
LSHTM Research Online

Jarvis, C; (2018) Spatial Analysis of Cluster Randomised Trials. PhD (research paper style) thesis,
London School of Hygiene & Tropical Medicine. DOI: https://doi.org/10.17037/PUBS.04648971

Downloaded from: https://researchonline.lshtm.ac.uk/id/eprint/4648971/

DOI: https://doi.org/10.17037/PUBS.04648971

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively
contact researchonline@lshtm.ac.uk.

Available under license. To note, 3rd party material is not necessarily covered under this li-
cense: http://creativecommons.org/licenses/by-nc-nd/3.0/

https://researchonline.lshtm.ac.uk

https://researchonline.lshtm.ac.uk/id/eprint/4648971/
https://doi.org/10.17037/PUBS.04648971
https://researchonline.lshtm.ac.uk/policies.html
mailto:researchonline@lshtm.ac.uk
https://researchonline.lshtm.ac.uk


Spatial Analysis of Cluster
Randomised Trials

Christopher Jarvis

Thesis submitted in accordance with the requirements for the degree of

Doctor of Philosophy of the University of London

April 2018

Department of Infectious Disease Epidemiology

Faculty of Epidemiology and Population Health

London School of Hygiene and Tropical Medicine

Funded by the Medical Research Council London Hub for Trials Methodology Research,

Grant code MR/L004933/1- Q42



Declaration

Statement of Own Work

I, Christopher Jarvis, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, this has been indicated in

the thesis. I have read and understood the School’s definition of plagiarism and

cheating given in the Research Degrees Handbook.

Christopher Jarvis

April 2018

The copyright of this thesis rests with the author and no quotation from it or

information derived from it may be published without the prior written consent of

the author.

i



Abstract

Cluster randomised trials (CRTs) often use geographical areas as the unit of ran-
domisation. Despite this, explicit consideration of the location and spatial distribu-
tion of observations is rare. In many trials, the location of participants will have little
importance, however in some, especially against infectious diseases, spillover effects
due to participants being located close together may affect trial results. This PhD
takes a multidisciplinary approach to apply and evaluate spatial analysis methods in
CRTs, furthering understanding of how spatial analysis can complement traditional
evaluation of CRTs.

I began by conducting a systematic review of CRTs that used spatial analysis tech-
niques. I found only 10 published papers, most of which being supplementary anal-
yses of the main trial. I then conducted a spatial analysis of an Oral Polio Vaccine
(OPV) transmission household CRT. This provided additional insights into the un-
derlying mechanism of polio transmission that support the global cessation of OPV
and emphasises the difficulties of the global eradication of polio. Following this,
I performed a spatial reanalysis of an insecticide-treated bed net CRT, applying
approaches from the systematic review and a new method I developed called clus-
ter reallocation to assess the presence and impact of spatial spillover in the trial.
This analysis confirmed the previous estimate of intervention effect while showing
evidence of a spillover effect.

I carried out simulation studies to evaluate the impact of spillover and spatial effects
on the standard CRT model and compared spatial regression to non-spatial models.
These simulations focus on how to generate spatial spillover effects and the magni-
tude needed before spatial consideration becomes important to CRTs. I found that
non-spatial CRT models are relatively robust to spatial effects and that the use of
spatial models does not appear to improve upon the non-spatial model.

The collective findings of this thesis highlight that standard CRT approaches are
typically robust to small scale spillover effects and consideration of the spatial distri-
bution of observations appears to provide little utility in the main analysis of a trial.
Despite this, spatial methods can provide additional insights into the mechanism of
interventions and are well suited to secondary analyses of CRTs, especially with the
increasing collection of GPS data in CRTs.
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Acronyms

BYM Besag, Yorke, and Mollie Model

CAR Conditional autoregressive

CI Confidence interval

CrI Credible interval

CRT Cluster randomised trial

cVDPV Circulating vaccine-derived poliovirus
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GPS Global Positioning System
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ICC Intra-cluster correlation coefficient
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INLA Integrated nested Laplace approximation

IPV Inactivated Polio Vaccine
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LGM Latent Gaussian model

MAUP Modifiable Areal Unit Problem
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MCMC Markov chain Monte Carlo

MRF Markov random field

MVN Multivariate normal distribution

NIW National Immunization Week

OPV Oral polio vaccine

OR Odds ratio

RR Risk ratio

rt-QPCR Quantitative reverse transcription polymerase chain reaction

SAR Simultaneous autoregressive

SMR Standardised mortality ratio

SP Stochastic process

SPDE Stochastic partial differential equation

SUTVA Stable Unit Treatment Value Assumption

UTM Universal Transverse Mercator

VAPP Vaccine-associated paralytic polio

WHO World Health Organisation

WT Wild type
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Notation

Statistics and parameters

s A location in space-time
H An attribute or property
h(s) A property H for a given location s
d Spatial variable usually involving distance or proximity weighted values
a, b Coordinates (a, b)
W Spatial weights matrix
c Number of clusters
n Total number of individuals
m Number of individuals per cluster
π Population proportion or pi when used in Gaussian formula
λ Population rate
θ Population parameter used when defining confidence intervals where

(θ̂low, θ̂upp) are the lower and upper bounds of the interval and θ̂ is
an estimate of the parameter

µ Population mean
µ(.) Mean function
σ Population standard deviation
σb Between-cluster standard deviation
σw Within-cluster standard deviation
σv Between-area standard deviation (when area is equal to cluster then

σv = σb)
Σ Variance-covariance matrix
Σ(.) Covariance function
ρ Spatial correlation parameter
ω Parameter used in distance weighting functions
ξ Parameter used in distance weighting functions
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Notation (continued)

Model terms

y Outcome variable
z Covariate
Z Matrix of covariates with the first column constrained to be a vector of

ones, also called a design matrix
x Covariate reserved for intervention status
α Intercept parameter
β Regression parameter representing the intervention effect
γ Regression parameters representing effect of a covariate
ψ Regression parameter representing a spatial spillover effect
u Random effect, typically u ∼ N(0, σ2

u)
v Spatially correlated random effect
η Linear predictor
ε Error term typically ε ∼ N(0, σ2)

Subscripts

i Intervention arm (i = 0: control, i = 1: intervention)
j Cluster (j = 1, ..., c)
k Participant (k = 1, ..., m) so that yijk represents the outcome for the kth

participant in the jth cluster in the ith treatment arm
m Observation where m∗ is used to denote a set of neighbours
l Covariate (l = 1, ..., L)
s Stratum or location (s = 1, ..., S)
w Within-cluster
b Between-cluster
v Geographical areas, the area used in the spatially correlated random

effect v
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Notation (continued)

Superscripts

t Transpose of a matrix e.g. At

∗ Denote neighbours where j
† conjugate transpose of a matrix e.g. A†

G(.) Link function. Where y = G−1(η)

General notation

I Identity matrix
f(.), g(.) Functions
A, B Matrices
L, U Lower and upper triangular matrices. (typically used when performing

matrix decomposition)
E(.) Expectation of a random variable
V(.) Variance of a random variable∑ Summation sign

Distributions

N(µ, σ) Gaussian (Normal) distribution
Bin(π, n) Binomial distribution
Pois(λ) Poisson distribution
MVN(µ, Σ) Multivariate normal distribution
GP (µ(.), Σ(.)) Gaussian process with mean and covariance functions

Note: Extra notation for algorithms are defined in the inputs of the algorithms. The

notation for Figure 3.2 differs slightly than defined here but a legend is provided

detailing the notation for the figure.
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Introduction

1.1. Motivation for PhD

Cluster randomised trials (CRTs) often use geographical areas as the unit of ran-

domisation. Despite this, explicit consideration of locations and the spatial distri-

bution of observations is rare [1]. When participants are close to one another there

is the potential for effects to ‘spill over’ from one person to another. This is likely to

affect CRTs when clusters are close to one another as there is the potential for these

spillover effects to cross cluster boundaries. For example, an infected participant

may travel across a cluster boundary and infect participants of that cluster. This

movement, will violate the assumption of between-cluster independence, which is

typically assumed in the analysis of CRTs.

Designing trials with well-separated clusters is a possible route to avoiding spillover

effects. However, the range of a spillover effect is often unknown during the design

phase of a trial, and disease autocorrelation can range over distances of several

kilometres [2]. Furthermore, due to pragmatic reasons it may not be possible to

design CRTs with clusters that are far apart. The existence of spillover also presents

an opportunity to measure additional effects of an intervention, thus furthering

understanding of the mechanism of the intervention. Therefore, there is a need to

assess and develop analysis methods that can be used to adjust for and measure

spillover effects.

Spatial statistics contains a large body of research which focuses on how to in-

corporate location into the analyses of data [3]. The use of spatial statistics in

medical research is sporadic and in CRTs only a few examples exist at present [1, 4].

This PhD builds upon the work of co-supervisor Neal Alexander [5–7]. This thesis

contributes to bridging trial methodology and spatial statistics, in an attempt to

improve understanding of how to use the location of data for the benefit of CRTs.
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1.2. Aim

The aim of this research is to explore the use of spatial methods within the analysis

of CRTs. Specifically, to improve and develop knowledge of: methods that can be

applied to CRTs, the impact of spatial effects on trial results, and the additional

utility that can be gained from considering the spatial context of a CRT.

1.3. Objectives

The aim will be met by fulfilling the following objectives:

1. Describe and frame CRTs in relation to spatial data and summarise implica-

tions for spatial analyses.

2. Describe and identify spatial analysis methods that have been previously used

in CRTs by conducting a systematic review.

3. Apply and assess a range of appropriate modern spatial methods to existing

CRT data, in order to analyse the effect of spatial autocorrelation and spatial

spillover effects on CRT results.

4. Evaluate the impact of spatial effects and the utility of spatial models in the

analysis of a CRT by means of a simulation approach.

5. Develop methodology to assess the presence of spatial spillover in CRTs.

1.4. Thesis structure

This research paper style thesis consists of three parts, containing nine chapters

in total. A research paper style thesis contains chapters that are written in the

style of a journal article, and more traditional PhD chapters. The research paper

chapters are prefixed with “Paper X:”, and the traditional PhD chapters have no

prefix. Research papers chapters were chosen for applied work, and traditional PhD
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chapters for the methodology and simulation studies. This removes the often short

word count enforced by journals, allowing deeper exploration in the methodology

and simulation study chapters.

The present chapter is a brief introduction, detailing the aims and original contri-

butions of the PhD. Chapter 2 provides an overview of CRTs and spatial analysis,

providing a framework from which to consider spatial data in the context of CRTs.

Chapter 3 is a systematic review of spatial methods that have been used in CRTs

and was published in September 2017 [1].

Chapter 4 is an applied analysis of an oral polio vaccine (OPV) trial conducted in

Mexico. In this CRT, the investigators wanted to explore whether living near an

individual who receives the OPV increases an individual’s risk of polioviris shedding.

This analysis provides the first opportunity in the PhD to apply spatial methods to

a CRT. Chapter 5 is an applied spatial reanalysis of the earliest CRT found in the

systematic review (Chapter 3). Chapter 5 explores and applies a range of spatial

methods to a CRT, including a novel method I developed, called cluster reallocation,

which explores the presence of spillover.

Chapters 6 and 7 are simulation studies. Chapter 6 demonstrates the algorithms

used to simulate CRT data with spatial effects. This provides an opportunity to eval-

uate and develop understanding of these algorithms, in a simplified setting with only

two clusters. Chapter 7 is a larger simulation study, focusing on two aspects: deter-

mining the magnitude of how much spatial spillover affects the standard analysis of

a CRT, and assessing whether spatial analysis methods can be used to overcome and

adjust for spillover effects. Chapter 8 describes and tests the ability of the cluster

reallocation method to help identify spillover under a range of simulated conditions.

A detailed discussion of spatial method is presented in Appendix C, this section is

not needed to understand the thesis but does provide background information that

may help to provide a more holistic view and understanding of spatial methods.

In chapter 9, I review and synthesise the key points of the PhD, considering the
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impact on current practice, possible directions for future work, and limitations of

the PhD.

The original contributions of this thesis are: the systematic development of knowl-

edge about the use of spatial analysis methods in CRTs, the assessment of the type

of spatial methods that are appropriate to use in CRTs, and the development of a

new method called cluster reallocation, which explores the presence and magnitude

of spatial spillover.

This thesis provides an in-depth consideration of spatial methods in CRTs, by com-

bining two rarely overlapping disciplines, spatial statistics and CRT.
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2. Background

2.1. Overview

Chapter 1 provided a brief summary of the motivation, aim, and objectives of the

PhD. It outlined the structure and original contributions of the thesis. In this

chapter, I provide a more detailed account of cluster randomised trials (CRTs) and

spatial statistics. I also address objective 1 by proposing a framework for relating

spatial data to CRTs, and consider implications for spatial analyses.

Objective

1. Describe and frame CRTs in relation to spatial data and summarise implica-

tions for spatial analyses.
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2.2. Clinical trials

Randomised clinical trials often demand a substantial investment of money, time,

and expertise, and can place a considerable burden on both trial personnel and par-

ticipants [1]. This substantial investment is made because well-conducted trials are

recognised as the most reliable way to evaluate the efficacy and safety of new treat-

ments [2]. Increasingly, major public health decisions are formed based on a careful

review of available evidence, wherein rigorously conducted trials are considered to

be the gold standard [3, 4]. Therefore, in order for trials to produce the highest

standards of evidence, it is crucial that they are designed and analysed to minimise

the risk of bias, ensure the safety of participants, and adhere to ethical requirements

for research.

Several guidelines relating to ethics, conduct, and reporting of trials have been

developed [5–7]. However, trial conduct changes over time and assuring quality

requires scrutiny and an understanding of established best practices. This has led

to an increased focus on trial methodology with the goal of improving the way trials

are conducted.

In perhaps the earliest example of a clinical trial, James Lind performed a compar-

ative study of treatment for scurvy [8]. The trial was conducted on a sample of

twelve patients with six different treatments. Although effort was made to make

the participants ‘as similar as I could have them’, there was no randomisation or

blinding used [8]. It would take nearly 200 years of development, when in 1948

the Medical Research Council conducted the first blinded randomised clinical trial

with a control group [9]. In the subsequent 70 years, the rate of methodological

development in trials has increased, moving greatly beyond the initial ‘drug trials’

to consider structural, organisational, and behavioural change interventions [10].

However, this expansion has implications on the complexity of design and analy-

sis. Although much progress has been made, the main developments of comparison

groups, randomisation, and blinding remain fundamental to the conduct of modern
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day trials.

Comparison groups: To establish the effect of an intervention, participants receiv-

ing the intervention must be compared with participants who did not receive the

intervention. The two comparison groups are usually known as the intervention and

control arms. Without a comparison group, we cannot be sure that a suspected

intervention effect has occurred. Even with a comparator group, bias may still arise

if systematic differences exist between participants in control and intervention arms.

For instance, if the control arm is much older and sicker than the intervention arm

then they will likely have worse outcomes irrespective of treatment efficacy. A trial

may have more than two arms and compare multiple interventions.

Randomisation: Randomisation involves the random allocation of participants.

Random assignment helps to ensure that there are no systematic differences in known

or unknown characteristics between the groups. This is a considerable strength of

randomised controlled trials as investigators can even account for prognostic factors

that they are unaware of [11]. It should not be possible to predict in advance which

arm of a trial a future patient would be enrolled in.

Blinding: Where possible, individuals involved in a trial should have no knowledge

as to who is allocated to which comparison group, and hence who receives which

intervention. In a ‘double’ blind trial, both the investigator and participants are

unaware of who receives treatment and who receives the control [2]. If individuals

and investigators are aware of who is allocated treatment, then this can result in bias.

For instance, consider a trial where lung cancer patients receive a non-standard drug

treatment. If an investigator decides to pay extra attention to participants on the

non-standard treatment, then they may have better outcomes, due to an increased

level of care. Blinding may be straightforward in simple settings such as drug trials,

but can be more complicated or impossible for complex interventions such as mass
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education programmes.

Complex interventions include several interconnected components as an interven-

tion [12]. For instance, rather than a single treatment, such as administering a

drug, a complex intervention might consist of simultaneous components, including

structural changes (e.g. improved green space), health promotion (e.g. positive

messaging about physical activity), and behavioural change interventions (e.g. free

gym membership). In this situation it can be difficult to disentangle the exact mech-

anisms by which the treatment succeeded or failed. They often include community

and group based interventions where groups of connected individuals will receive

the same intervention. For example, all patients attending the same clinic may re-

ceive a new type of surgery, while patients attending a separate clinic all receive

the standard surgery. Trials involving complex interventions are key to establishing

the efficacy of such interventions, however they tend to require greater thought and

pose greater challenges to those who conduct them.

Utilising comparison groups, randomisation, and blinding can be difficult, if not

impossible to achieve for complex interventions at the individual level. If we imagine

a sexual health campaign where adverts are placed on buses; it would be difficult

to establish who saw the adverts and who did not and thus defining controls and

intervention participants would be hard. It is also implausible to randomly allocate

people either to look at or ignore the adverts . Lastly, it seems unlikely that we

can conceal from individuals whether they have seen the advert or not. Therefore,

further design choices need to be made to investigate the effectiveness of complex

interventions and a popular choice of design is the cluster randomised trial (CRT).

2.3. Cluster randomised trials

In CRTs, individuals are first grouped (or clustered) together, then each cluster is

randomly assigned to intervention or control, allocating all the individuals within
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the same cluster together to a specific trial arm [13]. A cluster can take many

forms, which are often socially meaningful, for example, a household, workplace, or

geographical area. A CRT consists of two levels: the cluster at randomisation level,

and the participants, at data collection or observation level. CRTs are also known

as group, community, and place-based trials.

An example of a geographical CRT is a primary care trial, where geographical areas

(e.g. local authority districts, municipalities, regions etc.) are randomised to provide

different primary care services. The clusters are the geographical areas responsible

for providing primary care services and the participants are the people served by

the primary care centres in each geographical area. A household CRT, involves

randomising households to receive the intervention or to not receive the intervention.

The clusters are the households and the participants are individuals living within

the households.

Participants in individually randomised trials are typically assumed to be statisti-

cally independent, that is to say, the specific characteristics of any one observation

has no bearing on any other. By comparison, in CRTs, individuals within the same

cluster tend to be correlated, owing to the clustered nature of the trial design [4].

Within-cluster variability represents how different the people in the same cluster

are to one another. Between-cluster variability represents how different the clusters

are to one another. The efficiency of a CRT increases as the within-cluster variance

reduces relative to the between-cluster variance [4]. The within-cluster variance will

be zero when there is one participant per cluster (an individually randomised trial).

Therefore, for a fixed sample size, an individually randomised trial is often more

efficient than a CRT design [13]. Due to this comparative inefficiency, CRTs tend

to be larger, costlier, and sometimes harder to manage compared to individually

randomised trials.

CRTs are also at high risk of selection bias, especially if participants are aware of

the intervention before trial enrolment. For instance, individuals may travel to a
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different cluster if they know an otherwise unavailable treatment is available there

[13].

Analysing CRTs tends to be more challenging than analysing individually ran-

domised trials. This requires statistical methods which account for the fact that

observations come from a number of predefined groups rather than each one be-

ing an independent observation. There are two approaches to analysing CRTs, the

one-stage and the two-stage method:

The one-stage method accounts for correlation within clusters by using either a

generalised linear mixed effects model with a random effect for clusters, or gener-

alised estimating equations. This method provides an estimate of the size of the

intervention effect whilst also accounting for dependency (the non-independence of

observations) within clusters.

The two-stage method involves aggregating the observations at a cluster level to

give one summary statistic per cluster, such as a risk measure or mean. The control

and intervention clusters are then compared using a t-test or regression model.

The two-stage method provides results that are more reliable compared to the one

stage method when there are few clusters, as using a mixed effects model can give

unreliable results when there are fewer than 15-20 clusters per trial arm [4]. However,

the one-stage method treats each cluster as providing a single observation, thus

resulting in a loss of information due to ignoring the multiplicity of data points.

Neither the one- nor the two-stage methods make specific adjustment for between-

cluster dependence.

2.3.1. Reasons for choosing a CRT

The main reasons for choosing a CRT design are [4, 13, 14]:

• Type of intervention

• Logistics
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• Ethics

• Avoiding contamination

Some interventions are better delivered to groups and are difficult or impossible to

evaluate with an individually randomised trial [14]. For instance, mass education

campaigns involving TV or radio will be seen by many individuals and it is very

difficult to prevent control individuals from watching TV [13]. However, it is possible

to conduct a CRT where different areas of a country receive different TV or radio

shows.

When data collection requires visiting numerous locations, a CRT is often more

logistically convenient compared to an individually randomised trial. For instance,

in a trial evaluating bed nets, field workers may need to check whether the bed nets

are being used. Having many participants close together will reduce the time, cost,

and difficulty of collecting the data.

A further reason for choosing to adopt a CRT design relates to ethics and acceptance

within a community. It may be unethical to only provide the intervention to some

members of a community. In addition, it may be easier to convince a community

to receive an intervention, if all members receive it, particularly when a study is

unblinded.

One of the most common reasons for choosing a CRT over an individually ran-

domised trial is to minimise the risk of contamination. Contamination is when

individuals in one arm receive or are exposed to the intervention of another arm [4].

Contamination can be very difficult to prevent in individually randomised trials. For

example, in a study of Pre-exposure Prophylaxis for HIV prevention, it was found

that a small number of participants shared the intervention with their partners [15].

When contamination is present in a trial, the effect of the intervention will be un-

derestimated as differences between the intervention and control arms are reduced,

due to both being exposed to the intervention.

Allocation of interventions to groups rather than individuals can help reduce the risk
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of contamination. However, if individuals are connected through some mechanism

then it can still pose a significant problem within CRTs [4].

2.3.2. Direct, indirect, total, and overall effects

One of the main reasons for conducting an individually randomised trial, is to mea-

sure the direct effect of the intervention: how much an intervention affects an indi-

vidual who receives it [16]. CRTs allow for estimation of additional types of effects.

The four effects that can be calculated as part of analysing a CRT are: indirect, di-

rect, total, and overall effect [17] (Figure 2.1). Of these four effects, only the overall

effect is a randomised comparison [4].

In a conventional two arm CRT, the direct effect is measured by comparing those

who receive the intervention and individuals who do not receive the intervention from

the intervention clusters. This measure is the same as the intervention estimate that

would be calculated if an individually randomised trial was conducted instead of a

CRT [4].

The indirect effect as defined in Hayes & Moulton is measured by comparing the

individuals not receiving the intervention in intervention clusters to the individuals

in the control clusters [4]. An indirect effect refers to the effect of an intervention on

individuals who do not receive the intervention The indirect effect is of particular

importance when investigating interventions that aim to reduce the risk of acquiring

or transmitting infectious diseases [18]. Herd immunity, is an example of an indirect

effect of vaccination, where individuals who are not vaccinated (i.e. have not received

the intervention) have a lower risk of disease when living in a community with high

vaccination coverage.

The total effect can be calculated by comparing individuals who receive the inter-

vention in the intervention clusters and the entire control cluster [4]. This is the

effect of the intervention compared to individuals who have not been exposed to the
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intervention. Therefore, it represents the effect of the intervention, in an individually

randomised trial when no contamination is present.

The overall effect is calculated by comparing participants in the intervention clusters

with those in the controls clusters. The overall effect resembles the effect of the

intervention in real life settings [17]. When an intervention is implemented in a

community, it is likely that some individuals will receive the intervention, and some

will not. Therefore, the overall effect provides an estimate of the change in outcome

due to introducing the intervention throughout a community .

The four effects help to provide a more comprehensive view of how well an inter-

vention may work when used in a real-world setting. In practice, it can be hard to

measure these effects because we may not know who received the intervention and

therefore, it is not possible to determine which observations to compare.

Figure 2.1. Diagrams of different types of effects that can be estimated in cluster
randomised trials

Intervention cluster Control cluster

Total effect

Indirect effect

Overall effect

Direct effect

Observation 
receives 
intervention

Observation 
does not 
receive 
intervention

Adapted from Halloran, Longini, and Struchiner 2009.

The definition of indirect effect presented here assumes that there are individuals in

the intervention clusters who do not receive the intervention, and that the control

clusters are unaffected by intervention clusters. These two assumptions may not

hold. Individuals in the intervention cluster may all receive the intervention, or we

may not be aware of such individuals, or have recorded their data. Additionally,
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individuals in the control clusters may also be affected by the intervention clusters.

The more general definition of indirect effects is the effect of an intervention on

individuals who do not receive the intervention [4]. This term appears to be used

more frequently in CRT literature in both public health and in economics [19] and

it is often used in medical CRTs involving infectious diseases [18]. Unfortunately,

the term indirect effect is also used to refer to the effect of a mediator variable [20],

but this is not what is meant by an indirect effect in this thesis.

2.4. Spillover effects

Spillover effects are the effect of an intervention on individuals who are in physical or

social proximity to other intervention recipients [21, 22]. The distinguishing feature

between contamination and spillover is that contamination involves individuals un-

intentionally receiving or being exposed to the intervention, whereas spillover affects

individuals who do not receive the intervention that is the source of the spillover.

Furthermore, spillover effects can occur without individuals in the control arm hav-

ing received the intervention. Contamination, so defined, is not the main interest

of this thesis, however many of the issues relating to spillover are also relevant for

contamination.

Spillover as defined in this thesis, need not be restricted only to individuals within

the control arm. Although a spillover effect implies a recipient did not receive the

intervention, it could also refer to not receiving the intervention that is the source

of the specific spillover effect on the recipient. For example, imagine a scenario

where an individual receives an intervention that directly benefits them and results

in spillover. If no other intervention participants are nearby then they will not be

subject to spillover. If other intervention participants are nearby, then in addition

to the direct benefit, they may be affected by spillover from the nearby intervention

participants. In this case, although they received the intervention, the spillover
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effects stem from interventions that were given to other participants and not from

the intervention the individual specifically received.

This scenario can be adapted so that the individual does not receive the intervention.

Then, if intervention participants are nearby, the individual will still be subject to

the spillover effect. Therefore, the spillover effect is unrelated to their intervention

status. Moreover, they would have been subject to the spillover regardless of whether

they were given the intervention or not. This is because the spillover effect stems

from their proximity to participants.

2.4.1. Positive and negative spillover

Spillover effects can be distinguished by whether they are positive or negative [23,

24]. In this thesis, a positive spillover effect benefits individuals who are affected

by the spillover, and a negative spillover effect harms individuals who are affected

by the spillover. It may be possible for positive or negative spillover to occur with

beneficial or harmful interventions.

An example of a beneficial intervention could be insecticide-treated nets (ITNs)

that reduce risk of malaria and provides a positive spillover effect due to reduced

mosquito populations nearby. Alternatively, if a mosquito repellent is used it may be

beneficial for the individual as mosquitoes are repelled away from an area, but result

in negative spillover due to diverting mosquito populations to nearby locations.

An example of a negative intervention could be reducing the number of free years of

education in an area. This intervention could result in a positive spillover for nearby

areas due to less competition for university places or jobs. Alternatively, reducing

access to education may result in people relocating to nearby control areas, which

increases class sizes and may reduce the quality of teaching. In this case the negative

intervention would result in a negative spillover effect. In practice, it is very unlikely

that a trial would be conducted if the intervention is known to be harmful, however,

this does not preclude the fact that an a priori assumed beneficial intervention
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can turn out to be harmful after randomised evaluation [25, 26]. In addition, the

consequences of an intervention such as a spillover effect can be unintended and

difficult to foresee whether it would be positive or negative.

2.4.2. Mechanisms for spillover

In CRTs, there is frequently an assumption of an absence of between-cluster spillover;

that movement of people and diseases occurs freely within a cluster but movement

between clusters is negligible. Spillover between clusters can occur when clusters

are connected through some mechanism. A possible mechanism for connectivity is

location, where clusters that are located near to each other may affect each other.

For example, in a trial of insecticide treated bed nets individuals in control clusters

who live near intervention households may have a reduced risk of malaria due to a

reduced population of mosquitoes in their surrounding area. Within-cluster spillover

can also occur in a trial, however as long as clusters remain unconnected then this

is likely less impactful on comparisons between the intervention and control arm.

Benjamin-Chung et al. identify and propose the following mechanisms for spillover

effects in their review of health-related spillovers [22] :

1. Distance-based: spillover effects that occur within a specified distance of an

intervention participant.

2. Conditional on exposure to other participants’ outcomes: spillover

due to the proportion of disease cases within a specified distance.

3. Conditional on intervention density: spillover related to the number of

treated individuals within a specified distance.

4. Treatment coverage mean/effect: treatment coverage spillover refers to

when a greater level of treatment coverage is associated with a reduced risk of

outcome.
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5. Within-cluster: spillover that occurs over small distances and only within

clusters.

6. Social network: spillover between members that are connected socially.

Spillover effects due to location are the main interest of this thesis, specifically

spatial spillover effects that cross cluster boundaries. Spillover effects that cross

cluster boundaries are also known as between-cluster spillover,. Unless specified

the term spillover will be used synonymously with between-cluster spillover, and

within-cluster spillover will be reserved for when distinction of the type of spillover

is required. Of the six mechanisms identified by Benjamin-Chung et al. (1) distance-

based, (2) conditional on exposure to outcome, and (3) conditional on treatment

density are due to physical proximity and are most relevant for this PhD [22] .

Spatial spillover as defined in this thesis, refers to when the intervention effect

increases or decreases due to proximity of control participants to intervention par-

ticipants .

2.4.3. Similar terms for spillover

There are many terms used to describe concepts that are similar to spillover. Con-

fusion arises from there being multiple meanings for the same terms; such as the

example as we have seen with indirect effects being both a mediator and an effect on

people who do not receive an intervention. Further difficulties arise from the words

with slightly different meanings being used interchangeably, for instance, sometimes

contamination is used when spillover is meant and vice versa.

In this section I list and detail some of the complementary terms used for spillover

(and/or contamination). Although there are slight differences in definition and

meaning, they all refer to the idea of individuals being indirectly or unintentionally

affected through some mechanism.
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Table 2.1. Alternative terms that are similar to spillover and/or contamination

Term Definition
Edge effects* Edge effects refer to changes in populations or communities that occur near

the boundaries of a habitat. They represent the impact that events outside
an area have on that area. This term appears in geography and ecology
and is revisited in section 2.5.3 [27, 28].

Externalities An externality refers to the effect on an individual who did not choose
receive that effect [29]. This term appears to be more common in the
economics literature [22] and differs from spillover in that it refers to the
choice of the individual affected.

Herd effects Herd effects refer to the reduction in risk of infection among susceptible
individuals due to the presence and proximity of immune individuals [30].
This term is mainly used in literature related to infectious diseases and
could be considered as a subset of indirect effects.

Interference Interference refers to when a treatment given to a participant affects not
only that person, but also other participants [31]. This term appears to be
more common in causal inference literature [31–34].

Peer Effects Peer effects refer to the impact that peers have on an individual. This is
when measures are correlated among peers. This term appears to be
common in social science and economics literature [35].

*Edge effects are also used to refer to a spatial analysis boundary problem where
information does not exist outside a study area and therefore the analysis is ignorant of
how objects outside the study area may affect observations within the study area. [36]

2.4.4. Spillover in CRTs

Spillover can be both a design and an analysis consideration for CRTs. When control

and intervention clusters are sufficiently far apart, the risk of spillover is negligible,

and a conventional analysis will produce unbiased effect estimates. However, the

reality of trial design is that clusters may not be well-separated in geographical

space, social space. This is usually for eminently practical reasons, such as logistics,

cost or resource and personnel constraints. Further, it can be difficult to assess

a priori whether a particular design produces well-separated clusters in practice.

For these reasons, it is prudent to give consideration to spillover and contamination

throughout the life course of a CRT.
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Valid inferences in randomised experiments rely on the Stable Unit Treatment Value

Assumption (SUTVA). SUTVA requires that differences between the outcomes of

control and intervention participants only depend on the participant’s intervention

status and not on what intervention others receive [37]. SUTVA can be violated

when spillover is present [21]. The underlying reason for spillover is the proximity

of individuals to one another. Violation of SUTVA is more likely if individuals are

physically or socially close to one another as there is a greater chance that they may

affect each other’s outcomes.

Social proximity may refer to friendship or work groups and these groups provide

networks through which information or diseases could spread. Knowledge-based

social proximity may refer to connections through the internet and would be impor-

tant when the intervention is information based. Social contacts can be important

in infectious disease outbreaks where contact tracing is often used to infer a network

through which infection might spread [38].

Physical proximity relates to the closeness in location between individuals or indi-

viduals to an exposure, and may refer to individuals who live near to each other,

or whose daily activity spaces intersect. This type of proximity will be important

when there is some impact on the surrounding environment. For instance, if a

large number of people in a village use ITNs then this may reduce the population

of mosquitoes in the village, providing a protective effect to individuals who live

nearby but do not have a bed net.

Social and physical proximity are not mutually exclusive. Both may be present in a

trial and affect results [39]. Furthermore, social and physical proximity may in some

cases be equivalent, such as friends who live near one another. This PhD focuses on

spillover stemming from physical rather than social proximity.
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2.4.5. Consequences and opportunities

When spillover effects are present, individuals in the control clusters are indirectly

affected by the intervention clusters. Estimates of the intervention effects may in-

crease or decrease when affected by spillover. If the intervention is beneficial and

positive spillover is present, then effect of the intervention will be diluted. Control

participants receive a benefit from proximity to the intervention, and the difference

between the control and intervention arms are reduced. This could result in effective

interventions being missed due to underestimated effect estimates [14]. If the inter-

vention is beneficial and negative spillover is present, the effect of the intervention

will decrease. Control participants will receive a harmful effect from proximity the

intervention, and differences between the control and intervention arms are enlarged.

This will result in overestimating the intervention effect.

Spillover between clusters in a CRT may violate SUTVA, biasing the causal effects

estimated from randomised comparisons. Spillover can be considered as a problem

for trials, or could be viewed as an opportunity to measure the additional effect of

the intervention for individuals who do not even receive the intervention. In some

contexts, particularly in infectious diseases, measuring spillover or more generally

indirect effects (such as herd effects) might be one of the main aims of the study [4,

18].

In vaccine trials, direct and indirect benefits of vaccines, are both of interest, to

determine how much of the population need to be vaccinated to control the disease

[30]. Furthermore, measuring herd effects is of great importance when trying to

eradicate infectious diseases [30]. Therefore, designing a vaccine trial requires careful

thought about how to ensure measurement of indirect effects without losing the

ability to estimate unbiased direct causal effects. CRTs may well be the design of

choice, for vaccine trials, for these reasons.

