

Impact of School Closures on an Influenza Pandemic

Scientific Evidence Base Review

May 2014

Title: Impact of School Closures on an Influenza Pandemic Scientific Evidence Base Review

Author: PH-HPER-ID&BP 10200

Commissioned by the Department of Health and produced by Public Health England

Document Purpose: A review of the scientific evidence base of the impact of school closures on an influenza pandemic

Publication date: 05/2014

Target audience: Supporting Documents for UK Influenza Pandemic Preparedness Strategy

Contact details:

Elizabeth Paterson Richmond House 79 Whitehall LONDON SW1A 2NS Email: Elizabeth.paterson@dh.gsi.gov.uk

You may re-use the text of this document (not including logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view this licence, visit www.nationalarchives.gov.uk/doc/open-government-licence/

© Crown copyright

Published to gov.uk, in PDF format only.

www.gov.uk/dh

Contents

Funding	5
Declarations of interest	5
Executive Summary	5
Background	7
Review questions	8
Methods	8
Results: Epidemiological studies	10
Effects on incidence	13
Effects on contact patterns	15
Effects on transmission dynamics	16
Reversibility of effects	16
Differences between school closure strategies	17
Timing of school closures	18
Duration of closure	18
Discussion: Epidemiological studies	19
Results: Modelling studies of school closure during an influenza pandemi	c21
General characteristics of the modelling studies	21
Predicted effects on peak and cumulative attack rates	24
Predicted effects on the time to peak and the duration of the epidemic	30
Other measures of effect	30
Reopening schools	30
Local versus national closures	31
Discussion: Modelling studies	31
Conclusions and implications	32
Implications for public health policy	33
Implications for further research	34
References	35

Appendix 1: Search strategy for identifying epidemiological studies of the
effects of school closures on incidence / transmission of influenza
Appendix 2: Search strategy for identifying modelling studies of the effects of school closure on incidence / transmission of influenza
Appendix 3: Quality assessment for epidemiological studies
Appendix 4: Guidelines for comparing modelling studies
Appendix 5: Studies of the effects of school closures on seasonal influenza outbreaks
Appendix 6: Studies of the effects of school closures on pandemic influenza 63
Appendix 7: Epidemic curves for seasonal influenza104
Appendix 8: Epidemic curves for pandemic influenza
Appendix 9: Mathematical modelling studies of the effects of school closure
on pandemic influenza114

Document information

Document date: March 2013

Final Version

Document sponsor: Influenza and Respiratory Virus Delivery Board, Public Health England

Authorised by: Professor John Watson

Authors and affiliations:

Charlotte Jackson, London School of Hygiene & Tropical Medicine Public Health England

Punam Mangtani, London School of Hygiene & Tropical Medicine

Emilia Vynnycky, Public Health England London School of Hygiene & Tropical Medicine

Acknowledgements

Special thanks to Jeremy Hawker (Field Epidemiology Services, Public Health England) Nadia Inglis (HPA), Angus Nicoll (ECDC), Babatunde Olowokure (formerly regional epidemiologist with the Health Protection Agency) and two anonymous reviewers for helpful comments on the initial review conducted in August 2010. We also thank staff at the LSHTM library for assistance in locating papers. This update was peer reviewed by the Scientific Pandemic Influenza Advisory Committee, March 2013

Funding

Supported by internal funding of the Health Protection Agency and the Department of Health. Charlotte Jackson was supported by an NIHR Research Training Fellowship for the initial review

Declarations of interest

Charlotte Jackson, Punam Mangtani and Emilia Vynnycky have been involved in an NIHR funded study of the effects of school closures on contact patterns and transmission of infection.

Executive Summary

Background

School closure has been recommended as a potential component of a mitigation strategy during an influenza pandemic, and schools were closed in the UK and elsewhere during the 2009 pandemic. This report aims to inform the development of options for policy in influenza pandemics by collating and updating the evidence base concerning the effects of school closure on influenza transmission.

Objectives

This review summarises literature published up to 31 October 2012 investigating school closures as a mitigation strategy for pandemic influenza based on:

- Epidemiological studies of the effects of routine and reactive school closures on the course of outbreaks of seasonal or pandemic influenza
- Mathematical modelling studies of the effects of school closure on an influenza pandemic

Methods

Separate literature searches were carried out to identify 1) epidemiological and 2) mathematical modelling studies of the effects of school closures on the course of outbreaks of seasonal and pandemic influenza. Results from searches of Medline, Embase and Pubmed were supplemented with hand searches of key journals and the reference lists of identified articles.

Results

100 epidemiological and 45 modelling studies, which presented relevant information, were identified. Of the epidemiological studies, 27 referred to seasonal influenza outbreaks and 77 to pandemic influenza (4 included data on both seasonal and pandemic influenza). Of the 77 studies of pandemic influenza, 69 referred to the 2009 pandemic, 1 to the 1968 pandemic and 7 to the 1918 pandemic. Many of the studies were descriptive outbreak reports which did not aim specifically to assess the effects of school closure on the course of the epidemic.

Interpretation of many of these studies was complicated by factors such as difficulties in separating the effects of school closures from the natural transmission dynamics of influenza, and the concurrent use of other interventions. However, other studies included rigorous analysis to take account of the natural transmission dynamics of influenza, or compared outbreaks between communities in which schools did and did not close. Of these studies, several provided evidence that school closures can reduce transmission, although in others no effect was seen. This may have been because closure occurred late in the outbreaks in these settings. There was little evidence from the published epidemiological studies which could be used to judge the most appropriate threshold at which to close schools.

The modelling studies varied in their assumptions (e.g. regarding population contact patterns and how these are affected by school closures) and consequently predicted a range of possible outcomes resulting from school closure during an influenza pandemic. School closure was, however, consistently predicted to lead to a greater reduction in the peak incidence of infection than in the cumulative attack rate. Only under extreme assumptions, whereby school closure greatly increased children's contact rates (e.g. doubling the number of contacts which they made outside of school), was closing schools predicted to result in increases in the peak and cumulative attack rates.

Discussion

The epidemiological evidence suggests that school closures can influence transmission of pandemic influenza, although this is dependent on timely implementation. The apparent lack of an effect on morbidity in some studies may be due to the fact that schools were often closed relatively late in the respective outbreaks.

Modelling studies usually predict that school closure will result in greater reductions in peak than in cumulative attack rates. Reductions in peak attack rates can help to reduce pressure on limited healthcare services such as intensive care. The variability in the assumptions underlying these models, for example regarding the effects of school closures on contact patterns, is often due to a lack of suitable data. This makes predictions only indicative rather than necessarily accurate assessments of the size of the effects on the course of an epidemic. Modelling studies suggest that school closures are likely to have the greatest effect if the virus has low transmissibility and if age-specific attack rates are higher in children than in adults. They also suggest that early closures are associated with the greatest reductions in the peak attack rate but that this is also dependent on the duration of closure.

The published evidence does not allow an estimate of the optimum timing or duration of school closure to be made. The relative benefits of closing individual schools compared to more widespread local or national closures have also been explored relatively little in the published literature. The generalisability of results from specific outbreaks to a future pandemic is unclear. For example, contact patterns may differ between routine and reactive closures, and individuals' behaviour will depend on the perceived severity of infection. School closure also has important social and economic implications which are not considered in this review.

Conclusions and Recommendations

There is currently insufficient evidence to recommend a particular school closure policy (e.g. proactive or reactive) over another. School closure may form a useful component of a mitigation strategy during pandemic influenza, but the timing and duration of closure needed to produce an effect is unclear. Policy should be responsive to the features of a new pandemic virus. For example, if transmission occurs mainly in schools (as during the 2009 pandemic), there is stronger justification for school closure than in the situation where much transmission occurs in adults.

In the early stages of a pandemic a precautionary approach (i.e. closing schools in the absence of strong evidence that this will reduce transmission) may be considered, particularly if the virus is believed to be highly pathogenic. School closure should be accompanied by advice that children should avoid meeting in large groups.

The benefit of school closure in reducing clinically important outcomes needs to be balanced against secondary adverse effects which may not affect all sections of society equally. For example, such adverse effects may be particularly prominent where free school meals are an important source of nutrition or where parents are unable to take time off work or work from home.

Background

During the early stages of the 2009 H1N1 influenza pandemic, several countries closed schools in attempts to slow transmission. This intervention aims to reduce and delay the peak of the epidemic, reducing surges in demand for healthcare and allowing more time for vaccine development. Closures may be either pro-active (occurring before transmission has become established in the school) or reactive (occurring in response to an outbreak within the school) ¹. In the UK, the response to school-associated outbreaks during the first few months of the pandemic included reactive closure of individual schools, if appropriate, (based on a risk assessment for that particular school) together with other interventions such as antiviral prophylaxis and advice that ill individuals should isolate themselves.

Children play an important role in the transmission of influenza and interventions targeted at children have been successful in reducing transmission. For example, vaccination of schoolchildren in Japan against seasonal influenza appeared to reduce mortality (from all causes and from pneumonia and influenza specifically) in the general population ². In contrast to vaccination, the aim of school closure is to reduce contact between children and hence reduce the rate of transmission between them and potentially to the wider population (e.g. their household and community contacts).

Whilst the World Health Organization does not specifically either recommend or discourage school closures during an influenza pandemic ³, it has recommended that school closures be considered as a component of a mitigation strategy ⁴. However, there has been uncertainty about the effects of school closures on transmission ⁵. A recent review of the epidemiological evidence concluded that school closures may have some effect, but that this will depend on the characteristics of the pandemic (e.g. the effects may be greater if age-specific attack rates are higher in children than in adults) and should be balanced against the significant social and economic consequences of the intervention ¹. A WHO consultation in May 2009, involving representatives of six countries, reported that early school closures during the 2009 influenza pandemic had been effective in reducing transmission within schools, although community transmission may not have been affected ⁶. Potential adverse secondary effects

of school closure, such as work absenteeism and effects on children's education and wellbeing, are also considered in a recent WHO report ³.

This review assesses the published literature on the impact of school closures using evidence from two sources. Firstly, epidemiological studies of the effects of school closures on the incidence and transmission of seasonal and pandemic influenza are reviewed. Mathematical modelling studies predicting the effects of school closures on influenza outbreaks are then also reviewed.

Review questions

Literature searches were developed based on the following individual questions:

How have school closures affected the course of previous influenza epidemics and pandemics?

What do modelling studies suggest about the effects of reactive school closures on influenza epidemics on cumulative and peak attack rates and the duration of the epidemic?

Table 1 summarises these questions in terms of the population, intervention, comparison and outcomes considered for epidemiological and modelling studies).

	Epidemiological studies	Modelling studies
Population	Any population	Any simulated population
Intervention	School closure (planned or	School closure (pre-emptive or
	unplanned) during influenza	following identification of case(s))
	outbreak	
Comparison	Internal comparison of data before	Modelled epidemic in the absence
	and after closure, or comparison	of school closure
	with school(s) which did not shut	
Outcome	One or more of: clinical or	One or more of: peak incidence,
	laboratory-confirmed influenza	cumulative attack rate, time to
	infection, hospitalisation or death,	epidemic peak, duration of
	estimate of effective reproduction	epidemic, effective reproduction
	number, estimate of effect of closure	number
	on contact patterns	

Table 1: Summary of the review questions

Methods

Identification of studies

Medline and Embase were searched in December 2012, separately for epidemiological and modelling studies (the full search strategies used in Medline are provided in Appendices 1 and 2; similar search terms were used in Embase). No date limits were applied. To allow for delays in papers being listed in Medline, a broad search of Pubmed (for the words "influenza" and "school") was also carried out, covering publication dates from 1 August to

31 October 2012. No language limits were applied, although in practice we did not translate papers in languages other than English.

Relevant papers from the reference lists of the retrieved articles were also identified. Issues of *Eurosurveillance* (from 23 April 2009 to 25 October 2012), *Morbidity and Mortality Weekly Report* (from 24 April 2009 to 26 October 2012) and *Emerging Infectious Diseases* (from April 2009 to October 2012) were hand searched for reports of outbreaks during which schools were closed, and for modelling studies of school closures. Search results were also supplemented with papers from the reviewers' collections. All papers identified from these sources were subject to the same inclusion criteria as those identified through the electronic database searches.

Study selection

Epidemiological studies were included in this review if they contained information on the course of one or more influenza outbreaks during which schools were closed (with or without other interventions), irrespective of whether assessment of the effects of school closure was the primary objective of the study. Descriptive, statistical and transmission modelling analyses were all included provided that they were based on real epidemic or pandemic incidence data. If papers presented several measures of influenza activity, the most specific data were extracted (e.g. data on laboratory-confirmed influenza were extracted in preference to all-cause school absenteeism).

Modelling studies were included if they modelled school closures during an influenza outbreak and allowed comparison of baseline simulations with no intervention (or a specified intervention) to simulations in which schools were closed. Models which analysed only a generic form of "social distancing" were excluded.

The initial screening of abstracts (and full text where necessary) was carried out by a single reviewer; a second reviewer assessed any paper whose usefulness or findings were unclear to the first reviewer.

Data extraction

Table 2 summarises the information extracted from the epidemiological and modelling studies which were identified as being eligible for inclusion in the review.

Epidemiological studies	Modelling studies
Study design	Type of model
Study population / setting	Population structure and contact rates
Nature of school closure (e.g. school holiday,	Infection parameter values
response to outbreak)	
Duration of closure and number of schools	Threshold for closing schools and duration of
closed	closure
Timing of closure in relation to influenza	Assumed effects of school closure on
circulation	contact patterns
Outcome measure(s) examined (e.g. clinical	Predicted effect on peak incidence of
ILI, virologically confirmed influenza)	infection
Association between school closure and	Predicted effect on cumulative attack rate

Table 2: Info	rmation extra	acted from	eligible studies
---------------	---------------	------------	------------------

outcome

Predicted effect on time to peak of epidemic

Predicted effect on duration of epidemic

Some of the identified modelling studies presented many estimates of the predicted effects of school closure on measures such as the cumulative attack rate, corresponding to different sets of assumptions (including those about the basic reproduction number and the effects of school closures on contact patterns). Where possible in these cases, to illustrate the range of estimates, the most extreme values derived for each value of viral transmissibility were extracted and presented along with the estimate derived from the main analysis.

Quality assessment

Checklists were developed by the authors to assess the usefulness of the epidemiological and modelling studies (Appendices 3 and 4). These were used as prompts to assess the ability of each study to answer the question of whether school closures affect influenza transmission, i.e. the relevance of each study to this review, rather than to formally assess or score study quality. These checklists were not used as inclusion or exclusion criteria. Instead, key issues were considered when reporting the results of the included studies, in particular whether school closure preceded any reductions in incidence or transmission, whether any such reductions appeared greater than would be expected taking into account the natural transmission dynamics, whether any apparent effects were reversed when schools reopened, and whether data from communities in which schools did not close were available for comparison.

Data synthesis

Given the heterogeneity in the design and results of both the epidemiological and modelling studies identified, meta-analysis was not undertaken; the results are instead critically assessed for robustness and consistency and a qualitative assessment of the likely effects of school closures is made.

Results: Epidemiological studies

Overview of datasets

Figure 1 shows the numbers of papers identified in the search for epidemiological studies (the search strategy is given in Appendix 1). A total of 3151 papers were identified by searching Medline and Embase, of which 572 were reviewed in full. 85 studies identified through Medline and Embase were included in the review, as well as 15 additional papers (5 from reference lists of the retrieved articles, 4 from handsearching, 1 from the supplementary search of PubMed and 5 from other sources). A total of 100 papers with relevant epidemiological information were thus included in the review.

Appendices 5 and 6 summarise the 27 and 77 studies which contain information on this topic for seasonal and pandemic influenza, respectively (of which 4 studies reported on both pandemic and seasonal influenza). These studies were conducted in a variety of settings in Europe, Asia, Australasia, Africa, and North and South America. Of the studies which presented data from a pandemic, 69 referred to the 2009 pandemic, 1 to the 1968 pandemic and 7 to the 1918 pandemic (none were obtained for the 1957 pandemic).

The studies utilised a variety of designs, some of which were specifically aimed at evaluating the effects of school closures (e.g. ⁷⁻²⁶). Other common study designs were outbreak reports and investigations which included dates of reactive school closures or holidays (e.g. ²⁷⁻³⁷), mathematical modelling studies which included real incidence data (e.g. ^{22, 38, 39}) and

evaluations of the use of specific data sources such as school absenteeism in influenza surveillance (e.g. $^{40, 41}$).

Figure 1: Identification of epidemiological studies of the effects of school closure on influenza outbreaks

* Includes outbreaks in which schools did not close and for which it is not stated whether or not schools closed

Effects on incidence

Epidemic curves, where available, are provided in Appendices 7 and 8 for seasonal and pandemic influenza, respectively. In many of the studies, school closure was followed by a reduction in incidence, either in children specifically or in the general population. In contrast, a few showed increases in incidence during closure (e.g. in Abu Dhabi³¹), or found higher mortality rates in cities which closed schools than in those which did not (in Connecticut in 1918)⁴².

These associations must be interpreted cautiously. The effects of school closures will depend on the timing of closure in relation to the progress of the epidemic in the population. For example, in several of the studies described in Appendices 5 and 6, closure occurred close to or after the peak of the epidemic ^{11, 12, 20, 24, 28-30, 36-38, 43-59}. In these circumstances, it is unclear whether subsequent declines in incidence were due to the closures, or a result of the underlying transmission dynamics of influenza and the depletion of susceptible individuals (as noted by some authors, e.g. ^{24, 37, 47}), or a combination of the two. Furthermore, as noted in a study of the 1918 pandemic in Connecticut, reverse causality may occur when comparing rates in cities which closed schools to those in cities which did not, if closure was a response to a particularly severe local outbreak ⁴².

However, some studies included concurrent comparison groups and therefore add stronger support for a role of the intervention in reducing incidence. These studies are discussed below.

Three US studies found evidence of an effect of school closure on the incidence of influenza-like illness (ILI) or acute respiratory infection (ARI). One compared self-reported ARI incidence in two districts of Dallas, one of which closed schools whilst the other did not. For each district, the rate difference (RD) comparing the rate of ARI during the one-week school closure to that during the preceding period (~2.5 weeks) was calculated ¹⁶. The "difference in differences" (DID) was calculated as the absolute difference between the two RDs. The DID was -0.47 percentage points (for all ages), comparing the week of closure to the preceding period (p = 0.046), with no evidence of a difference between the districts in the RDs comparing the periods during and after school closure (DID = 0.05 percentage points, p = 0.819) ¹⁶. The relative increase in the reported incidence of ARI was also smaller in the district where schools closed (from 0.6% before closure to 1.2% during closure, a two-fold increase) than in the comparison district (0.4% to 1.5%, a 3.75-fold increase).

A second US study compared the daily numbers of students reporting to school medical rooms with ILI in schools which did and did not close. All of the schools met the criteria set out by the New York City Department of Health and Mental Hygiene for considering closure: ≥ 5 students on any one day, and subsequently $\geq 2.0\%$ (on one day) or $\geq 1.0\%$ (on two consecutive days) of students, reporting to the school medical room with ILI ¹⁷. Using a negative binomial regression model, the authors estimated that the number of cases on days following days of closure was approximately half of that expected if schools had not closed. Over the full epidemic period, this was estimated to result in a 7% reduction in the total number of cases; the authors note that a larger reduction in case numbers would likely have been seen if schools had closed earlier (case numbers did not increase substantially after meeting the criteria in any of the participating schools ¹⁷.

In a third US ecological analysis using data from 21 areas (cities and states), the mean percentage of emergency department and outpatient visits due to ILI was 3.5% where schools were open and 2% where they were closed (p<0.01)¹⁵. This study did not however take account of the natural transmission dynamics of influenza.

An additional study from China estimated that the incidence of suspected and confirmed pandemic H1N1 cases reported to the China Information System for Disease Control and Prevention was 36.4% (95% CI 35.5 - 37.1%) lower during the summer holiday and public holidays, using Poisson regression ⁶⁰. This estimate was adjusted for temperature, relative humidity, precipitation, the proportion of school-aged children in the population, population density and density of medical facilities. The analysis appears to include a substantial period of time before the epidemic had taken off (which happened after the summer holiday), although it is unclear how much of this early period coincided with the holiday and therefore how this might affect the estimate⁶⁰.

However, other studies which also used rigorous analytical methods found no evidence of an association between school closure and influenza incidence. In King County, Washington in 2007, 205 schools cancelled their midterm break to compensate for missed days earlier in the year whilst 265 schools took this break as normal¹¹. There was no evidence of a difference in absenteeism following the break, but the authors noted that closure occurred late in the outbreak. An ecological study of seasonal influenza in Brazil using data from 2001-2008 also found no evidence of an effect of the school term on incidence of laboratory-confirmed influenza but did report some evidence of associations with meteorological variables¹⁸. It has been suggested that, in areas such as Brazil with diverse climates and relatively limited population mixing, environmental factors may be more important than changes in population contact patterns in influencing influenza transmission⁶¹.

Age-specific effects of school closure

Most available age-specific data suggested that any benefits associated with school closure were greatest amongst school-aged children ^{7-10, 13, 19-21, 26, 53, 58, 62-67}. In New Zealand during the 2009 pandemic, the ratio of the proportion of all confirmed cases that were in 5-19 year olds to the proportion of the population which was aged 5-19 (described by the authors as the "age-standardised proportion" of cases in children aged 5-19) fell during the winter holiday and increased when schools reopened ⁶⁶. Similar relationships between school closure and the ratio of the number of H1N1 infections in 5-20 year-olds to that in other age groups were reported for Mexico ²¹ and Peru ²⁰. During the 1967-68 influenza season in Great Britain, GP consultation rates for ILI amongst 5-14 year-olds declined during the Christmas holiday and increased when schools reopened; this effect was less clear in other age groups ⁶⁵.

Winter holidays in Israel were associated with a reduction in the ratio between the number of clinic visits for influenza and those for non-respiratory complaints, in 6-12 year-olds, in three of five seasonal influenza periods studied ⁹. In one season, this ratio was also reduced in adults, and in another it was reduced for adults not living with 6-12 year-olds. When a two-week teachers' strike coincided with an influenza outbreak in January 2000, closing 80% of elementary schools nationwide, this ratio decreased by 15% for 6-12 year-olds (95% CI 6-23%), but not for older individuals. As the authors note, children comprise a high proportion (34%) of the Israeli population, which may contribute to any apparent benefit of closing schools in Israel ⁸.

Similar data from four influenza seasons in Arizona are less consistent than those from the Israeli study, partly because school closure rarely coincided with elevated influenza activity ²⁶. During all four seasons, rates of laboratory-confirmed influenza in school-aged children were similar during the two-week winter holiday and the preceding two weeks. In two seasons this rate increased in the two weeks after schools reopened; in one other season, it was significantly lower on reopening than during closure²⁶. In comparison, rates in adults and pre-school-aged children increased successively (though not always significantly) across the three two-week periods in three of the seasons²⁶.

Four studies which fitted transmission models to surveillance data concluded that school closures mainly benefit children ^{7, 10, 13, 19}. Analyses of French seasonal ILI data ⁷, ILI data from London during the 2009 pandemic ¹⁹ and laboratory-confirmed pandemic H1N1 in Alberta, Canada ¹⁰ estimated that school holidays did not affect adults' contact patterns; similarly, reductions in transmission following school closures in Hong Kong in 2009 occurred primarily amongst children ¹³.

However, two studies of the 2009 pandemic suggested that school closure affected incidence in adults as well as children. One of these studies estimated the age-specific number of ILI cases due to pandemic H1N1 in England; estimated case numbers in most age groups decreased during the summer holiday and increased when schools reopened (this pattern is least clear in the <1 and ≥65 year age groups, in which estimated case numbers were smallest) ⁶⁷. In Vojvodina, Serbia, incidence decreased amongst 5-14 and 15-64 year-olds during a one-week school closure³⁵.

The study from Dallas (discussed above) found the strongest evidence of an effect of reactive school closure amongst individuals aged 19 years and over (compared to children aged 0-5 and 6-18 years)¹⁶. The DID in this oldest age group was the same magnitude (-0.56 percentage points) as that for 6-18 year olds, but with a lower p value (0.030), despite a similar number of participants in the two age groups. In addition, the estimated relative reduction in ARI rates during school closure was greatest in individuals aged ≥19 years (74%, compared to 39% and 36% in individuals aged 6-18 and 0-5 years, respectively)¹⁶.

Effects on contact patterns

Several papers have used modelling techniques to estimate how population contact rates were changed by school closures, by fitting transmission models to influenza (or ILI) incidence, hospitalisation or mortality data in order to estimate effective contact rates before and during school closure ^{7, 10, 13, 19, 21, 22, 53, 68-70}.

In US cities during the 1918 pandemic, changes in the observed numbers of deaths were explained by a reduction in social contacts arising from both formal interventions (including school closure) and spontaneous social distancing ⁷⁰. In Sydney in 1918, such interventions and spontaneous distancing were estimated to have reduced contact rates by up to 38% ⁶⁹.

Based on influenza incidence data collected during the 2009 pandemic in Mexico City, school closure in conjunction with other social distancing measures was estimated to reduce the population contact rate by 23% ⁶⁸. A subsequent analysis of national data from Mexico estimated that the contact rate was reduced by 30% during the intervention period ²¹. The rate of effective contact amongst school-aged children was reduced by 70% in Hong Kong during this pandemic ¹³. In Alberta, Canada, school holidays during the 2009 pandemic were estimated to reduce contact between children by 86% (95% CI 70-100%) but not to affect contacts of other age groups ¹⁰. Similarly, for seasonal influenza in France (1985-2006), school holiday closures have been estimated to reduce transmission amongst children by 24% (range 20-29%), without affecting transmission to or from adults. The authors quantified this reduction using a statistic which they referred to as the "relative prediction error," and they defined as the percentage difference between the observed incidence during the holidays and the incidence predicted using a model, given the epidemic observed until then ⁷.

During the 2009 pandemic in London, contact amongst 5-14 year-olds was reduced by an estimated 72% during the six-week summer holiday and by 48% during one-week half term holidays ¹⁹. A modelling study which presented UK incidence data found that the two-wave pattern seen during the 2009 pandemic were consistent with differences in self-reported changes in contact patterns during school holidays compared to term time ²².

Effects on transmission dynamics

Several papers ^{12, 24, 66, 68} examined the data by estimating daily values of the effective reproduction number (R_n , the average number of secondary infectious individuals generated by a single infectious person in a given population, in which some individuals may already be immune). In Hong Kong in 2008, schools were closed following three seasonal influenza-related paediatric deaths. Subsequent analyses suggested that the effective reproduction number was already below 1 (the threshold value for epidemic spread) when schools were closed, and that it did not appear to be substantially affected by the closures, perhaps due to their introduction late in the epidemic ¹². Analysis of an outbreak in the USA detected no clear effect of school closure on transmission, which was also attributed to the late timing of closure ⁵³. Similarly, in Mexico during the 2009 pandemic, the effective reproduction number was declining before schools were closed and it is unclear whether closure influenced the rate of decline ^{21, 68}. In New Zealand, R_n was also declining before schools closed during the 2009 pandemic, but increased briefly (although not substantially) when schools reopened⁶⁶.

A further study from Hong Kong during the 2009 pandemic ¹³ estimated the reproduction number before school closure, during closure of all schools except unaffected secondary schools, and during school holidays which followed the reactive closures. It found successive reductions in the effective reproduction number across these three periods (from 1.7 to 1.5 to 1.1). Similarly, in China, R_n was estimated as 1.25, 0.79 and 1.23 before, during and after a national holiday ²⁵.

Detailed analysis ²⁴ of a pandemic outbreak at a London school ²⁸ reconstructed likely chains of transmission and estimated reproduction numbers by day of symptom onset. The average reproduction number for cases with symptom onset before school closure (but after detection of the outbreak) was 1.33 (95% Cl 1.11 – 1.56) compared to 0.43 (95% Cl 0.35 – 0.52) during closure. The authors note that this apparent decrease reflects depletion of susceptible individuals as well as any effect of school closure, and suggest that this reduction might represent an upper bound for the effects of school closure on the reproduction number ²⁴.

Modelling analyses of the spatiotemporal spread of pandemic H1N1 in Europe in 2009 were able to reproduce observed incidence patterns only when contact rates were allowed to change specifically during each country's school holidays (holidays were assumed to eliminate transmission in schools and increase community transmission by a factor of 1.4)⁷¹. In all countries, holidays were estimated to delay the peak compared to a hypothetical situation without school closure. In contrast, regression analysis of estimates of R_n in 12 European countries found no evidence of an effect of school holidays on transmission in the nine countries in which school holidays coincided with the study period (defined for each country as the period between the occurrence of the first case and the discontinuation of testing of the majority of suspected cases)²³. The authors proposed that this apparent lack of effect might result from changes in reporting, stochastic effects early in the outbreaks, and the fact that in some countries (including England), school holidays did not occur during the study period.

Reversibility of effects

Support for a causal relationship between school closure and reduction in incidence is strengthened if incidence increases again, or if the rate of decline or increase changes when schools are reopened. In some of the studies this cannot be reliably assessed as the data cover only a short period after reopening or the outbreak had already finished. However, in other settings there is evidence of reversibility of the apparent effect of school closures during both pandemic and seasonal outbreaks.

For example, during the 2009 pandemic in England, the estimated weekly number of infections declined during the school summer holiday; a second wave occurred when schools reopened ^{19, 22, 67, 72}. Similar reversibility appeared in ILI consultation rates in Vojvodina, Serbia, in 2009 ³⁵. Datasets from the 2009 pandemic in Mexico ^{21, 68, 73} and Israel ⁷⁴ also suggested an increase in incidence after schools reopened, as did estimates of R_n (and the underlying incidence data) from China ²⁵. In New Zealand, there was a slight increase in GP consultation rates for 5-14 year olds when schools reopened ⁶³. This effect did not seem to appear in any of the other indicators of influenza activity in New Zealand (see Appendix 6), which may reflect greater sensitivity of the GP surveillance system compared to the other surveillance systems, or that the effect of the school holiday on transmission was small and / or confined to schoolchildren.

