TITLE: LESSONS FROM THE WEST AFRICA EBOLA EPIDEMIC: A SYSTEMATIC REVIEW OF EPIDEMIOLOGICAL AND SOCIAL AND BEHAVIORAL SCIENCE RESEARCH PRIORITIES

AUTHORS:

1. Sharon A. Abramowitz

Rutgers University

107 University Road, Apt 3

Brookline, MA 02445, USA

+1 6175990191

saabramowitz@gmail.com

CORRESPONDING AUTHOR

2. David B. Hipgrave

UNICEF,

3 UN Plaza,

New York, 10017

NY, USA

+1 2123267000

dhipgrave@gmail.com

CORRESPONDING AUTHOR

3. Alison Witchard, PhD

School of Archaeology and Anthropology AD Hope Building 14

Australian National University Acton, ACT 0200 Australia

© The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

+61 488297063

alison.witchard@anu.edu.au

4. David L. Heymann

London School of Hygiene and Tropical Medicine

Keppel Street

London WC1E 7HT

+447919626171

David.Heymann@LSHTM.ac.uk

Conflicts of Interest: The opinions and perspectives expressed are those of the authors only, and do not

reflect on the institutions with which they have affiliations. The authors report that they have no conflicts

of interest.

In reviewing the literature emanating from the 2014-2016 West Africa Ebola epidemic, we identified thematic

differences in the epidemiological and social science approaches that may have impacted the response. We offer

recommendations to improve coordinated, multi-disciplinary approaches to health emergencies.

Key words: Epidemics, Pandemics, Health emergencies, Qualitative, Quantitative, Public health, Ebola

Funding Statement: This research was funded by UNICEF New York

Acknowledgements: Our thanks go to Ben Althouse, Caitlin Rivers, Greig Arendt, and Jeffrey Vadala for

their contributions to this work.

Presentation at previous meetings:

Abramowitz, Sharon. Friday Morning Seminar in Culture, Psychiatry and Global Health, "Anthropology

in Epidemics (Especially Ebola): The Paradox of Relevance" March 31, 2017. Co-sponsored by the

Department of Global Health and Social Medicine, Harvard Medical School.

ABSTRACT:

This systematic literature review compared the epidemiological (EPI) research and the qualitative

social and behavioral science (SBS) research published during the West Africa Ebola virus disease (EVD)

epidemic. Beginning with an initial capture of over 2,000 articles, we extracted 236 EPI and 171 SBS

studies to examine how disciplinary priorities affected research conducted during the EVD response, with

implications for epidemic response effectiveness. Building on this research, we set forth a roadmap for

the closer integration of EPI and SBS research in all aspects of epidemic preparedness and response that

incorporates the lessons of the West Africa EVD outbreak. Key priorities include: (1) developing the

capacity to systematically quantify qualitative sociocultural variables, (2) establishing interdisciplinary

collaborations to improve "risk segmentation" practices, (3) creating and pre-positioning qualitative

indicators and composite sociocultural indexes for rapid deployment in outbreaks; (4) integrating novel

systems with community resources; (5) developing new techniques for modeling social mobilization and

community engagement; (6) prioritizing good data and complex analyses early in emergencies, and (7)

learning from past experiences. Our findings support a program of action that situates data collection and

analysis in real-time, recursive, integrated efforts to move community attitudes, behaviors, and responses

into epidemiological research.

BACKGROUND

The 2014-2016 West Africa Ebola virus disease (EVD) epidemic resulted in 28,616 cases and

11,310 deaths in four countries (Guinea, Liberia, Sierra Leone and Nigeria). New vaccines were

developed, and in late 2016 the rVSV-ZEBOV vaccine was found protective against EVD infection.[1]

While vaccines may disrupt future EVD outbreaks, the West Africa outbreak was eventually controlled

by a combination of classic public health measures, including population surveillance, case identification

and management, aggressive contact tracing, isolation, quarantine and mobility restrictions.[2] Social

mobilization and local initiatives promoted behavior change among affected populations, also

contributing to epidemic containment.[3,4]

The West Africa outbreak prompted one of the largest and fastest mobilizations of

epidemiological, clinical, scientific, and social and behavioral science (SBS) research, but also

highlighted existing fault lines in knowledge-based response to disease outbreaks. Epidemiological

models and forecasts and clinical treatment guidelines were unable to capture the complex socio-cultural

conditions and fragile health systems prevailing in these countries. Similarly, social and behavioral

scientists were unable to translate their knowledge of local conditions into epidemiologically-relevant

insights. In particular, community-based behavior-changes were insufficiently integrated into

epidemiological models and forecasts.[5]

We used the West Africa EVD epidemic as an opportunity to assess the extent to which

epidemiological (EPI) and SBS research efforts mutually provide the knowledge needed to respond to

disease outbreaks. We conducted systematic reviews of the EPI and SBS research and analyzed the

themes prioritized in both literatures, to identify how their respective thematic concerns converged or

diverged. We use this analysis to highlight the need for more effective research collaboration and

response during future infectious disease emergencies. This is central to the International Health

Regulations' prioritization of strengthening national response and capacity during epidemics.

