Rationale and design of a cluster randomized trial of a multifaceted intervention in people with hypertension: The Heart Outcomes Prevention and Evaluation 4 (HOPE-4) Study

Jon-David Reid Schwalm, MD, MSc, FRCP(C) a,b,* Tara McCready, PhD a, Pablo Lamelas, MD a,b, Hadi Musa, MHK a, Patricio Lopez-Jaramillo, MD, PhD, FACP d,e, Khalid Yusoff, MBBS, Hon. D Med Sc., FRCP Edin., FRCP Glasg., FRCP Lond., FACC, Hon. FPCP, FIAS, FAMM, FASC f,g, Martin McKee, CBE, MD, DSc, MSc, FRCP, FRCPE, FRCPI, FFPH, FMedSci h, Paul Anthony Camacho, MD, MSc d,i, Jose Lopez-Lopez, PhD, MD, DDS d,i, Fadhlina Majid j, Lehana Thabane, PhD j, Shofiqul Islam, PhD a, Salim Yusuf, MD, DPHIL, MRCP a,b

a Population Health Research Institute, Hamilton, Ontario, Canada
b Department of Medicine, Division of Cardiology, McMaster University, Hamilton, Ontario, Canada
c Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
d Research Institute, Fundación Oftalmológica de Santander, Floridablanca, Colombia
e Masira Institute, Medical School, Universidad de Santander, Bucaramanga, Colombia
f Faculty of Medicine and Health Sciences, UKS University, Kuala Lumpur, Malaysia
g Faculty of Medicine and Health Sciences, Universiti Teknologi MARA, Kuala Lumpur, Malaysia
h Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom
i Medical School, Universidad Autonoma de Bucaramanga, Bucaramanga, Colombia
j Universiti Teknologi MARA, Kuala Lumpur, Malaysia

Abstract

Cardiovascular disease (CVD) is the major cause of mortality and morbidity globally and affects half of all individuals over their lifetimes. Despite large reductions in age-adjusted mortality in many high-income countries, cardiovascular disease remains the leading cause of death worldwide. The HOPE-4 trial is a cluster-randomized controlled trial designed to evaluate the effectiveness of a multifaceted intervention package primarily provided by nonphysician health workers in reducing cardiovascular risk in hypertensive patients. The intervention package includes detection, treatment, and control of cardiovascular risk factors by nonphysician health workers, free dispensation of combination antihypertensive and cholesterol-lowering medications supervised by local physicians, and support from a participant-nominated treatment supporter. The primary outcome is the change in Framingham Risk Score after 12 months between the intervention and control communities. Secondary outcomes include change in blood pressure, lipid levels, and Interheart Risk Score. If successful, the study could serve as a model to develop low-cost, effective, and scalable strategies to reduce cardiovascular risk in people with hypertension.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Schwalm et al 2016 and Treat Cardiovascular Disease

Health care professionnels

Table 1 (continued)

<table>
<thead>
<tr>
<th>Category of barrier</th>
<th>Example of barrier</th>
<th>Strategies in HOPE-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health information system and research</td>
<td>Physicians and health care professionals</td>
<td>Supported by mhealth technology</td>
</tr>
<tr>
<td>Service delivery</td>
<td>Efficient delivery of effective and safe interventions</td>
<td>Task-shifting of responsibilities to NPHWs at the community level, with mhealth support and HCP supervision</td>
</tr>
</tbody>
</table>

HOPE, Health care provider.

Income countries (HICs), rates are now increasing in many low- and middle-income countries (LMICs).

Table 1 Rationale and approach to intervention design in the HOPE-4 Program (adapted from Schwalm et al 2016 Circulation article titled “Resource Effective Strategies to Prevent and Treat Cardiovascular Disease”).

