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ABSTRACT 

This thesis describes the feasibility of implementing a near real-time vaccine safety 

surveillance system (NRTVSS) using data from the Clinical Practice Research Datalink (CPRD), 

a United Kingdom (UK) research-level primary care database. 

NRTVSS is one method in the vaccine safety post-licensure toolkit, used since 2005. To 

understand how NRTVSS has been applied I conducted a systematic review of studies using 

NRTVSS. I identified 31 systems, mainly in the USA. Several sequential tests were in use, most 

commonly the Poisson-based maximized sequential probability ratio test (PMaxSPRT, 44%) 

and its binomial version (BMaxSPRT, 24%). Only 75% of studies addressed confounding, 

mainly by adjusting the expected rate. Delays in data availability may hinder the feasibility 

of implementing a system; some studies delayed the analysis, whilst others adjusted for 

delays and partially accrued periods.  

In CPRD, delays in recording outcomes are particularly relevant. Hence, I assessed those 

delays for selected outcomes of interest for vaccine safety (Bell’s palsy, Guillain-Barré 

syndrome (GBS), optic neuritis, and febrile seizures (FS)) by comparing the deemed date of 

diagnosis to the date the event was recorded in the system. Three-quarters of the records 

accrued during the first month, considered as sufficient to implement NRTVSS.  

I thus trialled the implementation of a system using previously collected CPRD data, for 

seasonal influenza/GBS and measles-mumps-rubella/FS. This included power calculations for 

detecting a signal. I used PMaxSPRT for both vaccine/outcome pairs and BMaxSPRT for 

measles-mumps-rubella/FS. Both tests were adjusted for delays in recording outcomes, 

based on the previous analysis. It was possible to implement a system, but power was <80% 

to detect less than a four-fold increase in the risk of GBS following influenza vaccine. For this 

pair, I re-evaluated power after removing delays in data availability, with no significant 

improvement.  

This work establishes the foundation of a NRTVSS using CPRD for potential application in the 

UK. Future research could assess further vaccine/outcome pairs and explore the use of other 

statistical tests. Overall, this project contributes to UK vaccine pharmacovigilance.  
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1 INTRODUCTION 

Vaccination is one of the most effective public health interventions.1-3 However, the success 

of vaccination itself poses challenges. As vaccine-preventable diseases have been 

dramatically reduced, the possibility of adverse reactions has gained relevance. The concerns 

regarding the safety of vaccines led some to decide against vaccination, which has 

contributed to the resurgence of some of these diseases.4,5 

Vaccine safety is studied throughout the vaccine lifecycle. This starts with the assessment of 

a vaccine candidate, during clinical trials. If the vaccine candidate meets the requirements 

and is approved the safety continues to be studied using post-licensure studies. At this stage, 

the main focus is to detect rare adverse events which might have been missed by pre-

licensure studies. Several methods are available, including passive and active surveillance.2 

Passive surveillance is mainly represented by spontaneous reports, used worldwide. Active 

surveillance includes a variety of methods and has benefitted from the advent of electronic 

health records. Such records allow the study of large volumes of data, which are essential to 

detect rare adverse events.6 Given that vaccines are administered to a large number of 

individuals, it is important to identify these events as soon as feasibly possible. Most available 

studies do not incorporate a timeliness dimension; to address this issue in 2005 a new 

method to assess vaccine safety was introduced in the United States of America (USA).7 This 

method, initially known as rapid cycle analysis (RCA), and then as near real-time vaccine 

safety surveillance (NRTVSS) uses electronic health records and sequential tests to identify 

safety signals in a timely manner. NRTVSS is started very soon after vaccine delivery and data 

are examined at regular points in time.8 It is now used routinely in the USA, where it has 

allowed the identification of several safety signals.9   

In the United Kingdom (UK), vaccine pharmacovigilance has relied largely on spontaneous 

reports and on epidemiologic studies aimed at testing hypotheses generated by a variety of 

sources. NRVTSS has been implemented using spontaneous reports to obtain the number of 

observed events.10 However, spontaneous reports suffer from under-reporting and are 

subject to biases, while hypothesis-testing studies are generally designed in response to 

suspicions raised some time after the vaccine’s introduction. Electronic health records are 

required for a new UK NRTVSS that relies fully on routinely collected data; such research-

level data are available, such as the Clinical Practice Research Datalink (CPRD),11 The Health 

Improvement Network (THIN),12 The Royal College of General Practitioners Research and 

Surveillance Centre (RCGP RSC) network,13 and ResearchOne.14 Given the availability of data 
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that are potentially suitable to implement NRTVSS, it is then necessary to determine which 

methods are available, their characteristics, and whether available electronic health records 

are adequate to perform this kind of surveillance.  

This thesis reviews the methods available for NRTVSS and explores the feasibility of using 

CPRD, as an example of a general practice dataset, to perform NRTVSS. In Chapter 2, the 

main concepts in the field of vaccine safety are summarised, with a particular focus on 

methods available to assess vaccine safety. The use of near-real time vaccine safety 

surveillance is introduced. The Chapter finishes with the objectives of the thesis. Chapter 3 

provides information on the methods used in this thesis. It starts with information on the 

data sources used and further explanation of the tests available to perform near real-time 

vaccine safety surveillance. The remaining Chapters provide an explanation of the work 

conducted to address the objectives of the thesis. Chapter 4 presents a systematic review 

undertaken to assess the worldwide use of near real-time vaccine safety surveillance. This 

work was published as a paper in Pharmacoepidemiology and Drug Safety, which is 

reproduced in Chapter 4 (Paper 1). Chapters 5 and 6 establish the foundation of the 

feasibility assessment. This assessment includes a trial implementation of near real-time 

methods using CPRD data (Chapter 7). Chapter 5 details the framework used to establish the 

feasibility of using CPRD to implement a near-real time system. It starts with information on 

the process used to select the outcomes and the vaccines to include in the trial 

implementation, followed by aspects of the data which were considered as essential to 

implement a near real-time system. One of the key aspects was delays in recording data, and 

an in-depth analysis of these delays is presented. This analysis was also published as a paper 

in Pharmacoepidemiology and Drug Safety, reproduced in Chapter 5 (Paper 2). The Chapter 

ends with the explanation of the decision about which vaccine/outcome pairs were 

considered for the feasibility study. Chapter 6 focuses on how the format and availability of 

CPRD data limited the design of the trial implementation study, and how these issues were 

addressed. This is followed by the implementation study itself, which is presented in Chapter 

7. This work has been written as a paper published in Vaccine (Paper 3). One of the issues 

identified during this work was lack of power to identify a signal for rare outcomes. Knowing 

that delays in recording and receiving data for analysis can influence power, this issue was 

further explored and is reported in a fourth paper, accepted for publication in 

Pharmacoepidemiology and Drug Safety. Finally, Chapter 8 summarises and provides an 

overall discussion of the findings, and presents the implications of the work.  



19 
 

2 BACKGROUND 

2.1 Vaccine safety overview 

Vaccines are considered one of the most cost-effective public health interventions.1-3 The 

exact number of cases of disease prevented since their introduction is unknown, but 

estimates for the USA indicate that 103.1 million cases of polio, measles, rubella, mumps, 

hepatitis A, diphtheria and pertussis might have been prevented from 1924 to 2011.15 The 

value of vaccines seems certain. 

Vaccine are administered to healthy individuals, often children, and thus the standard for 

vaccine safety is particularly high. However, not all events following administration of a 

vaccine will be due to the vaccine itself. The Council for International Organization of Medical 

Sciences (CIOMS) defines adverse events following immunisation (AEFI) as “any untoward 

medical occurrence which follows immunisation and which does not necessarily have a 

causal relationship with the usage of the vaccine”.16 p39-40 AEFI can be: (i) vaccine product-

related (related to vaccine components); (ii) vaccine quality-related (due to defects in the 

product); (iii) immunisation error-related (owing to errors in the handling, prescribing, and 

administration process); (iv) immunisation anxiety-related (including reactions such as 

vasovagal syncope); and (v) coincidental events (unrelated to the vaccination process and 

that would have occurred regardless of the vaccine administration). It is important to make 

a clear distinction between these different causes of AEFI whenever possible, to avoid undue 

concerns. Adverse events (AE) and Adverse Reactions (AR) are related concepts: AE is similar 

to AEFI but are applied more broadly to drugs in general.17 On the other hand, AR does 

require a causal association. It is defined as “a response to a drug which is noxious and 

unintended, and which occurs at doses normally used in man”.17 Vaccine pharmacovigilance 

activities try to detect AR quickly in order to minimise their impact.16 

Public concerns with the safety of vaccines started with their introduction, due initially to 

events arising from production methods and subsequently due to other safety concerns.18 

These concerns can undermine the success of immunisation programmes as suggested by 

Chen and colleagues,4 who have described the evolution of these programmes (Figure 2.1). 

They emphasise how vaccine coverage, disease incidence, and the perception/incidence of 

AE are interlinked. As more people are vaccinated and the disease is controlled (stage 1) 

disease consequences are less evident and the perception of AE increases (stage 2). This can 

lead to loss of confidence and decreasing coverage resulting in outbreaks (stage 3). Public 
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health authorities might be able to restore confidence, with resumption of high coverage 

and low incidence of the vaccine-preventable disease (stage 4). In special cases, eradication 

might be achievable and the vaccine can be stopped, as well as its related AE (stage 5).  

One example of this evolution started in 1998 with a suggested association between 

measles-mumps-rubella (MMR) vaccine and gastrointestinal disease and autism.19 In the UK, 

MMR coverage by two years of age dropped from 92.5% (1995) to 78.9% (2003) with 

increasing incidence of measles by 2006-07.5 Several measles outbreaks have occurred 

subsequently in Europe and USA.20 

 

 

Figure 2.1. Potential stages in the evolution of an immunisation programme.4,21 

 

Vaccines can cause AR but, overall, benefits are considered to outweigh the risks. For 

example, measles-related serious complications/death risk can be up to 1/20 while vaccine-

related encephalitis risk is around 1/1,000,000.22,23 Vaccine safety is assessed at several 

stages, broadly divided into pre-licensure studies (before vaccine approval) and post-

licensure (after approval), as outlined in Sections 2.2 and 2.3. 

2.2 Pre-licensure studies 

Vaccines are studied extensively in-vitro and in animals before the human tests start. At that 

stage, clinical trials are the first step in demonstrating a vaccine candidate is safe and 

efficacious. These trials are conducted in three phases with progressively bigger samples. In 
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phase I clinical trials the vaccine candidate is tested in a small sample of healthy individuals. 

For phase II trials a larger sample size is evaluated, allowing identification of common AE and 

providing important information on the best dosage and schedule. Finally, during Phase III 

trials a bigger sample is assessed, to ensure precise estimation of vaccine efficacy and 

enabling detection of less common events.2,21,24 As mentioned above vaccine safety 

standards are particularly high and thus phase III vaccine trials tend to enrol more subjects 

than other drugs trials. At this stage, the sample usually includes between 5,000 to 10,000 

individuals but this number can be larger if rare adverse events are anticipated, as in the case 

of rotavirus vaccine.24 Following withdrawal of a rotavirus vaccine after approval due to an 

increased risk of intussusception (estimated to be 1 excess case/10,000 vaccinated children), 

a new vaccine was required to demonstrate safety regarding intussusception and thus phase 

III trials included 70,000 children.2,25 Nevertheless, sample size considerations tend to focus 

on vaccine efficacy rather than vaccine safety.  

If a vaccine candidate meets the efficacy and safety requirements it can be approved. 

Nevertheless, clinical trials follow strict enrolment criteria (resulting in highly selected 

populations), do not give information on long-term AE, and they can miss rare AE.2,26 It is 

thus important to continue surveillance after vaccine approval. In the European Union, 

companies are required to submit a risk management plan when applying for approval.27 This 

should include information on (i) safety profile; (ii) plans to gain further insight into the safety 

and efficacy profile; and (ii) risk minimisation activities if required. Risk management plans 

ensure that any potential safety concerns arising from but not confirmed during clinical trials 

are followed during the post-licensure stage.  

2.3 Post-licensure safety surveillance 

Post-licensure safety surveillance aims to identify safety signals. CIOMS defines a signal as 

“information that arises from one or multiple sources (…), which suggests a new potentially 

causal association, or a new aspect of a known association, between an intervention and an 

event (…), that is judged to be of sufficient likelihood to justify verificatory action”.28 In the 

context of vaccine pharmacovigilance, the intervention is the vaccine and the event the 

suspected AR. Throughout this work, these will be referred to as the vaccine/outcome pair 

or pair of interest.  

Identifying a safety signal is not the end of surveillance but rather an initial step in a multi-

stage process. Several authors have described the process, but concepts have been applied 
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loosely, with no clear definition.1,26,29 It is generally agreed that an initial step is to find a 

signal – the signal identification or detection phase. Nelson et al. defines this phase as the 

stage to detect unknown AE.26 Traditionally, this has relied on the use of spontaneous reports 

(passive surveillance) and employment of a set of techniques known as data mining. Active 

surveillance approaches have complemented the use of spontaneous reports and include 

hospital-based surveillance, cohort recruitment, large population-based datasets and 

internet-related data.1 Signal strengthening or refinement is an intermediate stage which 

addresses previously suspected events but does not provides a final confirmation of a 

potential signal. Ecological studies, observed-to-expected calculations and near real-time 

surveillance using electronic health records are included in this stage. Signals emerging from 

both the signal detection and signal strengthening stages need to be confirmed, generally 

using traditional epidemiological designs, which provide a more rigorous assessment than 

the methods previously mentioned. Results from confirmatory studies should be interpreted 

in light of additional considerations such as biological plausibility. Figure 2.2 summarises the 

approaches used at each stage.1  

 

Figure 2.2. Stages in the post-licensure safety surveillance. Adapted from Bonhoeffer et al.1 

 

These stages should not be regarded in a linear way: for a given vaccine/outcome pair the 

assessment might start with a signal strengthening activity (with no explicit signal detection) 

or a confirmatory study may follow a signal detection (with no signal strengthening stage). 

The approach should be tailored to the characteristics and existing knowledge for the specific 
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pair of interest. These methods are briefly explained below with a particular focus on their 

use for evaluation of vaccine safety. The approach used in this thesis, near real-time 

surveillance using electronic health records, is presented in more detail.  

2.3.1 Signal detection 

2.3.1.1 Spontaneous reporting 

Post-licensure surveillance has relied on spontaneous reports, which are widely 

implemented. These systems require that health-care workers or others suspecting an AE to 

report it, hence they are described as passive systems.30 Spontaneous reporting systems are 

considered to be simple, low-cost, represent an opportunity for the public to report, and 

have a broad scope.2,30 They are useful for detecting new, extremely rare, and/or 

unanticipated AE but have limitations. These include report quality/completeness, 

under/over-reporting, and lack of population denominators.2 These issues are briefly 

presented below.  

Each case report is carefully reviewed by a clinical analyst in order to assess a possible 

association between the drug and the AE being studied. This assessment considers several 

aspects of the report (see below) and is limited when there is incomplete or poor quality 

information. Spontaneous reports rely on voluntary systems and therefore result in an 

undetermined level of under-reporting, which differs for each AE. Hence, it is not possible to 

calculate the denominators that are needed for calculating AE rates in the population. 

Moreover, temporal reporting trends are non-uniform and may not follow the frequency of 

the AE/drug in the population. Previous studies have shown that the frequency of reports 

for a given AE is higher in the first years after approval and declines thereafter. Other factors, 

such as strong media attention or a newly suspected AE, also affect the reporting behaviour 

leading to over-reporting.2,29,30 Despite these limitations several analysis can be performed, 

including review of case reports, reporting ratios, and data mining.30  

Review of case reports is a descriptive approach in which cases fulfilling a specified case 

definition are systematically reviewed and a possible causal relationship is ascertained (case 

causality assessment). For drugs, the temporal association, biological plausibility, and 

information on de-challenge (drug withdrawal) and re-challenge (drug re-introduction) are 

the aspects considered.30 Vaccines’ characteristics make this process more complex.28 There 

is usually no information on re-challenge (vaccines are administered once or with long 

intervals) or de-challenge (due to long-lasting immunological effects). Furthermore, 
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concomitant vaccine administration is common, making it difficult to attribute the AE to a 

specific vaccine. This issue also complicates other methods, such as those used for signal 

strengthening. Finally, live vaccines may cause the vaccine-preventable disease, which can 

be the source of the event, adding extra complexity. 

Several systems have attempted to standardise case causality assessment.31 The system 

proposed by the World Health Organization (WHO) Collaborating Centre for International 

Drug Monitoring (also known as the Uppsala Monitoring Center, WHO-UMC) and the Naranjo 

probability scale are the most widely used.31 WHO-UMC uses information on the temporal 

association, objective confirmation of the event, biological plausibility, de-challenge, and re-

challenge, and based on the presence/absence of these classifies reports as ‘certain’, 

‘probable/likely’, ‘possible’, ‘unlikely’, ‘conditional/unclassified’, and ‘unassessable/ 

unclassifiable’.32 The Naranjo scale includes questions on the same aspects of the WHO-UMC 

assessment criteria plus existence of previous reports and dose-response relationships. Each 

question is scored and a total score obtained.33 These systems have been criticised as neither 

produces a reliable quantitative estimate of the likelihood of a causal association between 

the outcome and the drug being assessed.31 However, they are considered to be useful as 

they decrease disagreement between assessors and facilitate report processing.   

Even with no denominators it is possible to calculate a relative measure, the reporting ratio:  

𝑅𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝐸/𝐴𝑅 

𝐷𝑟𝑢𝑔 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒
. 

Drug utilization measures try to capture the number of individuals at risk and include 

dispensing data, the number of persons receiving the drug, or a combination of these with 

duration of treatment. Reporting ratios are not true incidence/prevalence measures but can 

be compared with background rates when the event is serious. Alternatively, reporting ratios 

for other drugs used for the same indication or from the same class can be used as 

comparators. Given the limitations of spontaneous reports and reporting ratios these 

comparisons should be made carefully.30 

Data mining techniques have become a popular option to analyse spontaneous reports and 

other data sources.29 These techniques try to identify patterns in existing data, mainly using 

disproportionality methods. The underlying principle is that any association between a drug 

and an event will lead to the occurrence of the drug-event pair disproportionately in the 

data, compared to what would be expected assuming no association. As all reports refer to 

a specific drug, for the purposes of these analyses the comparator is all other drugs (either 



25 
 

all drugs in the same drug class or simply all other drugs in the data). Disproportionality 

analysis includes frequentist and Bayesian measures and is based on a simple 2x2 

contingency table.26,29,30,34 Table 2.1 presents the structure commonly used. For frequentist 

measures, it is possible to calculate a hypothesis test of independence (𝜒2 or Fisher’s test) 

and confidence intervals. Nevertheless, these methods tend to become unstable with small 

number of events, leading to false positives. Bayesian measures were developed to address 

this issue, as they ‘shrink’ the measure of association towards the null, depending on the 

data variability. The most commonly used measures are briefly defined on Table 2.2.  

Table 2.1. Contingency table commonly used for signal detection  

 Adverse event 

Target drug  Yes No Total 

Yes a b n = a+b 

No c d z = c+d 

Total m = a+c b+d t = a+b+c+d 

 

Table 2.2. Measures commonly used for signal detection  

Measure Definition (notation on Table 2.1) Type 

Relative Reporting Ratio (RRR) (t.a)/(m.n) Frequentist 

Proportional Reporting Ratio  (a.z)/(c.n) Frequentist 

Reporting Odds Ratio  (a.d)/(c.b) Frequentist 

Information Component log2(RRR) Frequentist 

Bayesian Confidence Propagation 

Neural Network  

Bayesian version of the information 

component 

Bayesian 

Multi-item Gamma Poisson Shrinker  Posterior expectation of the relative 

reporting ratio distribution 

Bayesian 

 

The simplicity of 2x2 tables and the measures presented implies loss of information and 

makes it impossible to study drug-to-drug interactions or adjust for potential confounders. 

Other methods exist, such as extensions of disproportionality measures for 3-dimensional 

tables, logistic regression-based approaches and unsupervised machine learning.34 An in-

depth presentation of these techniques is beyond the scope of this text but is summarised 

in Harpaz et al.34  

Spontaneous reports systems are managed at the country level but some databases are 

aggregated worldwide/regionally. International spontaneous reports databases include: 

VigiBase – WHO-UMC and EudraVigilance – the European Union Drug Regulating Authorities 

Pharmacovigilance database.29 These receive reports for both vaccines and therapeutic 
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drugs. In the UK, the spontaneous reporting system is known as the Yellow Card system and, 

as the examples before, receives reports from vaccines and therapeutic drugs.35 Other 

systems focus on vaccines, such as the Vaccine Adverse Event Reporting System (VAERS, USA 

system, run in partnership by the Centers for Disease Control and Prevention (CDC) and the 

Food and Drug Administration (FDA)), and the Canadian Adverse Events Following 

Immunization Surveillance System (CAEFISS).35,36 In 1999, VAERS allowed the identification 

of a safety signal following a tetravalent rotavirus vaccine, later confirmed by epidemiologic 

studies, leading to the vaccine withdrawal.36 CAEFISS has the particularity of including 

specific case definitions (see 2.3.3) in its reporting structure.35 For analysis, WHO uses the 

Bayesian Confidence Propagation Neural Network, while in the UK the Multi-item Gamma 

Poisson Shrinker has been preferred (Table 2.2).34 

2.3.1.2 Case reports/case series 

Case reports/case series are often reported in the literature and can be used for 

pharmacovigilance purposes. Case reports simply describe a patient who experienced a given 

outcome following a certain exposure. Case series are similar but there are several patients 

either with the same exposure and whose outcomes are described or with the same outcome 

and whose exposures are investigated.37 These designs are useful to generate hypotheses 

about previously unknown or unsuspected events. It is noteworthy that the use of case-

series assembled to support a pre-existing hypothesis is not hypothesis-generating and can 

have detrimental consequences, such as in the case of the suggested association between 

MMR and autism in the late 1990’s.19 This led to a loss of confidence in the vaccination 

programmes and decreasing coverage (see Section 2.1).  

Case series can also be used to determine the incidence of a suspected outcome following 

introduction of a new drug. This can be done by recruiting physicians who report cases of the 

disease. Both case reports and case series are easy to conduct but they are limited by the 

absence of a control group. Hypotheses generated by these designs should be further tested 

using a more robust design. Alternatively, and in specific circumstances, data from a case 

series can be used to conduct a self-controlled case series. This design is presented in detail 

in Section 2.3.3.3.  

2.3.1.3 Active surveillance methods 

Active surveillance attempts to identify all AEFI of interest within a defined population and 

aims to overcome some of the limitations of spontaneous reports. Different approaches to 
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active surveillance have been proposed.38,39 The approaches used in the context of signal 

detection are briefly described. 

2.3.1.3.1 Targeted hospital-based surveillance 

This approach identifies conditions of interest that are retrieved daily from electronic health 

records and by contacting key clinicians at participant centres. Trained nurses assess whether 

the case meets the case definition criteria (previously decided) and can collect further 

information from relevant sources. Data generated by this process at each centre are then 

sent for central processing and analyses. Countries adopting this approach include Canada 

(the Canadian Immunisation Monitoring Program – IMPACT), Australia (the Paediatric Active 

Enhanced Disease Surveillance – PAEDS), and New Zealand.39,40 Important features of these 

systems include their ability to identify cases not identified by other sources, and collecting 

relevant data on them in a standardised way with regular updates.40 These initiatives 

investigate new safety concerns but also other vaccine-related aspects such as 

effectiveness.41 Relevant findings include a decrease in febrile seizures and hypotonic 

episodes with the replacement of diphtheria-tetanus-whole pertussis vaccine by diphtheria-

tetanus-acellular pertussis vaccine in 2003, and the increase in cases of acute 

thrombocytopenia following measles-containing vaccines in 2003.41 

2.3.1.3.2 Cohort recruitment after vaccination 

After administrating a vaccine, it is possible to recruit vaccinated individuals and follow them 

up with enquiries about AEFI. This approach requires setting up a study for each vaccine of 

interest but it allows surveillance of virtually any event following a certain vaccine. This 

contrasts with the previous approach (see 2.3.1.3.1) where the focus is on a previously 

defined outcome of interest. As with any cohort, detection of rare events requires the 

recruitment of a very large number of vaccinees, making this a costly option.  

There are different options when recruiting/contacting individuals, including: face-to-face 

interviews,42 short message service (SMS),43,44 e-mail,45 interactive voice response system,46 

computer-assisted telephone interviewing,46,47 and home telemonitoring.48 These options 

will not be presented in detail except for the studies using SMS/e-mail.  

The system using SMS and/or e-mail is one of the existing surveillance systems aimed at 

providing (near) real-time signals and makes use of specific statistical methods to look at 

data at repeated points in time. This is also the case for the method used throughout the 

project described in this thesis – near real-time vaccine safety surveillance. However, these 

two systems differ in the source of data used. Given the specificities in the use of electronic 
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health records data, throughout this work the expression near real-time vaccine safety 

surveillance refers to surveillance efforts using electronic health records and thus does not 

include the use of SMS/e-mail, which is explained below.  

Vaccine surveillance using SMS/e-mail has been led by Australia, where a system has been 

in place since 2011.44 After receipt of a vaccine, patients or their parents receive a SMS asking 

if they/their children have experienced any reaction and requesting a Yes/No reply via SMS. 

If there is an affirmative reply, patients are subsequently contacted by staff asking further 

details of the reaction. The system is mostly automated as the software retrieves vaccination 

information and automatically sends SMS to the number on the patient’s record. It also 

records replies received via SMS.44 The initial tool using SMS has evolved and it was adapted 

to send e-mails and to perform an on-line based survey instead of a phone survey. Currently, 

the two systems (using SMS and e-mail) run in parallel.45 An evaluation of this system showed 

that over 70% of patients responded to the initial SMS and over 80% of those who responded 

did so within 2 hours.44 It is thus distinct from other forms of cohort recruitment as it is less 

costly, enables a wide reach and allows near real-time information. Systems using SMS have 

also been implemented in low and middle-income countries.43  

2.3.1.3.3 Large population-based datasets 

Different sources of routinely collected data have been used to study vaccine safety, 

including information from hospital and/or primary care linked with vaccination history. 

These electronic health records are readily available and can achieve big sample sizes, thus 

having the power to detect rare adverse events. Furthermore, they have the potential to be 

population-based, ensuring representativeness not achieved during clinical trials.6 In the 

context of pharmacovigilance, electronic health records have been mainly used for signal 

strengthening and signal confirmation (see Sections 2.3.2 and 2.3.3) but a few studies have 

also explored applications for signal detection. Some use text mining techniques,49 while 

others have adapted existing disproportionality measures (see 2.3.1.1) for use in a 

longitudinal context.50-52 Examples include the Longitudinal Gamma Poisson Shrinker, 

adapted from the multi-Item Gamma Poisson Shrinker, which considers person-time instead 

of case counts to estimate the expected number of events52 and the Temporal Pattern 

Discovery which adapted the information component using a Bayesian approach and looks 

at the disproportionality measure at different times around the prescription.51 Both 

measures have been validated and the latter has been applied to MMR and a range of 

adverse events, with results consistent with previous knowledge.53 Mining electronic health 
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records has not received much attention for pharmacovigilance. One of the reasons might 

be the concern of using the same data to generate and confirm a signal. It remains unclear if 

this can lead to biased results.54  

2.3.1.3.4 Social media and other online reports 

Information generated by internet-related activities has started to be used for public health 

purposes.55 Pharmacovigilance is no exception and social media, web-search queries, and 

data from health forums have been suggested as real-time, low-cost sources of new safety 

signals.56 In the last few years, there has been an increasing number of publications in this 

area, mainly trying to explore how to make use of these data.56 Progress has been made and 

there are several options available to extract and use these data with the aim of identifying 

safety signals. Previous studies have also tried to validate their results by comparing them 

with data from spontaneous reporting systems. Results have shown a good agreement for 

Twitter and web-search queries data.57,58 These studies have mainly focused on therapeutic 

drugs but have also looked at some vaccines, for example influenza,58 human papillomavirus 

(HPV),57,58 tetanus-diphtheria-pertussis,57,58 and hepatitis B.57,58 Overall, they have identified 

mild AE such as injection site pain, fever and malaise.57,58 Nevertheless, challenges in 

identifying adverse events remain, related to the way people report the events and the 

drugs, but also with the need for human supervision for some of the existing techniques. In 

addition, multiple ethical questions have been raised, with no clear answers.56  

To clarify some of the existing questions, a 3-year project, Web-Radr, was launched in 2014. 

One of its work packages, led by WHO-UMC, aims at identifying new analytical tools for using 

social media in pharmacovigilance.59 Despite the progress made in technical terms to harness 

social media data, the latest publicly available information still questions the role of this data 

source in terms of signal detection. In particular, there have been discussions on whether it 

should be considered as a tool to support signal detection or whether it can be used on its 

own.60 The place of this data source for pharmacovigilance is yet to be determined.  

2.3.2 Signal strengthening  

2.3.2.1 Ecological studies 

The main feature of ecological studies is the use of aggregate data instead of individual level 

data. These studies can be conducted in several ways. One option is to perform a before-

after comparison, where the overall rate of an outcome of interest is compared before and 

after the introduction of the vaccine being assessed. This design was used to assess chronic 
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fatigue syndrome among girls aged 12-20 following introduction of HPV vaccine.10 Changes 

in diagnostic patterns and in the outcome incidence for other reasons can affect this type of 

analysis.  

A special case of this comparison is the one used in mass vaccination campaigns where by 

comparing incidence before, during, and after the campaign it may be possible to further 

assess a possible causal association. If a causal association exists, a marked increased 

incidence of the outcome should be observed. This was the case in Brazil where an increase 

in aseptic meningitis was detected following a mass campaign with a Urabe-containing MMR 

vaccine.61  

A less common situation where this design may be used is when there are changes in the 

vaccination schedule age and there is a causal association between the vaccine and the 

outcome. In those circumstances, the incidence of the outcome will decrease in the age 

group in which the vaccine was previously administered and will increase in the new age 

group.62  

Ecological studies usually provide quick results but there is limited ability to adjust for 

potential confounding factors. This study type is thus considered to provide less strong 

evidence compared to other epidemiologic designs (see 2.3.3). 

2.3.2.2 Observed-to-expected (O-E) analysis 

These analyses compare rates of observed events to what would be expected, based on rates 

of the adverse event in the absence of the vaccine. This tries to capture what would have 

been observed if the vaccine had not been administered and thus helps determine if events 

are indeed related with the vaccine or are coincidental. O-E analyses have been used to 

monitor safety concerns identified from signal detection methods where the magnitude of a 

possible risk is still unclear and rapid results are required.  

To identify the number of observed events one might use data from spontaneous reports63 

or prospectively collected data.64 Using spontaneous reports as a measure of the observed 

number of events is affected by limitations in spontaneous reports systems (see 2.3.1.1), 

particularly by underreporting. Different scenarios of underreporting can be assessed in 

sensitivity analyses.  

Expected events are based on a combination of information from background rates of the 

event and the person-time at risk. The former might be obtained from existing electronic 

health records or publications and should be drawn from a population as similar to the one 
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in which the events were observed. The latter should be determined based on the 

hypothesised period of risk following the vaccine and a measure of the number of doses 

administered. If there is no information on the doses given, the number of doses sold can be 

used.63  

Regardless of the data source used, the analysis is simply the ratio of the number of observed 

and expected events and it is possible to calculate a 95% Poisson exact confidence interval 

(95%CI). The disproportionality analysis presented in Section 2.3.1.1 is also a comparison of 

observed-to-expected events. It differs from the one presented here in the data used, as it 

only utilizes information from a single spontaneous reporting system, and also in the way it 

is used, as disproportionality analyses are usually applied for signal generation.63 O-E analysis 

is also the basis for some of the near real-time surveillance analysis presented in 2.3.2.3.  

2.3.2.3 Near real-time surveillance  

In 2005 the Vaccine Safety Datalink (VSD) proposed the use of sequential tests for timely 

detection of signals, accounting for repeated testing. VSD receives electronic data from 8 

participating centres in the USA, corresponding to a population of 9.2 million. Unlike most of 

the existing methods this type of surveillance usually starts shortly after a new vaccine has 

been introduced and data are examined at repeated points in time. To adjust for multiple 

testing, VSD uses sequential tests, initially the maximized probability ratio test (MaxSPRT) 

and then extensions of this test. In fact, the group developed new statistical tests to address 

some challenges in vaccine safety and also contributed to a deeper understanding of the 

properties of existing and new statistical tests. The method has been used to assess several 

vaccine/outcome pairs, and has allowed the identification of several safety signals, resulting 

in change of policy. It is now used routinely in the USA.9   

In the UK, NRVTSS has been implemented using spontaneous reports for observed events 

and electronic health records to calculate the number expected events.10 This approach 

inherits the limitations of spontaneous reports systems, as presented in 2.3.1.1. Given the 

availability of electronic health records in the country and country-specific vaccination 

schedules, it would be desirable to implement a system that allows for quick signal 

identification and that does not rely on spontaneous reports. This thesis thus focuses on 

assessing the feasibility of implementing a NRTVSS using UK electronic health records.  

Given that the vaccine/outcome pairs to study need to be set in advance, NRTVSS is best 

suited to study a set of events of special interest. These can be selected based on information 

from clinical trials, signals seen with previous versions of the vaccine (e.g. seasonal influenza 
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and Guillain-Barré syndrome (GBS), rotavirus vaccine and intussusception), or biological 

knowledge of the vaccine characteristics.  As it does not allow for confirmation of a signal, it 

is considered under the signal strengthening approach.  

The method was initially known as rapid cycle analysis, due to the file structure used in VSD.65 

Considering this designation is specific to the VSD structure and not self-explanatory, other 

terms were considered. For the purposes of this work the term near real-time vaccine safety 

surveillance using electronic health records, or simply near real-time vaccine safety 

surveillance, will be used as this was considered to better illustrate the type of surveillance 

conducted.  

This is not the only tool available to produce (near) real-time results. Other methods include 

the recruitment of cohorts via SMS/e-mail and the use of internet-related data; see Sections 

2.3.1.3.2 and 2.3.1.3.4, respectively, for a description of these other types of (near) real-time 

surveillance efforts. Unlike cohort recruitment, NTRVSS can be implemented if electronic 

health records are available with no need for additional data collection, but it is limited by 

the quality of these records. Furthermore, NRTVSS is a more robust and well-established 

method compared to the analysis of internet-related data, which is still being explored for 

this purpose. These two other methods also occupy a different place – they are both in the 

signal generation sphere, while NRTVSS is used for signal strengthening. NRTVSS is the focus 

of this thesis and thus more detail on its use is provided throughout this work. In particular, 

the statistical details of the tests used for this type of surveillance are presented in Section 

3.3. 

2.3.3 Signal confirmation 

Signals identified by a variety of sources usually require confirmation from a rigorous, well-

conducted epidemiological study.66 The increasing availability of electronic health records 

and their characteristics (in terms of size and representativeness, see 2.3.1.3.3) have become 

an attractive data source to perform such hypothesis-testing studies. The USA, Denmark and 

the UK are examples of countries using this data source.39 Despite its attractiveness, it is 

important to be aware of issues with data completeness and quality – both vaccination status 

and outcomes should be well captured. There should also be information regarding potential 

confounders of interest.66  

When trying to identify outcomes it is important to know the coding system in use and to 

identify all the relevant codes. These might be a mixture of diagnostic, symptom and drug 

codes. In the case of UK primary care data, involving a practising general practitioner (GP) 
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might be helpful to guide this choice. Code-lists developed will never be perfect and will 

capture cases with different levels of sensitivity/specificity. The issue of imperfect validity 

might thus be assessed by using code-lists with varying levels of sensitivity/specificity and 

comparing the results. Alternatively, new or pre-existing studies assessing the validity of 

these algorithms might be used.66,67 Validity assessment for CPRD data is explained in more 

detail in Section 3.1.1.4.  

In some cases, it is possible to access case notes for confirmation of a case identified using 

the method abovementioned. When inspecting these notes it is important to use standard 

definitions to ensure comparability of different studies. The Brighton Collaboration has had 

a fundamental role in guiding the development of such standard definitions. By bringing 

together professionals interested in vaccine safety and applying a systematic method, this 

collaboration has contributed to the development of several standard case definitions. 

Currently, definitions for 47 events of interest are available.68  

Additionally, information on the time of the vaccination and event are essential, as it is 

necessary to define a risk-window (time at risk of developing the adverse event).66 Defining 

a risk-window depends on the vaccine, the event itself and existing knowledge.  

Below, the main designs used in this context are explained, including the main advantages 

and disadvantages of each one. These confirmatory studies may also rely on other sources 

of data, such as data retrieved from targeted hospital surveillance or cohorts recruited 

following vaccination (see 2.3.1.3.1 and 2.3.1.3.2, respectively). As this thesis focuses on the 

use of electronic health records this Section briefly presents the main designs to conduct 

epidemiologic studies with a special focus on issues while using electronic health records. 

Figure 2.3 presents a comparison of the three designs covered (cohort, case-control, and 

self-controlled case series) for six individuals (3 with the outcome of interest and 3 without 

the outcome).  
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Figure 2.3. Comparison of a cohort, case-control and self-controlled case-series (SCCS) for 6 individuals (3 cases 
and 3 non-cases). Adapted from Nick A.66 

2.3.3.1 Cohort studies  

For this design, a cohort of individuals is established and cases occurring within and outside 

the exposure period are identified. The risk of developing the outcome is compared among 

the exposed and unexposed (Figure 2.3 A). Being a cohort, person-time is available and it is 

thus possible to obtain direct estimates of risk and attributable risk. Misclassification of the 

outcome can lead to biased results. The analysis is usually done using Poisson regression. 

While having person-time is the main advantage of this design, for rare events it requires 

large amounts of data and if these data is available, the analysis may be computationally 

intensive.66,67 For vaccine safety, an example of this design was the assessment of adverse 

pregnancy outcomes following the HPV vaccine, in Denmark.69   

2.3.3.2 Case-control studies 

For this design, cases of the disease are identified, followed by selection of suitable controls, 

and odds of exposure (vaccination) is compared in cases and controls. Controls can be 

matched to controls and exposure assessed based on a reference date/age at the event. It is 

also possible to use multiple controls per case (Figure 2.3 B). This design requires inclusion 

of a smaller number of individuals (as compared to a cohort study), which eases the data 

collection process or, in the case of electronic health records, reduces computational power. 
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This is of particular relevance for rare outcomes, as it is often the case for vaccine safety. As 

it does not consider follow-up time, in a case-control study data can be analysed as they 

become available. This is only an advantage if the comparison is made with a prospective 

cohort, as use of electronic health records data with an historical cohort design can also be 

analysed as soon as the data become available. The analysis is usually done using logistic 

regression. As with other case-control studies, selecting a control group might prove difficult. 

When using electronic health records this issue may be less problematic as it is always 

possible to establish a cohort and a case-control study is in fact nested within the cohort.66,67   

Case-control studies are generally considered to provide weaker evidence than cohort 

studies but if well conducted they can provide evidence as robust as cohort studies. One 

issue particularly relevant for case-control studies using electronic health records is 

identifying cases and controls. Cases are selected based on registered information, including 

codes on diagnosis and symptoms or drugs prescribed (see 2.3.3). However, absence of a 

relevant code might not mean absence of the disease of interest. This problem is the same 

as that of outcome ascertainment in cohort studies that use electronic health data. The issue 

of imperfect positive predictive value (PPV) of diagnostic codes is considered in Section 

3.1.1.4.  Nevertheless, for rare outcomes, this will have little impact when estimating odds 

ratios.66,67 Smeeth et al. used a case-control study in 2004 to assess a potential increase in 

autism following MMR.70 

2.3.3.3 Self-controlled case series studies  

The self-controlled case series (SCCS) method was developed by Prof. Farrington, at the 

Public Health Laboratory Service (now Public Health England), to assess suspected 

associations between a vaccine and an acute adverse event when only information from 

cases is available.66,71,72  

For a given study period, individuals experiencing the outcome of interest are identified and 

their vaccination histories are retrieved. Based on vaccination date, risk-windows are defined 

and the remaining of the study period is included as control period for a given individual 

(serving as the baseline risk). This is equivalent to a retrospective cohort design, conditioning 

on experiencing the event (Figure 2.3 C). The analysis is thus performed using conditional 

Poisson regression. The main advantages for this design include: (i) it only requires cases, 

while keeping similar power to a cohort study, and (ii) it intrinsically adjusts for time-invariant 

confounding (such as gender or ethnicity). While the method does not intrinsically adjust for 

time-variant confounders, such as age, it is still often possible to allow for these in the model.  
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Potential disadvantages follow from the assumptions of the method. First, the probability of 

the exposure should not depend on the occurrence of the event. For vaccine safety this will 

matter if (i) the event is a contra-indication for the vaccine (e.g. intussusception and rotavirus 

vaccine); (ii) the individual is more or less likely to be vaccinated after experiencing the event 

(e.g. Guillain-Barré syndrome and seasonal influenza); (iii) vaccination is delayed after the 

event (e.g. after a seizure episode).66,71,72 For (i) is it possible to use a pseudo-likelihood 

method, for (ii) using a SCCS will produced biased estimates only if the probability of 

vaccinations changes considerably while for (iii) the issue might be addressed by considering 

a low-risk period during the time before vaccinations.66,71 This assumption (event-

independent exposure) is also problematic when the outcome is death, as after dying there 

is no possible exposure. SCCS can still be used if the deaths are rare and time from exposure 

to the end of the planned observation period is considered. Secondly, this method is best 

suited to study events with short risk periods. It can be used for longer periods as in studies 

assessing the risk of autism following MMR73,74 but it is more prone to collinearity with age, 

reducing power.71 Thirdly, this method does not allow the estimation of absolute incidence, 

only relative incidence. Finally, it requires variability in the time or age at which the event 

occurs.  

While this method has been developed to study vaccine safety it has been widely applied, 

particularly in pharmacoepidemiologic studies.71 For vaccine safety, a review identified 40 

studies using SCCS until the end of 2010, looking at a variety of vaccines and adverse events.72 

Examples include autism following MMR vaccine,73,74 febrile convulsions and MMR75 and 

intussusception and rotavirus vaccine.76 For the former no association was shown while for 

the two last pairs an increased risk was observed. SCCS is a reference method in vaccine 

safety confirmatory studies.   

2.4 Thesis rationale, aim and objectives 

2.4.1 Thesis rationale 

In the UK, vaccine pharmacovigilance has relied largely on spontaneous reports and on 

epidemiologic studies aimed at confirming hypotheses generated by a variety of sources. 

NRVTSS has been implemented using spontaneous reports for observed events.10 As outlined 

in Sections 2.3.1.1 and 2.3.3, spontaneous reports under-report AE and are subject to biases, 

while hypothesis-testing studies are generally designed in response to suspicions raised 

some time after the vaccine’s introduction. In contrast, NRTVSS is usually started very soon 
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after vaccine delivery and its sequential nature ensures timely identification of signals. 

Electronic health records are required for a new UK NRTVSS that relies fully on routinely 

collected data; in the UK such research-level primary care electronic health records data are 

available, such as the CPRD,11 THIN,12 the RCGP RSC,13 and ResearchOne.14 It is then necessary 

to determine the NRTVSS methods available, their characteristics, and whether available 

electronic health records are adequate to perform this kind of surveillance. This PhD project 

explores these aspects, using CPRD as the main data source.  

2.4.2 Aim and objectives 

The overarching aim of this thesis is to assess the feasibility of implementing a near real-time 

vaccine safety surveillance system using CPRD data. Specific objectives include to: 

1. Review the methods currently used to perform NRTVSS using electronic health 

records (‘Systematic review’); 

2. Examine recording delays in CPRD for selected conditions, due to practices receiving 

and recording diagnosis made at secondary care (‘Recording delays’); 

3. Trial the implementation of NRTVSS using previously collected CPRD data (‘Trial 

implementation’); 

4. Assess how delays in recording outcomes and receiving data influence the power 

and time to detect a safety signal (‘Power’). 

The work conducted to address these objectives has been written as four papers, numbered 

1 to 4, in accordance to the corresponding objective number. The papers are presented in 

this thesis and Table 2.3 indicates the Chapter in which each paper can be found. This table 

also includes the secondary objectives for objectives 2 and 3, as well as the outcomes and 

vaccines considered for each main objective. Further information on the work conducted but 

not included in the papers has been placed alongside each paper and in intervening Chapters. 

This additional work is intended to provide the reader with a deeper understanding of the 

choices made regarding the work described in the papers. Before explaining the work 

conducted to address each of these objectives, in the next Chapter the data sources used 

(CPRD and Hospital Episode Statistics - HES) are presented, as well as how they were used to 

select the study population. The Chapter ends with a detailed presentation of the sequential 

tests used to perform NRTVSS.  
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Table 2.3. Thesis objectives 

Objective Chapter Secondary objectives Outcome(s) Vaccine(s) 

1. Systematic 

review 

4 - Any Any 

2. Recording delays 5 To evaluate completeness 

of recording of diagnoses in 

CPRD  

 GBS 

 Bell’s palsy 

 Optic neuritis 

 Febrile seizures 

No specific 

vaccines 

considered 

3. Trial 

implementation 

7 To assess: 

 the statistical test to use; 

 how to adjust for delays;  

 power to detect a signal. 