METHODS

We conducted two systematic literature reviews and a subsequent discourse-driven thematic

analysis. The main objectives were to analyze the range of thematic topics addressed by the published EPI

and SBS literature regarding the West Africa EVD outbreak; to identify thematic areas where the

literatures converged or diverged; and to identify opportunities for future multidisciplinary collaboration

to support real-time responses, based on knowledge acquired by pre-hoc or concurrent research efforts.

Data sources and search strategy

For both reviews, our methodology was guided by the Cochrane Reviewer's Handbook, [6] and

involved a broad electronic and manual search of the English and French literatures (see supplementary

data A).

To obtain data for the EPI and SBS research sets, we conducted a standardized keyword search of

most-frequently used research catalogues (Table 1). In both literatures, we prioritized studies with data

originating from West Africa during the 2013-2016 epidemic. However, we modified our search strategy

early on when we discovered that the ratio of EPI to SBS articles was more than ten to one.

To capture the informal publication patterns of the SBS community, we complemented the

primary SBS search with a manual inventory of non-peer-reviewed publications available through topic-

specific websites and forthcoming peer-reviewed publications. This strategy was designed to compensate

for SBS's decreased access to data collection opportunities during the epidemic, low levels of research

funding, and peripheral role in the research-policy-practice sequence that shaped the epidemic response.

Table 1: Search strategy

Literature screening and catalogue construction

Study selection used two levels of screening. At level one, abstracts were reviewed for the

exclusion criteria (Table 1). Full articles were obtained for all studies accepted at this level. For level two

screening, distinct inclusion and exclusion criteria were applied to the two literature sets and were

formulated into search sentences (Supplementary Material A). For the EPI literature, studies needed to at

least include primary collection or use of field-based data collected from any of the four countries

affected. For the SBS literature, selected documents needed to demonstrate original social science

analysis, and non-peer reviewed publications required authorship by scholars with current or former

institutional affiliations with academic institutions, think tanks, non-profit development or humanitarian

organizations.

Data extraction

For documents included in the data extraction subset, content was reviewed using a systematic

review process conducted independently by two authors (SA and AW). Researchers entered citations and

abstracts into the qualitative data analysis software package MAXQDA Analytics Pro v12 (VERBI

Software GmbH, Berlin) and cross-referenced abstracts with full-length, searchable files.

Data extraction involved a five-step process.

1. Independent review of full-text articles using a codebook of themes and sub-themes (developed

by SA) based on a pre-screening of the data. New themes/codes and sub-themes were created as

needed using inductive thematic coding.[7,8]

2. The two reviewers first coded each document separately, and then merged their analyses and

reconciled disagreements between the themes and sub-themes ascribed to each to establish a set

of interim working themes and sub-themes. Attributed codes were not mutually exclusive, and

documents were coded for multiple variables in the same category when necessary or appropriate.

This approach allowed researchers to capture a wide range of themes, but it precluded

conventional statistical comparison, single and multiple regression methods, and theme-based

weighting.

3. Text-based searches in data processing software captured matches that were previously missed.

4. Researchers reconciled codes and sub-code disagreements to finalize sub-themes. The themes

presented are aggregates of sub-themes presented in Supplementary Material B.

To obtain summary statistics of thematic codes, qualitative codes representing document counts

were converted into binary variables which were analyzed for frequencies and percentages in

MAXQDA and IBM SPSS Statistics Version 24.0.

RESULTS

Data retrieval

The initial literature review identified 2170 citations for screening. A preponderance (1572

articles) were rejected according to the exclusion criteria or could not be retrieved. The remaining 598

articles were divided into EPI (n=387) and SBS (n=211) catalogues (Supplementary Material C). A

second review to ensure that exclusion criteria had been applied consistently resulted in the final inclusion

of 236 EPI articles and 171 SBS articles (Figure 1).

Figure 1: Data retrieval

Study characteristics

EPI and SBS articles differed in content. Among the 236 EPI articles, the four most common

types were (1) modeling or forecasting studies, (2) epidemiological status reports, (3) intervention

evaluations, or (4) commentaries that introduced novel data. Among the 171 SBS articles, the four most

common types were (1) original qualitative research, (2) commentaries/discussion pieces, (3)

ethnographic narratives, and (4) guidance documents.

All studies were analyzed for research location and study period. Although the research

often overlapped the epidemic "phases", most EPI research and SBS writing was conducted

during phase 1, the period of peak mortality in Sierra Leone and Liberia (Table 2). However, due

to inconsistent reporting, it was difficult to precisely associate data sources with particular

countries; due to imprecision in early EVD reports, many publications included data that were

unclearly disaggregated by country.[9,10]

Table 2: Sample size, location (mentioned as a focus or source of data) and timeframe of study

Comparison of thematic areas identified by literature type

The analysis identified a total of 29 composite thematic areas (Table 3); these are aggregates of

the 327 sub-themes listed in Supplement A. Table 3 presents the number and percentage of articles within

each data set that addressed the theme or sub-theme within each set. These findings are presented side-by-

side, to illustrate how frequently each literature addressed key themes relevant to epidemic response. We

interpret frequency to indicate disciplinary priorities during the epidemic, as well as researchers' access to

original and historical data.

