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Abstract
The proportional hazards model represents the most commonly assumed hazard structure when
analysing time to event data using regression models. We study a general hazard structure which
contains, as particular cases, proportional hazards, accelerated hazards, and accelerated failure
time structures, as well as combinations of these. We propose an approach to apply these different
hazard structures, based on a flexible parametric distribution (Exponentiated Weibull) for the
baseline hazard. This distribution allows us to cover the basic hazard shapes of interest in practice:
constant, bathtub, increasing, decreasing, and unimodal. In an extensive simulation study, we
evaluate our approach in the context of excess hazard modelling, which is the main quantity of
interest in descriptive cancer epidemiology. This study exhibits good inferential properties of the
proposed model, as well as good performance when using the Akaike Information Criterion for
selecting the hazard structure. An application on lung cancer data illustrates the usefulness of the
proposed model.
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1 Introduction
The analysis of time-to-event data has been dominated by the use of the semi-parametric Cox model
during the last decades. While extensions to remove the assumption of proportional hazards (PH)
were already discussed in Cox’s original paper, a lot of work has been devoted to improve the
flexibility of hazard-based regression models using flexible functions for both the baseline hazard and
the inclusion of time-dependent parameters, mainly using splines or fractional polynomials1–5. However,
the general structure of those models remained the same: the hazard function was expressed with a
baseline hazard h0 multiplied by the exponential of a flexible function g of time t and covariates
x: h(t;x) = h0(t) exp(g(t;x)). Alternative hazard structures that directly account for time-dependent
effects of covariates have been proposed; one of the earliest alternative to the PH model is the accelerated
failure time (AFT) model, in which the variables have a direct effect on the time to event, in contrast to
the PH model where the covariates affect the hazard function6. More recently, in a series of papers7–10,
Y. Chen and co-authors proposed and studied semiparametric accelerated hazards (AH) models, where
the covariates have a time-scaling effect on the hazard function, thus allowing for a time-varying effect.

In cancer epidemiology using population-based registry data, the quantity of interest is usually the
excess hazard (of death) instead of the overall hazard11–14. The basic idea behind excess hazard models
consists of decomposing the hazard function of death associated with an individual, h(t;x), as the sum of
an excess hazard, hE(t;x), and the general population hazard hP(t; z). The general population hazard is
supposed to correctly reflect the other-causes hazard of death in our population of interest, assuming that
the contribution in the general population hazard of the disease of interest (e.g. a specific cancer type) is
small compared to all others. This excess hazard is interpreted as the hazard that could be due, directly
or indirectly, to the cancer under study. Formally, this can be written as:

h(t;x) = hP(age + t; year + t; z) + hE(t;x), (1)
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where x and z are vectors of covariates, z typically corresponding to a subset of covariates of x, “age”
is the age at diagnosis and “year” is the year of diagnosis (thus “age + t” and “year + t” are respectively
the age and the year at time t after diagnosis). The population hazard hP(·; z) is typically obtained from
national life tables based on the available sociodemographic characteristics (z in addition to age and
year). A survival function derived from the excess hazard hE(·;x) is called the net survival. Net survival
represents a useful way of reporting the probability of survival of cancer patients since this allows for a
fairer comparison of survival rates between different populations or countries15–18, and a non-parametric
estimator of net survival has been proposed recently16. Although the interest in cancer epidemiology
is on a slightly different quantity (the excess hazard instead of the overall hazard), the methodological
developments of regression models have followed the same path than those described above13,19–23 in
terms of the hazard structure adopted.

Our aim is to provide a valuable supplement in the available toolbox for analysing survival data, and
which is applicable for both overall and excess hazard regression models. The proposed approach builds
on top of two recent developments: (i) the general parametrisation of hazard functions7,8, combined with
(ii) the use of a flexible parametric distribution for modelling times to event, the exponentiated Weibull
distribution24. The paper is organised as follows. In Section 2, we describe the general hazard structure,
discuss how the accelerated failure time model, the proportional hazards model, and the accelerated
hazards model are nested within this general structure, and discuss the parameter interpretations for
these models. In this section, we also introduce the exponentiated Weibull distribution, which will be
used to model the “baseline” hazard in the general hazard structure (and the corresponding sub-models)
based on its flexibility and ease of implementation. We also discuss maximum likelihood estimation and
inference associated with these models. In Section 3, we present an extensive simulation study where we
illustrate the inferential properties of the proposed models. In Section 4, we present a data example from
lung cancer epidemiology. Here, we illustrate the usefulness of the proposed models and compare them
against appropriate competitor approaches. We conclude with a general discussion and point to possible
extensions in Section 5. Additional simulations and results are provided in the Supplementary Material.