 GBS 

 Febrile seizures 

 Seasonal 

influenza 

 MMR 

4. Power 7 -  GBS  Seasonal 

influenza 

GBS – Guillain-Barré syndrome, MMR – Measles-mumps-rubella vaccine 
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3 RESEARCH METHODS 

3.1 Data sources  

3.1.1 CPRD  

In the UK, over 98% of the population is registered with a GP, who manages a variety of 

health conditions and acts as a gatekeeper for further care, including referring patients for 

secondary care when necessary. Following these assessments at secondary care, results are 

communicated back to GPs. GPs and other practice staff register information on their 

patients (including feedback from secondary care) onto dedicated software, where the 

information is stored for future reference.77,78 The main GP software systems include EMIS 

(Egton Medical Information System), SystmOne and Vision.78  

CPRD collects data from participating practices in the UK that use Vision software and it is 

one of the largest primary care databases in the world.77,78 It started in 1987, under the name 

of Value Added Medical Products (VAMP), and was initially restricted to London. It then 

expanded in 1993 when it was renamed the General Practice Research Database (GPRD) and 

again in 2012, when it received its current name, CPRD. As of July 2013, CPRD contained 

information on 4.4 million patients (6.9% of the UK population), with its population broadly 

following the UK population in age, sex, and ethnicity distributions. CPRD has been 

extensively used for research purposes, with almost 1800 research papers published79 on a 

wide range of topics, including (pharmaco)epidemiologic studies, health economics, health 

services research and pragmatic trials.77 Knowing the content and structure of these data as 

well as the data available is required in order to understand the findings from studies that 

use them. 

3.1.1.1 Data content 

CPRD data contain anonymised information on health-related diagnosis, tests, referrals, 

lifestyle factors, and prescriptions. Practice staff may enter information into GP systems 

using coded and free text. In Vision, information is coded with Read codes, a hierarchical 

thesaurus of clinical terms used in the National Health Service (NHS) since 1985.80 Free text 

can be added to these coded terms as a way to provide additional information. Alternatively, 

letters or e-mails can be attached. These usually document communication with other levels 

of care (to and from GPs) and are considered a distinctive type of free text.78 In the past, 

anonymised free text was available for purchase upon request, and was mainly used for 
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validation purposes and in some cases for improving diagnostic algorithms. CPRD also 

explored the use of natural processing language techniques to improve the usability of free 

text for research and, in 2012, there were plans to develop free text tools as a way to 

maximise the utility of this data source.78 However, due to changes in the information 

governance environment in the UK, in April 2016 CPRD stopped making free text data 

available to researchers (CPRD Knowledge Centre, personal communication). Prescriptions 

are identified in a different way from the remaining information. They receive a unique CPRD 

product code and information on the BNF (British National Formulary) code is also 

included.81,82 In addition to Read codes and product codes, immunisation information can 

also be recorded using specific information in a dedicated file. This includes two main 

variables, the immunisation type, which contains information on the vaccine type, and 

immunisation status, which indicates if the vaccine has been administered, advised or 

refused. CPRD data also comprise structured data fields, used to register test results and 

clinical information. This information is recorded using ‘entity types’ and CPRD provides 

information on what is recorded in each entity type together with look-up tables detailing 

what is recorded under each code.  

As CPRD diagnoses, tests, referrals, vaccinations and therapies are coded, when ascertaining 

cases of disease/drug exposure it is necessary to develop appropriate code-lists covering the 

codes that might have been used to identify the disease of interest/drug exposure. To 

facilitate identification of relevant Read codes and product codes CPRD provides customers 

with browsing tools. Section 3.2 details how these browsers were used to develop code-lists.   

3.1.1.2 Data structure 

CPRD contains medical information from patients in participating practices. This information 

is held in different files depending on its content, as presented in Table 3.1.82,83 These files 

can be linked to provide the entire medical history from a given patient. For the purposes of 

this work patient, practice, clinical, test, referral, immunisation and therapy files were used. 

Data from these files allowed identification of diagnoses and vaccinations of interest. Further 

details are provided in Section 3.2.  
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Table 3.1. Content of each CPRD file type82,83 

File  Content 

Patient Patient demographics and registration details.  

Practice Practice information (including when information was last collected).  

Staff Practice staff details.  

Consultation Information on the type of consultation. 

Clinical All medical history, including symptoms, signs and diagnoses. Data are coded 

using Read codes.  

Additional 

Clinical details 

Information entered in structured data areas in the GP’s software using entity 

types.  

Test Information on test data (e.g. results from blood tests). 

Referral Information on referrals to external care (e.g. hospital). 

Immunisation Information on vaccinations coded using Read codes and special 

immunisation information.  

Therapy Details of all prescriptions (including vaccines and therapeutic drugs). 

GP – General Practitioner 

 

To understand the medical history of a patient it is also important to know for which time 

period we have information available for. This is done using key dates, both at the practice 

and patient level, summarised in Table 3.2. For a given patient, information can be used from 

the time that the practice in which s/he is registered is deemed to be of research quality (up-

to-standard date, see 3.1.1.4) and from when the patient registered with that practice 

(current registration date). It has been demonstrated that in the first few months after a 

patient registers with a new practice GPs tend to record not only new diagnoses but also 

retrospectively record past diagnoses.84 It was therefore suggested that up to the first year 

after the current registration date should be excluded to avoid capturing retrospective 

recording.84 Data from a patient can thus be used for a study starting at the latest of up-to-

standard date and current registration date plus up to one year (depending on the specific 

condition). Data are available until they were last collected from the practice (last collection 

date), the patient transferred out of the practice (transfer out date) or the patient died 

(death date). Follow-up thus ends at the earliest of last collection date, transfer out date and 

death date. These beginning and end of follow-up are then adapted for each study depending 

on the design and study period. Records also contain specific dates which might be of 

interest. These include the system date, the date when a record was entered into the system, 

which is automatically assigned by the practice software and the event date, entered by the 

practice staff and which is deemed to represent the date the clinical event happened. The 

importance of these record-level dates is explained in more detail when assessed recording 

delays in Section 5.3 (Objective 2). 
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Table 3.2. Relevant dates in CPRD 

Date Content 

Practice level  

Up-to-standard date When the practice met certain quality requirements. 

Last collection date When the practice last uploaded data to CPRD. Available for each 

monthly release of CPRD. 

Patient level  

Current registration date When the patient registered with the practice. 

Transfer out date When the patient was transferred to another practice. 

Death date When the patient died. 

Record level  

Event date When the event is deemed to have occurred. Entered by the 

practice staff. Ideally represents the correct date of diagnosis or the 

date when the patient re-consulted for on-going or past events.  

However, can also be the date when the record of a past diagnosis 

was entered retrospectively into the GP system.  

System date When the record was entered into the system (automatically 

assigned by the software). 

CPRD – Clinical Practice Research Datalink, GP – General Practitioner 

 

3.1.1.3 Data available for analysis 

The London School of Hygiene and Tropical Medicine (LSHTM) holds a CPRD license and 

receives a new data release every 6 months. For these data, it is possible to search for eligible 

patients both on the basis of recorded Read codes or other characteristics in any of the file 

types. CPRD data are released on a monthly basis and it is also possible to access data from 

these monthly versions of the data. There is online access for licence holders and patients’ 

data can be extracted based on specific Read and therapy codes. Vaccination information is 

coded using a combination of Read, therapy and special immunisation codes (including the 

vaccine type and vaccination status, see 3.1.1.1). Therefore, it is not possible to use the 

online access provided to identify patients on the basis of their vaccination status. The study 

reported in this thesis required identification of vaccinated individuals and the current online 

search tool allows only limited identification of eligible patients because of the inability to 

search for the totality of immunisation coding. This limitation and the solutions applied to 

address it are presented in further detail and discussed in Section 6.2.  

3.1.1.4 Data quality 

CPRD size, information on medical history and long follow-up time make this data an 

attractive source. However, CPRD data are not collected for research purposes and, as with 
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any routine data source, it is important to understand the data available and their possible 

limitations.  

CPRD uses data quality markers both at the patient and practice level. For patients, CPRD 

includes an ‘acceptability flag’, based on indicators of potentially poor recording or 

discontinuous follow-up. Patients are considered acceptable if: (i) they have information on 

year of birth, (ii) there are no events registered before their birth year, (iii) gender is male, 

female or indeterminate, (iv) age is ≤ 115 years at last collection date or transfer out date, 

(v) first registration date is on or after the month/year of birth, (vi) current registration date 

is valid, on/after the month/year of birth and first registration date, and for permanent 

registration, (vii) the transfer out date exists when there is a reason for transfer out, and it is 

on/after the first and the current registration dates, (viii) there is at least one valid event 

date.78,83 At the practice level, each practice is assigned an up-to-standard date, which 

indicates when the practice was deemed as being of research quality. This date is established 

based on mortality rates and practice recording behaviour. For the former, CPRD compares 

the number of deaths in the practice to an expected range given the UK’s mortality rate and 

the practice size. The latter involves a practice-level assessment of recording gaps, 

considering the median number of events in the clinical, consultation and therapy files. Each 

practice should not have any significant gaps of low recording, i.e. five consecutive weeks in 

which there were less than 30% of the median number of events.78,83  

While the data quality markers help ensure that the data available are of good quality, 

further aspects need to be considered, including validity, timeliness, and secular trends. 

When ascertaining outcomes and exposures, the general principles outlined in 2.3.3 should 

be followed. A 2010 systematic review looking at studies attempting to validate diagnosis in 

CPRD identified 357 validations assessing 183 diagnosis.85 Validation studies were either 

internal (using only data from CPRD, for example by reviewing anonymised free text) or 

external (e.g. by contacting GPs to confirm a patient coded as a case did indeed have the 

condition identified, or by comparing measures of frequency with those obtained from 

another data source). Studies reporting quantitative measures of validity most often 

reported PPV, i.e. the proportion of cases identified from CPRD that were confirmed as true 

positives. Other measures of validity, such as sensitivity, specificity, and negative predictive 

value were usually not assessed. In general, diagnoses based on CPRD data were confirmed 

based on either internal or external information (median PPV of 89%). Despite assessment 

of validity relying mainly on PPV, CPRD has been extensively used for research purposes.   
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Completeness of recording of diagnoses is typically regarded as an aspect of validity 

(encompassing sensitivity and negative predictive value). Nevertheless, some authors 

examine completeness of diagnostic recording separately, as a distinct issue. For example, a 

previous study looking at myocardial infarction showed that using CPRD only identified 75% 

of all cases, as compared to linking several data sources (CPRD primary health care records, 

hospital records, disease registers and death certificates).86 This is highly dependent on the 

place of diagnosis and management of the condition of interest but also on its severity; 

conditions generally diagnosed and/or managed by GPs are likely to be well captured in 

CPRD. The same applies to vaccination information. Vaccines administered in GP practices 

(e.g. most childhood vaccines) are expected to have high levels of completeness while the 

remaining (e.g. HPV vaccine, administered in schools) may have lower levels of completeness 

or be recorded after long delays. Furthermore, completeness might change throughout time 

leading to secular trends. These changes may be due to modification in clinical practice or 

recording behaviour. One well-known reason for changes in recording behaviour is the 

Quality and Outcomes Framework (QOF), introduced in April 2004. This scheme provides 

financial incentives to record specific outcomes as a way to achieve certain indicators. 

Recording behaviour is likely to change depending on the specific indicators incentivised at 

specific periods, and thus increase/decrease completeness.87 Alternatively, secular trends 

might be due to patients’ health service use or changing epidemiology of the condition of 

interest. When using CPRD it is thus important to reflect on whether the condition(s) of 

interest are likely to be well captured and consider implications of incomplete recording over 

time. 

An issue that is less often discussed is timeliness. Delays in CPRD data might happen for 

several reasons: (i) delays in having a final diagnosis after patient presentation, (ii) delays in 

receiving or recording feedback from other levels of care (e.g. hospital), (iii) delays in 

practices uploading files to CPRD, (iv) delays in researchers receiving the latest updated data 

from CPRD. A previous study used THIN, another UK primary care database, to compare two 

successive releases of the dataset. In particular, the authors compared the number of events 

available in the later version of the data but not in the earlier version and assessed how these  

entries varied as function of time since the last collection date. This work showed that using 

a later version of the same data would capture more events, particularly in the month 

previous to the last collection date (9.6% additional events captured).88 This is particularly 

relevant for incidence/prevalence studies as not considering delays in receiving data from 

practices (reason (iii), above) would lead to underestimation of rates. For the purposes of 
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the work presented in this thesis, timeliness is of particular relevance as a near real-time 

time system relies on timely data. To assess timeliness, it is important to know how quickly 

data accrue in CPRD. The approach in the work by Sammon et al.88 is an initial step in 

recognizing the issue of delays in recording outcomes but it does not provide quantification 

of how long it takes for data to accrue. As a central aspect of a near real-time system 

implementation, timeliness was explored as part of this project and is reported in Section 

5.3. 

3.1.1.5 Data linkage 

CPRD data provide comprehensive information on the medical history of a patient but 

additional information might be only found or be better recorded in other databases. Hence, 

linked data from other data sources are available as a way to complement CPRD data. Linkage 

is performed by a Trusted Third Party (NHS Digital) in order to preserve anonymity of records. 

At the moment, CPRD is linked to hospital data (HES, only for 75% of the English practices), 

mortality data (from the Office for National Statistics - ONS), cancer registration data (from 

Public Health England - PHE), mental health data and deprivation data (Index of Multiple 

Deprivation - IMD). Further linkages are being planned.89  

For the purposes of the work presented in this thesis the information required is mainly on 

vaccines administered and possible outcomes of interest for vaccine safety. Most vaccines 

are administered in primary care and thus CPRD is a good data source to capture this 

information. As for events of interest, some are likely to be well captured in CPRD. For others, 

that are more serious and require hospitalisation (e.g. GBS), hospital data might provide 

additional records. Hospital data would thus be relevant to complement information 

available in CPRD. However, data are linked too infrequently to allow implementation of a 

near-real time system based on linked data (see 3.1.2.3). As such, I envisaged a system solely 

based on CPRD, and stand-alone CPRD data were used for most of the work presented. The 

exception is the work presented in Section 5.3, looking at completeness of records initially 

diagnosed in hospital. For that work, linked CPRD-HES data were used; HES data are thus 

reviewed below.  

3.1.2 HES 

Information from hospital activity in England is collected in several HES datasets: (i) HES 

Admitted Patient Care (HES APC), which collates information on hospital admissions; (ii) HES 

outpatient data, which contain information on outpatient appointments; (iii) HES Accident 

and Emergency (A&E), where details on A&E attendances are collected; and (iv) HES 
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Diagnostic Imaging Dataset, where details from diagnostic imaging tests (x-rays, magnetic 

resonance imaging, etc.) are maintained. These data are maintained by NHS Digital and 

anonymised for research use.89,90 Only a small proportion of diagnoses in HES Outpatient 

data and HES A&E are coded, limiting their use (Rachael Williams, CPRD, personal 

communication). For this work only HES APC was used and is explained in more depth below. 

It will be simply referred as HES.  

HES data started to be collected in 1987 and national coverage was attained in the financial 

year 1989/1990. It was initiated to inform management and planning of services and since 

2004/05 is the basis of a payment-for-performance system in place in the NHS. CPRD linkages 

with HES data only cover the period from 1997 onwards as this corresponds to the date when 

NHS numbers became a mandated return from hospitals and thus could be used in the 

linkage by the third trusted party.91 Given the universal coverage of these data, the long 

period of data collection and the possibility to follow-up individuals, HES has also been used 

for research purposes, including: disease incidence, vaccine safety, treatment patterns by 

different hospitals, impact of clinical guidelines and policies, therapy outcomes and factors 

associated with these outcomes, and risk prediction models.90 What follows is an explanation 

of the data characteristics with implications for this work.    

3.1.2.1 Data content 

HES contains clinical, demographic, and provider information for each hospital admission. 

This includes a unique CPRD identifier (to allow linkage with CPRD data) and information on 

the quality of linkage between HES and CPRD data. Hospital information collected includes 

coded diagnosis and relevant dates (e.g. admission and discharge dates). HES data are coded 

using the International Classification of Diseases, Tenth Revision (ICD-10). ICD-10 is a 

hierarchical coding system including diseases, disorders, injuries, and health-related 

conditions. It has been used worldwide to monitor disease incidence and prevalence, reasons 

of death, to evaluate guidelines implementation, and for reimbursement purposes.92  

3.1.2.2 Data structure 

In HES, each admission (an uninterrupted stay in a hospital) is known as a ‘spell’. For each 

spell there may be several Finished Consultant Episodes, i.e. periods during which a patient 

was under the care of a single consultant. Each episode has one primary diagnosis and may 

have up to 20 diagnoses in total; the episode must have at least one primary diagnosis, and 

the maximum number of diagnoses that can be recorded has changed over time (from seven 
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diagnoses until April 2002, to 14 between April 2002-March 2007, and 20 diagnoses ever 

then).  

As in CPRD, HES data are stored in multiple files. Files available in the linked data are 

presented in Table 3.3. For the purposes of this work, only the patient, hospitalisations, 

episodes and diagnosis files were used.  

Table 3.3. Content of Hospital Episode Statistics Admitted Patient Care (HES APC) file (linked data)89,90,93  

File  Content 

Patient Patient demographics and linkage quality.  

Hospitalisations Admission, stay and discharge details (dates, duration, etc.). 

Episodes Episode characteristics (dates, speciality, duration). 

Diagnosis Details of diagnoses (including ICD-10 codes), available by episode for each 

hospitalisation, including the primary diagnosis. 

Procedures Details of procedures received. Can be linked with episode or spell. 

Augmented care Specific information on time spent on intensive and/or high dependency levels 

of care. 

Critical Information on patients receiving critical care (type and duration). 

Maternity Birth and delivery information. 

Health Resource 

Group 

Information on the Healthcare Resource Group (and thus unit of cost) the 

episode was linked to.  

ICD-10 - International Classification of Diseases, Tenth Revision. 

 

3.1.2.3 Data available  

After a patient discharge, a physician responsible for the patient’s care fills in a discharge 

summary for the specific episode (including diagnosis and procedures). These summaries are 

then sent to a hospital coding department where they are entered in an electronic database. 

These data are extracted from each hospital on a monthly basis and sent to NHS Digital. NHS 

Digital performs data checks and cleaning procedures, and generates HES identifiers for each 

episode. Hospitals can submit an updated version of the data to correct data quality issues 

at the end of the financial year. NHS Digital thus produces a provisional annual HES extract, 

which is reviewed by the hospital, and after this a final revision is made available.  

CPRD-HES linked data are made available in sets which are released too infrequently to allow 

the implementation of a near real-time surveillance system. These datasets also suffer from 

delays in data received from the hospitals. For example, the linked data released in January 

2015 (Set 10) included HES hospitalisations only up to 31st March 2014. The subsequent 

release (Set 11) was made available to researchers in December 2015 and contained HES 

data up to 31st March 2015. Despite some improvement in this regard (for example, Set 12 

was released in March 2016 and included HES data up to 30th September 2015) a more timely 
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updating of the linkage is not envisioned in the near future. As such, CPRD-HES linked data 

were not considered an adequate data source for NRTVSS implementation. Instead, I used 

them to assess aspects of CPRD stand-alone data quality, as explained in Section 5.3. 

3.1.2.4 Data quality 

As with CPRD data, one of the main issues when using HES data is the quality of coding. 

Coders are trained to follow standardised rules when transcribing information from 

discharge summaries. However, the quality and completeness of these summaries may vary 

thus limiting the ability to apply the existing rules, particularly for comorbidities. Additionally, 

changes in financial incentives to improve coding depth may have led to an increase in the 

number of codes used and improvement in coding. This will affect validity of research 

findings in general. In particular it may bias time trend comparisons and comparability of 

studies conducted at different time periods, as validity of recording may not be constant over 

time.90  

HES collects data on admitted patients but admission thresholds might vary between 

hospitals or over time. For example, in 2004 the A&E waiting time target in England changed 

to a maximum of 4 hours, which might have triggered an increase in the number of 

admissions as a way to meet this target. This might influence characteristics of patients 

admitted and influence comparisons over time.90  

3.2 Identifying eligible individuals: development of code-lists 

As explained above, CPRD and HES contain coded information using Read codes or ICD-10 

codes, respectively. Analysis using these data require a prior identification of code-lists which 

allow ascertainment of cases and exposures. Analyses performed to address each of the 

study objectives included different study populations and had distinct inclusion and 

exclusion criteria. These are explained in the Chapters where the specific analyses are 

reported. In this Section, details are provided on how the code-lists were developed to 

identify eligible patients and how data were extracted.  

As explained in 3.1.1.1, CPRD provides browsers to facilitate the search of Read and product 

codes. I carried out searches in a two-stage process. First, a free-text search with terms 

relating to the condition of interest was performed. The results of the search were assessed 

individually and a decision made whether to include them. After selecting the codes to 

include, the relevant Read code hierarchies were identified and searched to identify further 

terms. Immunisation information also requires the identification of dedicated codes and is 
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detailed in Section 3.1.1.2 and below. A similar procedure was followed when developing 

code-lists to identify cases in HES but using ICD-10.  

For objective 2 of this project (examine recording delays in CPRD, due to practices receiving 

and recording diagnosis made at secondary care, for selected conditions) eligible patients 

had at least one of four outcomes: Bell’s palsy (BP), GBS, optic neuritis (ON) and febrile 

seizures (FS). The rationale for selection of these outcomes is presented in Section 5.2.  Table 

3.4 presents searches conducted for both Read terms (initial searches) and Read codes 

(based on the initial search). Prof. Sara Thomas developed an initial code-list for BP. Prof. 

Sara Thomas and Prof. Nick Andrews shared with me existing code-lists for FS. For both BP 

and FS, I conducted searches to update existing code-lists. I developed initial searches and 

code-lists using data (and thus browsers) released in July 2015. I conducted new searches in 

July 2016 with the view of updating these lists; no further codes were identified. The codes 

included in the code-lists were classified as being specific or not for the condition of interest. 

All codes were used in the main analysis, and then the sub-set of codes classified as specific 

were used to conduct a sensitivity analysis. This additional analysis was performed to assess 

the imperfect validity of diagnosis records, as suggested by previous studies and explained 

in Section 2.3.3. Final code-lists are available in Section 5.4.  

Table 3.4. Searchers performed to develop and/or update code-lists using Read codes  

Outcome Read terms Read codes 

BP† *bell*, *facial* 14*, 2BR*, F31* 

GBS *guillian*, *neuritis*, *neuropath*, 

*demyelin* 

F17*, F21*, F36*, F37*, Fyu*, N24* 

ON *optic*, *visual*, *demyelination*, 

*neuritis* 

F4H*, F21*, Fyu* 

FS† *seizure*, *convulsion*, *fit* 1B2*, 1B6*, 282*, F13*, F25*, Fyu*, 

Q48*, R00*, Ryu*, Eu4* 

*Any term is allowed, †Only for updating purposes. BP – Bell’s palsy, GBS – Guillain-Barré syndrome, 

ON – Optic neuritis, FS – Febrile seizures.  

 

Data from patients with a relevant code in the clinical, test, referral, or immunisation file 

during the study period (January 2005-July 2014) were extracted using data released in July 

2015. First-ever codes were used to capture incident cases and avoid counting the same 

events multiple times. After extraction, eligibility was further assessed by looking at 

beginning and end of follow-up dates. Beginning of follow-up was the latest of up-to 

standard date, current registration date plus one year (see 3.1.1.2) and the beginning of 

study period (specific to each study question), and end of follow-up was the earliest of date 
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of death, transfer out date, last collection date (see 3.1.1.2) or end of study period (also 

specific to each study question). Patients were included if they had at least a day of follow-

up. Further details and other eligibility criteria are available in the Section where each 

specific study is reported. 

Work conducted to address objective 2 (assessing recording delays in CPRD data) also 

included the analysis of linked CPRD-HES data. When analysing these linked data, individuals 

with one of the four outcomes of interest in HES were included, which thus required outcome 

ascertainment using HES data. Searches conducted in ICD-10 to identify relevant codes are 

available in Table 3.5. Final code-lists are available in Section 5.4. Patients with a first-ever 

code recorded in any diagnosis field during the study period (January 2005-March 2014) 

were included. First-ever code was used for both delay and completeness to simplify 

interpretation of the completeness analysis. Patients with no previous record of that 

outcome in CPRD were followed-up from the hospital episode date in which the outcome 

was first recorded until they had an outcome in CPRD or were censored (earliest of date of 

death, transfer out date, last collection date or July 2015). For patients in this cohort, 

recording in CPRD was then assessed using the code-lists developed for the main analysis.  

Table 3.5. Searches performed to develop code-lists using ICD-10 

Outcome Free text ICD-10 code 

BP Bell, bell G51 

GBS Guillain, demyelination G36, G61 

ON Optic, optic, bulbar G36, H46, H47 

FS seiz, convulsi, fit F44, R56 

BP – Bell’s palsy, GBS – Guillain-Barré syndrome, ON – Optic neuritis, FS – Febrile seizures. 

 

For objective 3 (trialling the implementation of a near real-time system using historical CPRD 

data) and objective 4 (assessing how delays influence the power and time to detect a safety 

signal) it was necessary to identify a cohort of vaccinated individuals. This included patients 

aged 65 years or older who were vaccinated against seasonal influenza, and children aged 

12-23 months receiving a first MMR dose. The rationale for the choice of these vaccines and 

the rationale for inclusion of only vaccinated individuals is presented in Section 5.6 and 

Section 8.3.2, respectively.   

As outlined in Section 3.1.1.1, immunisation information can be found in multiple files, using 

different fields: (i) in the clinical, referral, test, and immunisation files using Read codes; (ii) 

in the therapy file using therapy codes; and (iii) in the immunisation file using a combination 
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of specific vaccine codes (immunisation type) and codes indicating whether the vaccine was 

administered, simply advised or the patient refused it (immunisation status). Information 

contained in these files can be conflicting, for example with one code indicating the vaccine 

was administered and another one stating the vaccine was refused. It is thus necessary to 

first identify relevant codes for each of these scenarios and then develop a decision algorithm 

to determine whether to consider that an individual received the vaccine during the study 

period.  

Code-lists for seasonal influenza vaccine were based on an existing code-list, previously 

developed by Prof. Sara Thomas and Dr. Elizabeth Millett. I conducted a search to update 

this code-list, presented in Table 3.6. Read terms and Read codes search terms were used to 

identify relevant Read codes and the remaining terms were used to identify therapy codes.  

Table 3.6. Search terms used to identify relevant terms for influenza vaccine 

Coding system Search terms 

Read terms *flu*vac* 

Read codes 9OX*, 9N4*, 68N*, 65E*, 8I2*, 14LJ*, 8IA*, 8I6*, U60*, ZV0* 

Drug substance name *influen*, *agrippal*, *fluvirin*, *imuvac*, *influvac*, *optaflu*, 

*begrivac*, *fluarix* 

BNF code 14040200 

BNF – British National Formulary 

 

For the immunisation files the look-up for the entity immunisation type was consulted. 

Relevant codes for each vaccine were selected based on visual inspection of these codes. 

This information was used in conjunction with the immunisation status variable. Following 

this search, relevant codes were divided into codes indicating the vaccine had been 

administered or not.  

After finalising these code-lists, I extracted data from the following potentially eligible 

individuals: (i) individuals with a given Read code in the clinical, referral, test, and 

immunisation files; (ii) individuals with a product code in the therapy file; and (iii) individuals 

with one of the immunisation types for seasonal influenza and a status ‘given’.  

Following data extraction from potentially eligible individuals, I assessed the beginning and 

end of follow-up time (see above and Section 7.1 for further details). If they were eligible 

and had potentially received the vaccine during the study period, were aged 65 years or 

above, I applied a decision algorithm and made a final selection of vaccinated individuals. 
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The algorithm used is presented in Section 7.2.1.1.5. The code-lists were developed initially 

using data released in July 2015 and then updated using data released in July 2016. No 

further codes were identified.  

For MMR, code-lists were based on previous work by Prof. Sara Thomas and Dr. Jemma 

Walker, who kindly shared their code-lists. The procedure for data extraction was similar to 

the one described above. The algorithm used is presented in Section 7.2.1.2.5. 

To identify observed cases of GBS and FS, following seasonal influenza vaccine or MMR 

respectively, the code-lists presented Sections 5.4.1.1 and 5.4.4.1 were used. GBS was 

considered a ‘once only’ event and hence the first ever code was used (subsequent codes 

were deemed to represent retrospective recording of a past event). In contrast, in this 

analysis more than one episode for FS was allowed (see Sections 7.1 and 7.2.3 for details). 

Further inclusion and exclusion criteria are presented in Section 7.1. 

3.3 Sequential tests  

Near real-time vaccine safety surveillance makes use of sequential tests. In this Section the 

statistical aspects of sequential tests that are relevant for vaccine surveillance are presented. 

The first sequential test was proposed by Wald in the 1940’s and was known as the 

sequential probability ratio test (SPRT). He defined a sequential test as any statistical test 

that allowed one of three decisions at each observation of a given experiment: (i) accept the 

null hypothesis; (ii) reject the null hypothesis; or (iii) continue the experiment (make more 

observations). The sequential nature of these tests results in a fundamental difference in 

comparison to a non-sequential approach: the number of observations required is not fixed, 

but is a random variable, depending on the results of previous observations. This feature 

results in a reduction of the number of observations required before making a decision ((i) 

or (ii), above) and it intrinsically accounts for multiple testing. In the case of SPRT, Wald 

argued that for the same 𝛼 (or type I error, the probability of rejecting 𝐻0 when 𝐻0 is true) 

and 𝛽 (or type II error, the probability of accepting 𝐻0 when it is false) it allowed a reduction 

of about 50% in the number of observations required compared to a non-sequential test.94  

SPRT was originally developed for quality control in manufacturing94,95 but has been 

extended in several ways and applied in multiple contexts. One of its extensions, the family 

of group sequential tests, has been extensively used in the context of clinical trials.96,97 For 

vaccine safety it is important to detect a signal as early as possible. This need was emphasised 

in the late 1990’s, after the discovery of an increased risk of intussuception following 
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RotaShield® vaccine after its approval and licensure. In response to this discovery, several 

USA institutions came together and decided to build the capacity to detect adverse events 

during the post-licensure phase more rapidly. As stated in Section 2.3.2.3, this work has been 

led by VSD which started using sequential tests in 2005, as a way to reduce the number of 

observations required until a decision is made about whether to reject the null hypothesis.7 

Below is an explanation of SPRT, with a particular focus on vaccine safety.   

Consider 𝑝, the probability of an AE to the vaccine under study. Define 𝐻0: 𝑝 = 𝑝0, 𝐻1: 𝑝 =

𝑝1, 𝛼, the probability of rejecting 𝐻0 when 𝐻0 is true, and 𝛽, the probability of accepting 𝐻0 

when it is false. Define 𝐶𝑡 as the random variable representing the number of adverse events 

occurring within D days after the vaccine (risk window), administered in the period [0, 𝑡]. For 

the 𝑡-th observation, where 𝑐𝑡 events have been observed, the likelihood ratio (𝐿𝑅𝑡) is the 

test statistic, given by:7,8,94 

𝐿𝑅𝑡 =
𝑃(𝐶𝑡 = 𝑐𝑡|𝐻1)

𝑃(𝐶𝑡 = 𝑐𝑡|𝐻0)
=

𝑝1
𝑐𝑡(1 − 𝑝1)𝑡−𝑐𝑡

𝑝0
𝑐𝑡(1 − 𝑝0)𝑡−𝑐𝑡

, (𝑡 = 1, 2, … ) 

More often the log-likelihood ratio ( 𝐿𝐿𝑅 ) is calculated as data accumulate; it can be 

calculated considering the last test result.7  

𝐿𝐿𝑅𝑡 = 𝐿𝐿𝑅𝑡−1 + log (
𝐿(𝐷𝑎𝑡𝑎𝑡 , 𝑝1)

𝐿(𝐷𝑎𝑡𝑎𝑡 , 𝑝0)
) 

The calculations above assume a binomial distribution but SPRT can also be used assuming a 

Poisson distribution. In this case consider RR, the relative risk, and 𝜇𝑡, the expected events, 

𝐻0: 𝑅𝑅 = 𝑅𝑅0, 𝐻1: 𝑅𝑅 = 𝑅𝑅1. For this situation the test statistic, 𝐿𝑅𝑡, is defined as: 

 

𝐿𝑅𝑡 =
𝑃(𝐶𝑡 = 𝑐𝑡|𝐻1)

𝑃(𝐶𝑡 = 𝑐𝑡|𝐻0)
=

𝑒−𝑅𝑅𝜇𝑡(𝑅𝑅𝜇𝑡)𝑐𝑡/𝑐𝑡!

𝑒−𝜇𝑡𝜇𝑡
𝑐𝑡/𝑐𝑡!

= 𝑒(1−𝑅𝑅)𝜇𝑡(𝑅𝑅)𝑐𝑡 , 

 
and its log version by: 

𝐿𝐿𝑅𝑡 = ln(𝐿𝑅𝑡) = (1 − 𝑅𝑅)𝜇𝑡 + 𝑐𝑡 ln(𝑅𝑅). 
 

Given the sequential nature of the test, based on the 𝐿𝐿𝑅𝑡, at each time point it is possible 

to evaluate if there is evidence to accept/reject 𝐻0  or if it is necessary to continue 

surveillance. A decision is made by comparing 𝐿𝐿𝑅𝑡  to the previously defined upper (UL) and 

lower limits (LL). For SPRT, UL is defined as: 

𝑈𝐿 =
1 − 𝛽

𝛼
, 
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and LL as: 

𝐿𝐿 =
𝛽

1 − 𝛼
. 

Possible scenarios and associated decisions include: 

{

𝐿𝐿𝑅𝑡 < ln(𝐿𝐿) → 𝐴𝑐𝑐𝑒𝑝𝑡 𝐻0

ln (𝑈𝐿) < 𝐿𝐿𝑅𝑡 < ln (𝐿𝐿) → 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑠𝑢𝑟𝑣𝑒𝑖𝑙𝑎𝑛𝑐𝑒
𝐿𝐿𝑅𝑡 > ln (𝑈𝐿) → 𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0 (𝑠𝑖𝑔𝑛𝑎𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑)

 

Figure 3 exemplifies the use of SPRT for a known signal (intussusception following rotavirus 

vaccine). The surveillance period started in January 1999 and there was no signal until 2nd 

April 1999 (10th week of surveillance). At that time, 𝐿𝐿𝑅𝑡  surpassed the upper limit, thus 

generating a signal. It is important to observe the decrease in the 𝐿𝐿𝑅𝑡 following that time 

point. A signal should be raised irrespective of a subsequent decrease bringing the 

𝐿𝐿𝑅𝑡  down to the surveillance range.7  

 

Figure 3.1. Use of Sequential Probability Ratio Test to detect a signal (intussusception) after introduction of 
rotavirus vaccine. The upper limit is crossed after 10 weeks of surveillance and the null hypothesis rejected7 

 

SPRT requires a pre-specified probability/RR of the AE. 7,8,94 Previous knowledge regarding 

the AE and its public health importance can guide the choice.32 However, the final test result 

depends highly on this choice: if 𝐻1 is too far from the real value the signal might be missed 

(accepting 𝐻0). Being conservative might delay signal detection. These characteristics limit 

the applicability of SPRT to NRTVSS, where timely identification of signals is crucial. An 

alternative version of this test has thus been formulated – the maximized sequential 

probability ratio test (MaxSPRT).96 MaxSPRT uses a composite alternative hypothesis 

(𝐻1: 𝑅𝑅 > 1) thus requiring only one critical limit (CL). This test was developed for two 
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distributions – the Poisson (PMaxSPRT) and the binomial (BMaxSPRT), as presented in 

Sections 3.3.1 and 3.3.2.96  

3.3.1 PMaxSPRT 

When assuming a Poisson distribution and the notation previously used, the 𝐿𝑅𝑡  is given 

by:8,96 

𝐿𝑅𝑡 = max
𝐻1

𝑃(𝐶𝑡 = 𝑐𝑡|𝐻1)

𝑃(𝐶𝑡 = 𝑐𝑡|𝐻0)
= max

𝑅𝑅>1

𝑒−𝑅𝑅𝜇𝑡(𝑅𝑅𝜇𝑡)𝑐𝑡/𝑐𝑡!

𝑒−𝜇𝑡𝜇𝑡
𝑐𝑡/𝑐𝑡!

= max
𝑅𝑅>1

𝑒(1−𝑅𝑅)𝜇𝑡(𝑅𝑅)𝑐𝑡 , 

and the 𝐿𝐿𝑅𝑡 is 

𝐿𝐿𝑅𝑡 = ln(𝐿𝑅𝑡) = max
𝑅𝑅>1

[(1 − 𝑅𝑅)𝜇𝑡 + 𝑐𝑡 ln(𝑅𝑅)] = (𝜇𝑡 − 𝑐𝑡) + 𝑐𝑡 ln (
𝑐𝑡

𝜇𝑡
), 

as the maximum likelihood estimate of RR is 𝑐𝑡/𝜇𝑡 and 𝑐𝑡 ≥ 𝜇𝑡. 

For PMaxSPRT, there is no lower limit to decide when to stop surveillance; this happens when 

a predetermined number of expected events (EV) is reached. Figure 3.2 exemplifies the use 

of PMaxSPRT to study seizures following concomitant use of inactivated influenza 

vaccine/23-valent pneumococcal conjugate vaccine in 6-23 month old children. Only one 

critical limit is used and a signal was detected on the seventh test.98  

 

Figure 3.2. Use of Poisson-based maximized sequential probability ratio test to study seizures following inactivated 
influenza vaccine/23-valent pneumococcal conjugate vaccine in 6-23 month olds (adapted from Yih et al. 98) 

 

To implement a PMaxSPRT it is necessary to calculate a CL. There are several options but 

Kulldorff et al.96 proposed to calculate the CL based on the probability of rejecting 𝐻0 if 𝐻0 is 
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true (𝛼) at the end of surveillance, when at least 𝑛 events have occurred. Consider the log-

likelihood ratio, calculated at the latest possible time when 𝐻0  can be rejected, after 𝑛 

adverse events, denoted as 𝑠𝑛. The log-likelihood at 𝑠𝑛, 𝐿𝐿𝑅𝑠𝑛
, is given by:  

𝐿𝐿𝑅𝑠𝑛
= (𝜇𝑠𝑛

− 𝑛) + 𝑛𝑙𝑛 (
𝑛

𝜇𝑠𝑛

) = 𝐶𝐿 

𝐿𝐿𝑅𝑠𝑛
 also gives our CL of interest. Given that we stop surveillance when  𝑠𝑛 > 𝐸𝑉 and 𝑛 

gives us the number of adverse events required to reject 𝐻0, we can thus determine the 

probability of rejecting 𝐻0 based on the probability of having 𝑛 or more events at 𝐸𝑉. As we 

run tests at repeated points in time, the probability of having 𝑛 or more events at 𝐸𝑉 is 

conditional on the probabilities observed at 𝑠𝑛−1. The diagram below (Figure 3.3) illustrates 

this for 𝑛 = 3. At 𝑠3 we can only have three or more events if we had observed zero events 

at 𝑠1 and zero or one events at 𝑠2.The probability of having three or more events at 𝑠3 (and 

thus rejecting 𝐻0) is thus given by that same probability, conditional on having zero events 

at 𝑠1 and zero or one events at 𝑠2. As we assume a Poisson distribution to represent our 

variable of interest, we can calculate this same distribution to calculate these probabilities. 

To do that we need to know the mean of the Poisson distribution of interest (𝜇𝑠3
in this 

particular example, 𝜇𝑠𝑛
 for any 𝑛 of interest). This mean can be obtained by re-arranging the 

equation above:  

𝜇𝑠𝑛
= −𝑛𝑊(−𝑒−1− 𝐶𝐿/𝑛) 

𝑊 is known as Lambert's function, which solves the equation 𝑦 = 𝑥𝑒𝑥 for 𝑥. In other words,  

𝑊(𝑥𝑒𝑥) = 𝑥.  

Figure 3.3. Probability tree for rejection of H0 after we have observed three events 
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The approach just described would allow us to calculate 𝛼 but given that 𝛼 is previously set, 

we can use these principles to determine the critical limit using an iterative process based 

on two initial CL (𝐶𝐿𝑖  and 𝐶𝐿𝑖−1) and their corresponding 𝛼 (𝛼(𝐶𝐿𝑖) and 𝛼(𝐶𝐿𝑖−1)). This 

process is followed until it converges to the desired precision.  

𝐶𝐿𝑖+1 = 𝐶𝐿𝑖 − (𝐶𝐿𝑖 − 𝐶𝐿𝑖−1)
𝛼(𝐶𝐿𝑖) − 0.05

𝛼(𝐶𝐿𝑖) − 𝛼(𝐶𝐿𝑖−1)
 

Using this method our critical limit only depends on the expected number of events and 𝛼. 

It is also possible to use this same reasoning to determine the existing power to detect an 

increased RR at the end of surveillance. For power, we are interested in 𝛽, in this case the 

probability of having less than 𝑛 events at 𝑠𝑛 considering a Poisson with a mean of 𝜇𝑠𝑛
∗ 𝑅𝑅.  

3.3.2 BMaxSPRT 

If one decides to use the BMaxSPRT, a comparison of the exposed to unexposed period is 

assumed. Both a self-controlled and a matched cohort design can be used. Considering the 

observed number of events at a given moment as 𝑛  (exposed plus unexposed), 𝑐𝑛  the 

number of events among the exposed, and 𝑧  the length of the unexposed to exposed 

matched time periods, then the 𝐿𝑅 of a number of events, 𝐿𝑅𝑛 is given by: 

𝐿𝑅𝑛 = max
𝐻1

𝑃(𝐶𝑛 = 𝑐𝑛|𝐻1)

𝑃(𝐶𝑛 = 𝑐𝑛|𝐻0)
= max

𝑅𝑅>1

[𝑅𝑅/(𝑧 + 𝑅𝑅)]𝑐𝑛[𝑧/(𝑧 + 𝑅𝑅)]𝑛−𝑐𝑛

[1/(𝑧 + 1)]𝑐𝑛[𝑧/(𝑧 + 1)]𝑛−𝑐𝑛
, 

and the 𝐿𝐿𝑅𝑛 is given by: 

𝐿𝐿𝑅𝑛 = ln(𝐿𝑅𝑛)

= 𝑐𝑛𝑙𝑛 (
𝑐𝑛

𝑛
) + (𝑛 − 𝑐𝑛) ln (

𝑛 − 𝑐𝑛

𝑛
) − 𝑐𝑛 ln (

1

𝑧 + 1
) − (𝑛 − 𝑐𝑛) ln (

𝑧

𝑧 + 1
), 

with 𝑧𝑐𝑛/(𝑛 − 𝑐𝑛) being the maximum likelihood estimate of RR. The formula only applies 

when 𝑧𝑐𝑛/(𝑛 − 𝑐𝑛) > 1, otherwise 𝐿𝐿𝑅𝑛  will be zero. Figure 3.4 presents an example of 

BMaxSPRT. This used the same data as that used in Figure 3.2, to study seizures following 

concomitant use of inactivated influenza vaccine/23-valent pneumococcal conjugate vaccine 

in 6-23 month old children, but considering a self-controlled design. Unlike PMaxSPRT, 

BMaxSPRT did not signal.98  
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Figure 3.4. Use of binomial-based maximized sequential probability ratio (BMaxSPRT) test to study seizures 
following inactivated influenza vaccine/23-valent pneumococcal conjugate vaccine in 6-23 month olds (adapted 
from Yih et al.98) 

 

When using BMaxSPRT, the CL is calculated as detailed above (considering the last possible 

point at which the null might be rejected) but using an iterative Markov chain approach 

(instead of a Poisson distribution). The critical limit depends on the matching ratio, the 

observed number of events, and 𝛼. 

Tables with CL for commonly used values have been published96 and exact calculations are 

available in the package Sequential,99  R software.100  

3.3.3 Other tests 

Near real-time vaccine safety surveillance was initiated in the USA in 2005 using SPRT and 

then its maximized version. Further methodological work was conducted to develop new 

versions of these tests. An example is the development of a conditional test to account for 

uncertainty in the use of historical data, which the PMaxSPRT is sensitive to. Another area of 

methodological research has been the assessment of the properties of the methods 

employed. For example, Maro et al.101 assessed how outcome misclassification impacted 

timeliness of signal detection. Overall, this work has been led by VSD and NRTVSS use has 

grown since its introduction.9 Further tests, their characteristics and use are presented in the 

next Chapter. 
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3.4 Statistical software 

Data were extracted, cleaned and analysed using STATA/MPTM 14,102 except for analyses 

involving the use of sequential tests. For these, the R package Sequential was used (version 

2.3.1).99 Sequential includes several functions which allow implementation of a system and 

evaluation of a system performance. The functions that I used during the course of this work 

are summarised in Table 3.7. 

During the first attempts to code my analyses I identified bugs in the CV.Poisson and 

AnalyzeSetUp.Poisson functions. When running these functions with a small number of 

expected events there were error messages indicating programming errors (intermediate 

values not specified). I explored the reasons behind these by carefully looking at the R code 

running behind the functions. I then contacted the authors of the package detailing the 

issues identified and their possible reasons. The authors corrected the bugs identified and I 

was able to use the corrected functions for all the analyses performed. 

I also attempted to verify the results obtained when using the package, as the package has 

been recently developed and includes non-standard functions. In particular, I calculated the 

log-likelihood ratio test for PMaxSPRT using the formula presented in Section 3.3.1 and 

compared my results with the ones obtained from the function Analyze.Poisson. 

Additionally, I used the values published in Lieu et al.65 (which include the critical limit 

considered in their analysis) to confirm the calculation of critical limits using the function  

CV.Poisson yielded the same numbers as reported in the original publication.  For BMaxSPRT, 

I also verified the results from Analyze.Binomial using the formula presented in Section  3.3.2, 

for a situation with a constant matching ratio.   
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Table 3.7. Description of the functions in the package Sequential used for the analysis of the project99 

Function General description Inputs Outputs 
Relevant thesis 

sections/references 

Analyze.Binominal  Allows the implementation of a 

system based on the observed 

number of cases and controls, and 

the matching ratio (using 

BMaxSPRT). The results of a test run 

are automatically stored and can be 

used for a subsequent test, helping 

to facilitate the implementation of a 

system. Requires the set-up of the 

parameters to be considered 

through AnalyzeSetUp.Binominal 

Name of the analysis (should match 

the one given when setting the 

parameters), test number, number of 

controls matched to each case or the 

probability of a case under the null 

hypothesis, number of cases, number 

of controls, alpha spending function (if 

different from the one specified in the 

set-up).  

