7.88 (1H, d, J=8.5Hz, H7), 7.83 (2H, d, J=9.0Hz,
Ph), 7.69 (1H, d, J=7.6Hz, H6), 7.39 (2H, d, J=8.8Hz, Ph), 7.15
(2H, d, J=9.0Hz, Ph), 5.39 (2H, s, CH;), 4.15-4.02 (1H, m, CH), 3.84
(3H, s, OCHs), 132 (6H, d, J=63Hz, CH3;CHCH,).">C NMR
(151 MHz, DMSO) ¢ 162.18, 161.13, 159.50, 152.96, 143.20, 130.02,
129.64, 124.28, 124.21, 123.74, 123.30, 122.03, 115.77, 115.36,
115.05, 61.43, 55.71, 45.25, 21.38. MS (ESI, m/z) 482.1 [M+H]".
Anal. calcd. for Cy;H,/N,0,%2 HCl x2.6H,0 (Mr=601.32): C
53.93, H 5.73, N 16.30; found: C 53.62, H 5.71, N 16.39%.

N-isopropyl-2-(4-((1-(2-chlorophenyl)-1H-1,2,3-triazol-4-yl)methox-
y)phenyl)-1H-benz[d]imidazole-5-carboximidamide  dihydrochlor-
ide (8¢c)

Compound 8c was prepared using the above described method
from 3c (200mg, 0.64mmol) and 5 (101.0mg, 0.57 mmol) to
obtain 8c as white powder (105.5mg, 28%, m.p.=210-213°C). 'H
NMR (300 MHz, DMSO) 6 9.58 (1H, d, J=8.2Hz, NH), 9.43 (1H, s,
NH), 8.99 (1H, s, NH), 8.78 (1H, s, H5'), 8.30 (2H, d, J=8.6 Hz, Ph),
8.04 (1H, s, H4), 7.87-7.57 (6H, m, H7; H6; Ph), 737 (2H, d,
J=8.4Hz, Ph), 540 (2H, s, OCH,), 4.13-4.00 (1H, m, CH), 1.31 (6H,
d, J=6.1Hz, CH;CHCH;). >C NMR (151 MHz, DMSO) § 162.41,
160.38, 153.72, 142.46, 13442, 131.84, 130.61, 12893, 128.57,
128.55, 128.47, 127.09, 123.10, 127.09, 122.58, 120.24, 116.13,
115.53, 61.14, 45.06, 21.31. MS (ESI, m/z) 486.1 [M+H]". Anal.
calcd. for Cy6H,54CIN,O x 2 HCl x2.3H,0 (Mr=600.33): C 52.02, H
5.14, N 16.33; found: C 52.22, H 5.03, N 16.59%.

N-isopropyl-2-(4-((1-(phenylthiomethyl)-1H-1,2,3-triazol-4-yl)
methoxy)phenyl)-1H-benz[d]imidazole-5-carboximidamide dihydro-
chloride (8e)

Compound 8e was prepared using the above described method
from 3e (200mg, 0.61 mmol) and 5 (108.9mg, 0.61 mmol) to
obtain 8e as yellow powder (73.1mg, 21%, m.p.=152-154°C). 'H
NMR (600 MHz, DMSO) 6 9.66 (1H, d, J=7.5Hz, NH), 9.51 (1H, s,
NH), 9.09 (1H, s, NH), 8.39 (2H, d, J=7.9Hz, Ph), 8.25 (1H, s, H5),
8.08 (1H, s, H4), 7.87 (1H, d, J=8.3Hz, H7), 7.68 (1H, d, J/=8.5Hz,
H6), 7.40 (2H, d, J=7.5Hz, Ph), 7.36-7.15 (5H, m, Ph), 5.98 (2H, s,
CH,), 529 (2H, s, CH,), 4.24-3.99 (1H, m, CH), 1.31 (6H, d,
J=6.4Hz, Q3CH@3).”C NMR (75 MHz, DMSO) ¢ 162.93, 160.52,
154.42, 145.37, 143.19, 132.82, 130.98, 129.76, 129.09, 128.18,
124.99, 123.19, 122.71, 122.05, 115.86, 61.55, 52.18, 45.44, 21.75.
MS (ESI, m/z) 498.1 [M+H]*. Anal. calcd. for Cy;H,7N;0S x2 HCl
x0.3H,0 (Mr=575.95): C 56.31, H 5.18, N 17.02; found: C 56.33, H
5.37, N 17.28%.