<table>
<thead>
<tr>
<th>Category of barrier</th>
<th>Example of barrier</th>
<th>Strategies in HOPE-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient availability, access, and costs of medication</td>
<td>Lack of health insurance (public or private)</td>
<td>(1) Free medication, (2) NPHWs, (3) medication delivery at the community level</td>
</tr>
<tr>
<td>Health care workforce</td>
<td>Limited number of adequately trained</td>
<td>Task-shifting responsibilities to NPHWs</td>
</tr>
<tr>
<td>Health care provider</td>
<td>Familiarity and awareness of management options and guidelines</td>
<td>HOPE-4 simplified treatment algorithm using evidence-based recommendations</td>
</tr>
<tr>
<td>Health care system/ policy</td>
<td>Low priority in national budgets; competing political agendas (military, other medical conditions such as HIV, etc); limited universal health care coverage</td>
<td>Partner with national health care leaders in Colombia and Malaysia</td>
</tr>
<tr>
<td>Medical products and technologies</td>
<td>Lack of infrastructure for stocking pharmacies with evidence-based generic medications: poor affordability of essential medications, even when they are generic</td>
<td>Combination of purchased and locally donated combination CV medications stocked and provided to participants</td>
</tr>
<tr>
<td>Leadership/governance</td>
<td>Low priority for CVD prevention: lack of effective screening programs, smoking cessation programs, safe environments for exercise, high costs for healthy foods, lack of physical activity</td>
<td>(1) Simplified treatment and management algorithms, with mhealth support. This includes simple and achievable recommendations for lifestyle changes. (2) Treatment supporters add layer of support</td>
</tr>
</tbody>
</table>

Smoking, hyperlipidemia, hypertension, and diabetes account for 80% of the population attributable risk for CVD, with hypertension fast becoming the main driver of CVD. Early detection of these modifiable cardiovascular (CV) risk factors followed by initiation of and adherence to existing evidence-based CV medications and lifestyle modifications can substantially reduce CVD risk.

The Heart Outcomes Prevention and Evaluation 4 (HOPE-4) community-based program in Malaysia and Colombia was informed by an extensive analysis which included a systematic review of barriers to effective hypertension management coupled with 2 in-depth mixed-methods situation analyses in each country. These identified context-specific factors, such as traditional health beliefs in Malaysia and fragmentation of provision of care in Colombia, and informed development of a contextually appropriate multifaceted intervention package for CVD prevention in each country. We are testing this intervention package in a community-based, parallel-group, cluster randomized controlled trial.

Substantial gaps in the detection, treatment, and control of CVD risk factors occur globally, especially in LMICs. Barriers to CVD prevention occur at 3 levels: patient, health care provider, and health system levels (Table 1). To overcome barriers at all these levels, we have integrated the following 3 complementary approaches: (1) task-shifting to teams of nonphysician health workers (NPHWs), supported by mobile health (mhealth) tablets for decision support counseling and data collection; (2) combination antihypertensive (anti-HT) and cholesterol-lowering medications provided to eligible participants; and (3) involvement of participant-nominated treatment supporters to optimize long-term adherence to medications and healthy lifestyle.

1. Task-shifting, supported by tablet-operated, mhealth systems: Detection of hypertension, documentation of risk factors, lifestyle counseling, and reinforcement of adherence to prescribed medications can be done efficiently by community-based NPHWs. However, in most countries, prescribing drugs is only permitted by licensed physicians. Therefore, the World Health Organization (WHO) recommends a combined approach whereby NPHWs identify individuals with hypertension/CVD risk and physicians prescribe proven drugs following established guidelines. Such an approach is particularly relevant in resource-challenged settings where there are an inadequate number of physicians. Most screening guidelines for hypertension emphasize the need for multiple readings of elevated blood pressure (BP) before initiating treatment. However, these guidelines are based on experiences in HICs with ample human and financial resources and have never been validated as being cost-effective or practical from the patient perspective. The need to make multiple visits to document whether or not BP is elevated is often a barrier to initiation of anti-HT therapies. We hypothesize that simplified
approaches to initiate anti-HT drugs with only 1 or 2 BP measurements while simultaneously taking measures to reduce lipids and modify other risk factors could reduce the risk of CVD in those at high risk. Such approaches can now benefit from advances in computerized decision support systems.29-33 Thus, we integrated these algorithms into the HOPE-4 tablet-based mhealth systems.

II. Use of free combination of anti-HT and cholesterol-lowering medications:

Because no single drug reduces BP sufficiently in most people with hypertension, BP control is better achieved using combinations of low doses of anti-HT agents, an approach endorsed by both European and US guidelines.27, 34 Given recent evidence supporting the use of statins in those with hypertension, regardless of lipid status, this medication is also recommended for eligible participants.35-38 High medication cost and limited availability have been identified as a barrier to effective hypertension management.39 Consequently, the HOPE-4 program provided these drugs at no cost in each community.

