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Abstract 

Cancer survival trend analyses are essential to describe accurately the way medical 

practices impact patients’ survival according to the year of diagnosis. To this end, survival 

models should be able to account simultaneously for non-linear and non-proportional 

effects and for complex interactions between continuous variables. However, in the 

statistical literature, there is no consensus yet on how to build such models that should be 

flexible but still provide smooth estimates of survival. In this article, we tackle this 

challenge by smoothing the complex hypersurface (time since diagnosis, age at diagnosis, 

year of diagnosis, mortality hazard) using a multidimensional penalized spline built from 

the tensor product of the marginal bases of time, age, and year. Considering this penalized 

survival model as a Poisson model, we assess the performance of this approach in 

estimating the net survival with a comprehensive simulation study that reflects simple 

and complex realistic survival trends. The bias was generally small and the root mean 

squared error was good and often similar to that of the true model that generated the data. 

This parametric approach offers many advantages and interesting prospects (such as 

forecasting) that make it an attractive and efficient tool for survival trend analyses. 

 

Keywords: penalized spline, survival model, tensor product, varying coefficient model, 

generalized additive model, cancer net survival trends, multidimensional smoothing, 

interaction, non-linear effect, non-proportional effect 
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1. Introduction 

1.1. Epidemiological issues and modeling problems 

In cancer descriptive epidemiology, one major indicator is the trend in patient survival 

according to the year of cancer diagnosis (yod) and the trend in the corresponding 

mortality hazard. Indeed, these trends show the way advances in medical practices 

(screening campaigns, diagnostic techniques, treatment options, etc.) have changed 

patient survival over the yod. Within this context, the age at diagnosis is a major variable 

because these practices depend strongly on age; actually, elderly cancer patients present 

frequently comorbidities that may prevent the use of aggressive, though efficient, 

treatment.1 Moreover, describing trends according to the time elapsed since diagnosis 

helps a medical interpretation of the analysis results because that course of time 

corresponds to different steps in the disease and treatment outcomes (post-surgical 

mortality during early follow-up, outcome of the first-line treatment during the first year 

after diagnosis, late relapses, etc.) 

 

Hence, a survival model for trend analysis should model the mortality hazard h as function 

of the age at cancer diagnosis, the yod, and the time since cancer diagnosis and answer at 

least three questions (assuming an improvement over the yod in survival for example): i) 

Did mortality decrease gradually over the yod or was the decrease observed only over a 

few yod? Or, in statistical terms, was the effect of the yod on h linear or non-linear? ii) 
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Was the decrease observed whatever the time elapsed since diagnosis or only at specific 

moments (such as at early follow-up because of better post-surgical management)? Or, 

was the effect of the yod on h proportional or non-proportional? iii) Was the decrease 

dependent on patient age at diagnosis? Or, was there an interaction between age and yod? 

These aspects (non-linearity, non-proportionality, and interaction) are very often met in 

real data; for example, in the French cancer survival population-based data,2 the effect of 

age at diagnosis was almost systematically found to be non-linear and non-proportional 

whatever the cancer site. Furthermore, in a study of survival trends in six European 

countries and 15 cancers (90 analyses), Uhry et al.3 found that the effect of the yod was 

non-proportional in 70% of the analyses and that it depended on age at diagnosis in two 

thirds of the analyses. Thus, one key issue in modeling survival trends is to build a flexible 

model able to reflect simultaneously these three fundamental aspects while providing 

smooth estimates. 

  

1.2. What has been used so far for studying net survival trends? 

Up to now, few attempts have been made to build such a flexible model. Indeed, in 

international trend studies4, 5, net survival (NS), the main survival indicator used in the 

context of cancer descriptive epidemiology, is almost exclusively estimated separately 

for each period without modeling and using non-parametric estimators of NS.6, 7 Such 

stratified analyses have well-known limitations: arbitrary choices of period- and age-
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strata, loss of information due to categorization of continuous covariates, imprecision due 

to multiple stratification, possible inconsistencies in NS trends across age strata and 

considerable difficulties in studying covariate interactions. In addition, such analyses only 

provide NS estimates and not a description of the excess mortality hazard (hE) that 

constitutes an additional and essential clinical piece of information.  

Despite the significant progress in flexible parametric modeling,8-13 few studies analyzed 

trends opting for a modeling approach and keeping time, age, and yod as continuous 

covariates14, 15; however in these studies, age-yod or age-yod-time interactions were not 

considered.  

To our present knowledge, only one study has proposed a modeling approach that allows 

for a potentially complex effect of the yod.3 However, in this study, defining and selecting 

the appropriate models were quite challenging and achieving a balance between 

flexibility and parsimony required building nineteen models that differed in modeling the 

effect of the yod in terms of linearity, proportionality and interaction with age; the final 

model was chosen according to the Akaike Information Criterion. This study highlights 

the difficulty of achieving a flexible modeling of hE(t,a,y) through a classical model-

building strategy (guiding principles were proposed without reaching consensus11); the 

number of candidate models may be very large, which requires sound choices for model 

specification, choices that become more difficult as the study-period or follow-up 

lengthens. Moreover, variance is under-estimated if the selection process is not accounted 



6 
 

for and there is no simple solution for taking this phenomenon into account in the 

statistical inference; a correct variance estimation requires heavy bootstrap techniques or 

to consider multi-model inference.16 

 

1.3.  A flexible modeling for survival trend analyses: the MPS approach  

To tackle the challenge of modeling of hE(t,a,y) in a flexible and convenient way, we 

propose to consider the issue as a problem of modeling a complex hypersurface hE(t,a,y) 

and to smooth this surface using a multidimensional penalized spline (MPS). The MPS 

approach is a powerful tool originally developed for Generalized Linear Models.17 We 

adapted it to the survival context. One of the major benefits of this solution is that it 

reduces the model-building issue evoked above. The objective of the present paper is to 

evaluate the performance of this adapted MPS approach for usual studies of trends in net 

survival and excess mortality hazards, using realistic simulations. The proposed approach 

focuses herein on NS but is obviously suitable for overall survival too. 