The causal mechanism for an intervention with spillover effects will be more com-

plex. Exploring the type of spillover may help further unpack the mechanism of
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an effect and help inform implementation of the intervention. Consider a study

evaluating an intervention of insecticide spraying. If we are able to identify that

a spillover effect is present, whereby individuals within 500 meters of the spraying

receive a beneficial effect, then the mechanism may be distance-based. From this

study, we could conclude that it would be of greater benefit to spray multiple loca-

tions with gaps of less than 500m compared to spraying one smaller contiguous area.

In this situation, protection is provided to a larger region because of the additional

knowledge of a spillover effect.

Alternatively, a spillover effect that is conditional on treatment density may require

a certain level of coverage before spillover is present. An example is an insecticide

spray whereby a level of 80% coverage is needed for spillover effects to be present.

In this case, the implementors may decide to ignore the spillover effect, and focus on

the direct benefit of the intervention, by spraying a larger area with lower coverage,

instead of a smaller area with high coverage.

Spillover in CRTs creates an opportunity to further explore the underlying mecha-

nism of the intervention, but they are not the only choice of trial design, that allow

estimation of spillover effects [17, 40].

2.4.6. Design solutions

The chance of spillover between clusters will usually decrease when the geographical

extent of a cluster increases, as travel across cluster borders becomes less likely and a

lower proportion of individuals will live near a boundary [4]. Spillover due to spatial

proximity can therefore be reduced by having large or well-separated clusters. The

definition of a well-separated cluster will depend on the type of intervention and

outcome, but in general refers to clusters that are a minimum distance apart and

share no common boundaries.

One disadvantage of this design approach is that the study area for the trial can

become very large. In addition, within-cluster variance may be increased, as the
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chance systematic differences between participants of a cluster are more likely, if

the cluster contains more people. Furthermore, for a given number of individuals,

larger clusters leads to lower power compared to having more clusters with fewer

individuals in each cluster [14]. Well-separated clusters may also limit the potential

to measure spillover, as participants who might be subject to spatial spillover effects

will not be near the boundaries of a cluster.

A similar approach which uses a buffer zone is called the fried egg design [4]. This

design only compares participants from the centre of the clusters in the main trial

analysis. This approach helps reduce the impact of edge effects and spillover, as in-

dividuals in the centre are less likely to move across cluster boundaries or be affected

by those in neighbouring clusters. However, results will be biased if individuals living

in the centre of a cluster are not representative of the rest of the cluster. Moreover,

information is lost by only using the centre of the cluster.

Pseudo or double randomised trials are halfway between a CRT and an individu-

ally randomised trial. First, clusters are randomised to receive the intervention or

control, and secondly, participants within each cluster are randomised to receive the

intervention or control [41]. This allows the level of coverage for the intervention and

control clusters to be varied and has been proposed as a method for measuring in-

direct effects and within-cluster spillover [33]. This provides considerable flexibility

for estimating the effect of various levels of coverage. For instance, 80% of partici-

pants in intervention clusters may receive the intervention and 30% of participants

in control clusters may receive the intervention.

In contrast to the previous designs which focused on reducing spillover, this approach

can help to estimate it. Unfortunately, a double randomised approach negates the

ethical and logistical convenience of a standard CRT and adds complexity to run-

ning the trial. Furthermore, they assume only small-scale spillover effects, and are

not possible to conduct with interventions where you cannot precisely restrict who

receives the intervention, such as with mass education programmes [33].
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Stepped wedge CRTs [42] are an alternative form of CRT where all of the clusters

eventually receive the intervention, and the randomisation focuses on the order in

which cluster receive the intervention. This design has been proposed for measuring

spillover in trials where the intervention disrupts the transmission of diseases [43].

This approach may allow for estimation of the spillover effects of an intervention. An

advantage of this design is that it may gain greater acceptance within communities

as no area is ultimately denied the intervention. One of the main challenges of this

approach is the increased complexity of the analysis.

Torgerson found that in terms of total sample size, CRTs are more efficient than

individually randomised trials when contamination is greater than 30%. This means

more than 30% of the control participants receive or are exposed to the intervention

[44] . In this context, Torgerson refers to individuals crossing over from the control

arm to the intervention, which he states is similar to spillover [44] . Therefore, issues

with spillover may be reduced by increasing sample size, without the need for greater

complexity in design. Individually randomised trials tend to be easier to conduct,

and typically have increased power compared to CRTs. However, this approach will

not be possible when the intervention can only be given at a group level or when

the level of spillover is unknown or suspected to be high. Furthermore, it is difficult

to measure spillover effects in individually randomised trials [21].

Adaptations of the CRT can help avoid or measure spillover, but often add further

complexity to running or analysing the trial. If a trial has already begun, or a

reanalysis is intended, then it can be difficult or impossible to change the original

trial design, for example to move clusters further apart. An alternative approach is

to attempt to account for spillover in the analysis of a trial. The advantage of this

approach is that it can be applied to existing trial data but it will add complexity

to the analysis and may require additional data collection.

Accounting for spillovers that derive from mechanisms of physical proximity re-

quires recording the location of individuals and the spatial definition of the clusters.
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Global Positioning System (GPS) data are often collected as part of CRTs for trial

management and the indexing of participants, in addition to providing an objective

and absolute measure of location. A GPS coordinate provides a basis for measur-

ing the physical proximity of individuals within a trial to a range of other spatially

located features, including other individuals, cluster centres/edges, and environmen-

tal/structural resources, such as clinics, water sources, businesses etc. If collected,

CRT participants are often related to a single coordinate, such as their household.

This need not be the case and in future we may see the use of tracking devices to

record richer information of the spatial location of individuals.

This PhD explores the utility of using spatial data and considers how spatial sta-

tistical analysis methods can use location information to measure and account for

spatial spillovers in CRT.
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2.5. Spatial data analysis

In this section, I review the key aspects of spatial data and spatial statistics, provid-

ing an overview of how these topics broadly fit in the context of CRTs established

previously.

2.5.1. Spatial methods in epidemiology

The importance of location in epidemiology has a long history with probably the

earliest example being John Snow’s mapping of the 1854 Cholera outbreak in Soho

[45]. Despite this early success, the use of spatial methods in epidemiology remains

infrequent, even in infectious disease outbreaks [46]. Although it still represents a

small amount, the use of spatial methods in the analyses of health data is increasing

[47]. According to a recent review of spatial methods in epidemiology the most

common methods were proximity calculations, spatial aggregation, cluster detection,

spatial interpolation and smoothing, and spatial regression [47].

• Proximity calculations: measuring distances between a location and an

exposure or resource. For example, the distance between a household and the

nearest hospital.

• Spatial aggregation: aggregating features within a spatial area. For exam-

ple, calculating the number of doctors per neighbourhood.

• Cluster detection methods: assessing non-random spatial patterns. These

methods are often used to detect clusters of diseases and whether the patterns

are non-random. These methods are split into global and local clustering.

Global clustering looks for patterns but does not determine specific cluster

location. Local clustering looks for hotspots of diseases. For example, assessing

for areas of high prevalence of Zika virus.

• Spatial interpolation and smoothing: imputing or adjusting values in a

location based on the values of nearby locations. These methods are mainly
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used to fill in information where it is not observed or to improve the accuracy

of disease rates. For example, smoothing disease incidence rates to avoid spike

in prevalence due to lack of information.

• Spatial regression: incorporation of spatial structure into regression models.

These methods extend standard statistical regression models and are used to

account for spatial effects. For example, analysing the effect of the prevalence

of Ebola in one region compared to the regions surrounding it.

2.5.2. Spatial data

Spatial data are observations to which labels have been added to show where the

observations were collected [48]. Spatial data may contain information about at-

tributes of interest and their locations. The location information can take different

forms, for instance, an exact location such as the locations of types of shops, or

a relative location such as the distance between London and Paris. Locations are

commonly represented through coordinate systems, such as longitude and latitude

[49] but could also be a named location such as Sweden or New York. The atomic

form of geographic information, introduced by Goodchild et al. [50] posits that

spatial data can be represented simply as a tuple:

< s, H, h(s) >

In which, s is a location in space-time, H is an attribute or property, and h(s)

defines that given property for the given location. For example, the attribute may

be temperature, and the location is Greenwich, London, then h(s) represents the

temperature in Greenwich. This ‘geo-atom’ can then be generalised to any of a

number of conceptual models used to represent spatial data. The two most common

models are known as the ‘field’ and ‘entity’ (or ‘object’) models [51].

In Geographical Information Systems (GIS), fields are more commonly known as

28



Background

raster data and entities are referred to as vector data. Raster data are effectively

lattices of geo-atoms, but are more commonly conceptualised as digital images (reg-

ular grids of cells) or as a collection of points arranged on a regular grid [49]. Raster

tends to be used to represent continuously varying phenomena, such as elevation,

types of land cover or rainfall. As raster data are effectively digital images, geo-

graphical scale is fixed to the resolution of the image. The finer the resolution, the

smaller the area each pixel represents.

Vector data consists of the following spatial types:

• Points: a single point location such as a house. A single geo-atom.

• Lines: a collection of ordered points that are connected, such as a road or river.

An ordered string of geo-atoms, in which properties or attributes are effectively

constant for the aggregate object.

• Polygons: a series of connected points where the first and last point are in the

same location, such as a lake or an administrative area. Effectively a closed line

object. A polygon could contain holes.

Unlike the raster data model, vector data can define distinct or discontinuous objects

in space with multiple attributes, for instance, the locations and characteristics of

vaccinated adults in a city. Similarly, vectors do not have a fixed spatial scale, the

lowest resolution is effectively set by the instrument of measurement. For instance,

a GPS location may be accurate to 5-10 meters thus setting a lower spatial bound

to inference but not an upper one. Observations in CRTs tend to relate to distinct

locations in space rather than continuous surfaces and thus the vector data model

will be used to describe the spatial representation of CRT data.
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2.5.3. Challenges of Spatial data

2.5.3.1. Boundary problems or edge effects

Edge effects relate to how events outside of a boundary can impact the environment

within the boundary. For example, the existence of a large polluting factory near

to a town may affect the health of people who live there. Geographical clusters in

CRTs are bounded and may be susceptible to edge effects, particularly if there are

many small clusters [4]. The edge effects may be from outside the study area or

if each cluster is considered as a separate boundary the edge effects could refer to

spillover between clusters.

2.5.3.2. Modifiable areal unit problem

Areal data is spatial data that is collected or presented at an aggregated level, such

as voting districts, states, or countries. The aggregation of information results in

statistical bias stemming from how the aggregation is chosen. The modifiable areal

unit problem (MAUP) arises from the arbitrary and (theoretically) modifiable choice

of aggregation of the data [52]. For instance, when analysing data from an area such

as London, information could be grouped at street level, by borough, or a by a newly

defined group, such as by nearest park. The consequence of MAUP is that different

choices of aggregation, can give different results. How clusters are defined in a

CRT may impact the results of a trial. MAUP is more relevant when considering

the design of a CRT, as during analysis it is unlikely the cluster definitions can be

changed.

2.5.3.3. Spatial heterogeneity and dependence

Spatial heterogeneity (also called 1st order spatial effects) refers to the uneven dis-

tributions of values over space. This usually manifests as a patchy distribution of

events or values over a broad area. It is usually symptomatic of an underlying spatial
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process invalidating the assumption that data are independent. Spatial dependency

(2nd order spatial effects) is a fundamental concept in spatial statistics [53] and

stems from Tobler’s 1st law of geography that ‘everything is related to everything

else, but near things are more related than distant things.’ [54]. Spatial dependency

is frequently studied explicitly as a spatial autocorrelative process. There is a wide

array of spatial correlation methodology [48, 53, 55] and a concise definition of this

concept is provided by Hubert, Golledge, and Constanza [56]:

Given a set S containing n geographical units, spatial autocorrelation

refers to the relationship between some variable observed in each of the

n localities and a measure of geographical proximity defined for all n(n-1)

pairs chosen from n.

This definition describes the idea that spatial autocorrelation is a relationship based

on proximity or some form of distance.

In agricultural field trials, it is long established that the location of the data can

impact on trial results [57], and incorporation of spatial methodology is common [58].

In contrast, the impact of spatial effects in human CRTs have received little focus.

The presence of spillover effects may manifest itself as spatially autocorrelated data,

and therefore methods to deal with spatial correlation could be useful for accounting

for spillover effects in CRTs. Spatial dependency may also be a cause of spillover

effects in a trial and could bias results.

2.5.4. Spatial statistics

Spatial statistics is a field of research which takes into account the location of data,

and it is based on the non-independence of observations; that is the assumption that

nearby units are in some way associated [54, 59]. If the observations were spatially

independent, then the location of the data would not matter and there would be no

need to consider this in the analysis. Spatial statistics is traditionally categorised

into three different fields, which are [53]:
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• Point Process - analysis of data that consists of a set of point locations where

events of interest have occurred, such as cases of cholera.

• Geostatistical - analysis of data that consists of point samples from a (concep-

tually) continuous distribution in space, such as temperature over an entire city.

• Areal - analysis of data that consists of values from set of areas which may be a

regular lattice or an irregular set of areas, such as voting areas, districts, or states.

Trials of infectious diseases might be treated as point process data, but typically

these types of spatial analyses aim to identify whether the pattern of disease is

random or clustered [53]. The important variable to be analysed is the location of

the event and typically in a CRT the locations where data will be recorded are fixed

before the study begins. Therefore, the selection of sites may introduce biases which

affect point process analyses. Furthermore, treating CRT data as a point process

may also ignore the clustering which is introduced via the design of a CRT.

An alternative could be to treat the individual observations of a CRT as a set of

points from a continuous distribution in space. However, geostatistical methods

are predominantly focused on predicting the values in unmeasured locations [60].

This has obvious value when trying to predict where oil is, but is probably of less

use for trials where we aim to estimate and establish the causal effectiveness of

interventions..

CRTs appear to fit most naturally into an areal structure, especially for geographical

trials where the observations are points, and the clusters are polygons. Aggregating

the observations at a cluster level would generate areal data as it performed in the

two-stage analysis approach. However, this would result in a loss of information and

may hinder analysis of spillover. When the number of clusters is small, the two-

stage approach is preferred, as multi-level models can provide unreliable results.

Furthermore, this leads to fewer observations (one per cluster) and, therefore, it

may be difficult to fit spatial models to the data, .

Based on these three categories it would appear the spatial structure of CRTs does
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not fit neatly into any of the three major spatial statistics fields. The spatial analysis

of CRTs will thus require applying spatial methods to data which differs from the

original intended use of the methods. Areal analysis methods could be applied to

individual point level data instead of aggregated areas. Geostatistical methods might

be applied to a discrete spatial phenomenon, which is grouped into dependencies,

as opposed to the typical continuous spatial phenomenon over an area.

2.6. Spatial modelling

When spatial correlation is present then nearby observations are related to one an-

other, often manifesting as the presence of spatially correlated residuals in regression

models. This violates the assumption of an independent error term in linear regres-

sion. The mechanism through which spatial correlation occurs is rarely observable,

so spatial models often use latent variables and structures to incorporate spatial

effects [61]. The standard approach is to use a mathematical representation of the

spatial structure of the data, termed a spatial weights matrix.

2.6.1. Spatial weights matrix

To describe spatial weights matrices we will first consider their simplest form: binary

weights. For n observations a spatial weights matrix W is an n × n matrix, where

for every observation k with a set of neighbours m then Wmk =


1 ifm ∈ m∗

0 ifm /∈ m∗

and k 6= m. In this form, two observations are related if and only if they are

neighbours, and all neighbours have the same weight of relationship regardless of

proximity. Generally, this W matrix is symmetric about the main diagonal such

that Wmk = Wkm, however, this will not be the case for all matrices. This type

of matrix is also termed an adjacency matrix and is typically used when analysing

areal data.
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For point data, a spatial weights matrix can also be defined with a distance threshold

that indicates which points are neighbours (effectively a fixed buffer), or a specified

number of nearest neighbours could be used to represent who is related (effectively

a type of variable buffer). Alternatively, the cells of the matrix can store values that

weight connectivity on a continuous rather than binary basis. A distance weighting

is typically used so that observation that are further apart are less connected as a

function of distance. Distance is often transformed to be the inverse of a function

such as a power law.

The choice of spatial weights matrix can have a large impact on the analysis and

the choice of matrix form is an area of active research [62].

2.6.2. Distance weighting functions

Distance weighting functions (also known as kernels or covariance functions) are

functions that map a positive distance value to an inverse distance weight. A number

of functions exist to reflect possible relationships over distance, but no specification

is a priori better than any other. Four distance weighting functions are detailed in

Table 2.2.
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Table 2.2. Overview of distance weighting functions

Name Formula Examples

Linear f(d) =
{
ω−d
ω if d < ω

0 if d ≥ ω

Where ω is that maximum distance
that the spatial effect is present.

.

.

Inverse
distance

f(d) = ξ

dω

Where ω and ξ are constants.

.

.

Exponential
f(d) = ξe−ωd

Where ω and ξ are constants.

.
.

Gaussian f(d) = ξe−
(d−µ)2

σ2

Where µ and σ2 are the mean and
variance of a normal distribution and ξ
is a constant.

.

.

*d is distance or some measure of proximity.
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2.6.3. Extending linear regression

A standard linear regression model can take the form

y = Zlγl + ε

where y is a vector representing the outcome variable, Zl is a design matrix of l pre-

dictor variables, with the first column usually constrained to be a vector of ones, γl

is a vector of coefficients for Zl and ε is an error term which is typically assumed in-

dependent and identically distributed (i.d.d) as ε ∼ N(0, σ2) [63]. Generalised least

squares (GLS) extends linear regression by relaxing the assumption of the indepen-

dent error term. GLS is a technique that allows for correlation in the residuals of the

model and this can be used to account for spatial correlation [64]. This is achieved

by redefining the error term in the linear regression equation as ε ∼ N(0, σ2Σ),

where Σ is a variance-covariance matrix representing the dependency in the error

term [65]. GLS is commonly used for times series analyses with an autoregressive

lag structure relating the present value to values from previous time periods [66].

The dependency structure can be extended from one dimension (time) to two or

more dimensions (space) by using a spatially weighted covariance structure. This

approach is the basis for many spatial models, where correlations in the model are

assumed to be a function of a spatial structure.

2.6.4. SAR and CAR models

Two common approaches for constructing the spatial covariance structure are the

simultaneous autoregressive (SAR) and the conditional autoregressive (CAR) [61].

Taking the linear regression model above y = Zγ+ε with ε ∼MVN(0, σ2Σ). Defin-

ing Σ = (I−ρ1W1)−1(I−ρ1W
t
1)−1gives a SAR model and defining Σ = (I−ρ2W2)−1

gives a CAR model, where W is a spatial weight matrix, and ρ is a parameter rep-

resenting the level of spatial correaltion. The SAR and CAR models are equivalent
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when (I − ρ1W1)−1(I − ρ1W
t
1)−1 = (I − ρ2W2)−1.

The SAR and CAR models are a family of spatial models that can be fitted using

maximum likelihood. The SAR model was introduced by Whittle [67] and is com-

monly used in spatial econometrics [68]. CAR models were introduced by Besag

[69], and provide the basis for a wide range of spatial models with diverse appli-

cations such as disease mapping [70], image restoration [71], and machine learning

[72]. The SAR and CAR models are a subset of Markov random fields (MRF) [73,

74]. An in depth look at the connections between spatial models and random fields

is presented in appendix C.

2.6.5. Spatial filtering

A spatial filtering model, attempts to translate the spatial structure of the data into

explanatory variables. It involves eigenfunction decomposition of a spatial weights

matrix and hence calculation of the eigenvectors. It is similar to the use of principal

components in a regression model as a dimensionality reduction method. However,

instead of the principal components, the eigenvectors themselves are used. The

eigenvectors are chosen through stepwise model selection, so as to include those

eigenvectors which most reduce spatial correlation in the error term [75]. Spatial

filtering specifically aims to remove residual spatial autocorrelation by the addition

of covariates [65].

Spatial filtering provide a mechanism for removal of spatial variation, and this model

has also been applied in a multi-level setting [76]. Potentially it might provide a

basis through which spatial autocorrelation can be removed during the analysis of

a CRT whilst also accounting for the dependency due to the trial design. However,

it does not allow for estimating of spatial effects or spillover effects, and therefore,

spatial filtering methods will not be explored in this thesis.
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2.6.6. Geographically weighted regression

Geographically weighted regression (GWR) is an spatial regression method that

allows the coefficients of the model to vary spatially [77]. The model can be used

to explore local spatial patterns in data. This is achieved by repeatedly applying a

regression model to a locally weighted spatial subsets of the data. As per Brunsdon

& Comber [78], the GWR can be represented as

ys = α(as, bs) + Zlγl(as, bs) + ε

where ys is a measure attribute at location s, (as, bs) are the coordinates of this

location, Zl is a matrix of l predictor variables associated with location s and α

and γl are coefficients that are a function of the coordinates. This method involves

applying a regression model to a spatial subset of the data (a neighbourhood). The

coefficients of the model are then recorded for that subset. A different neighbourhood

is then chosen, and the model reapplied. This process is repeated over the study area

to estimate the coefficient for each neighbourhod. The neighbourhood is typically a

radius around each point and can be fixed or vary for each iteration. The distribution

of the coefficients can then be explored visually and through summary statistics to

help to determine sources of heterogeneity in the data.

GWR could be used to explore heterogeniety in intervention estimates, it may help

to assess locations where the intervention was less effective, or more effective. A

map of the GWR estimates could be combined, with a map of the intervention

allocation, and outcome, to explore how the different characteristics interact with

one another. For example, the intervention may be more effective in areas of high

prevalence of the outcome, suggesting that a low number of events would result in an

underestimate of the true intervention effect. Alternatively, the intervention may be

less effective when many intervention cluster are nearby, which could be suggestive

of a spillover effect.
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2.7. Linking spatial data types with CRTs

To help determine the types of spatial analyses that may be appropriate for CRTs,

it is useful to represent CRTs within a typology of spatial data. In this section, I

propose a conceptual model for linking spatial data to CRTs. I posit that through

only classifying the spatial type of the cluster and observation levels, a wide range

of CRTs can be formed. Furthermore, consideration of the spatial structure helps

elicit which spatial measurements have meaning in different trial settings.

2.7.1. Types of spatial data in CRTs

The clusters and observations in a CRT can be conceptualised as point, line, or poly-

gon features. The nature of the clusters and participants in a CRT may mean that

their respective representation is either equivalent or different. In a school based

CRT, the location of the clusters (school) and participants (residential location) can

both be represented by a point. By comparison, a primary care trial may repre-

sent participants as individual residential locations, but define clusters as polygons,

covering a predefined administrative zone.

In CRTs, clusters are often defined geographically, lending themselves to spatial

representation. In contrast, the participants or observations may not have a spatial

representation. For instance, there is no single way to spatially reference a child’s

exam score, in these situations the observations would most likely be linked to the

location of the child’s home but could equally be justified as linked to the child’s

school location. The distinction between these two locations is not obvious, and it

is often unclear a priori which is more desirable from an analysis perspective.

The cluster and observation can be a point, line, or polygon, and need not be in

the same location. The observation locations may be contained within the clusters

or they may lie in practice outside of a cluster. There are 18 ways in which spatial

data may describe CRTs, given in Table 2.3.
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Table 2.3. Eighteen possible types of spatial cluster randomised trials

Observation Type Cluster Type Same or different location

Point

Point Same
Point Different
Line Same
Line Different

Polygon Same
Polygon Different

Line

Point Same
Point Different
Line Same
Line Different

Polygon Same
Polygon Different

Polygon

Point Same
Point Different
Line Same
Line Different

Polygon Same
Polygon Different

Restricting observations (or participants) to points, and clusters to points or poly-

gons allows for the spatial representation of most CRTs. Therefore, in practice, only

the four combinations given in table 2.4 are required to represent almost all CRTs.

Typically, the analysis models for the different spatial combinations of CRTs are

identical, the observations are labelled according to clusters and then a model is

fitted that accounts for the dependency within clusters. Explicit consideration of

the spatial types that make up a CRT helps to elicit the types of processes that may

be occurring during a trial. Furthermore, it supports the evaluation of which spatial

metrics may be meaningful for different trials. Although CRT share similarities in

design, from a spatial perspective they can have very different structures.
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Table 2.4. Four common types of spatial cluster randomised trials with examples

Spatial Type Example

Cluster Observation Location Trial Observation Cluster

Point Point Same Household House House
Point Point Different School House School

Polygon Point Same Geographical House Surrounding area
Polygon Point Different Primary Care House Primary care area

2.7.1.1. Clusters as point features

Clusters that are of a similar scale to the observations themselves can be generalised

and represented as points. Such clusters may include the location of households,

schools, or workplaces where the cluster can be conceptualised as a destination for

individuals. The clusters may contain multiple observations per location, such as

several members of a household. When clusters and observations are both repre-

sented by a point, the trial is most likely a household, workplace or school based

CRT.

A household CRT is an example of a trial where the clusters and observations are

points that may share the same location. The clusters are the houses and the

observations are recorded from the people who live in the houses. In a household

CRT it may not be possible to differentiate between the location of the cluster and

the observations. This may lead to difficulties when measuring spatial spillover

effects because the measured distance within a cluster is zero. Thus, there are no

participants within a cluster who are closer to the intervention compared to others.

Spillovers in this context are potentially more associated with daily activities and

spatial interactions based on individual mobility, which is challenging to capture

and analyse.

Spatial spillover effects can be calculated at a cluster level in a household CRT.

Intervention households could be treated as a point source and then distance to

nearest intervention households could be analysed for control clusters only. The
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estimate of spillover is clearly not a randomised comparison and could be confounded

by other factors. Furthermore, this approach aggregates the spatial extents of all

observations to the cluster level which may not represent the spatial effects at an

individual level. We have no way to distinguish between a control household where

all individuals are affected by spillover effects and control households where one

person was initially affected by spillover and then affected other people in their

household. Therefore, estimating spatial spillovers in household CRTs may conflate

between-house spillover and within-house spillover effects.

A school based CRT is an example of a trial where the clusters and observations

are points that can be in distinct locations. The clusters are the schools and the

observations could be exam performance of the children within the schools. When

only school locations are present, then this trial becomes identical to the household

CRT in terms of spatial information. When spatial information on the observations

such as the location of a child’s home is collected, then further spatial analyses are

possible.

This make it possible to distinguish between the locations of observations in a school

trial. There will be individuals who live closer to schools and individuals who live

closer to intervention participants. Therefore, spatial spillover effects can be mea-

sured at an individual level. Although it is likely that siblings live in the same house

and attend the same school, conflation of within- and between-cluster spillover is

unlikely unless there are multiple clusters within each school (i.e. where clusters are

classrooms).

A school based trial offers different spatial information and it is possible to calcu-

late the effect of distance to nearest school, distance to nearest intervention school,

and distance to nearest intervention household. The measurement of interest will

depend on the mechanism of the spillover. If the intervention in the school is ex-

pected to impact on the community surrounding the school then distance to nearest

intervention school will be of interest. If it is suspected that the intervention pro-
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vided at school may provide a protective effect to people who live with or near the

participants, then distance to nearest intervention household would be meaningful.

2.7.1.2. Clusters as polygon features

Larger clusters may be conceptualised as polygons in cases such as administrative

zones, primary care trust areas, or other bounded geographical areas.

Geographical CRTs are an example of trials where the clusters are polygons and

the observations are points contained within the polygons. The clusters are the

geographical areas and observations may relate to the participant’s household lo-

cated within the cluster. In this type of trial, the observations may have a single

membership (only related to one cluster) or multi-membership (related to multiple

clusters). In a geographical CRT, it is possible to distinguish between the location

of the observations and therefore, cluster level and individual level spatial effects

can be measured in these types of CRTs.

Cluster level spatial effects can be estimated by aggregating the data and fitting a

spatial model. A spatial model could also be fitted on the individual level data using

a random effect that connects the clusters based on spatial contiguity. Individual

level spatial spillover could also be analysed ignoring the clusters. Cluster boundaries

could also be used to estimate the effects of spillover. The cluster boundaries and

distance to nearest intervention household create a way of separating individuals

due to proximity of exposure.

Multi-membership can occur in Primary Care trials. When the clusters are polygons,

and the participant’s location is a point, it could fall within a cluster where they are

receiving treatment/care, or could reside in the cluster they live in. These location

need not be the same, with individuals receiving treatment in a different cluster from

where they live. When trial participants reside out of the cluster the observations

can be a member of more than one cluster referred to a multi-membership [79].
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In this context, a control observation may be spatially close to intervention ob-

servations meaning they live in a control cluster. However they may be receiving

treatment outside of the cluster they reside in and from a trial perspective they are

part of another cluster. This would mean a standard CRT analysis would ignore that

the observation will be correlated with individuals they live near but also correlated

with individuals where they receive their primary care. The multi-membership may

have implications for the analysis of intervention, and spillover effects.

In this setting, distance to nearest intervention observation or distance to nearest

intervention area is possibly not a meaningful metric and a more appropriate analysis

strategy might be to assess the multiple memberships of the participants.

Examining the spatial representation of CRTs exposes how trials which are similar

in design, and often analysed in the same way, could be conceptualised as having

distinct spatial structures. This is motivated by different underlying hypotheses as

to the nature of the spillover mechanisms. Unless the design is adapted, then all

estimates of spatial spillover are non-randomised comparisons. The spatial context

of a CRT provides a way of approximating the proximity of individuals to differ-

ent exposures and may provide a way of measuring spillover effects. A standard

CRT analysis would treat a household CRT in the same way as a workplace CRT.

Thus, estimating spatial effects requires careful thought about which metrics are

meaningful.

2.7.2. Spatial effect modification of the intervention

When a spillover is present, this could manifest as the presence of interaction between

proximity and the intervention. For example, consider a CRT of insecticide treated

bed nets where a distance-based positive spillover effect is present over a distance

of 200m. Then intervention effect will be reduced, when comparing the intervention

arm to control participants within 200m of the intervention. The intervention effect

will be larger when comparing the intervention arm to control participants further
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than 200m from the intervention. In this scenario, distance modifies the effect of

the intervention.

Alternatively the intervention status may modify the effect of proximity. Using

the bed net CRT example, the spillover direction is from the intervention towards

control clusters. Therefore proximity to the intervention will have an effect, but

proximity to a control household should not have an effect.

Recording measurements of proximity such as GPS coordinates, allows the investi-

gator to describe properties of the mechanism behind the intervention effect. Thus,

helping to further understand how the intervention works.

2.8. Summary

This chapter provided an overview of the main concepts of CRTs and spatial analysis,

setting forth a framework for spatial data in the context of CRTs.

In comparison to individually randomised trials, CRTs are a good choice of design

to reduce contamination between control and intervention participants. Spillover

effects may be present in CRTs, especially when clusters are near to each other.

Although there are several design approaches which can be used to eliminate and

account for spillover effects, these can result in increased complexity and may not

aloow spillover effect to be measured. A potential way of assessing spillover in the

analysis of CRTs is to use spatial methods. This thesis focuses on exploring different

approaches to incorporate spatial effects into the analyses of CRTs.

I have outlined a relationship between spatial data types and CRTs and determined

that most CRTs can be represented by treating clusters as points or polygons and

observations as points. CRTs do not fit neatly into the traditional fields of spa-

tial statistics (1. Point process, 2. Geostatistical, 3. Areal). This poses further

difficulties for spatial analysis of CRTs

There are several aspects of spatial data such as MAUP, and spatial correlation
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that are of relevance for CRTs. MAUP is of greater importance in the design stage,

and therefore, will not be addressed by this thesis. Spatial correlation is typically

included through modelling approaches. The extension of linear regression to incor-

porate spatial correlation has been demonstrated by inclusion of a spatial weighted

variance covariance matrix. Two of the main types of models (SAR and CAR)

were described, and these and related spatial models will be revisited in subsequent

chapters.

The discussion of spatial analysis in CRTs has so far been abstract, attempting to

bring together different concepts from spatial statistics and trial methodology. In the

next chapter (3) examples of spatial methods in CRTs are identified by conducting

a systematic review of spatial analysis methods in CRTs.
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3.1. Overview

In Chapter 2, cluster randomised trials (CRTs) and spatial statistics were reviewed,

and a framework for considering spatial data in CRTs proposed. In this chapter,

I conduct a systematic review to determine to what extent the methods of spa-

tial statistics have been incorporated into the analyses of CRTs. This paper was

published in September 2017 in Emerging Themes in Epidemiology.

Objective

2. Describe and identify spatial analysis methods that have been previously used

in CRTs by conducting a systematic review.

3.2. Role of candidate

I defined the search strategy with feedback from Gian Luca Di Tanna (GLDT) and

Daniel Lewis (DL). I performed the search and screening of articles with GLDT as

second reviewer. I drafted the initial article and revisions were made with feedback,

input, and guidance from GLDT, DL, Neal Alexander, and W John Edmunds.
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3.3. Abstract

Background

Cluster randomised trials (CRTs) often use geographical areas as the unit of ran-

domisation, however explicit consideration of the location and spatial distribution

of observations is rare. In many trials, the location of participants will have little

importance, however in some, especially against infectious diseases, spillover effects

due to participants being located close together may affect trial results. This review

aims to identify spatial analysis methods used in CRTs and improve understanding

of the impact of spatial effects on trial results.

Methods

A systematic review of CRTs containing spatial methods, defined as a method that

accounts for the structure, location, or relative distances between observations. We

searched three sources: Ovid/Medline, Pubmed, and Web of Science databases.

Spatial methods were categorised and details of the impact of spatial effects on trial

results recorded.

Results

We identified ten papers which met the inclusion criteria, comprising thirteen trials.

We found that existing approaches fell into two categories; spatial variables and

spatial modelling. The spatial variable approach was most common and involved

standard statistical analysis of distance measurements. Spatial modelling is a more

sophisticated approach which incorporates the spatial structure of the data within a

random effects model. Studies tended to demonstrate the importance of accounting

for location and distribution of observations in estimating unbiased effects.
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Conclusions

There have been a few attempts to control and estimate spatial effects within the

context of human CRTs, but our overall understanding is limited. Although spatial

effects may bias trial results, their consideration was usually a supplementary, rather

than primary analysis. Further work is required to evaluate and develop the spatial

methodologies relevant to a range of CRTs.