2 Methods

2.1 The different model structures

We considered the following excess hazard structures (see7,8 and9 for extensive discussion). We express
the different structures below via the hazard function h() and the cumulative hazard function H(),
respectively, according to time t and a vector of covariates xj . We assume that the vector of covariates
does not contain an intercept, in order to avoid identifiability issues. The survival function can be obtained
from the well-known relationship S(t) = exp[−H(t)]. The vector β denotes the unknown regression
parameters.

(i) Proportional hazards model (PH).

hPH
E (t;xj) = h0(t) exp

(
xTj β

)
, (2)

HPH
E (t;xj) = H0(t) exp

(
xTj β

)
.
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(ii) Accelerated hazards model (AH).

hAH
E (t;xj) = h0

(
t exp(xTj β)

)
, (3)

HAH
E (t;xj) = H0

(
t exp(xTj β)

)
exp(−xTj β).

(iii) Hybrid hazards model (HH).

hHH
E (t;xj) = h0

(
t exp(xT1jβ1)

)
exp(xT2jβ2), (4)

HHH
E (t;xj) = H0

(
t exp(xT1jβ1)

)
exp(−xT1jβ1 + xT2jβ2),

where x1j ⊆ xj , and x2j ⊆ xj .

(iv) Accelerated failure time model (AFT).

hAFT
E (t;xj) = h0

(
t exp(xTj β)

)
exp(xTj β), (5)

HAFT
E (t;xj) = H0

(
t exp(xTj β)

)
.

(v) General hazards model (GH).

hGH
E (t;xj) = h0

(
t exp(xTj β1)

)
exp(xTj β2), (6)

HGH
E (t;xj) = H0

(
t exp(xTj β1)

)
exp(−xTj β1 + xTj β2).

The assumptions behind each of these models are different in nature. The basic idea is to include
effects that affect the level of the hazard (time-fixed effects) and the time scale (time-dependent effects)
separately, as follows. In the PH model (2), a unit change in a covariate value have a multiplicative effect
on the hazard, thus leading to a level change on the y-axis of the hazard. In the AH model (3), the effect
of a unit change in a covariate affects the time scale of the baseline hazard (x-axis), thus assuming that
there is a time-dependent effect of each covariate. In other words, exp(β) could be seen as a factor of
how much more (or less) time is needed to reach the same hazard level, as compared to baseline, when
the covariate is increased by one unit. In addition, the AH model does not assume that the parameters
affect the hazard immediately at time t = 0, but “gradually”, which is not the case with the other hazard
structures10. While a “gradual” effect can be useful when estimating a treatment effect, it may not be
justified for other variables; it highlights the usefulness of the HH structure (4). Indeed, the HH relaxes
the assumption of the AH model by allowing some variables to have a proportional hazards effect rather
than time-dependent “gradual” effects. In the AFT model (5), the effect is on the survival time directly
as it can be, in fact, formulated as a log-linear regression model on survival times6. In such models, the
estimated regression parameter for a unit change in one covariate accelerates or decelerates the event
time, thus leading to a time-dependent effect. Notice that the AFT, PH, and AH models coincide for
the case when the baseline hazard is Weibull8. The GH model (6) represents a general hazard structure
that contains, as particular cases, the PH, AH, HH, and AFT models. More specifically, if β1 = 0, then
GH = PH; if β2 = 0, then GH = AH; and if β1 = β2, then GH = AFT.
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2.2 The Exponentiated Weibull distribution
We propose modelling the baseline hazard h0(t) using the Exponentiated Weibull (EW) distribution.
The Exponentiated Weibull distribution is simply obtained by exponentiating the Weibull cumulative
distribution function to an unspecified positive power25. This simple transformation adds a second
shape parameter that, interestingly, induces considerable flexibility to the hazard function. The hazard
function of the Exponentiated Weibull distribution can capture several basic shapes: constant, increasing,
decreasing, bathtub, and unimodal (See Figure 1), making it appealing for survival models26. This
distribution has been recently used in the context of AFT models27, while alternative families of flexible
parametric AFT models have also been studied in28,29. The Exponentiated Weibull probability density
and cumulative distribution functions with scale, shape, and power parameters (σ, κ, α) are given,
respectively, by:

fEW(t;σ, κ, α) = α
κ

σ

(
t

σ

)κ−1 [
1− exp

{
−
(
t

σ

)κ}]α−1

exp

{
−
(
t

σ

)κ}
,

FEW(t;σ, κ, α) =

[
1− exp

{
−
(
t

σ

)κ}]α
, (7)

where t, σ, κ, α > 0. This distribution reduces to the Weibull distribution for α = 1. The corresponding
hazard function is obtained, by definition, as hEW(t;σ, κ, α) = fEW(t;σ, κ, α)/ [1− FEW(t;σ, κ, α)].
The EW distribution is identifiable (See Proposition 1 from the Appendix), and general results about
the identifiability of the different hazard-based models (2)–(6) are presented in8. It was shown that the
GH model is identifiable except for the case when the baseline hazard is Weibull8. This is not an issue
since, as already mentioned, it corresponds to the case when the AFT, PH, and AH models coincide.
Moreover, it has also been shown that the AFT and AH models are not identifiable when the baseline
hazard is flat8 (i.e. exponential), which corresponds to a case when the shape of the baseline hazard does
not change with time, a case of little interest in practice.