 

The present article is organized as follows: after a brief review of the NS concept, section 

2 presents the proposed approach, highlighting the relationship between the MPS and the 

varying-coefficient model.18 A comprehensive simulation study is carried out based on 

real data to assess the performance of this approach regarding its ability to fit various NS 

trends; section 3 presents the design, the theoretical parameters, and the indicators of 
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performance. Section 4 presents the results of these simulations and section 5 a general 

discussion. In the online supplementary material, we present an analysis of real data (from 

the French cancer registries) with the R-code necessary to reproduce this analysis (this 

code is available on the GitHub repository 

https://github.com/RocheLHCL/SMMR_Remontet2018 ). 

 

2. Multidimensional penalized splines for a (net) survival model 

2.1. Introduction to the concepts of excess mortality hazard model and net survival 

In the competing-risk context of cancer survival, individuals may die from cancer or from 

another cause but, in cancer registries, the causes of death are not always available or 

reliable. In addition, cancer treatments may have long-term toxicities and ultimately cause 

death; these extra-deaths are then “due to cancer”. These two reasons make “excess 

mortality” a relevant concept. This excess mortality can be estimated by supposing that, 

in cancer patients, the mortality due to others causes than the cancer can be obtained from 

the (all causes) mortality of the general population; the latter is referred to as the 

“expected mortality” hP. Then, the mortality observed in cancer patients (hO) may be 

written as: 

ℎ���, �� = ℎ	��, �, 
� + ℎ��
 + �, �� (1) 

In this equation, hE is the excess mortality hazard due to cancer, t is the time elapsed since 

cancer diagnosis, a is the age at cancer diagnosis, hP is the mortality of the general 
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population at age a+t given demographic characteristics z (hP is considered known and 

available from national statistics), x is a vector of variables that may have an effect on hE, 

and β is the vector of parameters of interest to be estimated. 

Fully parametric models8-10 have been proposed to model hE e.g., log[hE(t,x,β)] = f(t) + 

g(x) + h(t)x where f, g, and h are flexible functions such as cubic splines. 

Let us consider an observation ti, δi, xi, and zi of subject i, with δi=1 when ti corresponds 

to the time of death and δi=0 when ti corresponds to a censored observation, the 

contribution of that observation to the log-likelihood may be written (up to a constant): 

����� = −� ℎ	��, ��,��
��

�
�� +	����� ℎ	���, �� , �� + ℎ��
� + ��, !��" 

 

In a non-penalized framework, the maximum likelihood method may be used to estimate 

parameters β of the excess hazard model.8, 10, 19 However, specific numerical techniques 

are necessary to approximate the integral involved in the likelihood. In 2007, Remontet 

et al.10 showed that using the ‘point-milieu’ approximation for the integral leads to a 

likelihood similar to the one obtained with a Poisson model on split data (a model that 

uses a modified link function so as to incorporate the expected mortality rates). Taking 

advantage of this similarity, a survival model can then be fitted in a numerically practical 

manner by using a Poisson regression; herein, this approach will be referred to as “Poisson 

approach”. 
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Finally, once parameters β are estimated, NS, the survival that would be observed if 

cancer was the only cause of death, can be directly obtained from hE using the classical 

relationship between hazard and survival: #$��, ��� = %�& '−( ℎ	��, ��,	 ���
� ��) 

 

2.2. Introduction to the multidimensional penalized spline approach 

The general principle of penalized splines consists in modeling the parameter of interest 

(here, hE) as a function of a vector of variables (here, time since diagnosis, age at 

diagnosis, and yod) using highly flexible functions. This flexibility is typically obtained 

with splines with a number of knots higher than what is deemed necessary (this leads to 

a high number of parameters). In the classical unpenalized likelihood framework, such 

flexibility leads to a high variability of the estimators and to an overfitting. In the 

penalized spline framework, these drawbacks are overcome by considering a penalized 

likelihood as the objective function obtained by adding to the classical likelihood a term 

that penalizes “wiggly” functions. One common choice among the penalization terms is 

the integral of the squared second derivative of the fitted function: this choice penalizes 

the functions that are too wiggly, achieves smoothness, and prevents from erratic 

estimation. The trade-off between model fit and model smoothness is controlled by a 

smoothing parameter λ. 
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The very clear and instructional article by Wood20 presents the essentials for 

understanding and using penalized splines; specifically, building the penalization term, 

optimizing the penalized likelihood (with estimation of λ), and making statistical 

inference with examples that use mgcv package17 in R (see also Marra and Radice21 and 

Eilers and Marx22). Another useful and instructional reference is a more general overview 

by Ruppert et al.23 that presents a mixed-model representation of penalized splines and 

Bayesian models with longitudinal and spatial effects. 

 

The multidimensional version of penalized splines, based on tensor product of basis 

functions, has been already proposed in Generalized Linear Models by Wood24 and by 

Marx and Eilers.25, 26 An interesting example of the use of these MPSs in a Poisson model 

was given by Ugarte et al.27 who modeled the number of deaths from prostate cancer as 

a function of the year of death and the geographic coordinates (longitude and latitude) of 

the residential area (see also Etxeberria et al.28). The tensor product of these three 

variables constitutes a spatio-temporal model and, together with Currie et al.29, Ugarte 

proposes to use it as a projection tool. 

 

2.3 Multidimensional penalized splines in (net) survival models 

2.3.1. Modelling the mortality hazard with a varying coefficient model 



11 
 

To model log [hE(t,a,y)] as a function of time since diagnosis t, age at diagnosis a, and 

yod y, we propose using a MPS whose basis is built by the tensor product of three 

marginal bases chosen for t, a, and y. To motivate this choice, we show its relationship 

with the varying coefficient model.18 

 

First, let (mi(t))1≤i≤I, (qj(a))1≤j≤J, and (bk(y))1≤k≤K be three low-rank bases for smooth 

functions ft, fa, and fy, respectively: 

*���� = +,�-����;	
/

�01
	*2�
� = +34

5

401
64�
�;	*7�8� = + �9:9�8�

;

901
 

where µi, θj, and βk are the parameters to estimate. 