Analyses of public health interventions during the 1918 pandemic found that none of the cities studied experienced a second wave of infection whilst public health measures, such as social distancing, were in place ^{70, 75}, although second waves did occur after these interventions were discontinued.

For seasonal influenza, during the 1999-2000 influenza season in Japan, the increase in incidence appeared to slow during the two-week winter holiday and accelerated when schools reopened ³⁴. In January 2000, a nationwide teachers' strike resulted in the closure of 80% of elementary schools in Israel for two weeks, coinciding with an influenza outbreak. An analysis of data on medically attended acute respiratory illness from Israel during this time ⁸ showed reductions in incidence of 42% and 27% during the closure fortnight and the following two weeks, respectively, compared to the two weeks preceding the closure.

Differences between school closure strategies

Some papers reported on outbreaks in which individual affected schools were closed, whilst others referred to wider (e.g. national) school closures. During the 2009 pandemic, individual reactive school closures occurred in settings including the UK ^{28, 29, 48, 49, 76}, China ⁷⁷, France ⁵⁰, Australia ⁴³ and the US ^{17, 37, 52}. Reactive and / or pro-active closures affecting whole cities, prefectures or countries were implemented in Mexico ^{68, 73}, Japan ^{30, 51, 78, 79}, Hong Kong ¹³ and Peru ⁸⁰. Closure policies in these studies typically appeared not to involve a formally defined threshold for closure; rather, schools tended to be closed as soon as an outbreak was detected or widespread transmission became apparent.

Under both local and national closure strategies, school closure was often followed by a decline in incidence (see Appendix 6), although as discussed earlier it is unclear whether this was due to closure or to the natural dynamics of infection. It is also difficult to assess whether the impact on the general population differed between the strategies. For many settings in which individual schools were closed, incidence data for individuals not attending the affected schools are not presented, whilst analyses of wider closures tended to present data referring to the general population (sometimes not stratified by age).

An alternative to full school closure is the suspension of individual affected classes, as was done during the 2009 pandemic in settings including Taiwan ^{81, 82} and some schools in Japan ^{14, 83}. A Japanese study descriptively compared four schools (two elementary and two junior high schools) which suspended classes either individually or simultaneously, and suggested that school closure more effectively interrupted transmission than did class closure ¹⁴. This study also estimated that longer class closures were associated with fewer cases after resumption of classes (rate ratio 0.70, 95% CI 0.56 – 0.88) after adjusting for class grade and whether or not the whole school closed. Interpretation of these results is complicated by the method of ascertainment: parental report to teachers, up to only 7 days after resumption of classes (it is unclear whether cases were ascertained in the same way during class closure). Also, even if closure had no effect, a class which closed for a long period would

experience relatively few cases after reopening, as the epidemic would be largely over by that time.

Timing of school closures

Early introduction of non-pharmaceutical interventions, which often included school closures, in US cities during the 1918 influenza pandemic has been found to be associated with a reduction in mortality ^{70, 75}. Other interventions used in these cities included closure of places such as churches and theatres, quarantine of the infected, and mandatory mask wearing. Earlier introduction of NPIs was also associated with an increased risk of a second wave, due to the presence of an increased number of susceptible individuals when NPIs were discontinued ^{70, 75}. Earlier introduction of NPIs was associated with a delayed epidemic peak and lower peak and total excess death rates ⁸⁴. These effects were not uniform across cities, possibly due at least in part to different timings of the interventions.

In contrast, surveillance data from Abu Dhabi from the 2009 pandemic suggested a steady increase in case numbers over the first four weeks of the summer holiday, even though the holiday began before reported case numbers had started to increase substantially ³¹. The extent to which this might be due to increases in ascertainment, especially as influenza surveillance had not been undertaken in this setting before the pandemic, is unclear. Data after schools reopened are not presented. A study of the 2009 pandemic in London also showed little effect of a very early holiday, which in this case lasted one week ³².

In New York City during the 2009 pandemic, closure of individual schools was considered if ≥ 5 students on any one day, and subsequently $\geq 2.0\%$ (on one day) or $\geq 1.0\%$ (on two consecutive days) of students, reported to the school medical room with ILI ¹⁷. In the 64 schools which met these criteria (of which 24 closed), an average of 49% of the total number of ILI cases occurred before the criteria were met, suggesting that a lower threshold might be necessary to substantially curb transmission.

Duration of closure

The duration of school closure varied between studies. In the datasets identified from the 2009 pandemic, closures (considering both planned holidays and reactive closures) most commonly lasted for 7-13 days (e.g. affected UK schools were typically closed for a week), whilst some schools were closed for longer periods (e.g. ^{13, 64, 80}).

Analyses of the 1918 pandemic in US cities found that the duration of non-pharmaceutical interventions (which usually included city-wide school closures) was negatively associated with the total excess death rate ⁸⁴. Since transmission can resume once NPIs are discontinued ⁷⁰, it has been suggested that they may need to be maintained until vaccines become available ⁷⁵.

In the datasets reviewed here, closures longer than two weeks were associated with reduced incidence or transmission in several studies of seasonal ⁸⁵ and pandemic ^{13, 72} influenza (e.g. a reduction of 70% in the rate of effective contact between school-aged children ¹³), but not in others ^{62, 80}. Two studies which suggested reasonably strong evidence of an effect of school closure, e.g. a 42% reduction in rates of medically attended ARI which was reversed on reopening ⁸ ,reported on closures lasting two weeks (in France and Israel) ^{7, 8}. Studies in Japan ³⁴ and England and Wales ⁶⁵ also suggested possible effects of two-week closures on seasonal influenza.

However, two-week closures did not always appear to reduce transmission ¹². Shorter closures, e.g. of 1-2 weeks, may sometimes have contributed to reductions in transmission ^{16, 19, 30, 68, 72, 86}, but often had no obvious effect ^{11, 28, 45, 47}. In London, contacts between children were reduced more dramatically during a six-week holiday than during one-week

breaks ¹⁹. In contrast, a Chinese study estimated that R_n was reduced during a one-week National Day Holiday, but not during the eight-week summer holiday ²⁵. These differences are likely to reflect differences in behaviour during particular holidays.

Use of multiple interventions

In most of the pandemic influenza studies, other interventions were implemented alongside school closure and may have contributed to any reduction in incidence. In 2009, antiviral treatment and / or prophylaxis was commonly used in the studies identified ^{13, 14, 27-30, 33, 36, 37, 39, 43, 48-51, 53, 56-58, 63, 66, 76, 77, 79, 80, 82, 83, 87-89}. Public places were sometimes closed and / or large gatherings were discouraged, restricted or cancelled ^{20, 27, 52, 53, 64, 68, 73}. Some datasets from the 2009 pandemic included vaccination against the pandemic strain, although this was usually only available late in the study period so would not affect the included incidence data ^{39, 72, 81, 82, 86, 88}. In 1918, school closures were often combined with other social distancing measures ^{69, 70, 75, 84}; the only study included from the 1968 pandemic was a vaccine trial ⁵⁹. Of the few pandemic studies which mentioned no additional interventions, one suggested an effect of school closures: in Israel in 2009, three waves of infection corresponded to the planned closure and reopening of schools ⁷⁴. In the England and Wales data for the 2009 pandemic, other interventions (vaccination and antivirals) were used to only a limited extent; incidence still clearly declined during the school summer holiday and increased afterwards ⁷²

Some studies of seasonal influenza mentioned additional interventions (e.g. vaccination ^{44, 90, 91}, prophylactic amantadine ⁹², hygiene promotion ^{45, 46, 85}, closure of public places ⁸⁵, and advice to avoid large gatherings ⁴⁷). However, some studies without additional interventions showed reductions in incidence and / or transmission (e.g. measured as effective contact rates) during school closure ^{7, 8}.

Discussion: Epidemiological studies

The identified epidemiological studies provide evidence that school closures can reduce transmission and incidence of influenza and influenza-like illness amongst children, although the effects on other age groups are less clear. The effects appear to be dependent on timely implementation in relation to the development of the outbreak. There is limited evidence available from which to infer the relative benefits of different closure strategies (e.g. pro-active versus reactive closures, local versus national closures, or the optimal timing or duration of closure).

In some studies, incidence or transmission increased when schools reopened ^{8, 9, 19, 21, 22, 25, 34, 35, 63, 67, 68, 70, 72, 73, 75, 86}. This apparent reversibility strengthens the conclusion that school closure can cause reductions in influenza incidence, even in some studies in which no additional interventions (beyond usual seasonal interventions) were in use ^{8, 34}. In many other datasets, multiple interventions were used, so the specific effects of school closures are difficult to isolate.

Results from analyses of seasonal influenza may not be directly applicable to a pandemic. During both seasonal and pandemic outbreaks, schools were often closed for planned holidays rather than as a control measure; contact patterns may differ between reactive school closures ⁹³ and holidays ²². Furthermore, there may be differences in behaviour during different school holidays and in different countries. This might account for the apparently different effects of the summer and National Day holidays in China ²⁵ and the summer and half term holidays in London ¹⁹ (described above).

Extrapolating from previous pandemics may also be problematic. Modelling studies (reviewed below) have predicted that school closures will have the greatest effects if transmission occurs mainly amongst children. The importance of children in transmission has varied between pandemics ⁹⁴; in 2009, attack rates were higher in children than in adults, probably because of pre-existing immunity in older individuals ⁹⁵. Viral virulence will also influence individuals' responses to school closure and other interventions, e.g. spontaneous social distancing during a mild pandemic may be less dramatic than occurred in 1918. Changes in household size, contact patterns, children's behaviour and school systems since 1918, 1957 and 1968 may also limit the generalisability of experiences from these pandemics.

Strengths and weaknesses of the review

This review has identified relevant studies from a wide variety of settings around the world, relating to both seasonal and pandemic influenza. It extends and updates previous reviews of epidemiological studies of the effects of school closures on the incidence and transmission of influenza ^{1, 4}, by including published experiences from the 2009 influenza pandemic. It does not examine other implications of school closure, such as ethical ⁹⁶, economic ^{97, 98} and legal ⁹⁹ aspects, which must also be considered in policy decisions. These issues have been reviewed, for example in ¹.

Publication bias is a possibility, but may be unlikely as many of the studies identified did not aim to evaluate the effects of school closure on transmission and / or found no apparent effect of school closure. Foreign language papers were excluded, but in most cases it was clear from the title and / or abstract (available in English) that the papers were not relevant to this review.

Studies also exist which only studied the growth phase of influenza epidemics in relation to the reopening of schools after holiday closure periods (e.g. during the 1957^{100, 101} and 2009¹⁰² pandemics). This topic was considered to not address the object of this review (the effect of closure of schools immediately before or during an epidemic) and so were not considered here. The results of such studies do, however, support the conclusion that contact between children at school accelerates epidemic growth, implying that school closure could reduce transmission.

Strengths and weaknesses of the studies

The studies identified were often necessarily somewhat opportunistic or did not specifically aim to investigate how school closure affected incidence or transmission. It is difficult to compare the epidemics and to assess the influence of individual factors (such as the duration of closure, local versus national closures, pro-active versus reactive closures, differences in the population under study (schoolchildren or the wider population) and timing of school closure) on the effects of school closures, due to heterogeneity in these factors between studies.

In many of the studies, it is not possible to separate the effects of school closure from the natural transmission dynamics of infection, particularly when schools were closed late in the epidemic or, as in some cases, after the peak. On the other hand, if schools are closed very early in an outbreak, few data may be available on transmission before school closure, making it difficult to assess the effects of the intervention ¹³. In some datasets, the number of cases was small, further complicating the interpretation.

Changes in ascertainment may occur over the course of an outbreak and therefore bias the findings, particularly in the early stages of a pandemic. For example, the Mexican surveillance system developed over the early stages of the 2009 pandemic to include more

clinical outcomes (initially surveillance included only hospitalised patients with severe pneumonia, but this was subsequently extended to include influenza-like illness in inpatients and outpatients) ⁷³. If ascertainment improves during the outbreak, then any reductions in incidence due to school closures (or other measures) could conceivably be masked or diluted. Conversely, the proportion of samples which undergo virological testing may be reduced in the later stages of an outbreak, and in some settings (e.g. New Zealand ⁶³) patients with ILI were discouraged from consulting GPs during the 2009 pandemic. This would artificially reduce the apparent numbers of confirmed cases and potentially overestimate the effects of school closures.

These changes in ascertainment were quantified in some studies. The estimated proportion of influenza cases that were reported in Hong Kong declined to ~5% of its original value during the move from containment to mitigation during the 2009 pandemic ¹³. In England, the introduction of the National Pandemic Flu Service telephone helpline coincided with the school holiday, and was estimated to have reduced the probability of GP consultation for adults with ILI from 16% to 1.8% ¹⁹. In China, reporting was estimated to be reduced by 20-30% during a national holiday ²⁵.

However, the authors of a study of respiratory virus isolations in Hong Kong during the SARS outbreak felt that increased testing was unlikely to account for the observed reduction in the proportion of specimens which were positive during the period of public health interventions, as this proportion remained low after the number of tests performed returned to normal ⁸⁵.

Case definitions may not always have been well-suited to detecting any effect of school closure. For example, school absenteeism is a relatively non-specific measure, whilst laboratory specimens frequently represent severe infections (e.g. in the elderly, who may have little contact with children and therefore be relatively unaffected by school closure).

In almost all of the studies of pandemic influenza, other interventions were implemented concurrently with school closure. This adds complexity to any evaluation of the specific role of school closures in reducing incidence.

Results: Modelling studies of school closure during an influenza pandemic

The search strategy used in Medline to identify studies which modelled the effects of school closure on pandemic or epidemic influenza is given in Appendix 2.

General characteristics of the modelling studies

Figure 2 describes the results of the search for modelling studies and the selection of papers. 1976 papers were identified by the searches of Medline and Embase, of which 146 were assessed as being potentially eligible and read in full. The 45 studies that were finally included in the review comprised 40 identified through the electronic databases, 2 identified through Pubmed, 1 from handsearching, 1 from reference lists and 1 from other collections.

Figure 2: Identification of mathematical modelling studies of the effects of school closure on influenza outbreaks

Table 3 summarises the key features of the 45 included mathematical modelling studies of the effects of school closures on influenza transmission (some studies used essentially the same model to address different research questions, as described in Appendix 9). The studies identified used models of three main types: compartmental models, individual-based models, and network models (see Box 1 for definitions).

Most of the studies (30/45) used individual-based models; a further 5 used network models and 9 compartmental models (see Table 3 and Appendix 9). One additional study (referred to as "other" in Table 3) used a household model describing transmission within and between households and in the community and workplaces. The assumed effect of school closures on contact patterns varied between studies, was not always explicit, and was rarely based on empirical data. Almost all of the studies which stated these assumptions assumed that contact between children (or contact occurring at school) either decreased or was eliminated during school closures, whilst contacts made by other age groups or outside school were either unaffected or increased (15 and 11 studies respectively). Three studies, however, estimated the effects of school closures on contact patterns by fitting the models to incidence data spanning periods during which schools were open and closed (these studies are also included in the review of epidemiological studies)^{7, 10, 68}. Two further studies used empirical data on contact patterns collected during term time and a school holiday ^{103, 104}.

Almost all studies (40/45) measured the impact of school closures using the change in the overall cumulative attack rate predicted to result from school closure, whilst many also provided information on the effects on the peak incidence of infection (33/45) and / or the time course of the epidemic (32/45) (Appendix 9).

	No. of	
	papers	
Total papers	45	
Type of model		
Individual-based	30	
Network	5	
Compartmental	9	
Other	1	
Baseline age-specific ARs		
Higher in children than in adults	27	
Relatively uniform with age (e.g. based on 1968 pandemic)	3	
Not age-structured		
Age-specific ARs not given or basis not stated	15	
Threshold for closing schools*		
Pre-emptively or immediately at start of pandemic	6	
Based on case numbers or incidence of infection (e.g. 50 cases per 100,000 pop.)	16	
Based on cumulative incidence of infection	6	
Based on prevalence of infection	8	
Based on time since beginning of pandemic or local epidemic (e.g. 2-8 weeks)	12	
Unclear / not stated / based on observed timing	4	
Assumed effects of school closures on contact rates*		
Child-to-child/school-related contact reduced or eliminated, no effects on other contacts	15	
Child-to-child/school-related contact reduced or eliminated, other contacts increased	11	
Child-to-child/school-related contact reduced, other contacts increased or decreased	2	
depending on location		
Complex changes based on empirical contact data	2	
Uniform reduction in contact rates (model not age-structured)	3	
Not stated / unclear	12	
Basis of assumptions regarding effects of school closures on contact rates		
Empirically measured contact rates	2	
Fitting of model to incidence data	3	
Other quantitative data	1	
No empirical basis stated	40	
Information provided on effects of school closure on:		
Cumulative AR	40	
Peak incidence of infection (or peak prevalence)	33	
Time course of epidemic (duration and / or time to peak)	32	
Sensitivity analysis / exploration of different values of:		
R ₀	24	
Baseline contact rates	6	
Changes in contact rates associated with school closure	6	
Patterns of age-specific ARs	6	
I hreshold for closing schools (measured as incidence or time since start of epidemic)	19	
Duration of closure	16	
Threshold for re-opening schools	3	

Table 3: Features of modelling studies identified

*Each paper may explore more than one assumption

Box 1: Definitions

Compartmental models stratify individuals into different categories ("compartments") and are usually described using the compartments included. For example, SEIR models include compartments for those who are susceptible to infection (S), infected but not yet infectious (E), infectious (I), and recovered (R). Such models may be deterministic, in which case they describe what happens on average in the population, or stochastic, i.e. allowing for random events to influence the course of the epidemic. In compartmental models, individual members of the population are not followed, but the number of individuals in each compartment is tracked over time.

Individual-based models explicitly follow each individual in the modelled population; each person can be assigned characteristics such as age and employment status which determine (amongst other things) their interactions with other people and therefore their probability of becoming infected.

Network models are individual-based in that each person is explicitly tracked, but transmission of infection can occur only along links in a pre-specified network of contacts.

Matrices of "who acquires infection from whom" (WAIFW matrices) describe the rate at which individuals in different groups (e.g. age groups) come into effective contact in a modelled population. An *effective contact* is defined as one that is sufficient to lead to transmission if it occurs between a susceptible and an infectious individual.

Assortativity refers to the extent to which different groups (e.g. age groups) in a modelled population contact each other. If mixing is highly assortative, individuals are more likely to contact others within their own group than they are to contact individuals in other groups. If mixing is disassortative, individuals are more likely to contact individuals in different groups than they are to contact individuals in their own group.

Predicted effects on peak and cumulative attack rates

Most models predicted that reductions in the peak incidence and cumulative attack rate would be achieved by closing schools (Figures 3 and 4).

Figure 3: Summary of the estimated effects of school closures on peak incidence of pandemic influenza (all ages) predicted by the modelling studies. Different symbols are used for the assumed value for R_0 . The findings are grouped as to whether they assumed that the community/household contacts increased, remained unchanged, the assumptions about contact were based on empirical data or were unclear. Some studies assumed that workplaces and/or other public places also closed (9, 13, 18). All studies that stated their assumptions regarding the effects of school closure on contact patterns assumed that contacts between school-aged children were reduced or eliminated.

Figure 4: Summary of the estimated effects of school closures on cumulative incidence of pandemic influenza (all ages) predicted by the modelling studies. Different symbols are used to reflect the assumed value for R_0 . The findings are grouped according to whether they assumed that the community/household contacts increased, remained unchanged, the assumptions about contact were based on empirical data or were unclear. Some studies assumed that workplaces and/or other public places also closed (9, 18, 23). All studies that stated their assumptions regarding the effects of school closure on contact patterns assumed that contacts between school-aged children were reduced or eliminated.

Typically a 20-60% reduction in the peak incidence was suggested (e.g. ^{105, 106}). The size of the reduction varied from $\ge 90\%$ ¹⁰⁷ to an increase of 27% ¹⁰⁸ (Appendix 9, Figure 3). In general, the predicted reductions in the cumulative AR were smaller than those in the peak incidence (Figure 5), with several studies predicting small (e.g. <10%) or no reduction in the cumulative AR (e.g. ^{105, 106, 109-118}) and a few predicting substantial reductions ($\ge 90\%$ in some cases, e.g. ^{108, 114, 119-121}). Only two studies ^{108, 118} predicted that the peak incidence might increase markedly (by up to 27%) under some circumstances following school closures, e.g. if school closures led to a doubling in the number of contacts in the household and community ¹⁰⁸. Of these two studies, one predicted that the cumulative AR would increase by 18% ¹⁰⁸ whilst the other did not predict substantial increases in the cumulative AR under any of the scenarios investigated ¹¹⁸.

Figure 5: Plot of the predicted reduction in the cumulative attack rate against that in the peak incidence (all ages). Each marker represents the results of one analysis. Different symbols are used to reflect different values for R_0 .

Studies exploring the effects of school closures on age-specific peak incidence or cumulative attack rates typically found that the reductions in both were greater for children than for adults ^{7, 10, 103, 104, 107, 109, 112, 116, 122}. For example, closing schools at a threshold incidence of 23 cases /100,000/day might reduce peak incidence by 51% in children and 41% in adults, and the cumulative AR by 21% in children and 12% in adults ⁷. However, one study (which included a 20% reduction in workplace and community contacts as well as an unspecified reduction in contact between children) predicted the largest reductions in the cumulative AR for middle-aged and older adults (~40%, compared 22% for schoolchildren) ¹²³.

In general, the size of the reductions resulting from school closures depended on four key factors, namely the basic reproduction number (R_0), the amount by which contact between children was assumed to have changed because of school closures, the timing of school closures, and the underlying contact patterns between children before schools were closed. However, the extent to which these individual factors affect transmission is difficult to quantify based on these modelling studies, since the assumptions about each of these factors differed between the studies. Despite this, some results emerged consistently, with the greatest reductions being predicted to occur when:

- i) **R**₀ was low (e.g. <2) ^{103, 108, 112, 114, 116-118, 120, 121, 124-126}. For example, according to one analysis based on age-specific attack rates from the 1968 influenza pandemic, which assumed that school closures completely eliminated contact between schoolchildren, the peak incidence of infection could be reduced by 78% if R₀ = 1.5 and 32% if R₀ = 2.5 ¹²⁴. If R₀ is sufficiently low, the reductions in contact resulting from school closures may reduce the effective reproduction number to less than one so that the incidence starts to decrease and the subsequent epidemic is small. If R₀ is high, however, the same reductions in contact are less likely to be sufficient for this to occur. One study was an exception to this, predicting the greatest reduction in the peak demand for intensive care unit (ICU) beds when R₀ was high ¹⁰⁴.
- ii) School closures were assumed to lead to large reductions or complete elimination of contact between school-aged children ^{7, 108, 116, 121}. For example, the peak incidence could be reduced by 92% or 54% if contact was reduced by 90%

or 50% respectively and the cumulative AR by 76% or 22% for the same reductions in contact ¹²¹.

- iii) Schools were assumed to close relatively early in the epidemic whilst the incidence was still low ^{7, 106, 112, 114, 117}. Generally, early closures were associated with the greatest reductions in peak incidence. For example, if schools were closed when incidence exceeded 100 cases/100,000/day, the peak incidence might be reduced by 42%, but would decrease by only 21% if the threshold was 1000 cases/100,000/day ⁷. The corresponding reductions in the cumulative AR were 15% and 10% ⁷. However, the optimum timing of closure depends in part on its duration (this is discussed further below).
- iv) Age-specific ARs were higher in children than in adults (as in the 1957 pandemic), as compared to the situation where they varied little with age (as in 1968).^{108, 117, 119, 124, 127}. For example, one model predicted that the cumulative AR could be reduced by 90% if age-specific attack rates were similar to those of the 1957 pandemic but by only 27% if the 1968 age-specific attack rates applied ¹¹⁹. Similarly, the smallest impacts on the cumulative AR were predicted when mixing in schools at baseline was assumed to be least intense ^{106, 124}, or when mixing was most assortative (i.e. individuals mixed mainly with others in their age group) ¹¹⁶.

Several studies explored the effect of the duration of school closure on the peak and / or cumulative incidence $^{68,\ 103,\ 105,\ 106,\ 109,\ 113,\ 118,\ 119,\ 128-133}$. Of these, eight modelled different durations of closure measured in weeks $^{103,\ 105,\ 106,\ 118,\ 129,\ 130,\ 132,\ 133}$ (Figure 6); one modelled durations of closure ranging from 4-7 days 113 and five compared temporary closures (of 7-60 days) with permanent closures $^{68,\ 109,\ 119,\ 128,\ 130}$.

Several studies reported that the impact of school closures increased with the duration of closure (Figure 6), although increasing the duration above 8 weeks generally had little extra benefit. One study suggested that peak and cumulative attack rates could increase slightly if schools were closed for two weeks or less ¹¹⁸, but the other studies shown in Figure 6 did not predict such increases ^{105, 106, 129, 130}.

However, several studies found that the effect of school closures depended on both the duration of closure and the time (or incidence) at which schools were closed ^{103, 131-133}. Intermediately timed closures were often predicted to be more beneficial than closures occurring very early or very late in the epidemic ^{131, 132} (although very late closures were consistently predicted to be relatively ineffective). The optimum threshold for closure depended on the duration, e.g. if schools were closed for <8 weeks then the higher the threshold, the lower the cumulative AR (incidence thresholds up to 5% were investigated), whereas if closure lasted longer, a lower threshold (e.g. 1.5%) was optimum ¹³³. One study assessed the effects of varying the threshold and duration of school closure on cumulative ARs in adults and children ¹⁰³. For R₀ between 1.1 and 1.5, closures lasting ≤4 weeks led to increases in adult ARs but decreases amongst children; for both children and adults the benefits of school closure increased with duration, but increasing the duration of closure above 12 weeks had little extra benefit.

All five studies which compared temporary and permanent closures predicted the greatest reductions in peak and / or cumulative attack rates with permanent closure $^{68, 109, 119, 128, 130}$. One study argued that the duration of closure was more important than the closure threshold in determining the effect on the epidemic, and that schools should close for at least eight weeks 118 . Some studies predicted reasonably large effects with shorter closures than this, e.g. reductions of 38% 129 or 41% 105 in the peak incidence if closure lasted for two weeks. One further study estimated the effects of closing schools for 4-7 days; in this model, the benefit increased with duration of closure even over this limited range (e.g. the cumulative attack rate was almost unaffected by a four-day closure but was reduced by 15% if schools were closed for 7 days) 113 .

Figure 6: Influence of the duration of school closure on the predicted effects on pandemic influenza. Reductions in peak incidence (A and B) and cumulative attack rates (C and D) for different values of R₀ and assumed thresholds for school closure. Lines join predictions from the same model using the same sets of assumptions.

R₀ School closure threshold (Figs A&C)

- -- 1.2 Threshold unclear [130]
- -* 1.4 Prevalence of 1% in population [118]
- --- 1.5 1 or 3 cases in different classes (pri. & sec school resp) [131]
- -1.5 Threshold unclear [130]
- -1.7 Day after first case in pupils or staff [105]
- -1.8 Threshold unclear [130]

R	School closure threshold (Figs B &D)
-* ·1.9	Prevalence of 1% in population [118]
1.9	Prevalence of 0.02% in population [132]
1.9	Prevalence of 0.25% in population [132]
1.9	Prevalence of 1.5% in population [132]
∎. 1.9	Prevalence of 5% in population [132]
1.9	Prevalence of 10% in population [132]
-*-2.0	Day after first case in pupils or staff [105]
~ 2.4	Prevalence of 1% in population [118]
	10% prevalence in schoolchildren [106]
→ 2.7	15% prevalence in schoolchildren [106]
···*·· 2.7	20% prevalence in schoolchildren [106]

Predicted effects on the time to peak and the duration of the epidemic

Most models predicted that closing schools would delay the peak of the epidemic, usually by no more than 1-3 weeks^{68, 105, 108-110, 112, 113, 116, 118, 129, 133-136}, but one model suggested that school closure would not affect the timing of the epidemic peak ¹⁰⁷. A few studies suggested that school closures could bring the peak forward compared to the unmitigated epidemic ^{103, 106, 108, 112, 135}. When an earlier peak was predicted, the peak was generally lower and the incidence remained high for longer than in the unmitigated scenario.

Increases in the overall duration of the epidemic of 1-3 weeks were commonly predicted 68 , $^{106, 109, 112, 117, 118, 134}$, with some models predicting increases of about a month $^{10, 107, 111, 135, 137}$ or more $^{108, 116}$. Four studies suggested that school closures could shorten the epidemic (by 11 days 138 , 2-3 weeks $^{108, 122}$, ~1-3 months 103), whilst another found little effect on the duration 113 .

These predictions depended on assumptions about R₀, the reduction in contact resulting from school closures, the threshold incidence at which schools were closed, and the extent to which attack rates were age-dependent. For example, high values of R₀ were commonly associated with the smallest effects on both the delay to the peak ^{105, 116-118} and the duration of the epidemic ^{112, 116, 117}.

Other measures of effect

As well as considering cumulative attack rates, peak incidence and the time course of the epidemic, some studies measured the effectiveness of school closures using other outcomes.

Ferguson et al suggested that closing 90% of schools and 50% of workplaces within 5km of a detected case for three weeks would have a >90% probability of preventing an outbreak if R_0 was 1.7 or less and antiviral prophylaxis was provided simultaneously ¹³⁹. Timpka et al estimated that the reproduction number would be reduced from 2.23 to below 1 if all schools were closed, but not if only high schools or day-care centres were closed ¹⁴⁰.