Table 3: Themes and ratios of themes in EVD publications by research type with shading to indicate greater

proportion

EPI articles prioritized more research on clinical and patient care (59%); diagnosis of EVD

(42%), including sensitivity and specificity [46%]); transmission (75%), incidence, mortality, and

characterizing local outbreaks (84%); modeling and forecasting EVD trends (50%), outbreak

investigation (63%); and Ebola virology (23%). SBS articles also prioritized transmission (47%), but

included other themes related to prevention and EVD response. These included: health communications

(44%), social mobilization and community engagement (63%); alternative healthcare-seeking practices

and traditional and informal healthcare providers (63%); economic issues; traditional and local beliefs;

political issues (78%); funerary practices and burials (59%); population mobility (66%); healthcare

workers (57%); psychosocial experiences around risk, mortality, and stigma (88%); and the challenges

confronting EVD survivors (30%). They also included qualitative documentation on the risk factors

affecting vulnerable populations (older persons, children, the disabled, pregnant women, and orphans

[33%]). In each of these examples, the respective literature leaned, usually substantively, towards the

themes listed.

While epidemiology traditionally focuses on associations and outcomes, during the West Africa

EVD epidemic the EPI literature often addressed access to beds, presence or absence of contact tracing

measures, health worker utilization of protective gear and infection prevention and control practices. SBS

studies were flagging factors like gender, social roles, vulnerabilities, access to healthcare, food

insecurity, and mobility in July-September 2014, but these factors were not integrated into

epidemiological analysis until later in the outbreak (approximately November-December 2014). This gap

is likely due to epidemiologists' poor access to such data, limited by on-the-ground data collection

capabilities, and methodological differences in defining SBS variables for quantitative analysis. Whether

due to a lack of access or resources, or low priority, SBS studies less frequently engaged with

transmission (47% versus 75% for the EPI literature), clinical care (46% v 59%), and epidemiological

concerns (13% v 84%) at scale, and did not assess incidence, reproduction rates or transmission chains, to

inform response strategy and policy.

The EPI and SBS literatures converged in commonly addressing themes related to public health

response (76% and 85% respectively), health systems (74% and 75%), population mobility (53% and

66%) and risk factors (43% and 41%); there were also other less common themes of similar frequency

across the two literature sets. However, the two catalogues dealt with some themes, like national capacity

and health systems, in different ways. For example, on health systems, EPI studies focused on capacity

gaps and needs for support,[11-13] while SBS studies focused on labor recruitment/retention and

community confidence in government-run health services, including local perceptions of their morality

and ethics before and during the epidemic.[14-16] SBS analyses also attempted to directly integrate

historical underdevelopment, systemic injustices, patterns of structural and political violence and

governmental malfeasance into their analyses.[17–19] Risk factors, like sex, also involved thematic splits.

SBS literatures pointed to gender-specific transmission pathways, [4,20] while EPI studies emphasized

gender similarities in infection and mortality rates.[21,22]

Both literatures dealt seriously with public health sub-themes, but paid attention to very different

issues related to the response. EPI studies tended to focus on its effectiveness, reach, and impact, [23–25]

while SBS studies focused on inequality in public health capabilities, [26] the legacy of vertical health

programs, [27] and the EVD response's failure to understand existing structural gaps and public health

capabilities.[28–30]

Where the SBS and EPI literatures diverged, they diverged widely. While each frequently

acknowledged similar core themes, they rarely integrated these concerns into their research designs or

analysis. For example, EPI articles described cultural and behavioral influences informing funerary

practices and community resistance, but struggled to integrate them into models.[31,32] Similarly, SBS

literature often acknowledged clinical and epidemiological concerns like standards of care, sources of risk

or transmission dynamics, but did not transform sociocultural factors into quantifiable observations,

events or methods at the scale needed to inform the response. Furthermore, while the SBS literature often

acknowledged clinical and epidemiological concerns like transmission pathways/dynamics, case time-to-

reporting and treatment standards, it did not apply such insights during social-science-guided

interventions. In several areas of common concern (misinformation about the epidemic, funerary practices

and community engagement) quantitative approaches had difficulty integrating the qualitative depth of

the SBS literature with the response needs.

These divergences resulted in differing empirically-relevant conclusions. For example, EPI

studies hypothesized that the disruption of health services may have impacted non-Ebola mortality; while

the SBS literature contended that EPI studies may have failed to account for widespread, continued

services by private, informal or traditional healthcare providers.