 

For a clear illustration, let us take a very simple (though unrealistic) example, starting 

from a basic model in which the dynamics of the hazard according to time is log-linear: 

��� ℎ	���" = *���� = ,1 + ,<� 

 

We now want to take age into account in this model, knowing that this dynamics may 

vary with age. One way of achieving this is to allow the intercept and slope of ft(t) to 

change with age using another basis for age, say a quadratic polynomial 

fa(a)=θ1+θ2a+θ3a2. This gives the following model: 

��� ℎ	��, 
�" = *�2��, 
� = �311 + 31<
 + 31=
<� + �3<1 + 3<<
 + 3<=
<�� 
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In this model, for a given age, log [hE(t|a)] is linear in time and for a given time, log 

[hE(a|t)] is quadratic in age. This six-parameter model can be seen as a varying coefficient 

model where the coefficients of time (intercept µ1=θ11+θ12a+θ13a
2 and slope 

µ2=θ21+θ22a+θ23a
2) are allowed to change smoothly with age, the “effect modifier”.18 

This change occurs in a structured fashion, in the sense that each age has its own intercept 

and its own slope but two adjacent ages have close intercepts and close slopes. Here, we 

may assume that, symmetrically, time changes the effect of age: the model then obtained 

will be the same. 

 

Going back to the general and the most realistic case, the multidimensional function fta 

will correspond to: 

��� ℎ	��, 
�" = *�2��, 
� = ++3�464�
�-����
5

401

/

�01
 

The construction of the multidimensional function may continue according to the same 

principle but with changes made now to coefficients θij according to y. This leads to: 

��� ℎ	��, 
, 8�" = *�27��, 
, 8� =
∑ ∑ ∑ ��49:9�8�64�
�-����;9015

401/�01
 

(2) 

that is, the multidimensional basis consists of the K×J×I terms bk(y)×qj(a)×mi(t) obtained 

by the product of the terms of the marginal basis. This basis construction is rather simple 
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and may be extended to any number of variables. It is essential to see from (2) that this 

model allows simultaneously for non-linearity and various interaction patterns. In 

particular, i) qj(a)×mi(t) and bk(y)×mi(t) terms allow for non-proportional effects of age 

and yod, respectively; ii) bk(y)×qj(a) allows for complex second-order interactions 

between age and yod; iii) bk(y)×qj(a)×mi(t) allows for complex third-order interactions 

between yod, age, and time. However, in (2), there are K×J×I terms to estimate; a 

penalization is thus required to avoid wiggly surfaces. 

 

2.3.2. Measure of function wiggliness and penalized likelihood 

The measure of wiggliness of a multidimensional function ftay to use for penalization is 

based on the second derivatives and is detailed in the publication of Wood.24  

Adding this penalization term to the likelihood leads to an excess mortality hazard hE that 

varies smoothly with t, a, and y; thus, the change in hazard between adjacent times, 

adjacent ages, or adjacent yod cannot be rough. This smoothing is very appealing and 

natural in the context of cancer survival trends where it is not expected that treatment 

improvements would lead to sudden changes in mortality between close years or close 

ages. 

 

2.3.3. Choice of the marginal bases used for the mortality hazard  
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To represent functions ft, fa, and fy, we opted for restricted (or “natural”) cubic splines as 

low-rank bases; the dimensions of these bases depend thus on the number of knots chosen. 

In the penalized framework, the basis dimension should be set to a value slightly higher 

than that deemed necessary, which brings flexibility. Here, we will focus on net survival 

trend analyses over 20 yod with 5 years of follow-up (see the details in section 3). 

According to our experience in cancer survival analysis and the recommendations of 

Herndon and Harrell,30, 31 we have chosen to use six knots (including boundary knots) to 

model ft, the dynamics of hazard (6 parameters), five knots to model fa (the effect of age 

at diagnosis), and four knots to model fy (the effect of the yod). Given the number of 

knots, 120 parameters have to be estimated in Formula 2. 

According to Gray32 and Herndon and Harrell,31 knot location may be based on the 

empirical percentiles observed in the population of patients who died, which yields in our 

case, considering the number of knot we have chosen: i) 0th, 20th, 40th, 60th, 80th, and 100th 

percentiles of survival time for ft; ii) 0th, 25th, 50th, 75th, and 100th percentiles of age at 

diagnosis for fa; and, iii) 0th, 33th, 66th, 100th percentiles of yod for fy. 

 

 

2.3.4. Parameter estimation and practical implementation in survival models 

Survival models with penalized splines face the same integration problem as models with 

non-penalized splines (see section 2.1). Previous works have addressed this issue for 
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unidimensional penalized splines: in 2013, Rodriguez et al.,33 used a penalized Poisson 

approach to fit a penalized survival model (an approach that parallels that of Remontet et 

al.10 in the unpenalized framework). This approach allows benefiting from the well-

known Generalized Additive Model (GAM) framework.17, 34, 35 In 2005, Kauerman36 and 

Becher et al.37 considered also a penalized survival model as a Poisson GAM model using 

trapezoid techniques to approximate the integrals. In 2016, Liu et al.38 proposed a 

penalized generalized survival model based on the parametric Royston-Parmar 

approach.39 The latter authors modeled directly the cumulative hazard, which avoids the 

difficult integration and replaces it by a simple derivation. 

 

Here, we adopted the Poisson approach described by Rodriguez to implement the MPS 

in the excess hazard model. To this end, we split the original data into small intervals (as 

described by Remontet et al.10) and, being in the context of the excess hazard model, 

changed the link function of the Poisson model to allow for the population mortality 

hazard hP.19 In practice, using version 1.8-3 of mgcv, model (1) with tensor product (2) 

has been implemented on split data using function te() to build the tensor product basis 

and using gam function to fit the model. Function gam makes it possible to adjust the 

penalized Poisson model and use a personalized link function. The model was fitted using 

a P-IRLS algorithm and the smoothing parameters λt, λa, and λy were estimated by 

Restricted Maximum Likelihood (REML).17  
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2.3.5. Derivation of the net survival and the confidence intervals 

Once the parameters of the model are estimated as detailed above, the net survival at 

given time since diagnosis, age at diagnosis, and yod is obtained by integration of the 

excess mortality hazard using Gauss-Legendre quadrature. Using the delta-method and 

assuming normality of the logs of the cumulative hazards, the confidence intervals of the 

net survival (age-specific or age-standardized) are obtained from the Bayesian posterior 

covariance matrix (Vp in package mgcv) of the 120 parameters.17, 40  

 

 

3. The simulation study 

To assess the performance of this MPS approach in net survival trend analysis, we 

simulated survival data under 5 scenarios that represent a variety of trends seen in real 

data analyses. 