5-(4,5-Dihydro-1H-imidazol-2-yl)-2-(4-((1-(4-methoxyphenyl)-
1H-1,2,3-triazol-4-yl)methoxy)phenyl)-1H-benz[d]imidazole dihydro-
chloride (9b)

Compound 9b was prepared using the above described method
from 3b (200mg, 0.65mmol) and 6 (114.9mg, 0.65mmol) to
obtain 9b as yellow powder (279.1 mg, 70%, m.p.=197-199°C).
'"H NMR (300 MHz, DMSO) § 10.68 (2H, s, NH), 8.91 (1H, s, H5'),



8.37 (1H, s, H4), 832 (2H, d, J=83Hz, Ph), 7.88 (1H, d, J=43Hz,
H7), 7.82 (2H, d, J=85Hz, Ph), 7.35 (2H, d, J=8.1Hz, Ph), 7.28
(1H, d, J=83Hz, H6), 7.15 (2H, d, J=8.1Hz, Ph), 537 (2H, s,
OCH,), 4.03 (4H, s, CH,CH,), 3.83 (3H, s, OCH3)."*C NMR (151 MHz,
DMSO) & 165.49, 160.68, 159.51, 154.27, 143.30, 143.09, 136.43,
131.97 (C4), 130.01 (Ph-q), 129.27 (Ph), 123.21 (C6), 123.00 (C5)),
122,04 (Ph), 12062 (C5), 116.05, 115.63, 11537, 115.06, 61.38,
5572, 44.44. MS (ESl, m/z) 466.1 [M+H]". Anal. caled. for
CasH23N;0;, x 2 HCl x0.9H,0 (Mr=554.65): C 56.30, H 4.87, N
17.68; found: C 56.04, H 4.72, N 17.97%.

5-(4,5-Dihydro-1H-imidazol-2-yl)-2-(4-((1-(2-chlorophenyl)-
1H-1,2,3-triazol-4-yl)methoxy)phenyl)-1H-benz[d]imidazole dihydro-
chloride (9c)

Compound 9c was prepared using the above described method
from 3c (200mg, 0.64mmol) and 6 (112.9mg, 0.64mmol) to
obtain 9¢ as red powder (115.3mg, 30%, m.p.=194-196°C). 'H
NMR (600 MHz, DMSO) 6 10.82 (2H, s, NH), 8.81 (1H, s, H5'), 8.45
(1H, s, H4), 8.40 (2H, d, /=8.6Hz, Ph), 7.98 (1H, d, J=8.5Hz, H7),
7.93 (1H, d, J=8.3Hz H6), 7.81 (1H, dd, J=8.0, 1.2Hz, Ph), 7.75
(1H, dd, /=78, 1.6Hz, Ph), 7.67 (1H, td, J=7.8, 1.6Hz, Ph), 7.62
(1H, td, J=7.7, 1.3Hz, Ph), 7.40 (2H, d, J=8.9Hz, Ph), 543 (2H, s,
OCH,), 4.04 (4H, s, CHzgz).BC NMR (75MHz, DMSO) 165.20,
161.07, 153.69, 142.40, 138.84, 136.92, 134.44, 131.90, 130.66,
130.15, 129.62, 128.63, 128.52, 127.21, 123.57, 119.46, 116.66,
116.38, 115.69, 61.24, 44.42. MS (ESI, m/z) 470.1 [M+H]*. Anal.
calcd. for Cy5H50CIN,O x 2 HCI x1.9H,0 (Mr=577.08): C 52.03, H
451, N 16.99; found: C 52.31, H 4.66, N 16.63%.

5-(4,5-Dihydro-1H-imidazol-2-yl)-2—(4-((1-(phenylthiomethyl)-
1H-1,2,3-triazol-4-yl)methoxy)phenyl)-1H-benz[d]imidazole dihydro-
chloride (9e)

Compound 9e was prepared using the above described method
from 3e (200mg, 0.61 mmol) and 6 (108.9mg, 0.61 mmol) to
obtain 9e as brown powder (149.4mg, 41%, m.p.=162-164°C).
TH NMR (300 MHz, DMSO) ¢ 10.57 (2H, s, NH), 8.34-8.18 (4H, m,
H5’; H4; Ph), 7.85 (2H, s, H7; H6), 7.44-7.21 (7H, m, Ph), 5.97 (2H, s,
CH2), 5.26 (2H, s, CH2), 4.03 (4H, s, CH2CH2).13C NMR (151 MHz,
DMSO) ¢ 165.13, 162.84, 160.80, 153.75, 142.60, 132.38, 131.79,
130.48, 129.86, 129.40, 129.32, 127.72, 124.63, 116.37, 11552,
115.23, 61.17, 51.69, 44.33. MS (ESI, m/z) 482.0 [M+H]+. Anal.
caled. for C26H23N70S x2 HCl x2.2H,0 (Mr=594.14): C 52.56, H
4.99, N 16.50; found: C 52.64, H 5.12, N 16.29%.

Spectroscopic experiments

Polynucleotides

Polynucleotides were purchased as follows: polyG-polyC,
polyA-polyU (Sigma-Aldrich, St. Louis, MO), calf thymus ctDNA
(Aldrich).  Polynucleotides were dissolved in PBS buffer,
/= 0.05mol dm 3, pH 7.0. The calf thymus ctDNA was additionally
sonicated and filtered through a 0.45 mm filter. The polynucleotide
concentration was spectroscopically determined as the concentra-
tion of nucleobases®?.