Summary table and plots including 

information on: the test number, 

number of cases and controls (by test 

and cumulative), estimated relative risk 

by test, log-likelihood by test, target 

alpha spent for each test, actual alpha 

spent for each test, number of cases 

required to reject the null hypothesis at 

each test, decision on the null hypothesis 

(reject or not).  

3.3.2, 7.18,99 

AnalyzeSetUp.Binominal Used to set up the parameters when 

using Analyze.Binominal   

Name of the analysis, level of 

significance, minimum number of 

events before rejecting the null, type 

and shape of alpha spending function 

No specific output; parameters are 

stored for later use.  

3.3.2, 7.18,99 

Analyze.Poisson Similar to the Analyze.Binomial 

function but using the PMaxSPRT 

and thus based on the number of 

observed and expected events at 

each test. It also requires an initial 

set-up using the function 

AnalyzeSetUp.Poisson. 

Name of the analysis (should match 

the one given when setting the 

parameters), test number, expected 

number of events under the null, 

number of observed events, alpha 

spending function (if different from the 

one specified in the set-up). 

Summary table and plots including in-

formation on: the test number, number 

of expected and observed events (by test 

and cumulative), estimated relative risk 

by test, log-likelihood, target alpha spent 

for each test, actual alpha spent for each 

test, number of events required to reject 

the null hypothesis at each test, decision 

on the null hypothesis (reject or not).  

3.3.1, 7.18,99 

(Continues) 
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Table 3.7. (Continued) 

Function General description Inputs Outputs Relevant thesis 

sections/references 

AnalyzeSetUp.Poisson Used to set up the parameters when 

utilising Analyze.Poisson 

Name of the analysis, level of 

significance, minimum number of 

events before rejecting the null, type 

and shape of alpha spending function 

No specific output; parameters are 

stored for later use. 

3.3.1, 7.18,99 

CV.Binomial  

 

Used to calculate the critical limit of 

a continuous BMaxSPRT.  

Level of significance, expected sample 

size, number of events before rejecting 

the null hypothesis, and matching ratio 

or probability of having a case under 

the null hypothesis. 

Critical value, type I error given the 

critical value. When there is not a critical 

value corresponding to the type I error 

established in the input (level of 

significance) the largest conservative 

value is returned.   

3.3.2, 7.18,99 

CV.Poisson Used to calculate the critical limit of 

a continuous PMaxSPRT.  

Level of significance, expected sample 

size, number of events before rejecting 

the null and number of expected 

events before the first look at the data. 

Critical value. When there is not a critical 

value corresponding to the type I error 

established in the input (level of 

significance) the largest conservative 

value is returned.   

3.3.1, 7.1, 7.48,99 

Performance.Binominal 

 

Allows assessment of the 

performance of a system based on a 

continuous BMaxSPRT. 

Number of events at the end of the 

surveillance period, number of events 

before rejecting the null hypothesis, 

the critical limit (calculated using 

CV.Binomial), matching ratio or 

probability of having a case under the 

null hypothesis and the relative risk to 

detect. 

Power, expected time to signal if the null 

hypothesis is rejected, expected sample 

size at the end of surveillance (whether 

the null hypothesis is rejected or not). 

3.3.2, 7.18,99 

(Continues) 
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Table 3.7. (Continued) 

Function General description Inputs Outputs Relevant thesis 

sections/references 

Performance.Poisson 

 

Similar to Performance.Binomial to 

assess the performance of a system 

based on continuous PMaxSPRT. 

Expected number of events at the end 

of the surveillance period, number of 

events before rejecting the null 

hypothesis, expected number of 

events under the null at the first look 

at the data, the critical limit (calculated 

using CV.Poisson), and the relative risk 

to detect. 

Power, expected time to signal if the null 

hypothesis is rejected, expected sample 

size at the end of surveillance (whether 

the null hypothesis is rejected or not). 

3.3.1, 7.1, 7.4 8,99 

BMaxSPRT – Binomial-based Maximized Probability Ratio Test, PMaxSPRT – Poisson-based Maximized Probability Ratio Test 
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3.5 Ethics 

Approval for this project was obtained from the Independent Scientific Advisory Committee 

(ISAC) of the Medicines and Healthcare Products Regulatory Agency (MHRA) (ISAC number: 

15_230) and from the Ethics Committee of the London School of Hygiene & Tropical 

Medicine (LSHTM reference: 10421).  

 

When considering the development of the existing methods to perform near real-time 

vaccine safety surveillance, it is important to understand not only their statistical properties 

but also how to best apply them in practice. Such understanding is crucial when deciding 

how to approach the implementation of a system using a new data source. The next Chapter 

presents a systematic review conducted to ascertain existing methods to perform near real-

time vaccine safety surveillance and how they have been applied.   
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4 METHODS AVAILABLE TO PERFORM NEAR REAL-TIME VACCINE 

SAFETY SURVEILLANCE 

4.1 Introduction to Paper 1 

This paper was published in Pharmacoepidemiology and Drug Safety in January 2016 and 

reports the results of a systematic review I conducted to identify methods currently used 

worldwide to perform near real-time vaccine safety surveillance.  

To assess existing methods, I conducted searches to identify both published and unpublished 

studies. For the former, I developed a search strategy for use in Medline and EMBASE. The 

search strategy was also used in Web of Science to identify conference abstracts. Further 

conference abstracts were ascertained by searches of relevant conferences abstract books. 

Unpublished studies were identified through contacts with vaccine safety experts. For this 

step, I developed an on-line questionnaire which was sent via e-mail to a list of experts. In 

this questionnaire, I asked if the expert had been involved or was aware of any relevant 

studies. If the answer was yes, the questionnaire included several questions to capture the 

details of those studies. 

This review identified 31 near real-time systems (i.e. a combination of a data source and 

statistical methods used to analyse it and produce results in near real-time), mainly from the 

USA, spanning from May 2005 to April 2015. These systems focussed mainly on influenza 

vaccine, particularly the 2009 H1N1 vaccine. The review allowed the identification of several 

statistical tests. The choice of statistical test changed over time but it was generally guided 

by the frequency of electronic health records and the adverse event studied. PMaxSPRT was 

the test that was most often selected, followed by BMaxSPRT and a conditional version of 

MaxSPRT. The review also revealed only limited strategies to account for confounding 

factors. Studies adjusting for potential confounders used mainly an adjusted expected rate. 

Despite the development of these methods, NRTVSS is not yet widely used outside the USA.  

The results presented in the paper are based on a search I conducted on 6th January 2015. In 

order to update these results I re-ran the search on 14th June 2017. The new results are 

presented in Section 4.3.  

The search terms, a detailed explanation of the search strategy used to review abstract books 

of selected conferences, the online questionnaire I designed to identify unpublished studies 

and the table with detailed characterization of the studies were all published as supporting 
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information for the paper (Appendix A to D). In this thesis appendices A to C (search terms, 

a detailed explanation of the search strategy to review abstract books, and the online 

questionnaire) are included immediately after the paper, in Section 4.2. Appendix D (a table 

with detailed characterization of the studies) is presented in Section 4.4 after the results 

from the systematic review update, as the studies identified in the update were added to 

this table. 

  



66 
 

 



67 
 

  



REVIEW

Near real-time vaccine safety surveillance using electronic health
records—a systematic review of the application of statistical methods†

Andreia Leite1*, Nick J. Andrews2 and Sara L. Thomas1

1Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
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ABSTRACT
Purpose Pre-licensure studies have limited ability to detect rare adverse events (AEs) to vaccines, requiring timely post-licensure studies.
With the increasing availability of electronic health records (EHR) near real-time vaccine safety surveillance using these data has emerged as
an option. We reviewed methods currently used to inform development of similar systems for countries considering their introduction.
Methods Medline, EMBASE and Web of Science were searched, with additional searches of conference abstract books. Questionnaires
were sent to organizations worldwide to ascertain unpublished studies. Eligible studies used EHR and regularly assessed pre-specified AE
to vaccine(s). Key features of studies were compared descriptively.
Results From 2779 studies, 31 were included from the USA (23), UK (6), and Taiwan and New Zealand (1 each). These were
published/conducted between May 2005 and April 2015. Thirty-eight different vaccines were studied, focusing mainly on influenza
(47.4%), especially 2009 H1N1 vaccines. Forty-six analytic approaches were used, reflecting frequency of EHR updates and the AE studied.
Poisson-based maximized sequential probability ratio test was the most common (43.5%), followed by its binomial (23.9%) and conditional
versions (10.9%). Thirty-seven of 49 analyses (75.5%) mentioned control for confounding, using an adjusted expected rate (51.4% of those
adjusting), stratification (16.2%) or a combination of a self-controlled design and stratification (13.5%). Guillain-Barré syndrome (11.9%),
meningitis/encephalitis/myelitis (11.9%) and seizures (10.8%) were studied most often.
Conclusions Near real-time vaccine safety surveillance using EHR has developed over the past decade but is not yet widely used. As more
countries have access to EHR, it will be important that appropriate methods are selected, considering the data available and AE of interest.
© 2016 The Authors. Pharmacoepidemiology and Drug Safety Published by John Wiley & Sons Ltd.
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INTRODUCTION

Vaccines are considered to be one of the most cost-
effective interventions in public health.1,2 As with
other drugs, vaccines are not totally safe,3 but safety
requirements are particularly high as vaccines are
given to healthy individuals, most often children.4

All vaccines go through extensive safety assessment
before licensure; however, pre-licensure studies have
limited ability to detect rare adverse events (AEs) to
vaccines (with frequency <1/10000-1/100000)5, AE

occurring among specific sub-populations who were
not included in clinical trials, and long-term AE.6 To
overcome these limitations, timely post-licensure stud-
ies are required. These can be broadly divided into
passive (spontaneous reports) and active studies and
should be followed by confirmatory epidemiologic
studies. While spontaneous reporting of AE is widely
implemented worldwide as a simple and low-cost
method, useful to detect new, unanticipated AE, it
has limitations.2 These include difficulties in denomi-
nator calculation, potential reporting biases (e.g. over-
reporting of potential AE receiving extensive media
coverage) and incomplete reporting. In contrast, active
surveillance tries to identify all those experiencing
(or at least seeking medical attention for) a potential
AE to vaccines. This approach includes analyses
of large population datasets (using electronic health
records (EHR)), targeted hospital-based surveillance

*Correspondence to: A. Leite, Department of Infectious Disease Epidemiology,
London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT,
London, UK. E-mail: andreia.leite@lshtm.ac.uk
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(where trained health workers daily seek potential
cases of conditions of interest) and recruitment of vac-
cinated cohorts for detection of AE (using face-to-face
interviews, phone interviews, short-message services
or web-based tools).7,8 With the increased availability
of large population datasets, near real-time vaccine
safety surveillance (NRTVSS) has emerged as an
option.9

Near real-time vaccine safety surveillance, also
known as rapid cycle analysis, involves regular inter-
rogation of EHR to investigate pre-specified AE to
vaccines.2 By testing these AE on a regular basis after
introduction of a new vaccine, these methods ensure a
timely detection of possible safety problems.10 When a
signal is detected by this approach, it needs to be fur-
ther analysed, including a signal refinement stage and
eventual confirmatory analyses. These steps should
be predetermined and will lead to the decision of
whether to validate or invalidate the signal. NRTVSS
is thus part of a systematic approach to signal detec-
tion, with a dual role of signalling possible AE to vac-
cines and reassuring authorities and populations that
events are being monitored.11 For a given vaccine,
NRTVSS only considers a small number of suspected
AE (e.g. 5 to 10); complementary information is pro-
vided by existing methods such as spontaneous
reports.12

The growing use of NRTVSS methods, along with
the increasing availability of EHR, highlights the need
to review studies using this approach. Such a review
can provide crucial information on the development
of systems for vaccine safety surveillance for countries
considering their introduction.

OBJECTIVE

The aim of this study was to carry out a systematic re-
view of published and unpublished data on the
methods used for NRTVSS using EHR.

METHODS

Studies were included in the review if they (i) used
routinely collected health data (at least for the ex-
pected number of events); (ii) studied pre-specified
outcome(s) to assess the safety of one or more vac-
cines; and (iii) regularly tested the outcomes.
Studies (i) including only information based on
spontaneous reporting systems, (ii) aimed at testing
hypothesis/confirming previously generated/suspected
signals or (iii) aimed at developing new methods for
NRTVSS (unless a specific application of the new

method was given) were excluded. No limits were im-
posed in terms of language or year.
Medline and EMBASE were searched for studies

published until 6 January 2015, using a combination
of thesaurus and free-text terms (search strategy is pro-
vided in Supporting Information Appendix A). Titles
and abstracts were reviewed to determine eligibility
status, followed by the full text for those considered
potentially eligible. References from the papers col-
lected were also reviewed. Reviews of the topic were
selected for reference mining. A.L. was responsible
for evaluating eligibility of the identified studies. To
ensure quality, eligibility of a random sample of 10%
of the results was evaluated by S.T. and N.A. When
eligibility was unclear, the study was discussed among
the authors until a consensus was reached.
To complement the database searches, a citation

search was conducted. To the best of our knowledge,
the methods under study were first applied to the field
of vaccine safety by the Vaccine Safety Datalink
(VSD). Two key VSD papers that describe the testing
and implementation of rapid cycle analysis using rou-
tinely collected health data were selected to perform a
citation search.9,13

The same search strategy was used in the Web of
Science Core Collection to cover meetings and confer-
ences, restricting the search to meeting abstracts or
proceedings papers. Also, the Annual Conference on
Vaccine Research and the Vaccine and ISV Congress
abstract book and programme, respectively, were analysed
(Supporting Information Appendix B). The Brighton
Collaboration newsletter was also searched as a potential
source of relevant new studies or contacts.14

A second stage of the review included contacting
experts in vaccine safety, as follows:

• Specialists in vaccine safety (from the Global Advi-
sory Committee on Vaccine Safety (GACVS),15

Brighton Collaboration16 and Accelerated Devel-
opment of Vaccine benefit–risk collaboration in
Europe (ADVANCE) 17) were asked if they were
aware of work being conducted in the area and
fulfilling our inclusion criteria.

• Authors with known work using routinely collected
data and the potential to have implemented/conducted
eligible studies were contacted (Medicines and
Healthcare products Regulatory Agency (MHRA),18

VSD19 and Statens Serum Institute20). Further con-
tacts were also asked for at this stage.

• Finally, authors with a previous published work but
incomplete information, and those suggested by
other experts, were contacted to ask for further
information to characterize the methods.
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An online questionnaire was used to capture infor-
mation on studies conducted (Supporting Information
Appendix C). When other sources of information
(e.g. reports) were available and shared by the con-
tacts these were used. Expert contacts took place
from February to March 2015.
The information identified was extracted using a

standardized extraction form. Data extracted included
timeline, country/institutions where the study was con-
ducted, vaccines studied, study population, outcomes
assessed and their method of ascertainment, methods
used to perform the analyses, frequency of assessment,
confounding, data-accrual lag (i.e. delays in the data
available to perform surveillance, which may affect
the results), assessment of the validity of the outcomes
of interest (e.g. chart review) and main results. A de-
scriptive summary of country/institution, vaccines,
outcomes studied, confounding and data-accrual lag
handling was drawn up.

RESULTS

A total of 29 reports were included for data extrac-
tion (including information provided by expert
contacts),9,13,21–45 representing 31 studies/systems
(Figure 1). A brief description of the studies/systems in-
cluded by country, methods used and adjustment for
confounding strategies is given in Table 1. A detailed
characterization of the studies is provided in Supporting
Information Appendix D.
Near real-time vaccine safety surveillance using

EHRs was first reported by Davis et al. in 2005, when
a retrospective study assessing the feasibility of
implementing such methods was published. Since this
time, we identified a further 13 studies conducted
by the VSD and 17 other studies in three countries
(Figure 2). The first study conducted outside the
VSD was conducted in New Zealand and published
in 2007. The report from the last study included
was published online in 2015. Four studies (all in
the USA) were conducted completely or partially
in a retrospective manner, to test the feasibility of
implementing this kind of system (Table 1). Two
of these studies attempted to replicate known sig-
nals (rotavirus vaccine and intussusception and
acellular diphtheria-tetanus-pertussis (DTaP)/whole
cell diphtheria-tetanus-pertussis vaccine and febrile
seizures). Of the prospective studies, most were
conducted in the USA (n=20), with studies also
conducted in the UK (n=6), and Taiwan and
New Zealand (n=1 for each). The prospective
studies looked mainly at influenza vaccines (n=16), es-
pecially the 2009 H1N1 pandemic influenza vaccine

(n=7). Rotavirus (n=5), DTaP-based (n=3) and human
papillomavirus vaccines (n=3) also received attention.
The outcomes studied were most often neurological

(58.5%). Looking at specific outcomes, Guillain-Barré
syndrome (GBS) (11.9% of studied known outcomes),
meningitis/encephalitis/myelitis (11.9%) and seizures
(10.8%) were the most often included. Outcome ascer-
tainment for the near real-time analysis was, in most
cases, based on automated data (with no a priori con-
firmation of the diagnosis). In these cases, chart review
and confirmation were used whenever a potential AE
was signalled. Only two studies performed this kind
of confirmation for the near real-time analysis,21,35

and one compared the analysis considering the chart-
reviewed and non-reviewed outcome for GBS.33 From
the outcomes studied, 11 signals were identified, but
only three confirmed (measles-mumps-rubella-vari-
cella combination vaccine and febrile seizures,27

2010–2011 trivalent inactivated influenza vaccine
and febrile seizures,37 and monovalent rotavirus vac-
cine and intussusception41).
Table 2 summarizes the methods used by the stud-

ies included in this review. These can be broadly di-
vided into continuous sequential testing, which
allows examination of the data as often as desired
(n=25),9,13,22–34,37,38,40–43,45 group sequential testing
(n=4)35,36,38,39 and statistical process control (SPC;
n=3).21,44 The choice of the group of methods has
been determined by the frequency of updates to the
EHR data used (Table 2).
When considering specific versions of the tests

available, the choice has been guided by the increasing
availability of new methods and knowledge of these
methods over time, as shown in Figure 2, as well as
the frequency of AE studied. In VSD, the sequential
probability ratio test (SPRT) was first applied9 being
subsequently replaced by its maximized version
(MaxSPRT) with the advantage of not having to spec-
ify a single alternative hypothesis.13 The use of
MaxSPRT and its variations also evolved over time.
While in the beginning the Poisson and binomial ver-
sions were simultaneously used for the same out-
come,13 from 2010, a targeted selection of the test
version and its extensions, based on the strengths of
each method (Table 2) and the characteristics of the
outcome under study, was preferred.24,33,34,42,43 In
particular, Poisson-based MaxSPRT (PMaxSPRT)
has been used when less than 50 events were antici-
pated and the conditional version when the ratio of ob-
served historical events to upper limit was ≤2.5.
Outside VSD, a pattern in the use of continuous sequen-
tial methods was less clear. Overall, these tests were the
most often employed—PMaxSPRT (45.7%),10,50

near real-time vaccine safety surveillance 227

© 2016 The Authors. Pharmacoepidemiology and Drug Safety
Published by John Wiley & Sons Ltd.

Pharmacoepidemiology and Drug Safety, 2016; 25: 225–237
DOI: 10.1002/pds



followed by the binomial (BMaxSPRT—23.9%)10,50

and conditional (10.9%) versions.51

More recently, four studies used group sequential
testing. Two of these used an alpha-spending ap-
proach,38,39 (a function controlling how much of the
alpha will be ‘spent’ every time a new analysis is
run52), one the Updating Sequential Probability Ratio
Test53 and other the Abt’s modification of SPRT.54

An alpha-spending approach was thus preferred over
the two other tests employed in a group sequential
way. Both the Pocock-type and O’Brien–Fleming-type
functions have been used.12,55 The remaining methods
did not follow a clear evolution and include use of
SPC56 at different times by two non-USA institutions

(New Zealand Ministry of Health, Health Protection
Scotland).21,44

Thirty-seven of 49 analyses (75.5%) mentioned con-
trol for confounding. Strategies chosen were often
design-based and included (alone or in combination)
the following: (i) using a self-controlled design, which
automatically addresses time-invariant confounders;
(ii) matching baseline confounders, through a concur-
rent comparator design; (iii) adjusting the expected
rate obtained from a historical comparison group
based on the confounders’ distribution in the study
cohort (iv) stratifying the results according to relevant
confounder categories. Analyses adjusting for poten-
tial confounders used mainly an expected rate adjusted

Figure 1. Flowchart of included studies. Studies were excluded for (i) not considering vaccines (nonvaccine), (ii) not analysing the safety of a vaccine (not
safety), (iii) considering safety issues but not applying the methods of interest (other safety), (iv) only developing new methods (methods only) and (v) having
no abstract available (not available)
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for potential confounders (51.4% of those adjusting),
stratification (16.2%) or a combination of a self-
controlled design and stratification (13.5%). The
choice of approaches also depended on the analytical
method selected. For group sequential methods and
SPC, strategies to deal with confounders were even
more limited. When employing group sequential
methods, only expected rate calculations based on
the confounders’ distribution and stratification were
considered. For SPC, only stratification was used. Po-
tential confounders considered include age, sex, geo-
graphic site, concomitant vaccine administration,
season and trend (Table 1).
Some of the prospective studies considered data-

accrual lags in their analysis. Most often, the analysis
was delayed by some weeks (n=7). Others adjusted
for partially elapsed risk intervals and delays in the ar-
rival of inpatient data (n=3).46 For studies using spon-
taneous report for the observed number of events (and
EHR for the expected number of events), sensitivity

analyses with several degrees of underreporting were
conducted (n=4).28,31,40 Updates to the previous
datasets already analysed were not considered a spe-
cific strategy to adjust for data-accrual lags as they
would not reduce the time to signal. The majority of
studies did not mention ways or did not adjust for
data-accrual lags (n=11).

DISCUSSION

Our comprehensive systematic review has identified
an increasing number of studies and systems
implementing NRTVSS. All the studies identified
were performed in high-income countries/regions with
most in the USA. This might reflect limited capacity in
many settings to provide registry data in a timely fash-
ion and the infra-structure required to set up the
system.
A clear effort was put into using these methods to

assess pandemic influenza vaccine safety. This vaccine

Figure 2. Studies included in the review, ordered by the year of publication. Continuous sequential test are underlined with single line, group sequential with
bold line, and statistical process control with dashed line. Grey background indicates non-published studies. *Results with previous published results.
maxSPRT – Maximized Sequential Probability Ratio Test, P – Poisson version (†use of the conditional version), B – binomial version (‡use of self-controlled
case-series or extensions of the test). DMSS – Defense Medical Surveillance System, DTaP – acellular diphtheria-tetanus-pertussis vaccine, DTwP – whole
cell diphtheria-tetanus-pertussis vaccine, GBMV – Group-B Meningococcal Vaccine, HPS – Health Protection Scotland, HPV2 – bivalent human papillomavirus
vaccine, HPV4 – quadrivalent human papillomavirus vaccine, IHS – (US) Indian Health Service, IPV – inactivated poliovirus vaccine, MCV –meningococcal
conjugate vaccine, MHRA – Medicines and Healthcare products Regulatory Agency, MMRV – Measles-Mumps-Rubella-Varicella combination vaccine,
PCV13 – 13-valent pneumococcal conjugate vaccine, PRISM – Post-Licensure Rapid Immunization Safety Monitoring, RRV – Rhesus-Rotavirus vaccine,
RV5 – pentavalent rotavirus vaccine, VA – Veteran’s Affaires, VSD – Vaccine Safety Datalink
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is a good example of the importance of post-licensure
surveillance due to potential safety concerns.32 Menin-
gococcal group B vaccine in New Zealand21 repre-
sents a similar situation, where NRTVSS, along with
enhanced passive surveillance and other active
methods, was implemented after the vaccine was ap-
proved without phase III trials. Other situations where
these methods have been particularly useful include
vaccines/AE of concern due to experiences with
previous versions of the vaccine—for example,
rotavirus/intussusception25 and influenza/GBS.32 For
previously suspected AE, the set of methods here
reviewed has the advantage of informing in a timely
manner the existence of a safety concern or reassuring
regulatory authorities and the public about vaccine
safety.
In this review, we have identified different methods

to perform NRTVSS using EHR and the way these
have been applied, both by VSD and by other institu-
tions. All the methods identified are derived from
Wald’s sequential test.50,59,60 When choosing a partic-
ular method, it is important to be aware of its proper-
ties. Properties of the continuous and group
sequential methods have been studied in the context
of drug safety.12 Group sequential methods were
deemed to be more appropriate when data updates
are less frequent,12 but more recent work comparing
these methods has found that for any group sequential
design, there is a better continuous method and recom-
mended that the data are looked at as frequently as
possible.58 After selecting the methodological ap-
proach, it is necessary to choose the specific test to em-
ploy. For example, using the PMaxSPRT and
BMaxSPRT simultaneously might be a more robust
approach owing to complementary strengths. How-
ever, as previously suggested, BMaxSPRT might fail
to identify a signal when investigating very rare
events. Hence, an alternative is to use PMaxSPRT
when less than 50 events are anticipated and the condi-
tional version when the ratio of observed historical
events to upper limit is ≤2.5. The use of a targeted
approach has been considered in VSD’s more recent
work.24,33,34,42,43

On the other hand, the properties of SPC-based
methods applied to vaccine safety have not been ex-
tensively studied. Both Kulldorff et al.50 and Musonda
et al.61 have argued that SPC-based methods such as
cumulative sum are not appropriate to perform surveil-
lance for newly introduced products as the aim is to
detect a safety problem that is already present and
not a sudden change. These authors defend the use of
such methods in the context of surveillance for
batch-related problems (problems arising at the timeT
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of manufacture rather than related to the product
itself). However, we should consider that at the time
of introduction, if there is a safety problem with that
specific vaccine and an appropriate comparison group
is used, a sudden change would be observable as well.
Given its ease of implantation, SPC is attractive, but
recommendations on the use of SPC are deferred until
further research on their properties is available.
Control for potential confounders has been limited

in both the strategies employed and factors adjusted
for. This observation is in agreement with Nelson
et al.,12 who have argued for better methods for con-
founder adjustment, in particular at the analysis stage.
Recent work has been performed in this area, adapting
group sequential methods with regression adjustment
and comparing this to existing approaches.62,63 To
the best of our knowledge, these promising approaches
are still at the development stage and have not yet
been applied to new studies. As pointed out by
Yih,11 it might not be possible to adjust for all possi-
ble confounders in this setting, which can lead to
spurious signals. However, it should be noted that,
as a near real-time analysis, aimed at quickly
identifying/strengthening signals, priority is given
to rapid results. As such, confounding adjustment is
not deemed as critical—more complete analyses
can be performed at confirmatory stages.11 These
might include adjusting for additional confounders
or a more detailed adjustment (e.g. using finer cate-
gorization of a variable) to avoid residual confound-
ing. The specific confounders to adjust for should be
decided on the basis of the vaccine, outcome and age
groups studied. In addition to those factors consid-
ered by studies, adjustments for day-of-the-week
effects or co-morbidities might be required.11 Never-
theless, 12 studies13,24–27,29,30,35,36 did not refer to
potential confounding in at least one of the analyses
reported in their published texts.
Best practice using EHR apply equally to NRTVSS

as to any study using these kind of data. For example,
Lanes et al. provide an approach to identify outcomes
in healthcare databases.64 One of the aspects to consider
while doing so is misclassification. In some occasions,
manual review of individual medical records can be
used, particularly if a signal is found. In this review,
only two studies21,35 performed this confirmation before
running the NRTVSS analysis, as doing so might delay
the surveillance process. Alternatively, multiple algo-
rithms might be developed, providing a trade-off be-
tween sensitivity and positive predictive values (PPV).
In the NRTVSS, an algorithm with higher sensitivity
and moderate PPV is generally considered to be timelier
than algorithms with moderate sensitivity algorithm and

high PPV. This should be considered for the specific
outcome under study, its seriousness and the data
available.65 Misclassification of the exposure might
also be problematic. A possible approach is to restrict
the analysis to vaccinated individuals, avoiding poten-
tial biases.11

A key aspect to consider while using these methods is
the availability of timely data. ‘Real-time’ analyses are
difficult to achieve, and thus, the expression ‘near real-
time’ is preferred. In fact, delays can occur at various
stages, including delays in diagnosis (e.g. for conditions
with more insidious onset), recording (e.g. retrospective
recording of vaccination administration or diagnosis),
receiving the data for analysis (due to either incomplete
data accrual or partially accrued risk windows) and
reporting. The timeliness of data should thus be con-
sidered. Some studies have delayed the analysis for
some weeks.13,23,25,27,41–43 While this approach gives
time for data to accrue, it will not reduce the time to
signal. The use of group sequential methods with less
frequent testing portrays a similar situation where
more time has been given for data to accrue.35,38,39

Nevertheless, for events occurring closer to the time
of testing, data-accrual lags may still be problematic.
Finally, adjustments for partially elapsed risk interval
and delays in the arrival of inpatient data have been
proposed (through the expected number of events)46

or integrated in the critical limits calculation36. These
can decrease the time to signal, based on previously
observed data-accrual patterns. They have been ap-
plied in a few, influenza vaccine, studies. Influenza
vaccines pose particular challenges when using de-
layed data as failure to detect a signal before the
season ends will impede adequate action. Strategies
proposed so far do not specifically address delays
between illness onset and diagnosis.
Only three of the 11 outcomes identified in the pro-

spective studies were confirmed as true signals. In ad-
dition to issues already raised (confounding factors
that have not been considered, misclassification of
the outcome), unconfirmed signals were due to (i)
changes in the true incidence or coding practices; (ii)
inappropriate comparison groups; (iii) uncertainty in
background rates; and (iv) type I errors.11,33 For type
I errors, additional strategies to reduce the false dis-
covery rate are available at the planning stage: these
include delaying the first test,66 requiring a minimum
number of events to occur before rejecting the null hy-
pothesis67 or, in the case of group sequential tests,
selecting an O’Brien–Fleming threshold. The latter
spends less alpha in earlier tests and was used by
Nelson et al.38 During the surveillance period, it is im-
portant to update the critical limits as data arrive, as the
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observed data might differ from those planned.66 As in
the case of outcome identification, these consider-
ations should be balanced against the importance of
detecting signals in a timely manner. Even after care-
ful consideration of all these aspects before and during
surveillance, possible spurious signals may still arise.
This emphasizes the need for a predetermined plan of
action for signal refinement if a signal is found.11

The plan should include a careful decision on the data
source to use to test the hypothesis in subsequent anal-
yses if needed, owing to potential biases with the use
of the same data to identify and test the signals.
NRTVSS is thus not a stand-alone method but part
of the signal detection and evaluation process.
This review aimed at capturing studies and systems

worldwide using EHR to perform NRTVSS. Our rig-
orous search strategy and further contacts with many
experts on vaccine safety from different countries
and institutions (with a satisfactory response rate,
70.6%) should have minimized the risk of missing sys-
tems currently in use. However, we cannot exclude the
existence of similar systems elsewhere. Furthermore,
some information was missing from the studies in-
cluded, which we have tried to reduce by contacting
the authors. The missing information most often re-
lated to confounding control strategies and the data-
accrual lag adjustment employed. This might reflect
the limited options to address these issues, especially
for the earlier studies.
Countries considering introduction of these methods

should benefit from the work developed so far and
from strategies under development. There should be
a cautious reflection on the availability of timely data
and their characteristics (including discussion with
the data providers), the vaccine(s) and outcome(s) to
be studied and the infra-structure needed in case a sig-
nal is detected. Future directions for research might
include further development and application of strate-
gies for adjustment for confounding and data-accrual
lag, as well as consideration of other methods not yet
applied to observational settings but in use in clinical
trials, for example, Bayesian approaches to group se-
quential tests.68 Bayesian methods can incorporate
previous information (such as the data generated by
pre-licensure studies) and potentially provide a more
flexible approach.
In conclusion, NRTVSS using EHR to assess the

safety of newly introduced vaccines is being increas-
ingly used in the USA, with limited introduction in a
few other countries. These methods ensure timely de-
tection of safety signals. New methods have been inte-
grated over time, but strategies to account for potential
confounders and data-accrual lags have received less

attention. As new vaccines are expected to be intro-
duced and the public questions vaccine safety, the
demand for strong post-licensure surveillance systems
will increase.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

KEY POINTS

• Near real-time vaccine safety surveillance using
electronic health records (EHR) is one of the op-
tions available to identify vaccine safety signals.
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4.2 Supporting information 

4.2.1 Search strategy 

4.2.1.1 Medline 

1. Vaccin* or Immuni#ation 

2. exp Vaccination/ or exp Vaccines/ or exp Immunization/ or Immunization Programs/ 

3. 1 or 2 

4. safety or monitor* or Postauthori#ation or Post authori#ation or Post-authori#ation or 
Post-licensure or Postlicensure or Post licensure or Post-market or Postmarket or Post 
market or adverse event* or adverse effect* or assessment or risk 

5. exp Product Surveillance, Postmarketing/ or exp Adverse Drug Reaction Reporting 
Systems/ or "Drug-Related Side Effects and Adverse Reactions"/ or exp Population 
Surveillance/ or Risk/ or Risk assessment/ 

6. 4 or 5 

7. ("Sequential test*" or "sequential analys*" or (sequential adj4 method*) or "sequential 
monitor*" or "Rapid cycle analys*" or "rapid risk assessment" or ((Active or Real-time) adj4 
surveillance) or (real-time adj4 monitor*) or "early detection" or "sequential probability ratio 
test*" or maxSPRT or SPRT or "cumulative sum chart*" or "Sequential case series" or "signal 
refinement" or "signal adjudication" or "signal strengthening" or "signal identification" or 
"signal generation" or "observed-expected" or "observed-to-expected" or "observed vs. 
expected" or "observed vs expected" or "observed versus expected" or "observed-vs.-
expected" or "observed-vs-expected" or "current-historical" or "current versus historical" or 
"current-vs-historical" or "current-vs.-historical" or "current vs. historical" or "current vs 
historical" or "standardi#ed incidence ratio" or "vaccine safety datalink" or "Post-Licensure 
Rapid Immunization Safety Monitoring" or "Canadian Immunisation Monitoring Program" or 
"Paediatric Active Enhanced Disease Surveillance") 

8. Poisson Distribution/ 

9. 7 or 8  

10. 3 and 6 and 9 

 

4.2.1.2 Embase 

1. Vaccin* or Immuni#ation 

2. exp vaccination/ or exp vaccine/ or exp immunization/ or exp preventive health service/ 

3. 1 or 2 

4. safety or monitor* or Postauthori#ation or Post authori#ation or Post-authori#ation or 
Post-licensure or Postlicensure or Post licensure or Post-market or Postmarket or Post 
market or adverse event* or adverse effect* or assessment or risk 
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5. exp adverse drug reaction/ or exp postmarketing surveillance/ or risk/ or risk assessment/ 
or exp health survey/  

6. 4 or 5 

7. ("Sequential test*" or "sequential analys*" or (sequential adj4 method*) or "sequential 
monitor*" or "Rapid cycle analys*" or "rapid risk assessment" or ((Active or Real-time) adj4 
surveillance) or (real-time adj4 monitor*) or "early detection" or "sequential probability ratio 
test*" or maxSPRT or SPRT or "cumulative sum chart*" or "Sequential case series" or "signal 
refinement" or "signal adjudication" or "signal strengthening" or "signal identification" or 
"signal generation" or "observed-expected" or "observed-to-expected" or "observed vs. 
expected" or "observed vs expected" or "observed versus expected" or "observed-vs.-
expected" or "observed-vs-expected" or "current-historical" or "current versus historical" or 
"current-vs-historical" or "current-vs.-historical" or "current vs. historical" or "current vs 
historical" or "standardi#ed incidence ratio" or "vaccine safety datalink" or "Post-Licensure 
Rapid Immunization Safety Monitoring" or "Canadian Immunisation Monitoring Program" or 
"Paediatric Active Enhanced Disease Surveillance") 

8. Poisson distribution/ 

9. 7 or 8  

10. 3 and 6 and 9 

4.2.1.3 Web of Science core collection  

#11 #9 AND #6 AND #3 

Refined by: DOCUMENT TYPES: (MEETING ABSTRACT OR PROCEEDINGS PAPER)  

DocType=All document types; Language=All languages; 

#10 #9 AND #6 AND #3  

DocType=All document types; Language=All languages; 

#9 #8 OR #7  

DocType=All document types; Language=All languages; 

#8 TS=(((Sequential testing or sequential analys* or (sequential NEAR/4 method*) or 
sequential monitor* or Rapid cycle analys* or rapid risk assessment or ((Active or Real-time) 
NEAR/4 surveillance) or (real-time NEAR/4 monitor*) or early detection or sequential 
probability ratio test* or maxSPRT or SPRT or cumulative sum chart* or Sequential case series 
or signal refinement or signal adjudication or signal strengthening or signal identification or 
signal generation or "observed-expected" or "observed-to-expected" or "observed vs. 
expected" or "observed vs expected" or "observed versus expected" or "observed-vs.-
expected" or "observed-vs-expected" or "current-historical" or "current versus historical" or 
"current-vs-historical" or "current-vs.-historical" or "current vs. historical" or "current vs 
historical" or standardi?ed incidence ratio or vaccine safety datalink or Post-Licensure Rapid 
Immunization Safety Monitoring or Canadian Immunisation Monitoring Program or 
Paediatric Active Enhanced Disease Surveillance)))  

DocType=All document types; Language=All languages; 

#7 TS=(Poisson Distribution/)  

DocType=All document types; Language=All languages; 



83 
 

#6 #5 OR #4  

DocType=All document types; Language=All languages; 

#5 TS=(exp Product Surveillance, Postmarketing/ or exp Adverse Drug Reaction 
Reporting Systems/ or "Drug-Related Side Effects and Adverse Reactions"/ or exp Population 
Surveillance/ or Risk/ or Risk assessment/)  

DocType=All document types; Language=All languages; 

#4 TS=(safety or monitor* or Postauthori?ation or Post authori?ation or Post-
authori?ation or Post-licensure or Postlicensure or Post licensure or Post-market or 
Postmarket or Post market or adverse event* or adverse effect* or assessment or risk)  

DocType=All document types; Language=All languages; 

#3 #2 OR #1  

DocType=All document types; Language=All languages; 

#2 TS=(Vaccin* or Immuni?ation)  

DocType=All document types; Language=All languages; 

#1 TS=(exp Vaccination/ or exp Vaccines/ or exp Immunization/ or Immunization 
Programs/)  

DocType=All document types; Language=All languages; 

 

4.2.2 Search strategy followed while reviewing abstract books of 

selected conferences 

Annual Conference on Vaccine Research (ACVR) abstracts books are available online103 under 

different formats. For the first to third ACVR, titles were searched using the browser search 

engine for words (only title) ‘safety’, ‘risk’, ‘adverse’, ‘real-time’, ‘monitor’, ‘surveillance’, 

‘rapid cycle’, and ‘AEFI’ and results checked for eligibility. For the fourth ACVR, abstract book 

titles were manually read, followed by revision of the abstract if considered as potentially 

relevant. Fifth to 16th ACVR abstracts books were searched using the pdf search engine for 

the words (title and abstract) abovementioned, followed by manual revision of the results.  

Vaccine & ISV Congress provides the Congress history including the list of oral 

communications and posters presented each year.104 For each pdf file (one file for 

communications and another for posters, for each year, totalising 14 files) a search was 

conducted using the built-in pdf function. Terms searched included safety’, ‘risk’, ‘adverse’, 

‘real-time’, ‘monitor’, ‘surveillance’, ‘rapid cycle’, and ‘AEFI’. Titles including any of these 

terms were considered. If a title was considered as relevant a further online search was 

conducted using that same title, trying to identify publication of a full manuscript. When that 
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same search did not produce any compatible result the first author’s last name was searched 

together with relevant terms of the title (such as the name of the vaccine evaluated and 

safety). Finally if no result was obtained, authors discussed the relevance of the result, which 

was either discarded or added to the contacts list.  

4.2.3 On-line questionnaire 

Near "real­time" vaccine safety surveillance 

As part of a partnership between Public Health England and London School of Hygiene and 

Tropical Medicine we are carrying out a systematic review of methods used to assess 

postlicensure vaccine safety. We are looking specifically at studies that are conducting near 

“real­time” vaccine safety surveillance for early detection of adverse events associated with 

vaccination. To clarify,  

we are NOT looking for… 

• Anything based solely on passive pharmacovigilance data (for example, the UK yellow card 

system); 

• Methods that have been developed but never actually used in near “real­time"; 

• Data mining methods.  

We ARE looking for systems/studies that have the following attributes: 

• They use routinely collected health data (electronic health record/administrative claims) 

at least for the expected number of events;  

• They use pre­specified outcome(s) of interest; 

• They regularly look for an excess in the observed number of events; 

• They have been used or are in the process of being implemented. 

So far, reviewing the published literature, we have identified studies conducted in the USA  

(Vaccine Safety Datalink), UK (Medicines and Healthcare products Regulatory Agency), and 

Taiwan (Taiwan Centers for Disease Control). We are contacting you because of your area 

of expertise to ask if you have information on any other eligible studies that you might have 

conducted or be aware of.  

We kindly ask you to fill in the questionnaire provided (even if you have not done any 

studies). It should take no more than 5­10 minutes (or 1 minute if you have no studies). 

Please press the submit button when you have finalised entering your responses. If you have 

any documents describing the work you have conducted and you prefer to share these 

documents (rather than completing the form) please send them to Andreia Leite 

(andreia.leite@lshtm.ac.uk). Please use also this contact if you have any queries regarding 

the study or this form. 

mailto:andreia.leite@lshtm.ac.uk
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Thank you for your time. 

Andreia Leite 

on behalf of London School of Hygiene & Tropical Medicine/Public Health England 

Health Protection Research Unit on Immunisation 

*Required 

1. Please provide your name. * 

 

2. Which institution are you affiliated to? * 

 

3. Please provide your e­mail * 

 

4 Have you ever been involved in a study using routinely collected health data to assess 

the safety of one or more vaccines regarding pre­specified outcome(s) [potential 

adverse events] and regularly tested the outcomes? * Mark only one oval. 

 Yes  Skip to question 5. 

 No  Skip to question 26. 

Stop filling out this form. 

Eligible studies 
5. Are you willing to share information on the design of the study to be included in a 

systematic review? * 

The level of detail reported in the final review will be agreed with each author of 
unpublished data. Please contact Andreia Leite (andreia.leite@lshtm.ac.uk) for further 
questions. 
Mark only one oval. 

 Yes  Skip to question 6. 

 No  Skip to question 26. 

Studies details 
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If you have conducted more than one study please give the answers considering all the 

studies you have been involved with unless stated otherwise. 

6. What was/were the age groups 
included in your study(ies)? * 

 

7. Which sex(es) did you include? * Mark only one oval. 

 Male 

 Female 

 Both 

8. If your study(ies) population(s) included any other relevant characteristics apart from 

age and sex please provide details. Relevant characteristics might include specific 

morbidities, health plans, geographic regions, etc. 

 

9. What vaccine(s) was/were included in your study(ies)? * 

 

10 Which data source(s) did you use to identify the vaccination status? * 

 

11. Which outcome(s) did you look for? * 

 

12. Which data source(s) did you use to identify the outcome(s)? * 

 

13. How were the outcomes defined? * 

Tick all that apply. 
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 ICD­9 codes 

 ICD­10 codes 

 Read codes 

 Algorithm (combination of diagnosis, codes, and/or tests)  

Other:  

14. Which statistical method(s) did you use to analyse the data? * Tick all that apply. 

 SPRT (Sequential Probability Ratio Test) 

 Poisson­based maxSPRT (Maximized Sequential Probability Ratio Test) 

 Binomial­based maxSPRT (Maximized Sequential Probability Ratio Test) 

 Group sequential testing 

 Statistical Process Control 

 Other:  

 

15. Please provide details regarding the reasons to chose the methods used. * Please also 

include details on any extensions to the method(s) you used to analyse the data 

 

Comparison group 
16 Did you use a comparison group? (e.g. historical comparator, concurrent comparator) * 

Mark only one oval. 

 Yes, between­person comparison  Skip to question 17. 

 Yes, within­person comparison  Skip to question 19. 

 No  Skip to question 19. 

 

Comparison group details 
17. Which kind of comparison group did you considered? * 

Tick all that apply. 
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 Historical comparison group 

 Concurrent comparison group 

 Other:  

 

18. Please briefly state who the comparison group was. * 

 

Confounding 
19. Did you consider potential confounding factors? * Mark only one oval. 

 Yes  Skip to question 20. 

 No  Skip to question 22. 

Confounding details 
20. How did you account for potential confounders? * Please consider the study design used 

for signal detection. Tick all that apply. 

 Stratification 

 Matching 

 Self­controlled case series 

 Other:  

21. Which factor(s) did you account for? * Tick all that apply. 

Age 

Sex 

Geographic site 

Concomitant vaccine administration 

Time­invariant factors (Self­controlled case­series)  

Other:  

 

Safety signal 
22. Did you find any evidence of a safety signal? * Mark only one oval. 

 Yes  Skip to question 23. 

 No  Skip to question 26. 

 Study ongoing  Skip to question 26. 
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Skip to question 26. 

Safety signal details I 
23. For which combination vaccine/outcome was the signal identified? * 

 

24. Did you perform (or are you performing) further analyses to confirm the signal 

identified? * 

Mark only one oval. 

 Yes  Skip to question 25. 