2.3 Parameter interpretation
Some clarifications on the interpretation of the parameters estimated from the AH and GH models
seem appropriate as these models are not as well known as PH and AFT models. Notice that these
interpretations directly translate to the HH model as this model is a special case of the GH model.

We start by interpreting the parameters for the AH model (3), as this will facilitate the interpretation
for the GH model. The parameter interpretation depends on the shape of the baseline hazard, which we
classify here as monotone (increasing/decreasing) or not (bathtub/unimodal).

For monotonic baseline hazard, a positive value of β for one unit change in the covariate x means that
x has a harmful (beneficial) effect if the baseline hazard is increasing (decreasing) (see panels (a) and (b)
in Figures S3- S4). A negative value of β means that x has a beneficial (harmful) effect if the baseline
hazard is increasing (decreasing) (see panels (a) and (b) in Figures S1-S2). In other words, a positive
value of β accelerates the progression of the hazard, which is beneficial for the patients if the hazard
decreases and harmful if it increases. On the contrary, a negative value of β decelerates the progression
of the hazard, which is beneficial for the patients if the hazard increases and harmful if it decreases.

If the shape of the baseline hazard is unimodal (or bathtub), a positive value of β accelerates the
evolution of the hazard, thus the maximum (minimum) will be reached sooner (see panels (c) and (d)

Prepared using sagej.cls



6 Statistical Methods in Medical Research XX(X)

in Figures S3-S4). A negative value of β decelerates the evolution of the hazard, thus the maximum
(minimum) will be reached later (see panels (c) and (d) in Figures S1-S2).

From the AH model, it is worth noticing that the general shape will not change (a unimodal shape
will remain unimodal) and that the peak/minimum (if any) reached by the hazards defined by different
subgroups will be at the same level. On the other hand, when using the GH model (6) the parameter β1 is
directly multiplying the time t, thus re-scaling the timescale (accelerating or decelerating, i.e. they play
a role on the x-axis, changing the pace of the hazard’s progression), while the parameter β2 is modifying
the level of the hazard (role on the y-axis, changing the magnitude of the hazard, Figure 1). This can be
clearly seen in the right panels of Figure 1 for the unimodal shape: in panels (a) and (b) β1 is negative,
thus the peak is reached later for patients’ group with x = 1 (dot-dashed grey lines) compared to the
baseline group (solid grey lines), while the parameter β2 changes the magnitude of the hazard (thus the
level of the peak). In panels (c) and (d), β1 is positive, thus the peak is reached sooner for patients’ group
with x = 1 compared to the reference group, while the peak level is changed according to β2. The same
interpretation applies for bathtub hazards (black lines in the right panels in Figure 1), and for monotonic
hazards (left panels in Figure 1), even though for these later the interplay of both parameters β1 and β2
is less obvious to see on the graphs.

The AH and GH models allow a crossover of the hazards (and also of the survival functions). In some
cases, this advantage may lead to difficulties in interpreting clearly the parameters30. Thus, plotting
the hazards according to different covariate patterns is recommended to help clarifying the time-to-
event process compared to reporting only the survival functions. Indeed, the survival probability, being a
cumulative measure, does not help visualising particular features of the instantaneous process31.

2.4 The likelihood function
Let (tj ,xj , δj), j = 1, . . . , n be a sample of times to event from a population of cancer patients
tj > 0, with covariates xj ∈ Rp, and vital status indicators δj (1-death, 0-censored). Let also hP(agej +
tj ; yearj + tj ; zj) be the corresponding population hazard rates obtained from the national life tables
based on the variables zj ∈ Rq , q ≤ p, where agej represents the age at diagnosis and yearj the year of
diagnosis of patient j. The likelihood function of the full vector of parameters ψ is then given by

L0(ψ; Data) =

n∏
j=1

h(tj ;xj)
δjS(tj ;xj),

∝
n∏
j=1

{
hP(agej + tj ; yearj + tj ; zj) + hE(tj ;xj)

}δj
exp {−HE(tj ;xj)} .

Notice that we have removed the term exp
{
−HP(agej + tj ; yearj + tj ; zj) +HP(agej ; yearj ; zj)

}
from the likelihood as it does not depend on the parameters ψ.