59



Paper A: Spatial analysis of CRTs: A systematic review

3.4. Background

Randomised controlled trials assess the efficacy and safety of interventions [1, 2].

When it is difficult to allocate interventions at the individual level, for example due

to logistical or financial restrictions, randomisation and allocation of interventions

at a group level may be preferred, this is a cluster randomised trial (CRT) [3].

CRTs also allow for estimation of spillover and herd effects; the apparent treatment

effect on individuals who do not receive the intervention [4]. Failure to account for

spillover effects can result in biases that reduce the quality of trials and mean that

absence of bias is no longer guaranteed by the randomisation, especially when the

relationship between intervention and outcome is complex [5, 6].

Spatial effects are effects stemming from locational variation in the distribution of

phenomena of interest or in the intensity of interaction between phenomena of inter-

est. Such effects manifest as local variation in the estimated treatment effect over a

study area. The existence of spatial effects suggests that global effects estimates are

uncertain, and may under- or over- estimate the true effect dependent on location.

When values of a single variable are related to nearby values of the same variable

this is called spatial dependence, the existence of which is usually captured using

spatial autocorrelation measures [7]. Spatial dependence is a fundamental concept

in spatial statistics [8] and stems from Tobler’s [9] 1st law of geography that “ev-

erything is related to everything else, but near things are more related than distant

things.” In agricultural field trials it is long established that the location of the data

can impact on trial results [10]. Incorporation of spatial methodology in agricultural

trials is common, [11] but the impact of spatial effects in human CRTs have not been

researched extensively.

Clusters in CRTs are often defined geographically and valid inference relies on the

assumption that the clusters are independent irrespective of their nearness to one

another [3]. There is frequently an assumption of an absence of spillover; that

movement of people and diseases occurs freely within a cluster but movement be-
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tween clusters is negligible, non-existent, or not relevant [12]. This assumption can

be violated when there is movement of people or diseases across borders, such as

mosquitoes flying between control and intervention households. If an intervention

such as insecticide-treated bed nets provide a protective effect to nearby control

households then ignoring mosquito mobility will result in underestimating the inter-

vention effect of the trial. This could result in trials discarding effective interventions

because the control and intervention are both receiving the benefit of the treatment.

Spillover may also be due to connections in social networks, [13] also violating the

assumption of independence. In this paper, we consider spillover that can be esti-

mated using GPS data which is often collected as part of trials and therefore do not

consider social networks. Spillovers are more likely in trials that have spatially close

clusters, and the effect is especially important when an individual’s outcome is af-

fected by their proximity to other individuals with different exposure statuses. One

way to minimise the potential for spillover is to design a trial with well-separated

clusters. In practice this may not be logistically or financially feasible as spatial

effects can be present over distances of several kilometres [14]. Furthermore, greater

distances between clusters removes our ability to measure spillover spatial effects.

To be able to measure spatial effects we need to have data on people nearby to one

another and by separating the clusters we may no longer have such information. If

proximity to an intervention affects non-treated individuals this is of usually scien-

tific interest and something we should measure. There is a need to control for and

estimate spatial effects in the analysis of a trial without adding extra complexity to

the design.

We therefore focus only on spatial analysis methods used in CRTs in this review

and do not consider alternative trial designs. A further reason for focusing on anal-

ysis methods is that this may enable analysis of existing and previous CRTs where

redesign is not possible. This review is a diagnostic review of spatial analysis meth-

ods that have been used in CRTs. As such, it does not attempt to pose statistical
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solutions or determine the best way to account for spatial effects within CRTs. We

will describe the state of the literature and aim to improve understanding and help

inform further research into spatial effects within CRTs by (i) Identifying spatial

analysis methods used in CRTs. (ii) Summarising and grouping spatial methods

(iii) Assessing the impact of spatial effects.

3.5. Methods

3.5.1. Search terms and review process

The PRISMA guidelines [15] for systematic reviews and meta-analyses were fol-

lowed for this review. It was conducted between January 2016 and September 2016.

Ovid/Medline, Pubmed, and Web of Science databases were electronically searched

and Mendeley was used to store articles. Search terms for CRTs and spatial effects

are detailed in Table 3.1. Studies up to end of 2015 were included and only English

language articles and search terms were considered.

Papers from each database were combined into a single spreadsheet containing the

title, authors, journal, and year. Duplicates were removed automatically within

the software and then manually during the title screen. The titles were screened

to remove irrelevant papers such as individually randomised trials. Following this,

abstracts were screened and the full texts of potentially relevant papers were inde-

pendently reviewed by two reviewers and disagreements resolved. After selecting

relevant papers the references of the articles were screened.

3.5.2. Inclusion and exclusion criteria

The inclusion criteria for studies were: (i) The study is a CRT. (ii) Spatial methods

are used in the analysis of the study. We categorised a spatial method as one which

accounts for the structure, location, or relative distances of the data. This includes
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direct estimation of an effect such as, the change in risk for those within 100 meters

of an intervention household or the use of spatial models which account for spatial

structure.

The exclusion criteria were (i) Non-randomised studies (ii) Individually randomised

trials and hybrid CRTs such as Double or pseudo-randomised studies as they were

considered not to be cluster randomised trials (iii) Grey literature (iv) Studies where

spillover effects are measured in a non-spatial way, for example comparison of vac-

cinated and non-vaccinated individuals within an intervention cluster. (v) Studies

that account for spatial effects at the design stage only; for instance, using buffer

zones or well-separated clusters (vi) Articles which were study protocols and there-

fore had not applied their methods yet.

3.5.3. Data extraction

The following variables were collected on each paper: title, year, journal, author,

intervention, outcome, whether a map was presented, and spatial analysis method.

Table 3.1. Search terms

Databases CRT terms Spatial terms Search string

Pubmed randomi*ed trial spatial*
(randomi*ed trial) AND (group OR
community OR cluster OR place) AND
(spatial* OR indirect effect* OR spillover*
OR contamination* OR externalit*)

Medline/Ovid
Group

group indirect effect*
community spillover*

WebOfScience cluster contamination*
place externalit*

A star (*) represents a wildcard character

3.6. Results

3.6.1. Search results

A flow chart of the search process can be seen in Figure 3.1 and the search terms in

Table 3.1. The search terms returned 6,997 records, reducing to 571 records after the
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title screen and duplicate removal. Of the 571 records, 40 abstracts were considered

relevant for full text review by the reviewers. One study [16] was a replication

analysis and it was decided to include the original study in the review instead of the

replication. There are ten papers and thirteen trials in this review as some papers

include multiple trials.

Whilst this review was being conducted a systematic review on health-related spillover

in impact evaluations was released [13]. It has the more general aim of attempting

to summarise methods to estimate health related spillover in low and middle income

countries. Our review is different as it only includes spatial methods used within

CRTs and does not restrict by type of country. The results from both reviews were

compared and did not lead to additional records being included.

Figure 3.1. Flow chart of search results
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3.6.2. General characteristics

This review contains ten papers published between 1998 and 2015, they relate to

thirteen trials as some papers contained more than one trial. The trials took place

around the globe with three taking place in Kenya, three in the United Kingdom,

and the rest in Mexico, Venezuela, Ghana, Papua New Guinea, Vietnam, Haiti,

and India. There is one stepped wedge trial [17] and all others are parallel cluster

randomised trials. Six of the papers were a spatial reanalysis of a previously reported

trial.

Seven trials focused on pathogens carried by mosquitoes. The intervention for six

of these was insecticide-treated bed nets or curtains and the other intervention was

a drug. Two of the seven mosquito trials considered all cause child mortality as an

endpoint, the other five looked at entomological endpoints.

There were two vaccine trials, the first looked at vaccine uptake in response to a

mass campaign and the second evaluated vaccine effectiveness for a typhoid vaccine.

One paper considered primary care and community based trials, within this they

applied spatial methods to three different trials, one simulated and two real trials.

The final trial looked at the impact of deworming on education and health within

schools. Further details of the trails in the review are in Table 3.2.
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Author & Year Location Intervention Outcome Map Spatial Method Type Spatial Method 

Binka 1998 [18] Ghana Permethrin-impregnated bed 
net 

All-cause child mortality Yes Straight line distance Distance to discordant observation and points of interest. 
Standardised mortality rates calculated at several distances. 

Alexander 2003 

[27] 

Papua New 

Guinea 

Diethylcarbamazine (DEC) 
plus ivermectin versus DEC 
alone 

Spatial distribution of 
Wuchereria bancrofti 
and microfilaraie 

Yes Spatially structured 

random effect 

Negative binomial model with a distance parameter in the 
covariance structure of a random effect. Measures half 
distance of spatial correlation. 

Gimnig 2003 
[20] 

Kenya Permethrin-treated bed net Spatial distribution of 
mosquitoes 

Yes Straight line distance Distance to discordant observation and to points of 
interest. Poisson regression model with a random effect 

for cluster. 

Hawley 2003 
[19] 

Kenya Permethrin-treated bed net All-cause child mortality, 
anaemia, and density of 

mosquitoes 

Yes Straight line distance Distance to discordant observation and to points of 
interest. Cox regression model with a random effect for 

adjusted for cluster. 

Miguel & 
Kremer 2004 
[23] 

Kenya Deworming Helminth infection No Density Total number and proportion of treated students within 6 
km of a school. Included in primary analysis random 
effects model adjusted for cluster (School). 

Kroeger 2006 

[21] 

(1) Mexico 

(2) Venezuela 

Insecticide-treated curtains and 

water container covers 

Reduction in 
entomological indices for 
Dengue 

No Straight line distance Distance to nearest participant with outcome at the 

beginning of the study. 

Odds ratio of outcome for nearby houses compared to 
houses further away. 

Ali 2007 [22] Vietnam Vaccine campaign Vaccine uptake Yes Straight line distance 

and density 

Distance to points of interest and density. Random effects 
mode including typhoid prevalence and private 
practitioner density 

Lenhart 2008 
[24] 

Haiti Insecticide-treated bed nets Reduction in 
entomological indices for 

Dengue 

Yes Density Total number of bed net households within 100 meters. 
Spearman’s correlation of number of bed net houses 
within 100m compared with change in entomological 
measures. 

Silcocks 2010 

[29] 
UK (3 trials) (1) Sun exposure (2) home 

safety intervention (3) 
intervention to reduce baby 
walker use 

(1) Lip Cancer (2) 
number of injuries per 
individual (3) ownership 
of baby walker 

No Spatially structured 

random effect 

Spatial weights matrix in covariance of random effect. A 
Multiple membership spatial random effects model with 
fixed North/South or East/West gradient covariate effect 
for gradient 

Chao 2015 [25] India Typhoid vaccine Vaccine effectiveness Yes Density The sum of the risk of those within 100 meters of a 
participant called the potential exposure. Included in a 
model with a random effect for cluster. 

Paper
A
:Spatialanalysis

ofC
RTs:

A
system

atic
review
Table 3.2. Characteristics of the included papers
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3.6.3. Spatial methods

The studies took two approaches for analysing spatial effects, referred to in this paper

as spatial variables and spatial models, expanded upon in Figure 3.2. Nine of the

trials analysed the effect of a spatial variable which is a measurement that relates to

where the observations are located. The two types of spatial variables found in this

review were straight line distance such as distance between participants, and density,

for instance the number of treated participants within a 100 meter radius. Four

trials used spatial models by including the spatial structure of the participants using

random effects statistical models. The spatial models are specified by measuring how

participants are connected to one another, for example recording participants who

are neighbours, described further in Figure 3.2. Incorporating spatial structure into

a model this way treats a spatial effect as an underlying unobserved process which

may not be directly measurable. The two approaches make different assumptions

about the type of spatial relationship and a variety of methods were used for each

approach.

3.6.3.1. Spatial variables

Straight line distance

Five trials [18–22] estimate spatial effects by measuring the distance between par-

ticipants and a location of interest. In these studies, the location is either another

participant or a feature which may affect the outcome, such as a health facility. Sev-

eral studies analysed the effect of distance to more than one type of location. The

distance between each control participant to their nearest intervention participant

was analysed in three trials [18–20], termed distance to nearest discordant observa-

tion. They also analysed proximity to nearest reservoir or health facility. Distances

were categorised and the effect measured for each category. For example, Binka et

al. [18] calculated a standardised mortality rate at five separate distance categories.
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Kroeger et al. [21] considered whether distance to a participant with the outcome

at the beginning of the study affects the odds of having the outcome at the end of

the study. They tested at four separate distances and corrected for multiple testing.

Ali et al. [22] included distance to school and nearest hospital in a model which

assessed the intervention effect and accounted for cluster effects. This was the only

trial that included straight-line distance in the primary analysis of their trial.

Density

Four trials [22–25] analysed the effect of density in the area surrounding the par-

ticipants. They analysed the density of factors that may affect the outcome, for

example the number of people vaccinated within 100 meters. The methods differ

by whether they used a count or a proportion and whether they focused on the

treatment density or the risk of infection from surrounding individuals. Including

density as a spatial variable assumes that number of objects within a certain distance

is important as well as the distance to the nearest object.

Lenhart et al. [24] measured intervention density as the number of households with

bed nets within 100 meters of an observation. The study assessed spatial spillover

through the correlation of change in baseline of outcome measure with number of bed

net households within 100m. In contrast, Miguel & Kremer [23] measured density

as the proportion of children treated within 6km of a school, as well as the total

number and accounted for this in their primary analysis. Ali et al. [22] included

a proportion and count density in their primary analysis model by accounting for

typhoid prevalence and number of private practitioners for the neighbourhoods of

each participant.

Chao et al. [25] differs from the previous applied papers because they develop and

test a new method to deal with spatial effects in CRTs. They define a variable called

‘potential exposure’ which is ‘the sum of the relative risks of all who live within 100

meters of each person’ [25]. The potential exposure controls for the spatial variation
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in risk surrounding an observation. They demonstrate that this variable can be used

to account for spatially heterogeneous risk factors in the primary analysis of a trial.
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Figure 3.2. Spatial analysis methods
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3.6.4. Spatial models

The methods presented in the previous section assume that the underlying spatial

process can be measured and spatial effects can be estimated from this measure.

The remaining two papers include four trials that model spatial effects using a spa-

tially structured random effect. This approach makes fewer assumptions about the

mechanism of spatial process and allows for a range of local and global dependency

structures [26].

Alexander et al. [27] investigated the spatial pattern of mosquito borne vectors.

Adapted from a previous paper they incorporated a distance parameter in the co-

variance matrix of a random effect within a negative binomial model [28]. This

distance parameter allows participants who are closer together to be more similar

than participants that are further apart as shown in Figure 3.2. They also estimate

a distance decaying parameter in the covariance structure of the random effect,

which they use to estimate the ‘half distance’, which is the distance at which spatial

correlation halves.

Silcocks & Kendrick [29] applied several types of spatial models to two primary care

trials and one simulated trial. The model was a variation of a Besag, York, and

Mollie model [30] which contains a spatially structured random effect and a random

effect for cluster. The spatial structure of the participants was represented using a

spatial weights matrix and is included in the covariance of the random effect, further

described in Figure 3.2. In primary care or community based trials people may reside

in one area and receive treatment in another [29]. Having a spatial and non-spatial

random effect allowed participants to have membership to multiple clusters which

they called a ‘multiple membership model’. They also consider a fixed north/south

and east/west gradient covariate in their model evaluations.
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3.6.5. Impact of spatial effects

All thirteen trials found evidence of a spatial effect within their studies. Seven trials

report a protective spillover effect for participants who live close to an intervention.

There is evidence that adjusting for spatial effects affects the precision and value of

the estimated intervention effect. Chao et al. [25] saw that adjustment for spatial

effects lowered the effect estimate of the intervention. The precision and intervention

estimate changed in the three trials analysed by Silcocks & Kendrick [29]. The study

demonstrated that spatial models fitted better than a standard CRT random effect

model by comparing the Akaike information criteria of the models. They are explicit

that this is just illustrative but both studies conclude that spatial effects may need to

be adjusted for in CRTs and that further research into methods is required. Despite

this only two of the nine applied trials adjusted for spatial effects in the primary

analysis of their trial.

3.7. Discussion

This review has found multiple approaches to incorporating or measuring spatial

effects in the context of CRTs, however these stem from only a few examples in

the literature. Further, no conventional or standard approach was found. The ap-

proaches differ by whether they directly analyse a spatial variable or model the

spatial structure. Spatial variables were either straight-line distance from a partic-

ipant to a place of interest, or a measure of the density surrounding a participant.

For instance, distance between a control participant and an intervention partici-

pant. Spatial models included spatial structure in the covariance of the random

effects model using a distance parameter or spatial weights matrix. Accounting for

spatial structure affects both the precision and point estimates of treatment effects

and failure to do so could give inaccurate results [25, 29].

The papers in this review are only a small proportion of the total number of CRTs
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that have been published. That only ten records were found suggests that spatial

effects are not often considered in this area. Furthermore, despite evidence of spatial

effects, they were rarely adjusted for in the primary analysis of the trial. It appears

that the impact of location on analytical approach is at best an afterthought and

in most cases ignored. The trials come from a variety of domains and although

predominantly focused in infectious diseases, there may be implications for a broader

range of trials particularly in trials of health services organisation [29] which are

becoming more common [31]. Therefore, a wide range of trials may not be accounting

for spatial effects that bias results, however it is presently unclear as to what extent

this may be an issue.

Further research is required to determine how much spatial effects impact trial re-

sults. Simulation studies may allow exploration of how the magnitude and extent

of spatial autocorrelation may bias trial results. There have been some attempts

to quantify how important spatial effects may be in trials more generally [32, 33].

Methods that allow for estimation of treatment effects whilst accounting for spatial

effects could be investigated and tested under simulation. However, there are sev-

eral challenges to overcome such as whether we can estimate the true randomised

intervention effect using a spatial model, and how such an effect estimate should be

interpreted.

An alternative use of spatial data is to conduct additional analyses to complement

analysis of the main trial. These analyses explore spatial components of the trial, and

could improve understanding of the mechanism of the intervention effect. Spatial

methods could be applied to previous trial data and a toolbox of standard approaches

defined allowing future trials to predefine spatial analyses. This would allow for

quantification of the distance over which spatial effects are present for different

disease areas. A further area of research is in alternative CRT designs, although they

are not the focus of this review this might include double randomisation or pseudo

randomised trials where clusters are first randomised and subsequently individuals
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within clusters are randomised to allow for measurement of spillover effects [34, 35].

Multiple terms in the literature refer to spillover effects and many of them could

refer to spatial effects with differing terminology between fields and researchers in

the same fields. To add to confusion, these terms can have dual meanings for

instance, an indirect effect can be the effect on an individual who does not receive the

intervention or the effect of an intervention through a mediating variable. The search

strategy attempted to include a broad range of terms for CRTs and spatial effects

but at present, there is no established standard for citing the use of spatial data

in the analysis of CRTs. Consequently, it is possible that trials have been missed.

Although this is a weakness, comparison with a larger more general systematic

review on health-related spillover in impact evaluations [13] did not result in the

addition of any further trials. They had searched 19 databases and screened more

than 34,000 records. Due to this the authors conclude the omission of further studies

is likely to be minimal.

This review has focused only on the analysis stage of a CRT and it could be argued

that adjusting for spatial effects is not necessary in a well-designed trial as clusters

should be well-separated to minimise spillover effects [4]. Trial designs such as the

fried egg design [3] which incorporates a buffer around clusters could be used to

attempt to eliminate or measure spatial spillover. However, in cases where spatial

correlation is present over large distances [14] this may not be possible and could

lead to the inability to detect the difference between no effect and everyone having

an effect [36]. Additionally, as spatial effects are rarely considered in trials, it may

not be until after the design stage that the problem becomes apparent, if at all.

On the other hand, having clusters relatively close together could have advantages,

because the measurement of spatial spillover effects is of scientific interest. Knowl-

edge that an intervention provides indirect benefit based on proximity is useful to

differentiate between interventions and to plan how to benefit the largest number

of people. Furthermore, subjects who live further apart are more likely to be het-
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erogeneous than those living close together due to cultural, geographical, and social

differences which could make treatment differences harder to distinguish due to im-

balance between clusters. In conclusion, although there have been a few attempts

to control and estimate spatial effects within the context of human CRTs our un-

derstanding is limited. Although there are commonalities between approaches there

is no consensus on how to account for spatial effects within CRTs and more work

needs to be done to evaluate and develop spatial methodology within the context of

a range of CRTs.
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4.1. Overview

In chapter 3, a systematic review was conducted to determine to what extent the

methods of spatial statistics have been incorporated into the analyses of cluster ran-

domised trials (CRTs). In this chapter, I apply spatial methods to a CRT to consider

the spatial aspects of poliovirus transmission. The CRT is a household CRT, which

has implications for which spatial measurements are meaningful, as the clusters and

the observations are represented by the same point locations. Specifically this paper

is considers and attempts to measure the spillover effect of using OPV onto partic-

ipants who do not receive the vaccine. This paper has been submitted to Clinical

Infectious Diseases in combination with several other papers relating to this CRT,

and is currently under review.

Objective

3. Apply and assess a range of appropriate modern spatial methods to existing

CRT data, in order to analyse the effect of spatial autocorrelation and spatial

spillover effects on CRT results.

4.2. Role of candidate

I created the statistical analysis plan which was agreed by the co-authors. I con-

ducted the statistical analysis, and wrote the first draft of the paper with input from

Jonathan Altamirano (JA) on the study design and knowledge relating to polio. Re-

visions were made with feedback, input, and guidance from JA, Clea Sarnquist, W

John Edmunds, and Yvonne Maldonado.
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4.3. Abstract

Background

Understanding spatial dynamics of oral polio vaccine (OPV) transmission will im-

prove resource targeting. Mexico provides a natural laboratory as it uses both

inactivated polio vaccine (IPV) routinely and OPV bi-annually. We performed a

spatial analysis to consider whether living near an individual who receives the OPV

increases an individual’s risk of polioviris shedding.

Methods

Children in three villages near Orizaba, Mexico were randomized to three levels

(10%, 30%, 70%) to receive OPV. We measured distance to nearest OPV shedding,

and the amount of shedding close to unvaccinated individuals. We used maps to

show the proximity and amount of shedding. Distance and density of shedding was

analyzed separately using mixed effects logistic regression with random effects for

household and time, adjusted for age, gender, area, and running water.

Results

The median distance to nearest OPV shedding households was 85 meters (IQR

46, 145) and median number of vaccinees shedding OPV within 200m was 3 (2,

6). Transmission to unvaccinated household occurred by day one (Figure 4.5) and

persisted in some cases up to 71 days. There was no association (Odds Ratio [OR]

1.04 95% Credible Interval [CrI] 0.92, 1.16) between distance from OPV shedding

and odds of transmission. There was some suggestions of an association between

the number of OPV vaccinees shedding within 200m with unvaccinated transmission

(OR 0.93 95% CrI 0.84, 1.01) but not at 100 or 500m. Results were consistent across

the three villages.
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Conclusions

Household structure appears to have limited value in predicting transmission of

poliovirus shedding. Use of OPV results in rapid but low levels of persistent trans-

mission throughout the community and this would usually go undetected. The only

way to avoid this is to not use OPV or to have strong controls such as quarantine,

or strict hygiene protocols. After withdrawal of OPV worldwide the decision to

reintroduce due to an outbreak should not be taken lightly as it appears a small

amount of OPV is needed to result in transmission.

4.4. Background

The goal of global polio eradication may soon be reached. In 2016, there were 37

cases of wild type (WT) polio, a decrease from the 87 cases in 2015 [1, 2]. Currently,

only Pakistan and Afghanistan continue with endemic transmission of WT serotype

1 polio, and Nigeria reported four cases in September 2016 [3]. The success of the

polio eradication effort can be largely attributed to the use of oral polio vaccine

(OPV) in developing countries, due to its low cost, easy administration, and abil-

ity to confer passive immunization to contacts, presumably via fecal-oral infection.

However, the risks from OPV use are now complicating eradication efforts. Vaccine-

associated paralytic polio (VAPP) is a rare, adverse reaction to OPV administration,

occurring in every 900,000 doses [4]. Of more concern, prolonged circulation of OPV,

primarily in communities with suboptimal sanitation, can result in OPV mutation

and neuroreversion, leading to circulating vaccine-derived poliovirus (cVDPV). In

addition, cVDPVs studied in Nigeria were found to be as virulent as WT polio [4].

To date, the spatial characteristics of OPV transmission are not well characterised.

Understanding the pattern and extent of geographic variation in OPV circulation

could help to predict and prepare for risk of OPV reintroduction, especially in un-

dervaccinated communities. Areas of increased risk could be detected, and resources
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accordingly deployed to reduce or prevent prolonged OPV circulation. In the cur-

rent global setting of polio transmission, this is particularly important for serotype

2, which was declared eradicated as of September 2015 by the WHO [5].

In this study, we had the opportunity to identify household and community trans-

mission of OPV because it was conducted in Mexico, where inactivated polio vaccine

(IPV) is provided for routine immunization at 2, 4, 6 and 18 months of age, and

OPV is only administered in two National Immunization Weeks (NIW) to children

5 years of age and under. We are able to investigate spatial transmission at a house-

hold level within three villages that received different levels of OPV vaccination

during the February 2015 NIW. Furthermore, we record transmission based on stool

samples allowing detection of OPV transmission from vaccinated children and their

household and community contacts. Spatial analyses of polio transmission have been

performed as far back as 1967 [6], however most involved aggregated case data over

large areas of several kilometres [7–9]. This study allows investigation at a local

level of what happens in a community when the OPV vaccine is introduced.

In this paper, we explore two aspects of between household transmission of polio.

First, we consider whether living near someone who is shedding poliovirus affects an

individual’s chance of shedding poliovirus. Second, we determine how the number

of people shedding near an unvaccinated contact impacts that individual’s chance of

acquiring and shedding poliovirus. We refer to the distance and density of shedding

collectively as proximity to shedding.

4.5. Methods

4.5.1. Study design

The study has already been described in detail elsewhere [10] but in brief this was

a prospective household cluster randomised trial (CRT) in 3 indigenous localities in

Orizaba, Veracruz, Mexico (Capoluca, Campo Grande, and Tuxpanguillo). Within
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each community, approximately 150 households were enrolled in this study, and each

community received a different amount of OPV coverage as part of the study; 70%

of enrolled households in Capoluca, 30% in Campo Grande, and 10% in Tuxpan-

guillo. When enrolment began in February 2015, 155 households were randomised

to receive OPV out of 466 households included across the three localities. No other

households in any of the three communities received OPV until the May 2015 NIW.

Only one child from each of the 155 households received OPV. Inclusion criteria

for household enrolment was the presence of a child <5 years with an up-to-date

IPV vaccination record that was eligible to receive OPV. All adult participants con-

sented to participation, and guardians of minors consented for minors to participate.

Exclusion criteria for children <5 years included presentation with illness (febrile,

diarrhea, or respiratory), immunodeficiency caused by AIDS, disease, or medication,

recent blood transfusions, and prior adverse reactions to OPV. Exclusion criteria for

all other participants was refusal to participate or change in residence during the

study period. Within our study population, GPS coordinates were collected from

423 households, 137 of the vaccinated households and 286 unvaccinated households.

As a result, only the shedding and transmission results from these participants were

considered in this analysis (Figure 4.1).

After enrolment, 10 stool samples were scheduled for collection from each member of

all enrolled households, one baseline sample collected before vaccination, and then

collected 1, 4, 7, 10, 14, 21, 28, 51, and 71 days after vaccination. During each visit,

health information, travel and visit details, and records for any vaccines received

during the study period for children <5, were collected via follow-up surveys. Ex-

clusion criteria for follow up were individuals that refused to participate, change in

residence during the study period, or absence during follow-up visits. Viral RNA

was extracted from frozen stool samples utilizing the MagNA Lyser (Roche) and

KingFisher Duo Prime (Fisher Scientific), using the bacteriophage MS2 as internal

control for extraction efficiency.
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Viral RNA then underwent quantitative reverse transcription polymerase chain re-

action (rt-QPCR) in order to detect and quantify any Sabin OPV present in the

samples. The probes and primers were adopted and adapted from Kilpatrick et al.

[11] and the CDC protocol for Polio QPCR. Samples were run in triplicate and a

sample was considered positive if two thirds of reactions had a Ct <37. Positive

samples were re-run, to minimize false positives, and if positive again the RNA was

Sanger sequenced for confirmation.
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Figure 4.1. Map of study area
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4.5.2. Sample

We use two types of participants from the study, vaccinated individuals, and in-

dividuals who live in unvaccinated households, referred to here as unvaccinated

individuals. We are interested in the outcomes of unvaccinated individuals and

their proximity to vaccinated individuals. Therefore, vaccinated participants are

not analysed directly, instead we create spatial variables for unvaccinated partici-

pants by comparing the locations of vaccinated and unvaccinated households. For

instance, we measure the distance from an unvaccinated person to their nearest

vaccinated household. We do not include unvaccinated people who live in vacci-

nated households as the focus of our analyses is between-household transmission.

Within-household transmission is analysed separately [12]. Vaccinated individuals

are treated as sources because we can be more certain their shedding is due to the

OPV and not transmission from other participants.

4.5.3. Descriptive analyses

Maps were used to visualise the spatial distribution of vaccination and shedding. We

represented the density and location of vaccinated shedding over time using contour

plots and overlaid the position of unvaccinated participants.

The distributions of key variables were assessed graphically and through calcula-

tion of summary statistics. Spatial variables were summarised using medians and

interquartile ranges (IQR) as they were skewed. Coverage of vaccine was considered

important to adjust for, as higher coverage led to both a smaller distance to nearest

shedding household and a higher proportion of shedding.
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4.5.4. Statistical analyses

4.5.4.1. Outcomes

Stool samples were collected from participants at ten time points. We only analysed

data from the first 28 days of the study as almost all the shedding occurred before

this end point. We first looked at the presence of poliovirus in stool samples and

proximity to vaccinated participant shedding at any time point in the first 28 days.

Second, we considered the presence of poliovirus and proximity at each given time

point.

4.5.4.2. Spatial variables

For the first analyses the outcome was a binary variable for shedding at any time

point throughout the study period. We used a spatial variable approach as identified

in a recent systematic review [13], this approach is similar to previous spatial analy-

ses of mosquitoes bed net trials [14, 15]. We measured proximity to any vaccinated

participant shedding aggregated over the study period. Proximity was measured

in two ways; distance to nearest vaccinated shedding household and the number of

vaccinated individuals shedding within 100, 200, 500, and 1000 meters of an un-

vaccinated household. Sensitivity analyses were performed restricting the data to

the first 14 days to reduce the risk of shedding being recorded due to secondary

transmission.

For the second analyses, we calculated the same spatial variables but within each

time point. Therefore, distance to nearest vaccinated shedding could change de-

pending on the study day. We also calculated the spatial variables using calendar

days after initiation of the NIW OPV administration and found no differences on

the conclusions.
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4.5.4.3. Modelling

The study is a CRT with a hierarchical structure giving multiple observations per

individual per household. Mixed effects logistic regression with a random effect for

household was used to assess the association of distance and density of vaccinated

shedding with unvaccinated shedding over the 28-day period. Mixed effects logistic

regression with a random effect for household, and an autoregressive lag one random

effect for study day was used to look at the impact of distance and density of OPV

shedding. The autoregressive random effect allows the previous study period to

provide information to the next period. We adjusted for study area, age, gender,

and whether the house had running water.

The spatial variables were included as continuous variables. Non-linearity was ex-

plored using quadratic terms and treating the variables as categorical, there was

no suggestion of non-linear effects. The models were fitted using integrated nested

Laplace approximation [16] and all analyses were performed using R 3.4.2 [17].

4.6. Results

4.6.1. Descriptive

There are 1,145 unvaccinated individuals included in the analyses, and they come

from 286 households. The age distribution was positively skewed with a median

age of 17 years ranging from 1 month to 95 years and 58.1% were female. Further

details stratified by community can be seen in Table 4.1. Unvaccinated individuals

provided 10,059 stool samples in total, 978 (85.4%) people contributed eight or more

out of a possible ten samples and 57 (5.0%) individuals contributed only one sample.

There was no missing data for the variables age, running water in household, and

gender, the only missing data was the omission of stool samples. If we assume each

participant could have provided 10 stool samples then we observed 87.8% of the
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11,450 potential samples for unvaccinated individuals.

In unvaccinated individuals, there were 89 (0.9%) positive samples which came from

80 (7.0%) individuals, only six people contributed more than one positive sample.

The number of positive samples varied over time, with 24 positive samples observed

at day seven, 2 at day ten and 8 at day fourteen.

In the original study 155 children were vaccinated, of these 137 (88.4%) had GPS

data which were used to calculate the spatial variables, the remaining 18 did not have

GPS data and were not used in the analyses as we do not know their locations (Figure

4.1). The median distance to vaccinated households for unvaccinated individuals was

77.6 meters (IQR 42.0 to 126.1m) . All unvaccinated households were within 826.4m

at some point in the study and no household was closer to shedding in another village

than in their own (Figure 4.2).

The vaccinated children provided 1,237 samples, of which 342 (27.6%) were positive.

There were 108 vaccinated children who shed OPV at any point in the study.

Shedding began quickly and between-household transmission occurred on the first

study day in some cases. In addition, the vaccinated children tended to shed more

consistently throughout the study, with 36 (26.3%) individuals providing four or

more positive samples and two individuals providing eight positive stool samples.