A few studies evaluated the potential effects of school closures on hospitalisations and deaths. One study predicted a large reduction in hospitalisations (79%) if schools were closed ¹⁰⁷; another suggested a smaller reduction of 23% ¹⁴¹. A further study modelled the effects of school closures on demand for ICU beds, predicting that peak demand could be reduced by 30-70% by optimally timed closures ¹⁰⁴. Another predicted that deaths could decrease by up to ~17% but could also increase by almost 10%, again depending upon the threshold for and duration of closure ¹⁰⁶. Deaths and hospitalisations were related to the threshold and duration of closure in a less straightforward way than were illness rates in this model, as school closure increased transmission in households and the community and thus to individuals outside the school age range, for whom the probabilities of hospitalisation and death given infection were greater than those among individuals of school age ¹⁰⁶.

Reopening schools

The question of when schools can safely be reopened has been addressed in detail in one modelling analysis ¹²¹. This suggested that the threshold at which schools were reopened determined whether the epidemic recurred: the higher the threshold incidence for reopening, the more likely the epidemic was to recur, potentially resulting in multiple peaks in incidence. Another modelling analysis suggested that the benefit of closing schools was not reduced substantially as long as the prevalence of infection in children was <1% when schools reopened ¹¹⁷. Maintenance of school closures indefinitely might be seen as equivalent to considering closure until a vaccine is available ¹¹².

Local versus national closures

Modelling analyses of the relative benefits of three possible school closure strategies (national, local or individual school closures) have produced inconsistent results. One study suggested that a policy of "area closure," in which all schools within 10km of a case closed for a fixed period, produced similar results to a policy in which each school closed following a case in that school ¹⁰⁵. Similarly, another study found no consistent differences between the effects of closing individual schools and closing an entire school system ¹¹⁸, although two others suggested that closing individual schools would be more effective than closing all schools simultaneously ^{129, 136}. A slightly different situation, in which some communities closed schools while neighbouring communities did not, and mixing between these communities occurred, reduced the effectiveness of school closure ¹²¹.

Thus it is not clear from the modelling studies whether there is any difference in effectiveness between closure of individual schools, multiple schools in a local area, or all schools nationally. Most of the studies modelled closure on a large (e.g. national) scale; those which investigated alternative strategies did not consistently find one strategy to perform better than others.

Discussion: Modelling studies

Published mathematical models of the effects of school closures during influenza outbreaks have reached a variety of conclusions about their effects on the course of the epidemic. The predicted effects on the peak incidence ranged from reductions of >90% to an increase of 27% but were frequently in the range 20-60%. Predicted effects on the cumulative attack rate were consistently smaller than those on the peak incidence (e.g. 0-40%) but were also variable: the predicted effects on the peak incidence ranged from reductions of >90% to an increase of 18%, although most studies predicted reductions in both the cumulative and peak attack rates. These predictions suggest that an important benefit of school closures, if they are timed appropriately and other conditions are optimal, would be in reducing the peak burden on health services and in delaying transmission in the population until other interventions (e.g. vaccination) become available.

Several factors were consistently found to influence model estimates of the effects of school closures on measures such as the cumulative attack rate and the peak incidence of infection. For example, school closures are usually expected to be more effective at reducing transmission if R_0 is relatively low (e.g. <2, see Figures 3 and 4) and if age-specific attack rates are higher in children than in adults (or if contact intensity in schools is high). These findings illustrate that such factors should ideally be considered when deciding whether to implement a school closure policy during an infectious disease outbreak, although such information may not be readily available in the early stages of an epidemic of a newly emerging pathogen. The benefits of school closure also depend on the threshold for and duration of closure, and these two factors interact to influence the reductions in peak and cumulative attack rates. For example, closing schools very early may have less effect than closing them later, depending on the duration of closure ^{103, 132, 133}. This has been attributed to resumption of mixing between susceptible children when schools reopen while influenza is still circulating, allowing them to acquire and transmit infection ¹¹⁸. The benefits of school closure are generally predicted to increase with the duration of closure, but increasing this duration above 8 weeks may have little additional benefit.

In many of the epidemiological studies reviewed in Section 6, reactive school closures lasted for 1-2 weeks. In the modelling studies, closures of this duration were usually predicted to have little effect on the cumulative AR, typically reducing it by $\leq 10\%$. However, one study predicted a reduction of up to 35% in the cumulative AR, if R₀ was 1.2 and closure lasted

two weeks ¹³⁰, and another predicted a reduction of 18% even if R₀ was as high as 2.7, if schools closed when the prevalence of infection in schoolchildren reached 10% ¹⁰⁶. The predicted effects of 1-2 week closures on the peak AR were greater than those on the cumulative AR. Three estimates from two studies predicted reductions in the peak AR of >20% with a one-week closure: 21% ¹³¹, 22% ¹⁰⁵ and 40% ¹⁰⁵.

Strengths and weaknesses of the modelling review

Previous reviews ^{124, 142} have summarised the effects of school closures predicted by some of the individual- and network based models ^{105, 108, 120, 139} included here. Models of multiple simultaneous interventions (including school closures) have also been reviewed ¹⁴³. This review of modelling analyses of school closures complements the review of the epidemiological evidence of the effect of school closures, in suggesting key factors that may affect the extent to which school closures are beneficial during a pandemic (e.g. the effective reproduction number and the relative extent of mixing outside schools).

As for the review of epidemiological studies, the initial screening of titles and abstracts for the modelling review was carried out by a single reviewer and the papers included were restricted to the English language. However, most papers which were identified in the initial literature search and were not in English appeared not to be relevant to the review.

Strengths and weaknesses of the studies

Models are necessarily a simplification of reality and, as has been noted ¹⁴², their results should be considered indicative rather than absolute predictions (e.g. it has been pointed out that models generally do not incorporate changes in the "social order" which might occur during a pandemic ¹⁴⁰). Whilst the precise quantitative predictions are sensitive to viral properties which may not be known in detail at the beginning of a pandemic, certain findings are reasonably consistent (see Section 7) and may be useful for formulating policy in the early stages of an outbreak. For example, if it is clear early on that adults are infected as frequently as children, school closure may be a less efficient strategy than if attack rates are much higher in children than in adults.

A wide range of assumptions have been made in the transmission models, particularly regarding population contact patterns (Table 3). This is largely because there have historically been few datasets available from which the effects of school closures on contact patterns can be estimated (recently, however, such data have been published for routine ^{22, 144-147} and reactive ⁹³ school closures). Despite this uncertainty, it is fairly uncommon for models to explore the effects of varying their assumptions about how school closures influence contact patterns (exceptions include ^{7, 108, 114, 116, 121, 127}). This is an important limitation of much of the published literature, as predictions of the effects of school closure depend upon how individuals contact each other (and thus transmit infection) whilst schools are closed and while they are open. The available data show that people make fewer contacts during school holidays and weekends than on weekdays during term time ^{145, 146}, but these recently published datasets have rarely been incorporated into models. Several recent modelling studies did, however, estimate the effects of school closures on contact patterns using either empirical data or modelling techniques ^{7, 10, 68, 103, 104}.

Conclusions and implications

A growing body of evidence suggests that school closure can reduce transmission of influenza. However, this effect is not seen consistently, and its likely magnitude, as well as the optimum timing and duration, remain unclear. There are several reasons for this uncertainty:

- 1. In many published epidemiological studies and outbreak reports, school closure was implemented relatively late in the outbreak, at which point incidence may have begun to decline even if schools remained open.
- 2. During outbreaks (both seasonal and pandemic), the use of multiple interventions often makes it difficult to assess the effects of school closures alone.
- 3. It is unclear to what extent changes in contact patterns and transmission occurring during seasonal influenza and past pandemics may be extrapolated to a future pandemic. Data from the 2009 pandemic support the conclusion that school closures can reduce transmission of influenza in contemporary settings; however, the results from these studies may not be applicable to a new pandemic virus which may have different epidemiological properties (e.g. a higher case fatality ratio or more uniform age-specific attack rates than those seen during previous pandemics).
- 4. Mathematical modelling studies have also reached varying conclusions regarding the magnitude of the effects of school closures on an influenza pandemic, due to differences in their underlying assumptions regarding both viral properties and human behaviour.
- 5. Past pandemics have varied in important characteristics which influence the effects of school closures (e.g. age-specific attack rates), and the features of a future pandemic cannot be predicted.

Several conclusions can be drawn from the identified published literature:

- 1. The fact that some epidemiological studies showed increases in incidence after schools reopened suggests that school closures can reduce transmission under certain circumstances.
- 2. The timing of school closure is likely to be critical, with the intervention likely to be more effective if implemented relatively early in the epidemic, although this also depends on the duration of closure. However, there is limited evidence available regarding both the optimal timing and duration of closure from either the epidemiological or modelling literature. A limit at which it is "too late" to close schools is not currently demonstrated in the limited literature available.
- 3. School closures are able to reduce transmission amongst children. Evidence regarding the effects on adults is less consistent, but generally transmission amongst adults appears to be relatively unaffected by school closures.
- 4. Both epidemiological and modelling studies have found that the peak and cumulative attack rates can be reduced by school closures. The extent of these reductions is however unclear, and likely to depend on many factors including population behaviour, viral transmissibility and age-specific attack rates. Modelling studies consistently predict that school closure would have a greater effect on peak than cumulative attack rates.
- 5. Modelling studies indicate that school closures are likely to achieve the greatest reductions in peak incidence and cumulative attack rates if the transmissibility of the causative virus is relatively low and if attack rates are higher in children than in other age groups.
- 6. Reactive local closures and pro-active national closures both appear to have had an effect on transmission. However, further work is required to assess the relative benefits of different school closure strategies.

Implications for public health policy

It is reasonable to continue to consider school closure as a component of a mitigation strategy during pandemic influenza, e.g. before an effective vaccine becomes available. The intervention can reduce transmission amongst children and possibly amongst adults. There is however insufficient evidence to suggest a particular school closure policy (e.g. reactive or pre-emptive) over another.

Policy may need to be responsive to the particular features of any future pandemic virus. For example, if substantial transmission occurs in schools (as during the 2009 pandemic) then there is stronger justification for school closure than in the situation where much transmission occurs elsewhere. In the early stages of a pandemic, when important factors such as transmissibility and age-specific attack rates may not be known, a cautious approach (i.e. closing schools in the absence of strong evidence that this will reduce transmission) might be considered, particularly if the virus is believed to be highly pathogenic. As the aim of school closure is to reduce contact between children, school closure should be accompanied by advice that children should avoid meeting in large groups.

School closure has important implications for both children and parents. For example, parents may need to take time off work, work from home or make alternative childcare arrangements. Children may be left at home unsupervised, be deprived of school meals or miss important lessons or exams. These secondary effects may not affect all sections of society equally, e.g. they may be particularly prominent where free school meals are an important source of nutrition or where parents are unable to take time off work or work from home. Whilst a full discussion of such effects is beyond the scope of this review, the extent to which they can be tolerated will depend partly upon the severity of the infection and partly on societal and civic flexibility and preparedness for extreme events.

Implications for further research

Given the nature of the intervention, it may be difficult to plan and conduct very high quality epidemiological studies. However, there are several areas in which further research, or the results of ongoing research, would be valuable:

- 1. Further transmission modelling based on datasets collected during the 2009 pandemic in settings where schools were closed, and of seasonal influenza outbreaks coinciding with school holidays. Comparative analysis of outbreaks during which schools were closed at different points in the outbreak and for different lengths of time may be particularly useful.
- 2. Collection of empirical data on both children's and adults' contact patterns during term time, school holidays and ideally periods of unplanned closure (due to infectious disease outbreaks or possibly for other reasons such as bad weather). Whilst such studies might be logistically challenging, such data would improve the reliability of predictions of the effects of school closures on the course of an influenza pandemic.
- 3. Further consideration of the results of modelling studies in relation to what is likely to be achievable in practice, e.g. in terms of the optimum timing and duration of school closure.

References

- 1. Cauchemez, S., et al., *Closure of schools during an influenza pandemic.* The Lancet Infectious Diseases, 2009. **9**(8): p. 473-81.
- 2. Reichert, T.A., et al., *The Japanese experience with vaccinating schoolchildren against influenza*. N Engl J Med, 2001. **344**(12): p. 889-96.
- 3. World Health Organization, *Reducing transmission of pandemic (H1N1) 2009 in school settings. A framework for national and local planning and response. 2009.*
- 4. Bell, D.M. and World Health Organization Writing Group, *Non-pharmaceutical interventions for pandemic influenza, national and community measures.* Emerging Infectious Diseases, 2006. **12**(1): p. 88-94.
- 5. Aledort, J.E., et al., *Non-pharmaceutical public health interventions for pandemic influenza: an evaluation of the evidence base.* BMC Public Health, 2007. **7**: p. 208.
- 6. Human infection with new influenza A (H1N1) virus: WHO Consultation on suspension of classes and restriction of mass gatherings to mitigate the impact of epidemics caused by influenza A (H1N1), May 2009. Weekly Epidemiological Record, 2009. **84**(27): p. 269-71.
- 7. Cauchemez, S., et al., *Estimating the impact of school closure on influenza transmission from Sentinel data.* Nature, 2008. **452**(7188): p. 750-4.
- 8. Heymann, A., et al., *Influence of school closure on the incidence of viral respiratory diseases among children and on health care utilization.* Pediatric Infectious Disease Journal, 2004. **23**(7): p. 675-7.
- 9. Heymann, A.D., et al., School closure may be effective in reducing transmission of respiratory viruses in the community. Epidemiology & Infection, 2009. **137**(10): p. 1369-76.
- 10. Earn, D.J., et al., *Effects of school closure on incidence of pandemic influenza in Alberta, Canada.*[Summary for patients in Ann Intern Med. 2012 Feb 7;156(3):I28; PMID: 22312154]. Annals of Internal Medicine, 2012. **156**(3): p. 173-81.
- 11. Rodriguez, C.V., et al., Association between school closure and subsequent absenteeism during a seasonal influenza epidemic. Epidemiology, 2009. **20**(6): p. 787-92.
- 12. Cowling, B.J., et al., *Effects of school closures, 2008 winter influenza season, Hong Kong.* Emerging Infectious Diseases, 2008. **14**(10): p. 1660-2.
- 13. Wu, J.T., et al., *School closure and mitigation of pandemic (H1N1) 2009, Hong Kong.* Emerging Infectious Diseases, 2010. **16**(3): p. 538-41.
- 14. Uchida, M., et al., *Effect of short-term school closures on the H1N1 pandemic in Japan: A comparative case study.* Infection, 2012. **40**(5): p. 549-556.
- 15. Briffault, O., Weekly influenza-like-illness rates were significantly lower in areas where schools were not in session in the United States during the 2009 H1N1 pandemic. PLoS Currents, 2011(ecurrents.RRN1234).
- 16. Copeland, D.L., et al., *Effectiveness of a School District Closure for Pandemic Influenza A (H1N1) on Acute Respiratory Illnesses in the Community: A Natural Experiment.* Clin Infect Dis, 2012.
- 17. Egger, J.R., et al., *The effect of school dismissal on rates of influenza-like illness in New York City schools during the spring 2009 novel H1N1 outbreak.* Journal of School Health, 2012. **82**(3): p. 123-30.
- 18. Alonso, W.J., et al., *Comparative dynamics, morbidity and mortality burden of pediatric viral respiratory infections in an equatorial city.* Pediatric Infectious Disease Journal, 2012. **31**(1): p. e9-e14.
- 19. Birrell, P.J., et al., *Bayesian modeling to unmask and predict influenza A/H1N1pdm dynamics in London.* Proceedings of the National Academy of Sciences of the United States of America, 2011. **108**(45): p. 18238-18243.
- 20. Chowell, G., et al., *Spatial and temporal characteristics of the 2009 A/H1N1 influenza pandemic in Peru.* PLoS ONE [Electronic Resource], 2011. **6**(6): p. e21287.
- 21. Chowell, G., et al., *Characterizing the epidemiology of the 2009 influenza A/H1N1 pandemic in Mexico.* PLoS Medicine / Public Library of Science, 2011. **8**(5): p. e1000436.
- 22. Eames, K.T.D., et al., *Measured dynamic social contact patterns explain the spread of H1N1v influenza*. PLoS Computational Biology, 2012. **8**(3).
- 23. Flasche, S., et al., *Different transmission patterns in the early stages of the influenza A*(*H1N1*)*v pandemic: a comparative analysis of 12 European countries.* Epidemics, 2011. **3**(2): p. 125-33.
- 24. Hens, N., et al., *Robust reconstruction and analysis of outbreak data: influenza A(H1N1)v transmission in a school-based population.* American Journal of Epidemiology, 2012. **176**(3): p. 196-203.
- 25. Yu, H., et al., *Transmission dynamics, border entry screening, and school holidays during the 2009 influenza A (H1N1) pandemic, China.* Emerging Infectious Diseases, 2012. **18**(5): p. 758-766.
- Wheeler, C.C., L.M. Erhart, and M.L. Jehn, *Effect of school closure on the incidence of influenza among school-age children in Arizona.* Public Health Reports, 2010. 125(6): p. 851-9.
- 27. Huai, Y., et al., A primary school outbreak of pandemic 2009 influenza A (H1N1) in China. Influenza & Other Respiratory Viruses, 2010. **4**(5): p. 259-66.
- 28. Calatayud, L., et al., *Pandemic (H1N1) 2009 virus outbreak in a school in London, April-May 2009: an observational study.* Epidemiology & Infection, 2010. **138**(2): p. 183-91.
- Strong, M., et al., Adverse drug effects following oseltamivir mass treatment and prophylaxis in a school outbreak of 2009 pandemic influenza A(H1N1) in June 2009, Sheffield, United Kingdom. Euro Surveillance: Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 2010. 15(19): p. pii/19565.
- 30. Kawaguchi, R., et al., *Influenza (H1N1) 2009 outbreak and school closure, Osaka Prefecture, Japan.* Emerging Infectious Diseases, 2009. **15**(10): p. 1685.
- Ahmed, F., et al., Early outcomes of pandemic influenza (H1N1) 2009 surveillance in Abu Dhabi Emirate, May-August 2009. Eastern Mediterranean Health Journal, 2012.
 18(1): p. 31-36.
- 32. Balasegaram, S., et al., *Patterns of early transmission of pandemic influenza in London - link with deprivation.* Influenza and other Respiratory Viruses, 2012. **6**(3): p. e35-e41.
- 33. Carrillo-Santisteve, P., et al., *2009 pandemic influenza A(H1N1) outbreak in a complex of schools in Paris, France, June 2009.* Euro Surveillance: Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 2010. **15**(25): p. 24.
- 34. Fujii, H., et al., *Evaluation of the school health surveillance system for influenza, Tokyo, 1999-2000.* Japanese Journal of Infectious Diseases, 2002. **55**(3): p. 97-98.
- 35. Petrovic, V., et al., Overview of the winter wave of 2009 pandemic influenza A(H1N1)v in Vojvodina, Serbia. Croatian Medical Journal, 2011. **52**(2): p. 141-150.
- 36. Rajatonirina, S., et al., *Pandemic influenza A(H1N1) 2009 virus outbreak among boarding school pupils in Madagascar: compliance and adverse effects of prophylactic oseltamivir treatment.* Journal of Infection in Developing Countries, 2011. **5**(3): p. 156-62.
- 37. Lessler, J., et al., *Outbreak of 2009 pandemic influenza A (H1N1) at a New York City school.* New England Journal of Medicine, 2009. **361**(27): p. 2628-36.
- 38. Dorigatti, I., et al., A new approach to characterising infectious disease transmission dynamics from sentinel surveillance: Application to the Italian 2009-2010 A/H1N1 influenza pandemic. Epidemics, 2012. **4**(1): p. 9-21.
- 39. Freiesleben de Blasio, B., B.G. Iversen, and G. Tomba, *Effect of vaccines and antivirals during the major 2009 a*(*H1N1*) *pandemic wave in norway and the influence of vaccination timing.* PLoS ONE, 2012. **7**(1).

- 40. Kara, E.O., et al., *Absenteeism in schools during the 2009 influenza A(H1N1)* pandemic: a useful tool for early detection of influenza activity in the community? Epidemiology & Infection, 2012. **140**(7): p. 1328-36.
- 41. Lau, E.H., et al., *Situational awareness of influenza activity based on multiple streams of surveillance data using multivariate dynamic linear model.* PLoS ONE [Electronic Resource], 2012. **7**(5): p. e38346.
- 42. Winslow, C.-E.A. and J.F. Rogers, *Statistics of the 1918 Epidemic of Influenza in Connecticut: With a consideration of the factors which influenced the prevalence of this disease in various communities* J Infect Dis, 1920. **26**(3): p. 185-216.
- 43. Effler, P.V., et al., *Household responses to pandemic (H1N1) 2009-related school closures, Perth, Western Australia.* Emerging Infectious Diseases, 2010. **16**(2): p. 205-11.
- 44. Briscoe, J.H., *The protective effect of influenza vaccine in a mixed influenza A and B epidemic in a boys' boarding school.* Journal of the Royal College of General Practitioners, 1977. **27**(166): p. 28-31.
- 45. Danis, K., et al., *Lessons from a pre-season influenza outbreak in a day school.* Communicable Disease & Public Health, 2004. **7**(3): p. 179-83.
- 46. Cashman, P., et al., *Pneumonia cluster in a boarding school--implications for influenza control.* Communicable Diseases Intelligence, 2007. **31**(3): p. 296-8.
- 47. Johnson, A.J., et al., *Household responses to school closure resulting from outbreak of influenza B, North Carolina.* Emerging Infectious Diseases, 2008. **14**(7): p. 1024-30.
- 48. Smith, A., et al., *An outbreak of influenza A(H1N1)v in a boarding school in South East England, May-June 2009.* Euro Surveillance: Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 2009. **14**(27): p. 9.
- 49. Health Protection Agency West Midlands H1N1v Investigation Team, Preliminary descriptive epidemiology of a large school outbreak of influenza A(H1N1)v in the West Midlands, United Kingdom, May 2009. Euro Surveillance: Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 2009. 14(27).
- Guinard, A., et al., Outbreak of influenza A(H1N1)v without travel history in a school in the Toulouse district, France, June 2009. Euro Surveillance: Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 2009. 14(27).
- 51. Shimada, T., et al., *Epidemiology of influenza A(H1N1)v virus infection in Japan, May-June 2009.* Euro Surveillance: Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 2009. **14**(24).
- 52. Miller, J.C., et al., *Student behavior during a school closure caused by pandemic influenza A/H1N1.* PLoS ONE [Electronic Resource], 2010. **5**(5): p. e10425.
- 53. Cauchemez, S., et al., *Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza.* Proceedings of the National Academy of Sciences of the United States of America, 2011. **108**(7): p. 2825-30.
- 54. Cohen, N.J., et al., *Respiratory illness in households of school-dismissed students during pandemic (H1N1) 2009.* Emerging Infectious Diseases, 2011. **17**(9): p. 1756-1757.
- 55. Graitcer, S.B., et al., *Effects of immunizing school children with 2009 influenza A* (H1N1) monovalent vaccine on absenteeism among students and teachers in Maine. Vaccine, 2012. **30**(32): p. 4835-4841.
- 56. Leung, Y.H., M.P. Li, and S.K. Chuang, A school outbreak of pandemic (H1N1) 2009 infection: assessment of secondary household transmission and the protective role of oseltamivir. Epidemiology & Infection, 2011. **139**(1): p. 41-4.
- 57. Loustalot, F., et al., *Household transmission of 2009 pandemic influenza A (H1N1)* and nonpharmaceutical interventions among households of high school students in San Antonio, Texas. Clinical Infectious Diseases, 2011. **52 Suppl 1**: p. S146-53.

- Marchbanks, T.L., et al., An outbreak of 2009 pandemic influenza A (H1N1) virus infection in an elementary school in Pennsylvania. Clinical Infectious Diseases, 2011.
 52 Suppl 1: p. S154-60.
- 59. Monto, A.S., et al., *Modification of an outbreak of influenza in Tecumseh, Michigan by vaccination of schoolchildren.* Journal of Infectious Diseases, 1970. **122**(1-2): p. 16-25.
- 60. Fang, L.Q., et al., *Distribution and risk factors of 2009 pandemic influenza a (h1n1) in Mainland China.* American Journal of Epidemiology, 2012. **175**(9): p. 890-897.
- 61. Alonso, W.J., et al., Seasonality of influenza in Brazil: a traveling wave from the Amazon to the subtropics. Am J Epidemiol, 2007. **165**(12): p. 1434-42.
- 62. Armstrong, C. and R. Hopkins, *An epidemiological study of the 1920 epidemic of influenza in an isolated rural community.* Public Health Reports, 1921. **36**(29): p. 1671-1702.
- 63. Baker, M.G., et al., *Pandemic influenza A(H1N1)v in New Zealand: the experience from April to August 2009.* Euro Surveillance: Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 2009. **14**(34).
- 64. Tinoco, Y., et al., *Preliminary population-based epidemiological and clinical data on 2009 pandemic H1N1 influenza A (pH1N1) from Lima, Peru.* Influenza Other Respi Viruses, 2009. **3**(6): p. 253-6.
- 65. Miller, D.L. and J.A. Lee, *Influenza in Britain 1967-68.* Journal of Hygiene, 1969. **67**: p. 559-572.
- 66. Paine, S., et al., *Transmissibility of 2009 pandemic influenza A(H1N1) in New Zealand: effective reproduction number and influence of age, ethnicity and importations*. Euro Surveillance: Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 2010. **15**(24).
- 67. Evans, B., et al., *Has estimation of numbers of cases of pandemic influenza H1N1 in England in 2009 provided a useful measure of the occurrence of disease?* Influenza and other Respiratory Viruses, 2011. **5**(6): p. e504-e512.
- 68. Cruz-Pacheco, G., et al., *Modelling of the influenza A(H1N1)v outbreak in Mexico City, April-May 2009, with control sanitary measures.* Euro Surveillance: Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 2009. **14**(26).
- 69. Caley, P., D.J. Philp, and K. McCracken, *Quantifying social distancing arising from pandemic influenza.* Journal of the Royal Society Interface, 2008. **5**(23): p. 631-9.
- 70. Bootsma, M.C. and N.M. Ferguson, *The effect of public health measures on the 1918 influenza pandemic in U.S. cities.* Proceedings of the National Academy of Sciences of the United States of America, 2007. **104**(18): p. 7588-93.
- 71. Merler, S., et al., *Determinants of the spatiotemporal dynamics of the 2009 H1N1 pandemic in europe: Implications for real-time modelling.* PLoS Computational Biology, 2011. **7**(9).
- 72. Baguelin, M., et al., *Vaccination against pandemic influenza A/H1N1v in England: A real-time economic evaluation.* Vaccine, 2010. **28**(12): p. 2370-2384.
- 73. Echevarria-Zuno, S., et al., *Infection and death from influenza A H1N1 virus in Mexico: a retrospective analysis.* The Lancet, 2009. **374**(9707): p. 2072-2079.
- 74. Engelhard, D., et al., *Increased extent of and risk factors for pandemic (H1N1) 2009 and seasonal infl uenza among children, Israel.* Emerging Infectious Diseases, 2011. **17**(9): p. 1740-1743.
- 75. Hatchett, R.J., C.E. Mecher, and M. Lipsitch, *Public health interventions and epidemic intensity during the 1918 influenza pandemic.* Proceedings of the National Academy of Sciences of the United States of America, 2007. **104**(18): p. 7582-7.
- 76. Wallensten, A., et al., Compliance and side effects of prophylactic oseltamivir treatment in a school in South West England. Euro Surveillance: Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 2009. 14(30): p. 19285.

- 77. Wang, C., et al., *Epidemiological and clinical characteristics of the outbreak of 2009 pandemic influenza A (H1N1) at a middle school in Luoyang, China.* Public Health, 2012. **126**(4): p. 289-94.
- 78. Human infection with new influenza A (H1N1) virus: clinical observations from a school-associated outbreak in Kobe, Japan, May 2009. Weekly Epidemiological Record, 2009. **84**(24): p. 237-44.
- 79. Nishiura, H., et al., *Transmission potential of the new influenza A(H1N1) virus and its age-specificity in Japan.* Euro Surveillance: Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 2009. **14**(22): p. 4.
- 80. Gomez, J., et al., *Pandemic influenza in a southern hemisphere setting: the experience in Peru from May to September, 2009.* Euro Surveillance: Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 2009. **14**(42).
- 81. Hsueh, P.R., et al., *Pandemic (H1N1) 2009 vaccination and class suspensions after outbreaks, Taipei City, Taiwan.* Emerging Infectious Diseases, 2010. **16**(8): p. 1309-11.
- 82. Kao, C.L., et al., *Emerged HA and NA mutants of the pandemic influenza H1N1 viruses with increasing epidemiological significance in Taipei and Kaohsiung, Taiwan, 2009-10.* PloS one, 2012. **7**(2): p. e31162.
- 83. Uchida, M., et al., *Swine-origin influenza a outbreak 2009 at Shinshu University, Japan.* BMC Public Health, 2011. **11**: p. 79.
- 84. Markel, H., et al., *Nonpharmaceutical interventions implemented by US cities during the 1918-1919 influenza pandemic.* Journal of the American Medical Association, 2007. **298**(6): p. 644-654.
- 85. Lo, J.Y., et al., *Respiratory infections during SARS outbreak, Hong Kong, 2003.* Emerging Infectious Diseases, 2005. **11**(11): p. 1738-41.
- 86. Wu, J., et al., *Safety and effectiveness of a 2009 H1N1 vaccine in Beijing.* New England Journal of Medicine, 2010. **363**(25): p. 2416-2423.
- 87. France, A.M., et al., *Household transmission of 2009 influenza A (H1N1) virus after a school-based outbreak in New York City, April-May 2009.* Journal of Infectious Diseases, 2010. **201**(7): p. 984-92.
- 88. Poggensee, G., et al., *The first wave of pandemic influenza (H1N1) 2009 in Germany: From initiation to acceleration.* BMC Infectious Diseases, 2010. **10**(155).
- 89. Chuang, J.H., et al., *Nationwide surveillance of influenza during the pandemic (2009-10) and post-pandemic (2010-11) periods in Taiwan.* PLoS ONE, 2012. **7**(4).
- 90. Farley, T.A., et al., *The impact of influenza vaccination on respiratory illness at a boarding School.* Journal of American College Health, 1992. **41**(3): p. 127-131.
- 91. Sonoguchi, T., H. Naito, and M. Hara, *Cross-subtype protection in humans during sequential, overlapping, and/or concurrent epidemics caused by H3N2 and H1N1 influenza viruses.* Journal of Infectious Diseases, 1985. **151**(1): p. 81-88.
- 92. Davies, J.R., et al., *Prophylactic use of amantadine in a boarding school outbreak of influenza A.* Journal of the Royal College of General Practitioners, 1988. **38**(313): p. 346-8.
- 93. Jackson, C., et al., *School closures and student contact patterns.* Emerging Infectious Diseases, 2011. **17**(2): p. 245-7.
- 94. Davis, L.E., G.G. Caldwell, and R.E. Lynch, *Hong Kong influenza: The epidemiologic features of a high school family study analyzed and compared with a similar study during the 1957Asian influenza epidemic.* American Journal of Epidemiology, 1970. **92**(4): p. 520.
- 95. Miller, E., et al., *Incidence of 2009 pandemic influenza A H1N1 infection in England: a cross-sectional serological study.* Lancet, 2010. **375**(9720): p. 1100-8.
- 96. Berkman, B.E., *Mitigating pandemic influenza: the ethics of implementing a school closure policy.* Journal of Public Health Management & Practice, 2008. **14**(4): p. 372-8.