 

3.1. The simulation design 

Type of models used for the scenarios 

The five scenarios represent gradually complex trends; we chose then five cancers sites 

according to the results of SUDCAN study for France3 (esophagus, stomach, breast, 

cervix uteri, and ovary). For each cancer site, we adjusted a flexible parametric excess 
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hazard model on the French survival data.41 The model mimics the effects found in 

SUDCAN (see details in Supplementary table S1). The scenarios differ in the effect of 

the yod that could be linear or non-linear, proportional or non-proportional, age-

dependent or age-independent, and the most complex scenarios included third-order 

interactions (table S1). However, the adjusted model used fractional polynomials11 

instead of splines because splines are the basis functions of the tensor; thus, using the 

same bases for data generation and analyses would overestimate the performance of the 

MPS approach. Practically, to choose the powers of the fractional polynomials, we 

adapted the model-building strategy proposed by Sauerbrei et al.12 Finally, for each 

scenario, the parameters obtained were regarded as theoretical parameters and used to 

generate the data. 

 

Sample characteristics  

Two sample sizes were considered for each scenario (N=2,000 and N=10,000). In the 

settings with 2,000 patients, we simulated M=1,000 datasets whereas in the settings with 

10,000 patients, we simulated only M=200 datasets to limit the computing time. In each 

scenario, we simulated a cohort with a similar age-distribution as observed in the French 

data used to obtain the theoretical parameters. The yod was randomly sampled from a 

uniform distribution between 1990 and 2010. Patients were censored at 5 years or at end 

of follow-up in 2013.  
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Generation of time to death T 

For each individual, the time to death T was the minimum of the time to death due to 

cancer (TE) and the time to death from other causes (TP), each being generated separately 

according to the age and the yod of the individual. TP was generated using a piecewise 

exponential distribution as described by Danieli et al.42 TE was generated using the inverse 

transform approach described by Crowther and Lambert43 for the survival context. The 

cumulative distribution F@�t�	of TE, which is derived from the parametric expression of 

hE as F@�t� = 1 − exp	F−( h@�v�dvJ
� K, is then numerically inverted to generate TE from 

a uniform distribution; i.e., L	 = F@M1�u� where u is drawn from a uniform distribution. 

 

3.2. Description of the theoretical trends of each scenario 

Theoretical excess mortality hazards for 3 ages, 3 years, and each scenario are shown in 

Figure 1. The theoretical trends of NS by age can be seen in Supplementary Figure S7 for 

example (solid line). 

Scenario 1 used data on esophagus cancer and assumed no effect of the yod to allow 

assessment of the performance of the MPS approach in a context where the smoothing of 

the yod effect must be important. Another interesting feature of this scenario is the non-

monotony of the hazard function according to the time elapsed since diagnosis: the excess 

mortality hazard increased up to one year after diagnosis then decreased dramatically 
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(Figure 1). This means that the smoothing of the effect of time should not be too important 

to correctly reproduce this curvature. 

Scenario 2 used data on stomach cancer and considered that the effect of the yod was non-

linear, non-proportional, and had no interaction with age at diagnosis. In this scenario, 

the strengths of these non-linearity and non-proportionality are rather low. 

Scenario 3 used breast cancer data and considered that the effect of the yod was non-

linear, proportional, and had an interaction with age at diagnosis. In this scenario, the net 

survival increased with the yod whatever the age but the magnitude of the increase 

depended on age (Figure S7). In addition, unlike the two previous scenarios, the 

theoretical excess mortality hazard was moderate and relatively constant along the time 

elapsed since diagnosis (Figure 1). 

Scenario 4 used cervical cancer data. This cancer showed a linear and non-proportional 

effect of the yod, with a strong age-yod interaction and a triple interaction between time, 

age, and yod. In young women, at fixed time points since diagnosis between 0 and 24 

months, the excess mortality decreased with the yod. In contrast, in elderly women, the 

excess mortality increased with the yod whatever the position of this time since diagnosis 

(Figure 1). This leads to an interesting feature in NS trends because NS improves in young 

patients but worsens in the elderly (Figure S7). All these hazard variations of cervical 

cancer are shown in Figure S1 that presents the theoretical excess mortality hazards in 
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3D-plots. This figure illustrates the complexity of the hypersurface we attempt to model 

with MPS.  

Scenario 5, the most complex one, used ovarian cancer data and included a non-linear 

and non-proportional effect of yod together with a triple interaction. Indeed, at 

intermediate ages and fixed times since diagnosis less than 3 years, the excess mortality 

hazard decreased with the yod, whereas it increased with the yod for greater time spans. 

However, this reverse trend was less marked in young or old ages, which explains the 

need for a triple interaction. 

 

Figure 2 shows the theoretical 1- and 5-year standardized net survival (sNS) according to 

the yod in each of the five scenarios (black solid curve). In Scenario 2 (stomach cancer), 

the curve shows an atypical pattern during the first yod; the sNS in 1990 is slightly higher 

than the one in 1991 while the survival increases afterwards (this atypical pattern is due 

to the use of a fractional polynomial for the effect of the yod with powers equal to 2 and 

-2, see Table S1). In Scenario 3 (breast cancer), the 5-year sNS curve starts flattening in 

year 2007. In Scenario 5 (ovary cancer), the flat part occurs between 1990 and 1995. 

 

3.3 Simulated data analysis 
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Simulated data were analyzed using a tri-dimensional MPS in which the bases, the 

number and positions of knots, the parameter estimation method, and the practical 

implementation are described in sections 2.3.3 and 2.3.4. 

 

Furthermore, in order to have comparative elements to assess the performance of the 

MPS, we also analyzed the data with two alternative models:  

i) the true model (i.e., the model that generated the data) that can be considered as a “gold-

standard”, and which also enables us to validate our data generation algorithm, 

ii) a basic “PH model” that may be written: ��� ℎ	��, 
, 8�" = *���� + *2�
� + *7�8�, 

where functions f are defined as in the above MPS approach; i.e., restricted cubic splines 

with same number and positions of knots as in the MPS approach (except that the intercept 

is dropped for fa and fy for identifiability purposes). This PH model had 13 parameters 

and allowed for non-linear but proportional effects without interactions.  