This can be seen in Figure 4.5 where the contours are present early on and are

consistent throughout the study. Unvaccinated shedding occurs early in the study

but the location of shedding is more variable over time.
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Table 4.1. Characteristics of unvaccinated individuals by coverage area

Coverage area

70% Vaccinated 30% Vaccinated 10% Vaccinated Total

Households with GPS 126 136 161 423
Vaccinated households 80 40 17 137
Unvaccinated households, n (%) 46 (36.5%) 96 (70.6%) 144 (89.4%) 286 (67.6%)

Unvaccinated participants 161 396 588 1,145
shedding, n (%)** 24 (14.9%) 32 (8.1%) 24 (4.1%) 80 (7.0%)
Age (years), median (IQR) 12.2 (4.0 to 27.0) 17.0 (4.0 to 30.2) 18.0 (4.2 to 33.0) 17.0 (4.1 to 31.0)
Female, n (%)** 98 (60.9%) 223 (56.3%) 344 (58.5%) 665 (58.1%)
Running water 142 (88.2%) 343 (86.6%) 521 (88.6%) 1,006 (87.9%)
Samples provided n 1,294 3,202 5,563 10,059
Positive samples, n (%) 30 (2.3%) 33 (1.0%) 26 (0.5%) 89 (0.9%)

Spatial characteristics
Distance to nearest vaccinated:
household, median (IQR) 41.8m (19.7 to 63.3) 71.3m (38.1 to 99.8) 99.7m (55.3 to 151.8) 77.6m (42.0 to 126.1)
shedding household 45.0m (28.5 to 69.6) 82.4m (51.7 to 130.0) 112.1m (56.1 to 160.6) 85.0m (46.0 to 145.0)
Number of vaccinated shedding
participants:
within 100 meters, median (IQR) 3 (2 to 5) 1 (1 to 2) 1 (0 to 1) 1 (0 to 2)
200m 10 (8 to 17) 5 (2 to 8) 2 (1 to 3) 3 (2 to 6)
500m 58 (43 to 62) 22 (14 to 26) 8 (4 to 10) 10 (6 to 25)
1000m 78 (77 to 78) 38 (36 to 39) 15 (14 to 16) 16 (15 to 38)

*m = Meters ** IQR = Interquartile range
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Table 4.2. Spatial characteristics comparing unvaccinated shedding with unvaccinated non-shedding individuals

Distance to nearest vaccinated (meters) Number of vaccinated shedding households within:
Unvaccinated N Household Shedding Household 100m 200m 500m 1000m
70% Coverage Median (IQR)
Positive 24 42.5 (19.7, 69.6) 44.9 (28.7, 69.6) 2.5 (2, 5) 10 (7, 19) 54 (43, 61) 78 (77, 79)
No Shedding 137 41.8 (18.5, 57.7) 45 (27.5, 71) 3 (2, 5) 10 (8, 16) 58 (43, 62) 78 (77, 78)
30% Coverage
Positive 32 78.8 (53.6, 99.5) 83.5 (63.7, 124.1) 1 (1, 2) 6 (1.8, 8) 22.5 (16, 25.2) 38 (37, 39)
No Shedding 364 71.3 (37.9, 99.8) 82.4 (51.7, 130) 1 (1, 2) 5 (2, 8) 22 (13.8, 26) 38 (36, 39)
10% Coverage
Positive 24 115.7 (56.1, 209.4) 115.7 (57, 211.8) 0.5 (0, 1) 2 (0, 3) 6 (3.8, 10) 15 (12.2, 15)
No Shedding 564 99.7 (55.3, 150.2) 112.1 (56.1, 160.1) 1 (0, 1) 2 (1, 3) 8 (4, 10) 15 (14, 16)
*m = Meters, IQR = Interquartile range
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4.6.2. Spatial variables

The median distance to vaccinated shedding during the first 28 days was 85.0m

(46.0 to 145.0m). The median distance at a given time point varied over the study

period+ ranging from 126.1m on study day 4 to 1,626.3m on study day 71 when

there were very few cases of vaccinated shedding (Figure 4.3). The median number

of shedding individuals within 200 meters was 3 (2 to 6), further distances are shown

in Table 4.1. There were no discernible patterns for proximity after stratifying by

outcome and locality, these summary measures are presented in Table 4.2.

Figure 4.2. Distance from nearest vaccinated shedding household for unvaccinated
individualsDistance from nearest vaccinated shedding household for unvaccinated individuals
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Figure 4.3. Median distance from vaccinated shedding over time
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Figure 4.5. Spatial mapping of OPV transmission shedding over time
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4.6.3. Models

After adjusting for age, gender, and running water there was very little suggestion

(Odds Ratio [OR] 1.15 (95% Credible Interval [CrI] 0.86 to 1.46)) of an association

between distance (per 100m) from vaccinated shedding and odds of shedding for

unvaccinated individuals. This was consistent when considering non-linear effects

of distance. Incorporating time into the analysis with an autoregressive lag of one

resulted in comparable results with an OR 1.04 (CrI 0.92 to 1.16). There was also no

indication that density of vaccinated shedding within 200m of an individual affects

their odds of shedding with OR 0.99 (CrI 0.95 to 1.04). When including time, there

was some suggestion that the number of shedding vaccinated individuals within

200m may have some effect on unvaccinated shedding with OR 0.93 (CrI 0.84 to

1.01). Results for other distances are displayed in Table 4.3. Restricting the analysis

time to 14 days instead of 28 gave consistent results.

Table 4.3. Model considering effects of spatial variables on unvaccinated shedding

Aggregated over time Including Time
Distance to nearest vaccinated: OR (95% CrI)*
Household, per 100 meters 1.15 (0.86,1.45)
shedding household, per 100m 1.15 (0.86,1.46) 1.04 (0.92,1.16)
Number of vaccinated shedding:
100m 1.00 (0.87,1.13) 1.02 (0.82,1.21)
200m 0.99 (0.95,1.04) 0.93 (0.84,1.01)
500m 0.99 (0.98,1.01) 0.98 (0.96,1.01)
1000m 1.0 (0.97,1.03) 1.0 (0.98,1.02)
*Odds Ratio, 95% Credible Interval
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4.7. Discussion

Through visualisation of transmission onto maps we were able to determine the dy-

namics of geospatial OPV transmission in a community with primary IPV-induced

immunity. We found that shedding due to the introduction of OPV occurred rapidly,

and was associated with between-household transmission on the first day of OPV

vaccination. We found little evidence to suggest that living nearer to a household

with a person who is shedding OPV affected the likelihood of shedding OPV up to

the village dimensions of 850m. Indeed, there were no statistical differences in OPV

acquisition among unvaccinated individuals based on distance from vaccinated indi-

viduals. In addition, the threshold for OPV dispersion appeared to be low; between

household transmission in the 10% and 70% vaccination coverage communities were

similar. Therefore, only a small amount OPV appeared to be needed for community

transmission of OPV. This raises important implications about the impact of using

OPV in future outbreaks and vaccination campaigns, especially as the transmission

of OPV would usually be undetected, at least in highly vaccinated communities.

There are several strengths of this study. First, the study includes a large amount

of individual level data with multiple observations per person. To the authors’

knowledge previous spatial analyses have only been conducted at an aggregated

level on WT polio, where the detection of cases was not through stool samples.

As no other children were vaccinated with OPV in these communities until May

2015, we know the precise sources of OPV in these communities during the study

period, giving us insight into what happens when OPV is administered at one time.

Second, we were also able to consider variation of coverage as 10%, 30%, and 70%

vaccinated cover of children was performed in three separate villages. Third, as one

of the requirements of the study was that all vaccinated children had up-to-date

IPV vaccinations, this mimics the transmission environment in future settings, as

the Polio Endgame requires at least 1 dose of IPV in routine immunization schedules

globally [2].
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Using household location to represent a person’s location is at best an imprecise av-

erage of their movement throughout the study. Furthermore, it necessitates grouping

people who live together to the same location. Information from contact tracing may

have been useful to measure proximity of individuals, but might not be available in

practice. It seems clear that transmission of polio is not purely spatial and when

only household location is available it appears to have limited ability to predict

transmission.

We tried to minimise misclassification of within-household transmission as between-

household transmission by only using vaccinated individuals as point sources and

unvaccinated households in the analyses. We excluded individuals who were unvac-

cinated and living with vaccinated individuals. Misclassification cannot be removed

entirely due to the propagation of between- and within- household transmission. We

also attempted to reduce the number of false positives for stool samples by using a

two-step laboratory process to identify OPV by RT-QPCR described in more detail

in the methods section, however, it is likely that there were small numbers of false

negative and false positive samples. However, given the large number of individuals

and stool samples collected, it is unlikely that small number of incorrectly identified

samples would have affected the conclusions of this paper.

Our results show vaccinated children shedding as early as day 1 post-vaccination.

This result is supported by prior OPV trials, where most vaccinated children shed

within one week of vaccination [18–20]. That OPV can be transmitted to the con-

tacts of vaccinated children has also been well-documented in these trials. Low

levels of transmission also occurs as quickly as one week after vaccination as shown

by transmissibility trials from the 1960s, results which are corroborated by more

recent work in Zimbabwe looking at HIV-infected mothers with OPV-vaccinated

children [18–21]. However, these studies collected samples on a weekly basis. Our

samples were collected with more granularity and show that inter-household trans-

mission occurred within one day of vaccination, even in the community with 10%
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OPV coverage.

Household locations and spatial distribution appear to have limited use in predict-

ing the transmission of poliovirus shedding. Therefore, in order to understand how

OPV shedding occurs within a community alternative information such as contact

patterns should be analyzed. The mechanism for predicting shedding is not well

understand, including the role of number of prior IPV and OPV doses after vacci-

nation.

The use of live poliovirus vaccine results in rapid dispersion and persistent trans-

mission of polio virus throughout a community up to at least 71 days. The only

way to avoid this is to not use OPV or to have strong controls such as quarantine,

or strict hygiene protocols around the vaccinee. At present, what we observe in this

study would not be detected through any clinical screening since all transmission

was asymptomatic and detected by analysis of prospectively collected stool samples.

Therefore, better methods such as collection and analysis of sewage samples are crit-

ically needed to ensure shedding has stopped within a community. Without this any

conclusions about the eradication of circulating polioviruses are at best overconfi-

dent. These results further support The Polo Eradication and Endgame Strategic

Plan 2013-2018 to withdraw all OPV vaccines by 2020 [2]. After withdrawal of OPV

worldwide reintroduction of OPV due to an outbreak should be carefully considered

as it appears a small amount of the vaccine may result in community transmission.
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5.1. Overview

The previous chapter involved an applied spatial analysis of a household cluster

randomised trial (CRT). In this chapter, I apply spatial methods to a geographical

CRT where the clusters are polygons, and the observations are points. The data is

from the earliest example found in the systematic review from chapter 3. I conduct

a spatial reanalysis of the effect of insecticide-treated bed nets, applying a range

of spatial methods. This chapter also includes the first application of the cluster

reallocation method which is further detailed in chapter 8. This paper is yet to

submitted to a journal.

Objective

3. Apply and assess a range of appropriate modern spatial methods to existing

CRT data, in order to analyse the effect of spatial autocorrelation and spatial

spillover effects on CRT results.

5.2. Role of candidate

I conceived of and conducted the statistical analysis with the exception of the boot-

strapping which was conducted by Lea Multerer (LM). Fred Binka and Thomas A

Smith (TS) provided permission to use and access to the data. I drafted the initial

paper with feedback, input, and critique provided from LM, TS, Daniel Lewis, W

John Edmunds, and Neal Alexander. I developed the cluster reallocation method

that is applied in this chapter.
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5.3. Abstract

Background

Insecticide-treated nets (ITN) have been proven to be an effective intervention,

reducing the risk of mortality and the burden of malaria. In addition to the direct

effect, there is evidence for positive spillovers, or spatial indirect effects. Spatial

analyses in cluster randomised trials (CRTs) are rare, but a large scale CRT from

1993 was one of the first to conduct a spatial analysis of ITNs in CRTs. We revisit

this data to apply a broader range of spatial methods to further explore spatial

spillover, and demonstrate the extra utility that spatial methods can provide for

CRTs.

Methods

We conducted three broad sets of analyses: (1) Exploratory spatial analysis, con-

sidering spatial dependence, heterogeneity, and spillover in the data; (2) Spatial

modelling of the intervention effect, to estimate the true intervention effect in light

of any anticipated spatial effects; (3) Analysis of distance based spillover and inter-

action with the intervention, to characterise the functional distance over which the

spillover effect is present.

Results

There was a consistent suggestion of spatial patterns from the exploratory analysis.

Bed nets were associated with a 17% reduction in all-cause mortality for children

aged 6-59 months, and the intervention estimate remained robust when allowing

for the spatial structure of the data (standardised mortality ratio [SMR] 0.83 95%

confidence interval 0.71 to 0.98). There was strong evidence of a spatial spillover

effect, with every additional 100m a control household was from an intervention
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household (and vice versa), the SMR increased by 1.7% (SMR 1.017 95% credible

interval 1.006 to 1.026).

Conclusions

Despite evidence of a spatial spillover effect, the conclusions of the trial remain

unaffected by spatial model specifications. Use of ITNs is clearly beneficial for

individuals and there is compelling evidence that they provide an indirect benefit

to individuals living nearby. This paper demonstrates the extra utility that spatial

methods can provide when analysing a CRT.

111



Paper C: Spatial effects of permethrin-impregnated bed nets

5.4. Background

A series of cluster randomised trials (CRTs) carried out two decades ago in en-

demic areas in Africa demonstrated strong evidence that insecticide treated bed

nets (ITNs) can reduce child mortality [1–5]. For instance, a large-scale CRT of

ITNs in the Kassena-Nankana (Navrongo) district of northern Ghana found a 17%

reduction in all-cause child mortality in children aged 6 months to 4 years (stan-

dardised mortality ratio [SMR] 0.83 95% confidence interval [CI] 0.69 to 1.00) [3].

This study began in July 1993 and provided 31,000 ITNs to intervention partici-

pants in 48 geographically defined polygon clusters. A meta-analysis of all the trials

estimated an average reduction in all-cause mortality of 18% (risk ratio [RR] 0.82

95% CI 0.76 to 0.89) [6].

In addition to the direct effect, there is evidence for positive spillovers, or spatial

indirect effects [6–8]. Using the data of the Navrongo CRT, a subsequent study

by Binka et al. found decreases in mortality among individuals without ITNs who

happened to live close to ones who did [9]. This study was the earliest example

found in a recent systematic review of spatial analyses in CRTs [10]. The ‘positive

spillover’ is evidence of a spatial indirect effect of the bed net intervention, in addition

to the direct effect, that ITNs reduce mortality for those using them. Binka et al.

used the locations of households to gain further value from the trial data allowing

exploration of spatial indirect effects. Subsequent analyses have also demonstrated

positive spillover with ITNs [5, 7, 8, 11, 12] although at least one study failed to

find evidence of spatial indirect effects [13].

The approach to estimating the spatial indirect effect used by Binka et al. [9] was

novel at the time, but in subsequent years, the emergence of a subdisciplinary fo-

cus on spatial epidemiology has led to a broader range of applicable methods [14,

15]. The specification of new spatial models, particularly in light of the contin-

ued growth of computational capacity, and refinement of optimisation methods has

made advanced spatial regression approaches tractable. In this paper, we revisit the
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Kassena-Nankana CRT using contemporary spatial methods to: explore the exis-

tence of positive spillovers; estimate the spatial indirect effects; and, consider their

impact, if any, on the overall trial conclusions.

To the authors’ knowledge, this paper provides the first time that many of these

methods have been applied to a CRT. In addition, we propose a new method called

cluster reallocation which allows trialists to consider if spatial spillover is present in

a CRT. As well as demonstrating the application of contemporary spatial methods,

this enhanced and extended reanalysis demonstrates the additional utility of collect-

ing GPS coordinates during trials. We argue that beyond being a useful resource

for trial management, or for mapping trial context, an explicit analysis of loca-

tion can yield important additional information about the functioning of particular

interventions in CRTs.

5.5. Methods

Study

The trial was conducted between July 1993 and June 1995 in the Kassena-Nankana

district in the Upper East Region of Ghana. The study design has been described

previously [3]. In short, a parallel CRT with 96 geographically contiguous clusters

(Figure 5.1) with an average of roughly 1400 persons per cluster, and an average of

124 households per cluster.. The intervention of permethrin-impregnated bed nets

was allocated to 48 clusters and the outcome was all-cause mortality in children

aged 6 months to 4 years.

Data

The data contains one record per household, with variables for the location coor-

dinates (Westings and Northings projected in WGS 84 / UTM zone 30N), and the
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observed and expected number of deaths per household. As per Binka et al. [9] “The

expected number of deaths for each cluster was calculated by applying age-specific

death rates derived from preintervention population to the postintervention time

at risk.” The distance from intervention households to the nearest control and vice

versa, referred to as the distance to discordant pair, had been calculated previously

[9]. These distances were verified by calculating Euclidean distance based on the

UTM coordinates in QGIS 2.18.14 [16] and R 3.4.2 [17]. The outcome is a SMR and

was calculated by dividing the observed deaths in each household by the expected

number of deaths.

Statistical Analyses

We conducted three broad sets of analyses: (1) Exploratory spatial analysis, con-

sidering spatial dependence, heterogeneity, and spillover in the data; (2) Spatial

modelling of the intervention effect, to estimate the true intervention effect in light

of any anticipated spatial effects; (3) Analysis of distance based spillover and inter-

action with the intervention, to characterise the functional distance over which the

spillover effect is present. R 3.4.2 [17] was used for all statistical analyses with the

following packages [18–31].

Exploratory spatial analysis

We explore spatial patterns in the intervention assignment through the use of a join

count statistic [32], and spatial correlation of the outcome is assessed using Moran’s

I [33]. Spatial heterogeneity of the effect of bed nets over the study region was con-

sidered through the use of geographically weighted regression (GWR) [34]. Evidence

of a spillover effect across cluster boundaries is assessed using a novel method we

developed called cluster reallocation. The spatial patterns are also assessed visually

through the use of maps. To the extent of our knowledge, with the exception of

Moran’s I, this is the first time these methods have been applied to a CRT.
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The join count statistic was calculated to assess whether there was a spatial pat-

tern in treatment assignment. The join count method assesses spatial correlation

for binary variables and involves counting all pairs of neighbouring (Queen’s case)

clusters in the trial by type of adjacency: intervention-intervention, control-control,

or intervention-control [32]. Neighbours were definined using Queen’s case where

clusters that share boundary or vertex are considered neighbours. Using a hypoth-

esis testing framework, we then assess whether the observed counts of these three

possible adjacencies in the trial deviates from the expected counts based on a ran-

dom pattern [33]. Although the allocation of intervention to clusters is based on a

random process it could still result in a non-random spatial pattern. For example,

randomisation could result in all control clusters being in one area and all interven-

tion clusters being in another area of the study. In this case, the study area could

be split into two sections, an area with only intervention cluster present and an area

with only control cluster present, this may present issue when trying to measure

spatial effects as few intervention clusters may border control clusters.

Moran’s I statistic was used to assess the presence of global spatial autocorrelation in

the SMRs at cluster level. Moran’s I is an extension of Pearson’s product-moment

correlation into two dimensions, it considers the strength of association and the

spatial lag over which it is present. The SMR was calculated for each cluster, with

a binary spatial weights matrix (Queen’s case) used to represent the connectivity

between clusters. The spatial weights matrix takes a value of one if the clusters share

a boundary or vertex, and zero otherwise. Moran’s I was calculated for the whole

study area, and for the control and intervention clusters separately. Moran’s I was

also calculated on the Pearson’s residuals from a multi-level model with a random

effect for cluster and a fixed effect for intervention. The residuals were aggregated

to cluster level, this calculates Moran’s I adjusted for the intervention effect and the

clustering.

P-values for Moran’s I were calculated using Monte Carlo simulation. This was
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achieved through a permutation test where the values for each cluster are shuf-

fled to different locations and the statistics recalculated. This process is repeated

many times and the observed value is compared to the sampling distribution of the

simulated values to test for evidence of deviation from a random spatial pattern.

Spatial heterogeneity of the intervention estimates were explored using GWR [34].

This method involves applying a regression model to a spatial subset of the data

(a neighbourhood) and then recording the coefficients of that model, a different

neighbourhood is then chosen and the model reapplied. This process is repeated over

the entire study area to give one estimate of the coefficient for each neighbourhood.

The neighbourhood is typically a radius around each point. The distribution of the

coefficients can then be explored visually on a map, helping to determine sources

of heterogeneity in the data. In situations where data are spatially heterogeneous,

GWR produces coefficient estimates that vary over space, indicating local areas of

departure from a global process. A Poisson regression model without a random

effect for cluster was used for the GWR.

To assess for the presence of spatial spillover we developed a new method called

cluster reallocation which considers how changes in the definition of cluster bound-

aries affects the intervention estimates of the trial (see chapter 8 for more details).

Cluster reallocation is a computationally intensive method that involves reallocat-

ing individuals to either the intervention or control arm based on their proximity

to cluster boundaries. At each step, a model is applied to estimate the intervention

effect. In this analysis, clusters were dilated (buffered) incrementally between 0m

(original case: no change to cluster) and 1000m in steps of 100m. The process was

carried out independently for intervention and control clusters.

At each 100m increment, households were reassigned to intervention or control clus-

ters, and the main trial model was refitted. In the absence of spillover, we hypoth-

esised that as the size of either control or intervention clusters grew, estimates of

the intervention effect should attenuate to the null as differences between the inter-
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vention and control arms are diluted. However, if alternatively, a spatial spillover is

present, then we would expect the magnitude of the intervention effect estimate to

increase over the functional distance of the spillover, as the intervention cluster is

dilated.

Modelling spatial dependence

This main result of the original trial paper [3] was replicated using a multi-level

model with a random effect (IID) for cluster and a fixed effect for the intervention.

Three approaches were considered for adjusting for spatial structure. A conditional

autoregressive model (CAR) [35–37], a Besag, Yorke and Mollie model (BYM) [38],

and a Gaussian Process model (GPm) [39, 40].

The three spatial models were chosen for the different ways they incorporate spatial

dependency. The approaches differ by whether they assume the underlying spatial

process is discrete, called a Gaussian Markov random field (GMRF), or continuous,

called a GP. A GMRF is a collection of spatially indexed random variables with

a Markov property, where all possible combinations of the random variables are

multivariate normally distributed (MVN) [41]. GMRFs are commonly used when

data is recorded for distinct areas covering an entire region, such as clusters in a

CRT. A GP assumes that the spatial process is MVN typically with a mean of zero

and a covariance function that incorporates distance, therefore, changes in outcome

due to the spatial process are a function of distance. GPs are commonly used when

data is recorded for some points in an area and information is missing in other

locations, such as households in a CRT [42]. In classical spatial statistics, GMRFs

refers to areal data and GPs to geostatistical models [15, 36].

The CAR and BYM models incorporate spatial structure at cluster level. Fitting

a CAR model to the data requires the aggregation of households to clusters as

the model is restricted to only one observations per spatial area. In contrast, the

BYM model can be fitted to the individual (household) level data. The CAR model
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includes a spatially structured random effect for the clusters. The BYM model

extends the CAR model to include an additional independent random effect and

relaxes the link between one observations per cluster. The spatially structured

random effect relaxes the assumption of independence between clusters, and allows

clusters that are adjacent to share information. A binary spatial weights matrix

(Queens’s case) was used where clusters that share a common boundary or vertex

are considered to be adjacent. The BYM model effectively reproduces the standard

approach to analysing a CRT, but with an additional spatial effect at the cluster

level.

The GPm incorporates spatial structure at an individual (here: household) level.

GPms tend to have dense spatial matrices which makes computation difficult. For-

tunately a link between the continuously indexed Gaussian process (GP) and the

discrete indexed GMRFs has been proposed which uses stochastic partial differen-

tial equations (SPDE) [43]. In short, Lindgren et al. demonstrate that a Matérn

covariance model (A GP with a constant mean, and Matérn covariance) is a solu-

tion to an SPDE [43]. They show that approximating an area with a finite number

of triangles or a ‘mesh’, allows the solution of the SPDE to be represented as the

weighted sum of the vertices of the ‘mesh’. Then assuming a Markov property on

the mesh, it can be modelled as a GMRF. The GP is a solution of an SPDE, and

the SPDE can be approximately solved by using a GMRF. Thus, the GP can be

modelled using GMRF methods through the use of the mesh. The choice of mesh is

a trade-off between how accurately the area can be represented and computational

costs. Further adjustments can be made so that the mesh is finer in locations with

data and less fine where there is less data (or information). Further details of the

SPDE approach are described by Simpson et al. and Blangiardo et al. [44, 45].

The four models in this section were fitted using integrated nested Laplace approxi-

mation (INLA), using noninformative priors [21]. INLA is a deterministic algorithm

which has proven to be capable of providing fast and reliable results for a wide range
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of models [45, 46]. INLA was well suited to this analysis due to the complexity of

the model types and the size of data when accounting for spatial structure (12,000

observations giving a spatial weights matrix with 144 million elements). Once fitted

the posterior distributions of all models were sampled and the mean and 95% cred-

ible intervals (CrI) calculated. Further details of the models and spatial modeling

is provided in Appendix C.

Spillover effect and interaction

A frequentist approach was used for exploring spillover and interaction as this is

more commonly used in analysis of CRTs [47]. Evidence for positive spillover is

assessed directly, by including distance to discordant pair as a variable in the IID

model. The form of the distance variable was explored further to account for non-

linearity by using quadratic terms. In geographic literature, this form of variable is

often referred to as ‘distance decay’ [48].

Effect modification of the intervention effect by distance to discordant pair was

assessed by including distance as a continuous variable using the IID model with

an interaction term. For ease of interpretation an interaction term with a binary

distance variable (threshold 400m). The distance of 400m was chosen as the spillover

effect appears to attenuate at this distance based on the exploratory spatial analyses.

Robustness to distributional assumptions for the spillover effect was assessed using

bootstrapping [49, 50]. The opinion in the literature about how to bootstrap from

hierarchical data (clusters and households) diverges [51]. The simplest approach is

to ignore the hierarchy and just select bootstrap samples from the households. This

might lead to an unbalanced design, but in this data set, the number of households

per cluster is varying anyway. We checked whether results differ when we just

resample on the cluster level (each cluster then keeps the same amount of households,

but there is less variation). The results were the marginally different and we therefore

chose the simpler approach. We calculated 1000 bootstrap samples, and running the
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simulations for 100 samples gave consistent results, suggesting that 1000 iterations is

adequate. These were were performed at sciCORE scientific computing core facility,

University of Basel (http://scicore.unibas.ch/).

Distance to discordant household was also fitted for the BYM and GP models (using

INLA and therefore Bayesian inference) to see if accounting for spatial structure

affected the estimate of the spillover effect of the intervention.

5.6. Results

General characteristics

Over the course of the trial there were 861 deaths, resulting in an SMR of 1.24. The

SMR in the control arm was 1.37 and was 0.24 units higher than in the intervention

arm (SMR 1.12). The median distance to nearest discordant household was 805m

(interquartile range [IQR] 311 to 1,106m). The median distance to nearest bed net

for control households was 788m (IQR 305m to 1010m). Just over 50 percent of

control households were within 600m of their nearest intervention household. The

main trial results and a spatial analysis have been presented previously [3, 9].

Exploratory spatial analysis

There was no suggestion of a spatial pattern for the allocation of treatment for either

the intervention or the control, as can be seen in Table 5.1 (join count statistic).

There was strong evidence (p < 0.001) to suggest a spatial pattern for the SMR

aggregated at cluster level. This pattern was consistent when only considering the

control clusters, and when tested on residuals after adjusting for intervention, but

was no longer apparent when only the intervention clusters were tested.

The IQR for the GWR intervention estimate ranged from 0.77 to 1.09 suggesting

some spatial heterogeneity. and that there are areas where the intervention estimate
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is greater than one. Figure 5.1, presents maps of the intervention assignment, spatial

distribution of SMR at cluster level, and the intervention estimates from GWR.

There is no obvious pattern, with the effect of bed nets appearing unrelated to

whether surrounding areas have high and low mortality ratios, or the density of

intervention clusters nearby.

Table 5.1. Summary of analyses of spatial patterns of dependence, heterogeneity,
and spillover

Method Test Statistic P-value  

Spatial correlation of intervention allocation  

    Join Count – Control 10.105 0.979 

    Join Count – Intervention 11.282 0.744 

Spatial correlation of SMR  

    Moran’s I – entire study area 0.237 <0.001 

    Moran’s I – control 0.396 <0.001 

    Moran’s I – intervention 0.095 0.176 

    Moran’s I – residuals 0.134 0.0198 

Spatial heterogeneity of intervention SMR 

    GWR – Median (IQR)  0.94 (0.77 to 1.09) 

Impact of spillover on intervention effect* SMR 

Cluster reallocation method   

    Original cluster definition  0.827 

    Controls cluster larger – Mean (Min, Max) 0.885 (0.855 to 0.916) 

    Intervention clusters larger – Mean (Min, Max) 0.781 (0.742 to 0.827) 

GWR = Geographically weighted regression  

SMR = Standardised mortality ratio  

*This summary represent the mean of the intervention estimates that derive from increasing either the 
control or intervention cluster boundaries based on the cluster reallocation method 
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Figure 5.1. Study area, spatial variation of SMR, and spatial heterogeneity of
intervention effect from GWR model.
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The cluster reallocation method provides a strong suggestion of a spillover effect from

intervention clusters towards control clusters. Expanding the intervention cluster

boundary resulted in stronger (bed nets more effective) intervention estimates com-

pared to the original cluster definitions up to around 400m (Figure 5.2). This is

consistent with individuals within 400m of the intervention receiving an indirect

benefit due to proximity. Expanding the control cluster attenuated the effect es-

timate to the null. This is consistent with an absence of spillover from control to

intervention as with each increase in buffer the newly defined intervention and con-

trol arms contain more similar participants. Past 500m the number of participants

in each arm becomes very unbalanced and the point estimates from these models

should be treated with caution (Figure 5.2 lower graph). However, even when the

buffering was at 1000m, the smaller arm still had greater than 1,000 observations,

which is reflected in the consistent size of the confidence intervals.

Analysis of the spatial autocorrelation of cluster level SMRs, the heterogeneity in

the intervention estimate over space, and the behaviour of the intervention estimate

under cluster dilution are all suggestive of a spatial spillover effect from the inter-

vention to the control clusters. Further, this effect is unlikely to be an artefact of
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the initial intervention allocation to the clusters, as there is no evidence of a spatial

pattern in the cluster allocation.

Figure 5.2. The change in effect estimate calculated by cluster reallocation of
intervention participants to the control arm and vice versa.
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Bed nets were associated with a 17% reduction in all-cause mortality for children

aged 6-59 months. For the CAR and BYM models, adjusting for cluster-level spa-

tial effects made negligible difference to estimated effects, and no difference to the

conclusions of the trial . The GPm model also resulted in near identical estimates
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to that of the non-spatial model (Table 5.2).

Adjusting for distance to discordant pair did not greatly influence the estimate of

the intervention effect and this was consistent even when taking account of spatial

structure of the trial using the BYM and GP approaches.

Table 5.2. Estimate of intervention effect by spatial model type

Model  
SMR (95% CrI) of 
Intervention* 

Description 

IID  0.83 (0.71 to 0.98) 
Multi-level model with independent random effect for 
cluster 

CAR 0.84 (0.72 to 0.98) Conditional Autoregressive model 
BYM 0.84 (0.72 to 0.98) Besag ,Yorke and Mollie model 

GPm 0.83 (0.70 to 0.97) 
Gaussian process model fitted using Stochastic Partial 
differential equation approach 

IID + Discordant distance 0.82 (0.70 to 0.95) 
Distance to discordant pair included in the model 
 

BYM + Discordant distance 0.84 (0.72 to 0.98) 
GPm + Discordant distance 0.82 (0.70 to 0.96) 

*CrI = Credible interval 

Spillover effect and interaction

Distance to discordant pair was strongly associated with child mortality (p = 0.005),

for every additional 100m a control household was from an intervention household

(and vice versa), the mortality increased by 1.7% (SMR 1.017 95% CI 1.006 to

1.026). The result was consistent when adjusting for spatial structure, and was

robust to distributional assumptions with a bootstrapped estimate of 1.014 (95 %

CI 1.007 to 1.027) [Table 5.3].

There was no statistical evidence (p = 0.214) for effect modification between the

distance to discordant pair and use of bed nets. However, the study was not powered

to test for interaction, and thus likely has low power [52]. Contrastingly, to the

statistical evidence, the stratum specific SMRs were suggestive of interaction.

Distance from bed net households was associated with reduced mortality, but dis-

tance from control household was not. Treating distance to discordant pair as binary

(threshold of 400m), suggests that use of bed nets does not reduce mortality for in-

dividuals living within 400m of bed net households but does reduce mortality for
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those living further than 400m away (Table 5.3). These results are consistent to

what was found in the original and spatial analysis of the Binka et al. trial [3, 9].

Table 5.3. Spillover effect of distance to discordant pair presented by model type
and interaction of distance with bed net intervention.

Variable Model SMR (95% CrI) 

Distance to discordant pair 
(per 100 meters) 
 

IID 1.017 (1.006 to 1.026) 
BYM 1.012 (1.004 to 1.020) 
GP 1.018 (1.005 to 1.029) 
Bootstrapped Model (95% CI) 1.014 (1.007 to 1.027) 

   
Stratum specific SMRs (Global test for interaction p = 0.214) SMR (95% CI) 
Distance to discordant 
pair 

Intervention  

    400m or nearer 
    No bed nets 1.00 
    Bed nets 0.95 (0.71 to 1.25) 

    Further than 400m 
    No bed nets 1.00 
    Bed nets 0.78 (0.64 to 0.95) 

Intervention Distance to discordant pair  

    Bed nets 
    400m or nearer 1.00 
    Further than 400m 1.11 (0.88 to 1.38) 

    No bed nets 
    400m or nearer 1.00 
    Further than 400m 1.34 (1.08 to 1.67) 

CI = Confidence Interval CrI = Credible Interval 

 

5.7. Discussion

We examined the existence of spatial spillovers and the impact of spatial effects

on the overall trial conclusions in a CRT of ITNs. Multiple approaches strongly

suggest evidence of a positive spatial spillover effect due to being near households

who use bed nets. Allowing for detailed spatial correlations and spillover effects did

not change the primary conclusions of the trial [3].

Our analysis suggests, for every additional 100m a control household was from an

intervention household (and vice versa), the standardised child mortality ratio in-

creased by 1.7% (SMR 1.017 95% CrI 1.006 to 1.026). Bed nets were associated with

a 17% reduction in all-cause mortality for children aged 6-59 months (SMR 0.83 95%

CI0.71 to 0.98). This effect estimate remained robust to models with different spa-

tial specifications and raises the question of whether standard CRT analyses are

always robust to spatial spillover effects. This trial was over a large study area, with

large clusters, meaning that spillover effects may need to be substantial in order
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to impact the study results. An alternative explanation is that the spatial models

were also subject to the same biases as the standard CRT model. Spatial effects of

different strengths and distances could be tested through simulation studies to test

the impact on CRT results.