- 97. Sadique, M.Z., E.J. Adams, and W.J. Edmunds, *Estimating the costs of school closure for mitigating an influenza pandemic.* BMC Public Health, 2008. **8**: p. 135.
- 98. Smith, R.D., et al., *The economy-wide impact of pandemic influenza on the UK: a computable general equilibrium modelling experiment.* BMJ, 2009. **339**: p. b4571.
- 99. Hodge, J.G., Jr., *The legal landscape for school closures in response to pandemic flu or other public health threats.* Biosecurity & Bioterrorism, 2009. **7**(1): p. 45-50.
- 100. Brunyate, W.D.T., et al., *The early stages of the 1957 influenza epidemic in England and Wales in relation to the re-assembly of schools.* Mon Bull Minist HIth Lab Serv, 1961. **20**(MAY): p. 88-92.
- 101. Dunn, F.L., et al., *Epdemiologic studies of asian influenza in a louisiana parish.* Amer, 1959. **J.Hyg. 70**(3): p. 351-371.
- 102. Chao, D.L., M.E. Halloran, and I.M. Longini, Jr., *School opening dates predict pandemic influenza A(H1N1) outbreaks in the United States.* J Infect Dis, 2010. **202**(6): p. 877-80.
- 103. Araz, O.M., et al., *Simulating school closure policies for cost effective pandemic decision making.* BMC Public Health, 2012. **12**(1): p. 449.
- 104. House, T., et al., *Modelling the impact of local reactive school closures on critical care provision during an influenza pandemic.* Proceedings of the Royal Society of London Series B: Biological Sciences, 2011. **278**(1719): p. 2753-60.
- 105. Ferguson, N.M., et al., *Strategies for mitigating an influenza pandemic.* Nature, 2006. **442**(7101): p. 448-52.
- 106. Haber, M.J., et al., *Effectiveness of interventions to reduce contact rates during a simulated influenza pandemic.* Emerging Infectious Diseases, 2007. **13**(4): p. 581-9.
- 107. Carrat, F., et al., A 'small-world-like' model for comparing interventions aimed at preventing and controlling influenza pandemics. BMC Medicine, 2006. **4**: p. 26.
- 108. Glass, R.J., et al., *Targeted social distancing design for pandemic influenza*. Emerging Infectious Diseases, 2006. **12**(11): p. 1671-81.
- 109. Yasuda, H., N. Yoshizawa, and K. Suzuki, *Modeling on social spread from immunity.* Jpn J Infect Dis, 2005. **58**(6): p. S14-5.
- 110. Ciofi degli Atti, M.L., et al., *Mitigation measures for pandemic influenza in Italy: an individual based model considering different scenarios.* PLoS ONE [Electronic Resource], 2008. **3**(3): p. e1790.
- 111. Yasuda, H., et al., *Preparedness for the spread of influenza: prohibition of traffic, school closure, and vaccination of children in the commuter towns of Tokyo.* Journal of Urban Health, 2008. **85**(4): p. 619-35.
- 112. Kelso, J.K., G.J. Milne, and H. Kelly, *Simulation suggests that rapid activation of social distancing can arrest epidemic development due to a novel strain of influenza*. BMC Public Health, 2009. **9**: p. 117.
- Yasuda, H. and K. Suzuki, *Measures against transmission of pandemic H1N1 influenza in Japan in 2009: simulation model.* Euro Surveillance: Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 2009. 14(44).
- 114. Davey, V.J., et al., *Effective, robust design of community mitigation for pandemic influenza: a systematic examination of proposed US guidance.* PLoS ONE [Electronic Resource], 2008. **3**(7): p. e2606.
- 115. Rizzo, C., et al., *Scenarios of diffusion and control of an influenza pandemic in Italy.* Epidemiology & Infection, 2008. **136**(12): p. 1650-7.
- 116. Vynnycky, E. and W.J. Edmunds, Analyses of the 1957 (Asian) influenza pandemic in the United Kingdom and the impact of school closures. Epidemiology & Infection, 2008. **136**(2): p. 166-79.
- 117. Glass, K. and B. Barnes, *How much would closing schools reduce transmission during an influenza pandemic?* Epidemiology, 2007. **18**(5): p. 623-8.
- 118. Lee, B.Y., et al., *Simulating school closure strategies to mitigate an influenza epidemic.* Journal of Public Health Management & Practice, 2010. **16**(3): p. 252-61.

- 119. Elveback, L.R., et al., *An influenza simulation model for immunization studies.* American Journal of Epidemiology, 1976. **103**(2): p. 152-65.
- 120. Germann, T.C., et al., *Mitigation strategies for pandemic influenza in the United States.* Proceedings of the National Academy of Sciences of the United States of America, 2006. **103**(15): p. 5935-40.
- 121. Davey, V.J. and R.J. Glass, *Rescinding community mitigation strategies in an influenza pandemic.* Emerging Infectious Diseases, 2008. **14**(3): p. 365-72.
- 122. Barrett, C., et al., *Economic and social impact of influenza mitigation strategies by demographic class.* Epidemics, 2011. **3**(1): p. 19-31.
- 123. Andradottir, S., et al., *Reactive strategies for containing developing outbreaks of pandemic influenza*. BMC Public Health, 2011. **11 Suppl 1**: p. S1.
- 124. Milne, G.J., et al., A small community model for the transmission of infectious diseases: comparison of school closure as an intervention in individual-based models of an influenza pandemic. PLoS ONE [Electronic Resource], 2008. **3**(12): p. e4005.
- Perlroth, D.J., et al., *Health outcomes and costs of community mitigation strategies for an influenza pandemic in the United States.* Clinical Infectious Diseases, 2010. 50(2): p. 165-74.
- 126. Roberts, M.G., et al., *A model for the spread and control of pandemic influenza in an isolated geographical region.* Journal of the Royal Society Interface, 2007. **4**(13): p. 325-30.
- 127. Bolton, K.J., et al., *Likely effectiveness of pharmaceutical and non-pharmaceutical interventions for mitigating influenza virus transmission in Mongolia.* Bulletin of the World Health Organization, 2012. **90**(4): p. 264-71.
- 128. Chao, D.L., et al., *FluTE, a publicly available stochastic influenza epidemic simulation model.* PLoS Computational Biology, 2010. **6**(1): p. e1000656.
- 129. Halder, N., J.K. Kelso, and G.J. Milne, *Analysis of the effectiveness of interventions used during the 2009 A/H1N1 influenza pandemic.* BMC Public Health, 2010. **10**: p. 168.
- 130. Halder, N., J.K. Kelso, and G.J. Milne, *Cost-effective strategies for mitigating a future influenza pandemic with H1N1 2009 characteristics.* PLoS ONE [Electronic Resource], 2011. **6**(7): p. e22087.
- 131. Halder, N., J.K. Kelso, and G.J. Milne, *Developing guidelines for school closure interventions to be used during a future influenza pandemic.* BMC Infectious Diseases, 2010. **10**: p. 221.
- 132. Zhang, T., et al., *Temporal factors in school closure policy for mitigating the spread of influenza*. Journal of Public Health Policy, 2011. **32**(2): p. 180-97.
- 133. Zhang, T., et al., *Evaluating temporal factors in combined interventions of workforce shift and school closure for mitigating the spread of influenza*. PLoS ONE [Electronic Resource], 2012. **7**(3): p. e32203.
- 134. Yang, Y., P.M. Atkinson, and D. Ettema, *Analysis of CDC social control measures using an agent-based simulation of an influenza epidemic in a city.* BMC Infectious Diseases, 2011. **11**: p. 199.
- 135. Mao, L., *Evaluating the combined effectiveness of influenza control strategies and human preventive behavior.* PLoS ONE [Electronic Resource], 2011. **6**(10): p. e24706.
- Chao, D.L., et al., *Planning for the control of pandemic influenza A (H1N1) in Los Angeles County and the United States.* American Journal of Epidemiology, 2011.
 173(10): p. 1121-1130.
- 137. Morimoto, T. and H. Ishikawa, Assessment of intervention strategies against a novel influenza epidemic using an individual-based model. Environmental Health and Preventive Medicine, 2010. **15**(3): p. 151-161.
- 138. Sypsa, V. and A. Hatzakis, *School closure is currently the main strategy to mitigate influenza A(H1N1)v: a modeling study.* Euro Surveillance: Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 2009. **14**(24).

- 139. Ferguson, N.M., et al., *Strategies for containing an emerging influenza pandemic in Southeast Asia.* Nature, 2005. **437**(7056): p. 209-14.
- Timpka, T., et al., *Population-based simulations of influenza pandemics: validity and significance for public health policy.* Bulletin of the World Health Organization, 2009.
 87(4): p. 305-11.
- 141. Sander, B., et al., *Economic Evaluation of Influenza Pandemic Mitigation Strategies in the United States Using a Stochastic Microsimulation Transmission Model.* Value Health, 2009. **12**(2): p. 226-233.
- 142. Halloran, M.E., et al., *Modeling targeted layered containment of an influenza pandemic in the United States.* Proceedings of the National Academy of Sciences of the United States of America, 2008. **105**(12): p. 4639-44.
- 143. Lee, V.J., D.C. Lye, and A. Wilder-Smith, *Combination strategies for pandemic influenza response a systematic review of mathematical modeling studies.* BMC Medicine, 2009. **7**: p. 76.
- 144. Eames, K.T., N.L. Tilston, and W.J. Edmunds, *The impact of school holidays on the social mixing patterns of school children.* Epidemics, 2011. **3**(2): p. 103-8.
- 145. Mossong, J., et al., Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Medicine, 2008. **5**(3): p. 0381-0391.
- 146. Mikolajczyk, R.T., et al., Social contacts of school children and the transmission of respiratory-spread pathogens. Epidemiology & Infection, 2008. **136**(6): p. 813-22.
- 147. Hens, N., et al., *Mining social mixing patterns for infectious disease models based on a two-day population survey in Belgium.* BMC Infectious Diseases, 2009. **9**: p. 5.
- 148. Grilli, E.A., M.J. Anderson, and T.W. Hoskins, *Concurrent outbreaks of influenza and parvovirus B19 in a boys' boarding school.* Epidemiology and Infection, 1989. **103**(2): p. 359-369.
- 149. Olson, J.G., School absenteeism during an outbread of B/Hong Kong/5/72-like influenze virus in Taipei, Taiwan. Southeast Asian Journal of Tropical Medicine & Public Health, 1980. **11**(4): p. 429-34.
- 150. Cheng, C.K.Y., et al., *Electronic school absenteeism monitoring and influenza surveillance, Hong Kong.* Emerging Infectious Diseases, 2012. **18**(5): p. 885-887.
- 151. Shaw, C., M. McLean, and J. McKenzie, *Other surveillance reports: influenza-like illness in Wellington schools 2005.* New Zealand Public Health Surveillance Report, 2006. **4**(2): p. 4-6.
- 152. Leonida, D.D.J., *Morbidity patterns reflected in a school health program during an influenza epidemic season.* Illinois Medical Journal, 1970. **137**(3): p. 262-264.
- 153. Glass, R.I., et al., *Community-wide surveillance of influenza after outbreaks due to* H3N2 (A/Victoria/75 and A/Texas/77) and H1N1 (A/USSR/77) influenza viruses, *Mercer County, New Jersey, 1978.* Journal of Infectious Diseases, 1978. **138**(5): p. 703-6.
- 154. Louie, J.K., et al., *Creating a Model Program for Influenza Surveillance in California. Results from the 2005-2006 Influenza Season.* American Journal of Preventive Medicine, 2007. **33**(4): p. 353-357.
- 155. Smith, S., et al., *Early spread of the 2009 infuenza A(H1N1) pandemic in the United Kingdom use of local syndromic data, May-August 2009.* Eurosurveillance, 2011. **16**(3).
- 156. Van Gageldonk-Lafeber, A.B., et al., *The relative clinical impact of 2009 pandemic influenza A (H1N1) in the community compared to seasonal influenza in the Netherlands was most marked among 5-14year olds.* Influenza and other Respiratory Viruses, 2011. **5**(6): p. e513-e520.
- 157. Chieochansin, T., et al., *Novel H1N1 2009 influenza virus infection in Bangkok, Thailand:Effects of school closures.* Asian Biomedicine, 2009. **3**(5): p. 469-475.
- 158. Cowling, B.J., et al., *The effective reproduction number of pandemic influenza: Prospective estimation.* Epidemiology, 2010. **21**(6): p. 842-846.
- 159. Hall, R.J., et al., *Pandemic influenza A(H1N1)v viruses currently circulating in New Zealand are sensitive to oseltamivir.* Euro Surveillance: Bulletin Europeen sur les

Maladies Transmissibles = European Communicable Disease Bulletin, 2009. **14**(30): p. 19282.

- 160. Stern, A.M. and H. Markel, *What Mexico taught the world about pandemic influenza* preparedness and community mitigation strategies. JAMA, 2009. **302**(11): p. 1221-2.
- 161. Lajous, M., et al., *Mobile messaging as surveillance tool during pandemic (H1N1)* 2009, Mexico. Emerging Infectious Diseases, 2010. **16**(9): p. 1488-9.
- 162. Janjua, N.Z., et al., Seasonal influenza vaccine and increased risk of pandemic *A/H1N1-related illness: First detection of the association in British Columbia, Canada.* Clinical Infectious Diseases, 2010. **51**(9): p. 1017-1027.
- 163. Janusz, K.B., et al., *Influenza-like illness in a community surrounding a school-based outbreak of 2009 pandemic influenza A (H1N1) virus-Chicago, Illinois, 2009.* Clinical Infectious Diseases, 2011. **52 Suppl 1**: p. S94-101.
- 164. Herrera-Valdez, M.A., M. Cruz-Aponte, and C. Castillo-Chavez, *Multiple outbreaks* for the same pandemic: Local transportation and social distancing explain the different "Waves" of A-H1N1PDM cases observed in Mexico during 2009. Mathematical Biosciences and Engineering, 2011. **8**(1): p. 21-48.
- 165. Jordan, E.O., D.B. Redd, and E.B. Fink, *Influenza in three Chicago groups.* Public Health Reports, 1919. **34**(28): p. 1528-1545.
- 166. Mniszewski, S.M., et al., *Pandemic simulation of antivirals plus school closures: buying time until strain-specific vaccine is available.* Computational and Mathematical Organization Theory, 2008. **14**(3): p. 209-221.
- 167. Longini, I.M., Jr., et al., *Containing pandemic influenza with antiviral agents.* American Journal of Epidemiology, 2004. **159**(7): p. 623-33.
- 168. Longini, I.M., Jr., et al., *Containing pandemic influenza at the source.* Science, 2005. **309**(5737): p. 1083-7.
- 169. Kelso, J.K., N. Halder, and G.J. Milne, *The impact of case diagnosis coverage and diagnosis delays on the effectiveness of antiviral strategies in mitigating pandemic influenza A/H1N1 2009.* PLoS ONE [Electronic Resource], 2010. **5**(11): p. e13797.
- Fine, P.E. and J.A. Clarkson, *Measles in England and Wales--I: An analysis of factors underlying seasonal patterns.* International Journal of Epidemiology, 1982.
 11(1): p. 5-14.
- Ghosh, S. and J. Heffernan, *Influenza pandemic waves under various mitigation strategies with 2009 H1N1 as a case study.* PLoS ONE [Electronic Resource], 2010. 5(12): p. e14307.

Appendix 1: Search strategy for identifying epidemiological studies of the effects of school closures on incidence / transmission of influenza

1. influenza.mp. or exp Influenza, Human/

- 2. exp Incidence/
- 3. exp Morbidity/

4. exp Sentinel Surveillance/ or exp Population Surveillance/

5. exp Disease Transmission, Horizontal/ or exp Acute Disease/ or exp Disease Notification/ or exp Disease Outbreaks/ or exp Communicable Disease Control/ or exp Disease/ or exp Disease Transmission/

6. (incidence or rate or morbidity or mortality or surveillance or risk or illness or death or case* or disease or infect*).mp. [mp=title, original title, abstract, name of substance word, subject heading word, unique identifier]

7. (infect* or communicable or contagio*).mp. [mp=title, original title, abstract, name of substance word, subject heading word, unique identifier]

8. exp Infection/

9. exp Communicable Diseases/ or exp Communicable Disease Control/ or exp

Communicable Diseases, Emerging/

10. 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9

11. ((school adj5 clos*) or (nurser* adj5 clos*) or (daycare adj5 clos*) or (day adj care adj5 clos*)).mp. [mp=title, original title, abstract, name of substance word, subject heading word, unique identifier]

12. exp Schools/

13. 11 or 12

14. 1 and 10 and 13

Appendix 2: Search strategy for identifying modelling studies of the effects of school closure on incidence / transmission of influenza

1. ((school adj5 clos*) or (nurser* adj5 clos*) or (kindergarten adj5 clos*) or (daycare adj5 clos*) or (day adj care adj5 clos*) or (preschool* adj5 clos*) or (pre-school* adj5 clos*) or (child* adj5 home) or (schoolchild* adj5 home) or (teenage* adj5 home) or (preschool* adj5 home) or (pre-school* adj5 home) or (adolescent adj5 home) or (social adj5 distanc*)).mp. [mp=title, original title, abstract, name of substance word, subject heading word, unique identifier]

2. exp Schools/

3. 1 or 2

4. (infect* or communicable or contagio*).mp. [mp=title, original title, abstract, name of substance word, subject heading word, unique identifier]

5. (mortality or (attack adj5 rate) or morbidity or incidence).mp. [mp=title, original title, abstract, name of substance word, subject heading word, unique identifier]

6. exp Incidence/

7. exp Infection/

8. exp Communicable Diseases/ or exp Communicable Disease Control/ or exp Communicable Diseases, Emerging/

9. exp Disease outbreaks/

10. 4 or 5 or 6 or 7 or 8 or 9

11. (model* or (mathematical adj5 model*) or (transmission adj5 model*) or (simulation adj5 model*) or (statistical adj5 model*) or (epidemi* adj5 model*) or (dynamic* adj5 model*) or (computer adj5 model*) or simulation).mp. [mp=title, original title, abstract, name of substance word, subject heading word, unique identifier]

12. exp Models, Theoretical/

13. exp Models, Statistical/

14. exp Computer simulation/

15. 11 or 12 or 13 or 14

16. 3 and 10 and 15

Appendix 3: Quality assessment for epidemiological studies

Study population

Is the study population clearly defined, e.g. schoolchildren only or general population? Is the study population representative of the wider population? Is the study population large enough to draw conclusions?

School closure

Were schools closed before the epidemic had peaked? Which schools were closed (e.g. primary versus secondary schools)?

Case ascertainment

Were cases ascertained in the same way throughout the outbreak? Was the outcome measure specific? Was the outcome measure sensitive?

Analysis

Does the analysis go beyond a description of the epidemic curve in relation to the closing of schools?

Are the results considered in terms of transmission dynamics as well as incidence?

Was any apparent effect reversed when schools were reopened?

Are age-specific results presented?

Are possible confounders considered?

Are confidence intervals and/or statistical tests presented?

Is there a comparison group, and is this group appropriate?

Appendix 4: Guidelines for comparing modelling studies

Baseline model parameters Is the model age-stratified? If so, which age groups are used? Are contact patterns assumed to be age-dependent? Are infection parameters (latent and infectious periods and/or serial interval, R₀) stated or estimated appropriately? Are these values consistent with those which occurred in previous pandemics or epidemics? Does the model attempt to describe transmission in different settings (e.g. the home, school, community)?

Baseline model validation

Has the model been fitted to data from previous pandemics / epidemics? If so, what data have been used for this? Does the model replicate previous pandemics / epidemics?

Modelling of school closure as a specific intervention

Are school closures explicitly modelled?

Assumptions about the effects of school closures on contact patterns

What effects are school closures assumed to have on contact between children and between children and adults?

Are these effects estimated from data or assumed?

If assumed, are the assumptions clearly stated?

Are these assumptions based on empirical data?

Are school closures studied as a single intervention or in combination with other strategies,

e.g. antiviral use, vaccination?

Are nurseries and / or workplaces closed as well as schools?

Reporting of results

Are the results presented in terms of:

- Changes in overall and/or age-specific cumulative attack rate
- Changes in overall and/or age-specific peak attack rate
- Changes in duration of the epidemic
- Changes in time to peak of the epidemic
- Changes in the effective reproduction number

- Impact on mortality

Sensitivity analyses

Are the effects of using different values of R₀ explored? Are different assumptions about baseline mixing patterns explored? Are different assumptions about the effects of school closures on mixing patterns explored? (For example, are alternative changes in contact patterns, for example increased attendance of children at out-of-school activities, considered?) Are the effects of varying the threshold / timing / duration of closures explored?

Is there an estimate of the conditions required (e.g. threshold for intervention, changes in contact patterns) to negate the effects of school closure?

Appendix 5: Studies of the effects of school closures on seasonal influenza outbreaks

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Europe	• •			·			
Briscoe (1977) ⁴⁴	Outbreak report / estimate of vaccine efficacy	1231 boys at Eton College, 1976 (79% of whom were vaccinated). Age of pupils not stated but the school currently takes boys aged 13- 18.	Planned half term holiday	Friday 20 to Monday 23 February	Epidemic began in late January, first wave peaked 6 February, second wave peaked 17 February.	Clinical influenza (n = 372); confirmed as influenza A in 6/8 swabbed cases and influenza B in 1/8.	One case on day before break, ~12 cases on following day. ~1-4 cases/day for rest of study period. Hypothesised that closure curtailed the epidemics in individual school houses. 15/26 houses had no further cases after the break.
Davies et al (1988) ⁹²	Non-controlled intervention study of prophylactic amantadine	859 boys aged 11-18 years at Christ's Hospital boarding school, 1986	Planned half term holiday	Friday 21 to Monday 24 February	Epidemic began in early February, prophylaxis began on 5 February coinciding with the peak	Clinical influenza (n = 181); confirmed as influenza A H3N2 in majority of cases	0-3 cases/day in five days preceding closure; 12 cases over 4-day closure period. Daily case numbers immediately following re- opening similar to those before closure.
Grilli et al (1989) ¹⁴⁸	Outbreak report	675 boys aged 11-18 years at Christ's Hospital boarding school, 1985	Planned mid- term break	22-24 February	Epidemic began in late January and appeared to peak (at ~19 cases) 4 days before closure	ILI in pupils reporting to school infirmary (n = 206), the majority of which were confirmed as influenza.	4-5 cases on each of the 2 days before closure; 15 cases occurred during closure (no daily breakdown is provided). ~0-6 cases occurred per day over the month following reopening.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Danis et al (2004) ⁴⁵	Outbreak report	802 pupils at boys' secondary school (age 11-18 years), Ireland, 2003	Response to outbreak	Whole school closed 4-11 September; 6 th class sent home earlier (date not stated)	Whole school closure from day after peak of outbreak	ILI in absentees ascertained through telephone and questionnaire surveys (n = 107); confirmed as influenza in 12/15 cases	Peak incidence ~45 cases on day before closure; 18 cases on first day of closure and continuing decline thereafter. Only 2 cases after re-opening (although there was no active case finding at this point). Little evidence of community spread after the school outbreak.
Miller and Lee (1969) ⁶⁵	Outbreak report	England and Scotland (all ages), November 1967 – February 1968	Planned Christmas holiday	Two weeks, all schools	Schools closed during the growth phase of the epidemic in most age groups	Age-specific rates of influenza reported by general practitioners	Rates in 0-4, 15-44, 45- 64 and ≥65 year olds peaked during the second week of closure, rates in 5-14 year olds were in decline at this point. Following reopening, increases occurred in the 0-4 and especially 5-14 year age groups.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Cauchemez et al (2008) 7	Statistical / transmission modelling analysis based on fitting to surveillance data	French national sentinel surveillance system, 1985- 2006 (covering all ages, over 60 epidemic periods and from ~1% of practicing GPs)	Routine school holidays	Approx 2 weeks in each of December – January, February – March, March- April. Timing varies by 1-2 weeks in the 2-3 holiday zones.	Varied between epidemics	Rates of influenza- like illness reported through sentinel GPs	Estimated that holidays resulted in a 20-29% (median 24%) decrease in rate of transmission to children, without affecting contacts made by adults; this translated to a reduction in the attack rate of 16-18% overall (14-17% for adults, 18-21% for children)

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Kara et al (2012) ⁴⁰	Descriptive study comparing of school absenteeism data and other surveillance sources.	Children aged 4-18 years attending 373 schools in Birmingham, Sept 2006 – July 2009 (absenteeism data); Children aged 4-18 years with postcodes in Birmingham (NHS Direct data, Sept 2006 – July 2009); Children aged 5-14 years attending GPs in the West Midlands region (RCGP data, Sept 2006 – July 2009.	Planned holidays	1, 2 or 5 weeks (depending on holiday),	Varied by year	School absenteeism; calls to NHS Direct for cold / flu and fever; ILI consultation rates.	Percentage of children absent often lower following summer holiday than before, no clear relationship with other holidays. Percentage of NHS Direct calls due to fever often decreased during holidays. Relationship between consultation data and school holidays varied.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Asia							
Olson et (1980) ¹⁴	al Outbreak report	Grades 1-6 (2831 students) of Girls Teachers' Colleges Primary School, Taipei and grades 1- 6 (650 students) of Taipei American School, Taiwan, September 1975 – May 1976. Ages of students not stated.	Planned holiday during virologically confirmed community influenza outbreak	Six weeks (Girls Teachers' Colleges Primary School); 3 weeks (Taipei American School)	Relationship with influenza circulation unclear, but likely to be late in the outbreak. Absenteeism at Girls Teachers' Colleges Primary School peaked two weeks before closure; absenteeism at Taipei American School had not exceeded the epidemic threshold at the time of closure.	School absenteeism (all cause)	Girls Teachers' Colleges Primary School: absenteeism declined from ~1.65 absences per child-day in the week before closure to ~0.7 absences per child-day (only slightly above expected absenteeism of 0.65) in the week following re-opening. Taipei American School: absenteeism very similar before and after closure

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Sonoguchi et al (1985) 91	Cohort study of the extent of cross- protection between influenza subtypes	173 children (of 245 enrolled) aged 13-14 at a middle school in Tokyo; 347 children (of 374 enrolled) at a high school in Kumamoto prefecture, Japan. >90% vaccination coverage at each school.	Planned winter holiday (middle school); response to high levels of absenteeism (high school)	Two weeks (middle school); 3 days (high school)	Middle school: case numbers were fairly constant at <5/day during the week before closure. High school: epidemic appeared to be in decline when school closed but case numbers increased on reopening.	Absenteeism while the schools were open; serious, confirmed influenza A infection during closure periods.	Middle school: case numbers remained low at 0-2 per day during closure. High school: case numbers declined from 16 on the day before closure to 13, 5 and 0 on the three days of closure, rebounding to 21 on the day of reopening.
Fujii et al (2002) ³⁴	Descriptive study of surveillance data	Children aged 4-14 years attending 36 sentinel surveillance in Japan, 1999- 2000	Planned holiday	2 weeks	Case numbers began to increase from week 50 of 1999; schools closed week 52 and week 1.	Medically attended clinical ILI	191 cases in week before closure, declining by 38% to 118 cases during the first week of closure. Incidence increased to 173 cases during the second week of closure and an epidemic followed when schools reopened.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools	Timing of closure in relation to influenza	Outcome measure	Association between school closure and outcome
Heymann et al (2004) ⁸	Ecological before- and-after comparison	All 6-12 year old children (n = 186094) registered with one of the four national healthcare insurance schemes, Israel, 2000	National teachers' strike affecting ~80% of 6-12 year old children ⁹ coinciding with influenza outbreak	2 weeks (16- 28 January 2000), elementary schools nationwide. Ultra-orthodox schools, preschools and high schools remained open.	Outbreak began in last week of December 1999; schools closed 16- 28 January 2000.	Medically attended / diagnosed respiratory tract infections (MARI); All physician visits; All outpatient clinic visits; All emergency department visits; hospitalisations; medication purchases (antibiotics, antipyretics, cold and cough medicines).	MARI: number of cases decreased by 42% and 27% during closure period and following fortnight respectively, compared to the fortnight before the closure.* Physician visits: rate ratios 0.78 and 0.88* No effect on hospital admissions.
Lo et al (2005) ⁸⁵	Ecological before- and-after comparison	Respiratory specimens (all ages) processed by Government Virus Unit, Hong Kong, 1998-2003	Reaction to SARS outbreaks; other social distancing and hygiene measure also implemented	Not stated, but general community control measures were in effect at least in April – June 2003	Not clear	Proportion of respiratory specimens positive for influenza	Monthly proportions positive were 58-88% lower in April – June 2003 than the average for the corresponding months of 1998-2003, but the difference with specific years was variable (e.g. little difference with the low influenza years of 1999 and 2000).