DISCUSSION

To ensure the rapid, effective, targeted, and locally sensitive allocation of epidemic containment

measures along the prevention-response continuum, future epidemic events require better pre-positioning,

collaboration, and real-time integration of epidemiological and social science capabilities. Some EPI

research does not require a behavioral component; similarly, not all health-focused SBS research must be

contextualized in local epidemiology. However, our review of the EPI and SBS literature on the West

Africa EVD epidemic demonstrated that these two disciplines dealt with some core themes in very

different ways, reducing their capacity to mutually augment the response. Post-EVD reviews have

acknowledged that there is need to harmonize SBS and EPI research to inform global epidemic and

pandemic preparedness and response capacities.[33,34] Efforts are underway, but SBS research remains

associated with health communications (e.g. WHO's Social Science Unit sits within the Health

Communications Capacity Unit), and is not integrated in preparedness and response coordination during

global health emergencies. Indeed, the approaches used by the two literatures often seemed diametrically

opposed. While the EPI literature drew upon broad population data (e.g. density, age, sex, language

group, socio-economic situation) to make general inferences without incorporating local insights (e.g.

cultural practices, traditional structures, mobile phone penetration, population movements etc.). By

contrast, the SBS literature used small samples to make sweeping inferences for which there was scant

epidemiological data. For example, anthropological studies that used individual-level data (rather than

historical analysis or literature reviews) included samples that ranged from less than ten key informants to

>800 households; while studies presenting community-level data tended to include a small sample of

communities (n=1-5). Such trends suggest the need for real-time research that includes larger SBS sample

populations, more detailed and inclusive epidemiological data collection, including on SBS themes, and

improved collaboration between both approaches.

Are the two literatures irreconcilable, or are other methodological issues at work? The EPI

literature's different priorities suggest the difficulty of quantifying and incorporating sociocultural,

historical, political and economic constructs in ways directly applicable to the epidemic context. At the

same time, while SBS literature often acknowledged clinical and epidemiological concerns, it did not

transform sociocultural factors into quantifiable observations or methods at the scale needed to inform the

response.

While recognizing that such approaches cannot be applied in all health emergencies, this study

suggests that such disciplinary segregation creates missed opportunities in global health emergency and

humanitarian response. Box 1 summarizes our recommendations to address this challenge; they are

applicable to international as well as national response efforts.

Box 1: Recommendations to build capacity for future EPI/SBS work in epidemic contexts

Novel strategies are required to systematically quantify sociocultural factors for epidemiological

purposes. To make SBS insights meaningful and actionable, researchers should document relevant

sociocultural factors (risks [behaviors, beliefs, practices] that characterize certain communities [defined

geographically or by other criteria]) to enable their (ideally quantitative) integration into epidemiological

models. We found that during the West Africa EVD epidemic, data collection prioritized quantitative

benchmarks like time-to-reporting, time-to-clinic, or contact-tracing estimates, but ignored important SBS

influences on these variables (for example, informal social learning pathways; informal healthcare

providers engaged in community education or infection prevention; community-driven initiatives;

cooperation between local governments, healthcare workers and community leaders). Such influences

undergirded recent responses to influenza in China[35] which learned from SARS of the need for

community-wide approaches.

Lessons from other fields can guide this effort. In the financial sector, detailed historical

knowledge of sub-population groups has been successfully applied in risk modeling to allow corporations

to sub-divide or segment risk in more refined ways. Collaborations between the social sciences and

epidemiology can quantitatively define population "risk segments" (economic groups; communities) that

predict exposures, informing response design and implementation. This approach pools individuals into

homogeneous segments defined by historical tendency to perform similarly, either incidentally or

longitudinally. While initiated in HIV research, [37] and applied to reduce harmful practices responsible

for newborn tetanus [38] and kuru [39], this approach has been little tested in global health or emergency

response research. Often the risk has already been identified by research into associations with disease

incidence. Collaborations are needed to underwrite more creative, historically and locally-aligned

characterizations of risk (modeled or observed) to support contextualized preparedness or response.

Lessons can also be taken from validated mental health approaches to quantifying qualitative

diagnostic observations. Sophisticated strategies support the transformation of patient interviews into

valid diagnostic scores,[40,41] including extensive controls for subjective, linguistic and cultural

elements, as needed in epidemic preparedness or response. In a similar manner, epidemiologists and

social scientists can collaboratively establish qualitative or semi-quantitative indicators of epidemic

progression or risk; community support, resistance or engagement; social mobilization, and intervention

effectiveness. This knowledge can be rapidly utilized to develop responses using EPI approaches

targeting disease spread but founded upon SBS principles.

Sierra Leone anthropologist Paul Richards wrote: "It is striking how rapidly communities learned

to think like epidemiologists, and epidemiologists to think like communities".[42] Reductions in

poliovirus transmission have been partly accredited to explicit community engagement and ownership,

linked to sanitation and hygiene and vaccination uptake. [43] SBS and epidemiological researchers can

collaborate to situate communities at the center of real-time, rolling data collection to reflect disease

transmission and response effectiveness. Rapid data collection systems can be pre-positioned and

integrated with psychosocial, knowledge-attitudes-and-practice and intervention impact measures, and

with measures of community engagement and social mobilization.

These systems can enable international actors, states and other stakeholders to receive real-time

information and respond appropriately. Aggregate, or composite qualitative indices of risk, social

mobilization, community engagement, and response effectiveness can be pre-conceived and validated for

use in status updates. These methodologies are well established during successful vaccination campaigns,

which are known for their military precision and local support.[44] This approach encourages use of

untapped community resources and the integration of sociocultural factors into epidemiological models.