Although there was no statistical evidence of interaction (p=0.214), the stratum

specific effects suggest that distance from bed net households affects mortality, but

distance from control households does not. Furthermore, it suggests that the use

of bed nets was more effective when comparing individuals more than 400m apart.

This interaction effect is plausible and assessment of interaction between distance

from bed nets and use of bed nets should be assessed in other ITN CRTs.

We were surprised at the strength of the spillover effect, and used bootstrapping

to test robustness to distributional assumptions of the model obtaining consistent

results (SMR 1.014 95% CI 1.007 to 1.027). The spillover effect could be explained

due to reduced populations of mosquitoes in areas near to ITNs and is consistent with

‘mass killing’ effects, found previously [7, 12]. Adjusting for distance to discordant

household had negligible impact on the main trial result.

The are several limitations of this analysis, the data was aggregated at household

level, which may have resulted in potential loss of information. However the results

were consistent with an individual level analysis and any spatial analyses would

require aggregating the spatial information at a household level. There were also

gaps between some of the clusters where no spatial data was collected, which may

have affected results.

A further weakness is the use of household coordinates to represent the spatial

structure or mechanism of the spillover. Household location is at best one of the

many locations that an individual visits during the study period. This results in

omission of many of the spatial locations related to the participants. This is probably

of minimal impact in the context of mosquitoes and ITNs where transmission is likely

to happen at night when at home. Despite this, the value of household location in
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other contexts should be considered. In future, the possibility of tracking movement

of people or mosquitoes may provide improved insights into the mechanism behind

spatial spillover effects.

These analyses demonstrate that collection of GPS data allows exploration of in-

tervention mechanisms beyond the creation of maps. Our analyses only required

GPS coordinates and did not require any new data collection. This approach could

be used to reanalyse previous geographical CRTs that collected coordinates, thus

gaining extra utility from previously collected data. We explored a range of spatial

methods allowing for comparison of different spatial methods and the conclusions of

our analysis remained consistent with the original analyses conducted in the 1990s.

These analyses add to the ever expanding literature on the spatial indirect effects

of ITNs on mosquitoes and spatial analyses of CRTs [6, 10].

In summary, despite evidence of a spatial spillover effect, the conclusions of the trial

remain unaffected to spatial model specifications. Use of ITNs is clearly beneficial

for individuals and there is compelling evidence that they provide an indirect ben-

efit to individuals living nearby. Although this paper demonstrates robustness of

CRT analyses to spatial effects, this is just one scenario, where the clusters may be

large compared to the spillover. Simulation studies could be used to evaluate the

robustness of intervention estimates in CRTs for differing distances and strengths of

spatial effects.

5.8. Extended discussion of applied spatial methods

This section is an extended discussion of the spatial methods used in the paper and

their utility in spatial analysis. This section will be omitted from the submitted

paper, as it is of greater methodological focus, but is of relevance to the thesis.

This chapter has applied several spatial methods to examine the existence of spatial

spillovers, and the impact of spatial effects, on the conclusions in a CRT of insecticide
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treated nets (ITNs). The analyses were split into 3 parts: (1) Exploratory spatial

analysis, considering spatial dependence, heterogeneity, and spillover in the data; (2)

spatial modelling of the intervention effect, to estimate the true intervention effect

in light of any anticipated spatial effects; (3) Analysis of distance based spillover

and interaction with the intervention, to characterise the functional distance over

which the spillover effect is present.

5.8.1. Exploratory spatial analysis

The join-count statistic was used to test for a spatial pattern in the randomised

allocation of the clusters. Although the process of assignment is random, it could

still result in spatial patterns. This method does not appear to have great utility

in the analysis of CRTs. It could perhaps be used for restricted randomisation, to

prevent the trial from ending up with effectively one large control, and one large

intervention cluster.

Moran’s I was used to assess for presence of spatial correlation in the SMR at a

cluster level. It resulted in strong evidence of spatial correlation for the overall study

area, the control clusters, and the residuals of a model adjusting for intervention.

When only the intervention clusters were considered there was no evidence of spatial

correlation. This method appears useful, especially when considering an intervention

that interrupts transmission. In this case, the absence of spatial correlation, may

be reflective of an intervention working.

GWR was used to explore spatial heterogeneity. This method resulted in a strong

suggestion of a spatial pattern, with some areas having a harmful intervention es-

timate, and others areas a beneficial effect estimate. GWR could be used in future

trials to explore for patterns, and may help to identify spatial interaction of the

intervention. GWR may help identify situations where areas with low prevalence

are less affected by the intervention. The results from GWR appear most useful

when presented with a fuller picture of spatial features of a CRT. In this chapter

128



Paper C: Spatial effects of permethrin-impregnated bed nets

the intervention status, and the SMR in each cluster were presented alongside the

GWR intervention estimates. There was no clear relation between the three plots,

which suggests that other characteristics may be driving the spatial patterns.

Cluster reallocation was also applied in this paper, details of the method will be

explained later in chapter 8. The method was suggestive of a spillover effect from

intervention to control cluster. The estimate of uncertainty changed only slightly

depending on the buffer size, and this is most likely attributed to the sample size of

the study. The utility of this method beyond this application is hard to assess from

this chapter alone, and will be left for chapter 8.

5.8.2. Modelling spatial dependence

Although the CAR, BYM, and GPm models were chosen because they differ in the

level at which they model the spatial effects there was very little difference to the

intervention estimate of all three models. Furthermore, the intervention estimates

were near identical to the non-spatial model. It is therefore difficult to assess how

appropriate these methods are for analysis of CRTs, and instead raises questions on

the robustness of the IID model in the presence of spatial effects. The BYM and

the GPm models will be tested under simulated conditions in chapter 7.

Spillover effect and interaction

In this study distance to discordant pair was fitted into a model to test for spillover.

Although the variable was strongly suggestive of a spillover effect, distance to discor-

dant pair represents the distance from intervention to control, and from the control

to intervention. Therefore, this variable assumes spillover from both sides of cluster

boundaries. Based on the analyses in this chapter, and the plausible mechanism of

spillover, it is likely a positive spillover effect. This suggests that the association of

distance to discordant pair with mortality is driven by the control observations dis-
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tance from intervention. Exploring interaction was consistent with this as distance

from control household was not associated with mortality. The spatial variable

approach was useful in confirming the presence of spatial spillover, and using an

interaction helped to further explore the mechanism of the intervention.

In conclusion, the spatial methods have provided extra utility beyond a typical CRT

analysis. The range of methods applied here could be used in other contexts, and

might help to better understand the different processes that occur during a CRT.
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6. Simulating spatial effects in

cluster randomised trials

6.1. Overview

The previous two chapters involved applied spatial analyses of cluster randomised

trials (CRTs), and explored different types of spatial methods that could be used

in a CRT context. Despite a strong suggestion of spatial spillover, the intervention

estimate in chapter 5 remained robust to spatial model specifications. In this chap-

ter, I provide the foundations for testing the robustness of intervention estimates

to spatial effects. Algorithms are proposed for simulating spatial effects in CRTs,

and they are examined in a simplified CRT with only two clusters. This chapter

describes in detail, the algorithms used to simulate data in subsequent chapters.

Relevant objective

5. Evaluate the impact of spatial effects and the utility of spatial models in the

analysis of a CRT by means of a simulation approach.
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6.2. Introduction

To evaluate the impact that spatial effects can have in cluster randomised trials

(CRTs), a mechanism for simulating these effects must be chosen. Spatial effects,

are effects stemming from locational variation in the distribution of phenomena of

interest, or in the intensity of interaction between phenomena of interest. There

are various approaches to simulating spatial effects and it appears that no standard

way exists. Although there is guidance for simulation studies in general [1, 2], in

my experience, often the steps of the process are not transparent, and more focus is

given to the modelling process under evaluation as opposed to the data generating

mechanism. Therefore, it was considered important to provide detailed steps of the

algorithms used for the simulating spatial effects.

This chapter explores several ways of simulating spatial effects in CRTs, and includes

special considerations needed in this context. I describe an approach to create

spatially indexed CRT data, alongside a general algorithm that can be used for

simulating a non-spatial (or spatial) outcome for a CRT. Algorithms are provided

to create spatial spillover and spatially correlated effects.

The algorithms proposed are evaluated in a simplified simulated scenario with only

two clusters. This helps to assess whether the spatial spillover effects results in

spatial correlation, and whether the spatial correlation methods result in spillover

effects across boundaries. Using a simplified setting also helps to explore differences

between the spatial effects without the added complexity of having many clusters

and observations.

The aim of this chapter is to provide step by step details and give a clear explanation

of the algorithms used for simulations in subsequent chapters. Furthermore, this

chapter helps to gain insight and understanding that may help explain the results

of more complex simulation studies.

138



Simulating spatial effects in CRTs

6.3. Creating spatial CRT data

Simulating spatial effects requires data with location information. One approach to

create such data, involves simulating random numbers that correspond to coordi-

nates; this method is easy to use for simulating point data but is more difficult for

creating polygons. An alternative approach, is to assign values to the locations of

existing spatial data.This process is require less work to create polygon data, as it

uses an already existing structure. Additionally using an admin area has the ad-

vantage that it could actually be used for a real CRT. As CRT can have two spatial

levels, a combination of randomly generated or existing locations could be used.

In a CRT, if real point or randomly generated point data is created first, then a

further process is needed to form the clusters. Silkey et al. simulate random point

locations inside a 9x9km grid, and then split the grid into 81 equal-area clusters [3].

This method creates a CRT with square clusters, with every cluster having the same

shape. Using a regular shaped grid is useful for simulations but possibly does not

represent a realistic trial structure. An alternative approach used by Baylis et al.

where clusters are built by using a k-nearest neighbours approach [4]. For example,

select several of the simulated locations, then calculate their nearest neighbours

and assign them to the same cluster. This process can be repeated until everyone

is assigned to a cluster. However, this approach could result in small, or perhaps

non-contiguous clusters.

Simulations based on real spatial data have been demonstrated outside of a CRT

context. Dormann et al. used a spatial dataset on a volcano in New Zealand, and

then attached simulated values to the already existing locations [5]. Using real spa-

tial data can advantageous because it reflects an existing non-random structure, for

example actual household locations are most likely not randomly located. How-

ever, using real household locations does restrict the upper limit of the number of

observations in the simulated CRT, and the structure of the locations may lack gen-

eralisability. Using random locations may loose some realism as to the structure of
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the locations, but allows for greater control on the number of observations in the

CRT. A possible way to rectify both disadvantages could be to simulate locations

based on a road network on top of the study area, but this approach will not be

considered further, as it assume either an existing road network exists, or requires

creating one, which suffers from the same issues.

In the following simulation studies a hybrid of the existing and randomly generated

spatial will be used to create the locations for CRT data. The clusters are derived

from existing polygon data, and observations created by simulating points over the

study area assuming spatial randomness. The steps taken are outlined in Algorithm

6.1.

Algorithm 6.1 Simulating spatial data for a cluster randomised trial
INPUTS

poly existing polygon shape file

c total number of clusters in the simulated CRT

n total number of observations

1: Perform a spatial clip by selecting c polygons (clusters) from poly and removing
polygons that were not selected.

2: Simulate n point locations (observations) under the assumption of spatial ran-
domness.

3: Perform a spatial merge to link each point to the cluster it resides in.
4: Randomise the clusters to intervention or control.
5: Assign each observation to the intervention status of their cluster.

6.4. Simulating a CRT

Simulating CRT data requires a number of study characteristics to be predefined.

These are:

• Total number of participants n

• Total number of clusters c

• Number of participants per cluster m
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Let subscripts i = treatment arm (i = 0: control, i = 1: intervention), j = cluster

(j = 1, ..., c) , and k = participant (k = 1, ..., n) so that yijk represents the outcome

for the kth participant in the jth cluster in the ith treatment arm. With equal

numbers of participants in each cluster it follows, thatm (the number of participants

in a given cluster) is constant. With unequal numbers of participants per cluster

the value of m will vary based on the value of j giving mj.

The simulation approach will depend on the type of trial. Leyrat et al. provide

details of an approach to simulate CRT data for a continuous outcome. In their

paper, they consider how to analyse CRTs with a small number of clusters and

therefore choose to vary the number of clusters [6]. Baio provides examples of

simulating stepped-wedge CRTs in the documentation for the SWSamp R package

[7]. Of relevance but not directly related to CRTs, Wang and Sabo consider how to

simulate clustered and dependent binary data, and Crowther and Lambert present

methods for simulating biologically plausible survival data [8, 9].

Further to the study characteristics, values describing the participants and the study

intervention need to be decided. These are

• Between-cluster variance σ2
b

• Within-cluster variance σ2
w

• The size of the intervention effect β

• An intercept value α

The between- and within-cluster variance will affect the intra-cluster correlation

of the CRT. Leyrat et al. fix σ2
b + σ2

w = 1. The size of the intervention effect

and intercept is arbitrary but clearly a large intercept or intervention effect may

overwhelm simulated CRT structure. Algorithm 6.2 describes the process used for

simulating CRT in this thesis, it can be used to simulate CRT data for equal and

unequal numbers of participants per cluster. Although extensions for binary and

count outcomes are provided, they are not utilised in this PhD and are provided for

generality.
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Algorithm 6.2 Simulating cluster randomised trial data
INPUTS

c total number of clusters in the simulated CRT

n total number of observations

σ2
b between-cluster variance

σ2
w within-cluster variance

β intervention effect

α intercept

1: Create a cluster effect uj by simulating c random samples from a distribution
with variance σ2

b .
2: Create an individual level effect εkby simulating n random samples from a dis-

tribution with variance σ2
w. (optional if no individual level variation required).1

3: Randomise the clusters to intervention or control.
4: Create a dummy variable xi to represent whether an individual is in an inter-

vention or control cluster. Where xi =
{

1 intervention
0 control

.

5: Calculate the linear predictor ηijk = α + βxi + uj + εk.
Continuous outcome
6: Calculate the outcome yijk = ηijk

Binary outcome
6: Calculate πijk = e

ηijk

1+eηijk . This transforms the linear predictor ηijk from the
domain (−∞,∞) to the domain [0, 1] giving a probability.

7: Simulate yijk ∼ Bin(1, πijk) to give binary outcome values from a binomial
distribution.

Count outcome
6: Calculate λijk = eηijk . This transforms the linear predictor ηijk from the domain

(−∞,∞) to the domain [0,∞] giving a count.
7: Simulate yijk ∼ Pois(λijk) to give a positive integer outcome values from a

Poisson distribution.
1. Individual level variation is not needed for the binomial and count outcomes as variation stems from the final
steps of drawing from a distribution. Alternatively the continuous outcome can be drawn from N(ηijk, σ2

w), and
then generating εkis not needed.

Following this process gives an outcome value for each participant, which is the sum

of an intercept, an intervention effect, a cluster level effect, and includes individual

level variation. This process can be used to simulate CRT data for continuous,

binary, and count outcomes.

Each simulated outcome relates to a single observation that has information about
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cluster membership, intervention status, and location. To create a CRT with no

spatial effects the process above is sufficient (Algorithm 6.2). To consider how the

spatial structure or spillover effects may affect trail results requires adjusting the

linear predictor in step 5. In the next section, several ways of creating spatial and

spillover effects are proposed.

6.5. Simulating CRTs with spatial effects

There are many ways of creating spatial effects or spatial relationships [10]. Per-

haps the simplest is to assign an effect to the coordinates of the data, for instance,

where every unit increase north gives an increase in the outcome y. Silcocks et al.

use this approach to create a fixed north/south and east/west gradient covariate

in their simulation studies [11]. Alternatively, spatial effects can be created by as-

signing effects to relative distance between participants or using a spatial network

for connectivity. [3] use an SIR (Susceptible, Infected, and Recovered) model based

on spatial structure to create a spatially structured effect. Staples et al. [12] use

a similar approach to create a effects based on the contact network structures in a

CRT.

A different approach is to define a spatial weights matrix and then multiple the

Cholesky decomposition of the weights matrix with a vector to create a spatially

correlated vector. This approach can be used to create a simultaneous autoregres-

sive (SAR) spatial effect [13]. Bivand et al. how to achieve this, an a variation of

their approach is used to simulate SAR correlated values in this PhD. A similar but

slightly different approach construct random fields by inducing spatial autocorrela-

tion by enforcing a specific covariance structure to the data [14–17]. Schlather et al.

provide a further details of the random fields approach, with examples in their pa-

per describing their RandomFields package in R [18]. The approaches differ in ease

of computation, interpretability, and flexibility of the underlying mechanism they
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assume. Often the underlying mechanism is not observable, and therefore more flex-

ible complex methods may be preferred. However, simple approaches can provide

useful insights, and may be easier to interpret and understand.

The systematic review from chapter 3 found two main types of spatial analyses, a

spatial variable and a spatial modelling approach [19]. In keeping with the review the

simulated spatial effects considered in this section are categorised as spatial spillover

effects (or spatial variables), and spatially correlated effects (or spatial modelling).

Spatial spillover effects involve adding variables into the model that represent spatial

proximity. Spatially correlated effects force a covariance structure on the data based

on spatial proximity, resulting in correlation between observations that are spatially

connected.

6.5.1. Spatial spillover effects

A spatial spillover effect can be created by including an extra variable in the CRT

model as follows:

ηijk = α + βxi + uj + εk + ψdk

where ψ represents the population spillover effect. dk represents proximity to the

intervention. dk could be defined as the distance to the nearest intervention house-

hold, the number of intervention households within a certain distance, or another

form representing the mechanism of the spillover effect.

6.5.1.1. Proportion of spillover effects and distance weights

One way to think of the variable dk is as the proportion of the spillover effect for

individual k. Restricting ψ = β × πk where πk ∈ [0, 1], defines the spillover effect

as a proportion of the intervention effect β, based on proximity. Defining dk as

a proportion, allows ψ to represent the maximum amount of spillover effect. The
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spillover effect is achieved by adding ψdk to the model. This requires a function

that takes in a measure of proximity, and outputs values between zero and one.

This is possible with slight adaptations of the linear, exponential, inverse distance,

and Gaussian distance weighting functions presented previously (chapter 2). These

functions are sometimes also referred to as kernels, or covariance functions [20].

The variable dk can take three forms, binary, categorical, and continuous.

Binary and categorical: When dk is binary, it represents the observations that

are impacted by the spillover. The spillover effect ψ, is either present or absent,

and everyone affected, is affected by the same amount of spillover. For example, if

everyone within 200m of an intervention receives 50% of the interventions benefit,

and anyone past 200m does not. A binary spatial effect is simple to simulate but is

probably an unrealistic underlying mechanism. Despite this, it does provide a good

starting point for the simulations. However, binary spatial variables have been used

in the analysis of spatial data previously, where the effect of individuals within 100

meters may be compared to those further than 100 meters away [21].

When dk is categorical, it extends the binary variable to represent several levels of

homogeneous spillover effects. This approach allows different magnitudes of spillover

effects to be applied to groups of individuals, giving greater flexibility compared to

the binary spatial variable. Individuals within each category receive the same effect,

and convention would be to create an effect that decreases as the distance to exposure

increases. Categorical spatial variables have also been used in analyses previously

[22].

A categorical spillover effect is probably unrealistic. It is difficult to imagine why

a spillover effect would be constant over a certain space and then change size and

be constant over another space. When only two categories exist dk is equivalent to

the binary spillover effect. Assuming that the spillover effect has no discontinuities

then as the number of categories increase, the categorical spillover effect will tend
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to a continuous spillover effect.

Continuous and distance weights: When dk is continuous it represents the mag-

nitude of the spillover effect ψ for each observation. As dk increases, the magnitude

of the spillover effect either increases or decreases. This allows the spillover effect to

be distance decaying, where individuals close to the source of spillover are affected

more than individuals that are far away. A continuous variable could be distance to

nearest intervention observation or the number of intervention observations within

a specified distance. Moving forward, dk will be represented by distance to nearest

intervention observation. A continuous spillover effect is probably more realistic

compared to binary or categorical spillover, and a cut-off point could be used so

that any observations past a certain distance are unaffected by the spillover effect.

Linear continuous spatial variables have been used in analyses previously [23]. Algo-

rithm 6.3 describes the process used to create distance based spillover effect in this

thesis. The values created in the final steps of the algorithms can then be added to

the linear predictor in step 5 of algorithm 6.2, this will create a CRT with a spatial

spillover effect.
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Algorithm 6.3 Creating distance based spillover effects
INPUTS

distk the distance to nearest intervention observation for each control obser-
vation

distmax the maximum distance that spillover is present

π the maximum proportion of the intervention effect that the spillover
effect can take

β intervention effect

s the number of stratums (categories) ranging from (1, ..., S)

distmaxs the maximum distance that spillover exist for category s

πs the maximum proportion of the intervention effect that the spillover
effect can take for for category s where π = {π1, π2, ..., πs}.

Binary effect

1: Calculate a binary variable dk =
1 if distk < distmax

0 if distk ≥ distmax
.

2: Calculate ψ = β × π.
3: Calculate ψ × dk.
Categorical effect
1: Calculate a categorical variable where

dk =


0 if distk < distmax1

1 if distmax1 ≤ distk < distmax2

...

S if distmaxS−1 ≤ distk < distmaxS

.

2: Calculate ψs = β × πs.
3: Calculate ψs × dk.
Continuous effect
1: Calculate dk = f(distk) where f(0) = 1, where f(.) is a distance weighting

function with domain [0,∞) and range [0, 1].
2: Calculate ψ = β × π.
3: Calculate ψ × dk
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To use distance as the basis for a continuous spillover effect requires encoding dis-

tance so that observations that are closer together have larger values, and observa-

tions that are further apart have smaller values. For the purpose of these simulations

it is also important for the functions to give outputs in the range [0, 1] as spillover is

being represented as a proportion of the intervention effect. Four distance weighting

functions are given in Algorithm 6.4. These algorithms show some of the potential

forms that the variable dkcan take for a continuous spillover effect.

Algorithm 6.4 Distance weighting functions
INPUTS

distk the distance to nearest intervention observation for each control obser-
vation

distmax the maximum distance that spillover is present

ξ parameter in the inverse distance and exponential weighted function

ω parameter in the inverse distance and exponential weighted function

µ the mean for the Gaussian distance weighted function

σ2 the variance for the Gaussian distance weighting function

Linear weighted effect

1: Calculate dlin =
distmax− distk if distk < distmax

0 if distk ≥ distmax
.

2: Calculate dk = dlin
distmax

.
Inverse distance weighting

1: Calculate a dk =


ξ
distω

k
if distk < distmax

0 if distk ≥ distmax
.

Exponential weighted effect

1: Calculate a dk =
ξe−ωd if distk < distmax

0 if distk ≥ distmax
.

Gaussian weighted effect

1: Calculate dk =
ξe−

(d−µ)2

σ2 if distk < distmax

0 if distk ≥ distmax
.
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6.5.2. Spatially correlated effects

The SAR approach, is a Markov random field, and creates a spatial effect by manip-

ulating the covariance structure of a vector of values [13, 24, 25]. The SAR approach

can be used to create a spatially correlated intervention effect or a spatially corre-

lated error term. Simulating a SAR spatial effect assumes that the spatial effect can

be defined within the covariance structure of the data. It uses a weight matrix, and

a parameter ρ which refers to the level of spatial autocorrelation.

6.5.2.1. Spatially correlated intervention

A spatially correlated intervention effect can be simulated as follows

ηijk = α + uj + εk + vk

where vk ∼ MVN(βxi, σ2Σ). For SAR models Σ = (I − ρW )−1(I − ρW t)−1. W

is a spatial weights matrix based on the distance between the observations, I is

an identity matrix, and ρ represents the degree of spatial autocorrelation. In this

model, the matrix that is used to create a spatially correlated value is multiplied

by the intervention effect. This creates a weighted intervention effect with no upper

bound on the size of the intervention. The process for creating an SAR correlated

value is described in algorithm 6.5.
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Algorithm 6.5 Simulating a simultaneous autoregressive spatially correlated value
INPUTS

ρ the level of spatial correlation

maxdist the maximum distance below which observations are neighbours

a a vector of values

1: Calculate dist the distance between observations that are neighbours.
2: Apply a distance weighted function to dist so that nearby observations have a

greater weight and further away observation has less weight on each other.
3: Create a spatial weights matrixW based on the weighted distances of the neigh-

bours. Where a value of zero is used for any observations that are not neighbours,
and each observation cannot be its own neighbour.

4: Calculate A = I − ρW .
5: Calculate B = (AtA) to give a symmetric matrix.
6: Factorise B = LL† using Cholesky decomposition where L is a lower triangular

matrix and L†is the conjugate transpose of L.
7: Calculate aL†to create a spatially correlated vector of values.

The SAR simulation can be used to create a spatially correlated error term, this

would represent the presence of a spatial effect, potentially unrelated to the inter-

vention in a CRT.

Spatially correlated error The following model represents a spatially correlated

error term

ηijk = α + βxi + uj + εk + vk

where vk ∼ MVN(0, σ2Σ). With Σ, defined as previously. The error consists of a

cluster effect uj, a spatially correlated value vk, and residual error εk (uj + εk + vk).

6.5.2.2. Cluster level spatial correlation

The spatial effects presented so far in the chapter have all been at the observation

level. Changing the indexes used in the model formula allows the spatial covariance
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error approach to be simulated based on the spatial structure of the clusters using

the formula

ηijk = α + βxi + vj + εk

where vj ∼ MVN(0, σ2
vΣ). With Σ defined as previously. The error consists of a

spatially correlated cluster effect vk, and residual individual level error εk (vj + εk).

6.5.3. Considerations for simulating spatial effects in CRTs

Here I outline and propose several aspects of simulating spatial effects that need to

be considered before conducting a simulation study. Some are perhaps unique to

the CRT setting, and others are related to more general problems with simulating

spatial effects.

In a CRT where individuals are points and clusters are polygons, if the intervention

works, this induces a spatial pattern in the data at a cluster level. For example, if

each intervention cluster has a lower risk due to the intervention, then intervention

clusters are systematically different from their neighbouring control clusters. There-

fore, when applying spatial methods to assess spatial correlation, it is important to

adjust for intervention status.

For a continuous outcome, a variogram approach could be used, and adjustment

for intervention is straight forward [26, 27]. When using Moran’s I, adjusting for

the intervention status can be achieved by first regressing the intervention on the

outcome, and assessing the spatial correlation of the residuals [28, 29] . Alternatively,

Moran’s I can be calculated for the entire study area, and then the control and

intervention study areas separately.

Another aspect to consider with spatial effects within CRTs, is the level at which the

spatial effects are present. In areal data the spatial structure is assumed at cluster

level, often because finer level data is not available. For point data the spatial effects
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are assumed at the individual level. When data is present at two different levels this

is called spatial misalignment [30].

In CRTs, spatial effects can be considered at the cluster and/or individual level. If

the effect is at a cluster level then all individuals within a cluster are affected in

the same way. If it is at the observation level, then the range of the effect could

be smaller or larger than the cluster size. For example, you may have connectivity

within clusters, and thus a small number participants are connected between clus-

ters. Alternatively, if the range is large, then there is potential for all observations

within the trial to be connected. If all observations in trial are connected, then this

would range across the entire study area, and thus also across cluster boundaries.

Caution is needed not to overwhelm the values of the CRT simulation. For instance,

if the magnitude of the simulated spatial effect is much larger than the simulated

outcome values without the spatial effect. In this scenario, the simulation is no longer

considering spatial effects within the context of a CRT, but rather considering how

a multi-level model works on a spatially correlated variable. When the simulated

spatial effect is very small compared to the intervention effect, the process only adds

noise to the data generating model. Therefore, a balance between the size of the

intervention effect and the magnitude of the spatial effect needs to be achieved. This

avoids inferring results that are not actually related to a CRT.

Consideration of what type of connectivity is meaningful is also needed. When

connecting points, a distance or a nearest neighbours based approach could be used.

The most appropriate method will be based on the assumed form of the spatial

effect. Further methods for modelling relations between points are also found in

probabilistic graphical modelling [20].

The neighbours based approach may be useful for socially meaningful connections,

whereas distance based might be more useful when trying to model the movement

of a mosquito. For analysis of real data, households are generally clustered into

neighbourhoods or groups of settlements. Therefore, heterogeneity of the types of
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settlements in a CRT, will change the impact of using neighbours versus distances.

For instance, in a densely populated area, a distance based approach will give a

larger number of connected observations compared to a neighbour based approach.

Whereas in a sparsely populated area, the distance based approach may result in

no neighbours. The neighbour based approach will guarantee neighbours but may

results in connectivity between observations that are (physically) far apart.

The simulations in this thesis will use a distance based approach, as the focus of the

thesis is spatial effects due to physical proximity. Furthermore, in these simulations

the difference between a neighbour approach and a distance based approach is likely

minimal, as the locations were generated under a random process.

6.6. Simulating a CRT with two clusters and spatial

effects

6.6.1. Introduction

The methods for simulating spatial effects are explored by applying them to a simu-

lated ‘trial’ with two clusters. A simplified setting was used to compare the different

simulation methods, and to improve understanding of the results achieved in subse-

quent simulations. A simplified setting also helps to clarify which methods to use in

the larger simulation study, reducing unnecessary computing, and simulation time.

The cluster level models are excluded as they are not appropriate for data with only

two clusters. The SAR error model is not simulated as the mechanism is similar to

the SAR intervention model. Furthermore, it was decided to remove random error

from the data generating mechanism so that noise would not preclude the impact

of the spatial effects. The SAR error model will be assessed in Chapter 7.
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6.6.2. Methods

6.6.2.1. Data generation

Two thousand points were simulated within a 1000 by 1000 unit square, assuming

spatial randomness. The middle third of the area was then assigned to an interven-

tion, creating a CRT with one intervention cluster surrounded by a control cluster

(Figure 6.1). For each simulation, a continuous outcome was generated with an

intervention effect β, fixed at one and an intercept α of 0.2. The model used was

y = α + βxi where y is a continuous outcome and xi =


1 if Intervention

0 if Control
. As

there was no error term in the model, any changes in the outcome values are only

due to the intervention and spatial effects.

The outcome is continuous and therefore the intervention effect estimates are an

absolute change in value. For instance, an effect of 2 reflects that on average,

intervention participants are expected to have an outcome of 2 units higher compared

to control participants. This is highlighted because odds ratios and risk ratios are

commonly used in medical research. A continuous outcome was chosen as it allows

greater control on simulating the spatial effects, with binary and count outcomes

left for work beyond the thesis.

The spillover and spatial effects were restricted to roughly a 200 unit radius. There-

fore, there is a buffer zone of 200 units around the intervention cluster where we

would expect the control observations to be affected (Figure 6.1), beyond that, the

simulation should create minimal, if any, differences on the values of the control

observations.

6.6.2.2. Spatial spillover

Adding spatial variables to the linear predictor can be used to create a spatial effect.

The previous model is extended to generate an outcome with a spatial spillover effect
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as follows:

y = α + βxi + ψdk

Where ψ is a spillover effect, and dk is a spatial variable. In this simulation the

maximum spillover effect was defined as 0.8, which is 80% of the intervention effect.

Binary and categorical variables were created with a maximum distance of 200 units.

Four categories of equal distances were used for the categorical variable. For the

continuous spatial variables, linear„ Gaussian, exponential, and inverse distance

weighting (IDW) methods were used. To ensure that the different weights are com-

parable, they were simulated to give a value of 0.01 at 200 units. This means any

observation at a distance of 200 units will receive 1% of the spillover effect. This is

achieved by using non-standard values for the parameters of the weighted functions.

The maximum distance of the linear effect was 202.034 units, the power for the IDW

was 0.868, sigma equals 65.91 for the Gaussian weights, and the exponential models

have a power of 0.023. A visual comparison between the different weights is given

in the bottom left panel of Figure 6.2.

6.6.2.3. Spatial correlation

A SAR approach was used to generate a spatially correlated intervention effect.

Neighbours were defined as observations within 200 units of one another and the

spatial weights were inverse distance. This allows observations in different cluster

to be neighbours. For the SAR simulation the values used for spatial correlation

were ρ = 0.1, 0.2, 0.6, 0.7, 0.9, and 0.99 which gives a range of weak to very strong

spatial correlation. The model

y = α + vk
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was used to create a spatially correlated effect where vk ∼ MVN(βxi, σ2Σ), and

Σ = (I − ρW )−1(I − ρW t)−1, W is a spatial weight matrix based on the distance

between the observations, I is an identity matrix, and ρ represents the degree of

spatial autocorrelation.

6.6.2.4. Assessing spillover and spatial correlation

Presence and impact of spillover was assessed visually by mapping the study area

with the size of the points weighted by the outcome values. When spillover is

absent, the point in the intervention cluster will be larger compared to the points

in the control cluster, and the size will be homogeneous within each cluster. When

spillover is present then control points should be larger, the closer they are to the

intervention.

Two approaches were used to consider spatial correlation. The first, plots a vari-

ogram adjusting for the intervention effect. This approach allows estimation of the

magnitude and range of spatial correlation. It is important to adjust for the inter-

vention effect, otherwise the spatial correlation detected could be due to a spatially

assigned intervention.

The second approach, formally tests for spatial correlation using Moran’s I. Rather

than test on the simulated data, the test was performed on the residuals of a regres-

sion model with intervention as a covariate. This method adjusts for the intervention

effect. Moran’s I was calculated using Monte Carlo simulation with 999 simulations

used.

6.6.3. Results

The study area contained 2,000 points in a 1,000 by 1,000 unit square. There were

219 observations in the intervention cluster, and 1,781 points in the surrounding

control cluster. Of the control observations, 724 (40.6%) were within 200 units
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of the intervention cluster, and are therefore in the ‘spillover zone.’ The size and

density of the study area can be observed in Figure 6.1.