 No  Skip to question 26. 

Skip to question 26. 

Safety signal details II 
25. Was the signal confirmed with these analyses? * Mark only one oval. 

 Yes  Skip to question 26. 

 The analyses are not yet completed  Skip to question 26. 

 No  Skip to question 26. 

Further contacts 
26. Are you aware of anyone else who has conducted such a study? * 

Eligible studies include those using routinely collected health data to assess the safety 

of one or more vaccines regarding pre­specified outcome(s) and regularly tested the 

outcome(s). We are already aware of the work in the USA by the Vaccine Safety Datalink, 

in the UK by the Medicines and Healthcare products Regulatory Agency, and in Taiwan 

by the Taiwan Centers for Disease Control. Mark only one oval. 

 Yes  Skip to question 27. 

 No  Stop filling out this form. 

Skip to question 27. 

Providing contacts 
27. Please provide any contact or publication details about the work you are familiar with in 

the space provided. * 
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4.3 Systematic review update 

With the view to identifying more recent studies that were not included in the initial 

systematic review, I re-ran the search strategy drawn up to identify studies in Medline and 

EMBASE on 14th June 2017. After deduplication, the search yielded 513 results. After 

title/abstract screening, six papers where selected for full-text review. Two studies were 

excluded as they were aimed at confirming hypotheses previously generated (see inclusion 

and exclusion criteria in 4.1). Of the four eligible results, two105,106 reported results of the 

same study, which had been included in the original systematic review (through a report 

identified from contacts with vaccine safety experts). An updated flowchart, with the results 

from both the initial search and the update conducted, is presented in Figure 4.1. The two 

new studies are briefly reviewed below.107,108 In the next Section (4.4), a table with the details 

of all eligible studies is presented. This table corresponds to Appendix D of the supporting 

information of Paper 1, which was updated to include the characteristics of the two new 

studies identified.  

Both studies were conducted in the USA (using VSD107 and Medicare108 data) and assessed 

Guillain-Barré syndrome following seasonal influenza vaccine (Sandhu et al.108 for seasons 

2010/11 to 2013/14 and Li et al.107 for season 2013/14 and 2014/15). Additionally, Li et al.107 

monitored six other outcomes in relation to seasonal influenza vaccine: acute disseminated 

encephalomyelitis, anaphylaxis, Bell’s palsy, encephalitis, febrile seizures, and transverse 

myelitis. With regards to the specific methods, Li et al.107 used PMaxSPRT and BMaxSPRT 

simultaneously and adjusted for delays and partially accrued risk windows. Analyses using 

PMaxSPRT were also adjusted for age and geographical site. Sandhu et al.108 used the 

Updating Sequential Probability Ratio Test (USPRT), which includes an adjustment for delays 

in the critical limit calculation. Both studies identified a signal: Li et al.107 for febrile seizures 

during the 2014/15 season in children aged 6-23 months, and Sandhu et al.108 for GBS in the 

season 2010/11. The former was confirmed in a subsequent confirmatory study but not the 

latter.107,108  

The new studies I identified from the updated search are in accordance with the results 

presented in the original systematic review. No new methods or aspects of their utilisation 

were identified, which suggests that within USA institutions, the methods presented and 

explored in depth in the systematic review became a standard; they are routinely used, 

particularly to assess seasonal influenza vaccine. It is noteworthy that Li et al. used PMaxSPRT 

and BMaxSPRT simultaneously, owing to their complementary strengths. The issue of 
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deciding between these two tests has been discussed in the original systematic review and 

approaches have been shown to change over time. As referred in Section 4.1 and mentioned 

by Li et al. the simultaneous use of both tests might provide a more robust option than 

deciding on one specific test.107  

Figure 4.1. Updated flowchart of included studies. *Includes 513 additional studies identified from the search 
conducted on 14th June 2017.  

Identified from the 
database searches 

n = 2616* 

Records after 
duplicates removed 

n = 3292 
 

Identified from 
experts  

n = 6 
 

Identified from 
conference 

abstracts n = 622 

Number of full 
texts/abstracts 

included to review  
n = 135 

Titles/abstracts excluded  
n = 3157 

Non vaccine – 1667 
Not safety – 742 

Other safety – 717 
Methods only – 28 
Not available – 3 

Full text excluded n = 97 
(All other safety) 

Texts/systems 
eligible 
n = 38 

Identified from 
reference mining  

n = 78  

Texts/systems 
included 

n = 31 

Excluded for reporting results 
on the same study  

n = 7 

Expert contact 
n = 34 (institutions) 

Studies/Systems 
included 

n = 33 

Texts reporting on more than 
one system  

n = 2 
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The results of this update point out the importance of having included grey literature and 

unpublished studies in the original systematic review, as shown by the subsequent 

identification of published studies that were previously identified and included through 

contact with vaccine safety experts. Searches for unpublished studies and requests for 

information from vaccine safety experts allowed not only identification of work that had not 

yet been disseminated through formal publications but also the most recent studies.  Overall, 

the main conclusions from the original systematic review remain valid.   

 

The systematic review allowed the identification of methods currently under use to perform 

NRTVSS and how they have been selected and applied. This information is crucial when 

envisaging implementation of a NRTVSS, as in the case of this thesis. Yet, before proceeding 

to the actual implementation of a system, is important to select which vaccine/outcome pairs 

to include in the trial implementation and to reflect on how the data characteristics of CPRD 

are likely to influence implementation. These aspects are explored in the next two Chapters, 

starting in the next Chapter with details of the framework used to select vaccine/outcome 

pairs to include in the implementation study. 
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4.4 Details of studies included in the systematic review 

Table 4.1. Studies included in the systematic review 

First 
author, 
year 
published 

Location 
(Country, 
institution) 

Study population Vaccine 
studied; 
ascertainment 
if available 

Doses, weeks 
and time 
frame 
evaluated  

Comparison 
group (for 
between-person 
analyses) 

Outcomes 
studied and 
method of 
ascertainment 

Method 
used 

Confounding: 
method and 
factors 

Frequency 
of 
assessment 

Adjustment for 
data-accrual lag 

Main findings 

Davis, 
20057 

USA, VSD Children from 4 
HMO 

DTaP and RRV; 
Vaccine 
administration 
data 

DTaP – 63,367 
doses, 52w, 
1997-2000; 
RRV – 26,069 
doses, 43w, 
1999 

DTaP – DTwP 
(1995-96) 
Background rate 
(1995-99) 

DTaP – fever, FS, 
other neurologic 
outcomes. 
RRV – 
intussusception. 
ICD-9 codes 

SPRT Risk-
adjustment - 
site, age, 
time, season, 
and sex 

Weekly Conducted 
retrospectively 

Known 
associations 
verified after 
varying 
numbers of 
weeks.  

Lieu, 
200765¶ 

USA, VSD 11-17.99yr from 8 
geographically 
diverse HMO 

MCV; counts 
of MCV 
administration 
preventive 
visits; 
Rotashield®    

MCV – 
119,972 
doses, 106w, 
2005-06; 
Rotashiled® – 
36w, 1999 

MCV – Non 
exposed controls 
(going to 
preventive visit) 
or background 
rates;  
Rotashield® – 
background rates 

MCV – GBS, BP, 
seizures, TCP. 
Rotashield® – 
intussusception. 
ICD-9 codes 

MCV – 
BMaxSPRT 
(all 
outcomes)  
PMaxSPRT 
(all but 
seizures);  
Rotashield - 
PMaxSPRT 

BMaxSPRT – 
Matching by 
age, week, 
and 
geography; 
PMaxSPRT – 
none; 
Unclear for 
Rotasheild 

Weekly MCV – Analyses 
waited at least 6 
weeks from the 
vaccination or 
preventive visit; 
Intussusception 
used as example 
and conducted 
retrospectively. 

No signal 
identified for 
MCV; known 
intussusception 
signal verified 

McNicholas, 
2007109 

New 
Zealand, 
MoH 

<19yr from 3 
hospitals (Auckland 
City, Middlemore, 
and Whangarei) 
serving the regions 
where the vaccine 
was implemented  

Meningococcal 
Group B; 
immunisation 
registry 

719,790, c. 
70w, 2004-05 

Background rates 
(Acute flaccid 
paralysis and 
encephalopathy 
– 1998-2002, for 
the remaining – 
published data) 

Acute flaccid 
paralysis, 
encephalopathy, 
seizures, TCP (all 
confirmed by 
trained nurses). 
ICD-9 codes 

SPC Stratification 
for age 

Weekly Daily review of 
databases, 
medical charts, 
discharge letters 
and laboratory 
records 

No signal 
identified 

           (Continues) 

            
            
            
            



 

94 
 

Table 4.1. (Continued) 

First 
author, 
year 
published 

Location 
(Country, 
institution) 

Study population Vaccine 
studied; 
ascertainment 
if available 

Doses, weeks 
and time 
frame 
evaluated  

Comparison 
group (for 
between-person 
analyses) 

Outcomes 
studied and 
method of 
ascertainment 

Method 
used 

Confounding: 
method and 
factors 

Frequency 
of 
assessment 

Adjustment for 
data-accrual lag 

Main findings 

Brown, 
2009110 
(and 
Moore111) 

USA, i3 
Drug 
Safety/FDA 

>10 m old from a 
13.5 million, 
multistate, health 
insurance plan – 
excluded if sex or 
year of birth 
missing or multiple 
claims for influenza 
vaccination on the 
same day 

2006-07 
Influenza 
season 
(TIV+LAIV);  
only 2nd dose 
if 2; procedure 
codes 
 
 

897,229 
doses, 26w, 
2006-07 
season 

2005-06 seasonal 
influenza 

Anaphylaxis, 
urticaria, allergic 
reactions, 
angioneurotic 
edema, DD, GBS, 
seizures, DPNSN, 
meningoen-
cephalitis, ataxia, 
paralytic syn-
dromes, CND. 
ICD-9 codes 

PMaxSPRT Expected # 
adjusted for 
sex, age, 
region, 
month, and 
concomitant 
vaccination 

Monthly Conducted 
retrospectively; 
lags assessed at 
the end of the 
study 

Signal detected 
for urticaria but 
not confirmed 
after chart-
review 

Yih, 2009112 USA, VSD 10 to 64 yr old 
from 7 HMO (3.3 
million enrolled 
during the study 
period) 

DTaP; 
immunisation 
status 

660,000 
doses, 145w, 
2005-08 

2000-04 TD 
recipients except 
in GBS (overall 
rates used) 

Encephalopathy/
encephalitis/ 
meningitis, GBS, 
paralytic 
syndromes, 
seizures, CND 
(including BP). 
ICD-9 codes 

PMaxSPRT Expected # 
adjusted for: 
- Age (GBS/ 

seizures) 
- Age/sex 

(remaining) 

Weekly Analysis started 
≥ 8 weeks from 
the date of 
vaccination113 
and redone at 
the end of the 
study 

No signal 
identified 

Belongia, 
2010114¶ 

USA, VSD 4 to 48 w old from 
8 HMO with 8.8 
million members 
and an annual birth 
cohort of 95000  

RotaTeq® 
(Pentavalent 
rotavirus 
vaccine); 
immunisation 
data 

207,621 
doses, 104w, 
2006-08 

Background rates 
(1991-2004 for 
intussusception, 
myocarditis and 
Gram- sepsis, 
2000-04 for the 
remaining) 

Intussusception, 
seizures, 
meningitis/ 
encephalitis, 
myocarditis, 
Gram- sepsis. 
ICD-9 codes 

PMaxSPRT Intussuscep-
tion expected 
# adjusted for 
trend/age/ 
site (Poisson 
regression); 
others for 
site 

Weekly Analysis started 
at least 8 weeks 
from the date of 
vaccination113 

No signal 
identified 

           (Continues) 
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Table 4.1. (Continued) 

First 
author, 
year 
published 

Location 
(Country, 
institution) 

Study population Vaccine 
studied; 
ascertainment 
if available 

Doses, weeks 
and time 
frame 
evaluated  

Comparison 
group (for 
between-person 
analyses) 

Outcomes 
studied and 
method of 
ascertainment 

Method 
used 

Confounding: 
method and 
factors 

Frequency 
of 
assessment 

Adjustment for 
data-accrual lag 

Main findings 

Bryan, 
2010115 
(and 
Seabroke, 
2010116) 

UK, MRHA Numerator –   
potentially all 
vaccinees, CPRD for 
denominator 

H1N1; cases 
based on 
spontaneous 
AE reports 

>4 million, 
2009-10 
season 

CPRD age, 
gender specific 
rates 

GBS, facial palsy, 
ITP, epilepsy, 
transverse 
myelitis, ON, 
stillbirth. 
Read codes 

PmaxSPRT Age-gender 
adjusted 
expected # 

Weekly Adjusted for 
underreporting 
(yellow-card 
data) 

No signal 
identified 

Enger, 
2010117 

USA, i3 
Drug 
Safety 

Large US insurance 
health plan 

H1N1 vaccine 982,352 
doses, 2009-
10 season 

Same season 
seasonal flu and 
4 previous 
seasons 

GBS+13 
outcomes not 
listed. 
Not available 

SPRT 
(specific 
test 
unclear) 

Unclear Weekly Unclear No signal 
identified 

Greene, 
2010118¶ 

USA, VSD ≥6 m old from 8 
HMO* with more 
than 9 million 

TIV; 
vaccine 
administration 

5,969,508 
doses, 35w in 
each season 
(2005-06 to 
2007-08) 

Background rates 
for Poisson-
based analysis 
(previous 
seasons – from 
2000-01). 

Seizures, 
meningoen-
cephalitis, BP, 
OCND, DD, 
DPNSN, ataxia, 
anaphylaxis, 
allergic reactions 
other than 
anaphylaxis, GBS. 
ICD-9 codes 

SCCS and 
DID with 
BMaxSPRT 
for all 
outcomes 
except GBS; 
PMaxSPRT 
for GBS 

BMaxSPRT –  
stratified for 
age/season;  
SCCS – time-
invariant 
confounders; 
PMaxSPRT – 
expected # 
adjusted for 
age/site 

Weekly Data assumed to 
accrue without 
delay 

No signal 
identified 

Huang, 
2010119¶ 

Taiwan, 
Taiwan 
CDC 

Taiwanese 
population (≥6m) 

LAMV, MIV; 
vaccination 
registry 

5,667,176 
doses, 22w, 
2009-10 
season 

Background rates 
among ≥6m 
(2004-08) 

Group 1 – GBS, 
ODD (6m-17yr), 
encephalitis/ 
myelitis, 
anaphylaxis. 
Group 2 – ODD 
(≥18yr), seizures, 
BP (≥18yr).  
ICD-9 codes 

Group 1 – 
PMaxSPRT; 
Group 2 – 
SCCS 
BMaxSPRT 

SCCS – Time-
invariant; 
stratification 
for age 

Weekly Database 
updated daily 

No signal 
identified 

           (Continues) 
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Table 4.1. (Continued) 

First 
author, 
year 
published 

Location 
(Country, 
institution) 

Study population Vaccine 
studied; 
ascertainment 
if available 

Doses, weeks 
and time 
frame 
evaluated  

Comparison 
group (for 
between-person 
analyses) 

Outcomes 
studied and 
method of 
ascertainment 

Method 
used 

Confounding: 
method and 
factors 

Frequency 
of 
assessment 

Adjustment for 
data-accrual lag 

Main findings 

DMSS120-123 USA, DoD 17-64yr, military 
personnel (around 
1.4 million people 
monitored) 

H1N1; 
vaccination 
history 

1,288,353 (as 
of  April 24, 
2010), 2009-
10 season 
 

Background rates 
(2004-08) 

GBS, ON, BP, 
myelitis/en-
cephalomyelitis/
encephalitis, 
anaphylaxis, TCP. 
ICD-9 codes 

PMaxSPRT Unclear Weekly Unclear Weak signal 
found for 
thrombocy-
topenia (not 
confirmed after 
review) 

VA121-123 USA, VA Veterans 
(Northeastern and 
Western States – 
around 2 million 
people monitored) 

H1N1; VA 
immunisation 
package 

334,897 (as of 
April 24, 
2010), 2009-
10 season 

Background rates 
for 2007, 2008 
and 2009  

GBS, ON, BP, 
myelitis/en-
cephalomyelitis/
encephalitis, 
anaphylaxis, TCP. 
ICD-9 codes 

PMaxSPRT Unclear Unclear Unclear Weak signal 
found for 
thrombocy-
topenia (not 
confirmed after 
review) 

IHS121-124 USA, 
IHS/FDA 

IHS user population 
(around 1.4 million 
people monitored) 

H1N1; 
vaccination 
history 

321,305 (as of 
April 15, 
2010), 2009-
10 season 

Unclear All flu vaccines –   
GBS, ON, BP, 
myelitis/en-
cephalomyelitis/
encephalitis, 
anaphylaxis, TCP; 
LAMV – asthma/ 
wheezing. 
ICD-9 codes 

PMaxSPRT Unclear Unclear Unclear Weak signal 
found for 
thrombocytope
nia and Bell’s 
palsy (not 
confirmed after 
review) 

           (Continues) 
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Table 4.1. (Continued) 

First 
author, 
year 
published 

Location 
(Country, 
institution) 

Study population Vaccine 
studied; 
ascertainment 
if available 

Doses, weeks 
and time 
frame 
evaluated  

Comparison 
group (for 
between-person 
analyses) 

Outcomes 
studied and 
method of 
ascertainment 

Method 
used 

Confounding: 
method and 
factors 

Frequency 
of 
assessment 

Adjustment for 
data-accrual lag 

Main findings 

PRISM121-123 USA, 
FDA/NVPO 

Members of 
several health 
plans (total 
membership – 38 
million) 

H1N1; 
immunisation 
registries 

2,555,639 (as 
of April 17, 
2010), 2009-
10 season 

Background 
rates, 2007-
08/2008-09 
seasons 

Group 1 – GBS, 
DD (including 
ON), DPNSN, 
seizures, BP, 
OCND, ataxia, 
myelitis/en-
cephalomyelitis/
encephalitis, 
anaphylaxis; 
Group 2 – 
abortion, 
stillborn, (pre-) 
eclampsia; 
Group 3 – 
myocarditis, 
pericarditis. 
ICD-9 codes 

Group 1 
and 3 –   
PmaxSPRT, 
CmaxSPRT 
and SCCS 
BmaxSPRT; 
Group 2 – 
only counts 
monitored 

Unclear Biweekly  Unclear No signal 
identified 

Klein125¶ USA, VSD 12 to 23 m from 7 
HMO† (belonging 
to a group of 8 
HMO with over 9 
million members in 
total) 
 

MMRV  430,00 during 
c. 79w (2006-
07) 

MMR and 
varicella vaccine 
administered 
separately (2000-
06) 

Seizures, TCP, 
encephalitis/ 
meningitis, 
ataxia, allergic 
reactions, and 
arthritis. 
ICD-9 codes 

BmaxSPRT Matching on  
age group, 
site, calendar 
year, and 
respiratory 
virus season 

Weekly Analysis delayed 
for ≥ 8 weeks 
from date of 
vaccination113 

Signal found for 
seizures 
(febrile) and 
confirmed 

           (Continues) 
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Table 4.1. (Continued) 

First 
author, 
year 
published 

Location 
(Country, 
institution) 

Study population Vaccine 
studied; 
ascertainment 
if available 

Doses, weeks 
and time 
frame 
evaluated  

Comparison 
group (for 
between-person 
analyses) 

Outcomes 
studied and 
method of 
ascertainment 

Method 
used 

Confounding: 
method and 
factors 

Frequency 
of 
assessment 

Adjustment for 
data-accrual lag 

Main findings 

Gee, 
2011126 

USA, VSD 9 to 26 yr old 
females from 7 
HMO† 

HPV4; 
vaccination 
status 

600,558, 79-
164w 
(depending on 
the outcome), 
2006-08 

Background rates 
for Poisson based 
analysis and non-
vaccinated 
individuals going 
to preventive 
visits (2000-06) 

Group 1 – 
anaphylaxis; 
Group 2 – allergic 
reactions, 
seizures, first 
ever seizures, 
syncope; 
Group 3 – 
appendicitis, 
GBS, stroke, VTE. 
ICD-9 codes 

Group 1 – 
not 
formally 
tested due 
to low 
counts; 
Group 2 – 
exact 
sequential 
analysis, 
Group 3 – 
PMaxSPRT 

Group 2 – 
matching on 
age, site and 
vaccination 
date;  
Group 3 – 
expected # 
adjusted for 
age and site 

Weekly Unclear Signal for 
appendicitis but 
it was not 
confirmed after 
review 

Lee, 2011127 
(and CDC, 
2009128) 

USA, VSD ≥ 6 m (for MIV, TIV, 
and LAIV) or 2 to 
49 years old 
(LAMV) from 8 
HMO* (around 9.2 
million in total) 

2009-10 
seasonal 
influenza and 
H1N1 (analysis 
by specific 
type – MIV, 
TIV, LAIV, 
LAMV); 
ascertained 
from the 
claims 

4,512,366 
doses, 26w 
 

Background rates 
for Poisson-
based analysis 
(2000-01/2008-
09 seasons after 
TIV or overall 
rate) 

Group 1 – GBS, 
encephalomyeli-
tis, ataxia, 
anaphylaxis, 
allergic reactions 
other than 
anaphylaxis;  
Group 2 – DD 
(central nervous 
system), DPNSN, 
BP, OCND, 
seizures; 
myocarditis/ 
pericarditis for 
LAIV and LAMV. 
ICD-9 codes 

SCRI, 
BMaxSPRT 
if ≥ 50 AE 
anticipated; 
PMaxSPRT 
if < 50 AE 
anticipated; 
CMaxSPRT 
when 
observed 
historical 
AE:upper 
limit ≤ 2.5. 

SCRI – time 
invariant; 
PMaxSPRT 
and 
CMaxSPRT– 
expected # 
(age and 
site). For MIV 
and TIV and 
outcomes in 
group 2 
stratification 
by age group 

Weekly Adjusted for 
partially elapsed 
risk interval and 
delays in the 
arrival of 
inpatient data   

Signal for Bell’s 
palsy not 
confirmed 

           (Continues) 
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Table 4.1. (Continued) 

First 
author, 
year 
published 

Location 
(Country, 
institution) 

Study population Vaccine 
studied; 
ascertainment 
if available 

Doses, weeks 
and time 
frame 
evaluated  

Comparison 
group (for 
between-person 
analyses) 

Outcomes 
studied and 
method of 
ascertainment 

Method 
used 

Confounding: 
method and 
factors 

Frequency 
of 
assessment 

Adjustment for 
data-accrual lag 

Main findings 

Bryan, 
2011¶ 

UK, MRHA Numerator -  
potentially all 
vaccines, CPRD for 
denominator (Only 
<5 years) 

Seasonal 
influenza 
(2010/11); 
cases based on 
spontaneous 
AE reports 

72,000, c. 23w  CPRD data (age-
specific rates, 
2000-10)  

FS.  
Read codes 

PmaxSPRT Age adjusted 
expected # 
 

Weekly Adjusted for 
underreporting 
(yellow-card 
data) 

No signal 
identified 

Burwen, 
2012129 
(and 
Burwen, 
2010130)  

USA, FDA/ 
Centers for 
Medicare 
and 
Medicaid 
Services 

Medicare 
population (38.8 
million >64 yr and 
7.8 million disabled 
or end-stage renal 
disease) 

2009-10 
seasonal 
influenza and 
H1N1; 
ascertained 
from the 
claims 

14 million 
doses for 
seasonal and  
3.3 million for 
H1N1 

Seasonal 
influenza 
recipients in the 
5 previous 
seasons 

GBS. 
ICD-9 codes 

USPRT No Weekly 
after the 
100,000 
vaccines 

Critical limits 
adjusted for 
delays in the 
claims (based on 
previous 
seasons) 

No signal 
identified 

Loughlin, 
2012131¶ 
 

USA, 
OptumInsi
ght/Merck 

<1yr from large 
geographically 
diverse health plan  

RV5; 
ascertained 
from the 
claims 

>210,000 
doses, 2006-
07 
 

DTaP recipients, 
2000-05 

Intussusception 
and KD (chart-
confirmed). 
ICD-9 codes 

Group 
sequential 
(Abt's 
modification 
of SPRT) 

No Infants 
identified 
quarterly 

No No signal 
identified 

Tse, 2012132 
(and 
replaces 
Tse, 
2012133) 

USA, VSD 6w-17yr from 8 
HMO* (belonging 
to a 10 HMO group 
with around 9.2 
million people) 

TIV; 
immunisation 
information 

590,272, 27w, 
2010-11 
 

Background rates 
during previous 5 
seasons (2005-06 
to 2009-10) 

FS. 
ICD-9 codes 

SCRI - 
BMaxSPRT, 
CMaxSPRT 

SCRI – Time-
invariant, 
CMaxSPRT - 
stratification  
(age and site) 

Weekly Adjusted for 
partially elapsed 
risk interval and 
delays in arrival 
of inpatient data 

Signal identified 
and confirmed 

Donegan, 
201310¶ 

UK, MHRA Numerator –   
potentially all 
vaccinees, CPRD for 
denominator (only 
females 12 to 18 yr 
old) 

HPV2; cases 
based on 
spontaneous 
AE reports 

1,536,995 
doses, 104w, 
2008-10 

Background rates 
(10 previous year 
CPRD) 

Fatigue 
syndromes, GBS, 
facial palsy, 
encephalitis. 
Read codes 

PMaxSPRT Stratification 
for age in the 
1st yr of 
surveillance 
(fatigue syn-
dromes). 

Weekly Sensitivity 
analyses 
assuming various 
degrees of 
underreporting 

No signal 
identified 

           (Continues) 
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Table 4.1. (Continued) 

First 
author, 
year 
published 

Location 
(Country, 
institution) 

Study population Vaccine 
studied; 
ascertainment 
if available 

Doses, weeks 
and time 
frame 
evaluated  

Comparison 
group (for 
between-person 
analyses) 

Outcomes 
studied and 
method of 
ascertainment 

Method 
used 

Confounding: 
method and 
factors 

Frequency 
of 
assessment 

Adjustment for 
data-accrual lag 

Main findings 

Nelson, 
2013134 

USA, VSD 6w-2yr from 7 
HMO‡ 
(belonging to a 10 
HMO group with 
around 9.2 million 
people) 

DTaP-IPV-Hib 
(combination);  
vaccination 
history 

149,337 
(c. 78w for 
MAF and 
seizures and c. 
116w for the 
remaining), 
2008-10 

DTaP-containing 
vaccine 
recipients 
background rates 
(2007-09 or 
2005-09  for very 
rare outcomes) 
 

MAF, seizure, 
meningitis/en-
cephalitis/myeli-
tis, serious 
nonanaphylactic 
allergic reaction; 
Not formally 
tested – invasive 
Hib disease, GBS, 
anaphylaxis, all 
hospitalizations.  
ICD-9 codes 

Group 
sequential 
testing 
(Pocock 
boundary) 
and 
PMaxSPRT 

Expected # 
adjusted by 
site, gender, 
age group, 
and 
interaction 
site-age 
(Poisson 
regression).  

GS – 1st test 
after 1yr of 
introduction 
and then 11 
evenly 
spaced tests 
based on # 
of vaccines 
given; 
PMaxSPRT – 
weekly 

Analysis based 
on the number 
of doses 

No signal 
identified 

Tseng, 
2013135 

USA, VSD 1mo-2yr from 8 
HMO* 

PCV13; 
vaccination 
records 

599,229 
doses, 90w, 
2010-12 

PCV7 recipients 
background rates 
(2007-09 or 
2005-09 for 
anaphylaxis and 
encephalopathy) 

Encephalopathy, 
urticaria and 
angioneurotic 
edema, asthma, 
anaphylaxis, TCP, 
FS, KD. 
ICD-9 codes, 
platelet counts. 

Group 
sequential 
analysis 
(O’Brien-
Fleming 
boundary) 

For urticaria/ 
angioneurotic 
edema, FS 
and asthma 
stratification 
by age/dose 
number. 
None for the 
remaining 

GS – 12 
evenly 
spaced tests 
based on # 
of vaccines 
given. 
 

Analysis based 
on the number 
of doses 

Signal identified 
for 
encephalopathy 
and KD but not 
confirmed. No 
more signals 
identified. 

Daley, 
2014136¶ 

USA, VSD 4-6yr from 4 HMO DTaP-IPV 
(combination) 

201,116 
doses, 176w, 
2009-12 

Background rates 
in DT and IPV 
recipients 
separately on the 
same day (group 
1) or all children 
(group 2), (2005-
08 or 2000-08 for 
GBS) 

Group 1 – 
Meningitis/en-
cephalitis, 
seizures, stroke 
Group 2 – GBS, 
SJS, anaphylaxis, 
serious allergic 
reactions, serious 
local reactions. 
ICD-9 codes 

PMaxSPRT 
for all but 
serious 
allergic and 
local 
reactions 
(CMaxSPRT 
used) 

Expected # 
adjusted for 
site (except 
GBS and SJS – 
weighted 
average 
used) 

Weekly Exclusion of the 
most  
recent 14 weeks 
of data9 

No signal 
identified 

           (Continues) 
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Table 4.1. (Continued) 

First 
author, 
year 
published 

Location 
(Country, 
institution) 

Study population Vaccine 
studied; 
ascertainment 
if available 

Doses, weeks 
and time 
frame 
evaluated  

Comparison 
group (for 
between-person 
analyses) 

Outcomes 
studied and 
method of 
ascertainment 

Method 
used 

Confounding: 
method and 
factors 

Frequency 
of 
assessment 

Adjustment for 
data-accrual lag 

Main findings 

Kawai, 
2014137 

USA, VSD 6mo-17yr (TIV) and 
2-49yr (LAIV) old 
from 8 HMO* 
(belonging to a 9 
HMO group with 
over 9 million 
people) 

TIV, LAIV (first-
dose vaccine) 

>3.5 million 
doses IIV, 
256,406 doses 
LAIV, 19w, 
2012-13 
influenza 
season 

Historical 
controls 

Seizures, GBS, 
encephalitis, 
anaphylaxis. 
ICD-9 codes 

Seizures – 
SCRI 
BMaxSPRT; 
GBS – 
PMaxSPRT; 
Encephali-
tis and ana-
phylaxis – 
CMaxSPRT 

SCRI – time-
invariant, 
stratification 
– age; for the 
remaining – 
expected #  
adjusted for 
age and site 

Weekly Delayed analysis 
until estimated 
data lag accrual 
and follow-up 
time was 
completed 

No signal 
identified 

Weintraub, 
2014138¶ 

USA, VSD 4-34w from 6 
HMO§ 

Rotarix; 
vaccination 
information 

207,955 
doses, 260w, 
2008-13 

Background rates 
2001-05 

Intussusception PMaxSPRT Expected # 
adjusted for 
age and site 

Weekly Analyses delayed 
2 weeks 

Signal identified 
after 156660 
doses and 
confirmed 

Murdoch, 
2014139¶  

UK, HPS Rotavirus - < 2 
years 
 

Rotavirus; 
Scottish 
Immunisation 
Recall System 

Rotavirus – 
9,000 vaccines 
administered 
/month 

Background rates Intussusception, 
KD, anaphylaxis, 
haematochezia. 
ICD-10 codes. 

SPC Stratification 
– age, sex, 
geographical 
site 

Monthly No Rotavirus – 
signal for 
haematochezia, 
not confirmed 

Yih, 201598 USA, FDA ≥6 m (TIV) and 2-
49yr (LAIV) 
members from 3 
geographically 
diverse health 
plans (with up to 
110 million 
individuals) 

Seasonal 
influenza 
(2012-13 - 
pilot and 2013-
14 seasons, 
TIV and LAIV 
separately); 
data partners 
and 
immunisation 
information 
systems 

7,464,461 
doses  

Background rates 
previous seasons 

Anaphylaxis, FS. 
ICD-9 codes 

SCRI 
BMaxSPRT 
(only 
seizures) 
and 
PMaxSPRT 

PMaxSPRT – 
expected # 
adjusted by 
age and data 
partner 
(seizures); 
SCRI – time-
invariant; 
Seizures – 
stratification 
by age and 
concomitant 
PCV13 in the 
6-23m group 

Bimonthly  Adjusted for 
partially elapsed 
risk interval and 
delays in the 
arrival of 
inpatient data 

Signal for 
seizures 
following 
concomitant 
PCV13 and TIV.  

           (Continues) 
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Table 4.1. (Continued) 

First 
author, 
year 
published 

Location 
(Country, 
institution) 

Study population Vaccine 
studied; 
ascertainment 
if available 

Doses, weeks 
and time 
frame 
evaluated  

Comparison 
group (for 
between-person 
analyses) 

Outcomes 
studied and 
method of 
ascertainment 

Method 
used 

Confounding: 
method and 
factors 

Frequency 
of 
assessment 

Adjustment for 
data-accrual lag 

Main findings 

HPS¶ UK, HPS HPV – Female 
adolescents; 
Herpes zoster - >70 
years 

HPV2, HPV4, 
and Herpes 
zoster; 
Scottish 
Immunisation 
Recall System 

HPV – 62,000 
doses/year 
Herpes zoster 
– 47,000 
doses in 2013-
14 

Background rates 
(HPV – 2004-08, 
Herpes zoster – 5 
years before 
introduction) 

HPV – >60 out-
comes, from TCP 
to juvenile onset 
of diabetes.  
Shingles – zoster, 
ataxia, GBS, ana-
phylaxis, menin-
gitis, encephali-
tis, encephalopa-
thy, events: 
cardiovascular, 
cerebrovascular 
and respiratory. 
ICD-10 codes. 

SPC Stratification 
– age, sex 
(not for HPV), 
geographical 
site 

Monthly for 
Herpes 
zoster, 
annually for 
HPV 

No HPV – signal for 
Bell’s palsy, not 
confirmed 

MHRA¶ UK, MRHA Numerator –  
potentially all 
vaccinees, CPRD for 
denominator 

Rotavirus, LAIV 
(2013-14), 
Herpes zoster; 
cases based on 
spontaneous 
AE reports 

First year of 
the 
programme 
evaluated 
(introduced in 
2013)  
 

CPRD age-
specific rates 

Rotavirus – SID, 
intussusception. 
LAIV – AID, BP 
narcolepsy, FS, 
respiratory 
events.  
Herpes zoster – 
death, GBS, BP.  
Read codes 

PmaxSPRT Expected # 
adjusted by 
age; 
Rotavirus – 
stratification 
by dose 

Weekly Adjusted for 
underreporting 
(yellow-card 
data) 

No signal 
identified 

Li, 2016107 USA, VSD ≥6m old from 6 
integrated 
healthcare 
organizations§  

Influenza 
vaccines (TIV, 
QIV, LAIV4); 
Immunisation 
history 

Doses 2013-
14: 4,029,951; 
Doses 2014-
15: 3,988,644; 
c. 41w each 
season 

Background rates 
for Poisson-
based analysis 
based on TIV 
vaccinees in prior 
seasons (2005–
06 to 2012–13) 

Acute dissemi-
nated en-
cephalomyelitis, 
anaphylaxis, BP, 
encephalitis, 
GBS, FS, trans-
verse myelitis. 
ICD-9 codes 

SCRI 
BMaxSPRT 
and 
PMaxSPRT 

Expected # 
adjusted by 
age and site; 

Weekly Adjusted for 
partially elapsed 
risk interval and 
delays in the 
arrival of 
inpatient data 

Signal identified 
for FS following 
TIV (children 6-
23mo, season 
2014-15) and 
confirmed with 
concomitant 
PCV13. 

           (Continues) 
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Table 4.1. (Continued) 

First 
author, 
year 
published 

Location 
(Country, 
institution) 

Study population Vaccine 
studied; 
ascertainment 
if available 

Doses, weeks 
and time 
frame 
evaluated  

Comparison 
group (for 
between-person 
analyses) 

Outcomes 
studied and 
method of 
ascertainment 

Method 
used 

Confounding: 
method and 
factors 

Frequency 
of 
assessment 

Adjustment for 
data-accrual lag 

Main findings 

Sandhu, 
2017108 

USA, FDA 
and 
Centers for 
Medicare 
and 
Medicaid 
Services 

Medicare 
population 
(individuals aged 
≥65yr those with 
disability or end-
stage renal disease; 
c. 50 million 
individuals each 
season) 

Influenza 
vaccine; 
procedure 
codes  

Doses  

 2010-11: 
15,460,544; 

 2011-12:   
15,474,830; 

 2012-13: 
16,220,362; 

 2013-14: 
16,189,893; 

c. 46w each 
season 

Prior seasons 

 2010-11: 2005-
06 to 2009-10; 

 2011-12: 2006-
07 to 2009-10 

 2012-13: 2006-
07 to 2009-10 

 2013-14: 2010-
11 to 2012-13 

GBS USPRT Unclear 20 consecu-
tive weekly 
tests, 5 ad 
hoc tests, 
and a 26th 

final end of 
season test 

Test statistic 
adjusted for 
delays in 
receiving the 
claims and 
partially elapsed 
risk interval 

Signal identified 
for GBS in the 
season 2010/11 
but not 
confirmed 

AE – Adverse Event, AID – Auto-immune disorders, BMaxSPRT – Binomial-based Maximized Sequential Probability Ratio Test, BP – Bell’s palsy, CDC – Centers for Disease Control and Prevention, 

CMaxSPRT – Conditional Maximized Sequential Probability Ratio Test, CND – Cranial nerve disorders, CPRD – Clinical Practice Research Datalink, DD – Demyelinating disorders, DID – Difference-in-

difference, DMSS – Defense Medical Surveillance System, DoD – Department of Defense, DPNSN – Disorders of the peripheral nervous system and neuropathy, DT – diphtheria-tetanus vaccine, DTaP – 

acellular diphtheria-tetanus-pertussis vaccine, DTwP – whole cell diphtheria-tetanus-pertussis vaccine, FDA – Food and Drug Administration, FS – Febrile seizures, GBS – Guillain-Barré syndrome, GS – 

Group sequential, Hib – Haemophilus influenza type B, HMO – Health Maintenance Organizations, HPS – Health Protection Scotland, HPV2 – Bivalent human papillomavirus vaccine, HPV4 – Quadrivalent 

human papillomavirus vaccine, ICD-9 – International Classification of Diseases Ninth Revision, ICD-10 – International Classification of Diseases Tenth Revision, IHS – Indian Health Service, IPV – inactivated 

poliovirus vaccine, ITP – Immune thrombocytopenia purpura, KD – Kawasaki Disease, LAIV – seasonal trivalent live attenuated vaccine, LAMV – H1N1 monovalent live attenuated vaccine, MAF – 

medically attended fever, MCV – meningococcal conjugate vaccine, MHRA – Medicines and Healthcare products Regulatory Agency, MIV – H1N1 monovalent inactivated vaccine, MMRV – Mumps-

measles-rubella-varicella vaccine, mo – months, MoH – Ministry of Health, NVPO – National Vaccine Program Office, OCND – Other Cranial Nerve Disorders, ODD – Other Demyelinating disorders, ON 

– Optic neuritis, PCV7 – 7-valent pneumococcal conjugate vaccine, PCV13 – 13-valent pneumococcal conjugate vaccine, PMaxSPRT – Poisson-based Maximized Sequential Probability Ratio Test, PRISM 

– Post-Licensure Rapid Immunization Monitoring System, QIV – Seasonal quadrivalent inactivated vaccine, RRV – Rhesus-Rotavirus vaccine, RV5 – Pentavalent rotavirus virus, SCCS – Self-controlled case 

series, SCRI – Self-controlled risk interval, SID – Sudden infant death, SJS – Stevens-Johnson syndrome, SPC – Statistical Process Control, SPRT – Sequential Probability Ratio Test, TCP – Thrombocytopenia, 

TIV – Seasonal trivalent inactivated vaccine, UK – United Kingdom, USA – United States of America, USPRT – Updating Sequential Probability Ratio Test, VA – Veteran’s Affairs, VSD – Vaccine Safety 

Datalink, w – weeks, yr – years, # – number. *Geographic location: Seattle - Washington, Boston - Massachusetts, Minneapolis - Minnesota, Denver - Colorado, Oakland - California, Pasadena - California, 

Marshfield - Wisconsin, Portland – Oregon. †Geographic location: Seattle - Washington, Boston - Massachusetts, Minneapolis - Minnesota, Denver - Colorado, Oakland - California, Marshfield - 

Wisconsin, Portland – Oregon. ‡Geographic location: Seattle - Washington, Boston - Massachusetts, Denver - Colorado, Oakland - California, Southern California, Marshfield - Wisconsin, Portland – 

Oregon. §Geographic location: Seattle - Washington, Denver - Colorado, Oakland - California, Southern California, Marshfield - Wisconsin, Portland – Oregon. ¶ Additional information obtained from 

the authors. 
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5 IMPLEMENTING A SYSTEM – PREPARATORY STEPS  

This Chapter details the process used to select the vaccine/outcome pairs to assess in the 

trial implementation study. It does not include the actual implementation of the new system, 

which is presented in Chapter 7. Rather, it establishes the foundation of the actual 

implementation. Chapter 6 complements the current Chapter, by presenting data-related 

aspects of implementing a system using previously collected data. 

Timeliness is a key feature of a data source envisaged to implement NRTVSS. However, it is 

also necessary that a data source has certain electronic health record characteristics, 

including that it is population-based, has appropriate size, and has good validity for both 

exposure and outcomes. Data sources meeting these requirements would be considered 

ideal for NRTVSS implementation. These characteristics were used as a starting point to 

guide the feasibility study, and together with the results from the systematic review, to 

support the decision of which vaccines/outcome pairs to select for the implementation study 

(Chapter 7). The current Chapter starts with an overview of the framework used to select 

pairs to study, followed by an in-depth assessment of data accrual delays for selected 

outcomes. The latter has been written as a paper, included here. The Chapter finishes with 

a discussion of the findings and conclusion on the vaccine/outcome pairs to assess in the 

implementation step (Chapter 7).  

5.1 Framework 

As stated above, a data source to implement NRTVSS should be population-based, have 

appropriate size, have good validity for both exposure and outcomes, and be timely. As 

presented in 3.1.1, CPRD data are known to be population-based, but it is important to 

evaluate the remaining characteristics in this context.   

When implementing NRTVSS, outcomes can be selected based on previous information, 

expert opinion, and/or biological plausibility.134 As this thesis aims to provide general 

information on the use of CPRD to perform NRTVSS, a selection of pairs based on 

vaccine/outcome characteristics that influenced implementation of a system (for example, 

the frequency of the outcome) seemed more appropriate. Furthermore, it would not be 

possible to assess all potential vaccine/outcome pairs of interest within the time frame of 

this project. It was thus necessary to perform an initial feasibility assessment for a range of 

possible outcomes of interest, followed by a more detailed feasibility assessment and 
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implementation of a NRTVSS for the selected vaccine/outcome pairs (identified by the initial 

assessment), as summarised in Figure 5.1.  

 

Figure 5.1. Workflow to study the feasibility of implementing a near real-time system. 

 

The steps included: 

1. For the initial assessment a list of outcomes was generated from the studies 

identified in the systematic review (presented in Section 4.1). Those studied more 

than 3 times were selected. This criterion was used as outcomes studied more often 

were more likely to be events of interest for the implementation of a future system. 

As mentioned, when implementing a near real-time system in practice this choice 

should be guided by previous knowledge of the vaccine under study (e.g. results from 

clinical trials, previous versions of the vaccine, biological plausibility).134  

2. Outcomes selected were characterized in terms of their diagnostic validity in CPRD, 

incidence, and the data accrual process in CPRD, as follows: 

a. Validity – Studies validating the selected outcomes in CPRD were identified, 

using a previous systematic review of the topic85 and the CPRD 

bibliography.79 The authors from the systematic review on validity kindly 

shared the data they extracted and the list of outcomes was inspected to 

allow identification of the outcomes of interest for the current project. 

Subsequently, I conducted searches in the CPRD bibliography to identify 

studies that had validated the diagnosis of one or more outcome from the 

3. Implementation and power

Using the tests and confounding control methods 
available, for selected outcomes (based on step 2)

2. Characterization of selected outcomes

According to key characteristics (diagnostic validity, 
incidence and data accrual process)

1. Outcome selection

Based on outcomes identified from the systematic 
review and studied >3 times
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list generated from step 1 but that had not been included in the 2010 

systematic review. These searches were based on searching the publication 

title as this was the only information available in the bibliography. As 

discussed in 3.1.1.4, studies attempting to validate diagnosis of outcomes in 

CPRD and that provided quantitative measures often only calculate the 

positive predictive value of a diagnostic code or diagnostic algorithm.85 This 

measure provides limited assessment of validity but given it is the most 

often used it was the aspect of validity extracted, when provided in the 

publication. 95% confidence intervals for proportions were calculated if not 

provided by the original publication. When positive predictive value was not 

calculated, information on other forms of validation (e.g. comparison of 

rates obtained from CPRD to those from other sources) was extracted. The 

results are presented in Section 5.2. 

b. Incidence – Even when large volumes of data are available there might be 

not enough power to detect a signal for rare outcomes or exposures with 

short risk windows. It was not possible to assess power for all outcomes in 

the list obtained from step 1 as such assessment required the full 

implementation of a system (including decision of which pairs to assess, 

statistical tests, and control for confounding strategies). Therefore, power 

was only assessed for pairs included in the trial implementation (see step 3). 

The concerns regarding power to detect a signal for rare outcomes guided 

my decision to include at least one uncommon outcome in the trial 

implementation. Hence, I used incidence as a proxy for power and to guide 

the choice of pairs to assess during the trial implementation. Information on 

incidence was not required to be CPRD-specific as it was used as an 

indication of the outcome frequency. Nevertheless, priority was given to 

information generated from CPRD data, following by other UK data and then 

from other sources if neither CPRD nor other UK data were identified. The 

results are presented in Section 5.2. 

c. Data accrual process (delays) – Delays in recording outcomes in the GP data 

were assessed in a two-stage process. The initial stage considered the 

characteristics of the outcome as a proxy of the data accrual process. 