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Cowling et al (2008) ¹²	Ecological before- and-after comparison with modelling analysis	Hong Kong population (all ages), 2008	Reactive closure for 1 week in response to 3 influenza deaths in children, followed by scheduled 1 week Easter break.	2 weeks (including Easter break) – all primary schools, special schools, kindergartens and day nurseries.	Outbreak began in January and peaked in February; schools closed 13 March.	Influenza A and B isolations from surveillance data as proportion of all specimens (for children and adults separately); sentinel ILI consultation rates; influenza hospital admission rates in children aged <5 years; estimates of effective reproduction number.	Continued decrease in already declining incidence measures; no apparent meaningful change in effective reproduction number.
Heymann et al (2009) 9	Ecological before- and-after comparison, with comparison to years not affected by atypical school closure	Individuals aged ≥6 years registered with a specific healthcare service provider in Israel, 1998- 2002	Teachers' strike affecting ~80% of children, coinciding with influenza outbreak in 2000; Hanukah holidays in all years.	8 days each year for Hanukah holiday; 2 week closure (16-28 January 2000) of elementary schools nationwide, excluding ultra-orthodox, preschools and high schools.	Closure due to strike as Heymann (2004) ⁸ ; timing of Hanukah holidays in relation to respective epidemics not clear.	Ratio of number of clinic visits for ILI to number for non- respiratory illness, in 6-12 year olds and individuals aged over 12 (calculated separately for those living with and without 6-12 year olds).	Decrease in ratio of 15% for 6-12 year olds associated with the strike; decreases in adults were not statistically significant. In some years, there was evidence of a reduction in the ratio for adults and/or children associated with the Hanukah holidays.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Cheng et al (2012) ¹⁵⁰	Descriptive study comparing school absenteeism data against other surveillance sources.	18-62 schools (varying over time) in Hong Kong, March 2008 – June 2011.	One reactive closure (analysed in detail in Wu et al ¹³ and discussed below); 7 planned school holidays.	All participating schools; length of holidays varied.	Varied, but typically in early stages of outbreak.	ILI-specific absenteeism; ILI consultation rates from sentinel surveillance (all ages); influenza virus isolations (all ages).	No clear and consistent relationship between school closure and any of the outcome measures.
Chuang et al (2012) ⁸⁹	Outbreak report	General population of Taiwan, week 26 of 2009 to week 13 of 2011.	Planned holiday (Lunar New Year).	One week; all schools.	In between end of circulation of H3N2 and beginning of circulation of H1N1 / influenza B in 2010/11.	Emergency room and outpatient visits for ILI; hospitalised confirmed influenza cases with severe complications; influenza- associated deaths (2010/11 only).	No apparent effect on ER and outpatient visits in 2010/11. No clear effect on incidence of hospitalised severe cases. Numbers of influenza-associated deaths were higher during the week of school closure than in the preceding or following week.
Lau et al (2012) ⁴¹	Descriptive study integrating multiple influenza surveillance data sources.	General population of Hong Kong, February 2008 – December 2009 (some datasets begin earlier but school holiday dates are not available).	Planned holidays (reactive closures during one seasonal ¹² outbreak and the 2009 pandemic ¹³ are described in detail in other studies).	Duration unclear but variable; all schools in Hong Kong. (School closure periods inferred from gaps in absenteeism data.)	Close to peak or at beginning of epidemic.	ILI at public outpatient clinics and private GPs; school absenteeism; laboratory isolations; inferred influenza activity from integrating these data sources.	No clear relationship between school closures and any of the indicators (however, graphs do not allow easy assessment of this).

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Australasia							
Cashman et al (2007) ⁴⁶	Outbreak report	Secondary boarding / day school (age of pupils not stated), New South Wales, Australia, August 2006	Planned closure coinciding with outbreak of ILI and pneumonia	Four days	Unclear, but closure appears to have occurred late in outbreak	Presentations to sick bay with respiratory illness (n not stated). Influenza A H3N2 isolated from 5 students	Respiratory presentations decreased following closure, returning to baseline within 7 days (no further quantitative information provided).
Shaw et al (2006) ¹⁵¹	Outbreak report	Single school in Wellington, New Zealand, May-June 2005 – 350 pupils in years 1-8.	One closure in response to high levels of absenteeism; later closure for a "holiday weekend"	Two closures of 4 days each, including weekends in both cases	Peak absenteeism occurred on the day before the first closure; epidemic was generally declining before the second closure	School absenteeism (all causes)	For both closures, absenteeism was lower on reopening than before the closure.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Americas							
Leonida (1970) ¹⁵²	Outbreak report	Five elementary schools (student population 2314) and three high schools (student population 8012) in Skokie, Illinois, September 1967 – April 1968	Winter holiday	One week at the end of November and two weeks at the end of December; all schools in the sample	First closure 2 weeks before peak in elementary schools and 2 weeks after peak in high schools; second closure 2 weeks after peak in elementary schools and 6 weeks after peak in high schools.	School absenteeism due to ILI.	First closure had no clear effect on the increase in absenteeism at the elementary schools or the decline in the high schools. Absenteeism continued to decline in both elementary and high schools during the second closure; no apparent increase on reopening.
Glass et al (1978) ¹⁵³	Outbreak report	Mercer County, New Jersey, USA, November 1977 – March 1978	Planned Christmas holiday	One week (public schools) or two weeks (residential schools)	Around peak of outbreak	Absenteeism from 6 public schools, work absenteeism, febrile illnesses in nursing homes, admissions to three residential school infirmaries, emergency room visits, hospital admissions for acute respiratory disease, P&I deaths, viral isolates	School absenteeism was lower after the holiday than before and gradually increased, reaching a plateau at a level slightly higher than before the closure. Emergency room visits and hospital admissions peaked during the closure week and viral isolates the week before.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Farley et al (1992) ⁹⁰	Outbreak report / estimate of vaccine efficacy	Boarding school, Connecticut (989 pupils in grades 9-12), January – April 1989	Planned holiday	Three weeks	Epidemic appeared to be largely over by the time of the holiday (there were ~8 cases in the week before closure; the peak had occurred 5 weeks previously)	Admission to school infirmary with fever or respiratory symptoms (n ~135)	Number of admissions remained low (≤8 per week) after reopening.
Louie et al (2007) ¹⁵⁴	Descriptive study of several surveillance systems during one influenza season	California, week 40 of 2005 to week 15 of 2006	Planned winter holiday	Two weeks; presumably all schools	ILI peaked week before closure; laboratory isolations appeared to be increasing when schools were closed.	ILI reported through sentinel surveillance system (expressed as the proportion of all visits that were for ILI); number of laboratory- confirmed influenza from sentinel laboratories.	ILI declined throughout school closure and remained at low levels following reopening; laboratory-confirmed infections declined slightly in the first week of closure, then increased before declining after schools reopened.
Johnson et al (2008) ⁴⁷	Outbreak report focussing on effects of closure on families	355 children enrolled in all 9 public elementary, middle and high schools in Yancey County, North Carolina, USA, 2006.	Closure for operational reasons, due to high levels of staff absenteeism largely attributed to ILI.	10 days (2 – 12 November) - all 9 schools in the county.	First reported onset (in study sample) 20 October, epidemic peak 1 November, schools closed 2 November.	Parentally-reported ILI (n = 123) ascertained through telephone survey	Incidence decreased from peak of 8 cases the day before closure to 5 cases on the first day of closure, and continued to decline thereafter.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Rodriguez et al (2009)	Cohort study comparing schools which cancelled their winter break to those which did not	265 elementary, middle, high and "other" schools which closed and 205 which did not, King County, Washington, February – March 2007	Planned holiday closure coinciding with influenza outbreak	1 week, including middle, high and other public and private schools	Closure immediately following epidemic peak	School absenteeism (all causes)	No evidence of a difference in absenteeism following the break between schools that closed and those that did not.
Wheeler et al (2010) ²⁶	Ecological before- and-after comparison covering fortnights before, during and after school closure in 4 influenza seasons.	General population of Arizona, 2004/05 – 2007/08 influenza seasons.	Planned winter holidays	2 weeks, all schools in the state	Peak occurred at least 2 weeks after reopening in 3 of the 4 seasons; peak coincided with the second week of closure in the remaining season.	Influenza laboratory reports 2004/05 to 2007/08 (n = 833 in school-aged children, 4036 in other age groups); influenza hospitalisations 2004/05 to 2006/07 (n = 885 in school- aged children, 4512 in other age groups).	For school-aged children, incidence never significantly increased during the two weeks of closure compared to the preceding two weeks; incidence in the two weeks following reopening either increased (2 seasons), declined (1 season) or was unchanged compared to the weeks of closure. For other age groups, incidence consistently increased during the closure period; changes on reopening were inconsistent.

Study St	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Alonso et al (2012) ¹⁸ re (2012) ¹⁸ re nu of re (ir ar ind te	Ecological study of elationship between number of isolations of various espiratory viruses including influenza) and exposures ancluding school erms.	Children aged 1 month to 16 years with ARI symptoms, attending a public teaching hospital in Fortaleza, Brazil, 2001- 2008.	Planned holidays.	Not stated.	Not stated, presumably varied between years.	Laboratory- confirmed influenza.	Correlation coefficient between school terms and number of influenza reports always <0.2 (assessed with lags of 0- 11 weeks).

* Recalculated from data provided in paper

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Europe						•	
Smith et al (2009) ⁴⁸	Outbreak report	1307 pupils aged 13-18 at a boarding school in SE England, May – June 2009	Scheduled break extended in response to outbreak; prophylactic oseltamivir also used	11 days (4 day scheduled break extended by 7 days). Some pupils returned ~1 week earlier for exams	Closed around time of epidemic peak	Clinical ILI in pupils attending school healthcare facilities 1-27 May; laboratory- confirmed H1N1v after 27 May (n = 102 including both clinical and confirmed cases)	Apparent decline in cases in pupils following closure; no information on other age groups
HPA West Midlands H1N1v Investigation Team (2009)	Outbreak report	479 primary and nursery school pupils (aged 4-12), plus 84 staff, at a school in Birmingham, England, May 2009	Scheduled break extended in response to outbreak; prophylactic oseltamivir also used	11 days (9 day scheduled break extended by 2 days)	After epidemic peak	Laboratory confirmed H1N1v (n = 64)	Case numbers in pupils and staff declined following closure (e.g. from 8 cases on the day of closure to 5 on each of the two following days). No further cases following re-opening. Limited information on illness in other groups.
Wallensten et al (2009) ⁷⁶	Outbreak report	248 Year 7 pupils at a school in SW England (93% of the year group, aged 11-12 years), April – May 2009	Response to outbreak; prophylactic oseltamivir also used	10 days	Unclear	Prevalence of self- reported ILI during the week before closure, the closure week, and the following week	5, 11 and 10 children had symptoms compatible with the case definition in the week before, during and after closure, respectively. Absenteeism was almost identical in the weeks before and after closure. No information on illness in other age groups.

Appendix 6: Studies of the effects of school closures on pandemic influenza

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Calatayud et al (2010) ²⁸	Outbreak report	1177 pupils (year groups Reception to 13), plus staff, at a school in London, May 2009	Response to outbreak (preceded by closure for Easter several weeks previously); use of prophylactic oseltamivir	3 days of Easter holiday remained after onset of first possible case; reactive closure lasted 9 days (including 2 weekends).	One possible case occurred 3 days before the end of the Easter closure and did not attend school while symptomatic; no further cases occurred until the main outbreak began ~7-10 days after this possible case. Reactive closure occurred the day following the peak (6 cases).	Virologically confirmed or possible (symptomatic without combined nose and throat swab but pending serological results) H1N1 infection	Cases continued to occur at 3-4 cases / day for 4 days following reactive closure. On the 5 th and 6 th days, there were 0 and 1 cases, respectively, and no cases subsequent to this.
Hens et al (2012) ²⁴	Further modelling analysis of outbreak reported in Calatayud et al 28	As Calatayud et al ²⁸	As Calatayud et al ²⁸	As Calatayud et al ²⁸	As Calatayud et al	Effective reproduction number estimated from reconstructed transmission trees (based on symptomatic cases with laboratory confirmation)	R_n was estimated as 2.51 (95% Cl 2.11 – 3.00) before the outbreak was detected, 1.33 (95% Cl 1.11 – 1.56) after the outbreak was detected but before school closure, and 0.43 (95% Cl 0.35 – 0.52) after school closure.
Strong et al (2010) ²⁹	Outbreak report, focussing on use of antivirals	297 pupils (aged 7-12 years) and 58 staff at a primary school in Sheffield, June 2009	Response to outbreak; oseltamivir used for treatment and prophylaxis	One week	Epidemic peaked 3 days before closure.	Self-reported ILI (n = 61)	Incidence continued to decline while school was closed; no data presented for period after reopening.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Baguelin et al (2010) ⁷²	Study of cost- effectiveness of vaccination based on a modified SEIR transmission model and economic analysis; includes incidence data spanning term time and holiday periods.	England & Wales population, June – October 2009.	Planned summer holiday.	~ 6 weeks, all schools nationally.	Closure coincided with peak of the first wave.	Health Protection Agency estimates of numbers of infections, rescaled (multiplied by 10) to reflect under- reporting.	Incidence declined throughout the period of school closure and increased after schools reopened, producing a second wave of infection.

Study	Study design	Study population /	Nature of closure	Duration of closure and	Timing of closure in relation to	Outcome measure	Association between school closure and
		Setting		schools affected	influenza circulation		outcome
Kara et al (2012) ⁴⁰	Descriptive study comparing school absenteeism data and other surveillance sources.	Children aged 4-18 years attending 373 schools in Birmingham, (absenteeism data); Children aged 4-18 years with postcodes in Birmingham (NHS Direct data); Children aged 5-14 years attending GPs in the West Midlands region (RCGP data); Children aged 4-18 years living in Birmingham Local Authority (laboratory data).	Planned holidays	1 week half terms; 5 week summer holiday.	Percentage of specimens positive for H1N1had increased markedly the week before half term; laboratory testing was no longer done for all cases by the time of the summer holiday but absenteeism was generally declining by this time.	School absenteeism; calls to NHS Direct for cold / flu and fever; ILI consultation rates; pandemic H1N1 laboratory reports.	Percentage of specimens positive for H1N1 declined during half term. No clear effect of half term or summer holiday on absenteeism. Percentage of NHS Direct calls due to cold / flu increased during half term and decreased during summer holiday; percentage due to fever increased slightly during summer holiday but not half term. ILI consultation rates appeared unaffected by half term, initially declined and then increased during summer holiday.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
(2009) ⁵⁰	Outoreak report	30 students (aged 11-12 years) and 18 staff from one affected class, at a secondary school in Toulouse, France, June 2009	Reactive closure in response to outbreak; some use of prophylactic oseltamivir	7 days	At apparent end of epidemic	Probable H1N1V infection with or without laboratory confirmation (n = 17 with known date of onset, plus 3 without)	No further cases in pupils or their contacts following closure, but epidemic appeared to be over before the school was closed.
Carrillo- Santisteve et al (2010) ³³	Outbreak report	Two primary schools (360 and 293 aged 6-11 years), a nursery school (253 children aged 3-6 years) and a daycare school (unknown number of children aged 3 months to 3 years), Paris, June 2009; the four schools shared some facilities.	Response to outbreak which began in one of the primary schools; close contacts were given prophylactic oseltamivir.	9 days (including 2 weekends), one of the primary schools and the nursery school (these schools accounted for 59/66 cases in pupils)	Officially closed on day of peak, but weekend began two days previously.	Confirmed and probable influenza cases in children attending the closed schools and their families and friends who consulted influenza outpatient clinic (n = 81)	Incidence in the closed primary school peaked on the 3^{rd} day of closure (12 cases) and fell to 2 cases on each of the two following days; no further cases occurred. Incidence in the closed nursery school increased through the first 3 days of closure to a peak of 6 cases, then declined to 0- 1 cases per day for 4 days; no further cases occurred after this. Cases in families and friends of the schoolchildren (n = 15) occurred only during the period of school closures.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Poggensee et al (2010) ⁸⁸	Outbreak report	General population of Germany, April – November 2009	Planned holiday.	Duration not stated; school closure is described using the weekly "vacation density" (the percentage of the population living in states in which schools were closed) as the timing of the holiday varied between states	Vacation density peaked in the early stages of the outbreak, while the practice index was below the seasonal threshold and not increasing markedly. A second increase in the vacation density occurred while the practice index was increasing linearly.	Acute respiratory illness reported through sentinel surveillance system, used to calculate a "practice index" (defined as "the relative deviation of observed consultations for ARI divided by all consultations in the same week and set into relation to the background value of this ratio in weeks without influenza virus circulation")	Practice index remained fairly constant throughout the main school holiday period and increased only when the vacation density was declining; the second increase in the vacation density was followed by a brief plateau in the practice index.
Birrell et al (2011) ¹⁹	Transmission modelling analysis (SEIR model) based on GP consultation and viral positivity data	General population of London, UK, May – December 2009	Planned holidays	Six week summer holiday and two half terms of one week each (in May and October); all schools in London closed.	As Baguelin et al ⁷² (closure coincided with peak of the first wave)	Influenza-like illness recorded through GP sentinel surveillance scheme together with serological and virological data; parameters estimated included the reduction in contact rates associated with school holidays.	Both peaks in the two waves of consultations coincided with a school holiday. The summer holiday was estimated to reduce contacts amongst 5-14 year olds by 72% and the half term holiday by 48%; no effects were apparent in other age groups.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Evans et al (2011) ⁶⁷	Descriptive study of estimated number of ILI cases due to pandemic H1N1 based on GP consultation data, helpline usage, virological swabbing and assumptions about the proportion of infections resulting in healthcare seeking.	General population of England, June – December 2009.	Planned holiday.	Six week summer holiday affecting all schools nationally.	As Baguelin et al ⁷² (closure coincided with peak of the first wave)	Estimate numbers of ILI cases due to pandemic H1N1, by age and region.	Estimated incidence declined during the school holiday and increased following reopening, in all regions and in all age groups except for the <1 and ≥65 year olds (among whom estimated case numbers were low).
Smith et al (2011) ¹⁵⁵	Descriptive study of telephone helpline (NHS Direct) and GP consultation data	General UK population, May – August 2009; results also presented separately for London and West Midlands regions.	Planned school summer holiday (late July to early September).	Approximately six weeks; all schools nationally.	First week of school closure coincided with national peak in NHS Direct calls but occurred after the peak for London and the West Midlands. Consultation data peaked in the first week of closure nationally and before closure in London.	Weekly percentage of calls to NHS Direct that were classified as cold / flu. Weekly GP consultation rates for ILI.	Both indices continued to decline during closure; no data presented after schools reopened.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Eames et al (2012) ²²	Mathematical model utilising contact data reported through an online survey, including presentation of empirical incidence data.	Incidence data: general population of UK; Contact data: 3338 participants in an online survey, July – December 2009.	Planned summer and half term holidays.	Approximately 6 weeks (summer holiday) and 1 week (autumn half term).	Based on other UK papers ⁷² , start of summer holiday coincided with peak in incidence.	Estimated influenza incidence based on reported cases and scaled up according to two different estimates of the proportion of infected individuals seeking medical care (similar data to other UK studies ^{19, 72}).	Incidence declined during summer holiday and increased afterwards; transmission model found that this could be explained by self-reported changes in contact patterns during holidays compared to term time.
Balasegaram et al (2012) ³²	Descriptive study of early outbreak data in relation to area- level measures of deprivation.	General population of London, UK, April – June 2009.	Planned half term holiday.	Presumably all schools in area; 1 week.	19 H1 positive cases reported in total in 6 weeks before closure, 38 in week of closure with continuing increases in the following 4 weeks.	Number of tests and percentage positive for influenza A and H1 (not age- stratified). Age-stratified risks also provided but case definition unclear.	Percentage positive increased during half term and continued to increase over subsequent week. No clear change in age- stratified risks during half term; increase in risk began the following week.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Flasche et al (2011) ²³	Ecological study analysing the relationship between the estimated effective reproduction number for H1N1 pandemic influenza in 12 European countries (in 2009) and several explanatory variables, including school holiday dates	General populations in Belgium, Bulgaria, England, France, Germany, Italy, Luxembourg, Netherlands, Portugal, Romania, Slovakia and Spain, April – October 2009. School holidays occurred during the study period in all countries except Bulgaria, England and France.	Planned holidays.	Varied by country.	Varied by country, but typically early in the respective outbreaks.	Effective reproduction number estimated from numbers of laboratory-confirmed pandemic H1N1 infections.	No evidence found of a relationship between the effective reproduction number and the start of school holidays.
Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
---	---	---	---	--	---	---	---
van Gageldonk- Lafeber et al (2011) ¹⁵⁶	Outbreak report; comparison of pandemic and seasonal ILI consultation data.	General population of the Netherlands, and residents of nursing homes considered separately, October – December 2009	Planned holidays	One week; all schools nationally although timing varied by region.	In north and central regions, schools closed two weeks after the epidemic threshold consultation rate was exceeded nationally; in the south, schools closed one week later.	GP consultation rates for ILI (age- stratified); ILI rates in nursing home residents; age- specific H1N1 hospital admission rates.	Possible reduction in incidence, or slowing of epidemic growth, among 0-4, 5-9, 10-14 and 15-19 year olds; epidemic continued to grow after schools reopened. No apparent effect of school closure on ILI in nursing home residents or hospital admissions.
Merler et al (2011) ⁷¹	Modelling analysis (stochastic individual- based model) of factors influencing spatiotemporal spread of pandemic H1N1 in Europe	General population of 37 European countries, May – December 2009	Mainly planned holidays; some reactive closures.	Varied by country; summer holidays typically lasted 6-12 weeks and autumn holidays approximately 2 days to 2 weeks.	Varied by country.	Predicted numbers of infections for comparison with ILI surveillance data.	The model reproduced the observed incidence patterns in the different countries most closely when country-specific school holidays were included and contact rates in the population were allowed to change during holidays. (Transmission was assumed to be eliminated in schools and increased by a factor of 1.4 in the community during holidays.)

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Petrovic et al (2011) ³⁵	Outbreak report / analysis of risk factors for death in hospitalised cases.	Catchment population (n = 102,723) of general practices participating in sentinel surveillance, Vojvodina, Serbia, September 2009 – April 2010.	Response to outbreak.	All schools in Vojvodina; a closure lasting one week was followed six weeks later by a three week closure.	First closure coincided with first peak in ILI consultations in all ages and 5-14 year olds, but after the peak in 0-4 year olds. Second closure occurred after peak.	ILI consultation rates, overall and by age group.	ILI consultation rates declined following first closure and increased after schools reopened, particularly in 5-14 and 15-64 year olds. Rates were already declining when schools closed for second time and continued to do so during closure; possible slight increase after reopening.
Dorigatti et al (2012) ³⁸	SEIR model investigating possible reasons for age distribution of infection during 2009 pandemic and incorporating uncertainty in surveillance data (including graphical display of surveillance data).	Catchment population of general practices participating in sentinel surveillance, Italy, September 2009 – February 2010.	Planned Christmas holidays.	All schools nationally; approximately 2 weeks.	Closure began six weeks after peak.	ILI consultation rates overall and for 0-4, 5- 14, 15-64 and ≥65 year olds.	No clear effect in any age group.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Freiesleben de Blasio et al (2012) ³⁹	SEIR model assessing effectiveness of vaccination and antivirals, including graphical display of surveillance data.	Catchment population of general practices participating in sentinel surveillance, Norway, May 2009 – February 2010.	Planned holiday.	Two weeks, apparently all schools nationally.	Five weeks after the peak of the first wave.	ILI (all ages)	Incidence changed little during the two week closure but increased when schools re-opened.
Asia							
WHO (2009) 78	Outbreak report, primarily reporting clinical aspects of infection	School pupils in Hyogo Prefecture and Osaka Prefecture, Japan, May 2009	Response to school- associated outbreak	7 days, >1400 schools closed but unclear whether this represents all schools in the two prefectures	Unclear	School absenteeism	No increase in school absenteeism upon reopening of schools (no quantification of absence levels given)
Nishiura et al (2009) ⁷⁹ , Shimada et al (2009) ⁵¹	Outbreak reports (both report essentially the same data with slightly different analyses)	General Japanese population, May – June 2009	Response to outbreak associated primarily with schools; some use of prophylactic oseltamivir ⁷⁸	7 days (possibly more in some cases), all schools in Hyogo and Osaka prefectures (preceded by weekend closure)	First confirmed cases had disease onset on 9 May, weekend / closure began 16 May	Laboratory-confirmed H1N1 influenza (restricted to indigenously- acquired cases in ⁷⁹ (n = 361 ⁷⁹ or 392 ⁵¹)	Case numbers peaked at ~70 cases on the second day of the weekend, then declined throughout week of closure; no obvious resurgence on reopening

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Kawaguchi et al (2009) ³⁰	Outbreak report (subset of the data used in the two studies above)	Schools in Osaka Prefecture, Japan, May 2009; ages of affected students not stated.	Response to outbreak; some use of prophylactic oseltamivir in families of cases	1 week (preceded by a weekend), all 270 high schools and 526 junior high schools, and most nurseries, primary schools, colleges and universities, in Osaka prefecture	Epidemic peaked on second day of closure (i.e. at the weekend)	Confirmed H1N1 infection (n = 156)	Peak of 30 cases on second day of weekend and declined throughout closure period; no resurgence after re- opening
Chieochansin et al (2009) ¹⁵⁷	Outbreak report	General population of Bangkok, June – July 2009	Public holiday followed later by closure in response to outbreak	Public holiday lasted 1 week; schools were subsequently closed for 1 week and tutorial schools for 2 weeks	Public holiday occurred during peak week. Closure of schools and tutorial schools began during the following week.	Laboratory confirmed pandemic H1N1 influenza	Incidence declined throughout period of closure.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Wu et al (2010) ¹³	Age-structured SIR model fitted to data on laboratory- confirmed cases during the 2009 pandemic in Hong Kong, used to estimate reporting rates and the reduction in within age group transmission resulting from school closures	General population of Hong Kong, June – August 2009	Response to outbreak, followed by planned school holiday	All primary schools, kindergartens, childcare centres and special schools closed for ~1 month immediately prior to the summer holiday (duration of holiday not stated). Secondary schools with ≥1 case closed for 14 days, all secondary schools closed for summer holiday at same time as primary schools	At start of growth phase of first wave, which peaked around the 10 th day of closure. School holidays started at the beginning of the growth phase of a second wave.	Laboratory-confirmed pandemic influenza cases, proportion of these in different age groups (0-12 years, 13-17 years and ≥18 years) and percentage reduction in within age group transmission resulting from school closures.	First wave continued to grow during school closure, followed by second wave beginning around the start of the school holidays. Following school closure, numbers of cases in 0-12 year olds remained low but the proportion of cases in this age group increased slightly, while that in 13-17 year olds decreased. School closure was estimated to reduce transmission between children of the relevant age group by 70% (95% CI 64-75%), corresponding to an overall reduction in transmission of ~25%.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools	Timing of closure in relation to influenza	Outcome measure	Association between school closure and outcome
Cowling et al (2010) ¹⁵⁸	Modelling analysis which estimates daily effective reproduction numbers using data on laboratory- confirmed cases and on hospitalisations, together with information on the serial interval.	General population of Hong Kong, May – October 2009	Response to outbreak, followed by planned school holiday	All primary schools, kindergartens, childcare centres and special schools closed for ~1 month immediately prior to the summer holiday (duration of holiday not stated). Secondary schools with ≥1 case closed for 14 days, all secondary schools closed for summer holiday at same time as primary schools	At start of growth phase of first wave, which peaked around the 10 th day of closure. School holidays started at the beginning of the growth phase of a second wave.	Laboratory-confirmed pandemic influenza cases and hospitalisations, used to estimate daily values of the effective reproduction number.	Effective reproduction number declined during initial days of closure, oscillated around 1 for the duration of the closure period, increased very slightly when schools reopened before declining again.
Hsueh et al (2010) ⁸¹	Outbreak report	General population of Taipei City, Taiwan, June 2009 – January 2010	Response to outbreak	Individual classes suspended for at least 5 days if >2 students had confirmed infection within 3 days.	Timing for individual schools not presented; number of class suspensions generally increased with the number of hospitalisations.	Hospitalisations with pandemic H1N1.	Number of class suspensions generally followed the number of hospitalisations.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Wu et al (2010) ⁸⁶	Cohort study assessing vaccine effectiveness amongst children attending public primary and middle schools and participating in a national celebration parade. Only unvaccinated children are considered in this review.	95244 vaccinated participants in a national celebration parade, Beijing; of these, 25037 vaccinated schoolchildren were compared to 244091 unvaccinated schoolchildren.	Planned national holiday	1 week, all schools nationally.	Schools closed as cumulative incidence in unvaccinated students began to plateau	Laboratory confirmed H1N1 infection	Cumulative incidence in unvaccinated children increased very slightly during the school closure (from ~220 to ~260 per 100,000); rate of increase in cumulative incidence increased ~1 week after schools reopened. Cumulative incidence in vaccinated students remained relatively constant before, during and after school closure.
Huai et al (2010) ²⁷	Outbreak report	Primary school (1314 pupils) in Dongguan City, Guangdong Province, China, June 2009	Response to outbreak, shortly followed by planned summer break.	Affected primary school closed 19-28 June; all schools in the town closed 22- 28 June, Planned summer break began on 2 July.	Affected school closed on day of peak.	Confirmed or suspected cases in children attending affected school (n = 105); limited data on cases in the community are also included.	Epidemic in schoolchildren peaked at 30 cases on the first day of closure, declining to 11 the following day. No further cases occurred between the last two days of closure and the subsequent closure for the holiday.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Engelhard et al (2011) ⁷⁴	Outbreak report	Children aged <18 years enrolled with one health maintenance organisation in Israel, June 2009 – April 2010.	Two separate planned holidays.	Summer holiday lasted 9 weeks, autumn holiday lasted 5 weeks.	Summer holiday occurred close to beginning of first wave; autumn holiday close to beginning of second.	Rate of ILI (fever with one or more of cough, coryza, sore throat, myalgia) visits to community health clinics.	ILI rate peaked and decliend during summer holiday, began to increase when schools reopened and reached a second peak during the autumn holiday before declining again. A third wave occurred after the autumn holiday.
Leung et al (2011) ⁵⁶	Outbreak report / analysis of household secondary attack rates and effect of oseltamivir.	511 children attending a secondary school in Hong Kong and their 205 household contacts, June 2009. No cases occurred amongst the 153 school staff.	Response to outbreak	Two weeks, coinciding with closure of all schools in Hong Kong.	Three days after peak.	Laboratory-confirmed pandemic H1N1 in schoolchildren or household contacts.	Incidence increased during first two days of closure and subsequently remained very low; last case occurred one week before reopening.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Cheng et al (2012) ¹⁵⁰	Descriptive study comparing school absenteeism data against other surveillance sources.	50 schools in Hong Kong, 2009-10	Reactive closure (analysed in detail in Wu et al ¹³).	All participating schools. Primary schools, kindergartens, childcare centres and special schools closed for ~1 month immediately prior to the summer holiday (duration of holiday not stated). Secondary schools with ≥1 case closed for 14 days, all secondary schools closed for summer holiday at same time as primary schools ¹³ .	Based on Wu, at start of growth phase of first wave, which peaked around the 10 th day of closure. School holidays started at the beginning of the growth phase of a second wave ¹³ .	ILI-specific absenteeism; ILI consultation rates from sentinel surveillance (all ages); influenza virus isolations (all ages).	ILI absenteeism considerably on reopening than before closure.ILI consultations and virus isolations initially gradually increased during closure but dipped towards the end of the closure period; both continued to increase after schools reopened.
Chuang et al (2012) ⁸⁹	Outbreak report	General population of Taiwan, week 26 of 2009 to week 13 of 2011.	Planned holiday (Lunar New Year).	One week; all schools.	At end of H1N1 outbreak	Emergency room and outpatient visits for ILI; hospitalised confirmed influenza cases with severe complications;	ER and outpatient visits increased during closure. No clear effect on incidence of hospitalised severe cases.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Lau et al (2012) ⁴¹	Descriptive study integrating multiple influenza surveillance data sources.	General population of Hong Kong, June – December 2009.	Planned holidays (reactive closures during one seasonal ¹² outbreak and the 2009 pandemic ¹³ are described in detail in other studies).	As in Wu et al ¹³ : All primary schools, kindergartens, childcare centres and special schools closed for ~1 month immediately prior to the summer holiday (duration of holiday not stated). Secondary schools with ≥1 case closed for 14 days, all secondary schools closed for summer holiday at same time as primary schools.	As in Wu et al ¹³ : At start of growth phase of first wave, which peaked around the 10 th day of closure. School holidays started at the beginning of the growth phase of a second wave.	ILI at public outpatient clinics and private GPs; school absenteeism; laboratory isolations; inferred influenza activity from integrating these data sources.	Apparent dips in laboratory isolations following closure. Other data sources showed no clear effect (although graphs are not designed to allow this to be easily seen).