Figure 6.1. Study area showing spillover area

Control Intervention

Spillover Zone

6.6.3.1. Spatial spillover

All of the spatial variable simulations resulted in strong evidence of spatial corre-

lation, with p<0.001 for Moran’s I (Figure 6.2). Unsurprisingly, the binary effect

resulted in the largest amount of spillover. The variograms suggest that spatial cor-

relation is present over a range of 300 units, and that the semivariance was largest

for the binary spillover variable. The magnitude of spillover was similar for the

linear, categorical, and Gaussian variables, with comparable variograms. The expo-

nential and IDW variables had considerably smaller semivariance, and the spillover

was much harder to ascertain from the plots of the study areas. The maximum

value of the intervention observations was 1.2 (for all scenarios). The spatial binary

approach results in the greatest magnitude of spillover and the maximum value in

the control observations was one for this scenario.
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6.6.3.2. Spatial correlation

There was strong evidence of spatial correlation, with p<0.001 for the SAR simu-

lations. The amount of spillover increased as the magnitude of spatial correlation

increased. The variograms show a suggestion of spatial correlation over a range of

between 300 and 400 units, however in comparison to the spatial variable approach,

the magnitude of the semivariance was small, being similar to the exponential and

IDW variables. The variogram of the Gaussian spatial variable is included in the

Figure 6.3 for reference. As can be seen in the lower left panel of Figure 6.3, the

maximum value in the control and intervention arms was positively associated with

the value of ρ. The maximum value of all the observations ranged from 1.29 for ρ

= 0.1 to 2.87 for ρ = 0.99.
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6.6.4. Conclusions

The spatial spillover and spatial correlation approaches resulted in spatially corre-

lated spillover effects. There was strong evidence of spatial correlation when tested

using Moran’s I, adjusted for intervention status. Variograms of the outcome, ad-

justed for intervention status, also suggested varying levels of spatial correlation

present for a range of 300 to 400 units. Spillover effects on the control observations

were present in all scenarios, with control observations near to the intervention,

having higher values than those further away. However, the magnitude of spillover

varied, and was in some cases (IDW spatial variable) negligible. These results are

reassuring and indicate that the simulated approaches have work as desired and

create spatial correlated effects.

For the spatial spillover effect, the choice of distance weighting function can have a

large impact on the magnitude and range of the spillover effect, but does not appear

to impact the ability for Moran’s I to detect spatial correlation. Despite fixing a

roughly equal level of spillover effect at 200 units, the Gaussian, linear, binary, and

categorical functions resulted in a larger amount of spillover compared to the IDW

and exponential weights. This makes sense when considering the difference in the

curves of the different distance weighting functions.

In the spatial spillover variables, the maximum value of the intervention observa-

tions are by design unaffected by the strength of the spillover effect. Therefore,

such simulations cannot result in a spillover effect that is greater in magnitude than

the intervention. In contrast, the maximum value of the intervention is affected by

the magnitude of spatial correlation in the SAR simulation. The values in the con-

trol and intervention arms were positively correlated with the magnitude of spatial

correlation. This make sense as the spatially correlated effect represent a cumula-

tive effect based on proximity to nearby intervention participants. In contrast to

the spillover effects, proximity to multiple individuals will result in greater spillover

compared to proximity to a single individual, and the total amount of spillover could
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be greater than the size of the direct intervention effect. This may make it difficult

to control the size of the intervention effect, and could result in the simulated val-

ues becoming very large. Caution is therefore needed to avoid creating very large

simulated values, as the evaluation is no longer of a CRT with spatial correlation,

but rather just a spatially correlated value.

6.7. Summary

This chapter has described an approach to simulate spatially structured CRT data.

A prominent focus on the computational side of simulations was given, present-

ing algorithms for creating a spatial spillover variable based on distance to nearest

intervention observations, and spatial correlation using an SAR approach.

Several considerations when simulating spatial effects in CRT are given, such as:

spatially assigned interventions naturally inducing spatial correlation, the level that

spatial correlation is present (observation or cluster), the magnitude of the spatial

effect compared to the intervention effect, and what measure of connectivity is useful.

A simulation study with only two clusters was used to explore the types of results

these methods create. The spatial variable approach allows for great control of the

magnitude of effect, but forces a known mechanism for the spatial effect. The various

distance weights impact to the magnitude of the spillover effect, but they all create

spillover. The choice of values for the parameters for a distance weight function is

more important than the distance weight itself.

The Gaussian weighted function has a potentially more realistic representation of

distance decay compared to linear, binary, or categorical distance weights, and has

an easier interpretation than the exponential or IDW. The range of the Gaussian

distance weight can be defined in terms of standard deviations, a distance of three

standard deviations results in a distance weight of one percent. Due to this, only the

Gaussian weighted function will be used for spatial spillover in further simulations.
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The covariance based SAR effect results in spillover and spatial correlation, but

controlling the values that the outcome will take is difficult. Increasing the level

of spatial correlation, increases the size of the outcome values. Therefore, if the

spatial correlation is large, the outcome values of the trial may be overwhelmed by

the correlation, and the simulation will no longer represent a CRT setting.

The Gaussian weighted spatial variable and the SAR intervention effect will be used

in the next chapter.
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7. Simulation study of the impact of

spatial effects in cluster

randomised trials

7.1. Overview

In chapter 6, algorithms were proposed and tested for simulating spatial effects in

cluster randomised trials (CRTs). In chapter 5, we saw that intervention estimates

remained robust to spatial model specifications, despite a strong suggestion of spatial

spillover. This chapter utilises the algorithms from the previous chapter to test

this robustness observed in chapter 5. A simulation study is conducted to test

the robustness of the standard CRT model to spatial effects, and consider whether

spatial models can provide improvement when spatial effects are present.

Objective

5. Evaluate the impact of spatial effects and the utility of spatial models in the

analysis of a CRT by means of a simulation approach.
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7.2. Introduction

Spillover effects are the effect of an intervention on individuals who are in physical or

social proximity to intervention recipients, but who do not receive the intervention

themselves [1, 2]. When present, they may violate the Stable Unit Treatment Value

Assumption (SUTVA) which is required for valid inferences in randomised experi-

ments. When the borders of a geographical CRT are close together, there is a risk of

between-cluster spatial spillover [3, 4]. Furthermore, when CRTs have geographical

clusters they have an inherent spatial structure with some clusters being near to

intervention clusters and others nearer to control clusters. The spatial structure is

rarely accounted for in the main analysis of a CRT and there is little knowledge

about the impact on trial results [5].

Chapter 5 presented the spatial reanalysis of an insecticide treated bed net CRT

[3, 6]. The intervention estimate of the trial remained robust to spatial model

specification, despite compelling evidence of a positive spatial spillover effect (from

intervention clusters towards control clusters). This led to speculation as to whether

spatial effects impact the results of CRTs, prompting consideration of how the mag-

nitude of spatial effects impact intervention estimates and motivates this simulation

study

This simulation study explores how different types of simulated spatial effects im-

pact a standard one-stage CRT analysis, and whether spatial regression methods

can be used to account for such effects. The study considers spatial spillover, a

spatially correlated intervention, and spatially correlated errors on the bias and cov-

erage of intervention estimates. The standard one-stage (non-spatial) CRT model

is compared to a cluster and an individual level spatial model. This approach will

help identify when the typical analysis of a CRT may fail, and consider if spatial

modelling approaches offer improvement in such cases.
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7.3. Methods

This simulation study involves three scenarios for different types of spatial effects,

and compares three models. The three different scenarios of spatial effects simulated

were: (1) spatial spillover effect; (2) spatially correlated intervention effect; (3)

spatially correlated error term. The three models applied are: (A) standard one-

stage CRT model; (B) Besag, Yorke, and Mollie (BYM) cluster level spatial model;

(C) Gaussian process (GPm) individual level model. The standard CRT model is

applied to all three scenarios, and the impact of the spatial effects on the bias and

coverage is considered. Following this, the spatial models are applied to scenarios

where the standard CRT model demonstrated bias or poor coverage.

7.3.1. Data generating mechanism

The data generating mechanism describes the process used to create simulated

datasets using random number generators.

Creating spatial CRT data

A polygon shapefile of Nepal was used as the basis for the study area (Admin level

5). Spatial data for each country can be split into different administrative levels

(e.g National, Regions, County), and in Nepal administrative level 5 is equivalent to

wards. This file was spatially clipped to create a CRT with 30 contiguous polygons,

meaning 30 polygons were selected and the remaining were deleted. Assuming spa-

tial randomness, 5,000 points were simulated within the study area. The points were

joined to the polygon areas using a spatial merge, so that each point was assigned

to the cluster they resided within. The polygons were randomised at a ratio of 1:1

to intervention or control, and the points were assigned the same intervention status

as their cluster. This gives the study area shown in Figure 8.4.

The number of observations and clusters were chosen for three reasons: (I) at least
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15 cluster per arm are needed for the one-stage CRT analysis method to be valid

[4]; (II) to have a dense study area that could be conducive to spillover effects; (III)

it was computationally feasible.

Simulating a CRT

Let subscripts i = treatment arm (i = 0: control, i = 1: intervention), j = cluster

(j = 1, ..., c) , and k = participant (k = 1, ..., n) so that yijk represents the outcome

for the kth participant, in the jth cluster, in the ith treatment arm. Define α, β ∈ R as

the intercept and the intervention effect, respectively. Then a CRT, can be generated

from the model

yijk = α + βxi + uj + εk

where xi =


1 if i = intervention

0 if i = control
, uj represents a cluster effect, and εk ∼

N(0, σ2). yijk is a continuous outcome for the kth participant, in the jthcluster,

in the ith arm, uj is constant within each cluster, and εk provides variation within

clusters. This is the base model used to simulate CRT data with spatial effects.

Further details on the algorithm used for simulating a CRT are given in algorithm

6.2. Two approaches were taken to create spatial effects, a spatial spillover variable,

and a spatial correlation effect.

Spatial spillover

Spatial spillover was simulated using the model

yijk = α + βxi + uj + εk + ψdk

Where ψ represents the spillover effect, and dk is a spatial variable representing

proximity to the intervention for the kth participant. Defining ψ = π × ψ where π

is a proportion (lying between zero and one), restricts the spillover effect ψ to be a
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proportion of the intervention effect. In addition, restricting dk to be a proportion

based on spatial proximity defines the spatial variable dk, to represent the amount

of the spillover effect that individual k receives. Moreover, this means the spillover

effect is defined as a proportion of the intervention effect, and individuals receive a

proportion of the spillover effect, depending on their proximity to the intervention.

dk is defined as distance to nearest intervention observation, and therefore only de-

fined for control observations. The distance was weighted using a Gaussian distance

weighting function

f(dk) = e−
(dk)2

σ2

where σ is the standard deviation of the weighting function and relates to the effec-

tive range over which the distance effect is present.

The range was defined in terms of the standard deviation σ and was assigned values

of 33.3 meters, 66.6m, and 166.6m as these correspond to the proportion of the

spillover effect being roughly 1% of the intervention effect at a range of 100m, 200m,

and 500m respectively. Further details can be seen in Algorithms 6.3 and 6.4.

Spatial correlation

A spatially correlated error term was simulated using the model

yijk = α + βxi + uj + vk + εk

In this model, the error term is composed of uj + vk + εk. The error consists of a

cluster effect uj, a spatially correlated effect vk, and an error term εk. vk is a spatial

structured random effect where vk ∼ MVN(0, σ2
vΣ) and σ2

v is the between-area

variance. A simultaneous autoregressive (SAR) spatial effect was generated where

Σ = (I − ρW )−1(I − ρW t)−1, W is a spatial weights matrix based on the distance

between the observations, I is an identity matrix, and ρ represents the degree of

spatial autocorrelation.
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This model definition generates data with an SAR error effect. A SAR intervention

effect was also simulated with a slightly modified model defined as

yijk = α + uj + vk + εk

Where vk ∼ MVN(βxi, σ2
vΣ), with Σ defined as before. Further details of the

algorithm used for simulating SAR correlated values are given in algorithm 6.5.

7.3.2. Value held constant during simulations

The following study values remained unchanged throughout the iterations of the

simulations:

• Intervention effect (β =2.0)

• Intra-cluster correlation coefficient (ICC) (σb = 0.05, σw = 0.95, giving and

ICC = 0.05 )

• Number of clusters (c =30)

• Fixed sample size (n =5,000)

• Location of observations (simulated under spatial randomness)

An intervention effect of 2.0 was chosen as based on chapter 6 and other preliminary

work, it was large enough to not be overwhelmed by a spatial error term simulated

from multivariate normal distribution, but small enough so as to be affected by

spatial effect. The ICC of 0.05 was used with σb = 0.05 and σw = 0.95. This value

was chosen based on a study of ICCs, which estimated that 90% of ICC may be less

than 0.55, although this research was based on primary care trials [7]. Furthermore,

an ICC of 0.05 corresponds to the median ICC value found in a study by Campbell

et al. [8]. The locations were fixed to avoid conflating the impact of spatial effects

and the spatial structure of a trial.
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7.3.3. Values that are changed during simulations

The values that are varied in this study are; the strength of the spatial effect and

the distance over which it is present. For spatial spillover, the strength of the spatial

effect, was the proportion of the intervention effect that control participants receive,

and the distance was the standard deviation of the Gaussian weighting function. For

the spatial correlation effect, the strength of the spatial effect was the correlation

parameter, and the distance represents the maximum distance for observations to

be classified as neighbours. The full range of values varied in the simulation study

for each type of spatial effect, are given in Table 7.1. The value for the spatially

correlated intervention and spatially correlated error term are the same and hence

one set of values is given/

Table 7.1. Study values that vary in the simulations

Spatial effect Variable Values

Gaussian weight spillover effect
Range* (meters) 100, 200, and 500m
Proportion of intervention effect 0, 0.2, 0.4, 0.6, 0.8, 0.99

SAR spatial correlation
Distance of neighbours (meters) 100, 200, 500
ρ (strength of the correlation) 0, 0.2, 0.4, 0.6, 0.8, 0.99

*σ =33.3, 66.6, and 166.67m, when the range is 100, 200, and 500m respectively.
Range is where the distance weight is 0.01

7.3.4. Methods

Three methods are applied, a standard CRT model and two spatial models.

Standard CRT model

A linear mixed effects model with a random effect for cluster will be applied. This

model will be fitted using the lme4 package in R version 3.4.3 [9, 10] and is defined

as
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yijk = α + βxi + uj

Where uj is a random effect for cluster, α is an intercept, β is the effect of the

intervention, yijk is a continuous outcome, and xi is a binary variable representing

the intervention status for the observations.

Spatial CRT models

Two types of spatial models were applied; a cluster level spatial model originally

presented by Besag, York, and Mollie [11] and referred to as a BYM model, and

a individual level spatial model, called a Gaussian process model (GPm). Further

details of the spatial models and their relations to random fields are presented in

Appendix C. The BYM model is defined as

yijk = α + βxi + uj + vj

Where the vj is a spatially structured cluster level random effect, and uj is a random

effect for cluster, and α, β, xi, yijk defined as before. This model has been widely

used in disease mapping [12, 13].

The GPm model is defined as

yijk = α + βxi + uj + vk

vk ∼ N(f(z), σ2
v)

f ∼ GP (µ(.), Σ(d))

where uj is a random effect for cluster, vk is a spatially structured individual level

random effect, µ(.) is a mean function restricted to be zero, Σ(.) is a variance-

covariance function incorporating distance measure d and α, β, xi, yijk defined as
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before. As the GP has a mean of zero, and covariance defined by the distance be-

tween the observations, the values of vk are a function of the distance calculations.

GPm models are typically computationally intensive to fit, due to dense covariance

matrices. integrated nested Laplace approximation (INLA) is used to fit the spa-

tial models [14]. For the GPm, the INLA stochastic partial differential equation

approach (SPDE) is used [15–17]. Uninformative priors are used for the spatial

models.

7.3.5. Number of simulations

For the standard CRT model each scenario was run for 2000 simulations. For the

spatial models the number of runs was a trade off between computation length and

demonstrating bias. When running the standard CRT model for 2000 simulations

bias was clearly demonstrated when the number of simulations was less than 200.

Therefore, 200 simulations were run for each scenario for the spatial models.

7.3.6. Estimand

For each simulation, the estimate of the intervention effect and the standard error

(standard model) or standard deviation (spatial models) of the estimate will be

recorded. A normal approximation 95% confidence/credible interval will be calcu-

lated using these estimands. For the standard model a 95% confidence interval (CI)

will be calculated. The spatial models require a Bayesian approach, and therefore

95% credible intervals (CrI) will be calculated.

7.3.7. Performance measures

Bias

Bias will be measured by taking the difference between the average estimate of the

treatment effect and the true treatment effect. Bias is defined as δ = E[θ̂]− θ [18].
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Where θis the true treatment effect and θ̂ is estimate of the treatment effect. The

impact of bias will be presented visually by plotting all points from the simulations

on the same graph against the true effect, allowing for quick comparison of the

different methods.

Coverage

If we define a CI (θ̂low, θ̂upp) as the P (θ̂low ≤ θ ≤ θ̂upp) = π where π ∈ [0, 1] then

a 95% CI is when P (θ̂low ≤ θ ≤ θ̂upp) = 0.95. It follows that coverage is the

P (θ̂low ≤ θ ≤ θ̂upp) [18, 19]. In practice, we can count the number of simulations

where the true simulated value is contained in the 95% CI and divided by the total

number of simulations. The coverage will be assessed visually through the use of

Zip plots [19]. Zip plots are a new visualisation created by Morris et al. [19], which

helps to assess coverage of a method by viewing the CIs directly. For each scenario

and method, the CIs are centile-ranked according to their significance against the

true intervention effect. The vertical axis is represents the ranking and is plotted

against the intervals. Intervals that contain the true intervention effect are coloured

blue, and intervals excluding the true effect coloured orange. Finally the Monte

Carlo 95% CI for percentage coverage is represented by a red dashed line. Zip plots

allow efficient comparison of the coverage between a range a methods and display

the Monte Carlo error [20] of the coverage.

The simulations for the spatial models will calculate a 95% CrI, although the inter-

pretation of the interval changes, the use of coverage remains the same.
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7.4. Results

7.4.1. General characteristics

There were 2,359 (47.8%) observations in the control arm and 2,641 (52.2%) in the

intervention arm. The number of observations per cluster was wide ranging, with

a median of 128 (min = 26, max = 537). The median distance from control to

intervention observations was 529.5m (min = 20.96, max = 2,661.5m). Sixty seven

(2.8%) control observations were within 100m of an intervention observation, 315

(13.3%) were within 200m, and 1,118 (47.4%) were within 500m. The study area

was densely populated, and the cluster shapes were irregular polygons as can be

seen in Figure (7.1).

Figure 7.1. Map of study area
Control Intervention

0 2.5 5km

7.4.2. Standard CRT analysis

7.4.2.1. Spatial spillover

Spatial spillover has the capability to bias estimates from a standard one stage CRT

model, Figure 7.2. In this simulation the spatial spillover effect biased the estimate

towards the null. There was minimal bias for the spatial spillover effect with a range
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of 100 meters. There was obvious bias when the range of spillover was increased to

200m, and the strength was above 40% of the intervention effect. When the range

of spillover was 500m, the intervention estimates were strongly biased away from

the true effect of 2, even when the maximum spillover effect was 0.2. The effect on

the coverage of the model showed similar patterns to that of bias as can be seen in

Figure 7.3. Consistent with bias, coverage is mostly unaffected when the range is

100m, with a very pronounced effect for ranges of 200 and 500m. The scenario of

500m and a spillover effect of 0.99 excluded the true intervention effect in almost all

simulations.

7.4.2.2. Spatially correlated intervention effect

It was also clear from Figure 7.2 that a spatially correlated intervention effect can

bias intervention estimates. In contrast to the spatial spillover, it biased results

away from the null giving stronger effect estimates. Bias was present for all ranges

of connectivity between neighbours, and with greater bias resulted from both a

larger range, and stronger spatial correlation as would be expected. Coverage was

also reduced when the intervention effect was spatially correlated (Figure 7.4) .

7.4.2.3. Spatially correlated errors

The presence of a spatially correlated error term had no observable effect on the bias

of the intervention estimates (Figure 7.2). This was also reflected in the coverage of

the models which was unaffected by the presence of spatial correlation in the error

term (Figure 7.5). This contrasts with the spatial spillover and spatially correlated

intervention simulations.
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Figure 7.2. The effect of spatial effects on the bias of standard cluster randomised trial analysis model
(true effect is 2.0)
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Figure 7.3. Zipplot of the effect of a spatial spillover effect on the coverage of cluster randomised trial
model
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Figure 7.4. Zipplot of the effect of a simultaneous autoregressive spatially correlated intervention effect
on the coverage of a cluster randomised trial model
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Figure 7.5. Zipplot of the effect of a simultaneous autoregressive spatially correlated error term on the
coverage of a cluster randomised trial model
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7.4.3. Spatial analysis of CRTs

7.4.3.1. Bias

The BYM and GPm models also gave biased estimates of the intervention effect

in the presence of a spatial spillover effect (Figure 7.6). Bias was less pronounced

for a spillover effect of range 200m but very pronounced for an effect over a 500m

range. The spatial spillover effect biased the intervention estimates towards the null.

The estimates from the BYM and GPm models were also strongly biased when the

intervention effect was spatially correlated. The estimates were both biased away

from the null, resulting in larger estimates of the intervention effect. The results from

the cluster and individual level spatial models were very similar despite accounting

for spatial connectivity at different scales.

7.4.3.2. Coverage

The coverage of the BYM and GPm models were affected by spatial spillover and

spatially correlated intervention effects. There was very low coverage for the spatial

effects with a range of 500m. The Zipplots were consistent to the Zipplots of the

non-spatial one-stage CRT model and are presented at the end of the chapter in

Figures 7.7, 7.8, 7.9, and 7.10.

7.4.3.3. Comparison to non-spatial model

The results from applying spatial models to the simulated data were near identical

to the results from the standard CRT model. This suggests that allowing for a

spatially correlated covariance matrix, did not account well for the simulated spatial

mechanisms.
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Figure 7.6. The effect of the spatial effects on the bias of the spatial models
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7.5. Discussion

The simulation results indicate that spatial effects can affect the bias and coverage of

intervention estimates from CRTs. Specifically these simulations resulted in spatial

spillover effects biasing intervention estimates towards the null, whereas spatially

correlated intervention effects increased estimates of the intervention effect biasing

away from the null. Contrastingly, spatially correlated errors had little impact on

the results of the CRT.

The direction of bias for the spatial spillover effect is plausible. When positive

spillover effects are present, individuals in the control cluster who are in proximity to

the intervention receive a beneficial effect. Control participants affected by spillover,

will be more similar to intervention participants compared to control participants

who are not subject to spillover effects. Therefore, the control and intervention arm

will be more similar, reducing the size of the intervention estimate. Conversely,

if there is a negative spillover effect, then individuals near intervention boundaries

will be negatively impacted and intervention estimates may be biased away from

the null.

Simulation of a spatially correlated intervention effect biased results away from the

null. In contrast to the spatial spillover, intervention observations were also affected

by the spatial correlated intervention effect. This would be plausible when the spatial

effect is additive. Intervention participants receive not only the direct benefit of the

intervention, but also a cumulative effect from nearby intervention participants. In

this case as the density of intervention participants is greater in the intervention

clusters than in control clusters, the estimated intervention effect may increase.

This is a result of the intervention participants being subject to a greater number

of spatial effects than control participants. This suggests that within-cluster effects

stemming from a spatially correlated intervention can outweigh the bias to the null

stemming from between-cluster spatial spillover spatial effects. This would lead to

an overestimation of the direct effect of the intervention, as the models struggle to

185



Simulation study of the impact of spatial effects in CRTs

distinguish between the direct and the spatially correlated effects of the intervention.

The addition of a spatially correlated error term did not affect the intervention es-

timate regardless of range, or strength of spatial correlation. This may be due to

randomisation adjusting for the underlying spatial correlation, and suggest that tri-

alists need only be concerned with spatial effects, which stem from the introduction

of their intervention or that interact with the intervention. This could be further

tested by comparing varying the random allocation within the simulation study.

Unsurprisingly, increasing the magnitude and distance of the spillover or spatially

correlated intervention effect resulted in greater bias. Spatial spillover had little

impact at a range of 100m, but past 100m it was more marked. A spillover effect

at 100m affects roughly 2.8% of the control participants in this setting. Bias was

present for even when the intervention effect had a small level of spatial correlation.

These results, need to be considered in the context of analyses of real trial data to

see if the level of spatial effects are plausible. Clearly an effect over a range of 500m,

which provides 99% of the intervention effect to non-intervention participants is im-

plausibly high. However, spillover effects in practice will be represented somewhere

in the range of simulated scenarios (no spillover through to very strong spillover

effects). Therefore, when designing a trial, consideration of how much spillover is

expected and the proximity of individuals to one another is of importance. Such

information, if known, could be incorporated into sample size calculations and there-

fore increase the power of trials.

The spatial models used, did not reduce the bias, or improve coverage, suggesting

that they did not capture the spatial mechanism well. Perhaps a more fruitful

direction of research, is to attempt to model the spillover effect directly through

the use of covariates in a model. Work on different ways of specifying the spillover

variables could be conducted and general forms developed. For example, Chao et al.

propose a method that incorporates the surrounding risk of individuals in a study

[21].
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There are several limitation to the simulations presented in this chapter. Only two

types of spatial methods were used, and they potentially do not capture the spatial

mechanisms well. A further weakness stems from the use of locations simulated

under spatial randomness. Households are typically grouped together in neighbour-

hoods, and this structure may impact the generalisability of the conclusions. In

addition, the locations used for the simulations were fixed and the spatial distribu-

tion of the observations may impact the spatial effect in a given context. Further

work, considering a broader range of spatial methods and simulating clustered loca-

tions, or using real households locations could be conducted to assess the impact of

these weaknesses on the conclusions.

The ICC of the simulated trial was fixed at 0.05 and in the interest of not expanding

number of scenarios, the impact of ICC was not considered. I hypothesise that

decreasing the ICC, will result in less impact of spatial spillover as the power of

the trial will increase, and increasing the ICC will increase the impact of spatial

effects as power is reduced. In addition to this, only one size of intervention effect

was considered. For a fixed sample size, if the intervention effect is small, the

presence of a spatial effect will have a greater impact on the trials ability to detect

an effect, compared to a very large intervention effect. The impact of ICC and

intervention effect size on spatial effects in CRT is another area to be considered

in future simulations. Furthermore, the context of what ICC means in a CRT with

between-cluster dependence, is worth consideration.

Although these limitations hamper the generalisability of the study, they provide

plenty of areas for further research into how spatial effect impact CRTs. I consider

this study as possibly the first step of many, that allow exploration of various aspects

of how spatial effects may impact CRTs and consider solutions for estimating such

effects.

In conclusion, this study supports that spatial effects can have a large impact on the

results of CRTs, and the use of spatial models appears to do little to alleviate the
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effects of spatial spillover or spatially correlated effects. However, the presence of

underlying spatial correlation does not appear to impact trial results, and therefore

greater focus should be placed on spatial effects that interact with or stem from the

intervention.
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Figure 7.7. Zipplot of the effect of a spatial spillover effect on the coverage of a BYM model
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Figure 7.8. Zipplot of the effect of a spatial spillover effect on the coverage of a GPm model
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Figure 7.9. Zipplot of the effect of a spatial spillover effect on the coverage of a BYM model
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Figure 7.10. Zipplot of the effect of a spatially correlated intervention effect on the coverage of a GPm
model
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8. Cluster reallocation: A method

for exploring between-cluster

spatial spillover in cluster

randomised trials

8.1. Overview

Chapter 6 provided details for simulating spatial effects in cluster randomised trials

(CRTs). Chapter 7 built upon this work utilising the methods to test the impact

of spatial effects on CRTs through a simulation study. This chapter describes a

novel method I have developed called cluster reallocation. The cluster reallocation

method is tested on a range of simulated conditions using the approaches outlined

in the previous two chapters.

Objective

6. Develop methodology to assess the presence of spatial spillover in CRTs.
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8.2. Introduction

In the preceding chapter we have seen that spatial spillover effects can impact the re-

sults of cluster randomised trials (CRTs). When between-cluster spillover is present,

it violates the independence assumption made in a CRT analysis. The impact of

spillover may be reduced by having large or well-separated clusters, as then move-

ment across cluster borders is less likely. However, spatial effects may be present

over large distances, and designing a trial with well-separated clusters may not be

feasible [1]. Furthermore, defining a ‘large’ cluster depends on the type of interven-

tion and outcome, and requires knowledge about the spillover effect. Unfortunately,

such knowledge is rarely available at the design stage of a trial when decisions about

cluster size can be made. Therefore, detecting and measuring the magnitude of

spatial spillover is important within current CRTs and is also important to inform

the design of future trials.

There is no standard way of exploring whether spatial spillover is present, although

several approaches have been used in the analysis of CRTs. Distance from near-

est intervention household, and the number of surrounding intervention households

have been used in insecticide treated net (ITN) trials [2, 3]. The risk of the indi-

viduals surrounding a participant has been used in a typhoid trial [4]. These three

approaches all assume that the mechanism of spillover is based on distance but they

also make different assumptions.

Distance to nearest intervention assumes that only distance to a single nearest in-

tervention household is important. Therefore, this approach does not distinguish

between proximity to one intervention household and proximity to several interven-

tion households. In contrast, the number of intervention households surrounding an

observation assumes that how many intervention participants are nearby is impor-

tant. This method assumes that spillover is based on the density of the intervention

observations nearby, but does not take into account the characteristics of the par-

ticipants. Using the surrounding risk does includes attribute information about the
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individuals surrounding an individual. This method assumes that the characteristics

of individuals as well as the density of nearby observations is important. Therefore,

the surrounding risk approach would distinguish between a high density of low risk

individuals and a high density of high risk individuals, whereas the number of in-

tervention households would not. However, it may be difficult to test whether these

assumptions hold, and they will depend on the context of the study.

In this chapter, I propose a method called cluster reallocation, which helps to ex-

plore the presence of spatial spillover in CRTs. In contrast to other approaches, it

assumes that spillover is based on proximity to cluster boundaries, but makes no fur-

ther assumptions about the mechanism of the spillover. Cluster reallocation draws

inspiration from local spatial regression models, such as Geographically weighted

regression (GWR), and resampling methods such bootstrapping, the jacknife, and

permutation tests [5–7]. In this chapter, I describe how the method works and test

its ability to display evidence of spatial spillover in CRTs for a range of simulated

spillover effects.

8.3. Cluster reallocation

Cluster reallocation is a relatively simple iterative method that explores the presence

of spillover in a CRT. It does this by hypothetically reassigning participants to

the intervention or control arm of the trial based on their proximity to cluster

boundaries. It could be described as a geographically weighted resampling technique

where the resampling is based on physical proximity to the intervention or cluster

boundaries. The process for cluster reallocation is displayed visually for a CRT with

and without spillover in Figure 8.1, and more formally in Algorithm 8.1.

The method involves buffering the intervention cluster boundary, then reallocating

control observations within the buffered boundary to the intervention arm. The

intervention effect is then calculated using the newly defined trial arms. The process
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is repeated for larger and larger buffers, and then repeated for the boundaries of the

control clusters. This provides estimates of the intervention effect for hypothetical

spatial definitions of the intervention and control arms, referred to as ‘buffered

estimates’.

In Figure 8.1, the top part of diagram is a trial where no spatial spillover is present.

The left side shows the intervention effect (mean difference) decreases when the

control cluster boundaries are increased. The right side of the figure shows that

the intervention effect also decreases when the intervention cluster boundary is in-

creased. When spillover is absent, increases in the intervention or cluster boundaries

result in weaker intervention effects (biased towards the null). I hypothesise, that in

the absence of spillover and when the intervention works, the observed intervention

estimate will be either the maximum or minimum estimate compared to the buffered

estimates. This is because reallocation of the observations to different trials arms,

will increase similarities between the arms, thus diluting the intervention effect.

In the bottom half of Figure 8.1, a trial with positive spatial spillover is presented.

When the control clusters are expanded, the intervention estimates decrease. When

the intervention cluster is increased, the estimates are larger compared to the original

trial estimate. When spillover is present, the intervention estimates from the original

cluster definition may not be a maximum or minimum. For example, imagine the

intervention has a positive spillover effect on the control participants, meaning that

control individuals affected by the spillover have a lower risk of the outcome. The

control participants near an intervention boundary may be more similar to the inter-

vention participants than to other control participants, who are further away from an

intervention boundary. Reallocating participants near the intervention boundaries,

from control to intervention, will increase the differences between the newly defined

intervention and control arms, resulting in a stronger effect estimates (further from

the null). I propose that this will continue based on the functional distance of the

spillover.
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8.3.1. Cluster reallocation plot

Cluster reallocation provides estimates of the intervention effect for hypothetical

spatial definitions of the intervention and control arms. These can be explored

graphically through a cluster reallocation plot. A cluster reallocation plot displays

the intervention estimate against different buffers and the relation between the cal-

culations involved in the method and the cluster reallocation plot was presented in

Figure 8.1. In this section, I will provide examples of the cluster reallocation plot

when spillover is absent, and when spillover is present.

8.3.1.1. Without spillover

An example plot for a scenario without spillover is given in Figure 8.2. Here, the

true intervention estimate is 2.0 and the cluster boundaries were increased to a

distance of 1,000m in steps of 50m. In this figure, the red point symbolises the

original trial estimate, and the confidence intervals (CIs) around the estimates are

provided. As the intervention cluster boundary is increased (moving right, along

the x axis) the intervention estimate decreases. As the control cluster boundary is

increased (moving left, along the x axis) the intervention estimate also decreases.

Therefore, any buffering results in a weaker intervention estimate. In this instance,

the pattern is roughly symmetrical, which further suggests an absence of spillover.

The CIs become larger as the buffers are increased, reflecting the imbalance between

the control and intervention arms. In addition the intervention estimates for a buffer

of 1,000m are higher than the 950m buffer, reflecting the impact of random error on

the estimates.
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Figure 8.2. Cluster reallocation plot when no spillover is present
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8.3.1.2. With spillover

In contrast to the previous figure, Figure 8.3 is not symmetric around the original

trial intervention estimate. Here, the true intervention estimate is 2.0, and in the

presence of spillover the original trail estimate is biased towards the null. In addi-

tion, the estimates from buffering the intervention boundaries are larger compared

to the intervention estimates from buffering the control cluster boundaries. The

intervention estimates are at least as large as the original intervention estimate up

to a buffer of 300m when increasing the intervention cluster boundaries. In contrast,

increasing the control cluster boundary reduces the strength of the intervention es-

timates, and the left half of the plot looks consistent with the Figure 8.2 where no

spillover was present. Again as the distance of the buffer is increased the confidence

intervals become larger, reflecting uncertainty due to the imbalance in the trial arms.
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Figure 8.3. Cluster reallocation plot when positive spillover is present
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8.3.2. Algorithm

Algorithm 8.1 provides a description of the steps involved in the cluster reallocation

method.
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Algorithm 8.1 Cluster reallocation
INPUTS

poly the cluster boundaries.

points the locations of the intervention observations

maxdist the maximum distance to buffer the cluster boundaries by.

dstep the increase in cluster boundaries for each step.