III. Treatment supporters:

Experience with HIV treatment has demonstrated that involvement of uncompensated, participant-nominated friends or family significantly improved treatment adherence and reduced mortality.40 Given similarities across chronic disease management strategies, involving treatment supporters may also be an effective approach to CVD management.

Research methods

Objectives

The goal of the HOPE-4 study is to evaluate an evidence-based, contextually appropriate program for CVD risk assessment, treatment, and control involving the 3 elements set out above.

Study design

Using a parallel-group, cluster randomized controlled trial design, 30 communities have been randomized to usual care or to participate in an intensive CVD risk detection and management program supported by NPHWs for 12 months. Participants, NPHWs and local investigators will not be blinded to the study group. Data collected will be transferred to the Population Health Research Institute (PHRI) directly from the tablets for analysis. This protocol is registered on www.clinicaltrials.gov (identifier NCT01826019).

Study population

Selection of communities

The study coordinating center and the national leaders in each country have collaborated to develop country-specific definitions for urban and rural communities and to identify the households to be screened within each community. Use of a Community Characteristic Checklist (Table II) to capture community demographics and health care facilities information formalized the community selection process and facilitated reporting that is in line with the Consolidated Standards of Reporting Trials guidelines.44 Essentially, the communities were selected to minimize the risk of contamination between clusters (ie, participants from one community are not likely to visit the health care center in another community). This trial has randomized 30 urban and rural communities in Colombia (registration site: FOSCAL) and Malaysia (registration site: Universiti Teknologi MARA).

Participant selection

Screening to identify eligible participants involved a combination of household sampling and the use of community outreach centers or events based within public spaces, as appropriate to the region. For this screening, medical clinics (ie, primary care physician offices or hypertension clinics) were purposely avoided. Participants were considered eligible if they were ≥50 years old with at least one of the following criteria:

1. Systolic blood pressure (SBP) ≥160 mm Hg was recorded at 1 visit;
2. SBP 140-159 mm Hg was recorded in 1 visit AND participant reported a medical diagnosis of hypertension or was taking anti-HT medication;
3. SBP ≥130 mm Hg was recorded in 1 visit AND participant reported a medical diagnosis of diabetes or was taking medication for diabetes;
4. Participants did not meet criteria 1-3, but SBP 140-159 mm Hg was recorded on 2 separate visits at least 24 hours apart.

Participants were considered ineligible for this study if they (1) refused to consent, (2) were concurrently participating in any other study or heart health program that would compromise the protocol of HOPE-4, (3) had severe comorbid condition with life expectancy <1 year, or (4) had other serious condition(s) or factors likely to interfere with study participation or with their ability to complete the trial (see Figure 1 for the enrollment process).

Table II

Community characteristics by country and urban or rural settings

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Malaysia</th>
<th>Colombia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rural 8 clusters; n=341</td>
<td>Urban 7 clusters; n=275</td>
</tr>
<tr>
<td>Mean distance (km) between community and coordination center</td>
<td>103.2 (SD 64.6)</td>
<td>35.2 (SD 23.2)</td>
</tr>
<tr>
<td>Mean population (n)</td>
<td>12,873.5 (SD 9778.5)</td>
<td>197,451 (SD 156,921.7)</td>
</tr>
<tr>
<td>Male (%)</td>
<td>51.4 (SD 6.4)</td>
<td>52.2 (SD 6.3)</td>
</tr>
<tr>
<td>Age ≥50 (%)</td>
<td>25.6 (SD 5.6)</td>
<td>21.1 (SD 5.1)</td>
</tr>
<tr>
<td>Storage of medication</td>
<td>Locally stored</td>
<td>Locally stored</td>
</tr>
<tr>
<td>Mean no. of government or private clinics (n)</td>
<td>4.8 (SD 2.4)</td>
<td>19.0 (SD 7.7)</td>
</tr>
<tr>
<td>Mean no. of hospitals (n)</td>
<td>1.1 (SD 0.4)</td>
<td>3.3 (SD 1.6)</td>
</tr>
<tr>
<td>Mean no. of tertiary care centers (n)</td>
<td>0 (SD 0.5)</td>
<td>0.6 (SD 0.8)</td>
</tr>
<tr>
<td>Mean no. of specialist centers (n)</td>
<td>0 (SD 0.5)</td>
<td>0.3 (SD 0.5)</td>
</tr>
<tr>
<td>Primary settings for recruitment data collection</td>
<td>99% from public community centers; 1% from private households</td>
<td>75% from public community centers; 25% from private households</td>
</tr>
</tbody>
</table>
Informed consent
All participants ≥50 years old were asked to sign a short informed screening consent form prior to completion of medical history screening questions and BP assessment to determine study eligibility (Appendix A). Participants who wish to participate in the trial must sign an informed enrollment consent form (Appendix B). This consent can occur at the same visit immediately after the completion of initial screening or in the targeted 14-day follow-up period after initial screening, depending on the results of screening and number of visits required to establish eligibility.

