patients who discontinued were still in remission almost 10 months after withdrawal. Thus, stopping the drug in patients who are in remission remains an option. However, better predictors for outcomes of patients who flare on drug holiday are needed. Whether ASDAS values in the low range work in this regard needs further study. Unfortunately, a third group in which the dose was reduced or the interval of injections prolonged was not part of this study. This, however, is already frequently done in clinical practice and should be investigated in the future. The fact that many patients who reported clinical flares had normal CRP levels at that timepoint also needs further study.

When these results are taken together, this study is important because it shows, on the basis of appropriate methodology, that continuation of a TNF inhibitor has superior outcomes than discontinuation, and this was only true for patients who had reached a state of inactive disease after 24 weeks of TNF inhibitor therapy. However, with almost 50% of patients achieving drug-free remission, the health system could possibly save a lot of money, but how this strategy would influence the future course of the disease is not known. Finally, the same study in ankylosing spondylitis—which has not been done to date—is likely to have different results, with a lower proportion of patients in drug-free remission, because patients of a similar age with radiographic axial spondylarthritis have a higher burden of inflammation, even though they report similar pain levels.

Jürgen Braun
Rheumazentrum Ruhrgebiet, Herne 44649, Germany; and Department of Rheumatology, Ruhr University Bochum, Bochum, Germany
juergen.braun@elisabethgruppe.de
I declare no competing interests.

2 Deodhar A, Strand V, Kay J, Braun J. The term “non-radiographic axial spondylarthritis” is much more important to classify than to diagnose patients with axial spondyloarthritis. Ann Rheum Dis 2016; 75: 791–94.

Improving management of neonatal infections

Infections causing sepsis, meningitis, or pneumonia contributed directly to around 0·6 million neonatal deaths worldwide in 2016, and indirectly to many more through pathways leading to preterm birth and neonatal encephalopathy. Despite this knowledge, understanding the infectious causes of neonatal pSBI, made by front-line health-care workers and defined according to set criteria. Of the almost 7 million neonates needing treatment worldwide each year based on this diagnosis, most are not tested for specific infectious causes and many are likely to have non-infectious conditions (figure).

In The Lancet, Samir Saha and colleagues report the Aetiology of Neonatal Infection in South Asia (ANISA) study, which is an important step forward in understanding the infectious causes of neonatal pSBI. The community-based study design is an advance on previous studies, which have been mostly facility-based, and often performed limited microbiological investigations. ANISA enrolled 84 971 mothers antenatally across five sites in Bangladesh, India, and Pakistan, and used community health-care workers to follow up neonates after birth. Antenatal
Comment

recruitment of mothers meant that neonates who
died shortly after birth were counted and that pSBIs
were quickly identified by community health-care
worker follow-up. Systematic sampling and testing
with conventional and molecular laboratory methods
maximised pathogen detection. Reductions in
specificity of diagnosis and identification of multiple
organisms by molecular diagnostics were mitigated by
use of control data and Bayesian partially latent class
modelling to estimate attributable proportions for
specific infectious causes.

Saha and colleagues’ findings for the causes of
pSBIs and the non-specificity of this classification as a
diagnosis are important. Of 6022 pSBI episodes, only
16% had attributed bacterial causes, and 102 (2%) of
4859 tested blood samples had clinically significant
pathogens isolated by culture. More specific clinical
algorithms and point-of-care diagnostics are needed
to direct antibiotic treatment to those who need it,
especially as antibiotic treatment for neonatal pSBI
is scaled up; WHO guidelines recommend that when
referral to hospital is not possible, antibiotic treatment
should be given to outpatients to expand access to
care.5 Of note, however, this recommendation was
informed by pragmatic antibiotic trials that used
pSBI as a clinical diagnosis and tested equivalence of
regimens.6–8 The ANISA study findings add to concerns
about the use of non-specific clinical diagnoses for such
trials9 and underscore the uncertainty in their findings.

As well as what it found, ANISA is important
for what it did not find. Among 71361 livebirths,
3061 (4%) babies died by the end of follow-up, most
of these soon after birth. Despite active follow-up by
community health-care workers, only 689 (23%) babies
who died were assessed by a physician before death,
and only 349 (11%) had samples taken in the 7 days
before death.4 Under-representation of deaths is a
limitation in terms of attributing infectious causes, but
showing how many neonates who die and who are not
seen or investigated for infection is important.
These data are often not captured, or are not reported,
and the extent to which the sickest neonates in the
community, in research or in clinical practice, are not
seen is unknown in many resource-poor settings.
Improving understanding of the causes of these deaths
is crucial. Infection is likely to be an important direct
and indirect contributor, as are preterm birth and
neonatal encephalopathy. In ANISA, the number of
attributed infections was nearly double that among
babies who died than among those who survived, and
more than 90% of the infectious causes in those who
died were bacterial.4

Further development of the evidence base to better
direct interventions towards the highest burden of
neonatal mortality at and in the few days after birth
will need new approaches. One such approach is post-
mortem investigation with minimally invasive tissue
sampling, which may be more acceptable than complete
diagnostic autopsy and could allow investigation of
stillbirths and neonates not seen or assessed before
death.10 The Child Health and Mortality Prevention
Surveillance study aims to use such techniques.11 Another
potential approach is the use of maternal vaccines in the
context of trials, and surveillance after implementation,
to determine the contributions of specific infectious
causes. Maternal vaccines are being developed for
various pathogens, such as respiratory syncytial virus
and group B streptococcus.12

The ANISA study has advanced understanding of
neonatal infection and highlighted the limitations
of current management strategies. Ways to address
these issues must be urgently sought, and it must be
remembered that the neonates not seen matter as much
as those that are.
How Montgomery is reconfiguring consent in the UK

How should consent be measured? The answer to that question will depend on where in the world you practise medicine or receive treatment—whether it be in a patient-centred health-care service like in Australia or a more consumer-driven system such as in the USA. In the UK, the validity of consent was until recently based on whether a reasonable body of medical opinion would agree with it—a principle widely known as the Bolam test.1 However, in a 2015 ruling involving a case of birth complicated by shoulder dystocia that resulted in a child being born with cerebral palsy (Montgomery v Lanarkshire Health Board 2015),2 the UK Supreme Court declared the Bolam test to be an outdated instance of medical paternalism. The Montgomery ruling established that doctors must ensure patients are aware of any material risks involved in a proposed treatment, and of reasonable alternatives. Similar to the Australian Canterbury v Spence case of 1972,3 the test of materiality was defined as whether a reasonable person in the patient’s position would be likely to attach significance to the risk, given their individual circumstances. In contrast to the Bolam principle, under Montgomery the focus lies with the patient and their viewpoint—they are now the yardstick by which consent is measured. Naturally, this requires an understanding on the part of the clinician of what would be deemed a material risk to them. The Montgomery standard is being applied in the courts and in 2017, for the first time, the Appeal Court overturned a High Court judgment based on the updated law.4

The Montgomery ruling aimed to guide the medical profession towards a new model of shared decision making;5 however, doctors are still working out what the ruling means in practice.6,7 A 2017 literature search by one of us (NH) found that no published studies had assessed whether the judgment was changing clinical practice.8 One study had explored knowledge of consent law and understanding of the relevant changes post Montgomery at a large UK teaching hospital, finding that most medical staff were not familiar with the concept of material risk and recent legal developments.7

To address this gap, semi-structured interviews were carried out with four barristers and six obstetric consultants practising in the UK.8 The aim was to examine legal and clinical attitudes towards the updated