In order to obtain confidence intervals for the parameters, we reparameterise the baseline EW hazard in
terms of (κ̃, σ̃, α̃) = (log{κ}, log{σ}, log{α}). Appealing to the consistency and asymptotic normality
of the maximum likelihood estimators (MLEs) of the EW distribution, and the availability of large
samples in the context of cancer epidemiology, we propose the use of asymptotic confidence intervals of

the type ψ̂ ± Z1− τ
2

diag
(
J− 1

2 (ψ̂)
)

, where J(ψ) = − ∂2

∂ψ∂ψT
logL0(ψ; Data) is the negative of the
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(a) β1 = −1 and β2 = −0.5
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(b) β1 = −1 and β2 = 0.5
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(c) β1 = 1 and β2 = −0.5
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(d) β1 = 1 and β2 = 0.5

Figure 1. Hazard shapes obtained with different values of the parameters defining the Exponentiated Weibull
distribution (σ, κ, α), and different values of the regression coefficients β1 and β2 for a binary covariate x.
Monotonic hazard (increasing in black and decreasing in grey) are displayed on the left column, and bathtub or
unimodal (black or grey, respectively) on the right column, where solid lines represent the baseline hazard
(e.g. unexposed x = 0) and dot-dashed lines represent the hazard for the exposed ones (x = 1). The values
of (σ, κ, α) are: (2, 1.2, 1.25), (3.8, 0.5, 1.5), (4.5, 2, 0.4), (0.0002, 0.21, 300) for monotonic increasing,
monotonic decreasing, bathtub and unimodal shapes, respectively.
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Hessian matrix of the log-likelihood function under the appropriate parameterisation, and 1− τ ∈ (0, 1)
is the confidence level.

Confidence intervals for the net survival curve at specific time-points are obtained using a simulation-
based algorithm32. The idea is to simulate from the asymptotic (multivariate normal) distribution of the
parameters in order to obtain a Monte Carlo sample of the net survival at specific time-points, which is
used to construct the corresponding confidence intervals.

To measure relative goodness-of-fit of a hazard-based model structure among the ones detailed
previously, we employ the Akaike Information Criterion (AIC):

AIC = −2 logL0(ψ̂; Data) + 2k,

where k is the number of parameters (the dimension of ψ), and ψ̂ is the MLE of ψ.

3 Simulation study
In this section, we present an extensive simulation study where we illustrate the good frequentist
properties of the proposed models as well as the ability of the AIC criterion to select models that properly
capture the underlying hazard structure. The parameter values are chosen in order to produce scenarios
that resemble cancer population studies concerning an aggressive type of cancer (relatively low 5-year
survival), such as lung cancer.

3.1 Data generation and simulations designs
We simulated N = 1000 data sets of size n = 1000, 5000, 10000, assuming the additive hazard
decomposition given in (1). The variable “age” was simulated using a mixture of uniform distributions
with 0.25 probability on (30, 65), 0.35 probability on (65, 75), and 0.40 probability on (75, 85) years old.
The binary variables “sex” and “W” were both simulated from a binomial distribution with probability 0.5
(the variable “W” could be viewed as “treatment” or “comorbidity”). In all the scenarios, we simulated
the “other-causes” time to event using the UK life tables based on “age” and “sex”, assuming all patients
were diagnosed on the same year. The time to event from the excess hazard (cancer event time) was
generated using the inverse transform method33, and assuming effects of the 3 variables “age”, “sex” and
“W”. We assumed either (i) only administrative censoring at TC = 5 years, which induced approximately
30% censoring in all cases, or (ii) an additional independent random censoring (drop-out) using an
exponential distribution with rate parameter r. In this latter case, we choose values for r to induce around
50% censoring. We considered 6 generating mechanisms for the excess hazard, all of them with EW
baseline hazards: (i) Proportional Hazards (Scenario PH), (ii) Accelerated Failure time (Scenario AFT),
(iii) Accelerated Hazard (Scenario AH), (iv) Hybrid Hazard (Scenario HH), (v) General Hazard (Scenario
GH), and (vi) a hybrid hazard model where the hazards and the survival curves associated to the variable
“W” cross (Scenario CH). The values of the model parameters used for each scenario are summarised in
Table S1 from the Appendix. Moreover, tables S2–S7 from the Appendix present the 1-year and 5-year
net survival implied by the different combinations of hazard structures and covariate values.