There are consequences for failing to advance this agenda. The non-alignment of EPI and SBS

research during the West Africa Ebola epidemic means that questions about what transpired, what worked

and didn't work, who was responsible and affected and how or whether the epidemic curve was moved by

the local and international response, will likely remain unanswered. Conventional wisdom holds that

during the outbreak, aggressive campaigns of isolation, contact tracing, safe burial and social mobilization

reduced disease transmission. But in our assessment, the research evidence on the relationship between

Ebola transmission, interventions and behavior change is scant, indicating poor understanding of the

relationship between sociocultural factors and EVD transmission, and the impact of interventions on

overall epidemic trajectories.[45,46]

Data quality and analysis is another vital issue in this regard. Although genomic sequencing and

clinical characterizations were conducted early and proved robust, reviewers of the global response found

that early case-reporting data in West Africa was weak;[33] accordingly, evidence for the

sociodemographic, geospatial and cultural correlates of transmission and prevention were lacking. Where

qualitative data was integrated into the response, concepts like "community resistance" were

insufficiently defined for inclusion in reports. More medical anthropology is needed to characterize and

quantify risks, particularly those with potential for widespread population health impact.

Moreover, data collection is usually undertaken to keep authorities informed, but must also be

integrated into well-supported analytical and modeling capabilities within and beyond response

structures.[47-51] In both the West Africa EVD and global Zika outbreaks, mobile technologies and

grassroots surveillance became increasingly important for collecting large quantities of (often

unanalyzed) data. Data access restrictions that inhibited inter-disciplinary coordination were problematic

in West Africa; these must be lifted.[48]

There are limitations to our study. First, it was impossible to rely on primary data, so research in

both disciplines depended also on secondary data sources, ranging from external datasets to informal

qualitative reports. Many epidemiological models utilized the same incomplete datasets (viral

hemorrhagic fever databases, WHO Situation Reports, secondary district and county-level data), and

social science reports utilized small numbers of respondents or secondary reports. Thematic homogeneity

may be due to limited data access specific to this epidemic. Second, due to the international sharing of

several datasets on the epidemic, it was not possible to control for kin relationships, with multiple

publications describing the same or overlapping sets of patients. Thus, a meta-analysis of this data is

likely not possible. Several important studies included in both libraries included numerous kin

publications. Third, themes were established using a grounded theory approach, subjected to a peer

review process. However, restricted funding made it impossible to undertake comprehensive, teams-based

peer-review, resulting in some overlap between themes and sub-themes. Finally, to ensure that publication

bias did not unduly restrict our review of the SBS literature, we included some SBS studies based on

limited data, historical analysis and non-peer-reviewed articles.

How did socio-political, economic, migration, and sociocultural trends impact EVD

transmission? How could a more sophisticated understanding of health systems capacity, behavior

change, human mobility, mass communications, political contexts, and social vulnerability have impacted

the speed and roll-out of epidemic response implementation? Regrettably, for an event that put three

countries in states of emergency for nearly two years and killed more than 11,000 people, we will never

have answers to these questions that we didn't know we had, due to failure to design data collection,

modeling, mixed EPI and SBS research and analysis accordingly. Integration of SBS and epidemiological

approaches is needed for ensuring future epidemic response and building this capacity into health

systems. Agile, linked qualitative and quantitative data collection and analysis efforts must be developed

and used to drive surveillance, forecasting, policy, and resource prioritization. There are no informal

networks, shortcuts or workarounds that can substitute for overcoming capacity gaps that are currently

causing the "missed connections" and "blind sides" between the SBS and epidemiological domains.

References

Henao-Restrepo AM, Camacho A, Longini IM, et al. Efficacy and effectiveness of an rVSV-1.

vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination,

open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet. 2016;

2. After Ebola in West Africa--Unpredictable Risks, Preventable Epidemics. N Engl J Med.

2016/08/11. **2016**; 375(6):587–596.

3. Chowell G, Simonsen L, Viboud C, Kuang Y. Is West Africa Approaching a Catastrophic Phase

or is the 2014 Ebola Epidemic Slowing Down? Different Models Yield Different Answers for

Liberia. PLoS Curr. 2015/02/17. 2014; 6.

4. Abramowitz SAA, McLean KEE, McKune SLL, et al. Community-Centered Responses to Ebola

in Urban Liberia: The View from Below (vol 9, e0003706, 2015). PLoS Negl Trop Dis.

2015/04/10. **2015**; 9(4):e0003706.

Abramowitz S. Epidemics (Especially Ebola). Annu Rev Anthropol [Internet]. 2017; 46:421–445. 5.

Available from: https://doi.org/10.1146/annurev-anthro-102116-

6. Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions. John Wiley &

Sons; 2011.