Characteristics were based on factors likely to affect data accrual, including 

place of diagnosis (GP vs. hospital) and onset of symptoms (acute vs. 
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insidious). For example, a condition diagnosed in hospital might be less well 

captured in CPRD or recording might be more delayed than a GP-diagnosed 

condition. Similarly, outcomes with more insidious onset might take longer 

to be diagnosed and thus captured. All the outcomes identified from step 1 

were classified according to these categories. Results from this first 

assessment are presented in Section 5.2. 

Based on results from the validity and initial stage of assessing delays, a 

subset of outcomes were selected to conduct an in-depth analysis of delays. 

This selection considered outcomes deemed to represent broadly a range of 

characteristics (in terms of onset and place of diagnosis). Outcomes selected 

for this assessment included GBS, Bell’s palsy, optic neuritis, and febrile 

seizures. Further explanation of the selection of these outcomes is provided 

in Section 5.2; the in-depth delays assessment was published as a paper, 

presented in Section 5.3.  

 

After the initial assessment, outcomes were considered potentially suitable/not 

suitable for NRTVSS in CPRD. In particular, those with low diagnostic PPV and/or very 

delayed data accrual were deemed non-suitable. In the event of having many 

suitable outcomes, a selection was made encompassing a variety of characteristics 

and additional considerations (e.g. the relevance of the outcome for vaccines that 

are well captured in CPRD data). For outcomes deemed to be not feasible, changes 

necessary to allow future feasibility were discussed. A final choice on the 

vaccine/outcome pairs to include in the implementation step was then made and 

rationale for this is provided in Section 5.6.  

3. Trial implementation was performed for the selected vaccine/outcomes pairs. This 

included definition of the details of the system for the pairs selected (e.g. which 

statistical test to use, adjustment for delays, control for confounding strategies) and 

calculation of power to detect a signal. Just as in step 2, for outcomes deemed as not 

being feasible (those that had issues with implementation or low power), the 

changes necessary to allow feasibility are discussed. This work in presented in 

Chapter 7.    
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5.2 Initial feasibility assessment: results 

Studies included in the systematic review analysed 218 outcomes. Table S 1 (Appendix A) 

lists the outcomes considered ≤3 times and thus excluded. The remaining outcomes, along 

with their main characteristics, are presented in Table 5.1. These outcomes have been 

investigated in association with different vaccines. All outcomes except for intussusception 

have been studied following influenza vaccines, highlighting the importance of near real-time 

vaccine safety surveillance to assess influenza vaccine. Conversely, the remaining vaccines 

have been assessed for fewer outcomes, which might be due to these methods having been 

used less often to assess other vaccines or an interest only on specific outcomes following 

these vaccines. A particular example is rotavirus vaccine which has only been studied to date 

in relation to intussusception.  

Regarding the outcomes, demyelinating disease and disorders of the peripheral nervous 

system/neuropathy were examined exclusively for influenza vaccines, others such as allergic 

reactions, encephalitis and seizures have been considered for several vaccines, including 

childhood vaccines. In addition, a variety of outcomes was included – both acute and 

insidious events, and outcomes potentially diagnosed by GPs and in hospital.  

Overall, CPRD data have been used to assess all the outcomes of interest listed in Table 5.1, 

except for ataxia. I identified several studies that validated the recorded diagnosis of some 

of these outcomes in CPRD and that provided a quantitative measure, namely PPV. For 

outcomes with this information, PPV was generally high, the exception being idiopathic 

peripheral neuropathy which had an estimated PPV of 41%. This outcome was therefore 

deemed as non-suitable for inclusion in later stages of the study. For allergic reactions, 

ataxia, cranial nerve disorders, encephalitis/encephalopathy/meningitis/myelitis, Guillain-

Barré syndrome, and thrombocytopenia, no studies were identified that validated the 

diagnosis in the GP data and that provided a quantitative validation measure. It was possible 

to identify validation studies using external data (i.e. comparing the rates of the outcome 

based on CPRD data to the rates from other sources) for trigeminal neuralgia (a type of 

cranial nerve disorder) and Guillain-Barré syndrome. No validation studies of the diagnosis 

of allergic reactions, encephalitis and thrombocytopenia were identified. 

For most outcomes, data on incidence was identified. Polyneuritis, GBS, and transverse 

myelitis were the rarest conditions. Some of the studies estimating incidence of these 

outcomes used CPRD data.115,140 As stated above, this was not considered an essential 

requirement as information on incidence was merely used as an indication of the outcome  
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Table 5.1. Analysis of outcome/vaccine pairs of potential interest according to selected characteristics 

 Requirements 

Outcome 
Vaccines Validity (in CPRD) 

Volume of data (incidence/100,000 PY, 

unless indicated otherwise) 

Factors affecting data accrual 

(onset, place of diagnosis) 

Serious allergic 

reactions (including 

anaphylaxis) 

DTaP-IPV, DTaP-IPV-Hib, pandemic 

and seasonal influenza, HPV, MCV, 

GBMV, MMRV, PCV13, RV, zoster 

No studies found. CPRD previously 

used to estimate anaphylaxis 

incidence.141 

Increase in anaphylaxis incidence.142 

UK: 21.28 (10-79 yr)143; Spain: 313.58 

and 74.43 among the 0-4 and 5-9 yr144 

Acute, GP/hospital 

Ataxia Pandemic and seasonal influenza, 

MMRV, zoster 

No studies found. UK (HES): 45.95 diagnosis/100,000 

admissions* in 2014/2015145  
Acute/insidious, GP/hospital 

Bell's palsy/Facial 

palsy 

pandemic and seasonal influenza, 

HPV, MCV, zoster 

PPV: 77% (95%CI: 67-85)146 Bell’s palsy140 

Usually acute, GP/hospital 

0–17 years 11.98 

18–44 years 28.92 

45–65 years  36.28 

 >65 years  44.91 

Cranial nerve 

disorders 

Pandemic and seasonal influenza, 

TDaP 

Trigeminal neuralgia: incidence in 

CPRD higher than other studies147 

Age- and sex-adjusted incidence in 

London: 6.00. 

Acute/insidious (depending on the 

cause), GP/hospital 

Demyelinating 

disease 

Pandemic and seasonal influenza PPV for multiple sclerosis (incident 

and prevalent cases): 82% (95%CI: 

79-85)148  

Multiple sclerosis149 

Insidious, hospital 

 Female Male 

0–19 years 0.54 0.40 

20–39 years 19.86 6.57 

40–59 years  23.57 9.74 

 ≥60 years  10.60 7.06 

Optic neuritis115 

 Female Male 

0–15 years 0.85 0.54 

16–64 years 8.26 3.13 

≥65 years 2.18 2.40 

(Continues) 
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Table 5.1. (Continued)  

 Requirements 

Outcome 
Vaccines Validity (in CPRD) 

Volume of data (incidence/100,000 PY, 

unless indicated otherwise) 

Factors affecting data accrual 

(onset, place of diagnosis) 

Disorders of the 

peripheral nervous 

system and 

neuropathy 

Pandemic and seasonal influenza PPV for idiopathic peripheral 

neuropathy: 41% (95%CI: 21-

63)150 

Acute infectious and post-infectious 

polyneuritis140 

Acute/insidious, hospital 

 

 Female Male 

0–17 years 0.79 0.70 

18–44 years 1.57 1.63 

45–65 years  2.07 2.50 

 >65 years  2.52 4.57 

Encephalitis/ 

encephalopathy/ 

meningitis/ myelitis 

DTaP-IPV, DTaP-IPV-Hib, pandemic 

and seasonal influenza, HPV, 

GBMV, MMRV, PCV13, RV, zoster, 

Tdap 

CPRD previously used to 

estimate transverse myelitis 

incidence.115 

Encephalitis151 

Acute/insidious, hospital 

<1 year 11.63 

1-4 years 6.06 

5-19 years 2.86 

20–44 years 3.23 

45–64 years 4.46 

≥65 years 6.06 

Transverse myelitis115 

 Female Male 

0–15 years 0.22 0.12 

16–64 years 1.55 0.88 

≥65 years 0.46 0.83 

Guillain-Barré 

Syndrome 

DTaP-IPV, DTaP-IPV-Hib, pandemic 

and seasonal influenza, HPV, MCV, 

zoster, DTaP 

Similar incidence reported in 

CPRD and external sources.85 

CPRD previously used to study 

GBS as a possible AE to 

vaccines115,152,153 

Guillain-Barré Syndrome115 

Acute, hospital 

 Female Male 

0–15 years 0.65 0.70 

16–64 years 1.66 1.79 

≥65 years 2.31 4.30 

    (Continues) 
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Table 5.1. (Continued)  

 Requirements 

Outcome 
Vaccines Validity (in CPRD) 

Volume of data (incidence/100,000 PY, 

unless indicated otherwise) 

Factors affecting data accrual 

(onset, place of diagnosis) 

Intussusception RV PPV: 88% (95%CI: 82-93)154,155 UK: 24.8 cases/100,000 live births156 Acute, hospital 

Seizures (including 

febrile)  

DTaP-IPV, DTaP-IPV-Hib, pandemic 

and seasonal influenza, HPV, MCV, 

GBMV, MMRV, PCV13, RV, DTaP 

PPV: 80% (95%CI: 68-94)157 Age- and sex-adjusted incidence in 

London for single seizures: 11.00158 Acute, GP/hospital 

Thrombocytopenia/ 

ITP 

Pandemic influenza, HPV, MCV, 

GBMV, MMRV, PCV13 

No studies found. CPRD 

previously used to study ITP as a 

possible AE to vaccines159 

Autoimmune thrombocytopenia140 

Acute, GP/hospital 

 Female Male 

<18 years 3.7 4.7 

18–64 years 3.8 2.0 

≥65 years 7.1 7.8 

*Diagnosis for “Ataxia, unspecified” and “Other and unspecified lack of coordination”. AE – Adverse Event, CPRD – Clinical Practice Research Datalink, DTaP – acellular diphtheria-tetanus-

pertussis vaccine, GBMV – Group-B meningococcal conjugate vaccine, GP – General Practitioner, HES – Hospital Episode Statistics, HPV – human papillomavirus, IPV – inactivated poliovirus 

vaccine, ITP – Immune thrombocytopenic purpura, MCV – meningococcal conjugate vaccine, MMRV - Measles-Mumps-Rubella-Varicella vaccine, PCV13 – 13-valent pneumococcal conjugate 

vaccine, PPV – Positive Predictive Value, PY – Persons-year, RV – Rotavirus vaccine, UK - United Kingdom, yr - years. 
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frequency and exact figures were not required at this stage. Nevertheless, the use of CPRD 

in this context illustrates how widely these data have been used. 

For the in-depth delays assessment, only a few outcomes were selected in an attempt to 

cover different characteristics that might influence delays (i.e. onset of symptoms and place 

of diagnosis). Bell’s palsy was selected as an example of an acute condition, generally 

diagnosed and managed by GPs. Guillain-Barré syndrome was deemed to exemplify a 

condition generally diagnosed and managed in hospital, with an acute presentation. Optic 

neuritis was one of the few conditions with an insidious onset and was thus selected to 

represent this group of outcomes. Finally, febrile seizures were included as an example of an 

acute condition that can present in both hospital and general practice. This outcome was 

also selected as it is of particular importance following childhood vaccines.  

The next Section (5.3) comprises Paper 2, published in Pharmacoepidemiology and Drug 

Safety. This paper presents the methods and results of the in-depth delays assessment.  
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5.3 In-depth delays assessment (Paper 2) 

This paper was published in Pharmacoepidemiology and Drug Safety in February 2017 and 

reports the results of the in-depth delays analysis. 

For the main analysis presented in the paper, I used stand-alone CPRD data from individuals 

with an outcome of interest (Guillain-Barré syndrome, Bell’s palsy, optic neuritis and febrile 

seizures) and compared the event date (deemed to represent when the event occurred) and 

the system date (date when the record was entered in the general practice records). The 

difference between these dates allowed the description of the data accrual process in CPRD 

for the outcomes of interest. The results showed that most diagnoses examined were 

recorded with delays of 30 days or less. Furthermore, and as a secondary objective, I 

conducted an analysis of completeness of recording of diagnosis in the CPRD data and further 

analysis of delays, using CPRD-HES linked data. For this analysis, I considered a cohort of 

individuals with an outcome of interest first recorded in HES and followed them up until they 

had the same outcome recorded in CPRD or until they were censored. This analysis showed 

that less than 50% of individuals with a record in HES had a corresponding record in CPRD 

after 1 year, indicating low completeness of records in CPRD.  

Despite low completeness of recording, the results indicate that CPRD data are timely 

enough to implement a near real-time vaccine safety surveillance system. The material 

published as supporting information is reproduced in this thesis in Sections 5.4 (Appendix A 

from the supporting information) and 5.5.  
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Assessing recording delays in general practice records to inform
near real-time vaccine safety surveillance using the Clinical
Practice Research Datalink (CPRD)

Andreia Leite1* , Nick J. Andrews2 and Sara L. Thomas1

1Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
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ABSTRACT
Purpose Near real-time vaccine safety surveillance (NRTVSS) is an option for post-licensure vaccine safety assessment. NRTVSS
requires timely recording of outcomes in the database used. Our main objective was to examine recording delays in the Clinical Practice
Research Datalink (CPRD) for outcomes of interest for vaccine safety to inform the feasibility of NRTVSS using these data. We also
evaluated completeness of recording and further assessed reporting delays for hospitalized events in CPRD.
Methods We selected Guillain–Barré syndrome (GBS), Bell’s palsy (BP), optic neuritis (ON) and febrile seizures (FS), from January 2005
to June 2014. We assessed recording delays (e.g. due to feedback from specialist referral) in stand-alone CPRD by comparing the event and
system dates and excluding delays >1 year. We used linked CPRD-hospitalization data to further evaluate delays and completeness of
recording in CPRD.
Results Among 51 220 patients for the stand-alone CPRD analysis (GBS: n = 830; BP: n = 12 602; ON: n = 1720; and FS: n = 36 236),
most had a record entered within 1 month of the event date (GBS: 73.6%; BP: 93.4%; ON: 76.2%; and FS: 85.6%). A total of 13 482
patients, with a first record in hospital, were included for the analysis of linked data (GBS: n = 678; BP: n = 4060; ON: n = 485; and FS:
n = 8321). Of these, <50% had a record in CPRD after 1 year (GBS: 41.3%; BP: 22.1%; ON: 22.4%; and FS: 41.8%).
Conclusion This work shows that most diagnoses in CPRD for the conditions examined were recorded with delays of ≤30 days, making
NRTVSS possible. The pattern of delays was condition-specific and could be used to adjust for delays in the NRTVSS analysis. Despite low
sensitivity of recording, implementing NRTVSS in CPRD is worthwhile and could be carried out, at least on a trial basis, for events of
interest. © 2017 The Authors. Pharmacoepidemiology & Drug Safety Published by John Wiley & Sons Ltd.
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INTRODUCTION

The Clinical Practice Research Datalink (CPRD) is a
UK primary care database widely used for epidemio-
logical research, including monitoring disease rates
over time and assessing the post-licensure safety of

several vaccines using epidemiological designs.1–9

Near real-time vaccine safety surveillance (NRTVSS)
using electronic health records is a post-licensure vac-
cine surveillance tool that involves monitoring rates
of adverse events over time to identify changes associ-
ated with vaccine use. NRTVSS is ideally started at the
time a vaccine is introduced in a population by looking
at data at repeated time points to ensure timely signal
identification. This type of surveillance is now used
by the Vaccine Safety Datalink in the USA and has
been implemented by a few other countries.10 In the
UK, NRTVSS has been carried out using spontaneous
reports to calculate the observed number of events and
CPRD data to calculate the expected number of
events.11 However, CPRD data have not been used as
the sole data source to perform NRTVSS.

*Correspondence to: A. Leite, Department of Infectious Disease Epidemiology,
Faculty of Epidemiology and Population Health, London School of Hygiene
and Tropical Medicine, Keppel Street, London WC1E 7HT, UK. Email:
andreia.leite@lshtm.ac.uk

This work has not been submitted or accepted elsewhere. Preliminary results
have been presented at the Public Health England Applied Epidemiology Scien-
tific Conference, Warwick, March 2016, and have been accepted for presenta-
tion at the 2016 International Population Data Linkage Conference to take
place in August 2016.

© 2017 The Authors. Pharmacoepidemiology & Drug Safety Published by John Wiley & Sons Ltd.

pharmacoepidemiology and drug safety 2017; 26: 437–445
Published online 3 February 2017 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/pds.4173

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution
and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

http://orcid.org/0000-0003-0843-0630
http://creativecommons.org/licenses/by-nc/4.0/


The CPRD data are currently updated monthly and
are therefore a potential data source for implementing
NRTVSS. For near real-time surveillance, timeliness
is paramount. One way of dealing with delays is to
delay the analysis until sufficient data accrue. A more
timely approach12 is to know how long it takes for data
to accrue and then use the pattern of delays to adjust
the expected number of events.
Data accrual delays in CPRD can be due to the

following: (i) delays in making the diagnosis after an
initial consultation, (ii) practices receiving and record-
ing diagnoses made at secondary care and (iii) delays
in uploading the data for researchers. Different out-
comes of interest might have different sources and
levels of delay, depending, for example, on whether
the onset of the condition is acute or insidious and
the healthcare setting in which it is diagnosed and
managed.13 Given CPRD’s structure, it is likely that
an acute condition that is usually diagnosed and man-
aged by general practitioners (GPs) will accrue more
quickly than a condition diagnosed and managed in
hospital. Conversely, a more insidious condition and
which tends to be diagnosed in secondary care might
take longer to accrue. Understanding recording delays,
by knowing the time it takes for data to accrue and
how this differs by condition, helps to determine the
feasibility of implementing NRTVSS in CPRD. In this
paper, we focus on delays in practices recording diag-
noses made elsewhere (aforementioned scenario ii).
It is also important to understand the sensitivity of

CPRD for capturing outcomes of interest. Feedback
from secondary care (e.g. hospital admissions and
outpatient consultations) may not be completely
captured as coded diagnoses in CPRD, for example,
if GPs do not code these events but simply scan in
hospital letters without adding diagnostic codes to
the patient record. The information from hospital
admissions in England is recorded in the Hospital
Episode Statistics (HES) database and linked to
CPRD for a subset of practices. Previous studies have
shown that the use of linked data (including primary
and secondary care information) improves sensitivity
of diagnoses.14–16 However, these linkages are cur-
rently updated too infrequently to allow their use for
surveillance purposes. To the best of our knowledge,
no previous studies have investigated completeness
of recording for conditions of interest for NRTVSS
that are typically diagnosed in secondary care such
as Guillain–Barré syndrome (GBS).
Our main objective was thus to examine recording

delays for selected conditions, due to practices receiv-
ing and recording diagnoses made at secondary care,
in stand-alone CPRD, to inform the feasibility of

implementing NRTVSS in England using these data.
Secondary objectives were to further assess delays
and evaluate completeness of recording of diagnoses
in CPRD using linked hospitalization data.

METHODS

Data sources

For our main analysis, we used data from CPRD,
which comprises anonymized UK primary care health
records for >11.3 million patients from 674 general
practices, with information on demographics, diagno-
sis, therapies, vaccines, health-related behaviours and
referrals to secondary care.1 Patient information is
recorded using Read codes, and when a new record
is entered, the software automatically assigns it the
current date, the system date. Practice staff also enters
an event date, the date generally considered to
represent the time the event has occurred. Monthly
updates of CPRD data include the date information
was last collected from each practice (last collection
date).13

Despite being assigned when new records are
entered, the system date can be changed when mass
transfer of records occurs. These might occur when
(Rachael Williams, personal communication) (1) the
practice changes software to Vision (and joins
CPRD) or updates their version of Vision: previous
system dates will be updated for all patients to the
date the change has occurred; (2) patients’ records
are transferred from their previous practice (or an in-
ternal transfer of a patient occurs within a practice);
the system dates for that patient’s records will then
all be changed to the date the transfer occurred.
Our secondary analysis used CPRD–HES linked

data, which includes patient-level information from
58% of all CPRD practices.1 HES data are coded
using International Classification of Diseases, version
10 (ICD-10), and each hospitalization includes ≥1
episode, corresponding to the time a patient is
under the care of a single consultant.17 Information
available includes date of hospital admission and
discharge and, for each episode, a starting date
(episode date).

Outcomes

We selected four outcomes of interest for NRTVSS10:
GBS, Bell’s palsy (BP), optic neuritis (ON) and febrile
seizures (FS). These represent different characteristics
that might affect delays; GBS is an acute condition,
diagnosed and managed in hospital; BP is typically
diagnosed and managed by GPs; ON is a more
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insidious condition, likely to be diagnosed in
outpatient hospital settings; and FS can be diagnosed
and managed in both primary and secondary care.10

For each outcome, a specific and a broader (potentially
more sensitive but less specific) code lists were
considered (Appendix A). These different versions
were used to explore the effect of imperfect validity
of different code lists to identify the outcomes. It has
been previously suggested that for NRTVSS, a more
sensitive code list generates more timely signals.18

We thus considered the broader code list in our main
analysis and the specific code list in a sensitivity
analysis.

Analysis

System dates and event dates were compared to assess
delays in recording. To avoid overestimation of delays
because of mass transfers of system dates to later
dates, we first studied which records were likely to
have been part of such transfers and excluded these
from remaining analyses.
We assumed that (i) an unusually high number of

records with the same system date was due to a mass
transfer; (ii) mass transfers are infrequent, so only a
small proportion of patients will have records af-
fected by mass transfers; (iii) there is a threshold
number of repeated system dates above which mass
transfers can be identified. To identify this threshold,
we created a within-patient proportion of records
with the same system date used s times (psi), using
eligible patient records from the clinical, test, referral
and immunization files. psi is given by tsi/ri, where tsi
is the number of records with a given number of re-
peat system dates and ri the total number of records
for that patient. For example, if we consider a patient
with a total of 300 records and if this patient has
four records registered on one shared system date
and four others on a different shared system date,
p4 is given by 8/300≈0.03. This means that 3% of
all this patient’s records are recorded in blocks of
four records.
The patient-level psi was averaged across all patients

(aps ¼ ∑n
i¼1psi=n). This average proportion of records

with the same system date s was displayed graphically,
and we selected candidate thresholds, on the basis of
our assumptions about mass transfers.
For each threshold, we took a sample of 10 pa-

tients with that number of repeated dates (e.g. if
threshold = 100, we selected the 100 records with
the same system date for 10 patients). We then
looked at these records to assess the likelihood that
they had been involved in mass transfers. We

considered that records with the same system dates
that had codes that could feasibly refer to the same
condition or a related procedure/test result and which
all had the same event date were likely to have been
entered on the same day. Conversely, if the codes
were unrelated, with varying event dates, this would
suggest a mass transfer. To evaluate the influence
of the final threshold decision, we calculated the per-
centage of the outcomes assigned as mass transfers
and excluded using the selected threshold.
After excluding system dates likely to have been

part of mass transfers, we used a forward approach
to assess delays, that is, considering the time from
the event date (the assumed date of diagnosis) until
the system date (the date the diagnosis was entered
in the practice system). Delays were calculated as
the difference between the system and event dates
(Figure 1(A)). We excluded diagnoses with a delay
>1 year as these would be of limited utility for
NRTVSS and could be ignored if NRTVSS was only
based on events recorded within a year. To give
enough time for data to accrue, we considered re-
cords with an event data up to June 2014 (using
CPRD data released in July 2015). Diagnoses within
a year of registration (6 months if aged <1 year)
with the practice were excluded to avoid counting
past diagnoses recorded retrospectively.19 We
described delays in terms of their cumulative distri-
bution and further described these by year of diagno-
sis to assess whether this distribution was constant
over time.
The secondary analysis focused on completeness

and delays in recording for patients with an outcome
of interest in HES. We considered a cohort of patients
with an outcome first recorded in HES. Patients were
followed up from the hospital episode date in which
the outcome was first recorded until they had an out-
come in CPRD (noting the system date) or were cen-
sored (earliest of date of death, date of leaving the
practice, last collection date or July 2015) (Figure 1
(B).). We excluded patients with a previous record of
the outcome in CPRD, as these would be captured
by a system on the basis of CPRD. We conducted a
sensitivity analysis to evaluate the effect of adding
these patients. Patients with diagnoses within a year
of their registration date (6 months if aged <1 year)
with the practice were also excluded, unless a relevant
diagnosis was made in HES during that period (as the
latter is not subject to retrospective recording of this
type). Kaplan–Meier analysis of the time until
recording the condition in CPRD was used to describe
completeness and delays, truncating the curves at
1 year (considered the period of interest for NRTVSS).
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RESULTS

Analysis of mass transfers

We identified 54 252 eligible patients for the mass
transfer analysis, with 24 905 375 records. Repeated
system dates ranged from 1 to 3958. Figure 2 shows
the proportion (and cumulative proportion) of records
with a unique date, ranging from 2 to 3958 on the
same date, averaged across patients. The average pro-
portion of records with repeated dates decreased until

50 records, after which it stabilized. The vast majority
(Figure 2 bottom) of records were recorded at the same
time as <49 other events.
We thus selected 50, 100 and 150 as candidate

thresholds, which resulted in losses of 7.7%, 4.5%
and 3.1% of records, respectively. Some of the code
lists with 50 repeated dates were a mixture of blood
tests and diagnosis codes, all with the same event
date. These were considered a plausible combination
of codes to have been entered on the same system

Figure 2. Average proportion (top) and cumulative average proportion of repeated system dates (number of records is represented in the logarithmic scale)

Figure 1. Schematic representation of the analysis undertaken for describing recording delays in CPRD (A) and completeness and delays in HES-CPRD
linked data (B). (A) includes patients with no delay (1), varying delays (2 and 3) and those who were excluded because of having a delay of more than a year
(4). (B) includes a censored patient because of death (1), patients with varying delays (2 and 3) and a patient with a delay of more than 1 year, included in the
analysis but not displayed in the Kaplan–Meier curves. CPRD, Clinical Practice Research Datalink; HES, Hospital Episode Statistics
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date. On the other hand, all the lists of 100 and 150
codes were for different conditions, with different
event dates. We interpreted this as highly suggestive
of a mass transfer and therefore selected 100 as the
threshold. This reduced cases by 2.3%, 1.5%, 2.4%
and 1.5% for GBS, BP, ON and FS, respectively.
After excluding records deemed to be mass transfers,
we assessed delays in stand-alone CPRD for 53 414
patients (GBS: n = 905; BP: n = 13 234; ON:
n = 1837; and FS: n = 37 625).

Recording delays in stand-alone Clinical Practice
Research Datalink

We further excluded records with delays>1 year (% of
exclusions: GBS, 8.3%; BP, 4.8%; ON, 6.4%; and FS,
3.7%). Our final analysis included 51 220 patients
(GBS: n = 830; BP: n = 12 602; ON: n = 1720; and
FS: n = 36 236). Table 1 summarizes gender, age and
year of event date for these patients.
Table 2 and Figure 3 present the cumulative

distribution of data accrual lags by condition in
CPRD, defined as the time from event date to sys-
tem date. Most diagnoses were recorded within a
month (73.6% (GBS); 93.4% (BP)). BP had the
highest percentage of records with identical system
and event dates (72.0%), while ON had the lowest
(27.8%). BP and FS records accrue more quickly
than GBS and ON. These differences occur mainly
(but not entirely) until 10 weeks after the event
date, after which data accrual seemed to stabilize.
Using a more specific code list yielded similar
patterns (Appendix B). These patterns were con-
stant over time (Appendix C).

Comparison of Hospital Episode Statistics–Clinical
Practice Research Datalink

We included 13 482 patients (GBS: n = 678; BP:
n = 4060; ON: n = 485; FS: n = 8321) with a first out-
come recorded in HES. Table 3 shows the characteris-
tics of included patients and completeness of recording
in CPRD. Age and sex distributions for GBS and FS
were similar to those observed for the stand-alone data.
BP and ON patients in HES were older (mean age: BP:
HES—57.4, CPRD—48.2; ON: HES—49.9, CPRD—
42.9). BP and ON had the lowest completeness of
recording and FS and GBS the highest. Most records
accrued within a year. When we added patients with a
first record in CPRD, the increase in total completeness
was less than 10% (Appendix D).
Figure 4 illustrates data accrual patterns. BP and FS

accrued more quickly at initial stages and plateaued
sooner than the other outcomes. GBS showed a
steadier accrual pattern, plateauing at around 20 weeks
after HES recording. Sensitivity analyses using spe-
cific code lists showed similar patterns (Appendix E).

DISCUSSION

We have conducted a comprehensive analysis of
recording delays and completeness for four outcomes,
to inform NRTVSS. Our results showed that data
accrual patterns and completeness depend on the con-
ditions studied. Selecting conditions with different
characteristics (in clinical presentation, place of diag-
nosis and management) enabled us to capture these
different patterns. BP showed the quickest data accrual
and highest agreement between system and event date,
consistent with a condition often diagnosed and

Table 1. Gender, age and year of event date of included patients by condition

GBS (n = 830) BP (n = 12 602) ON (n = 1720) FS (n = 36 236)

Gender, n (%)
Male 465 (56.0) 6218 (49.3) 569 (33.1) 19 029 (52.5)
Female 365 (44.0) 6384 (50.7) 1151 (66.9) 17 207 (47.5)

Mean age (SD) 53.5 (20.1) 48.2 (20.2) 42.9 (17.8) 35.4 (29.0)
Year of event date, n (%)
2005 70 (8.4) 1317 (10.5) 187 (10.9) 3605 (9.9)
2006 98 (11.8) 1240 (9.8) 181 (10.5) 3774 (10.4)
2007 76 (9.2) 1275 (10.1) 191 (11.1) 3808 (10.5)
2008 100 (12.0) 1430 (11.3) 162 (9.4) 3989 (11.0)
2009 94 (11.3) 1407 (11.2) 175 (10.2) 3983 (11.0)
2010 84 (10.1) 1376 (10.9) 182 (10.6) 3853 (10.6)
2011 90 (10.8) 1390 (11.0) 196 (11.4) 3844 (10.6)
2012 96 (11.6) 1320 (10.5) 195 (11.3) 3923 (10.8)
2013 83 (10.0) 1251 (9.9) 166 (9.7) 3778 (10.4)
2014 39 (4.7) 596 (4.7) 85 (4.9) 1679 (4.6)

BP, Bell’s palsy; FS, febrile seizures; GBS, Guillain–Barré syndrome; ON, optic neuritis; SD, standard deviation.
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managed by GPs. GBS and ON showed the slowest
data accrual. GBS is an acute condition usually requir-
ing admission, while ON is typically diagnosed and
managed in outpatient settings. We considered FS as
an acute condition diagnosed at any level of care, but
in most cases not requiring prolonged admission. This
is consistent with an intermediate agreement between
system and event date (38.1%) and more rapid data
accrual than GBS and ON. Overall, our findings indi-
cate that conditions diagnosed by GPs or during
short-term hospital admissions tend to accrue more
quickly than conditions diagnosed in hospital with
longer admission or diagnosed in outpatients. In gen-
eral, data captured in CPRD accrued within the first
month of the diagnosis, making NRTVSS possible
using this data source.
Our assessment of completeness showed that a low

proportion of diagnoses first recorded in HES subse-
quently accrued in CPRD. It seems particularly
unlikely that GPs are aware of <50% of cases of
serious conditions such as GBS. A recent UK study
that contacted GPs about patients with a coded GBS di-
agnosed in HES found that 68.2% (95% confidence

interval: 60.7–74.9%) were aware of a GBS diagnosis
made in hospital that has been confirmed (Julia Stowe,
personal communication). Incomplete diagnostic cod-
ing in general practice may occur because GPs instead
scan in hospital letters or record diagnoses in free text,
neither of which is now available to researchers using
CPRD because of changes in the information gover-
nance environment in the UK. This might have
decreased the ability to assess fully the validity of
CPRD data for research purposes. The inclusion of
therapy codes might help to capture some incompletely
coded diagnoses for conditions requiring treatment, but
the conditions we examined do not have unique treat-
ments. On the other hand, HES is itself an imperfect
source to capture conditions of interest as it might in-
clude unconfirmed cases. If that is the case, our analy-
sis would have underestimated completeness in CPRD.
For NRTVSS, if completeness is constant over time,
this should not bias the results, but it decreases power.
Knowing whether there is enough power is a key as-
pect when considering a new data source to implement
NRTVSS. This goes beyond the scope of our study but
should be assessed by future work looking at trial

Table 2. Cumulative distribution of delays by condition (n (%))

Delay* GBS (n = 830) BP (n = 12 602) ON (n = 1720) FS (n = 36 236)

Same day 275 (33.1) 9076 (72.0) 478 (27.8) 14 254 (39.3)
First week 371 (44.7) 10 459 (83.0) 699 (40.6) 22 181 (61.2)
First month 611 (73.6) 11 776 (93.4) 1310 (76.2) 31 031 (85.6)
6 months 790 (95.2) 12 431 (98.6) 1672 (97.2) 35 575 (98.2)
1 year 830 (100.0) 12 602 (100.0) 1720 (100.0) 36 236 (100.0)

BP, Bell’s palsy; FS, febrile seizures; GBS, Guillain–Barré syndrome; ON, optic neuritis.
*Defined as the difference between the system and the event date.

Figure 3. Weekly data accrual in CPRD across 52 weeks considering data accrued during the first year and diagnosis made up to June 2014. BP, Bell’s palsy;
CPRD, Clinical Practice Research Datalink; FS, febrile seizures; GBS, Guillain–Barré syndrome; ON, optic neuritis
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implementation of NRTVSS using CPRD. Results
from that work will allow further conclusions on the
possibility of implementing NRTVSS using CPRD. A
further consideration is that, for conditions which
may not always require hospital admission, hospital-
ized patients may be a particular subset of all cases,
for example, those with more severe disease (as
highlighted in studies of upper gastrointestinal bleed-
ing and venous thromboembolism14,20) or specific pa-
tient characteristics (as in our study, which showed
that patients with BP and ON captured in HES were
older). This will matter if the adverse event is more
likely among these specific subgroups.

Previous adjustments for accrual delays when
conducting NRTVSS with administrative claims data
have focused on delays in processing information for
filing and approval.12 Primary care-based data have
different sources of delay, and our work focused on
delays in practices documenting feedback from
secondary care. Our work thus differs from Greene
et al.12 in the reasons for the delays we have
considered. In addition, we looked at four outcomes
(GBS, BP, ON and FS), while Greene et al.12 have
only considered GBS. Other sources of delay include
time before data are made available; CPRD data are re-
leased to researchers monthly and practices upload

Table 3. Characteristics of included patients, time of follow-up and completeness of records in Clinical Practice Research Datalink per condition of interest

GBS (n = 678) BP (n = 4060) ON (n = 485) FS (n = 8321)

Gender, n (%)
Male 363 (53.5) 1844 (45.4) 155 (32.0) 4662 (56.0)
Female 315 (46.5) 2216 (54.6) 330 (68.0) 3659 (44.0)

Mean age (SD) 55.8 (21.0) 57.4 (24.1) 49.9 (25.2) 34.8 (31.2)
Year of diagnosis,* n (%)
2005 61 (9.0) 424 (10.4) 56 (11.5) 1264 (15.2)
2006 73 (10.8) 460 (11.3) 45 (9.3) 1108 (13.3)
2007 79 (11.7) 400 (9.9) 47 (9.7) 1103 (13.3)
2008 85 (12.5) 417 (10.3) 47 (9.7) 1055 (12.7)
2009 79 (11.7) 515 (12.7) 56 (11.5) 912 (11.0)
2010 69 (10.2) 545 (13.4) 68 (14.0) 793 (9.5)
2011 76 (11.2) 471 (11.6) 48 (9.9) 702 (8.4)
2012 71 (10.5) 404 (10.0) 56 (11.5) 715 (8.6)
2013 69 (10.2) 358 (8.8) 54 (11.1) 531 (6.4)
2014 16 (2.4) 66 (1.6) 8 (1.6) 138 (1.7)

Median follow-up time (years) 0.9 1.9 2.1 1.4
Completeness, % (95% confidence interval)†

Maximum 45.9 (41.5–50.5) 26.8 (25.0–28.7) 28.5 (22.9–35.0) 46.0 (44.8–47.2)
At 1 year 41.3 (37.6–45.3) 22.1 (20.8–23.5) 22.4 (18.9–26.5) 41.8 (40.7–42.9)

BP, Bell’s palsy; FS, febrile seizures; GBS, Guillain–Barré syndrome; ON, optic neuritis; SD, standard deviation.
*Considering the start of episode date in Hospital Episode Statistics database.
†Kaplan–Meier estimates of individuals with a record in Clinical Practice Research Datalink.

Figure 4. Kaplan–Meier recording estimates considering a first record in HES and a subsequent record in CPRD, truncated at 1 year. BP, Bell’s palsy; CPRD,
Clinical Practice Research Datalink; FS, febrile seizures; GBS, Guillain–Barré syndrome; HES, Hospital Episode Statistics; ON, optic neuritis

recording delays in CPRD 443

© 2017 The Authors. Pharmacoepidemiology & Drug Safety
Published by John Wiley & Sons Ltd.

Pharmacoepidemiology and Drug Safety, 2017; 26: 437–445
DOI: 10.1002/pds



data some time before each release. These delays
could be examined by looking at the time between last
collection date and date of release, and adjustments
made depending on the patterns of such delays. Delays
in making diagnoses could involve identifying early
symptom codes, with the extent of delay varying by
condition. The results of our study indicate that
adjustments for data accrual delays should be tailored
for individual conditions and that future studies should
consider including setting-specific adjustments, that is,
generating delay distributions for diagnoses made in
primary care, in-patient and outpatient settings. More
broadly, we recommend that researchers reflect on
the source of delays in their data and whether these
delays are likely to be dependent on the outcomes
of interest, to help decide whether to establish
condition-specific data accrual patterns.
To the best of our knowledge, this is the first in-depth

analysis of recording delays in CPRD. Sammon and
Petersen13 recently examined the number of records
lost as a function of last collection date, to inform inci-
dence or prevalence studies. Our study complements
and extends this work by quantifying delays for
selected conditions and investigating how their charac-
teristics affect delays. Our study is novel in showing
the limitations of using system dates, and we have
proposed a simple approach to minimize the effects
of these limitations that are relevant to those planning
surveillance using CPRD. We also provide the first
analyses of both completeness and timeliness of
recording of these four specific conditions in CPRD.
This study is subject to some limitations. Firstly,

measurement error in delays in stand-alone CPRD
may have resulted from errors in system and event
dates. We addressed misclassification of system dates
by excluding dates that were likely to have been part
of mass transfers. As we did not take an unduly low
threshold, we may have included some transferred sys-
tem dates and thus overestimated delays. However,
our exclusion of delays >1 year should have mini-
mized this issue. Furthermore, if the same criteria are
applied to a future NRTVSS, inclusion of these re-
cords should not bias results. The event date is also
an imperfect measure of the date of diagnosis. When
entering diagnoses made elsewhere, GPs might insert
the diagnosis date, but alternatively, the date of hospi-
tal admission or discharge, the date the hospital letter
was received or the date of data entry. For the latter
three scenarios, our delays (the difference between
system and event dates) would be underestimated.
However, if this coding behaviour is constant over
time, any adjustments made in the future considering
our results would be valid. Furthermore, the choice

of code lists affects the validity of cases. We did not
validate the code lists directly, but assessed the poten-
tial effects of imperfect validity by using code lists
with different levels of sensitivity. The use of a more
specific code list did not substantially affect our re-
sults. When implementing a new system, this should
be further assessed; previous analyses suggest that a
more sensitive code list might produce more timely re-
sults.18 Finally, we did not quantify the uncertainty
around the data accrual estimates in CPRD. However,
our sensitivity analysis describing yearly patterns
showed stable results, suggesting it is appropriate to
use our distributions for future adjustments.
In conclusion, this work shows that most diagnoses

recorded in stand-alone CPRD accrued within the
first month, making NRTVSS possible. The distribu-
tion of delays was condition-specific, and the weekly
delay distribution could be used to adjust for delays
in the NRTVSS analysis. CPRD can be a viable data
source to use in this kind of analysis; next steps will
include trial implementation of the system using
these data.
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KEY POINTS
• Near real-time vaccine safety surveillance using
electronic health records is one of the methods
available to detect vaccine safety signals. It
requires timely data.

• The Clinical Practice Research Datalink (CPRD)
is a potential data source for this surveillance.

• Delays in recording of events in CPRD will limit
its utility, and delays were found to vary by
condition. For Bell’s palsy and febrile seizures,
events were recorded sooner than for Guillain–
Barré syndrome and optic neuritis. For all these
conditions, most events documented by practices
were recorded within the first month of the
presumed diagnosis date.

• Records of Guillain–Barré syndrome, Bell’s
palsy, optic neuritis and febrile seizures
diagnosed in hospital have low completeness of
recording in CPRD, with less than 50% recorded
within a year of the hospital admission date.

• The CPRD is a feasible data source to implement
near real-time surveillance, although sensitivity
of recording of events first seen at hospital may
be low.
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5.4 Code-lists used for the in-depth delays assessment 

The code-lists used for the analysis reported in Paper 2 (presented in Section 5.3) are 

available below. This corresponds to Appendix A of the supporting information of the paper. 

As explained in the paper, the main analysis used a less specific Read codes list, followed by 

a sensitivity analysis using a more specific set of Read codes. The lists used in the main 

analysis are presented and the codes considered for the sensitivity analysis are highlighted 

in each list. The methods used to obtain these lists are detailed in Section 3.2. Results from 

the sensitivity analysis are presented in Section 5.5. 

5.4.1 Guillain-Barré syndrome  

5.4.1.1 CPRD 

Read code Read term 

F370000 Guillain-Barre syndrome 

F370200 Miller-Fisher syndrome 

F370.00 Acute infective polyneuritis 

F37X.00 Inflammatory polyneuropathy, unspecified 

F37y.00 Other toxic or inflammatory neuropathy 

F37z.00 Toxic or inflammatory neuropathy NOS 

F370z00 Acute infective polyneuritis NOS 

F370100 Postinfectious polyneuritis 

F37..00 Inflammatory and toxic neuropathy 

Fyu7100 [X]Other inflammatory polyneuropathies 

Fyu7B00 [X]Inflammatory polyneuropathy, unspecified 

F21X.00 Acute disseminated demyelination, unspecified 

Fyu4200 [X]Acute disseminated demyelination, unspecified 

Fyu4000 [X]Other specified acute disseminated demyelination 

5.4.1.2 HES 

ICD-10 Description 

G61.0 Guillain-Barré syndrome 

 

5.4.2 Bell’s palsy 

5.4.2.1 CPRD 

Read code Read term  

1476 H/O: Bell's palsy*  

F310.00 Bell's (facial) palsy  

F31z.00 Facial nerve disorder NOS  

F31..00 Facial nerve disorders  

2BR6.00 O/E -cranial nerve 7-palsy-LMN  
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Read code Read term  

2BR7.00 O/E -cranial 7 -paralysis -LMN  

*Patients with a first diagnosis of history of Bell’s palsy were excluded to avoid retrospective recording  

5.4.2.2 HES 

ICD-10 Description 

G51.0 Bell's palsy 

 

5.4.3 Optic Neuritis 

5.4.3.1 CPRD 

Read code Read term 

F210.00 Neuromyelitis optica 

F4H3z00 Optic neuritis NOS 

F4Hz.00 Disorder of optic nerve or visual pathway NOS 

F4H3.00 Optic neuritis 

F4H5z00 Optic chiasm disorder NOS 

F4H..00 Disorders of optic nerve and visual pathways 

F4H4z00 Other optic nerve disorder NOS 

F4H4.00 Other optic nerve disorders 

F210.11 Devic's disease 

F4H5.00 Optic chiasm disorders 

F4H3000 Unspecified optic neuritis 

F4H6z00 Other visual pathway disorder NOS 

FyuJ.00 [X]Disorders of optic nerve and visual pathway 

F4H3200 Acute retrobulbar neuritis 

5.4.3.2 HES 

ICD-10 Description 

H46 Optic neuritis 

 

5.4.4 Seizures 

5.4.4.1 CPRD 

Read code Read term 

R003400 [D]Nocturnal seizure 

F25H.00 Generalised seizure 

1B27.00 Seizures in response to acute event 

1B63.00 Had a fit 

1B63.11 Fit - had one, symptom 

1B64.00 Had a convulsion 

1B64.11 Convulsion - symptom 

1B6B.00 Febrile convulsion 
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Read code Read term 

282..00 O/E - fit/convulsion 

282..11 O/E - a convulsion 

282..12 O/E - a fit 

282..13 O/E - a seizure 

2822 O/E - grand mal fit 

2823 O/E - petit mal fit 

2824 O/E - focal (Jacksonian) fit 

2824.11 O/E - Jacksonian fit 

2824.12 O/E - focal fit 

2825 O/E - psychomotor fit 

2827 O/E - febrile convulsion 

2828 Absence seizure 

282Z.00 O/E - fit/convulsion NOS 

F132z12 Myoclonic seizure 

F250011 Epileptic absences 

F250200 Epileptic seizures - atonic 

F250300 Epileptic seizures - akinetic 

F251200 Epileptic seizures - clonic 

F251300 Epileptic seizures - myoclonic 

F251400 Epileptic seizures - tonic 

F251600 Grand mal seizure 

F251y00 Other specified generalised convulsive epilepsy 

F252.00 Petit mal status 

F253.00 Grand mal status 

F253.11 Status epilepticus 

F254500 Complex partial epileptic seizure 

F255600 Simple partial epileptic seizure 

F256.00 Infantile spasms 

F256.11 Lightning spasms 

F256z00 Infantile spasms NOS 

F25X.00 Status epilepticus, unspecified 

F25y300 Complex partial status epilepticus 

F25z.11 Fit (in known epileptic) NOS 

Fyu5900 [X]Status epilepticus, unspecified 

Fyu5200 [X]Other status epilepticus 

Q480.00 Convulsions in newborn 

Q480.11 Fits in newborn 

Q480.12 Seizures in newborn 

R003.00 [D]Convulsions 

R003000 [D]Convulsions, febrile 

R003011 [D]Pyrexial convulsion 

R003100 [D]Convulsions, infantile 

R003200 [D]Fit 

R003211 [D]Fit (in non epileptic) NOS 

R003y00 [D]Other specified convulsion 
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Read code Read term 

R003z00 [D]Convulsion NOS 

R003z11 [D]Seizure NOS 

Ryu7100 [X]Other and unspecified convulsions 

Eu44511 [x]pseudoseizures 

5.4.4.2 HES 

ICD-10 Description 

R56.0 Febrile convulsions 

5.5 In-depth delays assessment: sensitivity analyses  

The in-depth delays analysis, presented in Section 5.3, included several sensitivity analyses, 

published as supporting information, and assessing three aspects of the analyses conducted. 