3.2 Analysis of the simulated data
To assess the frequentist properties of the models in all simulation scenarios, we fitted the GH model with
EW baseline hazard (GHEW), as compared to the corresponding true generating model. Additionally, to
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measure the ability of the AIC to select the true generating model, we also fitted the remaining models
in each scenario. In all cases, we used the true parameter values of the generating model as initial points
in the optimisation step because our aim was more to study the estimator’s properties rather than the
properties of the optimisation process. However, as the interest of analysts is also on the overall properties
(i.e. including the optimisation process properties in the full process of estimation), we present in the
Appendix a thorough study where we present three alternative “automatic” choices for the initial points
which we will later use in the real data example (see section 5 in the Appendix). We present results about
the convergence using these initial points as well as the resulting estimators, which are virtually the same
as those obtained with the chosen initial points, as expected, with the expense of a higher computing
time.

We performed the analysis using R software. The optimisation step was conducted using the R
commands ‘nlminb()’ and ‘optim()’, while the Hessian matrix used in the construction of the asymptotic
confidence intervals are approximated using the command ‘hessian()’ from the R package ‘numDeriv’,
which represents an efficient method to calculate the Hessian matrix. The cases where the command
‘hessian()’ produced ‘Inf’ or ‘NaN’ values were excluded as this merely represents a numerical problem
associated to numerical differentiation, which mainly affects the most difficult cases (i.e. with n = 1000
and 50% censoring).

3.3 Measures of performance
We report the mean and median of the MLEs for the corresponding models, as well as the empirical
standard deviation, the mean (estimated) standard error, the root-mean-square error, and coverage
proportions of asymptotic confidence intervals. In addition, we report the proportion of times the different
fitted models are selected using AIC. The excess hazard functions associated with the best models
selected using AIC are plotted in Figures S5–S14, for different covariate patterns, and compared to the
true generating model.

3.4 Simulation results
The results are presented in Tables S8–S29 in the Appendix. For illustrative purposes, we present in
Tables 1–2 and Figure 2 the results for Scenario GH with n = 5000. In this scenario, we observe very
good performance of our approach, with very small bias and a coverage close to the nominal value of
95% (Table 1 and Figure 2). Regarding performances of model selection using the AIC, the true model
was selected in around 1/3 of the simulated datasets in the worst case (sample size of 1000 and 50% of
censoring), but this proportion increases to 90% or more in situations with a larger sample size (Table 2).
More generally, from this simulation study, we can conclude that the MLEs are close to the true values
for moderate samples, even in the case of a high censoring rate (Tables S8, S12, S16, S20, S24, S26)
and that the coverage is usually quite close to 95%. As expected, the RMSE decreases as the sample size
increases (or with identical sample size but lower censoring percentage). For n = 5000, we observe low
bias and variance of the MLEs, and that the AIC selects the correct model with a high proportion. For
n = 10000, the AIC selects the true model in more than 85% of cases for all scenarios and whatever the
censoring level. Interestingly, in the GH scenario, as long as the sample size was equal to 5000 or larger,
the AIC selected the true model in 90% or more samples, regardless of the censoring level. Moreover,
even in cases where the incorrect model is selected using AIC, we see that the baseline hazard is close to
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the true generating model, reflecting that the AIC selects the model closest to the true generating model
(see figures S5–S14).

Model Parameter MMLE mMLE ESD Mean Std Error RMSE Coverage
30% censoring

GHEW

σ (1.75) 1.747 1.726 0.405 0.409 0.405 0.950
κ (0.6) 0.601 0.600 0.063 0.064 0.063 0.946
α (2.5) 2.576 2.523 0.461 0.459 0.467 0.947
β11 (0.1) 0.100 0.100 0.013 0.013 0.013 0.961
β12 (0.1) 0.112 0.109 0.233 0.227 0.233 0.949
β13 (0.1) 0.099 0.104 0.230 0.228 0.230 0.956
β21 (0.05) 0.050 0.050 0.003 0.003 0.003 0.958
β22 (0.2) 0.201 0.202 0.041 0.042 0.041 0.951
β23 (0.25) 0.251 0.251 0.043 0.042 0.043 0.943

50% censoring

GHEW

σ (1.75) 1.741 1.736 0.457 0.465 0.457 0.957
κ (0.6) 0.600 0.600 0.074 0.076 0.074 0.948
α (2.5) 2.601 2.508 0.556 0.539 0.565 0.963
β11 (0.1) 0.102 0.101 0.016 0.016 0.016 0.959
β12 (0.1) 0.090 0.095 0.267 0.266 0.267 0.957
β13 (0.1) 0.092 0.093 0.269 0.268 0.269 0.948
β21 (0.05) 0.050 0.050 0.004 0.004 0.004 0.945
β22 (0.2) 0.201 0.200 0.045 0.047 0.045 0.956
β23 (0.25) 0.252 0.251 0.049 0.048 0.049 0.949

Table 1. Simulation results for the scenario GH with (σ, κ, α) = (1.75, 0.6, 2.5), β1 = (0.1, 0.1, 0.1),
β2 = (0.05, 0.2, 0.25), and n = 5000. Mean of the MLEs (MMLE), median of the MLEs (mMLE), empirical
standard deviation (ESD), mean (estimated) standard error, root-mean-square error (RMSE), and coverage
proportions (Coverage).