7. Saldaña J. The coding manual for qualitative researchers. Sage; 2015.

8. Miles MB, Huberman AM, Saldana J. Qualitative data analysis. Sage; 2013.

- 9. Owada K, Eckmanns T, Kamara KB, Olu OO. Epidemiological Data Management during an Outbreak of Ebola Virus Disease: Key Issues and Observations from Sierra Leone. Front Public Heal. 2016/08/24. **2016**; 4:163.
- 10. WHO Ebola Response Team. Ebola virus disease in West Africa—the first 9 months of the epidemic and forward projections. N Engl J Med. 2014; 2014(371):1481–1495.
- 11. Heymann DL, Chen L, Takemi K, et al. Global health security: the wider lessons from the west African Ebola virus disease epidemic. Lancet. 2015/05/20. **2015**; 385(9980):1884–1901.
- 12. Nicholson A, Snair MR, Hermann J. Global Health Risk Framework: Resilient and Sustainable Health Systems to Respond to Global Infectious Disease Outbreaks: Workshop Summary. National Academies Press; 2016.
- Varma JK, Prezant DJ, Wilson R, et al. Preparing the Health System to Respond to Ebola Virus 13. Disease in New York City, 2014. Disaster Med Public Heal Prep. 2016/11/03. 2016; :1-5.
- 14. Enria L, Lees S, Smout E, et al. Power, fairness and trust: understanding and engaging with vaccine trial participants and communities in the setting up the EBOVAC-Salone vaccine trial in Sierra Leone. BMC Public Health. 2016/11/09. **2016**; 16(1):1140.
- 15. Bardosh KL, Chandler C, Chantler T, et al. Anthropology and Ebola Clinical Research Working Group Document. Ebola Response Anthropol Platf. 2014; .
- 16. Calain P, Poncin M. Reaching out to Ebola victims: Coercion, persuasion or an appeal for selfsacrifice? Soc Sci Med. 2015/11/13. 2015; 147:126–133.
- 17. Martineau FP. People-centred health systems: building more resilient health systems in the wake of the Ebola crisis. Int Heal. 2016; .
- 18. Richardson ET, Barrie MB, Kelly JD, et al. Biosocial Approaches to the 2013-2016 Ebola

- Pandemic. Heal Hum Rights. 2016/10/27. **2016**; 18(1):115–128.
- 19. Leach M. The Ebola Crisis and Post 2015 Development. J Int Dev. 2015; 27(6):816–834.
- 20. McLean KE, Abramowitz SA, Ball JD, et al. Community-based reports of morbidity, mortality, and health-seeking behaviours in four Monrovia communities during the West African Ebola epidemic. Glob Public Heal. 2016/07/28. **2016**; :1–17.
- 21. Fawole OI, Bamiselu OF, Adewuyi PA, Nguku PM. Gender dimensions to the Ebola outbreak in Nigeria. Ann Afr Med. 2016/02/10. **2016**; 15(1):7–13.
- 22. Sierra Leone Ministry of Social Welfare G and CA, UN Women Sierra Leone, OXFAM Sierra Leone, Leone SS. Report of the Multisector Impact Assessment of Gender Dimensions of the Ebola Virus Disease (EVD) in Sierra Leone. 2014.
- 23. Lewnard JA, Ndeffo Mbah ML, Alfaro-Murillo JA, et al. Dynamics and control of Ebola virus transmission in Montserrado, Liberia: a mathematical modelling analysis. Lancet Infect Dis. 2014/12/03. **2014**; 14(12):1189–1195.
- 24. Merler S, Ajelli M, Fumanelli L, et al. Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis. Lancet Infect Dis. 2015/01/13. **2015**; 15(2):204–211.
- 25. Valdez LD, Aragao Rego HH, Stanley HE, Braunstein LA. Predicting the extinction of Ebola spreading in Liberia due to mitigation strategies. Sci Rep. 2015/07/21. **2015**; 5:12172.
- 26. Leach M. Melissa Leach on the socioeconomic and historic reasons for distrust in health interventions [Internet]. SciDev.Net, editor. 2015. Available from: Melissa Leach on the socioeconomic and historic reasons for distrust in health interventions
- 27. Wesley PJ. Liberia's Ebola Epidemic: Did the Government Fall Asleep at the Wheel. Cult

- Anthropol Online 7th Oct. 2014; .
- 28. Richards P, Amara J, Mokuwa E, Mokuwa A, Suluku R. Village Responses to Ebola Virus

 Disease and its Prevention Gbo chiefdom, Bo District, Sierra Leone Eighth interim report to the

 SMAC program, DFID Freetown. Ebola Response Anthropology Platform: Njala University;