The first sensitivity analysis attempted to assess the effect of imperfect validity of the code-

lists used for outcome ascertainment. For this analysis, a more specific code-list was used 

and the results are presented in Section 5.5.1. The second sensitivity analysis assessed trends 

in recording delays over time (both for the main and secondary analysis) and is presented in 

Section 5.5.2. The third and final analysis assessed how completeness changed if patients 

with a prior record in CPRD were included in the cohort (see Section 5.5.3).  

5.5.1 Specific code-lists 

The code-lists used in this thesis have not been validated. However, it has been previously 

suggested that using an initial code-list in the main analysis, followed by a sensitivity analysis 

using another code-list with a different level of specificity, might be used as an indication of 

the quality of recording.85 This strategy was used for the Read-code lists; in the main analysis, 

a broader code-list was used, followed by a sensitivity analysis with a more restricted set of 

codes. For the secondary analysis (using linked CPRD-HES data) to identify outcomes in CPRD, 

the strategy described above was followed (a broader code-list in the main analysis and a 

more specific one in the sensitivity analysis). In contrast, each outcome in HES data was 

identified using a single ICD-10 code-list that was designed to include only more specific 

codes. The approach of selecting more specific codes in HES data was deemed to result in a 

higher positive predictive value (compared to a less specific code-list), allowing capture of 

less false positive diagnoses (which would not require a subsequent record in CPRD). 

Figure 5.2 shows the results of the sensitivity analysis of the data accrual process in CPRD 

using a more specific set of Read-codes for all the outcomes studied and corresponds to 

Appendix B of the supporting information. Overall, the patterns were similar to the ones 

observed in the main analysis using a broader code-list (see Figure 3 in Section 5.3), with a 
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few noticeable differences for febrile seizures and Guillain-Barré syndrome. For febrile 

seizures, using a more specific code-list resulted in a more delayed data accrual pattern, with 

less than 20% of the records being recorded on the same day of the event (compared to 

around 40% in the main analysis). Nevertheless, this difference seems to be mainly in the 

first few days after the event and after the second week after the event date the patterns 

became very similar. For Guillain-Barré syndrome, the use of a more specific code-list led to 

a more delayed data accrual throughout the analysis period but the extent of the additional 

delay was minimal. For both outcomes, the differences observed are unlikely to affect the 

implementation of a near-real time system.  

 

 

Figure 5.2. Weekly data accrual in CPRD across 52 weeks considering diagnosis made until June 2014 and using a 
specific set of read-codes. BP – Bell’s palsy, FS – Febrile seizures, GBS – Guillain-Barré syndrome, ON – Optic 
neuritis. 

 

The results of the sensitivity analysis using a more specific set of Read-codes for the 

completeness analysis using linked CPRD-HES data (Figure 5.3, originally published as 

Appendix E of the paper’s supporting information) are also very consistent with those of the 

analysis presented in the paper (see Figure 4 in Section 5.3). The overall accrual pattern 

overlaps with the one observed and completeness at one year is similar. The results of this 

sensitivity analysis indicate that the use of less specific codes does not affect completeness 

of recording.  
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Figure 5.3. Kaplan-Meier recording estimates considering a first record in HES and a subsequent record in CPRD, 
using a specific set of read-codes. BP – Bell’s palsy, FS – Febrile seizures, GBS – Guillain-Barré syndrome, ON – 
Optic neuritis.  

 

5.5.2 Data accrual per calendar year  

The analyses presented in Section 5.3 used ten years of data and assumed that there were 

no differences in data accrual over time. However, recording behaviours might not be 

constant throughout time, thus limiting the utilisation of these results in a future system. To 

assess this issue, I compared data accrual patterns by year. The results for the stand-alone 

CPRD data are displayed in Figure 5.4 and results for the linked CPRD-HES data are presented 

in Table 5.2 (results presented in Appendix C of the paper’s supporting information). Figure 

5.4 shows extremely consistent patterns in each year for Bell’s palsy and febrile seizures. 

Results for Guillain-Barré syndrome and optic neuritis have a good overlap but present more 

variability. This is likely to be related to the smaller number of records for these two 

outcomes, particularly for Guillain-Barré syndrome, which showed higher variability. Similar 

results were observed using linked CPRD-HES data (Table 5.2). These results are reassuring 

when considering use of the overall data accrual distribution to adjust for delays in the 

implementation study (see Sections 5.3 and 6.3).  
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Figure 5.4. Comparison of the data accrual in CPRD per year of diagnosis considering the records made within one 
year, by condition of interest. BP – Bell’s palsy, FS – Febrile seizures, GBS – Guillain-Barré syndrome, ON – Optic 
neuritis. 

 

Table 5.2. Median (Q1-Q3) number of days of data accrual for the conditions studied and years included.  

Year GBS  Bell's Palsy Optic Neuritis  FS 

2005 8 (0 - 45) 0 (0 - 0) 12 (0 - 28) 3 (0 - 14) 

2006 6 (0 - 34) 0 (0 - 1) 12 (0 - 25) 4 (0 - 16) 

2007 9 (0 - 28) 0 (0 - 1) 14 (0 - 31) 4 (0 - 16) 

2008 12 (0 - 37) 0 (0 - 1) 10 (0 - 21) 4 (0 - 16) 

2009 14 (0 - 37) 0 (0 - 2) 12 (0 - 28) 4 (0 - 15) 

2010 13 (0 - 41) 0 (0 - 4) 13 (0 - 32) 4 (0 - 15) 

2011 12 (0 - 30) 0 (0 - 3) 12 (0 - 30) 5 (0 - 16) 

2012 11 (0 - 25) 0 (0 - 3) 10 (0 - 26) 4 (0 - 15) 

2013 12 (0 - 31) 0 (0 - 3) 13 (2 - 38) 4 (0 - 14) 

2014 9 (0 - 31) 0 (0 - 5) 14 (4 - 36) 4 (0 - 14) 

*Considering the start of episode date in the hospital data. FS – Febrile seizures, GBS - Guillain-Barré 
syndrome. 

 

5.5.3 Inclusion of patients with a previous diagnostic record in CPRD  

The last sensitivity analysis assessed the effect of having conducted the completeness 

analysis only on patients with no previous recording of the outcome of interest in CPRD. The 

results of this analysis that considered all patients are presented in Figure 5.5 (originally 

published as Appendix D of the paper’s supporting information), with no appreciable 

differences from Figure 4 of the Section 5.3. When all patients were considered, 
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completeness at one year decreased for febrile seizures and Guillain-Barré syndrome and 

increased for Bell’s palsy and optic neuritis. For all outcomes, absolute differences were 

lower than 4%, showing the results are not sensitive to changes in the cohort.  

 

Figure 5.5. Kaplan-Meier recording estimates considering an event as having a record in CPRD at any time. 
Patients with a record in CPRD prior to HES were considered to have a follow-up of one day. Completeness at one 
year (%, 95% confidence interval) was: BP - 30.7 (29.4-32.1); FS - 43.9 (42.9-45.0); GBS - 43.3 (39.6-47.1); ON - 
30.3 (26.6-34.5). BP – Bell’s palsy, FS – Febrile seizures, GBS – Guillain-Barré syndrome, ON – Optic neuritis.  

 

Overall, the three sensitivity analyses indicate that the results from the study assessing 

delays in recording outcomes in CPRD are robust and can be used when implementing a near 

real-time system and adjusting for delays. An in-depth explanation of the impact of delays 

and possible adjustment for delays is presented in the next Chapter.  

5.6 Overall discussion and conclusions 

The initial feasibility assessment showed CPRD meets some of the conditions necessary to 

implement near real-time vaccine safety surveillance: it is population-based, has good 

validity (based on the existing data) and data are timely enough to allow a real-time activity. 

To proceed with the detailed feasibility assessment, it was necessary to select the 

vaccine/outcome pairs. Due to the need to prepare all the data and explore the issues arising 

from the system implementation, only two pairs were selected (seasonal influenza 

vaccine/Guillain-Barré syndrome and MMR/febrile seizures). The selection was based on 
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consideration of the outcome characteristics (as explained above in the in-depth delays 

assessment) but also the existing vaccines and the frequency of the outcome. Having two 

outcomes with different characteristics allowed the implementation of a system within the 

time frame available and, at the same time, ensured the implementation study captured a 

wider diversity of issues. For example, having both a rarer and a more frequent outcome 

allowed the use of PMaxSPRT and BMaxSPRT (see 4.1 and 7.1).   

When selecting the outcomes, only the outcomes included in the in-depth delays assessment 

were considered. This was to ensure that the delay distribution was known as the system 

included an adjustment for delays, based on the delay distribution (see Section 6.3). Rare 

outcomes were also given preference as a way to understand the power available to detect 

a signal with a small number of events.  

For the vaccines, CPRD has been used in several hypothesis-confirmation vaccine safety 

studies and vaccination records are considered to be complete for vaccines such as MMR160 

(for which general practices are financially incentivised87) but it is not anticipated to 

constitute a good source for vaccines administered outside general practice such as HPV. 

Thus, only vaccines administered in general practice were included.  

After consideration, the pairs selected were seasonal influenza vaccine/Guillain-Barré 

syndrome and MMR/febrile seizures. Guillain-Barré syndrome was deemed to exemplify a 

rare outcome, which is often assessed following seasonal influenza vaccine. This vaccine was 

also considered to be of particular relevance, owing to the specific characteristics of its 

schedule. As seasonal influenza vaccines change on a yearly basis and administration occurs 

within a short period of time there is limited time to detect a signal and implement measures 

should one be identified. For the analysis of this pair, only individuals aged 65 years and 

above were included as this is the group of adults for which the vaccine is universally 

recommended and administered in practices. Regarding MMR/febrile seizures, the decision 

was mainly driven by the known increase in febrile seizures following MMR.75 This pair thus 

served as a positive control. It also met other requirements for its selection: MMR is one of 

the childhood vaccines administered in practices and febrile seizures is a more frequent 

outcome in the age group of interest than Guillain-Barré syndrome. By selecting these pairs 

diversity was achieved – a rare outcome following an adult vaccine and a more frequent one 

following a childhood vaccine, which simultaneously served as a positive control.  

The work conducted to trial the implementation of a near real-time system is presented in 

Chapter 7. Before this, in the next Chapter, data-related aspects of implementing a system 
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are explained and their implications discussed. These aspects include issues with the data 

available to conduct the implementation study using previously collected data and 

implications of delays for the implementation.      
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6 PRACTICAL ASPECTS FOR IMPLEMENTING A NEAR REAL-TIME 

SYSTEM USING CPRD DATA 

6.1 Introduction 

Following the selection of seasonal influenza vaccine/GBS and MMR/febrile seizures as 

vaccine/outcome pairs to assess, and before performing the actual implementation of 

NRTVSS in CPRD, it was necessary to reflect on the data available and how that could affect 

the implementation. This included aspects related to the data that could be used for analysis 

(i.e. the data stored in-house at LSHTM and/or data potentially extracted online, see 3.1.1.3) 

and delays in recording and receiving data (explained in Section 5.3). This Chapter starts by 

expanding on the data availability described in Section 3.1.1.3 and explains how this 

influenced the implementation study, presented in Chapter 7. Following that, it builds on the 

delays paper presented in Section 5.3 and discusses the influence of these delays on the 

implementation of the system, as well as possible adjustments. Overall, this Chapter 

provides a rationale for the data used in the implementation study.  

6.2 Issues with data extraction for the implementation study 

The implementation study presented in Chapter 7 used a monthly sequential time-step, as 

this is the frequency of CPRD data releases. Ideally, it would be possible to extract data 

monthly, however, at the moment, this is limited by the online search tool used to extract 

data, which does not allow searches of special immunisation codes in the immunisation file 

that are required to identify vaccinated individuals (see Sections 3.1.1.3 and 3.2). An 

alternative to get around this issue would be to extract data online for all individuals targeted 

by the vaccine of interest (for example, all those aged 65 years older and above) and then 

apply the algorithms developed to identify vaccinated individuals to this dataset. This option 

would result in the extraction of large amounts of data and would therefore demand more 

computational power. It would also require special ethics permission (special permission is 

required when the number of individuals in a CPRD study is greater than one million).  

To overcome these issues the solution was to use the LSHTM in-house version of the data. 

These data allow for searches of Read codes, therapy codes and specific vaccination 

information contained in the immunisation file, thus allowing extraction of information on a 

limited number of individuals (only those potentially vaccinated). However, LSHTM only 

receives new CPRD data every six months, therefore using these data required the 
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identification of when each record accrued, i.e. in which monthly version of the data it would 

be available for the first time. For example, if data released in July 2016 (one of the data 

releases used, see Section 7.1) are used for analysis it is necessary to identify which data 

were available in the June 2016 release, in the May 2016 release, and so on (see Figure 6.1). 

This can be done by using the last collection date for each practice in each monthly version 

of the data and the dates of each monthly release. Events with a system date and last 

collection date before the date of each monthly release would be included in a given monthly 

release of the data. To conduct the implementation study, practice files from each monthly 

release were thus requested from CPRD to identify the last collection dates. This solution 

minimised the amount of data to extract and the amount of data requested from CPRD and 

was considered the most appropriate for the purposes of mimicking a near real-time system 

in the implementation study. Implications for the use of this system in practice and 

alternative approaches are presented in the discussion (Section 8.4).   

Figure 6.1. Reconstruction of the data accrual process. Arrows in grey represent the data releases not available to 
LSHTM. Based on the data available (July 2016) it was necessary to identify which data were available in the 
previous releases  

6.3 Options to adjust for delays in CPRD  
As previously explained, near real-time vaccine safety surveillance requires timely and 

readily available data but availability of diagnostic data in CPRD is subject to a variety of 

different delays: (i) delays in physicians making a diagnosis after an initial consultation; (ii) 

recording delays; (iii) delays in data being uploaded to data providers; (iv) delays in uploaded 

data being made available to researchers. These delays might make it difficult or impossible 

to implement a system, particularly for vaccines requiring a very timely detection of adverse 

events, such as seasonal influenza. To the best of my knowledge there is no work analysing 

delays in diagnosing a condition in the context of near real-time vaccine safety surveillance. 

Such investigation is beyond the scope of a near real-time system but this type of delay is 

likely to result in random misclassification of the outcome in and outside the risk-window 

(conditions which started before the risk-window are recorded during the risk-window and 

vice-versa) thus biasing the analysis towards the null. The systematic review presented in 

Section 4.1 showed delays in existing systems due to other reasons were dealt with in two 

July 2016
June 2016

May 2016
...
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main ways: (a) delaying the analysis for some weeks; (b) adjusting for delays based on a 

historical delay distribution. The adjustments considered by the systems identified in the 

review focused on delays due to data being unavailable to researchers and were based on 

historical data.113 Site-specific distributions of data accrual were generated and used to 

adjust the number of expected events when using PMaxSPRT, by applying the proportion of 

data estimated to be received by a certain time. For example if, based on historical data, the 

number of expected cases during the first week was ten but only 50% of the data were 

available after the first week, then the adjusted number of expected cases was five. If no 

adjustment were implemented, we would consider ten expected cases, thus overestimating 

the number of expected cases, which in turn would bias the analysis towards no signal. This 

simple approach is only possible if we assume that an underlying distribution of delays exists 

and is constant over time.  

CPRD data structure differs from the data sources used previously to perform near real-time 

vaccine safety surveillance. Practices upload data at different times, and information of the 

time of uploading is available in the data (last collection date) but all data are released to 

researchers simultaneously. As some of the outcomes of interest are diagnoses made mainly 

in secondary care (for example Guillain-Barré syndrome) it is also important to consider 

delays due to recording feedback from other levels of care. The effect of these delays on the 

implementation of the system depends on the test used. As PMaxSPRT and BMaxSPRT were 

the tests selected to implement a system (see Section 7.1) an explanation on the effects on 

delays is provided for these two tests. 

6.3.1 PMaxSPRT 

The work presented in Section 5.3 described delays in recording selected conditions of 

interest for near real-time vaccine safety surveillance. The knowledge generated from these 

analyses can also be used to adjust for these types of delays. It is thus important to consider 

different ways to carry out these adjustments and how to best implement them in light of 

the CPRD structure.  

Delays in obtaining data available for analysis are important, due to biases related to 

differences in the accrual of case and comparator data. In the case of PMaxSPRT the 

comparison is an observed vs. expected number of cases. Therefore, delays need to be taken 

into account if there is differential data accrual in the observed and expected cases. As 

explained in Section 7.1, PMaxSPRT is implemented by applying a historical rate to a follow-

up period. As this follow-up period uses the last collection date when calculating rates there 
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is no differential data accrual due to delays in practices uploading data. Nevertheless, as 

explored in Section 7.4, this source of delay might lead to a decrease in power.  

On the other hand, delays in recording outcomes will lead to biased results if unaccounted 

for. This happens because the rates calculated to generate the number of expected events 

are based on historical (stable) data where delays do not affect the rates, whilst the observed 

number of cases is subject to recording delays because they are obtained closer to the time 

of the last collection date from the practice and therefore there is less time for data to 

accrue. Overall, the bias would be towards the null, resulting in loss of power to identify a 

signal. The issue is represented in Figure 6.2 where four patients with an outcome of interest 

and different recording patterns are depicted.  

Figure 6.2. Potential patterns of recording for four patients experiencing the outcome of interest within the risk 
window. A. represents what would be observed using stable data and B. what would be observed in recent data. 
lcd - last collection date 

 

For the purposes of this explanation, it is assumed the system date represents the date the 

event was entered in the patient’s record. Figure 6.2 A shows that the outcome might be 
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recorded at different times: outside the risk-window and after data have been uploaded for 

the next data release (P1); during the risk-window but after data have been uploaded for the 

next release (P2); during the risk-window and before data have been uploaded (P3); or 

outside the risk-window, before the data are uploaded for the next data release (P4). Figure 

6.2 B represents what would be observed in the most recent version of the data: only two of 

the four events would be captured, given that the remaining two events were recorded after 

the data were uploaded. The missing events would only be observed in later versions of the 

data.  

From the other two sources of delays (recording outcomes and receiving data) and when 

using PMaxSPRT, delays in recording are the delays that require adjustment. Below, possible 

ways to implement this adjustment are presented and discussed. 

1. Apply a single recording delay distribution at the patient level – Data accrual 

depends on the outcome of interest as seen in Section 5.3, but also on the time 

available for data to accrue (the longer the available time, the more data will accrue). 

When considering observed events in a post-vaccination risk-window the latter will 

vary from patient to patient depending on the time between the date of vaccination 

and last collection date. To allow for the delays, the observed number of events 

could be increased according to the delay distribution, but increasing the number of 

observed events would artificially inflate power to detect a signal. A better solution 

is to keep the observed number, but reduce each individual’s follow-up time based 

on the previously generated delay distribution (see Section 5.3). The adjusted follow-

up time is then summed and the historical outcome rate is applied to the total 

adjusted follow-up. This adjustment helps to ensure the comparison of observed vs. 

expected is unbiased.  

The adjustment using the delay distribution can be done with different levels of 

complexity. A detailed adjustment would consider, for each individual, the interval 

between each day of the vaccine risk-window and the end of follow-up time. For 

each of these intervals, the proportion of records accrued within that number of days 

(from the delay distribution) is used. These proportions are then summed resulting 

in a patient-level adjusted follow-up time. For example, consider an outcome with a 

risk-window of two days and an individual with 60 days between the first day of the 

risk-window and the end of follow-up time. If the proportion of records accrued 

within 60 days is 0.80 and the corresponding proportion for 59 days is 0.78, then the 

adjusted follow-up time for that same patient would be 1.58 days (0.80+0.78) 
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instead of two. This correction is easy to apply to short risk-windows as illustrated in 

the example, but would require a huge analytical effort for long risk-windows such 

as the window considered for Guillain-Barré syndrome (42 days, see Section 7.1). A 

simpler way to implement the correction is to consider the risk-window mid-point 

and apply the correction based on the interval between this point and the end of 

follow-up time. The implementation is then similar to the one explained above but 

using a single interval and thus a single proportion of records accrued. This is a 

simplification of the data accrual process because it assumes the event would occur 

at the risk-window mid-point but does not require successive adjustments for each 

day. Figure 6.3 provides a representation of this adjustment using the same four 

hypothetical patients presented in Figure 6.2 and assuming a risk-window of 42 days. 

The first individual has an initial follow-up time of 42 days (corresponding to the risk-

window) and an interval of 30 days between the risk-window mid-point and end of 

follow-up. If 75% of the records are expected to accrue within 30 days then the 

adjusted follow-up is 22.5 days. This process is repeated for all patients and each 

adjusted follow-up is summed yielding the total adjusted follow-up time. The 

outcome rate is then applied to this follow-up time to obtain the adjusted number 

of expected events.  

A correction based on the mid-point is simple to implement, and relies on the delay 

distribution generated for the work previously conducted and presented in Section 

5.3. For these reasons, this was the adjustment used in the implementation study, 

reported in Section 7.1. Other options considered are presented below.  

Figure 6.3. Representation of data considered for adjustment of delays at the patient level. 
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2. Consider the system date – Instead of using the event date and adjusting for delays 

it is possible to generate the outcome rate based on the system date, thus 

considering a recorded outcome rate instead of an outcome rate. Using the system 

date for outcomes can be done in different ways: 

a. Calculate the outcome rate by considering the events recorded within the 

historical period. This rate would be applied to the risk-window selected 

after vaccination, which would give the expected number of recorded cases 

within the risk-window. The observed and expected number of cases would 

be equivalent. However, this would capture events occurring before the 

vaccination but recorded in the risk-window, and would not include some 

events occurring in the risk period but recorded outside it. This random 

misclassification would thus give a biased estimate.  This option is depicted 

in Figure 6.4 using the same example from previous Figures. A fifth individual 

was included to capture the possibility of including events occurring before 

vaccination.   

Figure 6.4. Outcomes considered when the adjustment is based on the use of the system date.  

 

b. To avoid random misclassification it is necessary to consider both the system 

and event dates. In this case, only outcomes happening during the risk-

window and recorded during a season should be included. These are the 

events considered to calculate the observed number. To generate an 

equivalent historical rate representing this situation, it is necessary to 

consider vaccinated individuals in the historical data and then only include 
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analysis. Additionally, and as explained in Section 6.2, it is important to know 

at which data release the record first appeared in the data. Figure 6.5 

Data release 

Vaccination 

Risk window 

P1 

P2 

P3 

P4 

Two events are considered but one occurred outside the risk window. Analysis is biased.  

X 

X 

X 

X 

Event date 

System date 

X  lcd P5 



 

142 
 

represents the events considered to calculate the historical rate and the 

observed number of events if the intention is to include events both 

occurring within the risk-window and being captured in a specific data 

release. This assessment is based on the last collection date for each data 

release. It thus assumes that practices upload their data at approximately 

the same time before each new release. Implementing this adjustment, 

would require assessment of the vaccination status for the entire historical 

period as well as information on the last collection date for each monthly 

release, for both the historical and study period.  

 

Figure 6.5. Events considered based on the system date before the next data release 

 

Option 2a was biased, hence not suitable for implementation. Options 1 and 2b are valid but 

present disadvantages as well as advantages. Option 1 was simple to implement and did not 

require additional data extraction and analysis as it used data generated for the analysis 

presented in Section 5.3. Option 2b would require information on vaccinated individuals for 

the historical period, as well as monthly information on the last collection date for this 

period. Additionally, it would result in a loss in power as the historical rate would be 

generated using less data.  Hence, Option 1 was selected and used in the implementation 

study (see Section 7.1). 
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When implementing a near real-time system the issue of data availability goes beyond delays 

in recording and receiving data; it is necessary to consider periods (risk or comparison) that 

are to be included in the analysis but have not yet accrued. When applying PMaxSPRT to 
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not the case and so partially accrued periods need attention. Furthermore, delays in data 

accrual should also be taken into consideration. Below, the issues of partially accrued periods 

and delays in data availability are presented in the context of BMaxSPRT.  

6.3.2.1 Partially accrued periods 

BMaxSPRT using a self-controlled approach involves comparing the number of events 

occurring during the risk period with those occurring during the comparison period. The 

comparison period might be pre- or post-vaccination. For the former, if the risk-window is 

long and has not yet accrued, comparing events during the comparison and risk period might 

result in a biased estimate (underestimating the risk). The partially accrued period might 

result from an actual time constraint (with the period of interest in the future) or from a 

delay in receiving data from a practice. Despite being an issue with data delays, the latter is 

considered in this Section as the mechanism of bias is similar to that resulting from an actual 

partially accrued period. This is illustrated in Figure 6.6 considering CPRD’s data structure, 

for a vaccinated individual and a specific practice. If the data were uploaded on 28th March 

and the release occurred on 6th April and this period is within the comparison period, there 

would be no information regarding that interval.  

Figure 6.6. Schematic representation of data available for analysis for the risk and comparison periods, for a 
release and a specific patient. lcd – last collection date 
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to calculate the average number of days of the risk/comparison period that have accrued 

and consider only that time period for the equivalent period (comparison or risk, depending 

on which one comes first). Alternatively, it is possible to count the number of days accrued 

in each period for each patient, sum them and calculate the ratio of the comparison period 

to the risk period. This ratio can be used as a matching ratio in the BMaxSPRT (see Section 

3.3.2). As explained in 7.1, BMaxSPRT was used to assess febrile seizures following MMR and 

the latter adjustment option was preferred as it makes use of all the data available 

(compared to the use of an average accrued period). Additionally, the comparison period 

was split into pre- and post risk-window periods. This further minimised the issue of partially 

accrued periods. Figure 6.7 presents this adjustment together with the adjustment 

considered for delays in recording outcomes (see Section 6.3.2.2), for a specific individual.  

 
Data  

Observed Adjusted 
Period Period duration (days) 
Control 1 (c1) 5 4 
Risk 15 11 
Control 2 (c2) 7 4 
 

Ratio (control/risk) 
Control/Risk 5+7

15
≈ 0.8 4+4

11
≈ 0.7 

 

Figure 6.7. Adjustments for delays when using a binomial-based maximized sequential probability ratio test 
(BMaxSPRT). The number of days in each period is adjusted by the expected recording (r) and the ratio of adjusted 
days in the control and risk period is calculated for each patient. The patient-level ratios are then averaged and 
used as a matching ratio in the BMaxSPRT.  
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5.3) indicates a rapid change in the accrual rate for the first five weeks, which includes the 

risk and comparison periods used in the implementation study (see Section 7.1). Therefore, 

the adjustment used for PMaxSPRT was also applied in this context, for each period 

considered. In this case, the proportion of data accrued (based on the interval between each 

period mid-point and last collection date) was applied to the number of days of that period, 

generating an adjusted number of days. This adjusted number of days was then summed 

across all individuals for each period (risk and comparison) and the ratio of the two adjusted 

periods was used to incorporate partially accrued periods as explained above. Figure 6.7 

summarizes the overall adjustment (for delays and partially accrued risk windows).  

 

In the next Chapter, the implementation of a near real-time system using CPRD is presented, 

using the LSHTM version of the data and the adjustments for delays both for PMaxSPRT and 

BMaxSPRT, as explained above.  
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7 IMPLEMENTING A NEAR REAL-TIME SYSTEM USING CPRD DATA 

Following selection of the vaccine/outcome pairs to include in the trial implementation 

(seasonal influenza vaccine/GBS and MMR/febrile seizures) and definition of adjustment for 

delays, I proceeded to perform the abovementioned implementation of a near real-time 

system using CPRD data. The current Chapter presents the issues related to this 

implementation. This encompasses assessment of both how to best implement a system and 

how to improve existing limitations. The Chapter starts by detailing how the trial 

implementation was performed; in particular, it contains information on the selection of the 

most appropriate statistical test to identify a signal, adjustment for delays, and calculation 

of power to detect a signal. This work has been written as a paper (Paper 3), included here. 

In addition to the work presented in the paper, I provide further information on the use of 

variable matching ratios when applying BMaxSPRT. 

As part of the work performed to trial the implementation of a system, I identified that there 

was limited power to recognise an increased risk of GBS following seasonal influenza. Existing 

delays in recording and receiving data for analysis can limit the data available to perform 

NRTVSS, thus decreasing power to detect a signal in a timely way. Therefore, I re-assessed 

power in the absence of delays. This work has also been written as a paper (Paper 4), which 

is included in this Chapter, after the explanation of variable matching ratios. The Chapter 

finishes with the main conclusions of the work conducted to implement a near real-time 

system and improve its performance.  

7.1 Trial implementation (Paper 3) 

This paper was published in Vaccine in October 2017. It reports the design and results of the 

trial implementation of a near real-time system using CPRD data.  

As outlined in Section 5.6, I selected two vaccine/outcome pairs to trial the implementation 

of a system: seasonal influenza vaccine/GBS as an example of a rare outcome and MMR 

vaccine/febrile seizures as a positive control and an example of a more frequent outcome. 

In this paper, I detail how implementation was performed (including the choice of the most 

appropriate statistical test to identify a safety signal and adjustment for delays). The final 

step to assess the feasibility of implementing a system (assessment of power, see Section 

5.1), was also performed at this stage by calculating the power to detect a signal. 
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For seasonal influenza/GBS I implemented a system for the 2013/2014 and 2014/2015 

influenza seasons; for MMR/seizures the surveillance period was July 2014-June 2015. I used 

the continuous PMaxSPRT for both pairs and the continuous BMaxSPRT for MMR/febrile 

seizures; power calculations were performed for detecting increases in relative risk (RR) from 

1.5-10. The results showed no signal for influenza/GBS in either season. Power to detect a 

signal was above 80% for detecting 4-fold increases in the risk of GBS following seasonal 

influenza vaccine. For MMR/seizures, there was a signal with PMaxSPRT but not with 

BMaxSPRT. Power was ≥80% for detecting 2.5-fold increases in the risk of febrile seizures, 

for both tests. These results show that CPRD can be used to implement NRTVSS to exclude 

large increases in the risk of rare outcomes after seasonal influenza and lower increases in 

risk for more frequent outcomes. 

This paper is supported by additional information, including code-lists to identify the 

outcomes studied, algorithms developed to identify vaccinated individuals, determination of 

follow-up time, adjustment for delays, and handling of repeated febrile seizure episodes 

(Appendix A to E in the paper, respectively). These appendices are presented in the thesis in 

a number of places: Appendix A was previously presented in Section 5.4, as these same code-

lists were used for the assessment of delays in recording GBS and febrile seizures (Chapter 

5). Appendix D (adjustment for delays) includes the graphical representation of the 

adjustment for delays considered for PMaxSPRT and BMaxSPRT; it was presented in Chapter 

6, in which the issue of delays was explained in detail (Figure 6.3 and Figure 6.7, respectively). 

The remaining appendices (B. Vaccinated individuals, C. Follow-up time, and E. Repeated 

febrile seizures episodes) are presented in order after Paper 3, in Section 7.2, below. 
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a b s t r a c t

Introduction: Near real-time vaccine safety surveillance (NRTVSS) using electronic health records is
increasingly used to rapidly detect vaccine safety signals. NRTVSS has not been fully implemented in
the UK. We assessed the feasibility of implementing this surveillance using the UK Clinical Practice
Research Datalink (CPRD).
Methods: We selected seasonal influenza vaccine/Guillain-Barré Syndrome (GBS) as an example of a rare
outcome and measles-mumps-rubella (MMR) vaccine/febrile seizures as a positive control. For influenza/
GBS we implemented a system for the 2013/2014 and 2014/2015 influenza seasons; for MMR/seizures
the surveillance period was July 2014–June 2015. We used the continuous Poisson-based maximized
sequential probability ratio test (PMaxSPRT), comparing observed-to-expected events, for both pairs.
We calculated an age-sex-adjusted rate using 5 years of historic data and used this rate to calculate
the expected number of events in pre-specified post-vaccination risk-window (GBS: 0–42 days, seizures:
6–21 days). For MMR/seizures we also implemented the system using the Binominal-based maximized
sequential probability ratio test (BMaxSPRT). For this, we compared seizures in the risk-window
(6–21 days) to a control window (0–5 and 22–32 days). Delays in recording outcomes influence the data
available, so we adjusted the expected number of events using a historical distribution of delays in
recording GBS/febrile seizures. Analyses were run using data up to each CPRD monthly release. We also
performed power calculations for detecting increases in relative risk (RR) from 1.5 to 10.
Results: For influenza/GBS we implemented a system in both seasons with no signal. Power to detect a
signal was >80% for RR � 4. For MMR/seizures we were able to identify a signal with PMaxSPRT but
not with BMaxSPRT. Power � 80% for RR � 2.5 for both tests.
Conclusion: CPRD is a potential data source to implement NRTVSS to exclude large increases in the risk of
rare outcomes after seasonal influenza and lower increases in risk for more frequent outcomes.
� 2017 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Near real-time vaccine safety surveillance (NRTVSS) using elec-
tronic health records is amongst the tools available to perform
post-licensure vaccine safety surveillance. NRTVSS is usually
started shortly after a new vaccine is introduced and data is anal-
ysed at repeated points in time. Near real-time surveillance was
introduced in the USA in 2005 first using the sequential probability
ratio test and later its maximized version. It is now used routinely

in this country [1]. It has allowed the identification of several
safety signals [2].

In the UK, there are electronic health records available such as
the Clinical Practice Research Datalink (CPRD). NRTVSS has been
implemented in the UK using spontaneous reports to obtain the
observed number of events and CPRD to calculate the expected
number of events. This implementation inherits spontaneous
reports limitations, including underreporting [3]. A NRTVSS fully
relying on electronic health records has not been implemented to
date.

When envisaging a new data source to implement NRTVSS
timeliness is a key consideration. In CPRD, delays can happen
due to: (i) delays in making a diagnosis after an initial consulta-
tion; (ii) delays in recording diagnosis made in other levels of care
(e.g. hospital); (iii) delays in receiving data for analysis. To the best
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of our knowledge, there has been no work to explore systemati-
cally the influence of (i) on recording patterns using CPRD data.
For (ii), a previous analysis of CPRD data looking at conditions of
interest for vaccine safety has shown that recording delays exist,
but the majority of records accrue within a month after the date
of the event [4]. Researchers receive CPRD data on a monthly basis
(delay (iii)). Thus, from the evidence to date CPRD is a potential
source of data to implement NRTVSS.

In addition to delays, several questions regarding the actual
implementation of a system using CPRD data remain unaddressed,
such as which statistical method to use, how to account for delays,
and whether there is enough power to identify safety signals. To
address these we sought to trial the implementation of NRTVSS
using previously collected CPRD data.

2. Methods

2.1. Data source

We used data from CPRD, a primary health care database with
anonymised health records from a broadly representative sample
(�6.9%) of the UK population. CPRD includes information on demo-
graphics, coded diagnosis, therapies, vaccines, health-related beha-
viours, and referrals to secondary care [5]. Diagnoses recorded in
CPRD include diagnoses made both in primary care and in hospital.
Hospital diagnoses are fed back to GPs via letter, which are later
coded in the system. Diagnoses are coded using Read-codes, a hier-
archical thesaurus of clinical terms used in the UK since 1985 [6].

CPRD contains several relevant dates. For each patient there is
information on the patient’s current registration with the practice
(crd) and the patient left the practice (tod). Each record contains
the date when the record was entered into the system (system
date) and the date deemed to represent when the event registered
took place (event date). At the practice-level, CPRD includes the
date when the practice met certain recording quality criteria (up-
to-standard date, uts) and the date when data were last collected
from the practice before each monthly release (last collection date,
lcd) [5].

2.2. Vaccine/outcome pairs

We selected two pairs: seasonal influenza vaccine/Guillain-
Barré syndrome (GBS) and Measles-Mumps-Rubella (MMR) vac-
cine/febrile seizures. NRTVSS is of particular relevance to assess
seasonal influenza vaccine due to the short time available for
action, and GBS is a rare outcome of interest following influenza
vaccine. Influenza vaccine/GBS was thus chosen to assess the
potential of CPRD as a data source to implement NRTVSS for rare
events. Febrile seizures are a known adverse reaction seen after
MMR vaccine, so we selected this pair to represent a positive con-
trol and as an example of a somewhat less rare event with a child-
hood vaccine [7]. Appendix A presents code-lists used to identify
GBS/seizures and Appendix B the algorithms used to identify vac-
cinated individuals.

3. Analysis

3.1. Statistical tests

Choice of the statistical test to use should be guided by the test
characteristics (e.g. power and underlying assumptions), frequency
of data updates and frequency of the outcome under study. One
approach is to select first the general group of tests (continuous
or group sequential) and then choose a specific version of the test
[2]. For continuous tests, data are looked at as often as desired, and

ideally when a new event is observed, while for group sequential
tests data are interrogated at discrete points in time [2]. Previous
work has shown that continuous sequential tests perform better
than group sequential [8] and aggregate data (weekly or monthly)
can be used in a continuous way [9]. As CPRD is updated monthly,
we considered continuous sequential tests more appropriate.

Poisson-based Maximized Sequential Probability Ratio Test
(PMaxSPRT), the Binomial-based Maximized Sequential Probability
Ratio Test (BMaxSPRT), and the Conditional Maximized Sequential
Probability Ratio Test (CMaxSPRT) are the continuous sequential
tests available. PMaxSPRT involves a comparison observed-to-
expected and its use has been proposed when less than 50 events
are expected, as it is a more powerful test [2]. Disadvantages
include limited ability to adjust for confounders and potential bias
by secular or coding trends, as it relies on historical data. It also
does not allow for uncertainty in the expected count (it is taken
as a fixed expected number). BMaxSPRT compares the number of
events in exposed-to-unexposed individuals or in periods within
individuals. This allows further adjustment for potential con-
founders but lessens power. Unlike PMaxSPRT, CMaxSPRT was
designed to account for uncertainty in the historical data. The com-
parison is made in terms of the cumulative person-time it took to
observe a certain number of adverse events in the historical and
surveillance data. It assumes event rates are constant in both ver-
sions of the data.

Given the rarity of GBS we selected PMaxSPRT for influenza vac-
cine/GBS. For seizures/MMR the number of expected events was
still lower than 50 (see below), suggesting the use of PMaxSPRT.
However, previous works have also considered the simultaneous
use of PMaxSPRT and BMaxSPRT owing to their complementary
strengths [9]. We preferred this approach as it allowed us to fur-
ther identify challenges/potential solutions when using CPRD to
perform NRTVSS. It has been previously suggested that PMaxSPRT
gives biased results when a small sample is used to estimate the
number of expected events [10]. To avoid this, we used a long his-
torical period (5 years) to obtain more stable estimates and thus
reduce uncertainty to negligible levels relative to uncertainty in
the observed data. It has also been suggested as an ad hoc guideline
that an alternative test (CMaxSPRT) should be used when the num-
ber of observed events in the historical data is less than five times
the number of expected events in the surveillance data. We thus
assessed whether this ad hoc rule held in our data.

Below we detail how we obtained the observed and expected
numbers of events to implement PMaxSPRT for each pair. We
start with an explanation for seasonal influenza/GBS followed by
MMR/seizures. For the latter we emphasize aspects that differ from
the first pair. For BMaxSPRT we used a case-only design and
compared the number of cases during the exposed-to-unexposed
periods, also detailed below. Analyses were performed using R
package Sequential 2.3.1 [11].

3.2. Influenza/GBS

We studied the 2013/14 and 2014/15 seasons (1st September–
31st March), using data released in July 2015 and 2016, respec-
tively. Using these data releases allowed at least a year from the
event date for them to be recorded. In all analyses we did not con-
sider the small proportion of events that are recorded with a delay
>1 year [4].

3.2.1. Historical rates, expected and observed number of events
(PMaxSPRT)

For the historical comparison, we used the general background
rate of GBS among individuals aged �65 years as this is the age in
which seasonal influenza vaccine is routinely recommended and
given in GP practices. For each study season, we calculated GBS
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historical rates stratified by age (65–74, 75–84, �85 years old) and
gender for the 5 previous seasons (2008/09–2012/13 and 2009/10–
2013/14, respectively). Numerators were first-ever GBS cases for
active patients. We have previously demonstrated that when GP
systems are updated the system date (the date a record is added
to a patient’s file, assigned automatically by the general practice
software) of some records can be altered to a later date [4]. For
those records, it is not possible to estimate accurately the delay
in recording the outcome. Hence, these records were identified
using the approach proposed in [4] and were excluded. Active
patients were defined as contributing follow-up time during each
season. Start of follow-up was the latest of uts, crd (plus 1 year
to exclude retrospective recording of previous diagnoses when reg-
istering with a new practice [12]), or 1st September 2008–13. End
of follow-up was the earliest of date of tod, lcd, or 31st March
2009–14. We averaged seasonal GBS rates over the five historical
seasons and applied this rate to the vaccine-exposed follow-up
time in the study seasons, to obtain an expected number of events
(adjusted by age and gender). For the study seasons end of follow-
up was the earliest of tod, lcd or 42 days after vaccination
(Appendix C) [13]. The observed number of events was the total
number recorded in the vaccine risk-window at the time of each
analysis.

3.2.2. Delays
For each patient we calculated the time between the risk-

window midpoint and lcd (time = d) and then used the previously
generated delay distribution [4] to calculate the probability (rd)
that an event that did occur within a year would be recorded by
delay d. This was used to adjust the follow-up to obtain an adjusted
follow-up. For example, if a patient had 30 days between the risk-
window mid-point and lcd and rd = 75%, then only 75% of this
patient follow-up time was considered (Fig. 2 in Appendix D).
We assumed no delays in vaccination data.

3.3. MMR/Seizures

The system was implemented for one year (July 2014–June
2015) using data released in July 2016.

3.3.1. Historical rates, expected and observed number of events
(PMaxSPRT)

We calculated febrile seizures rates during the second year of
life (12–23 months, timing of MMR 1st dose [13]), stratified by
age (two weeks periods) and gender, for the five years previous
to the study period (July 2009–June 2014). We first identified all
febrile seizures events for eligible patients and excluded records
likely to be duplicated (Appendix E).

We calculated follow-up time and the expected and observed
number of events as described above (Appendix C) for the histori-
cal period July 2009–June 2014 and the study period July 2014–
June 2015. A previous study looking at the risk of febrile seizures
following MMR and using hospital data identified a risk-window
of 6–11 days [7]. In this work, we used primary care data, which
are likely to capture febrile seizures with some delay. This can hap-
pen if parents seek care outside primary care (e.g. emergency ser-
vices) and GPs only receive and register the information regarding
the seizure a few days after it has occurred. We thus allowed extra
time, by using a risk window of 6–21 days to capture such events.

3.3.2. BMaxSPRT
To apply BMaxSPRT we used the same risk-window of 6–

21 days post-vaccination and used a control period of 1–5 (c1)
and 22–32 (c2) days post-vaccination, selected to be a period of
the same length and close to the risk period.

3.3.3. Delays (BMaxSPRT)
For BMaxSPRT it was necessary to adjust for delays for each of

the post-vaccination periods (the risk period and c1, c2). This was
done by calculating an adjusted follow-up period for each of these
intervals as shown in Fig. 3 in Appendix D. For each individual we
then calculated a ratio of the corrected follow-up for control period
compared to the risk period (see Appendix D for an example) and
then obtained an average ratio across individuals. This average
ratio was included in the calculations for the BMaxSPRT method
as the matching ratio [9]. This final adjustment simultaneously
accounted for delays in practices uploading data and partially
accrued period.

3.4. Implementation

To mimic a NRTVSS using pre-existing data we first recreated
how data accrued. To determine whether a record of interest
would have been in each data release we used: release date; lcd
(practice-level); event date of the record; and system date of the
record. CPRD is released on a monthly basis, on the first Monday
of each month. For a particular release we considered the outcome
would be captured if the event date, system date, and last
collection date all happened before the date of release. For exam-
ple, an event taking place (event date) on 9/10/2014, with a system
date of 10/11/2014, and lcd 28/10/2014 for the November release
would not appear in the November. If lcd for the December release
was 25/11/2014 then the event would appear in December.

As no signal was expected for influenza/GBS we further tested
NRTVSS implementation by adding cases to generate an increase
in risk of approximately 4 and 5-fold, which power calculations
suggested should be detectable.

Implementation was done graphically by calculating the log-
likelihood ratio test at the time of each data release. For PMaxSPRT
the log-likelihood is based on the number of observed and
expected events while for BMaxSPRT it considers the number of
observed events occurring in the control and risk periods. The
results from the log-likelihood ratio test were compared with the
critical limit. For each vaccine/outcome pair and study period we
calculated critical limits considering a minimum number of
observed events to reject the null hypothesis of 1, 2, and 4.

3.5. Power and expected time to signal

Post-licensure vaccine safety surveillance aims at detecting sig-
nals that might have been missed before vaccine approval, due to
the lack of power in the analyses conducted. When considering
NRTVSS we thus need to assess power. The R package Sequential
includes system performance tools, allowing calculating of power
and expected time to signal [11].