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools	Timing of closure in relation to influenza	Outcome measure	Association between school closure and outcome
Uchida et al (2011) ⁸³	Descriptive cohort study of pandemic H1N1	2318 schoolchildren, 11424 university students and 3344 staff members associated with Shinshu University Organisation, August 2009 – March 2010	Planned breaks and reactive closures.	Planned summer holiday affected all schools for approximately one month; winter holiday for 3 weeks; reactive school and class closures varied for individual schools.	Summer holiday occurred before outbreak began; winter holiday occurred while incidence was declining. Timing of reactive closures in relation to incidence in individual schools unclear.	"Influenza-like symptoms and diagnosed with confirmed, probable or suspected swine flu at hospital or clinics."	Incidence continued to decline during the winter holiday. Incidence also appeared to declined during reactive school and class closures, but this is unclear as data are not presented for individual schools.
Fang et al (2012) ⁶⁰	Ecological study analysing factors influencing spatial and temporal spread of pandemic influenza.	General population of mainland China, May – December 2009.	Planned holiday.	One week; all schools nationally.	Incidence began to decline three days before closure but rebounded following the reopening of schools.	Suspected and laboratory-confirmed pandemic influenza; percentage difference in the incidence of pandemic influenza during school closure compared to period when schools were open (adjusted for temperature, relative humidity, population density and density of medical facilities).	Marked decline in incidence beginning three days before closure. Poisson regression estimated a 36.4% (95% CI 35.5-37.2%) reduction in incidence during school closures (after adjustment).

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Ahmed et al (2012) ³¹	Outbreak report	General population of Abu Dhabi Emirate, May – August 2009	Planned holiday	Ten weeks; all schools nationally	Very close to beginning of outbreak: first case was reported in week 21, second case in week 24 and schools closed in week 26.	Laboratory-confirmed H1N1 infection.	Incidence continued to increase during the first four weeks of closure, then remained relatively constant for a further three weeks before increasing. Data do not extend to the end of the holiday period.

Study	Study design	Study	Nature of	Duration of	Timing of closure	Outcome measure	Association between
		population /	closure	closure and	in relation to		school closure and
		Setting		schools	Influenza		outcome
Study Uchida et al (2012) ¹⁴	Study design Cohort analysis of outbreak data (more detailed analysis of data presented in Uchida et al ⁸³).	Study population / Setting Children attending two elementary and two junior high schools in Nagano Prefecture Japan (one elementary and one junior high school in each of two districts).	Nature of closure Response to outbreak	Duration of closure and schools affected Either individual classes (more than one could be closed at any one time and classes could close more than once) or whole school; duration at class level varied from one to eight consecutive days.	Timing of closure in relation to influenza circulation First closure in each school occurred before substantial case numbers had been reported.	Outcome measure Confirmed, probable or suspected H1N1 influenza in children attending these schools, diagnosed by a physician and reported to the school by parents (with dates of onset up to 7 days after resumption of classes). Unclear whether ascertainment operated in the same way while classes / schools were closed. Also used Poisson regression to assess relationship between closure duration, school closure and class grade and the number of cases	Association between school closure and outcome In one elementary school and one junior high school, incidence appeared to decrease following school, but not class, closure; in the others, incidence appeared relatively unaffected by sequential class closure. Rate ratio relating closure duration to number of cases after reopening estimated as 0.70 (95% CI 0.56 – 0.88, p = 0.002); this is discussed in the main text.
						number of cases recorded in the 7 days after resumption of classes	

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Wang et al (2012) ⁷⁷	Outbreak report	2586 of 2768 pupils and 158 of 184 staff at a middle school in Luoyang, China, August – September 2009.	Response to outbreak	15 days.	First day of closure coincided with peak of outbreak.	Confirmed or suspected pandemic H1N1 influenza.	Number of cases peaked on the first day of closure and declined over the following four days. 0-1 cases occurred on each of the following four days; data for the remainder of the school closure period and after re-opening are not presented.
Yu et al (2012) ²⁵	Statistical / modelling analysis of outbreak data	General population of China, April – August 2009.	Planned summer holiday; planned National Day Holiday	8 weeks / 1 week	Summer holiday occurred early in outbreak, when number of cases rarely exceeded 50/day. National Day Holiday occurred shortly after the peak of the first wave.	Confirmed cases of pandemic H1N1 influenza; estimates of effective reproduction number based on the growth rate before, during and after National Day Holiday (excluding summer holiday period); doubling time during summer holiday and month after schools reopened.	Summer holiday had no apparent effect on the epidemic (based on visual assessment of epidemic curve or doubling time). Weekly case numbers were lower during the National Day Holiday and the following week than the week preceding the holiday, although daily case numbers increased before the end of the break. Effective reproduction number was estimated as 1.25 (95% credible interval 1.22 -1.28) before, 0.79 (95% Crl 0.69 -0.90) during and 1.23 (95% Crl 1.15 -1.33) after the National Day Holiday.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Kao et al (2012) ⁸²	Descriptive analysis of viral isolates and epidemic curve.	General population of Taipei and Kaohsiung, Taiwan, June 2009 – October 2010.	Response to outbreak	Individual classes closed if >2 students were ILI cases within three days of each other, for a period of 3 days (i.e. number of classes closed varies over time). Duration of policy implementation assumed to as in Hsueh et al ⁸¹ .	Policy introduced ~9 weeks after detection of first community case.	Percentage of specimens positive for pandemic H1N1 in hospitalised patients.	In Taipei, percentage positive generally (but not consistently) increased following the introduction of the closure policy. In Kaohsiung, percentage positive fluctuated without a consistent trend.
Africa							• •
Rajatonirina et al (2011) ³⁶	Outbreak report / analysis of oseltamivir compliance and side effects.	132 boarders at a school in Antananarivo, Madagascar, October – November 2009.	Planned holiday	2 weeks	After main phase of epidemic.	At least one influenza-like symptom (n = 56 with known onset date).	Epidemic appeared to be largely over when the school closed; sporadic cases continued to occur during closure period.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Australasia							
Caley et al (2008) ⁶⁹	Transmission modelling analysis of hospitalisation and mortality data	Sydney, 1919 (all ages)	Response to outbreak; combined with other social distancing interventions	~4.5 weeks initially; schools reopened for ~3 weeks and then closed for a further ~2 months.	Initial closure occurred as first cases were detected; second closure occurred during exponential growth phase of epidemic.	Estimated reduction in "behaviours resulting in disease transmission."	Transmission reduced by 38% during period of school closure.
Baker et al (2009) ⁶³	Outbreak report	New Zealand population, April – August 2009 (all ages)	Planned national holiday during national outbreak; some use of prophylactic antivirals during containment phase ¹⁵⁹	2 weeks, apparently all schools nationally	Depending on indicator, closure coincided with peak, preceded it by 1 week, or followed it by 1-3 weeks	Cases reported through notifiable disease surveillance system (n = 3179); hospitalisations amongst these cases (n = 972); ICU influenza admissions (n = 106); GP consultation rates (two surveillance systems)	Notifications, hospitalisations and ICU admissions began to decline during second week of closure. GP consultation rates for 5-14 year olds increased following re-opening (in one of the systems only).
Effler et al (2010) ⁴³	Outbreak report focussing on children's activities during closure and the effects of closure on families	Three schools in Perth, Western Australia, May – July 2009; ages of affected pupils not stated. Data available for 233 of 402 students.	Response to outbreak	1 week; one school closed completely and two closed only affected year groups	Confirmed cases in individuals attending the three schools peaked two days before closure	Confirmed pandemic H1N1 infection	Confirmed cases peaked at ~9/day two days before closure, subsequently a maximum of 1 case / day occurred.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Paine et al (2010) ⁶⁶	Outbreak report and modelling analysis	New Zealand population, April – November 2009 (all ages)	Planned national holiday during national outbreak; some use of prophylactic antivirals during containment phase ¹⁵⁹	2 weeks, all schools nationally	~4 days before peak.	Cases reported through notifiable disease surveillance system (n = 3254), used to estimate daily values of the effective reproduction number	Case numbers peaked and declined during holiday, no consistent increase when schools reopened. Effective reproduction number was declining before school closure and continued to decrease during the holiday, appeared to increase slightly and reach a plateau after schools reopened.
Americas							
Cruz- Pacheco et al (2009) ⁶⁸	SIR transmission model used to estimate contact rates, based on estimated values of R ₀ before and after introduction of control measures	Mexico City, April – May 2009 (all ages)	Response to outbreak; no use of antivirals	~2.5 weeks, all schools in Mexico City.	Epidemic had been growing exponentially for ~1 week when schools were closed	Number of confirmed (n = 1752) or probable (n = 6114) cases; estimated daily reproduction number (R _t)	Incidence increased initially to peak of ~400 probable and 150 confirmed cases/day on second and third days of closure, then declined gradually over the closure period. R_t declined from ~1.6 before and during the closure, crossing 1 within 2 days of closure and remaining <1 thereafter.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Echevarria- Zuno et al (2009) ⁷³	Outbreak report	National population of Mexico, April – July 2009	Response to outbreak; no mention of antiviral prophylaxis	Approx two weeks; entire education system (including nurseries and universities) initially in Mexico City and Mexico State from 23 April, then nationwide from 27 April ¹⁶⁰ . Universities and high schools reopened 4-5 days before elementary schools ⁶⁸ .	Schools closed early in growth phase of epidemic.	ILI reported through active surveillance of inpatients and outpatients	Epidemic continued while schools were closed and peaked ~1 week after closure; increase in cases over three days after reopening of universities and high schools, but not following subsequent reopening of elementary schools.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Lajous et al (2010) ¹⁶¹	Outbreak report	56,551 respondents to a text message survey, Mexico, April 2009	Both planned closure and a response to the outbreak	Planned holiday lasted 1 week; reactive closure lasted at least one week (schools were still closed at the end of the time period presented)	Planned closure occurred in the early stages of the outbreak before national surveillance indicated an increase in the number of cases but case numbers from survey data were declining. Reactive closure occurred during the increase in national case numbers.	ILI in survey respondents; suspected or confirmed H1N1 from national surveillance	Planned closure was followed by a slight decrease in case numbers reported through national surveillance, but this increased before schools reopened. National surveillance data peaked ~3 days after the reactive school closure and then declined through the rest of the closure period. Survey data were not obviously affected by school closure, although the proportion of reported cases which prevented respondents working declined during both closure periods.
Gomez et al (2009) ⁸⁰	Outbreak report	National population of Peru, May – September 2009	Appears to be reactive, but unclear; some use of prophylactic oseltamivir	3 weeks, all schools nationwide	One week after peak week	Number of pneumonia cases in 5-59 year olds in Lima and Callao; number of severe acute respiratory infections nationally	Pneumonia cases decreased from peak week ~130 cases following closure to ~40 cases and showed slight resurgence to just below 60 cases when schools re-opened; effect on other severe respiratory infections difficult to assess as date of closure is unclear.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Tinoco et al (2009) ⁶⁴	Prospective cohort study	1747 individuals in 343 randomly selected households, San Juan de Miraflores District, Lima, Peru, May – August 2009	Unclear	~3 weeks, presumably all schools	After peak	Influenza-like illness counts by causative organism (H1N1 or other); age-specific rates of confirmed H1N1v	Number of ILI cases (and confirmed H1N1) decreased throughout closure period, from 54 (39 H1N1) the preceding week to 29 (19), 12 (6) and 6 (3) in each subsequent week; rates of confirmed H1N1 reached zero in week following closure in all age groups except 50-59 year olds.
Lessler et al (2009) ³⁷	Outbreak report	1453 students (aged 14-19) and staff at a New York City high school, April – May 2009	Response to outbreak	9 days, one school	After peak	Confirmed H1N1 influenza or self- reported ILI	Incidence already declining when school was closed, continued to decline through closure period. No data presented for period following re- opening.
Miller et al (2010) ⁵²	Descriptive study of schoolchildren's behaviour during reactive school closure	Private girls' school in Boston, USA; 63 of 176 children in grades 5-8 and 188 of 240 in grades 9-12.	Response to outbreak / high levels of absenteeism	One week	4 days after peak	Fever in pupils with ILI, and absenteeism, in upper and lower school separately	Upper and lower schools each had one case of fever on the first day of closure and continued to have 0 or 1 case per day throughout the closure period; no apparent increase on reopening. Absenteeism in both schools was considerably higher before closure than after reopening.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Janjua et al (2010) ¹⁶²	Cohort study of households of children enrolled in any of the six schools in the community, telephone survey primarily aimed at conducting a case-control study of the effect of vaccination against seasonal influenza on risk of infection with pandemic H1N1.	Elementary school and surrounding community, British Colombia, Canada, April – May 2009.	Response to outbreak in one elementary school	9 days	Outbreak peaked on the first day of school closure	ILI (n = 92) in 1092 participants from households of children attending any school in the community	Daily number of cases declined during school closure (from 10 cases on the first day to 1 case on the final day), increasing to 5 cases on the day of reopening. Case numbers ranged from 0-3 per day for the remainder of the study period.
Marchbanks et al (2011) ⁵⁸	Outbreak report	388 of 456 pupils at an elementary school in Pennsylvania, USA, and 957 household contacts, May 2009.	Response to outbreak	7 days	ILI peaked two days before school closure.	ILI (93 pupils and 74 contacts): subjective fever with cough and / or sore throat.	Incidence increased on second day of closure and then declined; very slight increase on reopening (although absenteeism returned to normal). No cases occurredin the 4 th grade during closure or after reopening.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Cauchemez et al (2011) ⁷	More detailed modelling analysis of outbreak described in Marchbanks et al ⁵⁸	Same school as Marchbanks et al ⁵⁸ , but using data from 27 April to 30 May 2009 from 370 pupils and 899 household contacts.	As Marchbanks et al ⁵⁸	As Marchbanks et al ⁵⁸	ARI epidemic curve peaked 2 and 3 days before closure.	Acute respiratory infection (at least two of fever, cough, sore throat, runny nose) in children attending the affected school (stratified by grade) and their household contacts (stratified into adults and children).129 cases in pupils and 141 in household contacts.	Incidence increased on the second day of closure but then declined; slight increase on reopening. Statistical analysis found no evidence of an effect of closure on the transmission rate among pupils (30% reduction, 95% credible interval 62% decrease to 22% increase). Reproduction number was also similar (0.3) during the week of closure and the following week.
Janusz et al (2011) ¹⁶³	Outbreak report and community- based survey. Community survey collected data from 240 of 711 households approached (comprising 644 individuals).	A community associated with a school which experienced an outbreak, Chicago, USA, April – May 2009.	Response to outbreak.	7 days; one of the five elementary schools in the community closed.	Approximately one third of ILI cases reported through the survey had occurred before school closure (0-3 per day). Only 4 laboratory- confirmed cases had been reported to the Department of Health before closure.	ILI (fever with cough and / or sore throat, n = 37) in the survey; laboratory confirmed H1N1 infection reported to Chicago Department of Public Health (n = 43) based on date of specimen collection, although the peak based on date of onset occurred 3 days before closure.	In the community survey, maximum of 3 cases per day before and during closure; no increase when school reopened. None of the cases reported through this survey were linked to the affected school. Laboratory reports peaked on the first day of closure, generally declined during closure and remained low after reopening; however, testing recommendations changed on the second day of closure.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Cohen et al (2011) ⁵⁴	Outbreak report	Pupils at a school in Chicago which closed due to the outbreak, and their household contacts (170 households, of 609 eligible, provided data), April – May 2009.	Response to outbreak.	1 week.	Highest numbers of cases were reported on the two days before closure.	Acute respiratory illness (one or more of fever, cough, sore throat, rhinorrhoea or nasal congestion, n = 58).	Case numbers were lower on the first day of closure than on the two previous days, increased during closure and then declined. Few cases were reported after school reopened.
Loustalot et al (2011) ⁵⁷	Cross-sectional questionnaire survey / assessment of household secondary attack rate and use of non- pharmaceutical interventions.	668 households (2772 individuals) of 1716 approached, with children attending a closed high school in San Antonio, Texas, March – June 2009.	Response to outbreak	9 days	Peak occurred 8 days before school closure	ILI in household members reported by one adult household member, stratified into index cases (students attending the affected school, n = 78) and secondary cases (n = 21)	Incidence remained low during closure; no cases reported on the final four days of closure. 1-2 cases per day after school reopened.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Chowell et al (2011a) ²¹	Epidemiological and modelling analysis of outbreak data	107 million individuals registered with a Mexican private medical system, April – December 2009	Response to outbreak, and a later planned summer holiday.	Reactive closure lasted from 24 April to 5 May; summer holiday lasted ~7 weeks; all schools nationally were closed.	Reactive closure occurred early in the first wave of the outbreak (together with other interventions); summer holiday followed a plateau in the number of confirmed cases.	Confirmed pandemic H1N1 cases or ratio of number of cases in students (aged 5- 20 years) to number of cases in other age groups.	Reactive closure appeared to slow epidemic growth, which resumed when interventions were lifted. Incidence was reasonably constant in all ages during the summer holiday but declined amongst students; cases amongst students and others increased when schools reopened (as did the ratio of student to non-student cases).
Herrera- Valdez et al (2011) ¹⁶⁴	Modelling analysis, including estimation of change in contact rate during school closure period.	National population of Mexico, April – November 2009	One reactive closure and a subsequent planned holiday	Reactive closure lasted ~2 weeks; holiday lasted ~2 months.	Schools closed reactively early in growth phase; holiday started close to the peak of the second wave.	Confirmed pandemic H1N1 cases; model estimates of contact rate.	Confirmed cases occurred in three waves corresponding to closing and reopening of schools. Estimated contact rates appeared to be reduced by ~80% during school closure periods.
Chowell et al (2011b) ²⁰	Epidemiological / spatial analysis of outbreak data	General population of Peru, May – December 2009	Planned school holiday moved forward by two weeks	Three weeks, all schools in the country	After the peak in daily national data; same week as peak in weekly data stratified into students and others.	Confirmed pandemic H1N1 cases or ratio of number of cases in students (aged 5- 20 years) to number of cases in other age groups.	Number of cases in whole population, students and others declined throughout closure period; no clear increase on reopening. Ratio of student to non-student cases had already peaked, but declined during closure and increased afterwards.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Briffault (2011) ¹⁵	Ecological study comparing the average percentage of emergency department / outpatient visits associated with ILI in areas in which schools were in session to areas in which schools were closed.	General population in 21 areas of the USA	Planned holidays.	Duration varied between areas; study period includes 18 weeks during which schools in at least one area were on holiday and 5 weeks when schools in all areas were closed.	Difficult to assess; likely to have varied between areas and between schools within the same area.	Percentage of emergency department or outpatient visits associated with ILI. The mean of these was take for schools in session and those closed for holidays, for each week, and the mean over time compared between these two groups using the Mann- Whitney-Wilcoxon test.	Percentage of visits due to ILI was ~3.5% in schools which were in session compared to ~2.8% in schools which were closed for the holidays.
Graitcer et al (2012) ⁵⁵	Ecological study of effects of student vaccination coverage on student and staff absenteeism.	93 schools in Maine, USA, October 2009 – March 2010	Planned holidays	Closure for Thanksgiving lasted ~1 week; winter break lasted ~2 weeks; spring break lasted ~1 week.	Thanksgiving occurred 2 weeks after the peak; winter break occurred in the final stages of the outbreak; very few influenza isolates were reported by the time of the spring break.	Daily percentage of students absent; percentage of specimens submitted to public health laboratory which were influenza.	Absenteeism was lower after Thanksgiving break than before; slightly lower after winter break than before; and similar before and after spring break. Number of laboratory reports increased very slightly during week of Thanksgiving break and subsequently declined; winter break had no clear effect on number of reports.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Earn et al 2012 ¹⁰	Age-structured SIR model fitted to outbreak data; transmission parameters were allowed to vary as a function of school closure and weather variables.	General population of Alberta, Calgary and Edmonton (Canada), all stratified into children aged 5-18 years and others, April 2009 – January 2010.	Planned holidays.	Approx 7 weeks; closure dates differed slightly by type of school (high, middle, elementary, junior kindergarten) and in Calgary compared to the rest of the province.	Near to beginning of first wave: number of cases appeared to be elevated for only 2 weeks before the first school closure.	Number of laboratory-confirmed infections; estimates of R_0 derived from this for school terms and holidays.	Number of specimens reached a plateau and then declined during school closure; this was most apparent in school- aged children but also affected the other age group. Best-fitting model included a reduction in transmission amongst children: the child-to-child basic reproduction number was reduced by 63% (95% CI 43-84%) in Calgary, 100% (95% CI 69-100%) in Edmonton and 86% (95% CI 70- 100%) in Alberta.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Egger et al (2012) ¹⁷	Ecological study comparing schools which met criteria for student dismissal, and did close, and those which met the criteria but did not close.	64 public schools which met dismissal criteria in New York City, May – June 2009, of which 24 closed and 40 did not.	Response to outbreak.	Duration varied by school; mode was 5 days.	"Average" epidemic curve produced by pooling data from all schools (stratified by whether or not they closed) and aligning by time in relation to closure (day 0 = day dismissal criteria were met) showed peaks on day 0 in both schools which closed and those which did not.	Percentage of student body presenting to school medical room with ILI, averaged over schools stratified by whether or not they closed. Parameter estimates and model predictions from negative binomial regression assessing the relationship between closure and ILI counts.	Average percentage reporting with ILI declined in the days immediately after the dismissal criteria were met in both groups of schools. Estimate that the number of cases on the second day following reopening was 49% lower than would be expected if the school had not closed (adjusted for day of week, baseline case numbers, and time since beginning of school and city outbreaks). School closure estimated to reduce cumulative number of cases by ~7%.

Study	Study design	Study population /	Nature of closure	Duration of closure and	Timing of closure in relation to	Outcome measure	Association between school closure and
		Setting		affected	circulation		outcome
Copeland et al (2012) ¹⁶	Ecological study: household survey of families with children enrolled in schools in one district in which schools were closed in response to pandemic influenza and one district in which schools remained open.	5188 individuals in 1187 (of 2725 contacted) households in the school closure district; 4842 individuals in 155 (of 1944 contacted) households in the control district. Also general population of the two districts in analysis of emergency department data.	Response to outbreak.	Approx one week; all schools in the closure district.	Early in outbreak: each district had reported <70 laboratory- confirmed cases and ≤2 H1N1 hospitalisations.	Self-reported ARI; percentage of emergency department visits which were due to influenza. Estimated "difference in differences" comparing the rate difference for consecutive periods (e.g. before and during school closure) in the closure and non- closure districts. Also assessed the percentage difference between the observed ARI rate in the closure community and that expected if rates had increased in the same way as was seen in the control community.	In closure district, ARI rate was 0.6% before closure and 1.2% (twice as high) during, in the control district the rates were 0.4% and 1.5% (3.75 times as high). This corresponds to a difference in differences of -0.47 percentage points (p = 0.046). Effect was strongest in individuals aged ≥19 years. No evidence of any difference comparing closure period to period following reopening. ARI rate during closure estimated to be 29% lower than it would have been had schools not closed. ED visits for influenza increased 1.6 times in the closure district comparing periods before and during closure, and 2.1 times in the control district.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Monto et al (1970) ⁵⁹	Non- randomised community trial of pandemic vaccine	All schoolchildren in Tecumseh (approx 3680) and Adrian (number not stated), Michigan, November 1968 – January 1969. 86% of children and a small number of adults in Tecumseh were vaccinated against the pandemic strain. Pandemic vaccine was not used in Adrian.	Christmas holiday	Two weeks, presumably all schools	Peak absenteeism in Adrian occurred one week before closure; Tecumseh did not experience an extensive epidemic.	School absenteeism (all causes)	Absenteeism in Adrian was >14% on each of the four days before closure and was ~8% on the day of reopening. Tecumseh did not experience any clear peaks in absenteeism.
Bootsma and Ferguson (2007) ⁷⁰	Statistical / transmission modelling analysis of historical P&I mortality data	23 US cities with data on timing of introduction of NPIs during 1918 influenza pandemic	Response to outbreaks; other social distancing measures also implemented	Approx 0-7 weeks, depending on city	Varied by city	Excess total or peak mortality in each city	Correlation between excess / peak mortality and timing of introduction of NPIs relative to progress of epidemic (p<0.01 in both cases). Lifting of NPIs allowed transmission to become established again

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Hatchett et al (2007) ⁷⁵	Statistical analysis of historical P&I mortality data	17 US cities, September – December 1918	Response to outbreaks; other social distancing measures also implemented	Varied by city	Varied by city	Cumulative Excess P&I death rates (CEPID)	Cities which closed schools before CEPID reached 30/100,000 had a lower median peak weekly excess P&I death rate than those which did not (p<0.01) but there was no significant difference in median CEPID. Closing schools at a higher CEPID was associated with higher peak P&I death rates (Spearman ρ =0.54) but not with total P&I death rates. Second waves occurred only after lifting of NPIs.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Markel et al (2007) ⁸⁴	Ecological analysis of historical mortality data	43 US cities, September 1918 – February 1919	Response to outbreaks; other social distancing measures also implemented	Varied by city	Varied by city	Weekly excess P&I death rates	Not uniform across cities (but this could be related to the timing of the intervention). Earlier interventions correlated with increased time to epidemic peak ($r =$ -0.74, p<0.001), reduced peak excess death rate ($r =$ 0.31, p=0.02) and reduced total excess death rate ($r =$ 0.37, p=0.008). Increased duration of intervention associated with reduced total excess death rate ($r =$ -0.39, p=0.005).
Jordan et al (1919) ¹⁶⁵	Outbreak report	Elementary school (391 pupils aged 4- 13 years) and high school (427 pupils aged 14-18 years) of University of Chicago, October – December 1918	Planned Thanksgiving break	Four days (including weekend)	Both schools were closed for final three days of peak week and one day of the following week.	Clinical influenza (n = 97 in elementary school, n = 91 in high school)	Elementary school: incidence declined from 19 cases in peak week to 15 the following week, showed a second peak of 10 cases 3 weeks after the closure. High school: incidence decreased from 16 cases in peak week to 5 the following week, showed a second peak of 11 cases 2 weeks after the closure.