 2015.
- 29. Richards P, Amara J, Mokuwa E, Mokuwa A, Suluku R. Village Responses to Ebola Virus Disease in Rural Eastern Sierra Leone - Second interim report to the SMAC program, DFID Freetown. Ebola Response Anthropology Platform: Njala University; 2015.
- 30. Richards P, Mokuwa A. Village Funerals and the Spread of Ebola Virus Disease. Cult Anthropol Online. **2014**; .
- 31. Pruyt E, Auping WL, Kwakkel JH. Ebola in West Africa: Model-Based Exploration of Social Psychological Effects and Interventions: Ebola in West Africa. Syst Res Behav Sci. **2015**; 32(1):2–14.
- 32. Shultz JM, Cooper JL, Baingana F, et al. The Role of Fear-Related Behaviors in the 2013-2016 West Africa Ebola Virus Disease Outbreak. Curr Psychiatry Rep. **2016**; 18(11):104.
- 33. Moon S, Sridhar D, Pate MA, et al. Will Ebola change the game? Ten essential reforms before the next pandemic. The report of the Harvard-LSHTM Independent Panel on the Global Response to Ebola. 2015/11/30. **2015**; 386(10009):2204–2221.
- 34. Abramowitz SA, Bardosh KL, Leach M, Hewlett B, Nichter M, Nguyen V-K. Social science intelligence in the global Ebola response. Lancet. **2015**; 385(9965).
- 35. Yanzhong H. China's Reaction to H1N1 Pandemic Flu [Internet]. 2010. Report No.: 498. Available from: http://www.eai.nus.edu.sg/publications/files/BB498.pdf

- 36. Jones BA, Grace D, Kock R, et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc Natl Acad Sci U S A [Internet]. National Academy of Sciences; 2013; 110(21):8399–8404. Available from: http://www.jstor.org/stable/42656734
- 37. Thangarajan N, Green N, Gupta A, Little S, Weibel N. Analyzing social media to characterize local hiv at-risk populations. Proc Conf Wirel Heal. ACM; 2015. p. 11.
- 38. Mull DS, Anderson JW, Mull JD. Cow dung, rock salt, and medical innovation in the Hindu Kush of Pakistan: the cultural transformation of neonatal tetanus and iodine deficiency. Soc Sci Med [Internet]. **1990** [cited 2018 May 21]; 30(6):675–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2315737
- 39. Alpers MP. The epidemiology of kuru: monitoring the epidemic from its peak to its end. Philos Trans R Soc Lond B Biol Sci [Internet]. The Royal Society; 2008 [cited 2018 May 21]; 363(1510):3707–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18849286
- 40. Sajatovic M, Ramirez LF. Rating scales in mental health. JHU Press; 2012.
- McDowell I. Measuring health: a guide to rating scales and questionnaires. Oxford university 41. press; 2006.
- 42. Richards P. Ebola: How a people's science helped end an epidemic. African Arguments. London: Zed Books; 2016.
- 43. Deutsch N, Singh P, Singh V, Curtis R, Siddique AR. Legacy of Polio—Use of India's Social Mobilization Network for Strengthening of the Universal Immunization Program in India. J Infect Dis [Internet]. Oxford University Press; 2017 [cited 2018 May 21]; 216(suppl_1):S260–S266. Available from: https://academic.oup.com/jid/article/216/suppl_1/S260/3935067
- 44. John TJ, Vashishtha VM. Eradicating poliomyelitis: India's journey from hyperendemic to polio-

- free status. Indian J Med Res [Internet]. Wolters Kluwer -- Medknow Publications; 2013 [cited 2018 May 21]; 137(5):881–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23760372
- 45. Bausch DG, Schwarz L. Outbreak of ebola virus disease in Guinea: where ecology meets economy. PLOS Negl Trop Dis. 2014/08/01. 2014; 8(7):e3056.
- 46. Chowell G, Nishiura H. Transmission dynamics and control of Ebola virus disease (EVD): a review. BMC Med. 2014/10/11. 2014; 12:196.
- 47. Tomori O. Will Africa's future epidemic ride on forgotten lessons from the Ebola epidemic? BMC Med. **2015**; 13(1):116.
- Asgary R, Pavlin JA, Ripp JA, Reithinger R, Polyak CS. Ebola policies that hinder epidemic 48. response by limiting scientific discourse. Am J Trop Med Hyg. 2015/01/07. 2015; 92(2):240–241.
- Carson SS, Fowler RA, Cobb JP, Arabi YM, Ingbar DH. Global participation in core data sets for 49. emerging pathogens. Am J Respir Crit Care Med. 2015/04/02. 2015; 191(7):728–730.
- 50. Yozwiak NL, Schaffner SF, Sabeti PC. Data sharing: Make outbreak research open access. Nature. 2015/02/27. **2015**; 518(7540):477–479.
- 51. Modjarrad K, Moorthy VS, Millett P, Gsell P-S, Roth C, Kieny M-P. Developing global norms for sharing data and results during public health emergencies. PLoS Med. 2016; 13(1):e1001935.