4 Real data example
To illustrate the new proposed models, we analysed a dataset obtained from population-based national
cancer registry of lung cancer patients diagnosed in 2012 in the United-Kingdom. We linked these data
to administrative data (Hospital Episode Statistics -HES- and Lung Cancer Audit data -LUCADA-) and
applied specific algorithms to derive information on stage at diagnosis and presence of comorbidities at
the time of diagnosis34,35. To retrieve information on comorbidity, we used a 6-year period up to 6 months
before diagnosis where we checked for the presence of any of 18 comorbidities that are used to define the
Charlson Comorbidity Index (CCI), in addition to obesity35. The information was then dichotomised
into 2 categories: “no comorbidity” vs. “at least 1 comorbidity (comorbidity indicator = 1)” in our
illustrative example. We measured deprivation using the Income Domain from the 2010 England Indices
of Multiple Deprivation, defined at the Lower Super Output Area level (mean population 1500). The
Income Domain measures the proportion of the population in an area experiencing deprivation related
to low income, and ranges from 0 to 77% (https://www.gov.uk/government/statistics/
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Model 30% censoring 50% censoring
n = 1000

PHEW 1.6 2.7
AHEW 0 0
AFTEW 56.5 64.5
GHEW 41.9 32.8

n = 5000
PHEW 0 0
AHEW 0 0
AFTEW 3.2 10
GHEW 96.8 90

n = 10000
PHEW 0 0
AHEW 0 0
AFTEW 0 0.5
GHEW 100 99.95

Table 2. Percentage of models selected with AIC in the scenario GH with (σ, κ, α) = (1.75, 0.6, 2.5),
β1 = (0.1, 0.1, 0.1), and β2 = (0.05, 0.2, 0.25).

english-indices-of-deprivation-2010). Follow-up was assessed on the 31st of December
2015, at which time patients alived were censored (so the maximum follow-up was 4 years). We restricted
our analysis to women with no missing data, and applied the PH model (2), the AH model (3), the AFT
model (5) and the GH model (6), with an Exponentiated Weibull distribution for the baseline hazard.
The variables included in the models are ‘agediagc’ (centred age at diagnosis), ‘Istage2’, ‘Istage3’,
and ‘Istage4’ (stage at diagnosis), ‘INCOME SCORE 2015c’ (centred Income Domain), ‘comorbidity’
(presence of comorbidity). The time dependent effects are indicated in Table 3 with the subindex ‘t’.

We observed n = 14557 patients with complete cases among which no = 12138 died before the 31st
of December 2015. The median follow-up among patients censored was 3.46 years. The 25%, 50% and
75% quantiles of the patients’ age at diagnosis was 64.9, 72.6, 80.2 while the mean was 72.0. Among
the patients, 2434 were Stage I, 1131 were Stage II, 3421 were Stage III, and 7751 were Stage IV.
Finally, 4318 patients were classified with comorbidity indicator 1. Results of this analysis are presented
in Table 3. From this table, we observe that the GHEW is clearly favoured by the AIC (followed by the
AFTEW model), thus suggesting the need for including time-dependent as well as proportional effects.
The signs of all the estimates are positive in this model. This implies that an increase of one unit in
the value of any of the covariates leads to an acceleration of the time to reach the maximum of the
hazard as well as an increase of the maximum of the hazard. The magnitude of such acceleration is
given by the value of the corresponding estimated parameter, and we noticed that these two effects are
different for each variable thus explaining the better fit of the GH model compared to the AFT model.
We have compared the GHEW model against alternative models with fewer covariates but they were
not favoured by the AIC. For comparison, we have also used the ‘mexhaz’ R package23,36 to produce
models with time-dependent effects (using the command nph) for some or all the variables and we have
found that none of these models provided a better fit than the GHEW in terms of AIC (with ‘mexhaz’,
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Figure 2. Mean of the best fitted hazards in terms of AIC (dashed lines), compared to the true generating
hazard (continuous lines), and 1000 sample-specific fitted hazards (grey lines) in the scenario GH for
n = 5000 and 30% censoring. Panels from left to right correspond to covariate values (age, sex,
comorbidity)=(60, 0, 0), (70, 0, 0), (80, 0, 0), (60, 1, 0), (70, 1, 0), (80, 1, 0), respectively. The dashed and
continuous lines are virtually the same.