Study	Study design	Study population / Setting	Nature of closure	Duration of closure and schools affected	Timing of closure in relation to influenza circulation	Outcome measure	Association between school closure and outcome
Armstrong and Hopkins (1921) ⁶²	Outbreak report	Kelleys Island, Lake Erie, US, January – February 1920, population 689 (of whom 157 were schoolchildren)	Response to staff and student absenteeism during influenza outbreak	The single school (for both grammar and high school pupils) on the island remained closed "until the epidemic had subsided"	Epidemic began 24 January, school closed 30 January	Self-reported clinical influenza, based on checklist of symptoms (n = 369)	Overall incidence peaked at 52 cases on day following closure. Cases in schoolchildren dipped on day of closure, peaked following day and declined thereafter. Cases in other groups dipped two days after closure, peaked the following day and then declined.
Winslow and Rogers (1920) ⁴²	Outbreak report	Connecticut, USA, September – December 1918	Response to outbreak	Three cities in which schools remained open are cited and mortality rates compared descriptively with two cities in which schools were closed. Duration of closures not stated.	Not stated.	Deaths from pneumonia and influenza	Death rates were lower in the three cities in which schools remained open than in at least two cities in which they were closed.

Appendix 7: Epidemic curves for seasonal influenza

Horizontal lines show dates of school closures

Appendix 8: Epidemic curves for pandemic influenza

Horizontal lines show dates of school closures

46 50 2 6 Week (2009/10)

6 10

<u>___</u>___ بلي با

14 18 22 26 30

° †tr−n¶]

22 26 30 34 38 42

Varying numbers of individual schools were closed over the period

Appendix 9: Mathematical modelling studies of the effects of school closure on pandemic influenza

Population	Infection parameter	Threshold for	Assumed effects of	Predicted effect on:				
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of	
contact rates		and duration of	contact patterns	of infection			epidemic	
		closure						
Individual based mo	odels							
Elveback et al (1976)	119							
Hypothetical	Average latent	Schools either	Elimination of	NA	Reduced by	NA	Not quantified, but	
population	period = 1.9 days	never opened	transmission in		90% (using		stated that the	
structured to	Average infectious	following routine	schools; no effect on		contact rates		effect of several	
resemble a	period = 4.1 days	closure, or closed	other contact rates.		based on		days' closure	
suburban US	Baseline clinical	for the second			Asian		during an	
community. Age /	ARs:	week of the	No empirical basis		influenza) or		outbreak of Asian	
location-specific	1957 – 35.4%	outbreak	stated for these		27% (using		influenza is	
contact rates	(preschool) 61.8%		assumptions.		contact rates		greater than that	
chosen to produce	(school), 23.4%				based on		on the cumulative	
age-specific ARs	(young adult),				Hong Kong		AR.	
similar to those for	13.1% (older				influenza) if			
the 1957 and 1968	adult), 35.1%				schools never			
pandemics. Contact	(overall)				opened, or by			
rate greatest in	1968 – 35.2%				20% with one			
playgroups, then	(preschool) 35.7%				week closure			
family, then schools	(school), 32.1%				(Asian			
(1957) or	(young adult),				influenza)			
neighbourhood	30.4% (older							
clusters (1968),	adult), 33.3%							
then	(overall)							
neighbourhood								
clusters (1957) or								
schools (1968),								
then community.								

Ferguson et al (2005) 139

Population	Infection parameter	Threshold for	Assumed effects of		Predicted	d effect on:	
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					
Population based	$R_0 = 1.1 - 2.0$	Closure of 90% of	Complete elimination	NA	>90% chance	NA	NA
on Thai census	Serial interval = 2.6	schools and 50%	of mixing in schools		of eliminating		
(2000) and related	days, based on	of workplaces	and workplaces. 100%		epidemic (i.e.		
data. Probability of	household study of	within 5km of a	increase in contact in		"preventing a		
contact sufficient	seasonal influenza	detected case ,	households, and 50%		large outbreak		
for transmission	IN 2000.	for 3 weeks.	Increase in random		(which would		
maximum in			contacts for individuals		eventually lead		
value in households	$AR 7 \% R_0 = 1.3,$ 25% if P = 1.8		/work		to a global		
and workplaces	$2570 \text{ II } \text{IX}_0 = 1.0$		No empirical basis		$P_{1} < 1.7$		
and $\sim 1/6$ of this			stated for these		1.1		
value in community			assumptions but				
Schools and			chosen to be				
workplaces closed			conservative.				
at the same time as							
antiviral prophylaxis							
is provided.							
Focuses on							
eliminating a							
pandemic at							
source.	09						
Yasuda et al (2005)							
Basis of population	Latent period = 3	Four days after	Unclear; presumably	Reduced by	Reduced by	Increased by	Increased by
structure unclear.	Oays	start of outbreak;	complete elimination of	~45%	12% (10% IN	~25% from 20	~40% from 50 to
Contact rates		ciosure either	contacts at school with	(permanent	adults, 17% In	to 25 days	70 days
data from 30000	= 7 uays Baseline AR not	duration of		12% (13 day	permanent	(permanent	(permanent closure) or ~20%
individuals in	provided	outbreak or	No empirical basis	$\sim 12 / 0$ (15 uay		$\sim 35\%$ from 20	from 50 to 60
Janan collected at	provided	reopened after 13	stated for these	ciosurej		to 27 days (13	davs (13 dav
an unspecified		davs	assumptions		unchanged (13	day closure)	closure)
time.		aayo.			dav closure)		
					, /		
Ferguson et al (2006) 105						

Population	Infection parameter	Threshold for	Assumed effects of	Predicted effect on:				
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of	
contact rates		and duration of	contact patterns	of infection			epidemic	
		closure					-	
Model as in ¹³⁹	$R_0 = 1.7 \text{ or } 2.0$	Each school and	Elimination of	Decreased by	If R ₀ =2.0,	Delayed by 9-	NA	
applied to	Serial interval = 2.6	10% (or 50%) of	transmission in	25-33%,	decreased by	16 days,		
population based	days, based on	workplaces close	schools and	depending on R ₀	6-9% (from	depending on		
on Great Britain /	same data as ¹³⁹ .	from the day after	workplaces. 50%	and, much less	34% to 32% or	R_0 and the		
United States		detection of the	increase in contact	importantly, on	31%,	proportion of		
census data. Model	Sensitivity analysis	first case in pupils	rates in affected	the proportion of	depending on	workplaces		
incorporates	used latent period	or staff until up to	households; 25%	workplaces	proportion of	closing.		
simultaneous	= 1.2 days and	3 weeks after the	increase in community	closing.	workplaces			
closure of schools	infectious period =	last case in that	contacts of affected	Duration of	closing).			
and workplaces.	4.1 days, and	school. Schools /	individuals.	closure has little	If $R_0=1.7$,			
	found that this	workplaces can	No empirical basis	effect. Number	decreased by			
	reduced the impact	close repeatedly	stated for these	of cases which	11-15% (from			
	of interventions.	during the	assumptions.	triggers closure	27% to 23-			
	Deserve a restant	pandemic.		of each school	24%).			
	Baseline clinical	Sensitivity	Sensitivity analysis	has relatively	Longer			
	$ARS 20\% (R_0 = 1.7) ar 240((D$	analyses explored	increased nousehold					
	1.7 01 34% ($R_0 =$	varying the	the predicted effects of	iong as it is <5.	associated			
	2.0)	duration of	cobool closures were	Similar results	incrossed			
			"rolatively insensitive"	when area	reductions			
		alternative	to this change		Number of			
		strategy of "area	to this change.	introduced	cases in each			
		closure" in which		introduced.	school which			
		all schools within			triggers			
		10km of a case			closure of that			
		close.			school has			
					relatively little			
					effect as long			
					as it is <5.			
					Similar results			
					with area			
					closure.			

Population	Infection parameter	Threshold for	Assumed effects of		Predicted	d effect on:	
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					
Population based	R ₀ = 1.6 – 2.4	All schools in the	Elimination of mixing in	NA	Predicted	Not quantified,	NA
on US census data	Mean latent period	country closed	school-related groups.		reduction	but stated that	
(2000). Contact	= 1.2 days	seven days after	No effect on other		ranged from	social	
probability in	Mean incubation	pandemic alert,	contact rates. Schools		14% (if R ₀ =	distancing	
household >	period = 1.9 days	which occurs	remain closed for the		2.4) to 97% (if	policies slow	
preschool >	Mean infectious	when 10,000	duration of the		$R_0 = 1.6$)	pandemic	
schools and	period = 4.1 days	symptomatic	pandemic.			spread	
household clusters	Serial interval =	cases have	No empirical basis				
> neighbourhood	3.5 days	occurred	stated for these				
and community.	Baseline AR 33-	nationwide	assumptions.				
Model incorporates	54% depending on	(corresponding to					
simultaneous	R _{0.} Age-specific	a cumulative					
closure of schools,	attack rate pattern	incidence of 3.6 /					
preschools and	chosen to be in	100,000).					
playgroups.	between those of						
	1957 and 1968.						
	For $R_0 = 1.6$,						
	4 years) 50% (5-18						
	years), 27% (19-29						
	years), 28% (30-64						
	years), 24% (>04						
	years), 33%						
	(overall).						

Population	Infection parameter	Threshold for	Assumed effects of		Predicted	d effect on:	
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					
Population based	$R_0 = 2.7$	Prevalence of	Children from affected	Decreased by	Decreased by	Peak occurs 1	Slight increase
on US census data	Latent period = 2	infection of 10%,	schools mix according	~30% if schools	~1-18%,	week earlier if	(~1 week) if
(2000). Number	days	15% or 20% in	to weekend contact	are closed for	depending on	schools are	schools are
and duration of	Baseline clinical	children at an	patterns (i.e. contacts	14 days when	threshold and	closed for 14	closed for 14 days
contacts vary with	AR 32% overall	individual school;	in schools eliminated;	prevalence	duration of	days when	when prevalence
age and location.	(calibrated to age-	schools remained	contacts in households	reaches 10%.	closure:	prevalence	reaches 10%.
Household contacts	specific ARs from	closed for 7, 14 or	and community		greater effect	reaches 10%,	
last longer than	1957pandemic:	21 days.	doubled).		at lower	compared to	
community contacts	36% (0-4 year				thresholds;	the no	
and are fairly	olds) 62% (5-18),				effect of	intervention	
uniform with age	25% (19-64), 21%				duration of	scenario; no	
whilst community	(≥65), 33%				closure less	results	
contacts are fairly	(overall))				clear.	presented for	
assortative.					Less effective	longer	
Transmission rates					for lower	durations of	
vary by age (0-4, 5-					values of R_0 .	closure.	
18, 19-64 and ≥65					Slightly greater		
years) according to					effect if		
an asymmetrical					baseline		
WAIFW matrix, but					contact		
not by location					intensity in		
(nousenoid, day-					schools		
care centre, school,					increases.		
workplace,							
community, long							
term care facility).							
At weekends,							
are doubled and no							
elsowboro							
eisewileie.		1				1	1

Cauchemez et al (2008)⁷

Population	Infection parameter	Threshold for	Assumed effects of		Predicted	d effect on:	
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					
Based on French	$R_0 = 1.8$ during	Daily incidence	24 % reduction of	Decreased by	Decreased by	NA	NA
census data (1999);	term time and 1.4	(all ages) ~20/100	child-to-child	39-45% (47-	13-17% (18-		
stratified by age	during holidays	000 or up to	transmission, no effect	52% in	23% in		
into adults (≥18	(estimated from	1500/100000;	on adults' contacts	children).	children);		
years) and children	data)	schools closed	(based on analysis of	Reductions	greater		
(<18 years) with	Serial interval = 2.4	permanently.	French sentinel	were smaller	reduction if		
contact occurring in	days		surveillance data	than this if	schools closed		
nousenoias,			covering term time and	schools closed	at lower		
	AR 31% (37-30%)		school holidays)	throshold o a	Reductions		
community				21% if threshold	were smaller		
				21/0 if the should was $100/$	than this if		
				100 000 / day	schools closed		
				100,0007 day	at a higher		
					threshold e a		
					10% if		
					threshold was		
					100 / 100,000 /		
					day		

Population	Infection parameter	Threshold for	Assumed effects of		Predicted	d effect on:	
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					-
Based on Italian	R ₀ = 1.4, 1.7 or 2.0	Four weeks after	Not stated.	No appreciable	No	Increased by	NA
census data (2001);	Baseline	first 20		effect	appreciable	5-8 days (2.5-	
structured into	cumulative clinical	symptomatic			effect	8.8%)	
households,	AR 21.2%, 30.8%	cases in the				depending on	
workplaces, day-	or 38.7%,	individual-based				transmissibility	
care centres,	depending on R ₀ .	model; schools				(greater delay	
schools, university	Latent period = 1.5	remain closed for				for higher R ₀)	
and community.	days	4 weeks. All					
IBM coupled to	Infectious period =	schools and some					
SEIR model of	1.5 days (in SEIR	non-essential					
global transmission.	model)	public offices					
	Mean serial interval	closed.					
	= 2.6 days (in						
	individual-based						
	model)						

Population	Infection parameter	Threshold for	Assumed effects of		Predicted	d effect on:	
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		closure	contact patterns	or intection			epidemic
Based on Japanese census data (date not stated), related statistical data for Tokyo and its suburbs, and time use data. Probability of infection greatest in trains, then homes, then schools, then companies / stores.	Latent period = 2 days "Period of infection" = 5 days Baseline infection AR = 33%	1-4 weeks after start of epidemic; schools remained closed for 2 weeks.	Not stated.	Decreased by ~23% if schools closed after 1-3 weeks, or by ~38% if schools closed after 4 weeks.	Changed by <10% for all closure thresholds.	If schools were closed 1-2 weeks after the start of the epidemic, peak delayed by 2-3 weeks; otherwise the epidemic curve became bimodal, with the larger peak occurring 3 weeks after (if schools closed after 3 weeks) or 1 week before (if closed after 4 weeks) the peak for the unmitigated epidemic.	Increased by ~4 weeks for all closure thresholds.

Population	Infection parameter	Threshold for	Assumed effects of		Predicted	d effect on:	
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					
Population based on census data for southern California (2000). School closure modelled in combination with antiviral treatment / household prophylaxis from start of epidemic,	Mean incubation period 1.9 days, "slightly longer than the latent period." Mean infectious period 4.1 days Infection rate in children double that in adults Baseline clinical AR 30.6%	Prevalence of symptomatic infection 0.1%; schools remain closed for six months	Children spend the time they would have spent at school at home instead; their other activities are not affected.	First wave peak AR decreased by ~98%; second wave peak AR 50- 100% smaller than the unmitigated single peak, depending on vaccine	Total AR (first and second waves) reduced by 28-96%, depending on vaccine properties	Reduced by ~1 week (for peak of first wave).	First wave duration increased by ~40 days; second wave may begin ~6 months after the end of the first and last for ~90 days
and vaccination from 5 months (overlapping with the period of school closure by ~2 months)	R ₀ = 1.8			properties.			

Population	Infection parameter	Threshold for	Assumed effects of		Predicted	d effect on:	
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					-
Population based	R ₀ = 1.5, 2.0 or 2.5	Before the	School contacts	Reduced by 32-	Decreased by	NA	NA
on Australian	Latent period = 1	appearance of the	eliminated; students	78%, depending	8-61%,		
census data (2001).	day	first case;	and teachers spend	on R ₀ (greater	depending on		
43% of infections	Infectious period =	continued	the day at home so	reduction for	R ₀ (greater		
occur in	5 days (including 1	indefinitely.	household contacts	lower R ₀)	reduction for		
households, 29% in	day asymptomatic),		increase if others are		lower R ₀).		
schools /	or 3 or 8 days in		present in the		Reduction of		
workplaces, 26% in	sensitivity analyses		household. No effect		59% if attack		
community.			on community		rates vary little		
Model incorporates	Baseline clinical		contacts. If a child		with age, $R_0 =$		
simultaneous	attack rates 33%,		would otherwise be at		1.5 and 38%,		
closure of schools,	55% or 65%. Age-		home alone, an adult		29% and 32%		
childcare facilities	specific ARs		from the household		of		
and adult education	calibrated against		stays at home and		transmissions		
institutions	seasonal influenza		their workplace		occur in		
	data from		contacts are		households,		
	Tecumseh, or 1968		eliminated.		schools /		
	pandemic.				workplaces		
					and		
					community,		
					respectively.		

Population	Infection parameter	Threshold for	Assumed effects of		Predicted	d effect on:	
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					-
As ¹²⁴ , with	$R_0 = 1.5, 2.5 \text{ or } 3.5$	0-8 weeks after	As ¹²⁴	If R ₀ =1.5,	If R ₀ =1.5,	If R ₀ =1.5,	If R ₀ =1.5,
emphasis on the	Latent period = 1	appearance of		decreased by	reduced by	delayed by	increased by up
timing of closing	day	first infectious		~80% if delay is	~60% if delay	~17 days for	to ~30 days; if
schools.	Infectious period =	case; continued		up to 4 weeks;	is up to 3	delays up to 4	R ₀ =2.5, increased
	5 days (including 1	indefinitely.		benefit	weeks; benefit	weeks; longer	by up to ~10
	day asymptomatic),			decreases for	decreases for	delays bring	days.
	or 3 or 8 days in			longer delays,	longer delays,	the peak	
	sensitivity analyses			with essentially	with a	forward by up	
				no reduction for	reduction of	to ~16 days. If	
	Baseline clinical			a delay of 8	~22% for a	$R_0=2.5$, peak	
	attack rates 33%,			weeks. If	delay of 8	is delayed 5-	
	65% or 73%. For			R ₀ =2.5,	weeks. For R ₀	12 days if	
	$R_0 = 1.5$, baseline			decreased by	= 1.5 and pre-	closure is pre-	
	clinical ARs ~ 58%			~33% for delays	emptive	emptive or	
	(0-5, 6-12 and 13-			OF 3 WEEKS OF	ciosure,		
	17 years), 44%			iess, little effect		weeks,	
	(18-24 years), 40%			Il delay is 4	cumulative AR	otherwise little	
	(25-44 years) 25%			weeks of more.	were ~57% (0-	enect.	
	(40-04) (40				(6, 12)(0, 04)		
	(overall)				(0-12 years)		
	(overall).				100%(13-17)		
					(18-24) years)		
					(10-24 years), 58% (25-11		
					vears) 56%		
					(45-64 years)		
					52% (>65		
					vears).		
					If $R_0 = 2.5$.		
					reduction is		
					<10% even if		
					closures are		
					implemented		
					without delay.		
Sander et al (2009) ¹	41	•	•			•	

Population	Infection parameter	Threshold for	Assumed effects of		Predicted	d effect on:	
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection		-	epidemic
		closure					-
Population based	Baseline clinical	Implied that	Not clear	NA	Decreased by	NA	NA
on US census data	AR = 50%	schools are			22% (from		
(2000). Structured		closed			50% to 39%).		
into		immediately at the					
households,		start of the					
neighbourhood		pandemic; remain					
clusters,		closed for 26					
neighbourhoods,		weeks (the					
playgroups, day-		duration of the					
care centres,		pandemic)					
elementary, middle							
and high schools,							
workplaces, and							
the community.							
Timpka et al (2009)	40						
Based on Swedish	$R_0 = 2.23$	Not stated.	Contact at school	NA	NA	NA	NA
population (year not	Incubation period		eliminated, apparently				
stated).	1.9 days, infectious		no effects on other				
Transmission	period 4.1 days.		contact although this is				
probabilities highest	Baseline AR not		not explicit.				
in households, then	stated.		No empirical basis				
schools, then			stated for these				
community.			assumptions.				

Population	Infection parameter	Threshold for	Assumed effects of		Predicted	d effect on:	
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					
Based on Greek	$R_0 = 1.51$	Cumulative	Unclear; presumably	NA	Reduced by	NA	Shortened by 11
population (2001).	(estimated from	clinical attack rate	school contacts are		89%		days
I ransmission	model)	of 1%.	eliminated (100% of				
probabilities	Latent period = 1		schools shut). 60% of				
greatest in	day		children comply and				
households, then	Infectious period =		stay at home, it is not				
schools, then			explicit now this affects				
neighbourhoods,	Iransmission		their contact patterns				
then community.	probabilities based		compared to being at				
	on previous		school or to not				
	model and		complying.				
	modified to reflect						
	data from 2009						
	H1N1 outbreak in						
	La Gioria, Mexico.						
	Baseline clinical						
	AR 34.5% overall						
	(59.7% in 0-18						
	year olds, 32.1% in						
	19-65, 23.8% in						
	≥65)						

Population	Infection parameter	Threshold for	Assumed effects of	Predicted effect on:				
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of	
contact rates		and duration of	contact patterns	of infection			epidemic	
		closure						
As ¹¹¹ ; probability of infection in school altered to be consistent with values estimated for H1N1v outbreaks amongst children in non- school settings. School closures	Latent period = 2 days; "Period of infection" = 5 days. Baseline infection AR = 36%	One or two weeks after start of outbreak, lasting for 4-7 days.	Not clear	Effects ranged from a decrease of 26% to an increase of 3%, depending on timing and duration of closure (compared to scenario with	Ranged from an increase of 0.7% to a decrease of 17%, depending on timing and duration of closure (compared to	Delayed by 1- 2 weeks, depending on timing and duration of closure (compared to scenario with self-isolation alone).	Little or no apparent effect.	
modelled in combination with self-isolation of all student cases and 1/3 of adult cases.				self-isolation alone): the greatest reduction was associated with the earlier closure (1 week after the start of the outbreak) but duration of closure had little effect if it was 5 days or greater.	scenario with self-isolation alone): the greatest reductions were associated with the earlier closure (1 week after the start of the outbreak) and longest duration of closure.			

structure and contact ratesvaluesclosing schools and duration of closureschool closure on contact patternsPeak incidence of infectionCumulative ARTime to peakDuration c epidemicBased on census data for Allegheny County, Pennsylvania, USA (2000).Ro = 1.4, 1.7, 1.9 or 2.4Threshold prevalence of symptomatic cases in population of 01% 142, 168 and greatest in households, then community.Ro = 1.4, 1.7, 1.9 or 2.4Time to peakDuration c epidemicBaseline infection (2000).Ranged from 35.1% (if Ro = 1.4) to 53% (if Ro = 1.4) to 1.5% if whole school systems are closed; or one day after the community.School system is closed for 1 to an increase of schools closed for 1 week at a threshold of 1 case per schools closed for 1 week at a threshold of 1 uses closed for 1 was 1.7 and threshold for to an increase of schools closed for 1 week at a threshold for 1 was 2.2 and threshold for 1 weeks at a threshold for 1 weeks at a threshold for 1 weeks at threshold for 1 weeks at threshold for 1 to sure varied from 1 to 16 <br< th=""><th>Population</th><th>Infection parameter</th><th>Threshold for</th><th>Assumed effects of</th><th colspan="5">Predicted effect on:</th></br<>	Population	Infection parameter	Threshold for	Assumed effects of	Predicted effect on:				
contact ratesand duration of closurecontact patientsof infectionof infectionepidemicBased on census data for Allegheny County, Pennsylvania, USA (2000). $R_0 = 1.4, 1.7, 1.9 \text{ or}$ 2.4Threshold prevalence of symptomatic cases in 0.1%, 0.5%, 1.0%Contacts at school eliminated, no effect on communityRanged from a reduction of 63.2% (if R_0 was 1.4 and individual schools wereRanged from a reduction of 44.7% (if R_0 to 53% (if $R_0 = 1.4$) to 53% (if R_0 was threshold of 1 threshold of 1 threshol	structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of	
Based on census data for Allegheny County, Pennsylvania, USA AR ranged from asseline infection Transmission parameters based on previous models infotious periods, then community.Rog = 1.4, 1.7, 1.9 or trevelence of symptomatic cases in oppulation of 0.1%, 0.5%, 1.0% or 1.5% if whole school systems are closed; or one day after the occurrence of 1, 5 or 10 school j, then community.Ranged from a reduction of 63.2% (if R ₀ was thand (if R ₀ was schools were closed for 16 weeks at a threshold of 1 case per school) to an increase of 9.2% (if R ₀ was 1.4 and individual school systems are closed; or one day after the occurrence of 1, 5 or 10 school i findividual school i not statedRanged from a reduction of 63.2% (if R ₀ was schools were school) to an increase of 9.2% (if R ₀ was 1.7% (if R ₀ was 1.7 and was 1.7 and suggested school system was closed for 1 the whole school i midividual school i individual school i not to 16 weeks.Ranged from a reduction of closed for 16 weeks at a threshold of 1 case per school i midividual school system was 1.7 and suggested school system was 2.4 and individual school i findividual school i not to 10 courrence of 1.5 or 10 weeks.Threshold of 1 case per school i midividual school system was 1.7 and school system was 1.7 and school system was closed for 1 the whole school system wa	contact rates		closure	contact patterns	of infection			epidemic	
predicted with differences closure of between individual reductions schools predicted with compared to the closure of whole school individual	structure and contact rates Based on census data for Allegheny County, Pennsylvania, USA (2000). Transmission parameters based on previous models ^{105, 142, 168} and greatest in households, then workplaces, then schools, then community.	values $R_0 = 1.4, 1.7, 1.9 \text{ or}$ 2.4 Baseline infection AR ranged from 35.1% (if $R_0 = 1.4$) to 53% (if $R_0 = 2.4$). Latent and infectious periods not stated.	closing schools and duration of closure Threshold prevalence of symptomatic cases in population of 0.1%, 0.5%, 1.0% or 1.5% if whole school systems are closed; or one day after the occurrence of 1, 5 or 10 symptomatic cases in the school if individual schools are closed. Duration of closure varied from 1 to 16 weeks.	School closure on contact patterns Contacts at school eliminated, no effect on community contacts.	Peak incidence of infection Ranged from a reduction of 63.2% (if R ₀ was 1.4 and individual schools were closed for 16 weeks at a threshold of 1 case per school) to an increase of 9.2% (if R ₀ was 2.4 and individual schools closed for 1 week at a threshold of 1 case per school). No consistent differences between reductions predicted with closure of individual schools compared to the whole school	Cumulative AR Ranged from a reduction of 44.7% (if R ₀ was 1.4 and individual schools were closed for 16 weeks at a threshold of 1 case per school) to an increase of 1.7% (if R ₀ was 1.7 and the whole school system was closed for 1 week at a threshold prevalence of 1% of the population). No consistent differences between reductions predicted with closure of individual	Time to peak Could be delayed by up to 28 days if $R_0 = 1.4$ and whole school system is closed for 8 weeks at a threshold prevalence of 1% or less; other scenarios suggested shorter or no delays to the peak.	Duration of epidemic Difficult to assess precisely from graphs presented, but suggests an increase is likely (~10-20 days).	
						the whole school system.			

Chao et al (2010) 128

Population	Infection parameter	Threshold for	Assumed effects of		Predicted	d effect on:	
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					
Population based	$R_0 = 2.0$	Threshold not	Contacts at school	Peak	NA	Peak	Increased by ~90
on metropolitan	Baseline clinical	stated; schools	eliminated, household	prevalence		prevalence	days.
Seattle.	AR 33%	closed either for	contacts increased by	reduced by		delayed by	
	Infectious period =	60 days or	an unspecified	~67% if schools		~24 days; the	
	6 days, beginning	permanently.	amount, community	closed		second peak	
	one day after		contacts doubled.	permanently; if		occurs ~10	
	becoming infected.			schools		days later	
	Incubation period			reopened after		(when schools	
	1-3 days.			60 days,		are closed for	
				epidemic was		60 days).	
				bimodal, with			
				the first and			
				second peaks in			
				prevalence			
				~33% and 50%			
				the size of the			
				peak in the			
				unmitigated			
				case,			
				respectively.			

Population	Infection parameter	Threshold for	Assumed effects of		Predicte	d effect on:	
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection		_	epidemic
		closure					
Model as in Chao	$R_0 = 1.3$	For local,	Not stated.	Peak	Both strategies	County-wide	County-wide
et al (2010) ¹²⁸ ,	Baseline infection	individual school		prevalence	"did not elicit	closures	closures had little
adapted for H1N1	AR 23%	closures, each		reduced by ~5%	any	delayed the	effect on duration;
pandemic in LA	Generation interval	school closed for		by county-wide	substantive	peak by ~1	local closures
County (primary	3.4 days	7 days following		closures or	decrease" (this	week; local	increased the
studies		one case in the		~26% by local	is not	closures by	duration of the
vaccination).		school.		closures.	quantified	~4-5 weeks.	epidemic but it is
		For county-wide			further).		not clear by how
		school closure, all					much.
		schools in the					
		county close for 7					
		days at an					
		unspecified					
		threshold					

Population	Infection parameter	Threshold for	Assumed effects of	Predicted effect on:				
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of	
contact rates		and duration of	contact patterns	of infection			epidemic	
		closure						
As ¹²⁴ with	$R_0 = 1.5$	1 case in a class	School contacts	Reduced by	Reduced by	No apparent	Possible slight	
emphasis on 2009	Baseline clinical	triggers isolation	eliminated; students	~13% (school	~8% (school	effect of	increase of ~10	
pandemic	AR 32.5%.	of that case and	and teachers spend	case isolation),	case isolation	school case	days for all	
	Mean infectious	their class	the day at home so	~23% (individual	or individual	isolation;	strategies.	
	period = 5.5 days	("school case	household contacts	school closure)	school	individual or all		
	(including 1 day	isolation"	increase if others are	or ~7% (all	closure) or	school closure		
	asymptomatic),	strategy);	present in the	school closure)	~2% (all	delayed peak		
	Mean generation	1 case in a	household. No effect	If closed for 1	school	by ~10 days		
	time ~2.5 days	primary school	on community	week; individual	closure) If			
		triggers closure of	contacts. If a child	school closure	closed for 1			
			aged 5-12 would	resulted in	week;			
			olone, on adult from	greater				
		triggore isolation	the household stave at	longer periode	regulted in			
		of that class while	homo	of closure (o.g	aroator			
		2 cases trigger full	nome.	$\sim 63\%$ with 4	reductions with			
				week closure)	longer periods			
		("individual school			of closure (e.a.			
		closure" strategy):			$\sim 23\%$ with 4			
		30 symptomatic			week closure)			
		cases in the						
		community (0.1%						
		of the population)						
		trigger closure of						
		all schools ("all						
		school closures"						
		strategy).						
		Closure lasted 1-4						
		weeks in all						
		cases.						