Table 1: Search strategy

	EPI literature	SBS literature		
Sources	PubMed Central	PubMed Central		
	JSTOR	JSTOR		
	SAGE Journals	SAGE Journals		
	Google Scholar	Google Scholar		
		Manual search		
		Targeted Websites*		
Dates	1 Dec 2013-13 Nov 2016	1 Dec 2013-13 Nov 2016		
Languages	English	English		
	French	French		
Terms**	Ebola hemorrhagic fever	Ebola hemorrhagic fever		
	Ebola	Ebola		
~ C)	Ebolavirus	Ebolavirus		
	EVD	EVD		
Y	Epidemiology	Qualitative		
		Anthropology		
		Survey		

		Psychosocial	
		Culture	
		Sociocultural	
		Social	
		KAP	
		Knowledge Attitudes Practices	
		Customs	
Regional	West [Western] Africa	West [Western] Africa	
sources for primary data	Liberia	Liberia	
	Guinea	Guinea	
	Nigeria	Nigeria	
	Sierra Leone	Sierra Leone	
Reasons for	Abstracts without papers		
exclusion	Meetings proceedings		
10°	Letters or commentaries		
	News reports and news reviews		
	Animal or in vitro studies		
	Training manuals		
	Materials limited to tables, charts, a	nd infographics	

Primary data sources outside of Liberia, Guinea, Sierra Leone, Nigeria

*The Health Communications Capacity Collaborative, the Ebola Response Anthropology

Platform, and the Réseau Ouest Africain SHS Ebola

**see SUPPLEMENTARY MATERIAL A for complete search string

Table 2: Sample size, location (mentioned as a focus or source of data) and timeframe of study

RESEARCH LOCATION	EPI (N)	EPI (%)	SBS (N)	SBS (%)
Any location reported	226	96	134	78
Liberia	138	58	58	34
Guinea	105	44	41	24
Sierra Leone	133	56	58	34
Nigeria	21	9	5	3
Two or more countries	210	89	103	60
Other*	29	12	47	29
STUDY PERIOD**			0	
Any timeframe reported	172	73	98	57
Pre-response/Dec13-Jul14	77	33	12	7
Phase 1/Aug14-Dec14	137	58	74	43
Phase 2/Jan15-Jul15	64	27	35	20
Phase 3/Aug15-Jul16	17	7	10	6
	•			

^{*} Any study that included a country other than Liberia, Guinea, Nigeria, or Sierra Leone as part of its reference group in addition to the core 4 countries (e.g. Democratic Republic of the Congo, Uganda)

^{**} Phases are based on the United Nations Mission for Emergency Ebola Response, to provide uniformity across countries

Table 3: Themes and ratios of themes in EVD publications by research type with shading to indicate greater proportion

THEMES	EPI (n)	EPI%	SBS (n)	SBS %
Age groups/Vulnerable populations	43	18%	56	33%
Alternative health practices	85	36%	107	63%
Clinical	140	59%	79	46%
Clinical trials	22	9%	21	12%
Community engagement	73	31%	108	63%
Diagnosis	98	42%	32	19%
Economic issues	23	10%	74	43%
Epidemiology themes	199	84%	22	13%
Ethics	34	14%	69	40%
Funerals/Burials	73	31%	101	59%
Health communications strategies	37	16%	75	44%
Healthcare workers	87	37%	98	57%
Health systems	174	74%	129	75%
History	49	21%	40	23%
Mobility	125	53%	113	66%
Modeling	117	50%	13	8%
Outbreak investigation	149	63%	50	29%
Political themes	42	18%	134	78%
Post-Ebola	74	31%	55	32%

74	31%	150	88%
180	76%	146	85%
102	43%	70	41%
30	13%	95	56%
108	46%	9	5%
134	57%	168	98%
32	14%	52	30%
177	75%	81	47%
46	19%	41	24%
67	28%	10	6%
	180 102 30 108 134 32 177 46	180 76% 102 43% 30 13% 108 46% 134 57% 32 14% 177 75% 46 19%	180 76% 146 102 43% 70 30 13% 95 108 46% 9 134 57% 168 32 14% 52 177 75% 81 46 19% 41

Box 1: Recommendations to build capacity for future EPI/SBS work in epidemic contexts

- Develop a program for the systematic quantification of locally-appropriate sociocultural factors for epidemiological purposes;
- Establish interdisciplinary collaborations to refine "risk segmentation" methodologies and practices for better real-world accuracy;
- 3. Create and pre-position qualitative indicators and composite social indexes that can be rapidly deployed during epidemic outbreaks;
- 4. Use untapped community resources to create real-time, rolling data collection and response integration capabilities;
- 5. Develop new techniques for modeling social mobilization and community engagement;
- 6. Prioritize accurate, high-quality data collection and rapid development of multiple modeling frameworks early in the emergency response;
- 7. Draw upon the experience of the West Africa Ebola outbreak of 2014-15.

- 1. Develop a program for the systematic quantification of locally-appropriate sociocultural factors for epidemiological purposes;
- 2. Establish interdisciplinary collaborations to refine "risk segmentation" methodologies and practices for better real-world accuracy;
- 3. Create and pre-position qualitative indicators and composite social indexes that can be rapidly deployed during epidemic outbreaks;
- 4. Use untapped community resources to create real-time, rolling data collection and response integration capabilities;
- 5. Develop new techniques for modeling social mobilization and community engagement;
- 6. Prioritize accurate, high-quality data collection and rapid development of multiple modeling frameworks early in the emergency response;
- 7. Draw upon the experience of the West Africa Ebola outbreak of 2014-15.