UV-Vis spectroscopy

All UV-Vis absorbance measurements were conducted on a Perkin
Elmer Lambda 25 spectrophotometer (Perkin Elmer, Waltham, MA).
A quartz cell with a 1cm path length was used for all absorbance
studies. Compound stock solutions were 1 mM. The DNA/RNA at
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Table 1. Hypochromic effects (H/%)?, binding constants (log K.)® and ratios n°
([compound]/[polynucleotide phosphate]) calculated from the UV-Vis titrations
of compounds with ds-DNA/RNA (PBS, /=0.015 M, and pH=7).

ctDNA polyA-polyU polyC-polyG
Compound H/%“ logKs n  H/% log Ks H/% logKs n
7a 7.8 6.76 027 193 524 031 5.26 6.44 0.40°
7b 22.1¢ - - 279¢ - - 13.7 6.27 0.73
7c 36.3 6.24 058 389 521 0.8 482¢ - -
7d 40.4 578 059 325 594 0.1 4.96 6.56 0.36
7e 38.2 533 061 317 6.20 0.29 5.79 589 0.69
8a 41.0 6.17 0.64 46.5 587 0.24 5.86 6.17 04¢
8b 29.7 606 062" 57.8 527 023 5.05 639 0.39
8c 33.8 564 069 504 6.00 0.19 531 643 0.36
8d 41.2 593 047 538 6.13  0.30 6.13 554  0.40¢
8e 44.2 639 036" 47.2 596 0.30 5.96 720 0.28
9a 25.7¢ - - 327¢ - - - 621 0.40¢
9b 18.9° - - 316° 546 030% 546° - -
9c 1.7 643 035 293 538 0.29 534 643 036
9d 24.6 584 075 555° 589 030¢ 589 6.59 041
9e 41.1 6.21 012 316 536 0.26 5.21 429 04°

®Hypochromic effect calculated by Scatchard equation for
H = (Abs(compound) —Abs(complex))/Abs(compound) x 100.
PTitration data were processed according to the Scatchard Equation
“Accuracy of n+10-30%, consequently logK; values vary in the same order
of magnitude.

4n =fix.

®Hypochromic effect calculated from experimental data.

Mixed binding mode and binding constants were calculated in range r>0.1.

—: changes were too small for accurate calculation of binding constants.

compounds;

63,64

increasing ratios was then titrated into the compound buffer solu-
tion (1.48 x 10 °mol dm™3) and the corresponding absorption
spectra were recorded under the same conditions. All data were
graphed and analysed using Origin software version 9.0 (OriginLab
Corporation, Northampton, MA). The stability constants (Ks) and
[bound compound]/[polynucleotide phosphate] ratios (n) were cal-
culated according to the Scatchard Equation®*®*. Values for Ks
and n given in Table 1 all have satisfying correlation coeffi-
cients (0.99).

Thermal melting (T,,)

T experiments were conducted with a Perkin ElImer Lambda 25
spectrophotometer in 1 cm quartz cuvettes. The absorbance of the
DNA/RNA-compound complex was monitored at 260 nm as a func-
tion of temperature. The absorbance of the ligands was subtracted
from every curve, and the absorbance scale was normalised. The
AT,, values were calculated by subtracting T, of the free nucleic
acid from T, of the complex. Every reported AT,, value was the
average of at least two measurements. The error of AT, is £0.5°C.
All data were graphed and analysed using Origin software ver-
sion 9.0.

Circular dichroism (CD)

The CD spectra of DNA/RNA (concentration in cuvette 2 x 107> M)
were recorded with a JASCO J-800 spectrometer (JASCO UK Ltd.,
Dunmow, United Kingdom) at different ratios r=0.1, 0.3, 0.5, and
0.7 (r=[compound]/[polynucleotide]) at 25°C in aqueous buffer
solution (pH =7, PBS, and /=0.05mol dm3). Titrations were car-
ried out by addition of aliquots of 1 mM stock solutions of the
relevant compound (at increasing ratios) to the buffered poly-
nucleotide (DNA/RNA) solution in a 1cm quartz cuvette and
scanned over a wavelength range 220-450nm. All data were
graphed and analysed using Origin software version 9.0.
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Scheme 1. Synthesis of 2,5-disubstituted benzimidazoles. (i): propargyl bromide, K,COs, EtOH, reflux; (ii): corresponding azides, CuSO,, Cu(0), DMF, t-BuOH: H,0=1: 1,
80 °C; (iii): o-phenylenediamine (4-6), NaHSOs, EtOH, reflux; HCI/MeOH, room temperature.