Population	Infection parameter	Threshold for	Assumed effects of		Predicte	d effect on:	
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
As ¹²⁴ with emphasis on antiviral treatment strategies and delays. Compares various antiviral treatment / prophylaxis strategies with and without school closures.	R ₀ = 1.5 (or 1.2, 2.0 or 2.5 in sensitivity analyses) Baseline clinical AR 24.5% Serial interval 2.32 days	closure Two diagnosed cases in a school triggers closure of that school for two weeks.	School contacts eliminated; students and teachers spend the day at home so household contacts increase if others are present in the household. No effect on community contacts. If a child aged 5-12 would otherwise be at home	For each antiviral strategy, adding school closure reduced the peak incidence by up to 50% compared to using antivirals alone (assuming no delay in diagnosis;	For each antiviral strategy, adding school closure reduced the cumulative AR by ~20-30% compared to using antivirals alone (assuming no	Delayed by ~40 days for each antiviral strategy.	Increased by up to 40 days, depending on antiviral strategy.
			alone, an adult from the household stays at	effects decreased as	delay in diagnosis;		
			home.	delay	effects		
				increased).	decreased as		
					delay		
					increased).		

Population	Infection parameter	Threshold for	Assumed effects of	Predicted effect on:				
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of	
contact rates		and duration of	contact patterns	of infection			epidemic	
		closure						
As ¹²⁴ with	$R_0 = 1.5, 2.0 \text{ or } 2.5.$	Individual school	As ¹²⁴ .	Maximum	Maximum	Maximum	Markedly	
emphasis on timing	Baseline clinical	closure strategy:		reduction of	reduction of	delay ~45	increased,	
and duration of	attack rates 33%,	1 case in a		73% (R ₀ = 1.5)	42% (R ₀ =	days (if $R_0 =$	particularly for low	
closure.	50% and 59% for	primary school		or 38% (R ₀ =	1.5), 18% (R ₀	1.5, schools	values of R ₀ .	
	the respective	triggers closure of		2.5), depending	= 2.0), 8% (R ₀	closed for 8		
	values of R ₀ .	that school; 1-2		on timing and	= 2.5)	weeks and		
	Serial interval 2.49,	cases in a high		duration of	depending on	closure was		
	2.36 or 2.21 days.	school leads to		closure.	timing and	optimally		
		isolation of		Optimal	duration of	timed).		
		students in the		threshold	closure.	Smaller delays		
		affected class; >2		depended non-	Optimal	were possible		
		cases in a high		linearly on	threshold	with higher		
		school triggers		duration of	depended	values of R ₀ .		
		closure of the		closure.	non-linearly on			
		whole school.			duration of			
		Closures occurred			closure.			
		only when daily						
		incidence in the						
		community						
		exceeded						
		threshold levels						
		Detween 0.003%						
		and 0.333%.						
		Cimentanaana						
		Simultaneous						
		school closure						
		strategy: all						
		schools close						
		the community						
		thresholds above						
Barrett et al (2011) 12	2	I	1	I	I	I		

Population	Infection parameter	Threshold for	Assumed effects of	of Predicted effect on:				
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of	
contact rates		and duration of	contact patterns	of infection			epidemic	
		closure						
Population of	Baseline attack	School close	Contacts at school	Peak	Reduced by	Epidemic	Shortened by ~20	
150,000 based on	rate (including	when "1% of the	appear to be	prevalence in	40%	becomes	days in children,	
US census data;	individual	total population is	eliminated although	children reduced	compared to	bimodal. For	adults and elderly.	
activities based on	preventive	infected"; closure	other contacts	by ~78%	the scenario	children,		
time use data (year	measures) 26.3%.	lasts for two	between children are	compared to the	with preventive	peaks with		
of collection not		weeks. School	not: 75% of children	scenario with	behaviours	school closure		
stated).		CIOSULE IS	stay at nome	preventive	oniy.	OCCUL ~14		
		modelled in	whilet 25% continue	Denaviours only.		days before		
		personal	their usual after-school	for adults or		allu ~3 uays		
		personal	activities If a child	elderly		in the scenario		
		behaviours (e.g.	aged <13 years would	cideny.		with preventive		
		buving over the	otherwise be alone at			behaviours		
		counter antiviral	home, an adult stavs			only. No clear		
		medication and	at home to care for			effect in		
		avoiding	them.			adults; peak		
		unnecessary				brought		
		trips), which vary				forward by ~3		
		with age and				days in elderly.		
		socioeconomic						
	400	group.						
Andradóttir et al (201	1) 123	1	1	Γ	T.			
Population based	$R_0 = 1.4$	Each school	Not stated.	NA	Reduced by	NA	NA	
on Hamilton,	Mean latent period	closes for 5 days	School closure		30% overall.			
Ontario, using	1.9 days; mean	If ≥5 cases are	modelled in		Effect largest			
Canadian census	Infectious period	identified in that	conjunction with a		in adults (40%			
uata from 2001 and	4.1 days.	SCHOOL	reduction of 20% In		reduction) and			
2006.	Baseline clinical		contacts in workplaces		smallest in			
			community.		(22/0			

Yang et al (2011) ¹³⁴

Population	Infection parameter	Threshold for	Assumed effects of		Predicted	d effect on:	
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					
Population based	$R_0 = 1.79$	Schools closed	Contacts at school	Reduced by	Reduced by	Delayed by 8	Increased by ~2
on Eemnes, The	Latent period 1-3	the day after	eliminated; effects on	28.9%	4.2%	days	weeks
Netherlands	days	prevalence	other contacts unclear.				
(population 8382).	Infectious period 3-	reaches 20					
Behaviour based	6 days	infections in the					
on time use data,	Baseline attack	population.					
data on household	rate 68%						
size and land use							
data (further details							
not specified).							
Mao (2011) 135					<u>.</u>	<u>.</u>	
Population based	$R_0 = 1.3 - 1.4$	Schools closed	Contacts at school	Reduced by	Reduced by	Delayed by 3	Increased by ~30
on US census data	Average latent	when cumulative	presumably	~63% if 10% of	36% if 10% of	days if 10% of	days
(2000) for Buffalo,	period 2 days	number of	eliminated, effects on	workplaces	workplaces	workplaces	
New York. School	Infectious period 4-	symptomatic	other contacts not	close or ~85% if	close, or 74%	close; brought	
closure modelled in	7 days	infections	stated.	33% of	if 33% of	forward by 8	
combination with	Baseline clinical	exceeds 1000		workplaces	workplaces	days if 33% of	
closure of 10% or	attack rate 18.6%	(~1% of		close.	close.	workplaces	
33% of workplaces.		population).				close.	

Population	Infection parameter	Threshold for	Assumed effects of	Predicted effect on:			
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					
Based on	$R_0 = 1.9$ (or 1.5 or	Schools closed	Contacts at school	Reduced by ~0-	Reduced by	Delayed by up	NA
population of	2.3 In sensitivity	when prevalence	eliminated, no change	27% depending	<10% for all	to 5 days	
including location-	Mean generation	0.25 1.5 or 5%	alsowhere	and duration of	of closure		
specific numbers of	time 2.5 days	for a duration of 2	eisewiiere.	closure	threshold and		
contacts collected	Baseline clinical	4. 6. 8 or 10		Increasing	duration.		
in a survey in 2008	AR 44%	weeks.		duration of	Larger		
(details of the		Thresholds of 10		closure has little	reductions as		
collection of these		and 15% also		effect if it is 4	duration of		
data and the		investigated for		weeks or longer.	closure		
definition of contact		closure lasting 2		Increasing	increased up		
are not provided)		weeks.		little effect if it is	to 6 weeks,		
				<1.5% and	henefit (and		
				duration is ≥ 4	slight increase		
				weeks.	in cumulative		
					AR if closure		
					occurred late)		
					to increasing		
					duration		
					beyond this		
					uniess the		
Morimoto & Ishikawa	(2010) ¹³⁷				0.0270.		
Population based	$R_0 = 2$	All schools in a	Not stated.	Reduced by	Reduced by	Delayed by 45	Increased by ~70
on Sapporo city,	Baseline infection	ward closed the		48%	14%	days.	days
Hokkaido, Japan,	attack rate 58%	day following					
using census and		diagnosis of an					
other data from		individual in that					
2000, 2005 and		ward.					
2007.							
Halder et al (2011) ¹³	0						

Population	Infection parameter	Threshold for	Assumed effects of		Predicted	d effect on:	
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
As ¹²⁴ , with an emphasis on cost- effectiveness of interventions during a pandemic with characteristics similar to that of 2009.	$R_n = 1.2, 1.5 \text{ or } 1.8$ Baseline clinical attack rate 13%, ~25% or ~33% for the respective values of R_n .	As ¹²⁹ ; schools are closed for 2, 4 or 8 weeks or permanently.	As ¹²⁹	NA	Reduced by 35-75% if $R_n =$ 1.2, ~28-64% if $R_n =$ 1.5, or ~18-42% if R_n = 1.8. Larger reductions with longer duration of closure.	NA	NA
Zhang et al (2012) ¹³³	3	·		·			·
Population structure based on Singapore population data. School closure modelled in isolation or (primarily) in combination with partial closure of workplaces.	$R_0 = 1.9 (1.5 \text{ or } 2.3 \text{ in sensitivity})$ analyses) Mean generation time 2.5 days Baseline clinical attack rate 44%	Schools close at a threshold incidence of either 0.02%, 0.25%, 1.5% or 5%, in the whole population. Schools remain closed for 2, 4, 6, 8 or 10 weeks.	Contacts at school eliminated; no effect on contacts elsewhere. Baseline contact patterns were based on a contact survey, but details are not given and the empirical data do not appear to include the effects of school closures.	Decreased by up to 28% by school closure alone.	Decreased by up to 9% by school closure alone.	Peak delayed by 5 days by school closure alone.	NA

Population	Infection parameter	Threshold for	Assumed effects of		Predicted	d effect on:	
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					
Carrat et al (2006) ¹⁰							
census data (year not stated). Networks within households,	clinical AR 33% overall (54% in 0- 18 year olds, 28% in 19-65 year olds,	over an unspecified time period. Schools reopened		~90% if only schools closed, or by ~97% if schools and	79% if only schools closed (87% in children, 75%	appreciable effect if only schools closed; peak is	~30% if only schools are closed, or reduced by ~60%
schools, workplaces, nursing homes and districts.	25% in >65s). R_0 estimated as 2.07 and serial interval as 2.44 days. Latent period 0.5 days Infectious period up to 10 days, peak infectiousness 2-3 days post-infection.	10 days after the last observed infection.		workplaces closed.	in adults, 76% in elderly), or by 98% if schools and workplaces closed (97% in children, 98% in adults, 97% in elderly).	~25 days earlier if schools and workplaces are closed.	if schools and workplaces are closed.

Population	Infection parameter	Threshold for	Assumed effects of	Predicted effect on:			
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					
Based on US	R ₀ =1.6 (estimated	90% or 50% of	Elimination of contacts	Ranged from a	Ranged from a	Ranged from a	Ranged from a
census data (2000).	from model)	schools closed	at school, doubling of	reduction (from	reduction of	reduction of 19	reduction of 20
Household	Mean latent period	the day following	household contacts	baseline of 7%)	93% if children	days if children	days
networks with mean	= 1.25 days	the 10 th	with or without	of 94% if	and teenagers	and teenagers	if children and
link contact	Infectious period =	symptomatic	doubling of other non-	children and	were kept at	were kept at	teenagers were
frequency (MLCF)	2 days (including	case.	school contacts. Also	teenagers were	home and	home and	kept at home and
6/day; extended	0.5 days pre-		assessed keeping	kept at home	compliance	compliance	compliance was
family /	symptomatic)		children and teenagers	and compliance	was 90%, to	was 90% to	90% to an
neighbourhood			at home for the	was 90%, to an	an increase of	an increase of	increase of 59
network with mean	Baseline clinical		duration of the	increase of 27%	18% if non-	15 days if	days if children
of 12.5 members	AR 25% overall		pandemic.	if non-school	school	children only	and teenagers
and MLCF 1/day;	(39% in children,		No empirical basis	contacts were	contacts were	were kept at	were kept at
school class	36% in teenagers,		stated for these	doubled and	doubled and	home and	home and
network(s) of 20-35	22% in adults, 12%		assumptions.	compliance was	compliance	compliance	compliance was
with MLCF 6/day	in older adults).			90%	was 90%	was 90%	50%
(children) or 1/day							
(teenagers);							
workplace network							
of 10-50 with MLCF							
1/day; networks for							
gatherings of 5-20							
older adults with							
MLCF 1/day;							
random links (3 in							
same age class,							
MLCF 1/day,							
across all ages							
MLCF 0.04/day.							

Population	Infection parameter	Threshold for	Assumed effects of	Predicted effect on:			
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection		-	epidemic
		closure					-
As ¹⁰⁸ , with	$R_0 = 1.6 \text{ or } 2.0.$	10 diagnosed	Contact rates outside	Reduced by 53-	Reduced by	NA	NA
emphasis on	Latent period =	cases within the	households reduced	95% depending	21-96%		
rescinding control	1.5-2 days	community.	by specified	on compliance	depending on		
measures	Infectious period =	Schools re-	compliance level (50-	and R ₀ : for a	compliance,		
	1.5-2 days	opened when 0,	90%) for children,	given R ₀ , the	rescinding		
	Baseline clinical	1, 2 or 3 cases	teenagers and one	reduction	threshold and		
	AR 25% or 36%,	occur in 7 days	adult per household	increases with	R ₀ : reduction		
	depending on R ₀	and may be re-	with children (children	the compliance	increases with		
		closed if the	are "sequestered" in	level; for a given	increasing		
		threshold is	the home). Household	compliance	compliance,		
		subsequently	contact frequencies	level, the	decreasing R ₀		
		breached again;	doubled for these	reduction	and		
		alternatively,	individuals.	increases as R ₀	decreasing		
		schools remain	No empirical basis	decreases.	rescinding		
		closed for the	stated for these	Only fairly weak	threshold.		
		duration of the	assumptions.	dependence on			
		epidemic.	-	rescinding			
				threshold.			

Population	Infection parameter	Threshold for	Assumed effects of	Predicted effect on:				
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of	
contact rates		and duration of	contact patterns	of infection			epidemic	
		closure						
As ¹⁰⁸ , exploring a	"Scaled disease	Introduced at	All school contacts	NA	Reduction	NA	NA	
wider range of	infectivity" 0.75 –	cumulative	reduced by 90%.		ranged from			
scenarios	3.0 (a value of 1.5	incidence of 10,	Household contacts		2% (for			
	is equivalent to R ₀	30 or 100	doubled for affected		infectivity			
	~ 2).	diagnosed,	children. One adult		factor of 3.00)			
	Latent period =	symptomatic	stays at home in each		to 92% (for			
	1.25 days	cases with	household with a child		infectivity			
	Infectious period =	compliance of	<11 years.		factor of 0.75).			
	2 days (including	60% OF 90%;	No empirical basis					
	0.5 days pre-	the number of						
	Symptomatic)		assumptions.					
		days reaches 3 or						
		0 Schools can re-						
	depending on	close if the						
	infectivity	threshold is						
	moouvity	subsequently						
		reached again.						
Perlroth et al (2010)	125		1					
As ¹⁰⁸ , with focus	$R_0 = 2.1 \text{ or } 1.6$	Introduced when	School contacts	NA	Reduced by	NA	NA	
on economic	Mean infectious	10 people	reduced by 90%,		66% (if R ₀ =			
aspects.	period 1.5 days	(0.0001% of the	children's household		1.6) or 12%			
	Baseline clinical	population) have	contacts doubled		$(R_0 = 2.1).$			
	AR ~25% (if R ₀ =	become						
	1.6) or ~35% (if R ₀	symptomatic;						
	= 2.1)	schools reopen						
		after 2 generation						
		times have						
		passed without						
		new cases being						
		diagnosed.						

Compartmental models

Population	Infection parameter	Threshold for	Assumed effects of	Predicted effect on:			
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					-
Roberts et al (2007)	126						
SEIR model	$R_0 = 1.1, 2.0 \text{ or } 3.0$	Schools closed	Elimination of	NA	If $R_0 = 1.1$,	NA	NA
structured by	Latent period = 1.2 ,	immediately at	transmission within		cumulative AR		
location	1.6 or 2.0 days	start of epidemic	schools; no effect on		is close to zero		
(household,	Infectious period =		transmission in other		(and R<1) if		
schools,	4.1 days		locations.		transmission in		
workplaces and			No empirical basis		schools is		
community) but not	Baseline clinical		stated for these		reduced by		
explicitly by age.	AR = 12%, 53% or		assumptions.		37%.		
47% of infections	63%, for $R_0 = 1.1$,				Cumulative AR		
occur in	2.0 and 3.0,				reduced by		
households, 24% in	respectively.				25% or 12% if		
schools, 18% in					$R_0 = 2.0 \text{ or } 3.0$		
workplaces and					respectively.		
11% in community.							

Population	Infection parameter	Threshold for	Assumed effects of	Predicted effect on:			
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					
Age / location- and	$R_0 = 1.8$	2,4 or 8 weeks	75% reduction in	NA	Decreased by	NA	NA
region-structured	Incubation period =	after the start of	contacts among		<1% if		
SEIR model	1 day	the pandemic	children and		intervention		
including stochastic	Infectious period =		teenagers. Workplace		implemented 2		
component; contact	3.9 days		closure reduces work-		or 4 weeks		
matrix defined by	Baseline infected		related contact by		after start of		
location	AR 35%.		16%, closure of public		pandemic, or		
(households,			places reduces		by 2.6% if after		
schools /			community contacts by		8 weeks.		
workplaces,			50%.				
community). Age							
groups 0-2, 3-14,							
19-39, 40-64 and							
≥05 years.							
Population based							
data (2001)							
School closures (for							
3 weeks)							
incorporated							
together with							
closure of public							
offices (for 4							
weeks) and public							
meeting places (for							
8 weeks).							
Population	Infection parameter	Threshold for	Assumed effects of		Predicted	d effect on:	
-----------------------------------	--------------------------	---------------------	---------------------------------	--------------------------------------	---------------------------	--------------------	-------------------------------
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					
SIR model	Infectious period =	Controls	Reduced by 27%	Peak	NA	Delayed by ~1	Increased by 2-3
assuming	3 days.	(including school	(based on reported	prevalence		week.	weeks if contact
nomogeneous	R_0 estimated as	closures as well	values of R ₀ before	feduced by 38%			rate recovers
mixing, used to	1.72 and 1.27		of control monouros	(110111 10.5% t0 6.5%) if control			when controls are
contact rate with	introduction of	introduced 1	during the H1N1y				lifted (Epidemic
introduction of	control measures	week after start of	outbreak in Mexico	relaxed			with no
control measures	respectively	outbreak with or	City) in a linear fashion	reduced by 67%			intervention lasts
based on fitting to	roopoolivory.	without relaxation	over six days.	(to 3.5%) if not			~5 weeks)
data from the 2009		~2 weeks later.		relaxed.			,
pandemic in Mexico							
City.							
Vynnycky & Edmunds	s (2008) ¹¹⁶						
SEIR model with	R ₀ = 1.5-3.5	Schools and	Decreased within-	Decreased by	Decreased by	Delayed by 1-	Little or no effect
age-dependent	Latent period =	nurseries closed	group contact rates for	~0-60%,	<1% to ~24%,	2 weeks if $R_0 =$	for high R ₀ or if
contact rates based	1.5-2 days	when overall	children aged 1-4 and	depending on	depending on	1.8 or 2.5,	reduction in
on several different	Infectious period =	disease incidence	5-14 by 25-75%; no	R_0 , baseline	R ₀ , baseline	contact	contact is ≤50%.
WAIFW matrices	1.5-2 days	of 50, 100, 200 or	effect on other contact	mixing patterns,	mixing	reduction =	If R ₀ ~1.8,
and fitting to data		1000/100 000 per	rates.	reduction in	patterns,	75%, and	increased by up
from 1957		week; reopened	Based in part on	contacts and	reduction in	ciosure	to 70% and 40% If
into <1 1 4 5 14		declined below	previous estimates of	throshold		1000/100 000	schools are
25_{4} 45_{6} 574		the threshold	parameters for	Greatest	threshold	1000/100,000	late respectively
20-44, 40-04, 200 vear olds			measles ¹⁷⁰ which	reductions	unesnoid.	Otherwise no	iale, respectively.
year olds.			considered contacts	associated with	Greatest	effect	
			between	greatest	reduction if	onoot.	
			schoolchildren and	reductions in	assumed		
			compared school	contact, least	reduction in		
			terms to school	assortative	contact is		
			holidays.	mixing patterns,	large, mixing is		
				lowest threshold	least		
				for closure, and	assortative,		
				low values of R ₀ .	and R_0 is low.		
House et al (2011) ¹⁰⁴	+						

Population	Infection parameter	Threshold for	Assumed effects of		Predicted	d effect on:	
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					
SEIR model	$R_0 = 1.1, 1.4 \text{ or } 2.0.$	Schools close for	Age-specific changes	Reduced by 30-	NA	NA	NA
stratified by age		1-4 weeks within	consistent with	70%; size of			
and risk group,		half a day of the	Polymod data.	reduction			
based on		optimal time point		increased with			
population of		for minimising		increasing			
England (data from		peak incidence.		duration of			
2008) and				closure and			
incorporating				increasing R ₀ .			
empirical contact							
data from Polymod.							
Percentage							
reduction in peak							
demand for							
intensive care unit							
beds in each							
hospital assumed							
to be equal to the							
percentage of							
children in that							
hospitals'							
catchment area							
who are affected by							
school closure.							

Population	Infection parameter	Threshold for	Assumed effects of	Predicted effect on:			
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					
Age-structured	Average latent	Threshold	Number of daily child-	Peak	For low R ₀ ,	Peak brought	Reduced by ≥75
SEIR model based	period 3 days	prevalence of	to-child contacts	prevalence	reduction in	forward by ~60	days (low
on Texas	Average infectious	0.5%, 0.8%,	reduced by 80%.	reduced by	cumulative AR	days (low	transmission
population data.	period 6 days	1.1%, 1.4%,	Contacts between	~80% (low	was 5-94% in	transmission	scenario) or
	R ₀ 1.1, 1.3 or 1.5 in	1.7%, 2.0%,	adults and children	transmission	children aged	scenario) or	increased by ≥25
	low transmission	3.0%, 4.0%, 5.0%	either unaffected or	scenario) or	5-18 years and	~35 days (high	days (high
	scenario, 1.5, 1.8	or 6.0% in	reduced by 33%,	~88% (high	-37 to 78% in	transmission	transmission
	or 2.1 in high	children aged 5-	depending on the	transmission	adults,	scenario).	scenario).
	transmission	18 years. Closure	direction of the	scenario).	depending on		
	scenario (results	lasted either for 1,	contact. No effect on		threshold and		
	are combined for	2, 3, 4, 8, 12 or 24	contact between		duration.		
	different R ₀ values	weeks, or until	adults. Assumptions		Greatest		
	in each of these	prevalence in 5-	based on Polymod		effects with		
	two scenarios)	18 year olds had	contact data		longest		
		declined to 75%,			Closures, but		
		50% OF 25% OF			little additional		
		the closure			perient of		
		unesnoia.					
					duration was		
					weeks		
					benefits were		
					greatest with		
					the lowest		
					closure		
					thresholds.		
					For high R ₀ ,		
					reduction in		
					cumulative AR		
					was -3 to 86%		
					for 5-18 year		
					olds and -48 to		
					32% for adults.		
Ghosh & Heffernan ($2010)^{171}$						

Population	Infection parameter	Threshold for	Assumed effects of	Predicted effect on:			
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					
SEIR model which	R ₀ 1.6	"School holidays	Transmission	First wave:	First wave:	First wave: no	First wave: no
also includes the	Latent period 3	are assumed to	parameter reduced by	reduced by	reduced by	effect	effect
effects of antivirals	days	start 70 days after	30%.	~38%	~45%	Second wave:	Second wave:
and vaccination.	Infectious period	the first wave		Second wave:	Second wave:	delayed by	effect unclear.
Infectious	4.85 days	emerges and last		reduced by	reduced by	~50-60 days	
individuals are		approximately 60		~95%	~77%		
subdivided into		days" (in the					
those who are		model without					
asymptomatic,		intervention, the					
untreated		peak occurs					
symptomatic, early		around day 60-					
treated		70).					
symptomatic and							
late treated							
symptomatic; the							
recovered							
compartment is							
subdivided in an							
analogous way.							
Two pandemic							
waves are							
modelled with and							
without assuming							
that the first wave							
coincides with							
school summer							
holidays.		1					

Population	Infection parameter	Threshold for	Assumed effects of		Predicted	d effect on:	
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					
SIR model with two	R ₀ 1.72 – 1.78	In the observed	Transmission between	First wave,	Calgary:	Delayed by ~1	Duration of first
age groups (5-18	(estimated value	data, schools	children aged 5-18	school aged	reduced by	month	wave increased
year olds and	depending on	were closed for a	years reduced by 63%	children:	~28%		by up to ~1 month
others) fitted to	dataset)	planned holiday	(Calgary), 100%	reduced by	Edmonton:		
pandemic H1N1		close to the	(Edmonton), 86%	~70% in Alberta	reduced by		
2009 data from		beginning of the	(Alberta), with no	and Calgary,	~35%		
Alberta, Calgary		first wave; a	change in transmission	very little effect	Alberta:		
and Edmonton and		model fitted to	amongst other age	in Edmonton;	reduced by		
used to predict the		these data was	groups, based on	Other ages:	~52%		
course of the		used to predict	fitting to the incidence	reduced by			
epidemic if a		how the epidemic	data.	~79% in Alberta,			
planned school		might have		~71% in			
closure had not		developed had		Calgary, very			
occurred.		this school		little effect in			
Transmission within		closure not		Edmonton.			
each age group		occurred.					
allowed to vary with							
temperature,							
absolute humidity							
and school closure.							

Population	Infection parameter	Threshold for	Assumed effects of		Predicted	d effect on:	
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		closure		or intection			epidemic
Stochastic patch model describing transmission between aimags in Mongolia (not age- structured). Movement between aimags (provinces) based on national travel statistics (year of collection not stated).	Mean latent period 1 day Mean infectious period 1.5 days $R_0 = 1.6$ or 2.0. Baseline clinical attack rate 9.7%.	Schools closed at times ranging from week 0 to week 14 of the pandemic, for 2- 12 weeks.	School closure reduces the effective reproduction number by a factor equal to the ratio of the attack rate in adults to that in children; this ratio was allowed to vary between 0.3 and 1.	"Modest impact" (not quantified).	Maximum reduction of ~11% (if schools closed for 4 weeks starting from week 5 and attack rate in children was 3 times that in adults). Smaller reductions were predicted as attack rates in adults and children became more similar and as school closure was delayed beyond week 5.	Delayed by up to two weeks.	NA

Population	Infection parameter	Threshold for	Assumed effects of	Predicted effect on:			
structure and	values	closing schools	school closure on	Peak incidence	Cumulative AR	Time to peak	Duration of
contact rates		and duration of	contact patterns	of infection			epidemic
		closure					
Glass & Barnes (200	7) 117				<u>.</u>		
Household model	$R_0 = 1.5 \text{ or } 2.5$	Schools closed at	Elimination of	Decreased by	If schools are	Delayed by 1-	Increased by 20-
describing	Serial Interval = 3.5	start of outbreak,	transmission among	~10-70%	ciosed when	15 weeks,	75% (1-3 weeks)
	uays	or at varying	ingraage in				
boussholds in the		infoction in	transmission botwoon	age-specific		aye-specific	aye-specific
nousenoius, in the	alibrated to 1057	ceboolebildron		D : groater	$15 \ge 70$,	and P · longer	D : groater
schools /	and 1968	Schoolchildren.	bouseholds is in	reduction for		delay for lower	increase for lower
workplaces	nandemics		proportion to the extra	lower R _o and if	depending on	R _o and if	R₀ and if attack
Population based	panaonnoo.		time spent at home.	attack rates are	age-specific	attack rates	rates are higher in
on Australian			Also allowed for one	higher in	attack rates	are higher in	children than in
census data (2001).			adult to stay home in	children than in	and R ₀ :	children than	adults.
			every household with	adults. Slightly	greater	in adults.	
			schoolchildren and no	greater	reduction with	Delay	
			non-working adult. No	reduction if	lower R ₀ and if	increased if	
			effect on community	parents stay	attack rates	parents stay	
			mixing.	home to look	are higher in	home to look	
				after children.	children than	after children.	
					in adults.		
					Similar results		
					if schools		
					reopen as the		
					epidemic		
					declines, as		
					long as		
					when		
					children is		
					<1%.		