 

In the true and the PH model, the maximum likelihood parameter estimates (without 

penalization) were obtained with a homemade procedure based on Cavalieri-Simpson 

integral approximation and a Newton-Raphson algorithm.10 

 

3.4. Assessment of the performance of the MPS approach 
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We examined the performance of the MPS approach and of the two alternatives in 

estimating the age-standardized net survival for a given yod (denoted sNS(y)): this 

parameter of interest was calculated in two steps using a refined annual age 

standardization as described by Uhry et al.3 First, NS for each 5-year age-classes was 

calculated by averaging the NS predicted from the model for each annual age, using 

within-age-class weights as observed over the whole data. This way, the age structure 

within age-classes is fixed and does not vary with the year of diagnosis. The age-

standardized NS was then derived from these age-class estimates using the ICSS 5-years 

weights.44 

For each of the ten settings considered (5 scenarios × 2 sample sizes) and over the M 

simulated datasets (M=1,000 or 200, see section 3.1), we estimated: i) the bias, defined 

as the difference between the average of the M estimated values and the theoretical value 

of the parameter of interest; ii) the Root Mean Squared Error (RMSE), defined as the 

square root of the average of the squared differences between the M estimated values and 

the theoretical value; iii) the empirical coverage probability (CP), defined as the 

proportion of 95% confidence intervals that include the theoretical value.  

 

 

4. The simulation study results 

4.1. Bias, RMSE, and coverage probabilities 
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Figure 2 shows the mean (over 200 simulated datasets with 10,000 patients) of the sNS 

estimates obtained with the MPS approach and the PH model (see also Figure S2 for 

sample size 2,000 patients). Figure 3 shows for each scenario the bias made in estimating 

the 1- and 5-year sNS according to the yod, the method (true model, MPS, or PH model) 

and the dataset size (2,000 or 10,000 patients). As expected, the bias is null with the true 

model. With the PH model, the bias is generally greater than with MPS and does not 

decrease when the sample size increases. With MPS, the bias is generally low (-1 to +1) 

and lower with 10,000 than with 2,000 patients. Nevertheless, a bias of nearly -2 was seen 

with stomach cancer data of 1990 whatever the sample size; this shows that the MPS did 

not reproduce the atypical pattern of 1990. The MPS did not reproduce the flat trend 

observed in ovary and in breast cancers but led to only a slight bias in sNS with 10,000 

patients. In section 4.2, we will focus on two noticeable behaviors of the MPS: i) a small 

bias at 1 year observed with esophagus data (N=2,000) ii) the absence of bias with 

cervical data despite highly complex trends. 

 

Figure 4 shows the RMSEs according to the yod (same panel order as in Figure 3). In all 

five scenarios, the RMSE of the PH model was much higher than that of the true model 

or the MPS. In the simplest Scenario 1 (esophagus cancer, no effect of the yod), the true 

model had a lower RMSE than MPS. However, in all other scenarios and settings, the 

MPS and the true model had very close RMSEs. With stomach (at 5 years after diagnosis 
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in yod 1990) and breast data (at 5 years in 2010), the RMSE of MPS was very close to 

that of the true model despite the biases seen in Figure 3. Thus, MPS returned slightly 

biased but less variable estimates than those of the true model. On the basis of the results 

shown in Figure 4, Table 1 classifies the methods according to the RMSEs of the 

estimators of sNS at 5 year after diagnosis. This table shows that the performance 

indicators of MPS are identical to those of the true model, except in the simplest Scenario 

1, and always better than those of the PH model, especially with the large sample size 

10,000. 

 

Figure 5 shows the coverage probabilities according to the yod (same panel presentation 

as in Figures 3 and 4). We should recall first that these probabilities are estimated with 

1,000 and 200 simulated datasets when the sample size is, respectively, equal to 2,000 

and 10,000 patients. So, to check whether MPS provides coverage probabilities close to 

the nominal value of 95%, it is better to focus on cases with 2,000 patients, those for 

which the accuracy of the estimation is the highest. Figure 5 shows then that the coverage 

probabilities of MPS are generally very satisfactory, though they are unsurprisingly lower 

than 95% in case of bias (e.g., stomach or ovary data of 1990) and higher than 95% in 

one case (breast around yod 1997). 
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In the online supplement, additional results are presented to detail the performance of the 

MPS approach and of the PH. Figures S3 to S6 show the theoretical hE(t) for 3 ages and 

3 years and the mean of the estimate obtained with the two methods and two samples 

sizes. In the same spirit, Figures S7 to S10 show the theoretical trends of NS(t=1) and 

NS(t=5) by age and the mean of the estimates. 

 

 

4.2. Focus on two behaviors of the MPS approach 

 

The 1st focus point concerns the +0.5 bias seen with MPS at one year after diagnosis with 

esophagus data and 2,000 patients (Figure 3). Figure S3 shows that, at the beginning of 

the follow-up, the theoretical high curvature seen in young patients is too smoothed by 

the MPS: the estimated hazards are too small and the estimated NS too high, which leads 

to a small positive bias in young patients (Figure S7) and to an overall bias of +0.5. 

However, with 10,000 patients, this oversmoothing disappears practically and the fit 

becomes adequate (Figures S4 and S8). 

 

The 2nd focus point concerns the good adjustment made with MPS in the cervical cancer 

scenario. The strong interaction between age and yod that leads to opposite trends in 

function of age is perfectly rendered by the MPS approach (Figure S7 and S8). On the 
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contrary, the PH model leads to a poor fit to the data; this is shown in Figures S5 and S6 

in terms of hazard and Figures S9 and S10 in terms of NS. For example, in patients aged 

79 years at diagnosis and at five years after diagnosis, the bias with the PH model is -6 in 

1990 and +4 in 2010 whatever the sample size (Figures S9 and S10). 

Lastly, a practical illustration of the MPS and PH approaches is presented in the last 

section of the online supplement, using real data from 5977 cervical cancer cases (the 

dataset used to determine the theoretical parameters in the cervix uteri scenario). 

 

 

5. Discussion 

5.1. Main finding: the good performance of the MPS approach 

In this work, we propose a MPS modeling to describe the changes in cancer excess 

mortality in function of time since diagnosis, age at diagnosis, and yod and explore thus 

the trends of net survival. The excess mortality hazard hE(t,a,y) is modeled through a 

tensor product of the marginal basis of the three variables. This approach allowed a 

simultaneous modeling of non-linear effects and all types of interaction between variables 

(including non-proportionality). The work adapted the statistical framework developed 

by Wood for Generalized Linear Models17 to the survival and net survival contexts. The 

extensive simulation study performed here showed that the performance indicators of the 

MPS approach are close to those of the true model (except in a scenario where there is no 
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effect of the yod). One major strength of this result is that it was obtained through the 

analysis of realistic simulated data generated from a model that used fractional 

polynomials and thus that cannot be considered as a submodel of the MPS under 

evaluation. 