Biological evaluations

Anti-bacterial screening

The compounds were evaluated for their in vitro anti-bacterial
activity against Gram-positive bacteria: S. aureus (ATCC 25923),
MRSA, methicillin-sensitive S. aureus (MSSA), E. faecalis, vanco-
mycin-resistant E. faecium (VREF), and Gram-negative bacteria: E.
coli (ATCC 25925), P. aeruginosa (ATCC 27853), A. baumannii (ATCC
19606) and ESBL-producing K. pneumoniae (ATCC 27736). Standard
broth microdilution method as recommended in guidelines of
Clinical and Laboratory Standards Institute®'°>®® was applied and
the minimum inhibitory concentration (MIC) of compounds was
tested. In short, testing was performed in U-bottomed 96-well ster-
ile plastic microdilution trays (Falcon 3077, Becton Dickinson
Labware, Franklin Lakes, NJ) in cation (Ca*" and Mg®") adjusted
Mueller-Hinton broth medium (Becton Dickinson and Co.,
Cockeysville, MD). All testings were performed in triplicate.

Anti-trypanosomal screening and cytotoxicity assays

Bloodstream form T. brucei (strain 221) were cultured in modified
Iscove’s medium, as outlined®” and trypanocidal assays were per-
formed using 96-well microtitre plates. The compound concentra-
tions that inhibited growth by 50% (ICso) and 90% (ICoo) were
determined. Parasites were sub-cultured at 2.5x 10*ml™", com-
pounds were added at range of concentrations, and the plates
incubated at 37°C. Resazurin was added after 48h, the plates
incubated for a further 16 h, and then read in a Spectramax plate
reader (Molecular Devices Corporation, San Jose, CA). The data
were analysed using GraphPad Prism (GraphPad, La Jolla, CA).
Each drug concentration was tested in triplicate.

Cytotoxicity against mammalian cells was also assessed using
microtitre plates. Briefly, L6 cells (a rat myoblast line) were seeded
at 1x10*ml™" in 200pl of growth medium containing different
compound concentrations. The plates were then incubated for 6d
at 37°C and 20 pl resazurin added to each well. After a further 8 h
incubation, the fluorescence was determined using a Spectramax
plate reader, as outlined above.

Results and discussion
Chemistry

1,2,3-Triazole-linked  5-amidinobenzimidazoles 7a-7e, 8a-8e,
and 9a-9e are synthesised as outlined in Scheme 1. 4-
Hydroxybenzaldehyde was propargylated to give 4-(prop-2-ynylox-
y)benzaldehyde (2), which subsequently via the regioselective
Cu(l) catalysed cycloaddition with aromatic azides resulted in
4-(1,2,3-triazol-1-yl)benzaldehyde derivatives (3a-3e) comprising
an N-T-aryl-substituted 1,2,3-triazole subunit. An efficient and
environmentally benign synthetic protocol®®, applying microwave
and ultrasound irradiation, was used in the synthesis of 3a-3e.
The efficiency of both ultrasound and microwave conditions were
compared and indicated that ultrasound-assisted syntheses of
3a-3e resulted in higher yields than those of microwave-assisted
reactions. Amidino-substituted 1,2-phenylenediamines (4-6) that
were used for the synthesis of the target 5-amidinobenzimidazoles
7a-7e, 8a-8e, and 9a-9e were synthesised from the correspond-
ing nitrile by the Pinner method®. 4-Amidino 1,2-phenylenedi-
amines (4-6) reacted with the bisulfite adduct of the 4-(1,2,3-
triazol-1-yl)benzaldehyde derivatives (3a—e) to produce amidine
(7a-7e), N-isopropylamidine (8a-8e), and imidazoline-substituted
(9a-9e) benzimidazole derivatives®®

Spectroscopic characterisation of compounds

5-Amidinobenzimidazole derivatives 7a-7e, 8a-8e, and 9a-9e
were synthesised and characterised by UV-Vis spectroscopy.
UV-Vis spectra displayed two absorption maxima at around 260
and 315nm (Table S1, Supporting Information). Absorbancies of
solutions were proportional to their concentrations up to 1 x 10™*
moldm ™3, indicating that there is no significant intermolecular
stacking that could give rise to hypochromic effects. Furthermore,
the UV-Vis spectra of 7a-7e, 8a-8e, and 9a-9e revealed negli-
gible temperature dependent changes (25-90°C) and excellent
reproducibility upon cooling to 25°C. The results showed that all
evaluated compounds were stable and suitable for further spectro-
scopic and biological investigations.