Randomization
Following screening and complete participant enrollment within a given community, communities were randomized 1:1 by a computer-generated, central (PHRI) randomization system to either the intervention or control group. Each community was randomized after the entire community was screened to avoid selection bias. This strategy limits biases regarding which participants would be included in the trial before randomization within each community. All participants within the defined community will receive the allocated treatment. Stratified randomization was first by country and then by rural or urban location of the community. Rural/urban stratification was undertaken, as there are marked differences in the use of secondary preventative medications and in hypertension control between these settings as documented in the Prospective Urban and Rural Epidemiological (PURE) study, which is being undertaken in both countries.10–14

Intervention components

This cluster randomized controlled trial involves a complex intervention consisting of 3 core elements (Figure 2) provided as a package: (1) task-shifting to NPHWs, (2) dispensing combination anti-HT and cholesterol-lowering medications and reinforcing adherence, and (3) involvement of participant-nominated treatment supporters to encourage adherence, adapted to the local context.

Task-shifting
A curriculum for training of NPHWs was jointly developed by PHRI and the WHO with 9 modules of instructions.23, 45 In this 2-week curriculum, NPHWs were trained on a variety of topics ranging from common CV health knowledge to CV risk detection, treatment, and lifestyle management. NPHWs were also trained to counsel both the study participants and their nominated treatment supporters on the benefits of adherence to medication and adoption of healthy living (eg, diet, exercise, and smoking cessation). These are reiterated with each NPHW-participant contact. Local primary health care physicians will review decisions made by the NPHW, as well as initiate simplified algorithms for medication dispensation where appropriate.

To further promote task-shifting responsibilities to NPHWs, tablets with HOPE-4 software were developed and provided to all NPHWs. To support decisions, counseling, and data collection, tablets were programmed with simplified clinical algorithms, NPHW counseling prompts, and study management instructions, all based on the study protocol and the curriculum developed for the NPHWs.

The tablets were validated and tested before distribution.46 Using branching logic and decision trees, the tablets specifically provide NPHWs with (1) step-by-step screening assessments; (2) secure electronic data capture and transfer; (3) progress indicators on the status of each participant, describing completeness of data collection; and (4) real-time decision support and feedback for both participant guidance and data validation. Similar to other computer decision-support systems, the tablet offers the ability to use preprogrammed clinical knowledge so that recommendations can be made once characteristics of the participant are entered, based on expert physician knowledge, guidelines, and the standardized WHO/package of essential noncommunicable disease protocols.47

Administration of study medications
Study-associated medications are obtained from a local manufacturer within each country. Although the precise formulations used differ in each country, the recommended CV medications include single-pill combinations of anti-HT medications (both low- and high-dose options) and a cholesterol-lowering agent (statin) (Table III). Initiation of medication options from Table III is based on recommendations from the NPHW, but the ultimate decision is left to the discretion of the participating local physician, depending on (1) the communities’ medication availability and the participant’s (2) BP, (3) risk profile, and (4) allergies/medication intolerances. Eligible participants already taking CV medication(s) are reviewed by the NPHW and supervising physician for potential transition (if appropriate) to the study-associated medications in accordance with local policy and guidelines, but this is not mandatory. Participating NPHWs and physicians have been provided with suggested medication management algorithms tailored to available study-associated medications (Figure 3).