1: Assign Control =0
2: FOR dist in SEQUENCE(BEGIN = 0, MAX = maxdist, STEPS = dstep){
3: IF Control = 1 THEN
4: Create polycontrol = control cluster boundaries
5: Create polybuff =BUFFER(polycontrol, BY = dist)
6: ELSE IF Control = 0 THEN
7: Create polyintervention = intervention cluster boundaries
8: Create polybuff =BUFFER(polyintervention, BY = dist)
9: END IF
10: Check which points reside in which cluster in polybuff
11: Create Interventiondist by assigning the points to the intervention status of

their polybuff cluster
12: Fit model using Interventiondist as the trial main effect
13: Record intervention effect estimate βbuff
14: Change Control=1 and repeat from steps 2 to 13

8.4. Applying the method to simulated data

In this section, the cluster reallocation method is tested against a range of simu-

lated conditions. Five scenarios with spatial spillover over different distance were

simulated, and a range of strengths of spillover were used within each of simulated

scenarios. The results of application to simulated data, then lead to considerations

for how to use cluster reallocation in practice.

CRT spatial data was simulated using the same process as described in chapter 7.

In brief, the model yijk = α+βxi+uj + εk +ψdk was used to generate a CRT with a

spatial spillover effect. The spatial spillover effects were simulated using a Gaussian

distance weighting function, f(dk) = e−
dk

2

σ2 .

For each simulated dataset, the cluster reallocation method was applied using a
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maximum buffer distance of 1,000m and steps of 100m. The two parameters that

control the magnitude of the spatial effect are σ, the standard deviation of the spatial

effect, and ψ, the proportion of the intervention effect that the spillover relates to.

The distance values used were σ = 0, 33.3, 100, 200, and 400m. When σ = 0, there

is no spillover effect. When σ =33.3, 100, 200, and 400m, the distance weighting

functions give a value of 1.0% at 100, 300, 600, and 1,200m respectively.

The distances were chosen as they reflect different scenarios, that may be present

when using the method. The scenarios are: (1) no spillover (2) spillover at less than

the buffer steps (3) spillover at less than half of the total buffer distance (4) spillover

at more than half of the total buffer distance (5) spillover at more than the total

buffer distance.

In scenario 1, when σ = 0m, the spillover effect will be absent regardless of its

strength (ψ = 0 was not used to avoid replication). It is expected that this will result

in a symmetric plot, where the intervention estimate for original cluster definitions

is a maximum.

In scenario 2, when σ = 33.3m, the range of spillover is equal to the first step used

for cluster reallocation. Therefore, although spillover is present, it should not be

reflected in the cluster reallocation plot.

In scenario 3, when σ = 100m, the spillover effect is present over a range of 300m.

It is expected that this will be reflected in the figure when the intervention clusters

are buffered up to 300m.

In scenario 4, when σ = 200m, the range of the spillover effect is 600m, which is just

over half the distance of the total buffering. It is expected that this will be reflected

in the cluster reallocation plot.

In scenario 5, when σ = 400m, the range of spillover is 1,200m, which and is greater

than the maximum buffer size chosen. It is expected that this will be strongly re-

flected in the plot and that it may suggest that spillover is present past the maximum

distance.
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For each scenario, the strength of spillover was varied. The following values were

used for ψ = 0.2, 0.4, 0.6, and 0.8. These values give a range of small to strong

spillover effects. One simulated dataset was calculated per combination. Multiple

simulations for each combination were not required since the effect of spillover on

bias was very marked in the previous simulation study (chapter 7). Further details of

the algorithms used can be seen in Algorithms 6.2, 6.3 and 6.4. The following values

were kept constant for the simulated data: the intercept α= 0.2, the intervention

effect β =2, the intra-cluster correlation coefficient (ICC) was 0.05, the number of

clusters was 30, and the sample size was 5,000 total observations. The locations of

the observations were also fixed for all the simulations.

8.4.1. General characteristics of study area

There were 2,359 (47.8%) observations in the control arm and 2,641 in the interven-

tion arm. The number of observations per cluster was wide ranging with a median

of 128 (min = 26, max = 537). The median distance from control to intervention

observations was 529.5m (min = 20.96, max = 2,661.5m). Sixty seven (2.8%) con-

trol observations were within 100m of an intervention observation, 315 (13.3%) were

within 200m, and 1,118 (47.4%) were within 500m. The study area was densely

populated and the cluster shapes were irregular polygons as can be seen in Figure

8.4.

8.4.2. Cluster reallocation

Cluster reallocation was applied to the five simulated scenarios, as describe in the

previous section. Figure 8.5 display the results from the different simulated spillover

effects.
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Figure 8.4. Map of study area
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0 2.5 5km

8.4.2.1. Scenario 1: No spillover

In the top row of Figure 8.5, the range of the spillover effect is zero. Due to this, all

the cluster reallocation plots in the top row are identical. The cluster reallocation

method behaves as expected, with the original trial estimate being the maximum

intervention estimate, and the intervention effect decreasing as the buffers increase.

The cluster reallocation plots are symmetric around the main intervention estimate

which is marked in red. Though, the individual plots are not exactly symmetric due

to random error. As the size of the buffers increase, the confidence intervals become

larger, reflecting greater uncertainty in the estimates. This is because buffering

results in imbalances between the hypothetical trial arms. Furthermore, in this

scenario, as the buffering move past 500m the change in intervention estimates

flattens out.

8.4.2.2. Scenario 2: Spillover at less than the buffer steps

In the second row of Figure 8.5, the range of the spillover effect is 100m. The range is

equivalent to the first step used for buffering. Although the strength of the spillover

effect is varied, there is little, if any difference between the plots within this row.
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Furthermore, the cluster reallocation plots are consistent with scenario 1, where

spillover is not present. This suggests that the method behaves as anticipated and

raises implications for the choice of step size for the cluster reallocation method. In

this scenario, a smaller step size may help display the spillover effect.

8.4.2.3. Scenario 3: Spillover at less than half of the total buffer distance

In the third row of Figure 8.5, the range of the spillover effect is 300m. Despite the

presence of spillover, the original cluster intervention estimate is the maximum value

for all values of ψ. There is very little suggestion of spillover when ψ = 0.2, where

the cluster reallocation plot is roughly symmetric and consistent with the plots in

scenario 1.

There is a slight suggestion of spillover when ψ =0.4, 0.6, or 0.8. The intervention

estimates are slightly higher when increasing the intervention boundary compared

to increasing the control boundary. However, the asymmetry is marginal and likely

only noticeable as comparison can be made with a plots without spillover.

A further indication of spillover is seen when comparing the original intervention

estimate to those in scenario 1. When ψ =0.6 or 0.8, then the original intervention

estimate is lower compared to scenario 1, which reflects bias from spillover. In

practice this comparison could not be made, as only one cluster reallocation plot

would be created.

8.4.2.4. Scenario 4: Spillover at more than half of the total buffer distance

In the fourth row of Figure 8.5 the range of the spillover effect is 600m. The range

of the spillover is roughly half of the overall buffering distance. Again when the

spillover proportion is 0.2, there is little suggestion of spatial spillover in the cluster

reallocation plot. There is some suggestion of asymmetry when ψ = 0.4, though it

it difficult to assess the presence of spillover in this case.
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There is a strong suggestion of spatial spillover when ψ is 0.6 or greater. The inter-

vention estimates are much higher when the intervention boundary is increase com-

pared to increasing the control cluster boundaries. Furthermore, when the spillover

proportion is 0.8, the intervention estimates for the original cluster definitions is no

longer a maximum. The cluster reallocation method has behaved as expected in the

presence of spillover. However it appears that a strong spillover effect over a large

range is required for the impact of spillover to be noticable in the cluster reallocation

plot.

8.4.2.5. Scenario 5: Spillover at more than the total buffer distance.

In the bottom row of the figure, the range of the spillover effect is 1,200m. The range

of spillover is larger than the total buffering distance used. When the proportion of

spillover is 0.2 this is still little suggestion of spillover in the cluster reallocation plot.

When the proportion of spillover is 0.4 or greater, there is a very strong suggestion

of spatial spillover. In particular when the ψ = 0.8, the plot demonstrates a near

linear relationship between buffering and the intervention estimates. The presence

of spillover is clear, and using a maximum buffer distance smaller than the total

range of spillover, does not impact conclusions in this scenario.

8.4.2.6. Summary of spillover scenarios

The cluster reallocation method has worked as expected under the simulated sce-

narios. Despite this, the simulations have raised several implications for interpreting

the cluster reallocation plots, particularly when small spillover effects are present.

When no spillover is present the cluster reallocation plots are roughly symmetric

and the original intervention estimate is a maximum or minimum. However, the

original estimate can still be a maximum or minimum when spillover is present, as

seen in scenario 3. Therefore, it is not sufficient to conclude spillover is absent based

on the original trial estimate being a maximum or minimum.
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The cluster reallocation plots in scenario 1 and 3 were very similar. Asymmetry due

to spillover may be very slight and difficult to distinguish from asymmetry due to

random variation. Therefore, caution is needed when making conclusions based on

a lack of symmetry in a cluster reallocation plot.

The simulation study in in chapter 7 demonstrated that spatial spillover effects can

bias intervention estimate in CRTs. The cluster reallocation method is consistent

with this results and the bias is reflected in the . The intervention estimate of the

original trial reduces in the presence of spatial spillover, and the cluster reallocation

method can demonstrates spillover more markedly in the scenario 4 and 5 (Figure

8.5).

It appears that the cluster reallocation method is not very sensitive to small scale

or strength spillover effects. These simulations suggest that the cluster reallocation

method will not reflect spillover unless the range and strength of spillover is large.

Combined with the evidence of bias from spatial spillover, this potentially suggests

the presence of spillover in a cluster reallocation plot reflects bias in the means that

the original intervention estimate.
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Figure 8.5. Cluster reallocation plots for simulated scenarios with different strengths and range of spatial
spillover effects
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8.4.3. Cluster reallocation in practice

The results from applying the method to simulated data raise several implications

for the use of the cluster reallocation method. Here I will discuss these points in

turn and provide advice on how to apply the method in practice.

8.4.3.1. Determining the step size and maximum buffer distance

The increase in buffer distance for each step will need to be considered in relation

to the size of the study area, and the potential spillover effect.

For the intervention estimate to change, individuals in one trial arm need to be

reallocated to the other due to buffering. If the step size is too small, then this

may result in no observations being reassigned to a different trial arm. In this case,

each increase in buffer may not provide additional information. Thus, the step size

would be ineffective and a larger step size needed. Furthermore, for a fixed maximum

distance, a smaller step size will result in a greater number of steps being taken,

increasing the computational burden.

On the other hand, choosing too large a step size may make it hard to determine

whether a spillover effect is present. In the simulated scenarios, when a spillover

effect was only present up to 100m, then using steps of 100m meant the cluster

reallocation plot did not reflect any spillover. Clearly it is inappropriate to use a

step size that is larger than the range of the spillover. Therefore, choosing too large

a step size may be insensitive to the scale of the spillover effect and result in missing

important changes in the intervention.

A further aspect that needs to be determined is the maximum buffer distance. In

scenario 5, stopping the buffering before the functional distance lead to an under-

estimate of the range of the spillover. However, this implication did not affect the

ability to detecting the presence of spillover. The maximum buffer distance needs to

be larger than the scale of spillover, and needs to allow individuals to be reallocated
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between trial arms. It appears that the choice of step size is of greater importance

than the maximum buffer distance chosen.

In order to determine the step size for buffering, distance to nearest intervention

participants can be calculated. From this, the minimum meaningful distance for

cluster reallocation within that data can be calculated. For example, if no individ-

uals is within 50m of the intervention, then the step size will need to be at least

50m. Considering the maximum distance will inform the maximum buffer distance.

There is clearly no point in buffering past the maximum distance, as there will be no

observations to compare. Categorising the distance distribution will help to deter-

mine how many people would be reallocated for each step size. This helps to avoid

having steps where no one is reallocated.

The cluster reallocation method can then be used with a step size greater than the

minimum distance, and total buffer distance less than the maximum distance. As

the method is exploratory, multiple step sizes, and differing maximum distances

could be attempted. If computational time is an issue, a larger maximum distance

with large steps can be used to initially explore for spillover. Following this, smaller

maximum distances with smaller step sizes could be used. If spillover is present

when using larger steps, then consideration of smaller steps is likely not needed.

8.4.3.2. Imbalance in trial arms

A further factor that will also affect the maximum buffer distance is the imbalance

in the hypothetical trial arms. Participants are either continually reallocated to

the control or intervention arm, therefore, as the buffering increases, the imbalance

between the trial arms increase. Eventually all participants will be in one arm of

the trial, and a comparison can no longer be made.

It is important to consider this imbalance in the interpretation of the results.

Changes in intervention estimates where the buffers are large, and imbalances severe,

should be treated with caution. A possible adaptation for the cluster reallocation
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is presented in Figure 8.6, which was taken from chapter 5. Here, a bar chart is

presented below the cluster reallocation plot, each bar represent the proportion of

the participant in the intervention and control arm. As can be seen from the lower

part of Figure 8.6, the arms are very unbalanced when the buffer is at 1000m. In

contrast to the other plots in this chapter, a lower intervention effect is a stronger

effect as the trial estimated a standardised mortality ratio (SMR).

Figure 8.6. Cluster reallocation plot with bar chart for displaying imbalances in
trial arms (Taken from Chapter 5)
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8.5. Summary

This chapter has proposed a method called cluster reallocation for assessing spillover

in geographical CRTs. It involves reassigning observations to the control or inter-

vention arm based on their proximity to cluster boundaries, and repeatedly fitting

the main trial model to the new trial arm definitions. The approach is agnostic

towards the analysis method used in the CRT. Thus, the method can be applied

regardless of the type of outcome. This also allows a one- or two-stage method to

be used for the comparison. Therefore, it could be applied when there are a small

number of clusters, although it may be difficult to measure spillover in such a set-

ting. At present. it is only applicable for CRTs where the clusters are polygons and

the observations are o points inside the polygons.

The method draws inspiration from computationally intensive methods such as boot-

strapping, permutation tests, and GWR. The approach requires repeatedly applying

models to data, and therefore is potentially not feasible for complex models that take

a long time to run. Though, typically CRT models consist of a generalised linear

mixed effects model with a single random effect for cluster or a generalised estimat-

ing equation which have a lower computational burden compared to permutation

tests [8].

The main output of cluster reallocation is a graphical display showing the change in

intervention estimates for different cluster boundary definitions. Several examples

of cluster reallocation plots were given and described in this chapter. The plots

provide an indication of the presence and range of spatial spillover effects.

A range of simulated conditions were used to test the method. Cluster reallocation

performed well, demonstrating that it can be used to detect spatial spillover effects.

However, the simulation identified that results are reliant on the buffer size, and step

sizes chosen. When the step size is smaller than the range of spillover, the method

will not reflect spillover. In addition, it is important to note that larger distances of

buffering will result in imbalances between the control and intervention arms. This
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is reflected in the size of the confidence intervals of the estimates with large trial arm

imbalances. The step size and maximum buffer distance can be chosen by assessing

the spatial distribution of the observations. Further to this, and an adaptation of

including a bar chart in the cluster reallocation plot, helps to indicate when trial

arms are imbalanced. Further tests will be needed to assess how well it reacts to

other types scenarios such as negative spillover effects.

In conclusion, the cluster reallocation method provide a relatively simple approach

for assessing for the presence of spatial spillover in CRTs. The method performed

well in simulated conditions and further applications to real data and other simulated

scenarios is desirable. Work is planned to create an R package so that the method

can be used by a wider audience.
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9. Discussion

9.1. Overview

In the previous eight chapters, I have provided a detailed consideration of spatial

effects and methods in relation to cluster randomised trials (CRTs). In this sec-

tion, I review and synthesise the key points of the PhD, considering the strengths

and limitations of the work. Following this, I will discuss implications for current

practice, and possible directions for future work beyond the PhD.
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9.2. Summary of findings

The main aim of this thesis was to explore the use of spatial analysis methods within

cluster randomised trials (CRTs). Specifically, to improve and develop knowledge of:

methods that can be applied to CRTs, the impact of spatial effects on trial results,

and the additional utility that can be gained by considering the spatial context of a

CRT.

This aim led to the following objectives:

1. Describe and frame CRTs in relation to spatial data and summarise the im-

plications for spatial analysis (chapter 2).

2. Describe and identify spatial analysis methods that have been previously used

in CRTs by conducting a systematic review (chapter 3).

3. Apply and assess a range of appropriate modern spatial methods to existing

CRT data, in order to analyse the effect of spatial autocorrelation and spatial

spillover effects on CRTs results (chapters 4 and 5).

4. Evaluate the impact of spatial effects and the utility of spatial models in the

analysis of a CRT by means of a simulation approach (chapter 7 with chapter

6 providing background).

5. Develop methodology to assess the presence of spatial spillover in CRTs (chap-

ter 8 and also applied in chapter 5).

In this section, I will discuss the main findings of the PhD in relation to these

objectives. Throughout the thesis, and particularly in the applied papers, greater

weight has been given to epidemiological findings due to journal conventions and

the intended audiences of the publications. However, in this discussion I will give

equal weight to the methodological findings, as methodology is a core consideration

of the thesis objectives.

219



Discussion

9.2.1. Objective 1: Describe and frame CRTs in relation to

spatial data and summarise the implications for spatial

analysis.

CRTs are well used in epidemiological studies and many are implicitly spatial. Trial

design and management often relies on knowing where observations and clusters

are located to administer an intervention or survey a participant. Although many

published CRTs may include maps of the trial context, most do not conduct relevant

analyses that are spatially explicit.

In chapter 2, a framework was proposed that related spatial data types to CRTs.

Using a vector based spatial model, a CRT can be represented in terms of points,

lines, and polygons. CRTs can take various forms dependent upon the units of

observation and how they are clustered. A typical CRT that observes individuals

within geographical areas could use points and polygons respectively, however in a

school-based intervention a cluster might be best represented as a point. Exam-

ining the spatial representation of CRTs exposed how trials that are comparable

in design, and often analysed in the same way, could be conceptualised as having

distinct spatial representations. Similarly, a standard CRT analysis would analyse

a household CRT and a workplace CRT in the same way, however when estimating

spatial effects, the relevant spatial metric for these trials can differ.

Chapter 2 also described how CRT data differs from those traditionally analysed in

the three fields of spatial statistics (1. Point process, 2. Geostatistical, 3. Areal).

CRT data does not fit neatly within a single area of spatial statistics. Geostatistical,

and areal methods were considered most appropriate for CRTs, as the locations of

the data are typically fixed. This lead to the application of cluster level (areal) and

observation level (geostatistical) methods being applied in the PhD. Specifically, the

Besag, York, and Mollie model (BYM) and Gaussian Process models (GPm) were

tested further through simulation studies (see appendix C for a detailed overview of
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these models).

Consideration of the types of spatial representation, common CRT data, and spatial

modelling approaches helped to determine which methods were most appropriate

for the PhD. A particular focus on the spatial representation of observations and

clusters highlighted that tractable spatial CRT analysis models exist that have seen

little or no use in the literature to date. For instance, a CRT can be conceived

with line-type observations and clusters that are in points, perhaps representing

the movement trajectories of individuals tied to particular households. Objective 1

also demonstrated that CRTs presented an uncommon analysis challenge, seemingly

straddling several distinct areas of spatial statistical research. Understanding how

this challenge had been tackled to date was the remit of objective 2.

9.2.2. Objective 2: Describe and identify spatial analysis

methods that have been previously used in CRTs by

conducting a systematic review.

The systematic review in chapter 3 demonstrates the relative paucity of published

research that uses spatial analysis methods in CRTs. The ten papers found in

the review represent a small proportion of CRTs that have been published. This

suggests that spatial effects are not often considered in this area. Furthermore,

despite evidence of spatial effects in the papers reviewed, they were rarely adjusted

for in the primary analysis of the trial. Thus, there were few examples to draw upon

when deciding how to conduct a spatial analysis of a CRT.

The review identified two approaches to analysing spatial data in CRTs; spatial

variables and spatial modelling. The spatial variable approach includes a proximity

based measurement as a covariate in a model. The spatial modelling approach in-

corporates spatially structured random effects in a model. On reflection, the spatial

variable approach relates to measuring spatial spillover, and the spatial modelling
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approach relates to accounting for spatial correlation.

All thirteen trials in the review found evidence of a spatial effect within their studies.

There was evidence to suggest that accounting for spatial structure affects both the

precision and point estimates of intervention effects, and failure to do so could give

inaccurate results [1, 2]. Silcocks & Kendrick demonstrated that spatial models

fitted better than a standard CRT random effects model, by comparing the Akaike

information criteria of the models [1]. However, the study of Silcocks & Kendrick

was mainly focused on multi-membership, where observations in CRTs are members

to more than one cluster, which differs slightly to the focus of spatial effects in this

thesis [1].

The literature review highlighted that the specific research question under study

could influence the appropriateness of a given analysis method. The use of relevant

spatial models can produce a better fitting model that reduces the biasing effect of

spatial correlation on model estimates. However, when the research question asks

specifically about the effect of spillover, the spatial variable approach allows for a

separate estimate of the spillover effect to be made. The analysis methods found in

the literature review were subsequently updated and applied to objectives 3 and 4.

9.2.3. Objective 3: Apply and assess a range of appropriate

modern spatial methods to existing CRT data, in order to

analyse the effect of spatial autocorrelation and spatial

spillover effects on CRT results.

Chapters 4 and 5 applied spatial analysis methods to the analysis and reanalysis of

real CRTs. The research in chapter 4 was part of a contemporary CRT of the oral

polio vaccine (OPV), and demonstrated an applied spatial analysis of poliovirus

shedding transmission from the OPV. The chapter involved mapping the spatial

data of the trial over time, and the use of spatial variables in regression models.
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In comparison, chapter 5 was a reanalysis of an existing CRT of insecticide treated

bed nets, which had previously demonstrated evidence of spatial spillovers, using a

range of modern spatial analysis methods.

In chapter 4, the spatial variables provided little extra insight, and it appears that

household locations and spatial distribution have limited utility in predicting the

transmission of poliovirus shedding. The spatial variables used were ‘distance to

nearest shedding’ and ‘the number of individuals shedding within a certain distance’.

It is possible that other measurements might better represent spatial proximity,

particularly concerning individual mobility, however, with only household location

available, this was as granular a spatial analysis as could be conducted on these

data.

Despite the limited benefit of spatial variables, the value of spatial visualisation was

very apparent. In this case, mapping the data over time showed that transmission

occurred rapidly over the study area, and this may explain why the spatial mod-

els were less relevant. Since transmission in this context is faecal-oral, it implies

that either more detailed spatio-temporal data are required, or that transmission is

perhaps a spatial and a social process.

From an epidemiological perspective, the chapter supported the global cessation

of OPV [3, 4]. It highlighted that poliovirus transmission shedding is likely more

present than previously thought. This may explain why the year for eradication of

polio has been delayed multiple times [5].

In chapter 5, a range of spatial methods were used to examine the existence of

spatial spillovers. It also considered the impact of spatial effects on the conclusions

of a CRT of insecticide treated nets (ITNs). The chapter demonstrated the benefit

of collecting GPS data beyond the creation of maps. The analyses only required

GPS coordinates, did not necessitate any new data collection, and could be applied

to previous geographical CRTs.

The analyses of chapter 5, were split into 3 parts: (1) exploratory spatial data

223



Discussion

analysis; characterisation of spatial dependence, heterogeneity, and spillover; (2)

spatial modelling of the intervention effect to estimate the true intervention effect

in light of any anticipated spatial effects; (3) analysis of distance based spillover and

interaction with the intervention to characterise the magnitude of spillover and the

functional distance over which the spillover effect is present.

Exploratory spatial data analysis demonstrated the utility of Moran’s I and ge-

ographically weighted regression (GWR) to explore spatial patterns in the data.

These approaches were strongly suggestive of a spatial pattern. The utility of the

join count statistic was less clear.

Multiple approaches strongly suggested evidence of a positive spatial spillover effect

due to being near households that use bed nets. Allowing for the detailed spatial

correlations and spillover effects did not change the primary conclusions of the trial.

It was unclear whether the spatial models were beneficial compared to the standard

one stage CRT model. Consistent conclusions for spatial and non-spatial models

may suggest that the intervention estimate was robust to the spatial effects. Alter-

natively, it may be that the spatial models were just as susceptible to bias as the

non-spatial models. Chapter 7 suggests that if the magnitude of the spatial effect is

large then the results of the CRT will have been biased. Considering that positive

spillover was present, this would suggest that ITNs are actually more effective than

previously thought. However, if the magnitude of the spillover was small, which it

appears to be, then it likely had little impact on the intervention estimates.

The novel ‘cluster reallocation’ method was used for the first time and proved well

suited to the bed net trial. Cluster reallocation was also suggestive of a spatial effect

and the method will be discussed further in section 9.2.5.

These analyses add to the growing literature on both the effects of ITNs on mosquitoes

and the spatial analysis of CRTs [6, 7].

Working with real CRT data suggested that the analysis of CRTs can benefit from a

spatial approach, however benefits derived as much from exploratory spatial analysis
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and visualisation as they did from spatial statistical modelling approaches. In fact,

the practical application of spatial models revealed uncertainty as to the additional

benefit of a spatial model over a standard approach to analysing CRTs. A greater

understanding of the situations in which spatial spillover might bias results obtained

by conventional approaches to CRTs was needed and became the focus of objective

4.

9.2.4. Objective 4: Evaluate the impact of spatial effects and

the utility of spatial models in the analysis of a CRT by

means of a simulation approach.

A simulation approach was used to establish whether spatial effects are an issue for

CRTs and whether spatial models can help resolve bias brought about by unobserved

spatial processes. As the spatial simulation of CRTs is novel, as far as I am aware,

and approaches to simulating spatial correlation in general are not well known, this

objective is split between two chapters. Chapter 6, introduces the methods for

simulating a spatial CRT and provides a simple exemplar, while chapter 7 simulates

a realistically complex CRT and focusses on evaluating the implications of differing

spillovers.

In chapter 7, several algorithms were described to simulate spatial effects. Fol-

lowing the outcomes of the literature review (objective 2), approaches focused on

both spatial variable and spatial modelling methods. A range of possible spatial

variable metrics were considered, however when creating spatial spillover effects, it

was evident that the parameterisation of a distance weighting function was more

important than the choice of function itself. The Gaussian weighting function has

a straightforward interpretation and therefore was chosen for future simulations.

When considering the simultaneous autoregressive (SAR) spatial modelling algo-

rithm, increasing the level of spatial correlation resulted in larger simulated values.
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This meant that for large values of spatial correlation the simulated values in the

control and intervention arms increased, as opposed to the simulated spillover effect

which only increased the values of the control arm. Despite this, it was considered

important to include a spatial correlated scenario in the simulations. Furthermore,

although a spillover effect is generally conceptualised as the proportion of an inter-

vention effect, the presence of spillover from multiple participants could result in the

spillover being larger than the intervention effect itself. Therefore, the SAR model

may be a more realistic way of representing the spatial effects.

The realistically complex simulation study in chapter 7 showed that CRT results can

be affected by the presence of spatial spillover or spatially correlated intervention

effects. The simulated spatial effects resulted in biased estimates and reduced the

coverage of the models. The spatial spillover biased the estimates towards the null,

and the spatially correlated intervention effect biased the estimates away from the

null. In contrast, spatially correlated errors did not impact on the bias or coverage

of the standard one stage CRT model. This implies that when a spatial process

is unrelated to the intervention it will not affect the results of a CRT, which is an

encouraging finding for the validity of CRTs in general.

Contrary to expectations, the use of spatial models did not help alleviate issues of

bias and coverage in the presence of spatial effects. The models were consistent

with the non-spatial model, and did not appear to provide improvements. This has

implications for the conclusion of the ITN trial, suggesting that ITNs are potentially

more effective than previously thought, as discussed in the previous objective. It

also suggests that extending the spatial variable approach may be a more worthwhile

focus for including spatial effect in analyses of CRTs in comparison to spatial mod-

elling. For this reason, a simple diagnostic analysis tool was developed in response

to objective 5 that would be sensitive to spatial spillovers.
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9.2.5. Objective 5: Develop methodology to assess the presence

of spatial spillover in CRTs.

Cluster reallocation was proposed as a method to explore spatial spillover effects in

CRTs. Spatial models can be complicated and are more burdensome to implement

than established conventional CRT analysis methods, which may inhibit the use

of spatial methods in CRTs. There was a strong motivation to provide a method

which could be used to assess the presence spatial spillover, irrespective of the type

of outcome or the analysis model. The cluster reallocation method does not require

any more statistical knowledge, than that required to analyse a CRT.

The main output of cluster reallocation is a graphical display showing the change in

intervention estimates for different trial arm definitions. The plots provide an indi-

cation of the presence and range of spatial spillover effects. The analyst can assess

whether the intervention effect decreases or increases when the cluster boundaries

are varied. Thus, this approach provides a simple way to explore spillover in a wide

range of settings. The method lacks maturity, and will need to be developed fur-

ther to explore how sensitive it is to a wider range of conditions. However, a proof

of concept has been presented that could allow others to explore spatial effects in

CRTs, without requiring detailed knowledge of spatial statistics.

9.3. Strengths

In this section, I will discuss the strengths of the thesis.

9.3.1. Multi-disciplinary

A major strength of this thesis is that is it draws upon several fields of research. The

two overarching disciplines are CRTs and spatial statistics, but the thesis utilises

knowledge from a range of other areas. Causal inference and economics provided
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useful insights for how to think about and measure spillover effects [8–10]. While,

machine learning and probabilistic graphical modeling literature was helpful in un-

derstanding Gaussian process models and Gaussian Markov random fields [11–13].

Vaccine trials provided a rich resource for considering indirect effects of interventions

[14] and Bayesian methodology was necessary for fitting many of the spatial models

[15, 16].

Making sense of literature that stemmed from diverse research areas was not without

challenge. One of the main challenges was understanding the differing terminologies

applied to the same or similar phenomena, see for example, the many related terms

for spillover or contamination in chapter 2. In this thesis, I have tried to provide

links between areas which at first may seem disparate, but without which it would

not have been feasible to create this thesis. Several further strengths stem directly

from this multidisciplinary approach

One strength of drawing from multiple disciplines is that methods can be applied

in a novel setting. To the extent of my knowledge, this thesis applies several spatial

methods to the CRT context for the first time. In chapter 5, GWR is used to explore

the mechanisms of interventions effects and helped to reinforce the existence of a

spatial pattern in the CRT. The join count statistic was also likely applied to a

CRT for the first time to a CRT. This demonstrates that multiple spatial methods

can be applied directly or adapted to a CRT setting, and that they complement the

approaches of spatial variables and spatial models found in the systematic review.

When discussing objective 3, I have made it clear that exploratory and visualisation

based spatial approaches have been as instructive as formal models in understanding

spatial spillovers in CRTs.

Although the collection of data is becoming cheaper in general, the cost of running

trials is still considerable. A further strength of integrating methods from different

disciplines into a new setting is in deriving additional value from existing datasets.

This thesis is a good example of the utility of reanalysing secondary CRT datasets.
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The trial in chapter 5 dates to 1993, and yet 25 years on provided a rich source of

data for the application of many modern spatial methods. Several of the methods

applied did not exist or were not widely available when the data was collected. In

this case, applying modern spatial methods to existing data helped to deepen the

understanding of the intervention effect. Furthermore, secondary analyses can help

to inform future CRTs, and improve our understanding of spatial spillover without

the need for further data collection.

9.3.2. Functional methodology

The spatial methods presented in this thesis require specialist knowledge and skills.

In my opinion, for any trial methodology to be well used in practice it needs to be

readily available, easy to understand, straightforward to implement, and not require

a large amount of additional learning. Therefore, effort was made to develop a

method that relates to the conventional and well understood approaches used in

contemporary CRTs.

The cluster reallocation method does not require any statistical knowledge beyond

that needed for a standard CRT analysis. In addition, the method is similar in

ethos to a permutation test, which are sometimes used to analyse CRTs. This in-

creases the chances of it being used and understood by statisticians who analyse

CRTs. Furthermore, the spatial component for cluster reallocation is the expanding

or contracting (dilation and erosion) of the cluster boundaries. It is hoped that this

provides an intuitive approach that can be understood when presented to individ-

uals without a formal statistical background. This ready interpretability could be

beneficial in policy and planning contexts.

Unless trials are designed to test for spillover, any spatial spillover analysis will be

a non-randomised comparison and subject to bias. To reflect the uncertainty about

the presence of spillover, an exploratory visual method, rather than a hypothesis

testing framework was used. It may be possible to test for spillover more formally
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using a similar approach to normality testing or permutation tests. However, a visual

method was chosen as it avoids a strict decision about whether spillover is present

or absent. Furthermore, displaying a figure rather than a p-value may provide some

transparency, making it easier for the results of a spillover analysis to be debated.

This does not preclude the later development of a hypothesis testing approach that

seeks to examine the null that no spatial spillover is present.

In terms of availability, work is planned to create an R package.

9.3.3. Reproducibility

A scientific finding is strengthened when it has been replicated by multiple inde-

pendent researchers [17]. In medical research, full replication of a study is usually

inhibited due to time and cost. In view of this, Peng et al. propose an attainable

minimum standard, whereby the finding should be computationally reproducible

[17]. Computational reproducibility refers to the ability to reproduce the findings

of a study, based on the original data and/or the code used for an analysis. The

gold standard is to make the data and code of the analysis available and to use open

source software for the analyses [18]. This allows other researchers to check the ve-

racity of the findings by rerunning the code, and independently reanalyse the data.

Unfortunately, confidentiality may prohibit data sharing and a possible solution is

the use of replication studies; where a team of independent researchers are provided

with access to the data and code [19].

In this thesis, all analyses were conducted in R, which is free and open source. This

means that, at least in theory, anyone can access the relevant software and libraries.

Furthermore, the majority of the code written for the thesis is stored on private

Github repositories, which can be made publicly available. Due to restrictions with

collaborators, the code from chapter OPV was not stored on GitHub.

Steps have been taken to improve the computational reproducibility and veracity.