Interactions with double-stranded polynucleotides

Spectrophotometric titrations of compounds with ds-DNA/RNA
UV-Vis absorption spectroscopy is simple, widely used and one of
the most effective methods for detecting the interaction of small
molecules with DNA. In general, these interactions and the subse-
quent formation of a new complex leads to changes in UV-Vis
spectra’®. Therefore, UV-Vis spectroscopy was applied to investi-
gate the interaction of compounds 7a-7e, 8a-8e, and 9a-9e with
ds-DNA/RNA. UV-Vis titration with ctDNA showed a hypochromic
effect indicating the disappearance of free molecule and the for-
mation of a new compound-DNA species (Figure S1, Supporting
Information). The hypochromic effect (12-44%) was accompanied
by a small bathochromic shift (AZ=3-9 nm) that was found to ori-
ginate from the stabilisation of DNA secondary structure due to
the interaction with small molecules’”.

To assess the sequence selectivity of the compounds, the
experiment was repeated with ds-RNA polynucleotides (polyA-
polyU and polyC-polyG). The addition of polyA-polyU in most cases
led to hypochromic (19-58%) and small bathochromic (2-11 nm)
changes in the visible absorption spectra as a result of complex for-
mation. Absorption spectra obtained by adding aliquots of polyC-
polyG to the compound solutions were recorded until saturation
was achieved. In general, it was observed that addition of polyC-
polyG resulted in a pronounced decrease of UV-Vis absorption
maxima at 300-320 nm (27-50%), followed by small bathochromic
shifts (AZ=2-7 nm). No further studies were conducted with com-
pounds whose UV-Vis spectra showed minimal changes (AA < 0.08
at r=1-0.1) during titration with DNA/RNA polynucleotides. It can
be inferred that these compounds interact with polynucleotides
only through a very weak electrostatic and external mode (Table
1). During titration with polyA-polyU, a clear isosbestic point was
observed in UV-Vis spectra of 7a and 9c¢, pointing to the formation
of one dominant type of complex.

The binding constants logKs and the density of the binding
sites n were calculated using Scatchard plot analysis. In addition,
the binding constants Ks for compounds 8b and 8e were calcu-
lated only for titration data taken at the r>0.1, because below
that ratio changes in absorption maxima were too small for accur-
ate calculation (AA <0.04) (Table 1). The binding constants Ks and
ratios n obtained by processing UV-Vis titration data using the
Scatchard equation are summarised in Table 1.

Thermal denaturation experiments

Thermal melting enables the rapid qualitative evaluation of the
relative binding affinities of the compounds towards selected poly-
nucleotides (Table 2)’%73. The melting temperature (T,,) is defined
as the differences between the melting temperatures of free poly-
nucleotides and their complexes with small non-covalently bound
molecules. The correlation between binding constant and the
increase of T, was found to be quite complex, because the num-
ber of binding sites, positive charge of compounds, potential
cooperativity, and the affinity for the unfolded polynucleotide
have also to be taken into account’®.

Denaturation experiments were carried out at different
amounts of the compounds (r=0.1, 0.3, 0.5, and 0.7 eq;
r=[compound]/[polynucleotide]) with ctDNA and polyA-polyU.
The results of the denaturation experiments are listed in Table 2.

Generally, results correlated with those of UV-Vis experiments.
Strong non-linear dependence of AT, values on the ratio r was
revealed, suggesting saturation of binding sites at r=0.5-0.7 (for
7c-7d, 8a-8e, and 9d), r=0.3-0.5 (for 7a, 9¢, and 9e), in good
accordance with the calculated values presented in Table 1.
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Table 2. AT, values (°C) of studied ds-polynucleotides upon addition of com-
pounds 7a, 7c-7e, 8a—8e, and 9b—9e at different ratio ® (PBS and pH=7).

ctDNA polyA-polyU
Compound 0.3 0.5 0.7 0.1 0.3 0.5
7a 2.46 4.84 4.69 1.74 1.74 2.53
7c 235 3.20 3.77 0.20 2.72 -

7d 3.12 3.86 3.62 2.06 1.14 1.70
9.05¢

7e 2.19 2.62 2.66 0.39 1.1 1.11
12.58¢ 15.04¢

8a 335 3.94 4.25 0.32 0.64 1.1
8b 4.03 3.96 447 1.17 1.32 1.56
6.38° 8.49¢

8¢ 3.40 3.89 439 0.76 0.58 1.12
8d 1.76 332 3.63 0.91 0.51 0.72
8e 2.22 1.72 1.71 0.52 0.23 0.26
9b - - - 249 2.67 292
36.08° 40.93¢

9c 3.55 3.31 3.80 2.85 4.27 5.53
13.99¢ 17.73¢

9d 331 3.52 2.60 1.26 1.42 2.06
10.30¢ 13.29¢

9e 2.87 347 3.60 1.1 0.47 0.47
12.46¢ 13.89¢

2All values are averaged from at least two measurements. Error in AT,,,: £0.5°C.
br— [compound]/[polynucleotide].

“Biphasic melting curve, values for both melting midpoints given when possible.
Not possible to determine due to the lack of melting midpoint.