Safety reporting
Safety reporting will be customized for each region, country, and the regulatory status and type of study-associated medication provided and used, as appropriate, and as required by regulatory authorities within participating countries. If study-associated medication (ie, medication obtained centrally and provided free of charge to participating intervention communities) is not provided to a given region or country as part of HOPE-4, it is expected that no medication-related safety reporting will be required, in accordance with local regulations. It is also expected that medication-related safety reporting will not be required for control communities, in accordance with local regulations. Any participants experiencing adverse effects or uncontrolled HT within the intervention group will be managed by study physicians as per local policy and guidelines. Participants who develop intolerable adverse effects to a component of any study-associated medication may be transitioned to a more suitable study-associated medication or to its individual components or other suitable medications, if available, in accordance with local policy and guidelines.

These algorithms will prioritize the use of combined anti-HT and cholesterol-lowering medications in tolerant participants. Any participant experiencing adverse effects or uncontrolled hypertension will be managed by local health care providers as per local policy and guidelines.

Figure 1. Flowchart of the participant enrollment process.
Control

No structured interventions will be used in the control arm. During screening, control participants will be provided with existing government/health system CVD literature and be advised to see their usual provider for care, as appropriate. Treatments prescribed are recorded in each participant.

Study visits and data collection

Study visits and data collection will be conducted by trained NPHWs, who will travel to the participants’ homes or community outreach centers within preselected communities (see Table II for the Community Characteristic Checklist used to select communities). At prerandomization screening, NPHWs will assess each consenting individual aged 50 years or older and collect physical measurements to determine study eligibility. At 6 and 12 months postrandomization in intervention and control communities, NPHWs will repeat study assessment procedures to ensure that any changes to the components of Framingham Risk Score (FRS) are captured. Blood work will be collected in participants at baseline and 12 months (low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides, total cholesterol, and glucose). Blood pressures are taken at each visit using the WHO STEPS Protocol.48

Communities randomized to intervention will have additional visits, which include a baseline visit (time-0 visit; a participant-NPHW visit, and a participant-physician visit) at 1 and 3 months postbaseline. An additional telephone call will be made to intervention participants at 10 or 11 months to confirm availability for the upcoming 12-month visit. Communities randomized to control will have no additional visits—only a telephone call at 3 months and at 10 or 11 months to confirm upcoming visits with the NPHW.

Data will usually be collected using tablets; however, NPHWs can choose to capture data on paper forms for later entry if necessary depending on the participant and setting.

Figure 4 shows a summary of the NPHW management responsibilities in intervention and control groups.

Outcomes

The complex HOPE-4 intervention is designed to address CVD risk by improving BP and lipid control and promoting smoking cessation as well as other lifestyle modifications. Therefore, a validated risk score assessing the major modifiable CVD risk factors is required to properly evaluate the effect of HOPE-4 interventions. The FRS is a tool to estimate the risk of CVD development based on age, sex, BP, use of anti-HT medication, blood cholesterol, smoking, and diabetes. The FRS was initially developed in white Americans but has subsequently been widely validated in different ethnic groups.49, 50 The primary objective of HOPE-4 is to evaluate whether or not the intervention can substantially improve the FRS at 1 year. Given the potential for detection bias (increased screening in the intervention group), the development of a new diagnosis of diabetes after the initial screening assessment will not factor into the FRS calculation at 12 months. We expect that HOPE-4 will also have an 80% power to detect small changes in BP (≥2.9 mm Hg) and LDL cholesterol (≥0.67 mmol/L), as secondary outcomes.

Primary outcome

The primary outcome is the mean difference in FRS change from baseline to 12 months between the intervention and control communities. The FRS will be calculated using lipid measurements, but if they are missing, a nonlaboratory FRS validated formula will be used.51 Although the HOPE-4 study initially planned to assess change in SBP as the primary outcome, it was felt that this outcome did not reflect the multifaceted nature of the intervention. This study is well powered for both FRS and SBP as outcomes of interest.

Secondary outcomes

The secondary outcomes are (1) change in SBP between the intervention and control communities at 6 and 12 months; (2) change in LDL, HDL, total cholesterol, triglycerides, and glucose levels at 12 months; (3) proportion of participants with well-controlled BP at 6 and 12 months (SBP < 140 mm Hg); (4) change in smoking status at 6 and 12 months.