Power is affected by several factors: incidence of the outcome
(both background incidence and incidence following vaccination),
vaccine uptake, vaccine risk-window length, length of the study
period, delays in receiving the data, relative risk (RR) to be
detected, events in the first look at the data, minimum number
of events before rejecting the null, and level of significance. Calcu-
lations were performed for a plausible range of RR (1.5–10), con-
sidered no events in the first look at the data, and a level of
significance of 5% (a = 0.05). For PMaxSPRT we also required 1, 2
or 4 events before rejecting the null [14] and the remaining factors
were integrated through the expected number of events at the end
of the surveillance period. For BMaxSPRT we considered the total
number of events at the end of the surveillance period (both from
risk-window and control periods).

Expected time to signal is conditional on having identified a sig-
nal and is obtained in the units of expected number of events. As
CPRD data do not accrue at a constant rate, to know at which
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release we would expect a signal we evaluated at which release the
number of expected events would have been achieved.

4. Results

Table 1 presents the number of doses identified and the main
characteristics of individuals receiving the vaccine of interest.

4.1. Seasonal influenza/GBS

We identified 1.89 and 1.66 expected events for season 2013–
14 and 2014–15, respectively. The historical rates used were based
on 33 observed events for each season. Hence, the use of

CMaxSPRT was not deemed necessary. Fig. 1 presents system
implementation. No signal was identified for both seasons. When
we added cases to generate an increase in risk of 4- and 5-fold
we found, for an increase in risk of 4, the signal would be identified
at the beginning of January and February for the season 2013/14
and 2014/15, respectively, if a minimum of 4 events was stipu-
lated. For an increase of 5 times the risk the signals would be
detected a month before (Fig. 2).

Table 2 presents power and expected time to signal for sea-
sonal influenza/GBS and both seasons. In general, there was
power � 80% to detect RR � 4. If there was a signal this would
be detected at the beginning of December for large increases
in risk (6–8 times) and at the beginning of January for lower
increases (4–5 times).

Table 1
Main characteristics of individuals receiving the vaccine of interest for the pairs included.

Characteristic Vaccine/outcome pair

Influenza/GBS season 2013–14 Influenza/GBS season 2014–15 MMR/Febrile seizures

Number of doses (n) 533,110 477,454 28,249

Sex – n (%)
Male 240,884 (45.2) 216,224 (45.3) 14,474 (51.2)
Female 292,226 (54.8) 261,230 (54.7) 13,775 (48.8)

Age (years) – n (%)
65–74 270,690 (50.8) 242,168 (50.7) –a

75–84 188,423 (35.3) 168,160 (35.2) –a

�85 73,997 (13.9) 67,126 (14.1) –a

Age (months) – n (%)
12 –a –a 11,460 (40.6)
13 –a –a 10,049 (35.6)
14 –a –a 3320 (11.8)
�15 –a –a 3420 (12.1)

GBS – Guillain-Barre syndrome.
MMR – Measles-mumps-rubella.

a Age (at time of vaccination) is expressed in years for seasonal influenza/GBS and months for MMR/febrile seizures.

Fig. 1. Implementation of a system for influenza vaccine/GBS for season 2013–14 (A) and season 2014–15 (B). No signal is detected in any of the seasons.
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4.2. MMR/seizures

After investigation of duplicated records of febrile seizures we
decided to exclude those occurring with three days of one another
(Appendix E). We identified 11.3 expected episodes in the study
period and the historical rates were based on 2693 observed
events. Fig. 3 presents NRTVSS implementation. We identified a
signal using PMaxSPRT. For BMaxSPRT the signal was just missed.

Table 3 presents power and expected time to signal for febrile
seizures/MMR based on a one-year surveillance period. We
observed power � 80% to detect RR � 2.5. If there was a signal this
would be detected at the beginning of September (2 months after
beginning of surveillance) using PMaxSPRT for RR of �5, and in
subsequent months for lower increases in risk. Power for
BMaxSPRT was lower but would still allow detection of an RR of
�2.5.

5. Discussion

We systematically assessed the feasibility of implementing a
NRTVSS using data from CPRD. Our study shows that it is feasible

to use CPRD and it would enable detection of medium/large
increases in risk of GBS following seasonal influenza vaccine
among individuals aged �65 years, and smaller increases in the
risk of febrile seizures following first dose of MMR.

For influenza/GBS, CPRD would only enable detection of large
increases in risk. In addition, the signal would only be detected
around mid-season (beginning of January) which might be late,
as the vaccine is recommended early in the season [15]. Despite
limited power to detect an increased risk, our finding of no
increased risk of GBS following seasonal influenza vaccine seems
consistent with the existing literature. For example, a recent work
assessing GBS following influenza vaccine in the USA between
2010/11 and 2013/14 found no signal for the season 2013/14, the
season we also assessed as part of our work [16]. Overall, we
believe the system now proposed addresses some of the limita-
tions of the existing system, which is based on spontaneous reports
and thus is limited by underreporting [3].

We were able to replicate a known signal for febrile seizures fol-
lowing MMR based a one-year surveillance period. This signal was
identified only with PMaxSPRT (after 3 months of surveillance, if a
minimum events of 2 events was stipulated). Although BMaxSPRT
did not quite signal as it is a less powerful test, it has the advantage

Fig. 2. Implementation of a system for influenza vaccine/GBS for season 2013–14 (A) and season 2014–15 (B), assuming an increase in risk of 4 and 5 times. A signal is
detected at different points in time depending on critical limits considered.

Table 2
Power and expected time to signal for seasonal influenza/GBS (seasons 2013–14 and 2014–15) using Poisson-based Maximized Sequential Probability Ratio.

Minimum events Season Data available at Power (time to signal in months from beginning of surveillance)a

Relative risk

1.5 2 2.5 3 4 5 6 8 10

1 2013–14 07–04-2014 13 25 40 55 (4) 78 (4) 91 (3) 97 (3) 100 (3) 100 (3)
2014–15 06–04-2015 12 23 37 51 (4) 74 (4) 88 (4) 95 (4) 99 (3) 100 (3)

2 2013–14 07–04-2014 14 28 44 60 (4) 82 (4) 93 (3) 98 (3) 100 (3) 100 (3)
2014–15 06–04-2015 14 26 41 55 (4) 77 (4) 90 (4) 96 (4) 100 (3) 100 (3)

4 2013–14 07–04-2014 16 33 50 65 (4) 86 (4) 95 (4) 98 (4) 100 (3) 100 (3)
2014–15 06–04-2015 16 31 47 62 (4) 83 (4) 93 (4) 98 (4) 100 (4) 100 (4)

Cells in bold refer to power �80%.
PMaxSPRT - Poisson-based Maximized Sequential Probability Ratio.

a Time to signal is only displayed for cells where equivalent power�50%.
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of having a much more relevant comparator period that should be
less prone to bias and would likely have signalled with an extended
surveillance period. We would therefore suggest that despite the
low number of expected events (11) it is still worthwhile using this
method in addition to PMaxSPRT to make the signal more robust.
Others have suggested a minimum number of expected events of
50 [2].

A further aspect is the minimum number of events required to
reject the null hypothesis. As previous work has suggested, reject-
ing the null hypothesis only after a certain number of events
increases power [14]. Given we have limited power for seasonal
influenza/GBS we would recommend implementing a system with
a requirement of 4 events before rejecting the null.

Vaccine safety studies require careful specification of risk-
windows and, if applicable, comparator windows. This includes
not only knowledge of the characteristics of the vaccine/outcome
pair under study but also the data available for analysis. In the case
of MMR/seizures we decided to use a longer risk-window than pre-
viously suggested (6–21 days instead of 6–11 days) to account for
delayed recording of seizures in the primary care data. If our choice

resulted in an unduly long risk-window the result would be an
underestimation of the risk and thus a reduction in the power to
detect a signal. In practice, a way to address uncertainty in the
specification of risk-windows is to conduct a sensitivity analysis
using an alternative risk/comparator window. Alternatively, this
uncertainty can be addressed at the confirmatory stage by looking
at the distribution of cases within the risk-window.

Data quality should also be considered. Our previous assess-
ment of completeness of records first diagnosed in hospital showed
that CPRD had low sensitivity to capture GBS. However, if this sub-
optimal sensitivity is constant over time, for the purposes of the
current system the effect would be a decrease in power to detect
an event [2]. We know of no studies assessing the positive predic-
tive value of the outcomes included. As for the vaccination data,
the vaccines we selected are administered in general practices
and GPs are financially incentivised to achieve certain thresholds
of vaccine uptake. It is thus expected that individuals classified
as vaccinated are indeed so.

Our study presents several limitations. The use of PMaxSPRT is
susceptible to uncertainty in historical rates and a conditional test

Table 3
Power and expected time to signal for MMR/febrile seizures after, using Poisson and Binomial-based Maximized Sequential Probability Ratio.

Minimum events Test Data available at Power (time to signal in months from beginning of surveillance)a

Relative risk

1.5 2 2.5 3 4 5 6 8 10

1 PMaxSPRT 06–07-2015 30 73 (5) 95 (4) 99 (3) 100 (2) 100 (1) 100 (1) 100 (1) 100 (1)
BMaxSPRT 06–07-2015 28 63 (6) 85 (6) 95 (5) 99 (5) 100 (4) 100 (3) 100 (3) 100 (3)

2 PMaxSPRT 06–07-2015 33 76 (5) 96 (4) 100 (3) 100 (2) 100 (1) 100 (1) 100 (1) 100 (1)
4 PMaxSPRT 06–07-2015 36 79 (5) 96 (4) 100 (3) 100 (2) 100 (1) 100 (1) 100 (1) 100 (1)

Cells in bold refer to power�80%.
BMaxSPRT - Binomial-based Maximized Sequential Probability Ratio.
PMaxSPRT - Poisson-based Maximized Sequential Probability Ratio Test.

a Time to signal is only displayed for cells where equivalent power�50%.

Fig. 3. Implementation of a system for MMR/febrile seizures using PMaxSPRT (right) and BMaxSPRT (left). Only for PMaxSPRT a signal is detected.
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was proposed to address this issue. We tried to minimize this by
using data from the 5 previous seasons/years to estimate historical
rates. Given the amount of observed events in the historical data is
substantial larger (more than five times) than the number of
expected events in the study period we considered that the use
of a conditional test was not necessary. Secondly, for our study per-
iod we considered only vaccinated individuals while for historical
rates we included both vaccinated and non-vaccinated. Including
vaccinated individuals in historical periods could have led to a
slight overestimate of the background rate and underestimate of
the RR and thus miss a signal. However, even if there were
increases in risk in the historical periods due to the vaccine, the
increase in the attributable risk would be small, thus minimizing
this issue. Nevertheless, we were able to detect a signal for sei-
zures/MMR, which is reassuring. Finally, our study is limited by
assumptions of the method used, including homogenous distribu-
tion of a potential risk during the risk-window and throughout the
study period and that if there is an increase in risk these additional
cases would be also recorded in CPRD.

We proposed a new adjustment for delays but it might still not
fully capture existing delays [17]. We only considered a mid-point
for adjustment, which simplifies the data accrual process. Further-
more, we considered a delay distribution based on historical data
and recording patterns might have changed, although previous
work looking at ten years’ worth of data shows consistent record-
ing patterns [4]. Overall, we believe our adjustment reduces bias
due to data availability and enables an earlier start of surveillance.

As previously pointed out there are few strategies available to
deal with potential confounding factors [2]. For influenza/GBS we
were able to account for gender and partially for age. If there is a
signal, further adjustment for confounders is one of the initial steps
[1], potentially including more detailed adjustment for age (we
only considered 10-year age groups) and for other potential con-
founders. Influenza incidence may be one of these potential con-
founders, as GBS is known to be associated with influenza-like
illness [18]. Rapid yearly estimates are provided for influenza inci-
dence and could potentially be used in this context. For seizures/
MMR, we were able to account for age and gender in the PMaxSPRT
analysis but we did not explicitly account for age in the BMaxSPRT.
Febrile seizure rates are known to change rapidly with age [19] but
the use of a control period before and after the risk period should
have helped to limit potential confounding due to age.

Our study made use of previously collected data to mimic a new
system. However, CPRD is expanding, to include practices using
different softwares [20]. While this can be seen as an opportunity
to increase power to detect lower increases in risk for rare out-
comes, there might be differences in coding systems and behaviour
that could limit the applicability of the results of our previous stud-
ies. Alternatively, these new practices could be used for signal con-
firmation should a signal be identified. This strategy would be a
way to avoid using the same data for signal identification and
confirmation.

As we have further knowledge on NRTVSS and its application
using CPRD next steps include application to new vaccines. In addi-
tion, there is the need to define which steps to undertake if a signal
is detected. Yih et al. [1] proposed a series of steps in case a signal
is found, broadly including: to check data and code, to examine
descriptive statistics for patterns in time between the exposure
and outcome, to adjust for additional confounders, to conduct a
non-sequential analysis with a different comparator, to conduct a
review of records, to compare the results with similar outcomes
or other existing data, to analyse new data or to design a new
study. All steps can be conducted using CPRD data. However, there
is limited ability to perform a timely confirmation of the patient’s
recorded diagnoses. Currently, when GPs are asked to validate
diagnoses identified from coded information this process may take

several months. Future discussions with data providers and
medicines regulatory authorities may help to facilitate the process
of data validation. An in-depth presentation of the steps required
following a signal is beyond the scope of this work.

In conclusion, our results suggest the implementation of
NRTVSS using CPRD as a way to complement existing methods,
by allowing timely identification of signals for more frequent out-
comes and by excluding large increases in risk for less frequent
outcomes.
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7.2 Supporting information 

As stated in Section 7.1, some of the supporting information of Paper 3 was previously 

presented in this thesis: for code-lists used to identify GBS and febrile seizures (Appendix A) 

see Section 5.4  and for the graphical representation of the adjustment for delays considered 

for PMaxSPRT and BMaxSPRT (Appendix D) see Chapter 6 (Figure 6.3 and Figure 6.7). The 

remaining appendices (B. Vaccinated individuals, C. Follow-up time, and E. Repeated febrile 

seizures episodes) are presented below. 

7.2.1 Identification of vaccinated individuals (Appendix B) 

As outlined in Sections 3.1.1.1 and 3.2, information regarding the vaccination of a patient is 

provided in different files within their electronic health records and it is not always 

consistent. It is thus necessary to create algorithms to identify vaccinated individuals. Section 

3.2 presented the methods followed to develop these algorithms for seasonal influenza and 

for MMR vaccines. In this Section, I provide information on the resulting algorithm. For each 

vaccine, this included use of the relevant code-lists and how these were combined to 

ascertain vaccination status. The relevant code-lists included: (i) a list of Read codes 

indicating that influenza vaccine had been administered (designated as Read codes indicating 

vaccination); (ii) a list of codes indicating that the vaccine had not been administered 

(designated as Read codes indicating the vaccine has not been given), and (iii) a list of therapy 

codes indicating a prescription for the vaccine of interest (entitled Therapy codes). Lists (i) 

and (ii) were used to identify records in the clinical, referral, test, and immunisation files. List 

(iii) was used to search the therapy file. The immunisation file contains additional coded 

information on vaccines, comprising ‘immunisation type’ codes (indicating the type of 

vaccine) and ‘immunisation status’ codes (indicating vaccination status). I thus selected 

codes indicating that the record was related to the vaccine of interest (seasonal influenza or 

MMR, see Codes in the immunisation file), and the status codes that indicated that the 

vaccine was administered; the remaining immunisation status codes (advised or refused) did 

not provide evidence of vaccine administration. 

7.2.1.1 Seasonal influenza vaccine  

The lists drawn up for seasonal influenza vaccine are presented below, followed by the 

algorithm developed to identify individuals vaccinated against seasonal influenza.  
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7.2.1.1.1 Read codes indicating vaccination 

Read code Read term 

65ED100 Administration of first intranasal seasonal influenza vacc 

65EE.00 Administration of intranasal influenza vaccination 

65ED000 Seasonal influenza vaccination given by pharmacist 

ZV04800 [V]Influenza vaccination 

65EE000 Administration of first intranasal influenza vaccination 

65ED200 Seasonal influenza vaccination given while hospital inpt 

65ED300 Administration of second intranasal seasonal influenza vacc 

65EE100 Administration of second intranasal influenza vaccination 

65ED.00 Seasonal influenza vaccination 

65E2.00 Influenza vaccination given by other healthcare provider 

65E..00 Influenza vaccination 

ZV04811 [V]Flu - influenza vaccination 

65E2000 Seasonal influenza vaccin given by other healthcare provider 

65E2100 First intranasal seasonal flu vacc gvn by othr hlthcare prov 

65E2200 Secnd intranasal seasonal flu vacc gvn by othr hlthcare prov 

  

 

7.2.1.1.2 Read codes indicating the vaccine has not been given 

Read code Read term 

9N4q100 DNA first intranasal seasonal influenza vaccination 

8I2F000 Seasonal influenza vaccination contraindicated 

14LJ.00 H/O: influenza vaccine allergy 

9OX5600 Second intranasal seasonal influenza vaccination declined 

9OX5400 First intranasal seasonal influenza vaccination declined 

8I6D000 Seasonal influenza vaccination not indicated 

9OX5.00 Influenza vaccination declined 

9OX5300 Second intranasal influenza vaccination declined 

9OX5200 First intranasal influenza vaccination declined 

8I2F.00 Influenza vaccination contraindicated 

68NE000 No consent for seasonal influenza vaccination 

9OX5100 Seasonal influenza vaccination declined 

ZV14F00 [V]Personal history of influenza vaccine allergy 

8I6D.00 Influenza vaccination not indicated 

9N4q.00 Did not attend flu vaccination appointment 

 

7.2.1.1.3 Therapy codes 

Product code Product name 

11824 Enzira vaccine suspension for injection 0.5ml pre-filled syringes (Pfizer Ltd) 

1329 
Fluvirin vaccine suspension for injection 0.5ml pre-filled syringes (Novartis 
Vaccines and Diagnostics Ltd) 

7951 FLUVIRIN AQUEOUS ML VAC 
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Product code Product name 

23251 FLUVIRIN PRE-FILLED SYRINGE 

9710 
Agrippal vaccine suspension for injection 0.5ml pre-filled syringes (Novartis 
Vaccines and Diagnostics Ltd) 

27407 
Imuvac vaccine suspension for injection 0.5ml pre-filled syringes (Abbott 
Healthcare Products Ltd) 

2552 
Influvac Sub-unit vaccine suspension for injection 0.5ml pre-filled syringes (Abbott 
Healthcare Products Ltd) 

57401 
Influvac Desu vaccine suspension for injection 0.5ml pre-filled syringes (Abbott 
Healthcare Products Ltd) 

51087 
Optaflu vaccine suspension for injection 0.5ml pre-filled syringes (Novartis 
Vaccines and Diagnostics Ltd) 

2139 
Fluarix vaccine suspension for injection 0.5ml pre-filled syringes (GlaxoSmithKline 
UK Ltd) 

57917 
Fluarix Tetra vaccine suspension for injection 0.5ml pre-filled syringes 
(GlaxoSmithKline UK Ltd) 

43827 
Intanza 9microgram strain vaccine suspension for injection 0.1ml pre-filled 
syringes (sanofi pasteur MSD Ltd) 

43825 
Intanza 15microgram strain vaccine suspension for injection 0.1ml pre-filled 
syringes (sanofi pasteur MSD Ltd) 

47932 Fluenz vaccine nasal suspension 0.2ml unit dose (AstraZeneca UK Ltd) 

57678 Fluenz vaccine nasal suspension 0.2ml unit dose (AstraZeneca UK Ltd) 

398 Influenza inactivated split virion Vaccination (Aventis Pasteur MSD) 

38421 Influenza inactivated split virion Vaccination (Evans Vaccines Ltd) 

44759 INFLUENZA PRE-FILLED SYRINGE 

40876 
Influenza vaccine (split virion, inactivated) 9microgram strain suspension for 
injection 0.1ml pre-filled syringes 

61580 
Influenza vaccine (split virion, inactivated) suspension for injection 0.25ml pre-
filled syringes 

24779 Influenza inactivated split virion Paediatric vaccination 

639 
Influenza vaccine (split virion, inactivated) suspension for injection 0.5ml pre-filled 
syringes 

61898 
Influenza vaccine (split virion, inactivated) suspension for injection 0.5ml pre-filled 
syringes (A A H Pharmaceuticals Ltd) 

45661 
Influenza vaccine (split virion, inactivated) suspension for injection 0.5ml pre-filled 
syringes (Pfizer Ltd) 

922 Influenza inactivated surface antigen Vaccination 

48658 
Influenza vaccine (split virion, inactivated) suspension for injection 0.5ml pre-filled 
syringes (sanofi pasteur MSD Ltd) 

48740 
Influenza vaccine (surface antigen, inactivated) suspension for injection 0.5ml pre-
filled syringes 

51289 Influenza vaccine (live attenuated) nasal suspension 0.2ml unit dose 

32391 
Influenza vaccine (surface antigen, inactivated) suspension for injection 0.5ml pre-
filled syringes (Novartis Vaccines and Diagnostics Ltd) 

30198 Influenza inactivated split virion Vaccination (sanofi pasteur MSD Ltd) 

61792 Fluenz Tetra vaccine nasal suspension 0.2ml unit dose (AstraZeneca UK Ltd) 

48085 Influenza inactivated split virion Vaccination (Chiron UK Ltd) 

57140 Influenza vaccine (live attenuated) nasal suspension 0.2ml unit dose 

40760 
Influenza vaccine (split virion, inactivated) 15microgram strain suspension for 
injection 0.1ml pre-filled syringes 

49716 
Influenza vaccine (surface antigen, inactivated, virosome) suspension for injection 
0.5ml pre-filled syringes 

2601 Mfv-ject Vaccination (Aventis Pasteur MSD) 
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Product code Product name 

13595 Fluzone Vaccination (Aventis Pasteur MSD) 

16585 
Viroflu vaccine suspension for injection 0.5ml pre-filled syringes (Janssen-Cilag 
Ltd) 

10030 
Inflexal V vaccine suspension for injection 0.5ml pre-filled syringes (Janssen-Cilag 
Ltd) 

834 
Begrivac vaccine suspension for injection 0.5ml pre-filled syringes (Novartis 
Vaccines and Diagnostics Ltd) 

18612 Mastaflu vaccine suspension for injection 0.5ml pre-filled syringes (Masta Ltd) 

30156 
Invivac vaccine suspension for injection 0.5ml pre-filled syringes (Abbott 
Healthcare Products Ltd) 

54677 
Preflucel vaccine suspension for injection 0.5ml pre-filled syringes (Baxter 
Healthcare Ltd) 

63690 
Inflexal V suspension for injection 0.5ml pre-filled syringes (sanofi pasteur MSD 
Ltd) 

65205 
FluMist Quadrivalent vaccine nasal suspension 0.2ml unit dose (AstraZeneca UK 
Ltd) 

 

7.2.1.1.4 Codes in the immunisation file 

Immunisation type 

Code Description 
4 FLU 
84 FLUSOHP 
85 FLUSPHARMA 
89 FLUSIN 
97 FLUSINOHP 
100 FLUSIMOHP 

 

Immunisation status 

Code Immunisation Status 
1 Given 
4 Refusal to start or complete course 
9 Advised 
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7.2.1.1.5 Algorithm 

Based on the lists above, I developed the algorithm presented in Figure 7.1. Priority was given 

to information on the immunisation file as this contains specific information on vaccines, 

followed by information from the therapy file, as the latter indicates a prescription was 

issued.   

Figure 7.1. Algorithm utilised to identify individuals vaccinated against influenza vaccine.  
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7.2.1.2 Measles-Mumps-Rubella vaccine 

MMR is a combined vaccine and thus for an individual to be considered vaccinated I required 

evidence that s(he) had received all the components of the vaccine. To assess this, each 

vaccine code included in the list that was developed was assigned as having one of more 

components of the vaccine. The components each specific code corresponds to are denoted 

in the list below as ‘1’ in the respective column of the lists. When assessing specific 

information from the immunisation file, the component assessment was carried out by 

considering an additional variable in this file which indicates which compound of the vaccine 

had been administered. The code-lists and respective components are presented below, 

followed by the algorithm that was developed.  

7.2.1.2.1 Read codes indicating vaccination  

Read 
code Readterm MMR measles mumps rubella 

ZV04200 [V]Measles vaccination  1   

ZV06400 
[V]Measles-mumps-rubella (MMR) 
vaccination 1    

ZV04600 [V]Mumps vaccination   1  

ZV04300 [V]Rubella vaccination    1 

U60K014 [X] Adverse reaction to measles vaccine  1   

U60K016 [X] Adverse reaction to mumps vaccine   1  

U60K017 [X] Adverse reaction to rubella vaccine    1 

TJK4.00 Adverse reaction to measles vaccine  1   

TJK6000 Adverse reaction to mumps vaccine   1  

TJK6100 Adverse reaction to rubella vaccine    1 

65B..11 German measles vaccination    1 

65MA.00 
Measles mumps and rubella booster 
vaccination 1    

9ki1.11 Measles mumps rubella catch-up vaccination 1    

65A2.00 Measles vaccin.+immunoglobulin  1   

65A..00 Measles vaccination  1   

65A1.00 Measles vaccination  1   

SLK4.00 Measles vaccine poisoning  1   

65M1.00 Measles/mumps/rubella vaccn. 1    

65M2.00 Measles/rubella vaccination  1  1 

65MB.00 MMR pre-school booster vaccination 1    

65MC.00 MMR vaccination - 2nd dose 1    

65M2.11 MR - Measles/rubella vaccination  1  1 

65F5.00 Mumps vaccination   1  

SLK6000 Mumps vaccine poisoning   1  

F034C00 Post measles vaccination encephalitis  1   

F034E00 Post mumps vaccination encephalitis   1  

F034F00 Post rubella vaccination encephalitis    1 

65B..00 Rubella vaccination    1 
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7.2.1.2.2 Therapy codes 

Product 
code productname MMR measles mumps rubella 

18912 Immravax Vaccination (Aventis Pasteur MSD) 1    

12711 Measles live Vaccination  1   

18172 

Measles, Mumps and Rubella vaccine (live) 
powder and solvent for solution for injection 
0.5ml vials 1    

20845 

Measles, Mumps and Rubella vaccine (live) 
powder and solvent for suspension for 
injection 0.5ml pre-filled syringes 1    

4189 MEASLES SCHWARZ STRAIN VAC  1   

9089 MEASLES EDMONSTON STRAIN VAC  1   

25157 
Mumpsvax Vaccination (Aventis Pasteur 
MSD)   1  

4190 Mumps Vaccination   1  

11016 MUMPSVAX ML VAC   1  

2244 Rubella Vaccine    1 

49697 
Rubella vaccine powder and solvent for 
solution for injection 0.5ml vials    1 

10348 
Almevax rubella Vaccination (Celltech 
Pharma Europe Ltd)    1 

12005 
Attenuvax Vaccination (MSD Thomas Morson 
Pharmaceuticals)  1   

11714 

Priorix vaccine powder and solvent for 
solution for injection 0.5ml vials 
(GlaxoSmithKline UK Ltd) 1    

15473 
Mevillin-l Vaccination (Manufacturer 
unknown)  1   

38476 

M-M-RVAXPRO vaccine powder and solvent 
for suspension for injection 0.5ml pre-filled 
syringes (sanofi pasteur MSD Ltd) 1    

10333 
Pluserix Vaccination (GlaxoSmithKline 
Consumer Healthcare) 1    

3906 

M-M-R II vaccine powder and solvent for 
solution for injection 0.5ml vials (sanofi 
pasteur MSD Ltd) 1    

30506 
Meruvax ii Vaccination (MSD Thomas Morson 
Pharmaceuticals)    1 

10335 Rubavax Vaccination (Aventis Pasteur MSD)    1 

3468 

Ervevax vaccine powder and solvent for 
solution for injection 0.5ml vials 
(GlaxoSmithKline UK Ltd)    1 

 

7.2.1.2.3 Read Codes indicating the vaccine has not been given 

Read code Read term 

9ki0.11 Did not attend for MMR catch-up vaccination 

9N4z000 Did not attend measles mumps and rubella vaccination 

9N4z400 Did not attend second measles mumps and rubella vaccination 

9N4c.00 DNA - DTaP, polio and MMR booster 
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Read code Read term 

9ki0.00 DNA MMR catch-up vaccination - ESA 

9ki2.00 MMR catch-up vacc declind - enhanced services administration 

68NT.00 MMR not given 

8I3x.00 MMR vaccination declined 

68NI.11 MMR vaccine contra-indicated. 

68NB.00 No consent - measles imm. 

68NC.00 No consent - rubella imm. 

68NM.00 No consent for MMR 

68Na.00 No consent for MMR1 

68Nb.00 No consent for MMR2 

68NY.00 No consent for MR - Measles/rubella vaccine 

 

7.2.1.2.4 Codes in the immunisation file 

Code Immunisation Type MMR measles mumps rubella 

7 MEASLES  1   
8 RUBELLA    1 

9 MUMPS   1  
50 MR  1  1 

51 MMR 1    
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7.2.1.2.5 Algorithm 

Based on the lists above, I developed the algorithm presented in Figure 7.2.  

 

Figure 7.2. Algorithm used to identify children vaccinated with measles-mumps-rubella vaccine (MMR). 
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7.2.2 Follow-up time (Appendix C) 

Figure 7.3 summaries the follow-up time included to calculate the historical GBS rate (the 

background rate) and the follow-up time during the study period. When calculating the GBS 

rate for each of the historical seasons, all active patients aged 65 years or older were 

included. Their follow-up time started at the latest of the practice’s up-to-standard date, the 

patient’s current registration date plus one year and 1st September of each season. The 

follow-up ended at the earliest of the last collection date from the practice, the date the 

patient transferred out of the practice or died, and 31st March of each season. For the 

seasons under study (2013/14 and 2014/15), only individuals aged 65 years or older who had 

received an influenza vaccine were included. For these individuals, follow-up began at the 

latest of the practice up-to-standard date, the patient’s current registration date plus one 

year, 1st September of each season and the date of vaccination. Follow-up terminated at the 

earliest of the last collection date from the practice, the date the patient transferred out of 

the practice or died, 31st March of each season, and the end of the risk-window (42 days in 

the case of GBS).  

Figure 7.3. Included follow-up time for hypothetical patients for historical influenza vaccination seasons, used to 
calculate background rates (top) and for the surveillance period (bottom). Dashed lines indicate time not 
considered for the current analysis, the solid line indicate the follow-up time considered. uts – Date at which 
practice reached research-level  quality, crd – current registration date of the patient with the practice, tod – date 
the patient transferred out of the practice, lcd – last data collection date (for the practice).   

 

1 September 

Historical season ­ Hypothetical patient 

uts tod lcd crd(+1y) 

31 March 

uts vaccine tod lcd 

31 March 1 September 

Surveillance period ­ Hypothetical patient 

crd(+1y) 

42 days 
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7.2.3 Repeated consultations for febrile seizures (Appendix E) 

7.2.3.1 Methods 

After an initial febrile seizure episode, GPs may ask parents to come back in a few days to 

reassess the child and the GP may then code the second consultation as a febrile seizure. 

Counting all the seizure-coded consultations would thus overestimate the incidence of 

seizures. To avoid this, I first investigated which records were likely to refer to the same 

episode, so that non-incident consultations could be excluded. I looked at the cumulative 

distribution of the time difference between subsequent records. For this initial step, an extra 

month at the beginning and end of the historical period was included to ensure inclusion of 

consultations starting before and finishing after the first and final eligible consultations. 

7.2.3.2 Results 

During the historical period studied for this analysis (June 2009 - July 2014) I identified 3,263 

children with at least one seizure recorded, with a total of 4,084 seizure records. Among 

those children, 2,309 had a single seizure recorded and 954 had two or more seizures 

recorded within the study period; the maximum number of seizure records per child was 14. 

The difference between two adjacent seizure records had a median of 13 days (Q1-Q3:1-68 

days) and the cumulative distribution is depicted in Figure 7.4. A steep gradient was observed 

in the few days following an initial seizure-coded consultation, after which the steepness 

decreased and was constant until approximately 100 days after the initial consultation. 

Looking at consultations occurring only 30 days after a previous record (Figure 7.5) we can 

see that the steep line occurs within three days of a previous record. This indicates that 

records registered within three days of a previous record refer to the same seizure rather 

than to a different occurrence of seizures. I thus decided to exclude any record within three 

days of a previous one, which resulted in the exclusion of 447 seizure-coded consultations. 

After exclusion, differences between remaining records were recalculated and no remaining 

records had a difference of three or less days.  
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Figure 7.4. Cumulative distribution of the time difference for two subsequent records of seizures within the same 
patient.  

 

Figure 7.5. Cumulative distribution of the time difference for two subsequent records of seizures within the same 
patient considering differences of 30 days or less 

7.3 Variable matching ratios 

As outlined in Section 7.1, I investigated the use of BMaxSPRT to assess febrile seizures 

following MMR vaccine. In this particular example, I used matching ratios as a way to account 

for delays in recording outcomes and receiving data, as well as partially accrued periods. In 

this Section I provide further information on the matching ratios obtained as part of the 

analyses, together with information on the use of variable (as opposed to fixed) matching 

ratios.  
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The calculation of matching ratios was presented in Figure 6.7 and explained in detail in 

Section 6.3.2. In brief, these ratios were calculated as the quotient of the number of days in 

the control period to the number of days in the risk period. The number of days considered 

in the ratio was adjusted for delays in recording outcomes, using the delay distribution 

presented in Section 5.3. This was calculated for all the children included at each data 

release. Table 7.1 provides the matching ratios obtained and used to generate the test 

statistics provided in Figure 3 from Section 7.1. Overall, the matching ratios are lower at the 

beginning and get closer to one as surveillance progresses. This can be explained by the fact 

that as time passes, data have had more time to accrue and therefore we have data from 

both the control and risk periods for the individuals identified in the early releases. Hence, 

this adjustment is more relevant early in the surveillance period. 

Table 7.1. Matching ratios used to adjust for delays and partially accrued periods in the binomial-based maximized 
probability ratio test 

Release number  Ratio unexposed to exposed 

1 0.84 

2 0.81 

3 0.91 

4 0.94 

5 0.95 

6 0.96 

7 0.98 

8 0.97 

9 0.98 

10 0.98 

11 0.98 

12 0.98 

 

The matching ratios obtained by this approach are variable which meant that the log-

likelihood ratio (𝐿𝐿𝑅𝑛), as presented in Section 3.3.2 and reproduced below, could not be 

used. As a reminder, the observed number of events at a given moment is denoted as 𝑛 

(exposed plus unexposed), 𝑐𝑛 denotes the number of events among the exposed at a given 

point and 𝑧 the matching ratio. 

𝐿𝐿𝑅𝑛 = ln(𝐿𝑅𝑛)

= 𝑐𝑛𝑙𝑛 (
𝑐𝑛

𝑛
) + (𝑛 − 𝑐𝑛) ln (

𝑛 − 𝑐𝑛

𝑛
) − 𝑐𝑛 ln (

1

𝑧 + 1
) − (𝑛 − 𝑐𝑛) ln (

𝑧

𝑧 + 1
) 
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The use of this formula assuming several different matching ratios (𝑧𝑛) would result in the 

estimation of different RR. In the package Sequential.99 Kulldorff and Silva addressed this 

issue by using an alternative formula to estimate the log-likelihood (Ivair Silva, personal 

communication). For 𝑛 tests, all with different matching ratios, the log-likelihood to estimate 

RR would be: 

𝐿𝐿𝑅(𝑅𝑅) ∝  𝑐1𝑙𝑛
𝑅𝑅

𝑅𝑅+𝑧1
− (𝑛1 − 𝑐1)𝑙 𝑛(𝑅𝑅 + 𝑧1) + … + 𝑐𝑛𝑙𝑛

𝑅𝑅

𝑅𝑅+𝑧𝑛
− (𝑛𝑛 − 𝑥𝑛)𝑙 𝑛(𝑅𝑅 +

𝑧𝑛)  

This formula incorporates the assumption of a single RR thus allowing the use of variable 

matching ratios. This is the log-likelihood implemented in the function used to implement 

the system (Analyze.Binomial, see Section 3.4). Work by Silva showed that violating the 

assumption of constant ratios still gives accurate results.161 Nevertheless, the extent of 

variability in the matching ratios that can be assumed as constant remains unknown. As a 

general message, I would recommend researchers to reflect on the need to using matching 

ratios (variable or fixed) and then decide on the most appropriate method to estimate the 

log-likelihood. In any case, the use of both approaches is straightforward as they can be 

implemented easily using the functions in R.  

7.4 Influence of delays in the performance of a system (Paper 4) 

This paper was accepted for publication in Pharmacoepidemiology and Drug Safety in 

October 2017. It reports the work conducted to assess the influence of delays in the 

performance of a near real-time system.  

When I implemented a system using CPRD data the results showed that implementation is 

feasible but there was limited power to detect an increased risk of GBS following seasonal 

influenza vaccine (power ≥ 80% to detect a RR of four or more). Given that existing delays in 

receiving data and recording outcomes can affect the amount of data available, thus 

reducing power, I assessed how these sources of delays influence power and the expected 

time to signal. I utilised the same data and study period used to implement a system for 

seasonal influenza vaccine/Guillain-Barre Syndrome (GBS) (2013-2014/2014-2015 seasons, 

see Section 7.1). I used PMaxSPRT and calculated power and time to detect a signal, under 

different combinations of the presence/absence of delays in recording outcomes and in 

receiving data. For each combination, calculations were performed for a range of RRs (1.5-

10).  
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The results showed there was power of 80% or more to detect a four-fold increase in risk of 

GBS. Removing delays did not substantially improved power (a maximum increase of 4% in 

the absence of delays) or timeliness. Therefore, removing delays in CPRD will not significantly 

improve the performance of a near real-time system; expansion of the data is required. 
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Abstract

Purpose: Near real‐time vaccine safety surveillance (NRTVSS) using electronic health records

has been used to detect timely vaccine safety signals. Trial implementation of NRTVSS using the

Clinical Practice Research Datalink (CPRD) has shown that there is limited power to detect safety

signals for rare events. Delays in recording outcomes and receiving data influence the power and

timeliness to identify a signal. Our work aimed to compare how different sources of delays influ-

ence power and expected time to signal to implement NRTVSS using CPRD.

Methods: We studied seasonal influenza vaccine/Guillain‐Barré syndrome and performed

power and expected time to signal calculations for the 2013‐2014/2014‐2015 seasons. We used

the Poisson‐based maximised sequential probability ratio test, which compares observed‐to‐

expected events. For each study season, we obtained an average Guillain‐Barré syndrome/sei-

zures age‐sex–adjusted rate from the 5 previous seasons and then used this rate to calculate

the expected number of events, assuming a 42‐day risk‐window. Calculations were performed

for detecting rate ratios of 1.5 to 10. We compared power and timeliness considering combina-

tions of the presence/absence of delays in recording outcomes and in receiving data. The R‐pack-

age Sequential was used.

Results: In general, there was ≥80% power to detect increases in risk of ≥4 at the end of the

season. Assuming absence of delays slightly improved power (a maximum increase of 4%) but did

not noticeably reduce time to detect a signal.

Conclusion: Removing delays in data availability is insufficient to significantly improve the

performance of a NRTVSS system using CPRD. Expansion of CPRD data is required.

KEYWORDS

delay, electronic health records, pharmacoepidemiology, power, safety, surveillance, vaccines

1 | INTRODUCTION

Near real‐time vaccine safety surveillance (NRTVSS) is an option in the

post‐licensure vaccine safety toolkit. Near real‐time vaccine safety

surveillance is usually initiated soon after a new vaccine is introduced,

and data from electronic heath records are examined at regular points

in time. This helps with timely detection of safety signals.1

Near real‐time vaccine safety surveillance has not been fully

implemented in the UK, but our recent study trialling NRTVSS imple-

mentation using data from the Clinical Practice Research Datalink

(CPRD) showed it is possible to implement a system.2 Nevertheless,
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system performance (including power and expected time to signal) to

identify a rare outcome (Guillain‐Barré syndrome, GBS) following sea-

sonal influenza was not optimal. In particular, using the most powerful

test (Poisson‐based maximised probability ratio test, PMaxSPRT), there

was power of ≥80% to identify a fourfold increase in risk, and a signal

would be detected 3 months after the start of surveillance. It is thus

important to understand what factors affect power and expected time

to signal and what changes to currently available data might improve

the ability to identify signals rapidly using CPRD.

If PMaxSPRT is used, the expected number of events at the end of

the surveillance period dictates power and expected time to signal. The

expected number of events is a function of the data available, depend-

ing on both the number of individuals contributing data (the volume of

data) and on delays in data availability. Clinical Practice Research

Datalink is a primary care database, and the volume of data is deter-

mined by the number of practices and patients contributing data.

Delays can occur in (i) identifying a condition after the initial consulta-

tion, (ii) recording a condition diagnosed outside the practice (e.g. in

hospital), (iii) practices uploading their data to CPRD, and (iv)

researchers receiving data for analysis. Previous work assessing delays

due to (ii) showed that, for selected conditions of interest regarding

vaccine safety, records accrue within a month of the deemed date of

diagnosis.3 Regarding (iii) and (iv), CPRD data are made available to

researchers monthly and practices upload data prior to this, with the

last collection date from each practice recorded in CPRD.

Clinical Practice Research Datalink is a dynamic database, and new

practices may start contributing data. Additionally, changes to the

mode of data collection from practices and frequency of data releases

could reduce delays. Both expansion and reduction of delays could

improve NRTVSS system performance. We sought to assess how

delays influenced power and expected time to signal, to inform data

providers on how decreasing delays could improve performance of a

NRTVSS system. As a secondary objective, we further assessed the

performance of a system based on data available around the middle

of the surveillance period for a short vaccine programme of fixed

length, to understand what could be detected at a time when it would

still be possible to implement measures to minimise risks.

2 | METHODS

We used data from our previous study that evaluated the feasibility of

implementing a NRTVSS system. Here, we provide a brief summary of

the methods used to obtain those data (for further information see

Leite et al2). Additionally, we explain how we assessed the influence

of delays on power and expected time to signal, the main focus of this

report.

2.1 | Data source

We used CPRD, a UK database containing anonymised primary care

records from individuals registered with participating practices (6.9%

of the population). Information is Read‐coded, including demographics,

diagnoses, therapies, vaccinations, health‐related behaviours, and

referrals to and feedback from hospital.4 Clinical Practice Research

Datalink also contains information of when a patient joined and left a

practice (current registration date and transfer out date, respectively),

when a practice met certain requirements necessary for it to be con-

sidered of research quality (up‐to‐standard) and when information

was last collected from each practice (last collection date, available in

each monthly update).4

2.2 | Vaccine/outcome pairs and study period

Our original study evaluated seasonal influenza vaccine/GBS and

mumps‐measles‐rubella vaccine/seizures. As there was sufficient

power to detect a twofold increase in risk for mumps‐measles‐rubella

vaccine/seizures, we considered the performance of the system for

this pair was satisfactory. We thus only assessed the influence of

delays for seasonal influenza/GBS. We included individuals aged

≥65 years and studied seasons 2013/2014 and 2014/2015, using data

released in July 2015 and 2016, respectively.

2.3 | Analysis

We used continuous PMaxSPRT as it is the most powerful test, and

CPRD provides data in a near‐continuous fashion (monthly).5 The number

of expected events was obtained based on the average GBS age‐sex–

specific rate from the 5 seasons prior to the study seasons (2008‐2013

and 2009‐2014), considering a 42‐day post‐vaccination risk‐window.

We applied the historical rates to the follow‐up time in the study

periods to obtain the expected number of events. Start of follow‐up

time was the latest of the up‐to‐standard date, current registration

date (plus 1 year to exclude retrospective recording of events when

registering with a new practice6), the beginning of the study period,

and the start of the risk‐window. End of follow‐up was the earliest of

the patient's transfer out date, the practice's last collection date, end

of the study period, or end of the risk‐window.

The number of expected events was calculated in slightly different

ways, to consider different delay scenarios (see below). Based on

these numbers, we calculated power and expected time to signal (per-

formance measures), assuming a range of plausible rate ratios (1.5‐10),

KEY POINTS

• The Clinical Practice Research Datalink (CPRD) can be

used to implement near real‐time vaccine safety

surveillance, but there is limited power to detect

signals for rare outcomes.

• Delays in recording outcomes and in receiving data

might limit power and timeliness of a system. We

assessed the influence of these sources of delays to

inform data providers of the steps required to improve

a system using CPRD data.

• Removing delays in recording outcomes and receiving

data is unlikely to significantly improve the

performance of a system using CPRD data. Expansion

of the data available is needed.
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a level of significance of 5%, and stipulating a minimum of 1, 2, or 4

events before raising a signal. Calculations were performed using the

R package Sequential.7

We assessed the influence of delays on system performance by cal-

culating follow‐up time (hence, the expected number of events) assuming

the system had different combinations of presence/absence of delays in

recording outcomes and in receiving data. Additionally, we looked at

performance measures assuming analyses ended at the mid‐season

(December release). Ending surveillance earlier might increase power as

less sequential tests are performed, but the number of expected events

is likely to be lower (due to less data available), thus reducing power.

The delay scenarios assessed are presented in Table 1. The scenario

considering both sources of delays was used as a reference, as this

corresponded to what we did for the test implementation.2

For delays in recording outcomes, we considered the follow‐up

time for the patients as explained above (absence of delays) and then

adjusted this follow‐up time to account for delays, by reducing the

expected number of events based on the historical delays' distribution

(presence of delays).