the model with the lowest AIC (= 20270.44) was the model assuming time-dependent effects for all
variables). Figures 3a and 3b show the shapes of the hazard functions associated to the different models
for patients aged 70 years at diagnosis, an income score value of 0.15 and with either a stage II or a stage
IV cancer, and without comorbidity (panel (a)) or with comorbidity (panel (b)). These figures also show
the piecewise excess hazard estimated separately on each of the 4 groups defined by the following values
of covariate: age ∈ [65, 75], Income Score ∈ [0.1, 0.2], Stage II or Stage IV, and Comorbidity = 0 or 1.
Those piecewise hazards represent a way to check the quality of the fit of the different models13. These
figures suggest a good fit of the GH model overall, while the excess hazards obtained from the AH model
are always over-estimated after 6 months for the group of stage IV patients. For the group of stage IV
patients with comorbidity (panel (b)), the PH model does not capture the high excess hazard just after the
diagnosis and the sharp decrease that follows.
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Model PHEW AHEW AFTEW GHEW
scale 0.059 (0.038) 8.482 (0.724) 1.190 (0.175) 1.838 (0.374)

shape 0.188 (0.014) 0.539 (0.046) 0.385 (0.012) 0.442 (0.033)
power 9.175 (1.420) 1.483 (0.129) 4.387 (0.312) 3.593 (0.368)

agediagct – -0.112 (0.006) 0.032 (0.001) 0.041 (0.004)
Istage2t – -2.977 (0.282) 0.881 (0.065) 0.691 (0.311)
Istage3t – -6.680 (0.337) 1.909 (0.050) 1.707 (0.229)
Istage4t – -10.469 (0.416) 3.003 (0.046) 3.413 (0.226)

INCOME SCORE 2015ct – -2.668 (0.416) 0.744 (0.115) 0.822 (0.448)
comorbidityt – -1.021 (0.106) 0.289 (0.029) 0.539 (0.114)

agediagc 0.022 (0.001) – – (?) 0.034 (0.001)
Istage2 0.721 (0.056) – – (?) 0.845 (0.069)
Istage3 1.473 (0.043) – – (?) 1.849 (0.053)
Istage4 2.211 (0.041) – – (?) 3.073 (0.050)

INCOME SCORE 2015c 0.527 (0.085) – – (?) 0.750 (0.150)
comorbidity 0.192 (0.021) – – (?) 0.349 (0.039)

AIC 20523.141 20855.753 20189.124 20164.911
Table 3. Maximum likelihood estimates of the parameters (standard errors) for the different excess hazard
models, with their corresponding AIC. The time dependent effects are indicated with the subindex ‘t’. (?) By
construction, the effects of covariates are constrained to be the same for the time-dependent and time fixed
effects in the AFT model (5). See equations (2)-(6) for more details on the different hazard structures.

Table 4 presents the net survival at 1, 2, 3, 3.9 years, for the total population (Comorbidity = 0, 1)
and for a subgroup (age-group 55-65, Stage I, and Comorbidity = 0, 1, ), using the GHEW model
and the Pohar-Perme nonparametric estimator16. The confidence intervals for the net survival in the
GHEW model were obtained using the simulation-based algorithm described in Section 2.4 using
B = 10, 000 samples from the asymptotic distribution of the parameters. The Pohar-Perme estimator
and its corresponding confidence intervals were calculated using the ‘relsurv’ R package. We observe
that the results with the parametric and nonparametric approaches are very close, and that the confidence
intervals for the parametric model are slightly shorter (as expected), which shows that the proposed
parametric model can accurately capture the underlying hazard structure.
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Figure 3. Shapes of the EW excess hazard for PH, AFT, AH, and GH models with baseline covariate values
(solid lines) vs. Piecewise excess hazard (grey line): (a) comorbidity = 0 and Stage II (the 2 lowest curves/step
functions in each cell), comorbidity = 0 and Stage IV (the 2 highest curves/step functions in each cell); and (b)
comorbidity = 1 and Stage II (the 2 lowest curves/step functions in each cell), comorbidity = 1 and Stage IV
(the 2 highest curves/step functions in each cell).
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Total population by comorbidity

GHEW Pohar-Perme

Comorb. year NS lower upper NS lower upper

0

1 0.407 0.401 0.416 0.408 0.398 0.418
2 0.270 0.265 0.278 0.268 0.259 0.277
3 0.204 0.199 0.211 0.209 0.201 0.218

3.9 0.167 0.162 0.174 0.182 0.172 0.191

1

1 0.380 0.371 0.391 0.370 0.356 0.385
2 0.254 0.246 0.264 0.238 0.225 0.252
3 0.193 0.185 0.203 0.169 0.158 0.182