 

The simulation study explored five realistic scenarios that allow for some complexity in 

terms of effects or interaction(s). We noted a lack of fit of the MPS in two situations. The 

first is that of esophagus cancer where the hazard shows an important curvature: with a 

small sample size --thus a weak signal-- the MPS smoothing was too important and the 

curvature could not be fully fitted, which generated a slight but systematic bias. However, 

this bias faded with a larger sample size. This case illustrates the bias induced by 

penalization: when the information is insufficient, the MPS tends to oversmooth the 

curves and show simpler effects than the theoretical ones. The second situation happens 

when changes in sNS occurred at the beginning or at the end of the diagnosis period which 

led, respectively, to bias in 5-year SNS in stomach cancer in 1990 and in breast cancer in 

2010. However, smoothing may provide more stable estimates and, in both situations, 

despite the bias, the RMSE of the MPS was equivalent to that of the true model.  

In summary, the MPS has shown its ability to fit simple as well as complex trends (as in 

ovary and cervical cancers whose trends depend on age). 
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5.2. Computing aspects, smoothing parameter estimation, basis function, and type 

of penalties 

In the present work, the practical implementation of the MPS was greatly simplified by 

the recourse to the Poisson approach and to the powerful package mgcv. Actually, after 

data splitting, the adjustment was made within a Poisson model that had a setting-specific 

link function. Package mgcv (especially function gam) is remarkably stable: over 6,000 

simulated dataset runs (5,000 runs on 2,000 patients and 1,000 runs on 10,000 patients), 

only one failed to converge (Scenario 3 with 2,000 patients). Furthermore, function gam 

is relatively fast: with a dataset on 10,000 patients (that is, a split dataset with nearly 

200,000 lines), the model fitting took nearly 3 minutes on a single desktop computer with 

Intel i7-4790 3.60 GHz and 16 GB of RAM. Despite the computing efficiency of package 

mgcv, the algorithms used in GAM were demanding in the survival context. Indeed, the 

Poisson approach requires data augmentation and the number of parameters to estimate 

is important due to the tensor product of three dimensions (here, 6×5×4=120 parameters). 

These two aspects imply dealing with huge matrices that require large RAMs. For 

example, above 1,500,000 lines (about 70,000 patients), the analysis failed due to lack of 

memory. 

Generalized Cross-Validation (GCV) and REML can be used to estimate the smoothing 

parameters. When the Bayesian covariance matrix is used, additional simulations showed 
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that the results obtained with REML and GCV were almost identical in terms of bias, 

RMSE, and coverage probability (data not shown): in the present context, both methods 

are good solutions to estimate the smoothing parameters.  

In this work, knot location was based on the quantiles of variables of patients who died, 

which is a common choice in survival analyses.9, 30, 31 Restricted cubic splines were used 

as basis functions for time since diagnosis, age, and yod; they are implemented in package 

mgcv via options bs=’cr’ of the te function. The P-splines proposed by Marx and Eilers22, 

25, 26 are also implemented in te function (option bs=”ps”). In the P-spline approach, the 

basis functions are cubic B-splines, the knots should be evenly spaced, and the 

penalization is directly imposed on the coefficients. Additional results suggested that, in 

our setting, performances of the P-spline tensor and MPS were roughly comparable. Other 

choices concerning the bases are theoretically possible with function te but the user should 

then build his/her own bases (see function smooth.construct of package mgcv). 

 

 

5.3. Interest and limits of the present approach, applicability in case of small sample 

size 

The simulation results support the fact that the MPS approach is well-adapted to 

descriptive cancer epidemiology, especially to the analysis of the trends of net survival 
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as well as, naturally, the trends of “overall” survival (which may be simply obtained by 

setting the population mortality hazard hP to zero). 

 

The main objective was to build a flexible model able to provide smooth estimates at the 

same time. This objective was achieved with the MPS: the tensor product of cubic 

regression splines provides flexibility, including high-order interaction, while the 

smoothing parameters provide smoothness in each of the three directions (t,a,y). 

 

Another asset of the MPS is the simultaneous specification of non-linearity, non-

proportionality, and other interactions, which is directly obtained by modeling 

hypersurface (t,a,y,h(t,a,y)). This simultaneous specification is essential in survival 

analysis because non-linearity and non-proportionality do interact: omitting or 

misspecifying the functional form of a continuous variable may lead to spurious non-

proportionality and, conversely, omitting or misspecifying non-proportionality may lead 

to a spurious functional form.45, 46 When the number of variables is low, the very 

challenging issue of model-building strategy can then be reduced with MPS. 

 

The parametric aspect of MPS allows explicit derivations of hazard, survival functions, 

and predictions. This allows a large choice of graphical displays of the results (examples 

can be found in Supplementary data). In particular, the dynamics of the mortality hazard 
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is valuable for clinicians and epidemiologists. Moreover, predictions can be made for any 

variable value, which allows: i) deriving other interesting outcomes such as the crude 

probability of death47 or the number of years of life lost due to cancer;48 ii) performing 

fine standardization, which avoids residual age effects that may affect the classical 

standardization3, iii) using MPS as a forecasting tool. 

 

In the MPS framework, the three variables (time since diagnosis, age at diagnosis, and 

yod) are kept in their original continuous form, which prevents a loss of information that 

occurs inevitably upon variable categorization and allows an accurate description of 

variable effects. One may note that these three variables are dealt with equally; i.e., in 

specifying the model, variable t has no particular mathematical role (contrarily to what is 

generally seen in survival models). 

 

To provide practical guidelines for practitioners in case of small sample sizes, we checked 

the behavior of the MPS approach by running additional simulations on 250 to 1,000 

cases in the ovarian cancer scenario (data not shown). The MPS worked satisfactorily 

with no convergence problems and provided better RMSE values than with the true model 

or the PH model. Thus, given its favorable bias-variance trade-off with small sample 

sizes, the MPS approach seemed to be robust and efficient. However, as in any other 

statistical analysis, the amount of information needed to study a phenomenon depends on 
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the magnitude of this phenomenon; in the ovarian cancer example, N=1000 was the 

minimum necessary to reach a reasonable precision of NS estimates to allow studying 

their trends. 