Results showed that compounds 8a-8e stabilised ctDNA slightly
better than compounds 7a-7e and 9a-9e. Biphasic curves for
interactions of compounds 7e, 8b, and 9b-9e with polyA-polyU at
higher ratios r indicated additional binding modes. The above-
mentioned compounds have monophasic curves at r <0.3, which
together with results on UV-Vis titration confirmed intercalation as
the dominant binding mode, while above that, ratio biphasic
curves indicated agglomeration of compounds along the poly-
nucleotide chains.

Circular dichroism (CD) experiments
CD spectroscopy has been extensively employed for the investiga-
tion of small molecule-polynucleotide (DNA/RNA) interactions’>”®,
Binding of achiral small molecules within the chiral DNA/RNA helix
results in an induced CD spectrum (ICD)”””%. The appearance of
ICD bands upon titration (r=0.1-0.7) at A1>300nm was used to
estimate the orientation of the chromophore in the ctDNA/RNA
binding site and for the determination of binding mode. ctDNA
features approximately 40% GC and 60% AT base pairs and adopts
a B-helix with a narrow, deep, well-accessible minor groove and a
rather broad, and shallow major groove. The two RNA polymers,
polyA-polyU and polyG-polyC, form a typical A-helix with a broad
minor and narrow major groove. The main difference among ds-
RNAs is the presence of the amino group at N-2 in guanine which
protrudes into the grooves and thereby may influence the affinity
and binding mode of compounds being studied. The addition of
the compounds being investigated resulted in a decrease of the
ds-DNA/RNA CD bands (4 =220-400 nm, S2). Observed changes in
the intensity of CD bands for ds-DNA/RNA indicated the partial
disruption of the polynucleotide helical chirality upon binding of a
small molecule. The addition of the compounds 7a, 7c-7e, 8a-8e,
and 9¢-9d in solution with ctDNA generated strong, positive ICD
signals in the range of 300-350 nm (Figures 4 and S2, Supporting
Information). This may arise due to groove binding being the
dominant binding mode for this class of compounds”®#°,

ICD spectra of polyA-polyU and polyC-polyG with the addition
of evaluated compounds, except for 7a, 8a-8e, and 9d, showed a
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Figure 4. Induced CD spectra of compound 7a (a) and compound 8c (b) with ctDNA (r=0-0.7).
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Figure 5. ICD spectra of RNA polynucleotides with 5-amidinobenzimidazoles with p-methoxyphenyl-1,2,3-triazole unit: compound 7b (a), compound 8b (b), and com-

pound 9b (c).

Table 3. Anti-bacterial activity of selected compounds against antibiotic-resistant
Gram-positive clinical strains.

MIC (ng/ml)
S. aureus S. aureus E. faecium

Compound MRSA MSSA VRE
7a 16 32 32
7b - - 256
7c 16 32 256
7d 16 32 32
7e 32 128 64
8a 8 128 128
8b 16 64 128
8¢ 8 16 32
8d 32 64 64
8e 8 64 64
9a 128 128 128
9b 256 256 256
9c 8 128 64
9d 64 64 64
9e 64 64 32
Ampicillin 4 1 1
Gentamicin 0.25 0.125 0.25

decrease of CD band in the range of 220-300nm, followed by
appearance of new negative signal at >300nm (Figures 5 and S2,
Supporting Information). This indicates that intercalation is the
dominant binding mode. Compounds 7b-9b showed higher affin-
ity for dsRNA than ctDNA. While 8b and 9b bound to polyA-
polyU, 7b showed higher affinity for polyC-polyG (Figures 5 and
S2, Supporting Information).

ICD spectra of 8b and 9b, in the presence of polyA-polyU,
showed an intense increase of signal above r=0.3, while ICD
spectra of 7b with polyC-polyG showed a weaker intercalation sig-
nal above r=0.5. This is in agreement with the results obtained

Table 4. Anti-bacterial activity of selected compounds against antibiotic-resistant
Gram-negative clinical strains.

MIC (ug/ml)
E. coli K. pneumoniae P. aeruginosa
Compound ESBL ESBL ESBL
7a 4 8 128
7d 16 16 32
7e 32 16 32
ad 128 - 128
9e 64 - 64
Ceftazidime 8 >128 32
Ciprofloxacin >128 1 8

by UV-Vis and thermal melting methods. Minimal changes of the
intensity of the CD bands of polyC-polyG upon titration with com-
pounds 7a, 8a-8e, and 9d, suggest a non-specific binding mode.
Most probably compounds bind on the outside of the polyC-
polyG polynucleotide. The intensity of negative ICD bands in
polyA-polyU ICD spectra was also observed to be more intense
than those in polyC-polyG spectra obtained with the
same compound.