Tertiary outcomes

The tertiary outcomes are (1) change in Interheart Risk Score at 6 and 12 months and Cholesterol Modifiable Risk Score at 12 months, (2) change in lifestyle modification (exercise and diet-based on components of the Interheart Risk Score), (3) proportion of participants receiving 2 or more anti-HT and a statin at 6 and 12 months, (4) medication adherence measures at 6 and 12 months, (5) country-specific process outcomes at 6 and 12 months involved in the intervention, and (6) health economic analyses.

Safety outcomes

The safety outcomes are clinical events (eg, death, CVD development, hospitalizations) at 6 and 12 months. However, given the modest sample size and relatively short duration of the intervention, the study will not have high power to detect differences in these outcomes.
Sample size

Sample size calculations used data from participants enrolled in the PURE study from Malaysia and Colombia.52,53 HOPE-4 participants are expected to be similar to the PURE study population. Among the 2,832 PURE participants from Malaysia and Colombia that met HOPE-4 eligibility, the mean baseline FRS score was 24.7% (SD 15). The mean SBP is 160 (SD 19) and LDL cholesterol is 3.58 mmol/L (SD 1.09). The community intraclass correlation coefficients (ICCs) for FRS, SBP, and LDL cholesterol were 0.052, 0.017, and 0.11, respectively. We set a sample size of 1,200 across the 2 groups (30 clusters with 40 each in size; 600 in the intervention and 600 in the control group). Based on these assumptions, we will have 80% power to detect at least 3.0% absolute FRS percentage points difference in FRS between intervention and control group. Similarly, for our secondary outcomes, we will have 80% power to detect a 2.9-mm Hg difference in BP and a 0.32-mmol/L difference in LDL between these 2 groups (Tables IV and V).

Analyses

Analysis and reporting of results will follow the Consolidated Standards of Reporting Trials guidelines for cluster randomized controlled trials.54 The analysis of both primary and secondary outcomes will account for the clustering effect using mixed-effects model with community as a random effect. We will use multiple imputation strategies based on the baseline characteristics to take into account missing data on all outcomes. We will undertake an intention-to-treat analysis.55

All statistical tests will be performed using 2-sided tests at the .05 level of significance. Final results will be expressed as a mean along with 2-sided 95% CIs and P values. The consistency of treatment effects on the primary outcome will be explored in predefined subgroups, including socioeconomic status, education, gender, country, urban/rural community, and young/old, and by risk score tertile. Tests for interactions of subgroups with the intervention will be performed by including an interaction term in the model. These subgroup analyses will not be adjusted for multiple testing because the analyses are exploratory.

We will perform the following sensitivity analyses for the primary outcome, altering the model for analysis of cluster randomized controlled trials.56 First, we will use a generalized estimating equation, assuming an exchangeable correlation structure within each community.57 We will also use: (1) random-effects patient-level analysis methods and cluster-level (ie, random- and fixed-effects meta-analytic) methods to assess the robustness of the results; (2) per-protocol analysis; and (3) IMPACT analysis approach to describe the degree to which each component contributed to the reduction in clinical outcomes.58 Although the primary analysis will be a direct estimate of the intervention package, we can “deconstruct” the contributions of each component.59 We will also relate the individual components of the intervention to the change in risk score, and this will allow us to identify the components which are most effective. This information can then be used to develop variations of the interventions, depending on the context.

Data management, quality, and security

The study will use a mixture of paper and electronic case report forms (CRFs), as appropriate for each community, region, country, and study process. Study personnel will complete either paper CRFs or electronic CRFs using an encrypted, password-protected, portable tablet device or computer securely connected to PHRI’s data management platforms via the Internet. With prior consent of the participants, source documentation supporting the trial information reported on the CRFs or electronic CRFs (including verbal narratives of outcome events, medical records or other documents provided by participants, and consent forms, where feasible) will be photographed or recorded by the portable tablet devices during household and clinic visits and securely transmitted to the PHRI data center for event adjudication purposes as well as for central monitoring of the study conduct. Paper CRFs will be collected and reviewed by the National Project Office personnel, with data being submitted to the centralized PHRI system by fax or through secure electronic submission to PHRI’s data management platforms.