For delays in receiving data, we included all data available for the

study period regardless of when these data were received (absence

of delays) and then included only data received by the end of the sur-

veillance period (presence of delays). We identified data received by

the end of surveillance by using the last collection date in that data

release. For the reference scenario, we considered the last collection

dates available in the April 2014 and April 2015 releases for season

2013/2014 and 2014/2015, respectively. Similarly, we used the last

collection dates available in the December releases (2013 and 2014

for season 2013/2014 and 2014/2015, respectively) when assessing

performance at the mid‐season (scenario 3).

3 | RESULTS

Table 2 presents the results of our calculations. In general, there was

≥80% power to detect increases in risk of ≥4 at the end of the season.

Removing sources of delays improved power by 1% to 4% and would

allow detection of a signal at the same release of the implementation

scenario. Stopping surveillance around mid‐season (scenario 3)

resulted in substantial reductions in power, particularly to detect

medium (3‐6 fold) increases in risk. For this scenario, there was ≥80%

power to detect an increase in risk of 8 to 10. If there was a signal, this

would be detected by early December.

4 | DISCUSSION

We analysed the impact of delays in data availability on NRTVSS

implementation using CPRD as a way to inform data providers about

measures that could improve performance of a NRTVSS system. Our

results showed that delays affect power, but only slightly. There

were almost no differences observed in the expected time to signal,

even when there were improvements in power. Removing delays

would thus be insufficient to improve the performance of a system

using CPRD data, as the main limiting factor is the volume of data

available.

The small differences between each scenario are probably related

to the performance measures being calculated on the basis of

expected events at the end of the surveillance period. Most individuals

are vaccinated at the beginning of the season, and by its end, data have

had enough time to accrue. This applies to both sources of delays.

Assessment of the performance at mid‐season revealed that we

would be able to detect only very large increases in risk at the begin-

ning of December. This raises the issue of timeliness, as by then most

individuals would have been vaccinated and any intervention might

have limited reach.

Clinical Practice Research Datalink currently collects data from

practices using VISION software, but it is expanding to include prac-

tices using EMIS software.8 Presently, there are data from 4.4 million

active patients. Initial analysis of EMIS practices indicates an additional

2.6 million active patients (Rachel Williams, personal communication).

Assuming this would translate to a similar number of expected events,

the new data would amount to approximately 3 expected events,

which would be sufficient to detect increases of threefold or more in

the risk of GBS following seasonal influenza vaccination. This might

not be enough to detect small increases in risk, particularly for rare

events. Furthermore, including data from practices using a different

software may pose new challenges. For example, the adjustment for

delays we proposed is based on the delay distribution observed using

data from VISION practices, and it might not be applicable for EMIS

practices.3 Including EMIS practices in a NRTVSS will thus require

additional exploration of these data.

In our work, we considered a power of ≥80% as a satisfactory per-

formance. However, GBS can be a severe condition, and when

implementing a system, it may be necessary to require higher power

level to detect more serious conditions (such as 90%). For existing

CPRD data, requirement of 90% power would mean that we could only

accurately identify increases in risk ≥5.

TABLE 1 Combination of delays assessed under each scenario

Scenario—Source of
Delays

Delays

End of Surveillance CommentsRecording Receiving

Recording/receiving (reference) + + April data release
(end of season)

Corresponds to the way NRTVSS was implemented using CPRD data.
Reference scenario

1. None − − April data release
(end of season)

Ideal scenario; events are recorded as they happen and data are
available immediately

2. Recording + − April data release
(end of study period)

Mimics a situation where CPRD receives data on a daily basis and
makes it available straight away

3. Recording/receiving + + December data release Corresponds to the reference scenario but considering data available
until December

Abbreviations: CPRD, Clinical Practice Research Datalink; NRTVSS, near real‐time vaccine safety surveillance.
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TABLE 2 Expected number of events, power, and expected time to signal under different combination of delays

Minimum
events RR

Delay Scenario

Reference Scenario 1 Scenario 2 Scenario 3

Season 2013‐2014

Expected number of events

— — 1.89 2.09 1.94 0.62

Power (expected time to signal in terms of data release)

1 1.5 13 13 13 10
2 25 26 25 16
2.5 40 42 40 22
3 55 (J) 58 (J) 55 (J) 30
4 78 (J) 81 (J) 79 (J) 44
5 91 (D) 93 (J) 92 (D) 58 (D)
6 97 (D) 98 (D) 97 (D) 69 (D)
8 100 (D) 100 (D) 100 (D) 85 (D)
10 100 (D) 100 (D) 100 (D) 93 (D)

2 1.5 14 15 15 11
2 28 30 29 18
2.5 44 46 45 27
3 60 (J) 62 (J) 61 (J) 35
4 82 (J) 84 (J) 83 (J) 52 (D)
5 93 (D) 95 (D) 94 (D) 65 (D)
6 98 (D) 98 (D) 98 (D) 76 (D)
8 100 (D) 100 (D) 100 (D) 89 (D)
10 100 (D) 100 (D) 100 (D) 96 (D)

4 1.5 16 17 16
2 33 34 33
2.5 50 (J) 52 (J) 50 (J)
3 65 (J) 68 (J) 66 (J)
4 86 (J) 88 (J) 86 (J) a

5 95 (J) 96 (J) 95 (J)
6 98 (J) 99 (J) 99 (J)
8 100 (D) 100 (D) 100 (D)
10 100 (D) 100 (D) 100 (D)

Season 2014‐2015

Expected number of events

— — 1.66 1.84 1.69 0.38

Power (expected time to signal in terms of data release)

1 1.5 12 13 12 9
2 23 25 24 13
2.5 37 40 37 18
3 51 (J) 55 (J) 52 (J) 23
4 74 (J) 78 (J) 75 (J) 34
5 88 (J) 91 (J) 89 (J) 44
6 95 (J) 97 (J) 96 (J) 54 (D)
8 99 (D) 100 (D) 100 (D) 70 (D)
10 100 (D) 100 (D) 100 (D) 81 (D)

2 1.5 14 14 14 10
2 26 28 26 16
2.5 41 43 41 22
3 55 (J) 59 (J) 56 (J) 29
4 77 (J) 81 (J) 78 (J) 42
5 90 (J) 93 (J) 91 (J) 53 (D)
6 96 (J) 98 (J) 96 (J) 63 (D)
8 100 (D) 100 (D) 100 (D) 78 (D)
10 100 (D) 100 (D) 100 (D) 87 (D)

4 1.5 16 16 16
2 31 33 31
2.5 47 50 (J) 48
3 62 (J) 65 (J) 63 (J)
4 83 (J) 86 (J) 84 (J) a

5 93 (J) 95 (J) 94 (J)
6 98 (J) 98 (J) 98 (J)
8 100 (J) 100 (J) 100 (J)
10 100 (J) 100 (J) 100 (J)

Abbreviations: D, December; J, January; RR, rate ratio.
aNumber of expected events is too small to calculate performance measures.
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Ourwork is subject to some limitations. Our adjustment for record-

ing delays was based on a simplification of the data accrual process and

on a historical distribution of delays. Nevertheless, previous work has

shown constant recording delay patterns during a 10‐year period,

which is reassuring.3 Furthermore, while absence of delays in recording

and receiving data is the ideal scenario, it is unlikely that delays in

recording can be changed as result of direct action by data providers.

Finally, this work is based on a single vaccine/outcome pair. Neverthe-

less, results for other vaccine/outcome pairs are likely to be similar to

the ones observed for seasonal influenza/GBS. The reason for this is

twofold: first and as explained above, the lack of improvement in the

system's performance is probably related to the fact that the perfor-

mance is assessed at the end of the surveillance period (when most of

the data have already accrued); second, delays in receiving data are

fixed and similar for all outcomes. Regarding delays in recording out-

comes, GBS is likely to have longer delays than other conditions due

to prolonged hospitalisation. Therefore, removing delays in recording

these other outcomeswould result in even less improvement on power.

In conclusion, minimising delays in data availability are unlikely to

substantially improve the performance of a system using CPRD data.

Expansion of the data is required.
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7.5 Conclusions 

This Chapter reports the main work conducted to achieve the overarching aim of this thesis: 

assessing the feasibility of implementing a near real-time system using CPRD data. Together 

with the results presented in the remaining Chapters, the trial implementation showed that 

CPRD can be used to implement such a system but with limited power to identify small 

increases in the risk of GBS following seasonal influenza. Therefore, I complemented the 

implementation work by assessing how limitations in power to detect a signal could be 

addressed. This latter work showed that to improve the performance of the system 

expansion of the data is needed. The information contained in this Chapter can thus be used 

by those wishing to implement a system as well as by data providers as a means to guide 

their policy regarding data availability and expansion.  

The next Chapter presents an overall discussion of the work conducted as part of this thesis, 

together with its main conclusions.  
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8 DISCUSSION 

In this thesis I have sought to assess the feasibility of implementing near real-time vaccine 

safety surveillance using CPRD data through four main objectives (2.4.2): to review the 

methods currently used to perform NRTVSS using electronic health records (Chapter 4); to 

examine recording delays in CPRD for selected conditions, due to practices receiving and 

recording diagnosis made at secondary care (Chapter 5); to trial the implementation of 

NRTVSS using previously collected CPRD data (Chapter 7); and to assess how delays in 

recording outcomes and receiving data influence the power and time to detect a safety signal 

(Chapter 7). This chapter provides a review of the main findings, discusses the main strengths 

and limitations of the overall project, and points out implications for both research and 

practice. 

8.1 Summary of the main findings 

8.1.1 Methods currently under use to perform NRTVSS 

8.1.1.1 What was known 

In 2005, the Vaccine Safety Datalink in the USA proposed the use of a sequential test, SPRT, 

as a way to generate quickly vaccine safety signals.7 It was later shown that the use of SPRT 

was challenging because it requires the probability/RR of the adverse event to be selected in 

advance: if the RR/probability specified is too high, the test may not lead to rejection of the 

null hypothesis (even if there is an increased risk); conversely, the selection of an unduly low 

RR/probability may result in a delayed signal.96 A maximized version of the test was then 

proposed (MaxSPRT), with a composite alternative hypothesis; it is available based on two 

distributions for events, Poisson (PMaxSPRT) and binomial (BMaxSPRT).96 Further tests have 

been developed to address other limitations identified while using MaxSPRT. For example, 

PMaxSPRT requires a reliable estimate of the expected number of events using sufficient 

past data whereas the conditional version (CMaxSPRT) was developed for use when these 

estimates are based on few data.162 Group sequential tests were also applied in this 

context.163 Near-real time vaccine safety surveillance is conducted routinely in the USA9 but 

there was limited information on its use elsewhere. Previous publications reviewed the use 

of these methods but focused on the statistical aspects of existing tests8,164 and on the work 

conducted by VSD.9  
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8.1.1.2 What this study adds 

This study identified several methods to perform NRTVSS using electronic health records and 

the way these have been applied. It identified 31 systems in 2015 when it was first conducted 

and 2 additional studies in 2017 at the time of its update. The review showed that NRTVSS 

has been increasingly used in the USA but also in a few other places, such as the UK, Taiwan 

and New Zealand. The main vaccine that had been assessed is influenza vaccine (both 

seasonal and pandemic). The systems identified used three main groups of statistical tests: 

continuous sequential tests, which allow testing as often as desired; group sequential tests, 

where testing is conducted at discrete points in time; and statistical process control, which 

uses a graphical representation to compare the number of observed events to an expected 

mean plus a number of standard deviations. The most common tests were the Poisson-based 

maximized sequential probability ratio test (PMaxSPRT, used by 44% of the systems 

identified) and its binomial version (BMaxSPRT, used by 24%). The test selected for use in 

the studies depended on the frequency of data updates and the adverse event of interest. 

Only 75% of studies addressed confounding, mainly by adjusting the expected rate (carried 

out by 51% of studies that adjusted). Delays in data availability were considered in some 

studies, either by delaying the analysis or adjusting for delays and partially accrued periods. 

Overall, this review provided a broad overview of existing studies (including both VSD and 

non-VSD studies) and from a more applied perspective than the previously published 

literature on the topic. It summarised the main characteristics of systems performing 

NRTVSS. Therefore, it can be used to inform those wishing to implement similar systems.   

8.1.2 Recording delays 

8.1.2.1 What was known 

When considering a new data source to implement a near real-time vaccine safety 

surveillance system it is necessary to know what type of delays these data are subject to. In 

the case of CPRD data, delays occur for a variety of reasons: (i) delays in physicians making a 

diagnosis following an initial consultation; (ii) delays in recording outcomes diagnosed in 

other levels of care (e.g. hospital); (iii) delays in practices uploading data to CPRD; and (iv) 

delays in researchers receiving uploaded data for analysis (from CPRD). Previous studies 

using NRTVSS considered delays either by postponing the analysis or by adjusting the number 

of expected events. This adjustment only considered delays in receiving data for analysis 

(corresponding to reasons (iii) and (iv)) and was based on a historical distribution of delays.113 

CPRD data are made available on a monthly basis and there is information (the last collection 



 

183 
 

date) on when practices last uploaded their data. A previous study using THIN, a related 

primary care data source, examined the number of records lost as function of the last 

collection date (delays due to reason (iii)), to inform incidence/prevalence studies. This study 

showed that not accounting for delays in uploading data results in underestimation of 

incidence/prevalence.88 There was no known work assessing delays due to other reasons 

(reasons (i) and (ii)). Furthermore, there was no known work using the system date (the date 

when a record is entered in the GP system) to assess delays. 

Several outcomes of interest for vaccine safety are diagnosed mainly in secondary care (e.g. 

GBS) and may not be fully captured in CPRD. This can happen if GPs only scan the hospital 

letters without adding a diagnostic code to the patient’s record. Previous studies have shown 

that the use of CPRD linked data improves the sensitivity of diagnosis86,165 but existing 

linkages with hospital data are updated too infrequently to allow the use of these data in a 

NRTVSS. I was not aware of previous studies evaluating the completeness of recording 

diagnoses of interest for vaccine safety and made mainly in secondary care (e.g. GBS). This 

information is relevant to understand the extent to which diagnoses are not captured in 

CPRD.   

8.1.2.2 What this study adds 

This study included a comprehensive analysis of recording delays in CPRD for selected 

conditions of interest for vaccine safety surveillance (GBS, Bell's palsy, optic neuritis, and 

febrile seizures), both using stand-alone CPRD data and CPRD-hospitalisation linked data.  

The assessment of delays in stand-alone data was done by calculating the difference 

between the event date (the purported date of diagnosis of the condition) and the system 

date (as outlined in Section 8.1.2.1, the date the record was added to the patient’s medical 

file).  As a preparatory step, I also investigated how system dates can be altered, due to data 

updates by general practices. The analysis showed that mass transfers of data do indeed 

occur in general practice, and these transfers need to be identified before system dates can 

be used to assess recording delays. The study highlights this hitherto unrecognised problem, 

and suggests one methodological approach for addressing this. Following removal of 

updated system dates, the main analysis of stand-alone CPRD data showed that data accrual 

in CPRD varies with the condition of interest and in general, over 70% of all records in CPRD 

data accrue within the first month. 

While the analysis of stand-alone CPRD data showed that records of selected conditions 

accrue with an acceptable delay, it does not provide any information on how completely 
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these conditions are recorded in CPRD. Hence, I analysed linked CPRD-hospitalisation data, 

which demonstrated that CPRD has low sensitivity to capture coded diagnoses for selected 

conditions first recorded in hospital. However, for the diagnoses that were subsequently 

captured in CPRD, data accrual occurred within the ten weeks of their hospitalisation for 

GBS, and within the first month for the remaining conditions.  

Overall, this study shows that recording delays in CPRD are compatible with the 

implementation of a near real-time vaccine safety surveillance and the delay distribution can 

be used to adjust for delays when implementing a near real-time system.  

8.1.3 Implementation of a near real-time system using CPRD data 

8.1.3.1 What was known 

In the UK, two near real-time systems using electronic health records had been previously 

implemented.10,139 One was UK-wide and used sequential tests; it relied on spontaneous 

reports to obtain the observed number of events and CPRD to obtain the expected number 

of events.10 The second system was implemented in Scotland, used hospital data and applied 

statistical process control to identify new signals.139 Statistical process control does not 

formally control for multiple testing and has been considered more appropriate to identify 

issues with vaccine quality rather than identify new adverse events.96 There was no known 

implementation relying fully on electronic health records and using sequential tests. CPRD is 

a population-based data source used extensively for research purposes. It is released 

monthly and practices upload their data some time before that. My work conducted to 

examine recording delays in CPRD showed that records are indeed registered with some 

delay but these delays are compatible with NRTVSS. From this regard, CPRD data could 

potentially be used to implement a NRTVSS. However, additional questions remained 

unaddressed, such as what is the most appropriate statistical test to use, how to account for 

delays and whether there is enough power to detect a signal.  

8.1.3.2 What this study adds 

This study showed that it is possible to implement a NRTVSS using CPRD, for at least two 

selected vaccine/outcome pairs: seasonal influenza vaccine/GBS and MMR/febrile seizures. 

For seasonal influenza vaccine/GBS, PMaxSPRT was deemed as the most appropriate test 

while for MMR/febrile seizures both the PMaxSPRT and the BMaxSPRT could be used. For 

MMR/febrile seizures, I was able to replicate a known safety signal, and showed that there 

was sufficient power to detect a signal of an increased risk of 2.5 times or more. For seasonal 

influenza/GBS there was more limited power to identify a safety signal; at its current size, 
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use of CPRD would enable exclusion of large increases in risk (over four times) of this rare 

outcome following seasonal influenza. This work proposes an adjustment for delays adapted 

to CPRD’s data structure and based on the delays analysis reported in Section 5.3.  

This work will inform any future decision-making by UK regulatory authorities about how 

best to implement this type of surveillance, including awareness of both the strengths and 

limitations of using CPRD data in this context. Additionally, these results are useful to 

researchers or practitioners who are developing near real-time surveillance activities using 

related electronic health record data.  

8.1.4 Power to detect a signal and delays 

8.1.4.1 What was known 

The work conducted as part of the third objective of this thesis (Section 7.1) showed it is 

possible to implement a near real-time vaccine safety surveillance system using data from 

CPRD but there is limited power to identify a rare outcome (GBS) following seasonal influenza 

vaccine (power was ≥80% to identify a 4-fold increase in risk). For MMR/febrile seizures there 

was sufficient power to detect a 2.5-fold increase in risk. When using PMaxSPRT the number 

of expected events at the end of the surveillance determines power. This number is a 

function of the data available, depending on both the number of individuals contributing 

data (the volume of data) and on delays in data availability (both in practice staff recording 

outcomes and CPRD receiving data from participating practices). CPRD is a dynamic database 

and the number of individuals can increase (by including data from new practices and/or 

existing practices increasing in size) and delays can be reduced (by changing the way data 

are collected from practices and the regularity of data releases). The performance of a near 

real-time system could therefore improve by expanding the database and/or reducing 

delays. 

8.1.4.2 What this study adds 

This study explored the effect of delays in recording outcomes and receiving data on the 

performance (the power to detect a signal and the expected time to signal) of a system 

assessing GBS following seasonal influenza vaccine. Additionally, it assessed the system 

performance based on data available around the middle of the surveillance period, to 

understand what could be detected at a time when it would still be possible to implement 

some measures.  
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The results showed that absence of delays produced only limited improvements in power 

(with a maximum improvement of 4%). Timeliness in the absence of delays was similar to 

that observed when assuming delays. Assessment of power at mid-influenza season (early 

December) showed a substantial reduction in power (compared to end of the season), and 

would only allow detection of very large increases in risk (relative risks of more than eight). 

Removing delays would thus not be sufficient to improve the performance of a near real-

time vaccine safety surveillance system for rare outcomes; expansion of CPRD is required. 

The results of this study can be used to inform any future decision-making by data providers 

about how best to improve the data available to support near real-time surveillance. More 

widely, the study provides a framework on how to consider delays and their effect on near 

real-time surveillance activities when using electronic health record data.  

8.2 Strengths  

The strengths of each study were discussed in the Chapters in which they are reported. Here, 

I provide an overview of the strengths of the project as a whole. These include the use of 

large, population-based electronic health records, careful consideration of data-related 

aspects and the implementation of a new vaccine safety surveillance system.  

8.2.1 Use of large, population-based data 

This work used CPRD, a large, population-based database, used extensively for epidemiologic 

research. Post-licensure vaccine safety studies require large databases as the main concern 

is the detection of rare adverse events. The use of CPRD in this context enables the detection 

of signals for rare events (at least for large increases in the relative risk, see Section 7.1). In 

general, collecting primary data to identify such rare events would be costly, time-consuming 

and would not generate timely results. Additionally, a population-based data resource is 

important to ensure that the results obtained are indeed representative of what is happening 

in the population. In practice, if the system is applied and no signals are detected, the results 

will be important to reassure the population that the vaccine under study is safe; on the 

other hand, if a signal is identified and then confirmed the results will help deciding which 

measures should be taken.    

8.2.2 Careful consideration of data-related aspects 

Throughout this project, I have carefully considered data-related aspects that could 

potentially affect the work conducted. First, I used rigorous methods to develop code-lists, 

and used wider and narrower definitions when evaluating delays in recording outcomes to 
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assess the effect of imperfect validity of diagnostic code-lists. I then assessed delays in stand-

alone CPRD by using the system date, the date a record has been entered into the patient’s 

file. As part of this work, I also investigated how system dates can be changed due to 

software and patient record updates, and proposed a method to investigate and exclude 

these. To the best of my knowledge the system date had not been previously used in this 

context and the mass transfer of records had not been investigated up to now. Finally, I 

proposed adjustments to account for delays in recording outcomes (for PMaxSPRT and 

BMaxSPRT) and receiving data (for BMaxSPRT), as well as partially accrued periods (for 

BMaxSPRT). These adjustments were based on previous work113 but I adapted them to the 

structure of CPRD data. Overall, these aspects should be considered when envisaging the use 

of a data source to implement near real-time vaccine safety surveillance; my work can also 

be used by others looking at similar systems and related electronic health data.    

8.2.3 Implementation of a surveillance system 

The project reported in this thesis establishes the main features of a system that can be 

implemented in the UK. As such, I sought to provide results for vaccine/outcome pairs 

encompassing a range of characteristics, including a rare (GBS) and a more frequent outcome 

(febrile seizures), as well as an adult (influenza vaccine) and a childhood vaccine (MMR). I 

have also proposed an implementation for two tests (PMaxSPRT and BMaxSPRT) which 

further maximised the range of issues explored as part of my work. Time requirements to 

implement a system were not formally assessed but are discussed in Section 8.4. In addition 

to proposing the main aspects of a system relying solely on CPRD data, I assessed what needs 

to change to address existing limitations. In particular, I identified limited power to detect 

small increases in the risk of GBS following influenza vaccine (see Section 7.1) and, therefore 

I re-assessed power in the absence of delays for influenza vaccine/GBS. This particular work 

can be used to inform discussion with data providers about the way forward to improve data 

to be used in the context of a near real-time system. In summary, my work provides 

information not only on how a near real-time vaccine surveillance system can be 

implemented but also on how to address some of the existing limitations with currently 

available data.  

8.3 Potential limitations  

The specific limitations of each study were presented in Chapters 4, 5, and 7. In this section, 

I present the overarching limitations of the thesis in terms of my own work, limitations of 
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the data used and intrinsic limitations of the methods available. Issues related to the 

generalisability of the results are also presented here.  

8.3.1 Limitations of my work 

Due to the limited time in which to conduct this work, I selected two vaccine/outcome pairs 

to trial the implementation of a system using CPRD data. Systems run in routine practice 

generally assess five to ten pairs.8 The tests selected were deemed to be the most 

appropriate to assess the pairs included. However, the inclusion of new pairs might require 

the use of tests not selected for the purposes of this work. For example, if there are limited 

data to estimate the historical rate of the outcome of interest CMaxSPRT might be required. 

Nevertheless, I tried to capture a range of issues to provide a broad overview of the 

challenges faced when implementing a system using CPRD data (see Section 8.2.3). These 

should be regarded as an initial step towards the implementation of a system as routine 

practice.  

A key issue when using CPRD data is the validity of diagnostic codes used to ascertain 

outcomes and vaccines. Time constraints also prevented carrying out a full validation study 

of the code-lists used as part of this study. However, I assessed the effect of imperfect validity 

on delays by using a broader and more specific set of codes and the completeness of 

diagnostic codes in CPRD. The use of two lists with different levels of specificity yielded no 

significant effect on the delay distribution, which indicates that outcome misclassification 

does not impact the distribution generated. 

8.3.2 Limitations of the data used 

CPRD data have not been collected for research purposes. As such, researchers using these 

data should be aware of their limitations. As outlined in Section 8.3.1, I assessed the effect 

of imperfect validity of codes by using two lists with different levels of specificity with no 

appreciable effect in the delay distribution. On the other hand, my work assessing the 

completeness of diagnoses captured in CPRD (i.e. sensitivity, see Section 5.3) showed 

appreciable underreporting, even for serious conditions (e.g. GBS).  In the context of near 

real-time surveillance, if underreporting is constant over time it decreases power to detect 

a signal, but it may have wider implications for research in general. The need to use linked 

data to improve completeness of diagnostic records has been previously recognized.86,165 

However, present linkages with hospital data are not timely enough to be used in a near real-

time system. If this changes in the future the use of linked data would be an important 

improvement to a near real-time system. With regards to vaccination information, I am not 
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aware of a study that formally assesses the validity of vaccination information for the 

vaccines assessed as part of this study. However, both MMR for young children and seasonal 

influenza vaccine for individuals aged 65 years or more are administered in GP practices. 

Administration of these vaccines is part of the services practices should deliver166 and 

practices are paid based on the records entered into the system.167 It is thus expected that 

this information is well recorded. Moreover, the inclusion of only vaccinated individuals with 

careful development of algorithms to identify these individuals should have contributed to 

minimising further potential misclassification.  

Delays in recording outcomes and in receiving data for analysis can also limit the feasibility 

of a near real-time system. I extensively considered delays in the context of this project, both 

by characterizing them and by adjusting for delays during the trial implementation analyses. 

These efforts ensured the analyses conducted were feasible and unbiased (as far as delays 

are concerned) but they did not remove existing delays. Outcomes diagnosed in hospital are 

only recorded after GPs receive feedback from hospital-based physicians, therefore, as 

discussed above, using readily available linked CPRD-hospital data would likely minimise this 

source of delays. Uploading data from practices more frequently (e.g. daily, weekly) and 

make them available to researchers would also reduce delays further. CPRD is now trialling 

new data collection from practices using EMIS software (see below), with daily uploads. As 

this system progresses towards implementation, discussion with data providers will be 

important to anticipate these improvements and to decide how to best integrate them into 

the surveillance system.  Nevertheless, my work assessing the influence of power on delays 

for influenza vaccine/GBS showed that removing delays only results in limited improvements 

in power to detect a signal.  

I have also shown that there is limited power to detect a signal for a rare outcome (GBS) 

following seasonal influenza (see Section 7.1) and suggested that data expansion is required 

to improve power. Such improvement should be possible as CPRD is about to release data 

that are substantially larger due to the inclusion of practices using EMIS software. EMIS is 

one of the main software in the UK78 and this will be an important addition for future CPRD 

expansion. CPRD is now assessing data from EMIS practices and the current plan is to include 

data from these practices in the Spring of 2018 (with test usage for selected studies from the 

Autumn of 2017) (Dan Dedman, CPRD, personal communication). In the future, CPRD is also 

planning to include practices using TPP SystmOne software (Helen Booth, CPRD, personal 

communication). Only after data are released will it be possible to assess what improvement 

results from these additional data.  
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8.3.3 Limitations of the methods 

As pointed out in my systematic review of existing methods to perform near real-time 

vaccine safety surveillance (see Section 4.1), there were limited strategies to account for 

confounders and, in general, only a few confounding variables were considered. In 2015, 

Cook et al. proposed a group sequential test using generalized estimating equations to allow 

for more flexible control for confounding than previously existing methods.168 To the best of 

my knowledge, this new method has not been subsequently applied, and confounding has 

been addressed at the confirmation stage, after a signal is found. This might be related to 

the fact that near real-time surveillance is regarded as a simple and quick signal 

strengthening method, which requires a full confirmatory study afterwards when a signal is 

found. As such, it should not be over-complex, and more complete and robust approaches 

are left to the confirmatory stage.   

8.3.4 Generalisability 

This work aimed to assess the feasibility of using CPRD to implement a near real-time vaccine 

safety surveillance system. Therefore, the issue of generalisability is discussed from the 

perspective of applying the existing results to new CPRD data releases. This is particularly 

important as CPRD is undergoing substantial changes that may limit the use of the results 

generated as part of this project. The issues presented in this section should also be 

considered if implementation using other primary care databases is envisaged (e.g. 

ResearchOne, THIN, RCGP RSC).  

The main change, as highlighted in Section 8.3.2 above, is the addition of practices using 

EMIS software. The inclusion of EMIS practices brings additional challenges to the 

implementation of a system, including: (i) the use of system date; (ii) GPs’ recording 

behaviour; (iii) mode of data collection; and (iii) a different coding system. These aspects are 

reviewed. As explained in Section 5.3, in Vision practices’ data, the date when a record was 

added to a patient’s file (the system date) can be changed when the software version is 

updated. My work included investigation of which records have been included in such 

updates, followed by their exclusion. Currently, it is not known if this is also an issue for data 

from EMIS practices. Release of these data and conversations with data providers will be 

important to gain a deeper insight of the relevant issues for EMIS data. The need to exclude 

records due to mass transfers for EMIS data should thus be assessed in light of that 

information. Similarly, the delay distribution generated using Vision practices data may not 

be generalizable for EMIS practices data. Previous CPRD work looking at Huntington’s disease 
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suggested a slightly lower prevalence for the disease as estimated from EMIS practices in 

comparison to Vision practices (Dan Dedman, CPRD, personal communication). This may be 

due to the EMIS system not requiring GPs to enter a code when adding information to a 

patient’s file (Dan Dedman, CPRD, personal communication). Further differences between 

the two systems may lead to a different delay distribution. If EMIS data contain information 

on the date each record was entered (an equivalent to system date) both the issue of mass 

transfer of records and delays in recording outcomes can be assessed using the programme 

files I developed. The use of my files would reduce the workload required to conduct a new 

assessment, as only data extraction and minor adaptions of the files to the new data would 

be required.  

Data collection will also differ between EMIS and Vision practices. CPRD is likely to receive 

daily data extracts from EMIS data, which has potential to reduce delays in practices 

uploading their data. If CPRD data releases start to be provided more often than monthly, 

frequency of testing might be increased accordingly. Nevertheless, my work assessing the 

effect of reducing delays on power (Section 7.4) showed that removing delays will only 

slightly improve the performance of a system.  

All the work developed was based on Read codes version 2 lists while EMIS codes information 

using Read codes version 3. All GPs systems will be required to adopt SNOMED CT codes by 

April 2018.169 Therefore, in the future, implementation will require the mapping of existing 

lists to SNOMED CT codes.  

Future changes that can limit the application of the proposed implementation include 

changes in the way data are captured from hospital (for example, automatic capture of 

hospital-coded data by the GP system) and/or expansion of CPRD data to include other data 

sources (for example linkage of child health records from all settings). This would improve 

the validity of diagnostic codes (by improving the sensitivity) but would also lead to changes 

in the delay distribution (used for adjustment of delays), thus requiring data re-analysis. 

Overall, the effect of changes affecting the data used for implementation should be carefully 

considered and adaptions should be adopted as required.   

8.4 Implications for practice 

This work establishes the main aspects of a near real-time vaccine safety system using CPRD 

data. However, full implementation will require further considerations. To start with, a fully 

functioning system will require monitoring of more than one or two outcomes (generally five 
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to ten8). Additionally, the implementation of this system will require the establishment of 

further steps should a signal be identified. VSD has proposed several steps after a signal is 

identified, including: checking the data and code, examining descriptive statistics for patterns 

in time between the exposure and outcome, adjusting for additional confounders, 

conducting a non-sequential analysis with a different comparator, conducting a review of 

records, comparing the results with similar outcomes or other existing data, analysing new 

data or designing a new study.9 When using CPRD, it is no longer possible to access GPs’ free-

text, and it may not be feasible to obtain medical records of cases identified and validate 

them in a timely manner. However, the remaining steps can be applied. A debated issue is 

the use of the same dataset to identify and confirm a signal.34 Some authors claim this should 

be avoided due to possible biases. I am not aware of a formal study showing and quantifying 

these biases in the context of signal identification and confirmation. However, a related issue 

has been extensively discussed in the field of prognostic models,170 and it is recommended 

that a model is fitted and validated in separate datasets, preferably from different patient 

centres. If we consider the same approach in the context of signal identification and 

confirmation, there are further primary care datasets available in the UK such as THIN and 

RCGP. Within CPRD, in the future it would be possible to use Vision practices for system 

implementation and EMIS practices for signal confirmation. Nevertheless, this approach 

would remove the power gain of adding EMIS practices to the data used to implement a 

system. Furthermore, these concerns arose in the context of data mining studies.34 Unlike 

data mining, NRTVSS is hypothesis driven and there is a rationale for selection of the 

vaccine/outcome pairs to assess. In epidemiologic terms, particularly regarding confounding 

factors, NRTVSS also provides an initial analysis and (as highlighted above) there is room for 

more robust and rigorous analysis following a signal, even if the same data are used. Hence, 

I would propose the application of the steps previously mentioned (e.g. more detailed 

adjustment for confounders in a formal epidemiological study) using CPRD data. This is also 

the approach followed by VSD, in which the same data are used for NRTVSS and signal 

confirmation. Authors defending this approach claim that analyses at the confirmation stage 

should be ‘statistically independent’ or ‘orthogonal’ from the ones used at the identification 

stage, i.e. they should look at aspects of the data that are distinct from each other.171,172 

Nevertheless, further research on the use of the same data for identifying and confirming a 

signal would be useful.  

One of the challenges when implementing this system in practice is data availability. As 

explained in Section 6.2, for the purposes of this work it was not possible to use the monthly 
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release of the data to mimic a near real-time system. Instead, I used the 6-month releases 

available to LSHTM, which were deemed appropriate within the scope of this project. If the 

system is implemented in practice, monthly data releases should be used. The MHRA is one 

of the possible implementers of this system and they can access and extract data without 

the restrictions of the online extraction tool. As such, the issues relating to identifying 

individuals with immunisation codes would not be relevant. If others wish to proceed 

towards implementation of this type of system, one option is to discuss with data providers 

the possibility of searching for immunisation codes in the online extraction tool.  

The issue of timeliness regarding data has been discussed extensively. However, it is also 

necessary to consider the time required to perform the analysis. Having produced several 

programs to conduct these analyses I can make them available to those who wish to pursue 

this type of surveillance using CPRD data. That would greatly reduce the time required to 

conduct the analysis. It is difficult to give a precise estimate of the time required to set up 

and run a system as this depends greatly on the knowledge of the data and methods used, 

as well as on the number of events to study for each vaccine. Nevertheless, in Table 8.1, I 

provide a breakdown of the tasks required to implement a system, alongside an estimate of 

the time required to perform each task. The most time-consuming work can be done before 

the beginning of the surveillance period, preventing unnecessary delays at this stage. The R 

package Sequential also helps to reduce the time required for analysis; for example, 

Sequential stores the results from one analysis to the next, thus simplifying the analysis 

process.  Overall, I estimate that two full-days of work are required to perform the analysis 

of each data release for a specific vaccine/outcome pair. It is noteworthy that adding more 

outcomes will not increase the workload in a linear way, as several tasks will take 

approximately the same time for one or more outcomes. However, those implementing a 

system should consider the additional workload from implementing a system and whether 

it is necessary to have a dedicated person to perform the entire analysis. I would recommend 

that a specific person is assigned to perform the several stages of the analysis, with further 

support from a team with a wide set of skills. Having a dedicated person would diminish the 

time required to acquire the specific skills needed to implement the system (e.g. 

familiarisation with the package Sequential). However, I do not think a full-time dedicated 

person would be required. In the future, the work can be further automated by the 

development of dedicated programs, and the use of R Markdown to produce standard 

reports.173 R Markdown allows the development of dynamic documents with R, embedding 

R code and text in the same file. Such files are particularly useful when one wishes to run and 
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report similar analyses at repeated points in time such as in the case of sequential analyses. 

Developing an R Markdown file to generate a standard report for each sequential analysis 

would therefore reduce the workload required to report each new analysis. 

Table 8.1. Tasks required to implement a system and estimate of time commitment, for a specific vaccine/outcome 
pair 

Task Time (hours) 

Prior to surveillance  

Development of code-lists (per outcome) 1 to 2 

Development of algorithm to identify vaccinated individuals (per vaccine) 6 to 8 

Sub-total (prior to surveillance) 7 to 10 

PMaxSPRT - Before surveillance starts  

Definition of the comparator period 1 

Data extraction 2 to 3 

Data cleaning and management 3 to 4* 

Calculation of an appropriate historical rate 3 

Generation of delay distribution 3 

Calculation of expected number of events at end of surveillance based on historical 

data 

2 

Sub-total (PMaxSPRT - Before surveillance starts) 14 to 16 

BMaxSPRT - Before surveillance starts  

Calculation of the observed number of events at end of surveillance based on 

historical data 

2** 

After surveillance starts (task required at each data release) – similar for PMaxSPRT and BMaxSPRT 

Data extraction 2 to 3 

Data cleaning and management 3 to 4* 

Identification of vaccinated individuals and their follow-up time (includes 

refinement of algorithm to identify vaccinated individuals) 

4 to 6 

Calculation of the expected number of events (PMaxSPRT only) and identification 

of the observed number of events (PMaxSPRT and BMaxSPRT) 

2 

Calculation of the test statistics 1 

Sub-total (After surveillance starts) 12 to 16 

*Assuming adaption of pre-existing programme files. **Assuming use of the same historical data 

as PMaxSPRT 

 

8.5 Implications for future research 

As outlined above, a fully functioning system will require the assessment of more than two 

vaccine/outcome pairs. New outcomes might require the use of other tests that were not 
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studied as part of this project, such as the conditional maximized sequential probability ratio 

test. Furthermore, the assessment of vaccines other than seasonal influenza and MMR may 

require the use of further tests or their combination. For example, when assessing newly 

introduced vaccines, it may be necessary to allow some time for initial uptake. A possible 

strategy in this context is to initiate the sequential analysis only after a pre-determined 

number of doses have been given.163 The specific tests to apply to each vaccine/outcome 

pair should be decided on a case-by-case basis.  

Other areas of research include comparison of the system proposed in this thesis with other 

systems. For example, NRTVSS had been previously implemented using spontaneous reports 

to generate the observed number of events and CPRD to calculate the expected number of 

events, while I am now proposing to implement the system relying exclusively on CPRD data. 

The properties of both systems could be assessed as a way to understand how to best use 

them in practice (using one or both systems).  

As outlined in Section 2.3.1.3.4, it has been shown that it is possible to identify mild AE to 

vaccines (e.g. injection site pain, fever and malaise) using social media and other online 

reports but their place in pharmacovigilance is still unclear.57,58 In particular, it is not known 

if social media should be considered as a tool to support signal detection or if it can be used 

on its own. As with electronic health records, these data contain a vast amount of records 

and may seem appealing to identify rare adverse events, however, there are additional issues 

that need to be explored. For example, it may be difficult to capture conditions less familiar 

to the general public such as GBS and there might be issues regarding representativeness of 

the data. Addressing these questions could inform how to best use these two (near) real-

time systems in practice. Additionally, it would be important to know how the two systems 

(NRTVSS and social media) perform in terms of their timeliness.  

The work conducted also has implications for other researchers using these data sources. 

First, to the best of my knowledge, this is the first work to recognize objectively that general 

practice records are subject to mass transfers, which also update the date a record was 

entered in the patient’s file. More importantly, the work using linked data to assess 

completeness showed low sensitivity of coded records in CPRD for some diagnoses. For the 

implementation of a near real-time system, if recording is constant over time this would 

decrease the number of existing records, thus diminishing power to detect a signal. However, 

this has implications for researchers in general, who should be aware that even serious 

conditions such as GBS might not be coded by GPs. Overall, these issues highlight that 
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researchers need to have a deep understanding of existing data to be able to use them in an 

appropriate manner.  

8.6 Personal development 

The work developed as part of my PhD allowed me to acquire a range of skills. Firstly, I 

learned in detail the specific methods used to perform near real-time vaccine safety 

surveillance. Secondly, I made enormous progress in my understanding of the complex CPRD 

structure and how it can be use to perform epidemiological research. I learnt how to create 

and use code-lists and how to extract data. I have also developed my knowledge of the 

potential and limitations of using CPRD (and other electronic health records) to perform 

epidemiological research. Thirdly, I developed my command of both STATA and R. When I 

first started this project, my STATA knowledge was limited; I have thus greatly expanded it, 

not only by using new commands to perform data cleaning, management and analysis, but 

also by learning how to best use STATA to analyse very large datasets, trying to maximise the 

efficiency of my commands and thus reduce computational time. Being already fluent in R 

before the start of my PhD, I learnt how to use the specific functions required to implement 

a NRTVSS and to assess the performance of a system (Sequential package). Finally, I have 

greatly developed my writing skills. This is probably the area where I feel I benefitted the 

most from my PhD experience. Having received detailed feedback on my written documents 

has enabled me to improve my writing and the way I communicate my work. Overall, these 

skills will be vital in my future career as a researcher.  

In addition to the work around my PhD project, the time spent at LSHTM has given good 

opportunities to understand the daily functioning of an academic institution with a vibrant 

research environment. There is a wealth of research seminars given by a wide range of 

resident and invited speakers, and my regular attendance at these has enabled me to make 

contact with other researchers working on a variety of public health topics. Furthermore, I 

was able to develop my teaching skills. At LSTHM, I taught on several Masters-level modules 

(Statistics for Epidemiology and Population Health, Extended Epidemiology and Statistical 

Methods in Epidemiology), focusing on the application of statistical methods in epidemiology 

and development of epidemiological concepts. In these modules, I led practical sessions, 

supporting students with the use of STATA, and for some, I also assessed final assignments. 

The progress made was achieved with the invaluable support of my supervisors, bridging 

academic and public health practice. Throughout the course of my project I have also 
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collaborated with the MHRA, by sharing results and discussing the steps of my project. This 

collaboration has been beneficial for me as I was able to improve my project using MHRA 

experts' knowledge but also benefited the MHRA, as my work provided them with valuable 

information. Furthermore, I had the opportunity to present my work at several national and 

international conferences, where I received feedback from experts in the area of vaccine 

safety. For a full list of presentations see Appendix B of this thesis.  

8.7 Conclusions 

Near real-time vaccine safety surveillance using electronic health records is one of the 

methods available to assess vaccine safety after approval. It started to be used in 2005 in the 

USA and it has been increasingly used worldwide ever since. Several statistical approaches 

have been considered to conduct this type of surveillance, including continuous sequential 

tests, group sequential tests, and statistical process control. PMaxSPRT and BMaxSPRT were 

the tests most commonly used. There were limited strategies to account for confounding 

factors and it is possible to account for delays in receiving and recording data as part of the 

implementation of a system. In the UK, this type of surveillance had been implemented using 

spontaneous reports to obtain the number of observed events and CPRD to calculate the 

number of expected events. Research-level primary data sources are available in the country.  

For a data source to be considered for use in a near real-time vaccine safety surveillance 

system it should be population-based, have a good validity of both vaccination and outcome 

information, be available in a timely manner and have enough power to detect signals. CPRD 

data are known to be population-based and it is generally considered to have good validity 

for vaccines administered in general practices and outcomes of interest for vaccine safety. 

As part of this work, I have shown that outcomes of interest for vaccine safety are recorded 

with some delay but this is compatible with the implementation of a near real-time system.  

Trial implementation of a system using CPRD data was successfully carried out. PMaxSPRT 

was deemed as the most appropriate test to use for rare events while both PMaxSPRT and 

BMaxSPRT can be used for more frequent events. Adjustment for delays was possible and 

should be considered when implementing a system. There was good power to detect a signal 

for more frequent events such as febrile seizures following MMR vaccine but limited power 

to detect a signal for rare events. Further exploration of this issue showed that removing 

delays was not sufficient to improve power in this context and CPRD data expansion is 

therefore required.  
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Overall, it is possible to implement NRTVSS using CPRD data and further expansion of CPRD 

(both in terms of size and data available) might help addressing some of the currently existing 

limitations. The work reported here will support and strengthen pharmacovigilance 

activities.  
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APPENDIX A: OUTCOMES NOT INCLUDED IN THE FEASIBILITY 

ASSESSMENT 

Table S 1. Outcomes not included in the feasibility assessment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Outcome Number of times studied 

Acute flaccid paralysis 1 

All hospitalization 1 

Appendicitis 1 

Arthritis 1 

Asthma/wheezing 2 

Auto-immune disorders 1 

Cardiovascular events 1 

Cerebrovascular events 1 

Death 1 

Epilepsy 1 

Fatigue syndromes 1 

Fever 2 

Gram negative sepsis 1 

Haematochezia 1 

Invasive Haemophilus influenzae type b disease 1 

Juvenile onset of diabetes 1 

Kawasaki disease 3 

Myocarditis (±pericarditis) 2 

Narcolepsy 1 

Other neurologic outcomes 1 

Paralytic syndromes 2 

Respiratory events 2 

Serious local reactions 1 

Stevens-Johnson syndrome 1 

Stillbirth 1 

Stroke 2 

Sudden infant death 1 

Syncope 1 

Varicella zoster 1 

Venous Thromboembolism 1 

Herpes zoster 1 
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APPENDIX B: LIST OF PRESENTATIONS  

Below I provide a list of presentations (oral and posters) performed as part of my PhD project.  

1. Near-real time vaccine safety surveillance – a systematic review of statistical 

methods. Health Protection Research Unit in Immunisation Annual Scientific 

Meeting. London: 30 March 2015 (oral presentation); 

2. Near-real time vaccine safety surveillance using the Clinical Practice Research 
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