Biological evaluations

In vitro anti-bacterial activity

The in vitro anti-bacterial activity of 5-amidinobenzimidazoles
7a-7e, 8a-8e, and 9a-9e was tested against Gram-positive bac-
teria including S. aureus (ATCC 25923), Enterococcus faecalis (ATCC
29212), and Gram-negative bacteria including E. coli (ATCC 25925),
K. pneumoniae (ATCC 700803), P. aeruginosa (ATCC 27853), and
Acinetobacter baumannii (ATCC 19606). The MICs were determined
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Table 5. Anti-trypanosomal activity” of compounds 7a-7e, 8a-8e, and 9a-9e against Trypanosoma brucei strain.

Ra N T
O
H

N\N

Compd R R T. brucei L6 cells S.I.°
P : > ICso (uM) ICoo (uM) ICso (uM) L6/Tb ICso
NH,
7a ~) | 86+05 162+009 - -
NH,
o (e 4 15+03  81+£06 302+15 200
cl NiH,
7c @ Nk - - -
\ NH,
7d ) 129402 18210 : -
NiH,
Te ) C 10213 159£04 - -
NiH,
8a - 4 (O TAE0T 167%12 - -
NH,
8b (o (L1203 3502 >300 >270
a i,
8¢ @ VAR SE - ; -
. NH;
8d ) Q{ 129402 21.6+04 - -
NH,
8e ) Q{ 135408 22503 - -
H
.
9a ~{) 41 79+04 172%12 - -
H
‘.
9b o <] 16+04  73£03  263+15 165
Cl E+
9¢ @ - >15 - - -
¢
H
9d () <] 10804  >25 . -
H
H
9¢ ) 4] 97+02 140403 - -
H
Nifurtimox - - 44£0.7° -

%In vitro activity against bloodstream form T. brucei expressed as the concentration that inhibited growth by 50%
(ICs0) and 90% (ICqp). Data are the mean of triplicate experiments + SEM.

bTaken from Ref. [83].
“Selectivity index.

and compared with those of the antibiotics ceftazidime, ciprofloxa-
cin, ampicillin, and gentamicin (Table S2, Supporting Information).

Generally, compounds showed better activities against
Gram-positive than Gram-negative bacteria. Only 5-amidinobenzi-
midazoles 7a, 7d, and 7e proved to be active against three
Gram-negative strains, particularly amidinobenzimidazole 7d,
which has an N-1-benzyl substituent. The type of amidino moiety
in 5-benzimidazole had impact on the anti-bacterial activities, with
non-substituted amidinobenzimidazoles 7a-7e having the highest
overall activities (Table S2, Supporting Information). Compounds
that exhibited anti-bacterial activities with MIC <256 pg/ml were
evaluated against antibiotic resistant Gram-positive clinical strains,
such as MRSA, MSSA and VREF (Table 3) and Gram-negative
clinical strains including extended-spectrum p-lactamase (ESBL)-
producing E. coli, K. pneumoniae, and P. aeruginosa (Table 4).

The evaluated compounds had a wide range of activity against
MRSA, with the 5-N-isopropylamidinobenzimidazoles 8a-8e being
the most active (MIC=8-32pug/mL) (Table 3). 8a-8e were also

active against the MSSA strain, although to a lesser extent
(MIC=16-128 pg/ml). 8c also displayed modest activity against
VRE-E. faecium. Among other compounds, benzimidazole imidazo-
line 9¢ had promising activity against the MRSA strain (MIC =8 ng/
ml). Against the antibiotic-resistant Gram-negative bacteria (Table
4), 5-amidinobenzimidazole 7a, with the N-1-phenyl-1,2,3-triazole,
proved to be the most potent, with ICso values of 4 pug/ml for E.
coli, and 8 ug/ml for K. pneumoniae. However, this compound was
only marginally effective against P. aeruginosa. Compounds 7d
and 7e prove to be active against K. pneumoniae (MIC =16 ug/ml).
Introduction of a methylene (7d and 9d) and sulphide-bridge (7e
and 9e) between 1,2,3-triazole and the phenyl ring reduced the
activity against the antibiotic resistant E. coli and K. pneumoniae
clinical strains. 7d, 7e, and 9e had slightly greater potency against
P. aeruginosa compared with 7a. Overall, the results indicated that
the o-chlorophenyl hydrophobic unit, with N-isopropylamidine, as
the hydrophilic unit, in 8c contributed to anti-bacterial activity,
particularly against the MRSA strain. Importantly, 7a was the most
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potent of the compounds against ESBL-producing E. coli, with
higher activity than the reference antibiotics ceftazidime and
ciprofloxacin.