Data management in HOPE-4 will include the following procedures: (1) National Project Office personnel and community-based teams will undergo training sessions prior to study commencement to ensure consistency in project procedures including data collection and reporting; (2) National Project Offices will have a detailed Manual of Operations that will outline each step of the protocol and will be able to communicate with the HOPE-4 Project Office via email to resolve any problems or questions that arise; (3) the PHRI Project Office personnel will review detailed monthly reports on screening, enrollment, patient follow-up, completeness of data collection, and overall study event rates; (4) the centralized PHRI databases will include internal validity and range checks to identify errors or omissions and notify the National Project Offices of any issues; and (5) PHRI personnel will visit National Project Offices (and possibly community-based clinics) for monitoring purposes, as required.

Funding

This work was supported by the Canadian Institutes of Health Research and Grand Challenges Canada as part of the Global Alliance for Chronic Disease program (Canadian Institutes of Health Research grant 120389; Grand Challenges Canada grants 0069-04 and 0070-04); the Department of Management of Noncommunicable Diseases, WHO; and an unrestricted grant from Boehringer Ingelheim. This research program does not represent the official view of the Global Alliance for Chronic Diseases (GACD), WHO, or any part of the Colombian or Malaysian Federal Governments. No official support or endorsement of this article by the GACD hypertension program, WHO, or Federal Governments of participating countries is intended or should be inferred. The authors are solely responsible for the design and conduct of this study, all study analyses, the drafting and editing of the paper, and its final contents.

Health economic evaluation

We hypothesize that this intervention package will improve risk factor control significantly. Although this study is not designed to observe significant reductions in clinical events, we will model the impact of the differences in risk factors to project the differences in clinical events. It is expected that the long-term clinical benefits of this intervention would be at least cost-neutral and potentially cost-saving when compared to current practice. We will collect data that will allow us to determine (1) the cost of the suggested program (ie, intervention package) and...
the cost of what is being provided currently for CVD assessment and management in the communities studied (ie, control) and (2) the potential for future cost-savings due to projected reduction in CVD events stemming from the adoption of the program and modeled over a 5-year period based on changes in the FRS.

Process evaluation

Structured evaluations of new health initiatives are necessary to provide evidence for practice and policy development. Large-scale investigations of a complex intervention—such as HOPE-4—can be complemented and informed by process evaluations conducted in parallel to the main study. In HOPE-4, process evaluations of the role of the NPHWs and treatment supporters, as well as a study of medication adherence, will help inform CVD risk reduction program implementation strategies, post-study completion.

Ethical considerations

Before study initiation, the Institutional Review Board/Independent Ethics Committee (IRB/IEC) of participating institutions and regulatory authorities approved the HOPE-4 protocol. The IRB/IEC of participating institutions approved the dispensation of study-associated medications to the intervention group alone based on the following: (1) the medications were locally available, (2) the medications were used per accepted indications, and (3) the medications were prescribed by local physicians as per current standards of care. The IRB/IEC also approved that no study-associated medications were to be administered in the control group for the following reasons: (1) the study screening process in the control group already went above usual care by identifying participants with CVD risk (ie, elevated blood pressure), (2) provided them with locally available management literature, and (3) recommended they seek assessment at a local health care facility.

Trial status

The HOPE-4 study has randomized 30 communities (1,376 participants) in Colombia and Malaysia (Table VI). All 30 communities will complete 1-year follow-up by the end of 2018. Analysis of completed follow-up data is expected to begin in the first quarter of 2019. At the end of the study, participants will be transitioned to continue current or comparable medication therapy as is available in local communities and will receive guidance from local care providers. Initial plans for the HOPE-4 study included a CVD phase, with expansion to 190 communities (9,500 participants), 6 years of follow-up, and a difference in cardiovascular events as the primary outcome. Unfortunately, funding limitations prevented expansion to this phase of the HOPE-4 study.