 

The present method reaches its limit when the number of variables increases. For 

example, dealing with 10 variables having each a marginal basis with four parameters 

leads to estimate 410 parameters, which requires the use of other approaches. In the 

presence of a high number of variables, the penalized likelihood approach can still be 

used but requires further variable selection strategies: Marra and Wood49 gave an 

overview of this subject in GAM (not in survival model) and Rodriguez-Girondo et al.33 

evaluated some of these strategies within the context of survival model but without 

dealing with the presence of interaction between continuous variables. One may cite other 

approaches in survival but these are based on unpenalized likelihood: Sauerbrei et al.12 

proposed a complex algorithm stemming from fractional polynomials and, in a simulation 

study, Wynant and Abrahamowicz6 evaluated four strategies based on a stepwise 

procedure. However, none of these two works dealt with the issue of interaction and the 

procedures became very complex when the number of variables increased. Another 

strategy is the Hazard Regression (HARE) proposed by Kooperberg et al.50 
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5.4. Prospects 

Adding one or two other dimensions to the present MPS approach is an interesting 

prospect. Adding a spatial dimension (as in the work of Ugarte et al.27) would lead to a 

spatio-temporal model whereas adding a deprivation dimension51 would allow analyzing 

survival trends according to the socio-economic status. Furthermore, forecasting being a 

logical consequence of smoothing29 and survival projections being an important public 

health topic, it would be interesting to use the MPS as a projection tool. 
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Table 1 - Comparison of model performance according to the RMSEs of the estimators 

of the standardized 5-years net survival. 

Scenario Sample size Rank 

Esophagus 2,000; 10,000 True model > MPS > PH model 

Stomach, breast, cervix uteri, ovary 2,000 MPS ~ True model > PH model 

Stomach, breast, cervix uteri, ovary 10,000 MPS ~ True model >> PH model 

“~” equivalent to, “>” more performant than, “>>” much more performant than 
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Legends to the figures 

 

Figure 1. Theoretical excess mortality hazard as a function of time since diagnosis in the 

five scenarios, at 3 ages (10th, 50th, and 90th percentiles of the age distribution of the 

cases). Black solid curve: year of diagnosis 1990; red dashed curve: year of diagnosis 

2000; green double-dashed curve: year of diagnosis 2010 

 

Figure 2. Standardized 1 and 5-years net survival as a function of the yod in the five 

scenarios with 10,000 patients. Black solid curve: theoretical net survival trends. Red 

dashed curve: mean of the standardized net survival estimated using MPS. Blue double-

dashed curve: mean of the standardized net survival estimated using the PH model. 

 

Figure 3. Bias in estimating the standardized 1 and 5-years net survival as a function of 

the yod in the five scenarios with 2,000 and 10,000 patients. Black solid curve: bias with 

the true model. Red dashed curve: bias with the MPS. Blue double-dashed curve: bias 

with the PH model. 

 

Figure 4. Root Mean Squared Errors in estimating the standardized 1 and 5-years net 

survival as a function of the yod in the five scenarios with 2,000 and 10,000 patients. 
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Black solid curve: RMSE with the true model. Red dashed curve: RMSE with the MPS. 

Blue double-dashed curve: RMSE with the PH model. 

 

Figure 5. Coverage probability (CP) of the 95% confidence intervals of the estimates of 

the standardized 1 and 5-years net survival as a function of the yod in the five scenarios 

with 2,000 and 10,000 patients. Black solid curve: CP with the true model. Red dashed 

curve: CP with the MPS. Blue double-dashed curve: CP with the PH model. 
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Supplementary Table S1. Model used for log[hE(t, a, y)] to generate the data in the simulation study (FP: Fractional
Polynomial).
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Figure S1. Theoretical excess mortality hazard used for the generation of cervix uteri data in scenario 4. First row: 3d-plot
of the excess hazard as a function of time and age, at years 1990, 2000, and 2010; second row: 3d-plot of the excess hazard
as a function of year and age, at 0.5, 1, and 5 years; third row: 3d-plot of the excess hazard as a function of year and time, at
3 ages (10th, 50th, and 90th percentiles of the age distribution of the cases).
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Figure S2. Standardized net survival at 1 and 5 years as a function of the year of diagnosis in the five scenarios, with
2000 cases. Black solid curve: Theoretical standardized net survival; blue double-dashed curve: Mean of the standardized
net survival estimated using the Proportional Hazard model (PH); red dashed curve: Mean of the standardized net survival
estimated using the multidimensional penalized splines approach (MPS).
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Figure S3. Excess mortality hazard as a function of time since diagnosis in the five scenarios with 2000 cases, at 3 ages
(10th, 50th, and 90th percentiles of the age distribution of the cases). Solid curve: Theoretical excess mortality hazard; dashed
curve: Mean of the excess mortality hazard using the multidimensional penalized splines approach.
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Figure S4. Excess mortality hazard as a function of time since diagnosis in the five scenarios with 10000 cases, at 3 ages
(10th, 50th, and 90th percentiles of the age distribution of the cases). Solid curve: Theoretical excess mortality hazard; dashed
curve: Mean of the excess mortality hazard using the multidimensional penalized splines approach.
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Figure S5. Excess mortality hazard as a function of time since diagnosis in the five scenarios with 2000 cases, at 3 ages
(10th, 50th, and 90th percentiles of the age distribution of the cases). Solid curve: Theoretical excess mortality hazard; dashed
curve: Mean of the excess mortality hazard using the Proportional Hazard model.
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Figure S6. Excess mortality hazard as a function of time since diagnosis in the five scenarios with 10000 cases, at 3 ages
(10th, 50th, and 90th percentiles of the age distribution of the cases). Solid curve: Theoretical excess mortality hazard; dashed
curve: Mean of the excess mortality hazard using the Proportional Hazard model.
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Figure S7. Net survival at 1 and 5 years as a function of the year of diagnosis in the five scenarios with 2000 cases, at 3
ages (10th, 50th, and 90th percentiles of the age distribution of the cases). Solid curve: Theoretical age-specific net survival;
dashed curve: Mean of the age-specific net survival estimated using the multidimensional penalized splines approach.
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Figure S8. Net survival at 1 and 5 years as a function of the year of diagnosis in the five scenarios with 10000 cases, at 3
ages (10th, 50th, and 90th percentiles of the age distribution of the cases). Solid curve: Theoretical age-specific net survival;
dashed curve: Mean of the age-specific net survival estimated using the multidimensional penalized splines approach.
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Figure S9. Net survival at 1 and 5 years as a function of the year of diagnosis in the five scenarios with 2000 cases, at 3
ages (10th, 50th, and 90th percentiles of the age distribution of the cases). Solid curve: Theoretical age-specific net survival;
dashed curve: Mean of the age-specific net survival estimated using the Proportional Hazard model.
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Figure S10. Net survival at 1 and 5 years as a function of the year of diagnosis in the five scenarios with 10000 cases, at 3
ages (10th, 50th, and 90th percentiles of the age distribution of the cases). Solid curve: Theoretical age-specific net survival;
dashed curve: Mean of the age-specific net survival estimated using the Proportional Hazard model.
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Case study: trends in net survival and in the dynamics of excess
hazard from cervical cancer, in France.