One of our aims was to determine if there was a relationship
between the affinity of compounds towards ds-DNA/RNA and their
antimicrobial activity. UV-Vis and CD spectroscopy, as well as ther-
mal denaturation assays, showed that compounds 7b, 9a, and 9b,
which did not bind to ctDNA, had only marginal anti-microbial
activities (MIC >128ug/ml). Conversely, 5-amidinobenzimidazole
7a, which showed the highest affinity to ctDNA, exhibited high
potency against ESBL-producing E. coli, which is in agreement
with previous findings>®8'%2,

Screening of the anti-trypanosomal activity

Results on the in vitro testing against the bloodstream form T. bru-
cei of the 5-amidinobezimidazoles 7a-7e, 8a-8e, and 9a-9e with
1,4-disubstituted 1,2,3-triazole, and nifurtimox as reference drug,
are summarised in Table 5. Similarly to anti-bacterial evaluations,
we investigated how cationic moieties and aromatic substituents
attached to the N-1 of the 1,2,3-triazole ring directly, or through
the methylene and methylenesulphide spacer, influenced, anti-try-
panosomal potencies.

Phenyl, p-methoxyphenyl, o-chlorophenyl, benzyl and (phenyl-
thio)methyl substituents had a significant negative impact on ICs,
values of anti-trypanosomal activity in the following order: p-
OCH3 > Ph > PhSCH; = Bn > o0-Cl. Except for 7¢-9c¢, all compounds
were active against T. brucei with ICso values ranging from 1.1 to
13.5uM. Interestingly, the o-chlorophenyl substituent in 7c¢-9c
caused the loss of anti-trypanosomal activity (ICso> 15uM). The
presence of the p-methoxyphenyl substituent in 7b-9b led to
enhanced anti-trypanosomal potency, with the 5-N-isopropylamidi-
nobenzimidazole analogue 8b being the most promising com-
pound (IC5o=1.1 uM, ICoo = 3.5 uM), which is 4-fold more potent
than nifurtimox. UV-Vis titrations and thermal denaturation assays
suggested that 7b-9b have low affinity to ctDNA (Table 1) indicat-
ing that DNA is not the primary target for their anti-trypanosomal
activity. Cytotoxicity assays against the rat myoblast cell line L6,
revealed negligible activity, with three-figure selectivity index
(Table 5).

Conclusions

The 1,2,3-triazole-linked 5-amidinobenzimidazoles 7a-7e, 8a-8e,
and 9a-9e were synthesised by a Cu(l)catalysed 1,3-dipolar cyclo-
addition reaction applying microwave and ultrasound irradiation,
with subsequent formation of a benzimidazole moiety by oxidative
coupling of o-phenylenediamines with benzaldehydes. It was
found that the 7¢-9¢, 7d-9d, and 7e-9e sets of compounds non-
covalently bound to ds-DNA/RNA. The small bathochromic shifts
in UV-Vis titration spectra upon addition of ctDNA, modest ther-
mal stabilisation effects, and strong positive ICD bands in CD titra-
tion experiments supported minor groove binding as the
dominant binding mode of these compounds. Conversely, the
appearance of negative ICD bands in CD titration experiments
with polyA-polyU and polyC-polyG, and density of binding sites
obtained from UV-Vis titrations, identified intercalation as the pre-
dominant binding mode.

Furthermore, SARs showed that the type of aromatic substitu-
ents at N-1 of 1,2,3-triazole had profound effects on anti-bacterial
and anti-protozoal activities. Thus, results of anti-bacterial evalua-
tions revealed that o-chlorophenyl-1,2,3-triazole and N-isopropyla-
midine moieties in 8c had a considerable impact on inhibitory

activity against resistant Gram-positive bacteria, particularly the
MRSA strain. On the other hand, non-substituted amidine and
phenyl rings in 7a contributed to a strong inhibitory effect on an
ESBL-producing E. coli strain, with the potency better than those
of the reference antibiotics ceftazidime and ciprofloxacin
Compounds 7 b, 9a, and 9b that showed extremely low affinity to
ctDNA had also negligible anti-microbial activity (MIC >128 pug/ml).
Contrary to this, the 5-N-isopropylamidinobenzimidazole series
8a-8e, which had better binding affinity relative to other ami-
dines, showed some selective activity (MIC=8-32pg/ml) against
the MRSA strain. Notably, compound 7a emerged as the most
promising candidate because of its higher potency (MIC =4 pug/ml)
against ESBL-producing E. coli. It had the highest affinity among
the tested compounds to ctDNA (Tables 1 and 2).

Results of anti-trypanosomal evaluations showed that the o-
chlorophenyl group in 7c-9¢ had a negative impact on activity,
whereas the p-methoxyphenyl substituent in 7b-9b enhanced
activity, with 8b (ICso=1.1uM and 1Cyo=3.5uM) being more
potent than nifurtimox. In contrast to the observed correlation
between anti-microbial activity and DNA binding, the antiproto-
zoal effects of 8b did not correlate with its DNA affinity. Further
investigations will, therefore, be required to clarify the mechanism
of anti-protozoal activity.

The promising anti-bacterial activity of compounds 7a and 8c
and the anti-trypanosomal potency of compound 8b suggest that
further structural optimisation of the 1,2,3-triazole-linked 5-amidi-
nobenzimidazole class could enhance the potential anti-HAT and
anti-bacterial activity against resistant pathogenic microorganisms.
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