Discussion

Hypertension is the commonest cause of CVD and the main driver of CVD globally, but its control is poor in almost all countries. The HOPE-4 study involves the integration and implementation of multiple evidence-based strategies to overcome barriers to better hypertension detection, treatment, and control, simultaneous with efforts to modify lipids and other risk factors. If successful, this health system intervention is scalable and sustainable and can be the basis for the development of context-specific approaches in countries at different economic levels. Although the study is taking place in 30 urban and rural communities in Colombia and Malaysia, the rigorous cluster randomized controlled trial
design and associated process evaluations will allow for generalizability of the results to a broader global population.

Limitations

Given the pragmatic design of this community-based cluster randomized controlled trial, which builds on existing infrastructure within participating countries, blinding is not feasible. Contamination will be minimized, as only those communities randomized to the intervention will have access to the counseling provided by NPHW, simplified management algorithms, and the study-provided medications. In addition, communities have been chosen with adequate geographic separation from each other. Participants in the control group have had CVD risk screening at baseline and have been provided with information about local CV health programs and recommendations. This may reduce the effect of the intervention, as control participants may modify their behavior by seeking medical attention after knowing their BP was not usual.

Figure 4. NPHW responsibilities in intervention and control groups. ISH, International Society of Hypertension; BMI, body mass index.

Table IV Minimum detectable differences in mean Framingham risk estimate between intervention and control group at the end of 1-year follow-up (taking into account the effect of clustering and using analysis of covariance).

<table>
<thead>
<tr>
<th>ICC</th>
<th>SD of 15</th>
<th>SD of 20</th>
<th>SD of 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
</tr>
<tr>
<td>0.07</td>
<td>3.4</td>
<td>4.9</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Assuming a sample of size 1200 participants from 2 groups (15 clusters per group, 40 participants per cluster) and a baseline mean (SD) risk of 24.7% (15) with a 2-sided test at 5% label of significance (estimates from the PURE study).

Table V Detectable differences in mean BP and LDL estimate between intervention and control group at the end of 1-year follow-up (taking into account the effect of clustering and using analysis of covariance).

<table>
<thead>
<tr>
<th>ICC</th>
<th>Power Comparing mean BP (mm Hg)</th>
<th>Power Comparing mean LDL (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>80%</td>
<td>0.320</td>
</tr>
<tr>
<td>0.05</td>
<td>80%</td>
<td>0.243</td>
</tr>
<tr>
<td>0.01</td>
<td>80%</td>
<td>0.167</td>
</tr>
</tbody>
</table>

Assuming a sample of size 1200 participants from 2 groups (15 clusters per group, 40 participants per cluster) and a baseline mean (SD) SBP of 160 (19) with an ICC = 0.017 and baseline mean (SD) LDL of 3.58 (1.09) with an ICC = 0.11 (estimates from the PURE study). Two-sided test at 5% label of significance.
under control at the beginning of the study. This means that the observed differences in risk factors between the active and control groups are likely to be underestimates of the full effects of this intervention strategy.

Significance

In 2011, the United Nations adopted a global target of a 25% reduction in premature mortality from CVD and other noncommunicable diseases by 2025. The United Nations action plan designated 8 indicators to measure progress, including improvements in (1) BP, (2) tobacco cessation, (3) physical inactivity, (4) sodium intake, (5) alcohol consumption, (6) diabetes and obesity rates, (7) access to drugs and CVD risk prevention counseling, and (8) availability of basic technologies to measure progress, including improvements in (1) BP, (2) tobacco cessation, (3) physical inactivity, (4) sodium intake, (5) alcohol consumption, (6) diabetes and obesity rates, (7) access to drugs and CVD risk prevention counseling, and (8) availability of basic technologies and essential medicines. Similar elements are included in the Sustainable Development Goals. The HOPE-4 program is designed to address all 8 components with a focus on BP and lipids. This low-cost strategy using a systems appraisal approach can potentially save millions of lives each year. Furthermore, this strategy has the potential to make a significant impact to deal with other conditions (eg, HIV, TB, malaria, immunizations) and even to some extent the management of heart failure in high-income countries (the Interheart study: case-control study).

Acknowledgements

We thank our partners at the WHO for their collaboration on the NPHW training curriculum at the onset of this project.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ahj.2018.06.004.

References

51. Khunti R. Barriers to the management of cardiovascular disease: a focus on availability and affordability of medications in 17 countries. Clinical Epidemiology and Biostatistics, Health Research Methodology Program; 2014. [PhD].