3.9 0.158 0.150 0.168 0.138 0.126 0.152

Age group 55-65 at Stage I by comorbidity

Comorb. year NS lower upper NS lower upper

0

1 0.924 0.914 0.935 0.928 0.897 0.960
2 0.842 0.827 0.860 0.837 0.794 0.883
3 0.770 0.752 0.791 0.797 0.749 0.847

3.9 0.712 0.692 0.737 0.762 0.705 0.823

1

1 0.881 0.869 0.896 0.901 0.851 0.953
2 0.772 0.754 0.793 0.744 0.674 0.821
3 0.684 0.662 0.710 0.670 0.595 0.755

3.9 0.618 0.595 0.647 0.627 0.541 0.725
Table 4. Net survival (NS) at T = 1, 2, 3, 3.9 years and 95% confidence intervals, estimated using the GHEW
model and the non parametric Pohar-Perme estimator.

5 Discussion

We have studied a general parametric hazard structure that can capture the basic shapes of the baseline
hazard and that contains, as particular cases, the main models of interest in survival analysis: proportional
hazards, accelerated failure time, and accelerated hazards models. PH and AFT models already enjoy
popularity in survival analysis. However, the limited application of the AH model is mainly due to
the lack of efficient and reliable estimation methods10. We have shown that, by assuming a flexible
parametric distribution function such as the EW, it is possible to conduct classical likelihood inference
using already available optimisation algorithms. The combination of such flexible parametric hazard
function with the GH structure represents a powerful tool for modelling survival times. Although we
have focused on the context of excess hazard models, the proposed flexible parametric GH model is also
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applicable in the context of overall survival. We have employed the EW distribution for modelling the
baseline hazard in the GH model (6), however, there exist other flexible parametric distributions, such
as the generalised Gamma26 and the generalised Weibull24 distributions, that can also capture the basic
shapes of the hazard function. Here, we only employed the EW distribution as this choice allows for
a parsimonious implementation, facilitates the interpretation of the parameters, and the corresponding
maximum likelihood estimators (MLEs) are consistent and asymptotically normal in the presence of
censored observations37. The simulation study shows that the proposed model has good frequentist
properties and that the selection of an appropriate model structure is feasible for large enough samples.
The proposed model can also capture cases where the hazard and the survival curves cross, a case
of great interest in practice. Cases when the AH and AFT structures produce crossing hazards have
been studied in38, and these are also illustrated in our simulation study. Despite the flexibility of the
EW distribution, there still exist baseline hazard shapes that cannot be captured by this model (such
as multimodal hazards). We have conducted additional simulation studies in order to assess the effect
of model misspecification on the estimation of net survival. We found that in cases where the EW
distribution cannot capture the true shape of the baseline hazard, the net survival functions associated
to the fitted models tend to be relatively close to the true model, and that the AIC selects the correct
hazard structure with high proportion, provided that the departures from the shapes the EW can capture
are moderate. If the departures are severe, this may, unsurprisingly, affect the selection of the correct
hazard structure but the selected model tend to resemble the shape of the true generating model (see39 for
a general study of fitting parametric survival models under possible misspecification). These additional
studies are available from the authors’ websites, as well as the R code for fitting the models detailed in
this paper.

Although we have centered our attention on the GH structure (6), we point out the more general
representation discussed in9:

hE (t;xj) = Λ
(
h0(t),xTj β

)
,

where Λ(·) is a known non-negative function that defines the relationship between the baseline hazard
and the covariates. This representation contains, for instance, the additive hazards model40 hAD

E (t;xj) =
h0(t) + xTj β, which we do not consider here as it requires additional conditions to guarantee that
hAD

E > 0; as well as structures including non-linear relationships. We also point out that the use of splines
for including non-linear effects can be coupled with any of the aforementioned hazard structures. A
potentially useful choice are B-splines, which are implemented in R.

We have employed the AIC for selecting the hazard structure that better fits the data since this criterion
can account for possible model misspecification, as this tool asymptotically selects the model that
minimises the Kullback-Leibler divergence between the fitted models and the true generating model,
under mild regularity conditions. We point out that other criteria such as the Bayesian Information
Criterion (BIC) or cross validation can be employed instead. An interesting feature of the GH model
is that, by selecting the active variables, we automatically select the hazard structure that better fits
the data. The study of efficient variable selection methods in the general structure (6) would allow the
identification of active variables as well as the underlying structure (PH, AH, HH, AFT, or GH) of the
hazard function. This points out an interesting research line. The simulation study also illustrates the
importance of accounting for sparsity, as the inclusion of spurious variables may bias the estimates of
the active variables and the parameters of the baseline hazard. Since, in recent years, more variables such
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as comorbidities and types of treatments have become available at the population level, we believe this
topic will become relevant in cancer epidemiology.
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