This section is an illustration of a survival trends population-based study, as performed by the Multidimensional
Penalized Splines approach (MPS) and the Proportional Hazard model (PH).

Here, we studied trends in net survival (NS) and in the excess hazard for cervical cancer in France; this
study included all incident cases of primary invasive cervical cancer (ICD-03 code C53) diagnosed between
January 1, 1989 and December 31, 2010 in the area covered by 7 registries of the French Network of Cancer
registries (FRANCIM). The end of follow-up was June 30, 2013. This dataset was the one used to determine the
theoretical parameters in the cervix uteri scenario (see section 3 of the paper). It included 5977 cervical cancer
cases and 2139 (35.8%) deaths were observed within 5 years from diagnosis. Age at diagnosis ranged from 18
to 100 years (median: 49). More information about this dataset can be found in the works of Cowppli-bony and
al.1, 2

The MPS and PH approaches were identical to those described in the simulation study (see sections
2.3.3, 2.3.4 of the paper). The age-standardized NS for a given year of diagnosis was also calculated as in the
paper. We just recall that, for the MPS approach, the log-excess hazard was modelled as a function of time t,
age a, and year of diagnosis y using a tensor product smooth which basis was built using restricted cubic splines
of dimension 6, 5, and 4, respectively. The knot location of these splines was based on the empirical percentiles
observed in the population of patients who died. The smoothing parameters were estimated using the REML
criterion. For the PH approach, the excess hazard was modelled as

log(hE(t, a, y)) = ft(t) + fa(a) + fy(y),where

ft, fa, and fy were restricted cubic splines with the same features as the marginal bases of the MPS approach
(same number and location of the knots). The 13 parameters of this PH model were obtained using maximum
likelihood method (without any penalization).

We also replicated the analysis performed in Cowppli-bony and al,1, 2 which is very typical of what has been
done up-to-now in survival trends studies. In this study, NS was estimated using the non-parametric estimator
of Pohar-Perme3 (PP) and analysis was stratified by age-class (5 strata), and period of diagnosis (4 strata).

The resulting trends in age-standardized NS at 1 and 5 years are depicted in Figure S11. The MPS estimates
are reasonably concordant with the PP estimates, whereas an unobserved increase in standardized NS at 5 years
after year 2005 was obtained with the PH approach.

Figure S11. Standardized net survival at 1 and 5 years as a function of the year of diagnosis in Cervical cancer. Red solid
curve: Multidimensional Penalized Splines approach (MPS); blue dashed curve: Proportional Hazard model (PH); gray
segment: non-parametric estimation using the Pohar-Perme method with 95% CI (vertical bar).
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Figure S12. Net survival (NS) at 1 and 5 years as a function of the year of diagnosis in Cervical cancer, by age. The gray
segments correspond to the estimates by period and age-class obtained with the Pohar-Perme method with 95% CI (vertical
bar). Using the Multidimensional Penalized Splines approach (MPS; red solid curve) and the Proportional Hazard approach
(PH; blue dashed curve), NS was estimated at 5 ages, each age corresponding to the median of age within each of the 5
age-classes.
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Figure S12 shows the corresponding trends by age-class (PP) or at the median age determined within each class
(MPS and PH approaches). The MPS approach (red solid line) showed well distinct trends in survival at 1 and
5 years across ages, with an improvement observed in younger women and deterioration in older women. This
pattern was overall confirmed by the PP estimates, although variability of these estimates led to somewhat erratic
behaviors. As for the PH approach (blue dashed line), the pattern of trends in survival was inevitably similar
whatever the time and the age because of the constraints induced by this model: survival decreased between
years 1989 and circa 2004, then increased afterwards.

Figure S13 shows the dynamics of the excess hazard by age and year of diagnosis. The PH assumption and the
absence of interaction (dashed curves) can clearly be seen in this graph; for example, the resulting excess hazard
for y=2000 was higher than for y=1990 whatever the time and age. Conversely, the MPS approach provided a
more complex picture of the dynamics of the excess hazard, exhibiting strong time-age-year interactions. So the
dynamics were different according to age; excess hazard decreased regularly with time at older ages whereas
it peaked around 1.5 years from diagnosis at younger ages. Furthermore, excess hazard increased with year of
diagnosis for women aged 60 and over throughout the follow-up, while, in younger ages, it mainly decreased
with years of diagnosis (this led to the different NS trends according to age seen in figure S12).

Figure S13 thus provides fundamentals medical results and this kind of figure is indispensable for clinicians and
epidemiologists to help them understand the way medical practises have changed patient mortality over the year
of diagnosis.

Figure S13. Excess mortality hazard as a function of time since diagnosis in Cervical cancer, at 5 ages. Solid curve: excess
mortality hazard using the Multidimensional Penalized Splines approach; dashed curve: excess mortality hazard using the
Proportional Hazard model.
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In our view, this example in cervical cancer illustrates the advantages of an efficient modelling approach, such as
the MPS one, to study trends in survival and hazard. On one hand, both the degree of details and interpretation
of the results are limited with stratified analyses based on PP estimator. On the other hand, the PH approach
cannot describe properly the trends in survival or hazard whenever interactions are present. The MPS approach
is an appealing alternative to us, as it is able to catch complex trends, but still provides smooth estimates.
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The R-code to reproduce this analysis is available on the GitHub repository
https://github.com/RocheLHCL/SMMR_Remontet2018 (Cf. the readme.pdf for explanations of the
contents). However, due to copyright issues, we cannot provide the original real dataset. So, we provided one
of the simulated dataset used in the simulation study on cervix uteri cancer data on 10,000 patients. The results
may thus differ, to some extent, from those presented in the article.
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