Parts of the code from chapter 5 have been run independently by researchers in
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Switzerland, and the results corroborated. In the absence of a further team of

researchers, I have rerun the code on several different computers, and obtained

consistent results. The process for this was: perform a fresh install of R; pull the

relevant Github repository; load the relevant data to the computer; and then run a

master file which calls all the relevant scripts. I have conducted this process multiple

times for each analyses. For the simulation studies, a smaller number of iterations

were performed to reduce unnecessary computation time.

It is intended that the simulation study chapters will be combined into a paper, and

any data and code for these simulation studies will be made publicly available via

Github. Due to the confidential nature of observation locations in the two applied

papers, it is unlikely the data will be made publicly available. Where possible, I will

attempt to make the code available, so that those who wish, can check the process

used to reach the conclusions of the papers.

9.3.4. Analysis of real world data

Real data are messy, often containing dependencies, missing values, and structures

that differ from those taught in traditional statistics classes [20]. Without the benefit

of analysing real-world data, it is plausible to develop methods which only work well

under a restricted set of conditions, that rarely occur in practice. The use of real data

is invaluable in informing methodology development and helps to create methods

which are useful and relevant for practitioners.

The methodology developed in this thesis stems from the analysis of real-world

data. I was fortunate enough to have access to data from two real CRTs with

spatial information. The trials had different aims, were of different types, and were

set in different contexts. The analyses helped to inform the direction of the thesis

and forced consideration of how well a single spatial method can be generalised to

all CRTs. For instance, the spatial variable approach was of limited utility in the

OPV study in chapter 4, but was useful in ITN trial in chapter 5. In this example
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the usefulness was a function of the context of the CRTs, as opposed to differences

in design. Access to real data also allowed for the cluster reallocation method to

be tested outside of a simulated environment, thus demonstrating that the method

could be applied in practice.

9.4. Limitations

Specific limitations of this thesis have been described at the end of each chapter.

Here, limitations that affect the overall conclusions of the thesis will be discussed,

and attempts have been made to minimise overlap.

9.4.1. Focus on conceptually simple CRTs

The CRTs in this thesis are typically parallel two-arm CRTs. This ignores the

added complexity that can be involved in CRT design. I do not address the impact

of multiple arms, multiple time points, or innovative designs such as stepped wedge

trials. This stems from the PhD having a greater focus on spatial methods, rather

than CRTs.

The greater focus on spatial methods was intentional, as it was perceived it would

be more likely that a statistician on a CRT may want or need to conduct a spatial

analysis, rather than a spatial statistician deciding to conduct a CRT. Despite this,

it does mean that the impression of CRTs may be simplistic at times and may not

easily generalise to more complex CRT design.

When describing how CRTs are analysed, considerable focus was placed on the one-

stage method. The two-stage method was not explored, and the use of permutation

tests ignored. The one-stage method was chosen as it had a clear spatial analogue.

Furthermore, the two-stage method is more often used when the number of clusters

is small; where it may be hard to detect spatial spillover, and difficult to fit spatial

models. Additionally, permutation tests are computationally intensive, and when
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combined with the complexity of the spatial models may have led to an unaccept-

able computational burden. For the reasons given, these two approaches were not

considered, but they may be utilised in future work.

A further reason for the not considering more complex CRTs designs, is that given

a lack of maturity of spatial analysis in CRTs, it was deemed more appropriate to

start with the archetypal parallel CRT. Otherwise methods may have been applied

in a multi-arm trial with multiple end points, before establishing whether they are

appropriate in the simpler case. Therefore, spatial methods take priority in the

thesis and consideration of further CRT designs, and methods combined with spatial

analyses is left for future work.

9.4.2. Lack of temporal methods

CRT data are not collected instantaneously, and trials may measure multiple ob-

servations per participant at different time points. Additionally, the outcomes may

incorporate time, such as in survival analysis where the outcome is typically time

to an event. In these situations, the incorporation of time into the analysis through

temporal methods may be important and ignoring time could lead to missing notable

features in the data.

In this thesis, there was little consideration of the impact of multiple time points,

and greater focus was given to purely spatial methods. This is mainly due to the

immaturity of the use of spatial methods in CRTs. Temporal methods were used

in chapter 4, where an autoregressive lag structure was included in the model to

account for multiple time points. This approach could be used to incorporate time

into the spatial methods used. Alternatively, an independent random effect could

be included to represent time, which would make observations from the same time

points related, but observations between timepoints unrelated. However, it could be

argued that this form of analysis is a spatial and temporal approach, rather than a

spatio-temporal method which allows space and time to interact.
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The spatial aspects of a trial may also interact with the temporal aspects. For ex-

ample, the introduction of ITN may affect the spatial distribution of mosquitoes

initially, but over time as the insecticide wears off, the spatial distribution could

change. In this instance, spatio-temporal methods would be required. Spatio-

temporal methods have long been neglected, but their use is increasing, particularly

in environmental epidemiology [21, 22]. The temporal approach used in chapter 4

treats time and space as separate parts of a model and does not allow for them to

interact with each other. It would have been exciting to explore spatio-temporal

methods within CRTs, but unfortunately, it was beyond the scope of the thesis.

Therefore, the methods in this thesis may not generalise well to CRTs with multiple

time points, or with spatio-temporal processes.

9.4.3. Simulating realistic spatial effects

A further limitation of the thesis relates to the difficulty of simulating realistic spatial

effects. It is difficult to tell whether the spatial effects simulated in chapter 6 and 7

are representative of real spatial effects in CRTs. Due to a small amount of relevant

data on spatial spillover, and spatial correlation in CRTs, it was difficult to establish

plausible ranges and magnitudes for the effects. Attempts were made to simulate

spillover effects similar to the ranges presented in ITN CRT literature, but those

these ranged from a few hundred meters to distances of several kilometers [23, 24].

Presented with a lack of information, I decided to a simulate a wide range of spatial

effects. This means that the simulation study should include some scenarios which

reflect real world data. However, the main drawback of this lack of knowledge is

that the scenarios where spatial effects did impact of the results of CRT, may be

unrealistic.

Conducting further spatial analyses of CRT will help to provide richer information

on plausible ranges and magnitudes of spatial spillover. This can help to inform

future simulation studies. An alternative approach could be to use mathematical
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modelling to simulate spatial effects in the same way a disease outbreak is simulated.

This may allow for more realistic scenarios to be created as there is a large literature

on the dynamics of infectious diseases outbreaks .

9.5. Implications

9.5.1. Design

This thesis reinforces that careful thought and planning is required for designing

CRTs. Spatial spillover effects may not be relevant in many contexts, but when they

are, consideration of the type of spillover, and whether it is of interest is needed.

The consideration of spatial effect is of particular importance when they stem from

the intervention.

It is more likely that the trial design itself will motivate the types of spatial measures

that are possible, rather than the desired spatial measure motivating the types of

trial. This could result in a lack of meaningful spatial measurements. For example, a

household CRT may preclude distinguishing between the location of the observations

and the clusters. In the analysis of the OPV study, transmission dynamic were not

patterned according to household distribution, and a different design approach may

have helped to detect spatial effects.

The simulation studies showed that spatially correlated errors are unlikely to affect

the intervention effect of a trial. This is reassuring in the sense that it confirms

that randomised comparisons of a CRT are unbiased. This implies that only spatial

effects that interact with the intervention need be considered during the design of

a trial. Moreover, underlying spatial processes can be largely ignored unless they

interact with the intervention.

Spatial analyses depend on the accuracy of the spatial data. Unfortunately, I was

unable to make use of an additional dataset received for this PhD due to inaccura-
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cies with the GPS recordings. There were observations that were not in the correct

country, and points that were located far away from the study area. Whilst methods

exist for interpolating missing attribute values at known spatial locations (e.g. krig-

ing), I know of no methods that allow for the imputation of missing spatial location

when attributes are known. Therefore, if the spatial data is collected during a CRT,

then it should be checked early in the study, and individuals collecting it should be

provided with training.

9.5.2. Ethics

When conducting spatial analyses of existing CRT data, the original purpose of the

spatial data needs to considered. If the data were collected for trial management,

then participants may not have originally consented for it to be included in an

analysis. It is not possible to inform individuals in a trial about all the possible uses

of their data, particularly as methods which can now be applied may not have been

developed at the time of the study. If consent was given for the data to be included

in a map for publication, then this is potentially adequate for further analyses, as

spatial visualisation could be considered as a form of exploratory spatial analysis.

When presenting spatial data, their granularity and identifiability should be as-

sessed. In chapter 4, the maps were initially created using a background which

identified roads and other features. It was determined during the analyses that this

made the households relatively easy to identify, especially due to the small number

of houses. It can be easy to disassociate data visualisations from the real life context

of an analysis, and present maps of potentially identifiable and confidential data.

However, just because data can be mapped does not mean it should be displayed.

It may be useful for the researcher to consider whether they would be comfortable

presenting the map if it was identifying their own location and medical history.

The use of tracking devices in future CRTs requires ethical considerations of the

scale used to record and present spatial data. This scale will relate to the identi-
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fiability of the study area. For instance, in rural settings a distance of 1km may

enable identification of an individual, whereas in an urban setting 1km may provide

anonymity. Furthermore, the time scale needs to be considered, a smaller time scale

provides more reliable data, but also increases the identifiability of participants. A

potential approach is to ask for consent to collect granular data which is useful for

analysis, but ensure that only aggregated spatial data is presented.

One possible negative effect of collecting such detailed spatial data, is that it could

deter some individuals from participating in the study. The knowledge that their

location will be kept and analysed in the future may be unnerving. Therefore, a

possible implication of incorporating spatial analyses in CRTs, and recording spatial

data may be that fewer participants want to enrol in studies.

9.6. Future work

There are many ways in which the work presented in this thesis could be extended

to provide further understanding of spatial analyses and spatial effects in CRTs.

9.6.1. Extend the cluster reallocation method

The cluster reallocation method provides an easy-to-understand approach to explor-

ing spatial spillover in geographical CRTs. There are several aspects that could be

explored further with the method.

Instead of spatial proximity based on cluster boundaries, the distance between ob-

servations could be used for reallocation. A network could be formed using the

nearest neighbours of the participants. This would allow reallocation to be based

on the status of the nearest neighbour. For instance, a control observation that is

nearest to an intervention observation would be reallocated to intervention. Fol-

lowing this, a control observation who is a second neighbour with an intervention
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observation would be reallocated. This approach would require extending or chang-

ing the code used for the method. This may help the method to be applicable

beyond CRTs where the clusters are polygons and the observations are points. This

approach would allow different measures of connectivity such as a social proximity,

thus further generalising the method.

The output of cluster reallocation could also be extended. At present a single

cluster reallocation plot is presented that represents the change in the effect estimate.

There may be scope to present summary statistics alongside the visualisation. For

instance, the average, or maximum estimate from increasing the intervention or

control boundaries could be presented alongside the original cluster estimates. These

values would complement the visual approach.

The models used calculated a relative effect size, and this was appropriate when

assessing for positive spatial spillover. When assessing for negative spatial spillover,

the cluster reallocation plots will likely look consistent with those of no spillover.

Using an absolute effect estimate or presenting the absolute values in each trial arm

is a possible way to assess for the effect of negative spatial spillover. Thus, different

output metrics could be considered.

The use of the method will rely on accessible software. Therefore, future work will

include developing an R package for the cluster reallocation method. Initially an

attempt will be made to develop a function that can replicate the way the method has

been used in the thesis. Following this, the extensions discussed will be developed

and tested within the package.

9.6.2. Further simulations

The simulation study in this thesis has demonstrated that spatial effects can be a

problem in CRTs. Building on this, there are several spatial and CRT characteristics

that were fixed during the simulations that could be explored further.
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The effect of different spatial structures could be explored by simulating non-random

patterns. The study in the thesis simulated assuming spatial randomness. As dis-

cussed previously, this assumption is unlikely to reflect true neighbourhood struc-

tures, which are often clustered. Clustered patterns could be simulated, with few

or many observations near the borders; road networks could be used for simulating

clustered patterns; or real CRT data could be used and simulated values attached

to the actual household locations. These approaches may increase the realism of the

simulated spatial data.

The spatial structure of the observations was also kept fixed for all the simulations.

In addition to using different types of structures, new point locations could be

created for each iteration of the simulation study. This would remove the dependency

of the results on any particular type of structure. However, these approaches may

add considerably to the computational burden for the spatially correlated approach

as a new spatial weight matrix would need to be calculated for each new structure.

Changing the number of observations and the number of clusters could also be

investigated further. Presumably, spatial spillover is more likely when the number

of observations is high compared to the number of clusters. The effect of changing

the number of observations for a fixed cluster size could be investigated to test this.

Alternatively, a fixed sample size could be used, and the number of clusters could

be varied. This might also help to determine whether there is a required number

of clusters before spatial effects impact results and whether the spatial methods

become unfeasible to use for large numbers of clusters and observations.

In combination with the quantity of the cluster and observations, the spatial extents

could be varied. Simulations could be conducted where study areas are changed in

size, or a minimum distance is established between observations. Beyond being in-

teresting in itself, this type of simulation may allow for an estimation of an optimal

study size, or number of clusters for a given area in a given context. When in-

formation is available about a spatial spillover effect, then a range of aggregations
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(cluster definitions) could be simulated over the proposed study area. This could be

combined with sample size calculations to determine the most effective number of

clusters needed to reduce (or measure) spatial spillover, whilst also estimating the

main effect of the trial.

A further aspect that was not explored was the impact of the intra-cluster correlation

coefficient (ICC). I hypothesise that decreasing the ICC will reduce the impact of

spatial spillover as the power of the trial will increase, and increasing the ICC will

increase the impact of spatial effects as power is reduced. Alternatively, a greater

ICC may result in more variability and thus magnitudes of the spatial effects may

be smaller compared to the magnitudes of the simulated values.

The magnitude of the intervention is another factor that could be varied. A value

of 2.0 was chosen in the study in chapter 7. Intuitively, it is likely that a smaller

intervention effect will be more affected, and a larger intervention effect will be less

affected. However, if the spatial effect is based on the magnitude of the intervention,

then perhaps the impact is independent of the scale. This aspect is probably of less

interest compared to the other study characteristics, but it could be varied within

the other studies rather than being a specific study by itself.

9.6.3. Spatial models and spillover variables

The simulation study suggested that spatial models were also subject to bias. Al-

though only two types of spatial models were assessed, they provide the foundation

for a wide range of other spatial models. Spatial filtering and the use of copulas

are approaches that are different from the considered methods and may be rele-

vant[25, 26]. Testing a broader range of spatial models, would help to extend the

generalisability of the results from the thesis.

In contrast to the spatial modelling approach, an alternative and perhaps more

fruitful area of future research could be to develop spatial spillover measurements.

The spatial variable approaches found in the literature made specific assumptions
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about the spatial mechanism. Furthermore, they were context dependent. One

possible solution is to develop a measure of proximity that makes fewer assumptions

about the mechanism of the spillover effect. If such a general way of measuring

proximity could be determined, that takes into account the proximity, density, and

characteristics of nearby individuals, then it could be used in a variety of settings.

9.6.4. Application to further trials

In this thesis, spatial methods were applied to two existent trials. The systematic

review also found few examples of spatial methods used in CRTs. Given the utility

of spatial methods for secondary analysis, an obvious area of further research is to

analyse more existing CRTs. A clear choice would be to conduct analyses on more

ITN trials. A further area that received little attention in the PhD is primary care

trials.

The systematic review in chapter 3 found several CRTs related to mosquitoes where

spatial analyses were performed. Similar analyses to chapter 5 could be repeated

to help provide a fuller picture of how often spatial effects are present in practice.

Assessing the magnitude of spatial spillover in a range of trials could also be used

to determine plausible ranges of spillover, providing context for the results from the

simulation study in the thesis.

It would have been interesting to explore the impact of spatial dependence in primary

care trials as per Silcocks and Kendrick [1]. This may have been an area where the

spatial dependency models are more applicable. An additional interesting aspect

of this trial design is that the space may be dynamic. If the definition of the

primary care areas change during the course of the trial, then this will raise further

implication for the analyses, such as how membership to a cluster is affected.

These two types of trials may make use of different types of spatial methods, further-

ing the range of spatial methods that are applicable to CRTs. In addition, reanalysis

of existing CRT from a spatial perspective provide an exciting opportunity to gain

241



Discussion

extra utility from already collected data. Applying spatial method to a broader

range of CRT contexts could lead to further epidemiological and methodological

understanding and development.

In this thesis, spatial methods were applied to two real trials. It would be interesting

to apply spatial methods to a number of other CRTs, where spatial information is

available. An obvious choice of CRT for further analyses would be ITN trials. An

area of interest which received little attention in the PhD is primary care trials.

9.7. Concluding remarks

This PhD set out to explore the use of spatial methods within the analysis of CRTs,

and provides one, if not the first, extensive consideration of the subject. The col-

lective findings highlight that the use of spatial methods in CRTs is rare, and the

presence of spatial effects can impact CRT results. However, the standard CRT

one-stage approach is typically robust to small scale spillover effects. Consideration

of the spatial dependence of observations appears to provide little extra utility in

the main analysis of a trial. Despite this, spatial methods help provide additional in-

sights into the mechanism of interventions, and are well suited to secondary analyses

of CRTs, especially with the increasing collection of GPS data in CRTs.
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C. Spatial modelling with random
fields

C.1. Introduction

The conditional autoregressive (CAR) and simultaneous autoregressive (SAR) mod-
els are two of the most commonly used spatial models in the analysis of lattice or
areal data (discrete spatial processes) [1]. The SAR model was introduced by Whit-
tle in 1954 [2] and the CAR model introduced by Besag [3] some 20 years later. Due
to the mathematical background of the authors and intended audience, the relation
between Markov random fields (MRFs) and these models was clear at the time (See
Comments [3]). Since then the use of CAR and SAR models has expanded beyond
the Mathematical and Statistical communities into fields such as Geography, Spatial
Econometrics, Epidemiology, and many others [4–6]. This has led to a blurring of
the connection between MRFs and the SAR and CAR models.
CAR models were originally presented as a way to directly model spatial dependence
in observed data [7]. When Besag presented the CAR models the unifying framework
of generalised linear models (GLMs) were still in their infancy [8]. Since then spatial
modelling has been incorporated into the GLM framework by use of generalised
linear mixed models (GLMM) [9, 10]. This fusion allows spatial processes to be
modelled separately from the outcome of interest [6, 10]. For instance, a binary
outcome can be modelled with a binomial distribution, and the spatial process can
be modelled as continuous assuming a Gaussian distribution. This subtle difference
in model formulation provides great flexibility but leads to further difficulty by what
is actually meant by a CAR model.
This chapter considers SAR and CAR models in the context of random fields, high-
lighting the connection between the spatial methods and the Statistical terminology.
Starting with the origins of the SAR and CAR models to give context for their place
in the modern approach of hierarchical models or GLMMs. I will outline what ran-
dom fields are and how they relate to random variables. This provides a foundation
from which to discuss spatial statistics from a more general platform of processes
and fields.
The methods used for fitting the models is discussed, with particular focus on In-
tegrated nested Laplace approximation (INLA) an approximate Bayesian fitting
method. Finally, an exciting link between the geostatistical and areal data analysis
methods is discussed.
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C.2. Origins of SAR and CAR

The SAR and CAR models were developed as spatial extensions to time series
methods [1, 7]. The conditional and joint specification of distributions are equivalent
in time series analysis, because time has a specific direction from past to future. In
space, the joint and conditional distributions are not equivalent, as space does not
have a fixed direction.
The SAR model is the spatial analogue of the joint distribution approach of time
series [1]. Introduced by Whittle [2], the model is equivalent to solving a series
of simultaneous equations relating the outcome variable to observations that are
nearby. Originally presented as a class of stationary processes on a plane, the SAR
model has become ubiquitous in spatial econometrics but is used less frequently in
Spatial statistics as it struggles to be extended to beyond Gaussian lattice data [11].
The CAR model is the spatial analogue of the conditional distribution approach of
time series [1]. Introduced by Besag [3], some 20 years after Whittle’s paper, the
conditional approach was considered controversial at the time (See comments in [3]).
The attractiveness of this approach is that specifying the conditional distribution
is much easier than specifying the joint distribution. However this would not be
sufficient without Besag’s Lemma [11] [Often referred to as Brooks Lemma] which
demonstrates that you can obtain the joint distribution from a carefully defined set
of conditional distributions. The Intrinsic CAR (ICAR) model is a special case of
the CAR model where the precision matrix is not of full rank [12].
Random fields models provide a framework for spatial modelling that includes the
CAR and SAR approach as well as many of the modern-day approaches to spatial
modelling [13]. To highlight the connection, we first need to define what is meant
by a random field.

C.3. Random variables, processes and fields

The relation between random variables, stochastic processes, and Gaussian Markov
random fields is presented visually in Figure C.1.
A stochastic process (SP) is a collection of random variables [14]. Typically, they are
indexed by time, where each random variable relates to a realisation of an experiment
at a specific time point [15]. A stochastic process is also called a random process,
random function, and a stochastic function. An example of a stochastic process is
the maximum temperature each day, the maximum temperature for a given day is
a random variable, and the index is the day.
Further names are used to describe special types of stochastic process based on
the properties of the random variables, two types we will describe are a Markov
process and a Gaussian process (GP) . A Markov process is a stochastic process
where the future values in the process depends only on the present value (Markov
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property) [16]. A GP is a stochastic process where all combinations of the random
variables follow the multivariate normal distribution (MVN) [17, 18]. GPs are often
defined as a Gaussian distribution with a mean and covariance function, as opposed
to the constant mean and variance of a standard Gaussian distribution [13, 18].
Continuing our example if the maximum temperature today is only related to the
maximum temperature yesterday then it would be a Markov Process. If all the
possible combinations of the maximum temperatures in a stochastic process follow
the MVN then it is a GP.
A stochastic process can also be indexed by space. When it is indexed by space
in two or more dimensions it is also referred to as a random field [19]. Extending
our example, a random field could be the maximum temperature for a given day
in various locations. Similar to stochastic processes, a MRF is a random field with
a Markov property (Markovian). A random field where all combinations of the
random variables follow the MVN is a Gaussian random field [6]. In contrast to
time, space does not typically have a direction from past to future and therefore
the Markov property is extended to refer to neighbours, where random variables are
related to their neighbours [3]. MRFs are also called undirected graphical models
[20].
When a random field is Gaussian and Markovian then it is called a Gaussian Markov
random field (GMRF) [19]. In our example a GMRF would be when the maximum
temperature in a one location is related to locations that are nearby, and when
all the combinations of the possible values that each location can take follow the
MVN. When the precision matrices of a GMRF are not of full rank then they called
Intrinsic GMRFs or improper GMRFs [19].
Although the term random field can be used to describe a stochastic process that is
indexed in two or more dimensions, the distinction is not always used. A relevant
example of this is the use of GPs to describe some spatial models [9]. In this
context the term Gaussian field or GP could both be used but GP appears to be
more prevalent [6, 13]. In this thesis GP will be used instead of Gaussian field.

253



Random Variable (RV)
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Figure C.1. The connection between random variables and Gaussian Markov random fields
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C.4. Gaussian processes and Gaussian Markov fields

Geostatistical data can be modelled as GPs. When point data is collected, there
will be locations between the points where no information is known. In this scenario
a GP with a mean of zero, and a distance-based covariance structure can be used
to model the data. For Areal data distance between polygon can be derived using
centroids but this can be clumsy, and with irregular shaped polygons where the
centroid may be outside the area of interest. A more natural way to model the
data is to use adjacency between the areas of interest and this type of structure can
be modelled using a MRF. For the continuous case the distribution with maximum
entropy [21] is Gaussian [22] and therefore a GMRF is usually used. The GMRF
is used when the spatial process is discrete, and the GP is used when the spatial
process is a real valued and continuous. The CAR and SAR models are usually
defined in the Gaussian case and are GMRFs and the ICAR is an intrinsic GMRF.

C.5. Non-Gaussian outcomes

The GP and GMRF approach can be used to model the outcome directly, however
this would only naturally apply when the outcome is continuous. When Besag
introduced his paper he presented further approaches of the auto-logistic, auto-
Poisson approaches but noted that the auto-Poisson only works for negative spatial
correlation and is therefore quite limited [3]. Cressie has extended this work to
include auto-beta, auto-gamma and further classes of auto models [11] and the
approach of extending auto models for further outcome is an area of active research
[13].
An alternative approach is to use the methodology of GLM [8] and condition on
the spatial process [9]. This allows the outcome to be modelled according to a
distribution from the exponential family and the spatial process to be modelled in
the linear predictor of the model. Here an outcome yk is conditioned on a spatial
process sk where k = {1, ..., K} and represent the location where the observation
was recorded for a binary outcome we can write the model as

yk|sk ∼ Bin(π, n)
sk ∼MVN(µ, σ2Σ)

The spatial process is assumed to be MVN and is modelled separately from the
outcome. Alternatively, we can write the model as
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yk ∼ Bin(π, n)
log(π) ∼ α + sk

sk ∼MVN(µ, σ2Σ)

This approach is described as a Spatial GLM [13], but it is a GLMM as the spatial
process is included as a random effect. More generally it is called a latent Gaussian
model (LGM), as the unobserved (latent) process is assumed Gaussian.
This approach has allowed the auto-normal model to be applied to the error term of
the linear predictor whilst modelling a non-normal outcome. This greatly extends
the uses of the CAR model, and more specifically the Intrinsic CAR model. In a
Bayesian setting the ICAR is no longer a model but is a type of prior distribution.
Really it is a spatially interpretable form of the MVN. This approach allows the
spatial effects to be defined a random effect, a famous example was presented by
Besag, York, and Mollie [23] and is called the BYM model.
The BYM model includes a spatially structure random effect and a i.i.d random
effect. For a count outcome the model can be written as

yk ∼ Pois(λk)
log(λk) ∼ α + vk + uk

Where the spatially structured random effect is vk ∼ MVN(µ, σ2
vΣ) and the i.i.d

random effect is uk ∼ MVN(µ, σ2
u). This model has been widely used in disease

mapping [24, 25].

C.6. Model fitting

The SAR and CAR models can be fitted using maximum likelihood but the ICAR
cannot. The SAR approach does not extend well to random effects and is there-
fore difficult in a hierarchical model setting [10]. The ICAR is difficult to fit with
maximum likelihood methods and the CAR and ICAR approaches extends well to
hierarchical models. These GLMM CAR types of spatial methods typically require
a Bayesian methodology and perhaps this is why spatial statistics was an early
adopter of the Markov chain Monte Carlo (MCMC) techniques [13]. MCMC is a
simulation based approach used to sample from a probability distribution.
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C.6.1. MCMC

MCMC are a group of algorithms that allow simulating from complex distributions
using Markov chains [15]. The methods originate from Los Alamos and work con-
ducted on the atomic bomb during World War II [26, 27]. The algorithms start
with a distribution we wish to estimate (usually a posterior distribution) and then
an algorithm is used to create a Markov chain. Running the Markov chain for a
very long time results in the chain converging to the distribution we wish to esti-
mate [28]. The Metropolis-Hastings algorithm is one of the MCMC algorithms that
can be used [29, 30].

C.6.1.1. Metropolis-Hastings algorithm

Algorithm C.1 Metropolis-Hastings
1: Draw a random starting point θ0 for the Markov chain
2: Choose a proposal distribution p(θ0|θk) such that the probability of the current

value given the previous is positive. (Typically, Gaussian centered around θk)
3: For each iteration k:
4: Generate a candidate θ∗from the proposal distribution
5: Calculate the acceptance probability r = min(p(θ∗/p(θk), 1)
6: Generate a uniform random number u∗ ∈ [0, 1]
7: If r≥ u∗:
8: accept the candidate by setting θ(k+1) = θ∗

9: Else:
10: set θ(k+1) = θk

The beauty of MCMC is that we do not have to know the form of the distribu-
tions we are trying to estimate. This allows estimation of models with very complex
distributions. The downside of MCMC is that it requires many computations, but
this has become increasingly accessible and since the early 90s MCMC has become
available to any researcher with a computer. It has revolutionised statistical com-
puting and had a major impact for Bayesian statistics which was able to move on
from simple conjugate prior models to more realistic and hopefully more insightful
model forms [28].
Although MCMC has helped to make great strides in the types of models that statis-
ticians are able to fit, work still continues on alternative approaches for statistical
inference such as variational Bayes [20] and Laplace approximations.
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C.6.2. INLA

Integrated nested Laplace approximation (INLA) [31] uses Laplace approximation to
estimate the posterior distribution. The INLAmethod is based on three components.
The Gaussian Markov random field (GMRF), latent gaussian models (LGMs), and
Laplace approximation.

C.6.2.1. GMRFs

GMRFs have already been discussed in detail, in brief they are a collection of spa-
tially indexed random variables that are distributed multivariate normal and have
a Markov property [19]. One of the big advantages of GMRF is computational effi-
ciency in model fitting. The Markovian property of the GMRF results in a sparse
precision matrix, meaning that lots of the values of the matrix are zero and do not
need to be involved in computations [31].

C.6.2.2. LGMS

LGMs have been mentioned briefly, and therefore will be described more thoroughly.
LGMs are a subset of structured additive models [31, 32] and encompass a wide range
of models. They can be thought of as a combination of GLMMs and Generalised
additive models (GAMs). GAMs are GLMs which include unknown smooth func-
tions of some of the predictor variables. LGMs can therefore contain fixed effects,
random effects, and smoothed effects.
A Structured additive regression model can be represented as:

η = g(µ) = α + γZ +
L∑
l=1

fl(zl) + ε

Where γZ are the fixed effects and ε is a normally distributed error term. The
term fl(.) is function that can takes different forms such as smoothed effects of the
covariates zl, random intercept or slopes and temporal and seasonal effects. A latent
field can be defined as θ = {α, γ, f1(.)} (a collection of random variables that are
being estimated in the model). Assuming the latent field can be described by a
GMRF then model is a LGM, which includes a models such as [6]:

• Generalised linear (mixed) models.
• Generalised additive (mixed) models.
• Spline smoothing.

258



Spatial modelling with random fields

• Semi-parametric regression.
• Log-Gaussian Cox-processes.
• Spatio-temporal models.
• Survival analysis.

C.6.2.3. Laplace approximation

Laplace approximation [33] (also called Laplace’s method) is a technique based on
Taylor series expansion used to approximate integrals of the form

´ b
a
eMf(z) where a,

b could be infinite, f(z) is twice differentiable andM is a large number . The method
involves approximating the integral using a (multivariate) normal distribution. In
Bayesian statistics calculating the Posterior distribution is equivalent to integration
and thus the Laplace method is one way to calculate the posterior. It is typically
fast as it only requires calculating the mode of the posterior then using as the mean
of a MVN, then it consider the curvature (derivative) of the posterior at the mode
to estimate the variance of the MVN [31]. With Laplace approximation the closer
the posterior is too Gaussian the better the approximation works.
INLA uses Laplace approximation to estimate the marginal distribution of the latent
field and the posterior distribution.

C.6.2.4. Stochastic Partial differential equations

GPs do not have a natural Markov property [6] and therefore INLA does not apply
to these methods as clearly as it does to GMRFs. Fortunately a link between the
continuously indexed GPs and the discrete indexed GMRFs has been proposed [34]
which uses stochastic partial differential equations (SPDEs).
Lindgren et al [34] show that a Matern covariance model (A GP with a constant
mean, and Matern covariance) is a solution to a SPDE. SPDEs can also be solved
by using a finite element method. The finite element method is a process for solving
a larger problem by breaking it down into simpler smaller parts [35]. In the spatial
case this involves approximating an area with a finite number of triangles or a
‘mesh’, then the solution of the SPDE can be represented as the weighted sum
of the vertices of the ‘mesh’. Assuming a Markov property the ‘mesh’ can then be
modelled as a GMRF. Therefore, the GP is a solution of a SPDE, and the SPDE can
be approximately solved by using a GMRF. Moreover, this means we can represent
the GP in the form of a GMRF and use INLA to fit the model. Further details of
the approach can be found in Lindgren et al. [34].
The computation of GPs can be intensive due to dense covariance matrices, therefore
approximating the GP using a GMRF extends the computational advantages of the
INLA approach to continuously indexed spatial process [36]. It also helps to link
the methods of Geostatistics and GPs with GMRF and CAR models [34].
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C.7. Summary

The CAR and SAR models were developed as extensions of the conditional and joint
distribution specifications of time series analysis. The models are a subset of GMRF
models which model discrete spatial processes. Although the terms RFs and SPs
are used in some areas of spatial statistics often in more applied areas the CAR and
SAR models are presented without the overarching theory and structures they relate
to. With this in mind, RFs and SPs have been described in detail showing the link
between random variables and GMRFs. This demonstrates that GMRFs are really
an assumption about how the RVs we are attempting to model are connected and
distributed. They are multi-dimensional equivalents for when the data is assumed
to be normally distributed.
When the CAR was first proposed, the auto-normal, auto-logistic, and auto-Poisson
were presented as separate methods to model continuous, binary, and count out-
comes. This approach has been extended to include other forms of outcomes [11].
An alternative approach involves conditioning on a spatial process and modelling
the outcome and process separately. GLMMs provide a framework for this approach
allowing the auto-normal model to be applied to the spatial process and a range of
distributions from the exponential family to model different types of outcomes. This
greatly extends spatial analysis methods and provide a general formulation for geo-
statistical (GPs) and areal (GMRFs) models.
The SAR and CAR can be fitted using maximum likelihood, however the ICAR
and Hierarchical models typically requires more complex fitting techniques such a
MCMC or INLA. We briefly looked at MCMC and the three main components of
INLA that are LGMs, GMRFs, and Laplace approximation.
The GMRF approach can be extended to point data through the use of distances
but perhaps a more natural way is to model the point data as continuous using a
GPs. GPs do not have a natural Markov property and requires estimations of a
dense covariance function and therefore can be quite difficult to fit. As we have seen
it turns out if you restrict the GP to have a Matern covariance function then it can
be linked to a GMRF as they are both solutions of a SPDE. This helps to provide
a bridge between geostatistics and GMRF models allowing users to model the data
using a GP but benefit from the computational efficiencies of GMRFs.
In summary, this chapter has given an overview of modern day spatial modelling,
showing the connections between the maximum likelihood methods of SAR and
CAR through to the Spatial GLMs that require MCMC and INLA to fit. Although
there is some confusing terminology once clearly defined, it reveals a reasonably
unified approach that appears to be tending towards greater connections between
areal and geostatistical data analysis. This chapter has provided a short review of
spatial modelling approaches that were applied in the PhD.
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