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Abstract
Many statistical tests rely on the assumption that the residuals of a model are normally distributed. Rank-based inverse
normal transformation (INT) of the dependent variable is one of the most popular approaches to satisfy the normality
assumption. When covariates are included in the analysis, a common approach is to first adjust for the covariates and then
normalize the residuals. This study investigated the effect of regressing covariates against the dependent variable and then
applying rank-based INT to the residuals. The correlation between the dependent variable and covariates at each stage of
processing was assessed. An alternative approach was tested in which rank-based INT was applied to the dependent variable
before regressing covariates. Analyses based on both simulated and real data examples demonstrated that applying rank-
based INT to the dependent variable residuals after regressing out covariates re-introduces a linear correlation between the
dependent variable and covariates, increasing type-I errors and reducing power. On the other hand, when rank-based INT
was applied prior to controlling for covariate effects, residuals were normally distributed and linearly uncorrelated with
covariates. This latter approach is therefore recommended in situations were normality of the dependent variable is required.

Introduction

Many statistical tests rely on the assumption that the resi-
duals of a model are normally distributed [1]. In genetic
analyses of complex traits, the normality of residuals is
largely determined by the normality of the dependent
variable (phenotype) due to the very small effect size of
individual genetic variants [2]. However, many traits do not
follow a normal distribution. In behavioral research in
particular, questionnaire data often exhibit marked skew as
well as a large number of ties between individuals. The non-

normality of residuals can lead to heteroskedasticity (com-
parison of variables with unequal variance) potentially
resulting in increased type-I error rates and reduced power
[3]. However, most genome-wide analysis software cur-
rently implements only linear and logistic models, pre-
cluding the use of more general parametric or non-
parametric analyses.

There are several approaches to either satisfy the nor-
mality assumption or control for violations of it. One of the
most popular is the transformation of the dependent variable
to follow a normal distribution, i.e., normalization. There
are several transformations that can be used for this pur-
pose, the most popular being log, power, or Box-Cox
transformations, and rank-based inverse normal transfor-
mations (INTs), also referred to as quantile normalizations,
such as the Van de Waerden transformation [4]. In many
cases the use of log transformation has been shown to be
insufficient for normalizing data. Conversely, rank-based
INTs always create a perfect normal distribution when there
are no tied observations. Previous studies have reported that
although rank-based INTs can lead to loss of information,
this approach controls power and type-I error rate [5, 6].
However, a comprehensive review of rank-based INTs
demonstrated that in certain scenarios, rank-based INTs do
not control type-I error, although they remain useful in large
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samples where alternative methods, such as resampling, are
less practical [4]. Furthermore, normalization provides other
practical advantages when pooling data from different
sources in which the residual distributions may also vary.

It is often desirable to adjust for covariates in analysis. In
genetic studies, principal components of ancestry are com-
monly included to reduce confounding by population
structure. When a transformation to normality is used, the
covariates may be included in the analysis model after
transformation, or alternatively they may be regressed
against the response prior to the residuals being transformed
to normality. The latter approach has been used in a number
of recent high-profile studies [7–9] and is also automated in
the “rntransform” function within GenABEL, a popular R
package [10]. One reason is that confounders may be con-
sidered to have their effects on the untransformed, rather
than the normalized, variable. Another reason is that pre-
adjustment for covariates will break many of the ties that are
present in data derived from questionnaires or other rating
scales that are usually represented by a small number of
discrete values.

This study investigates the effect of first regressing out
covariate effects from quantitative dependent variables,
before applying rank-based INTs to the resulting residuals.
We use simulations to study the consequences of this pro-
cedure, varying the degree of skew in the dependent vari-
able, proportion of tied observations in the dependent
variable, and the original correlation between the dependent
variable and covariate. We then explore an alternative
approach whereby rank-based INT is first applied to the
dependent variable (randomly splitting tied observations)
before regressing out covariate effects. We demonstrate that
regressing covariate effects from the dependent variable
creates a covariate-based rank, which is subsequently dis-
torted by rank-based INT, leading to increased type-I errors
and reduced power. Our results suggest that the practice of
regressing out covariate effects prior to transformation
should be discouraged. As an alternative we suggest that
when strict normality of the dependent variable is required,
rank-based INT should be performed before controlling for
covariates, with random ranking of tied observations.

Materials and methods

Simulation of phenotypic data

Two types of phenotypic data were simulated: quantitative
variables containing no tied observations (herein referred to
as continuous variables) and quantitative variables con-
taining tied observations (herein referred to as
questionnaire-type variables). These variables were simu-
lated to exhibit different degrees of skew ranging from −2

to 2. Skewed variables were created using the R “rbeta”
function, which randomly generates numbers following a
beta distribution with two shape parameters to control the
degree of skew. Ten thousand observations were simulated
for each variable. To create tied observations in the
questionnaire-type variables, the initially continuous data
were collapsed into evenly distributed and discrete response
bins. The number of response bins, determining the pro-
portion of tied observations, was varied between 5 and 160.

The R functions used to create continuous and
questionnaire-type variables, called “SimCont” and
“SimQuest” respectively, are available in Supplementary
Text 1 and 2.

A normal distribution is defined by skew= 0 but also
kurtosis= 0. Given that the simulated variables were gen-
erated to follow a beta distribution, variables with a skew
equal to zero may not have a kurtosis equal to zero. To
ensure that the correction of kurtosis was not driving effects
seen when skew is equal to zero, continuous and
questionnaire-type variables were also generated using the
“rnorm” function in R to exhibit both a skew and kurtosis of
zero. The functions used to create continuous and
questionnaire-type with skew and kurtosis fixed to zero,
called “SimContNorm” and “SimQuestNorm” respectively,
are available in Supplementary Text 3 and 4.

Skew and kurtosis were measured using the “skewness”
and “kurtosis” functions from the R package “e1071” [11].

Simulation of covariate data

To create correlated covariate data, noise was added
to each simulated phenotypic variable until the
desired phenotype–covariate correlation was achieved.
Phenotype–covariate correlations (Pearson’s) were varied
between −0.5 and 0.5. Noise was added to the ques-
tionnaire variables using the “jitter” function in R.

The R function used to create covariates for each phe-
notypic variable, called “CovarCreator”, is available in
Supplementary Text 5.

Normalization after adjusting for covariates

Linear regression of each covariate against the corre-
sponding phenotypic variable was used to calculate phe-
notypic residuals, which are linearly uncorrelated with the
covariates. The Spearman’s rank correlation between the
residuals and covariates was measured. The residuals were
then normalized using the “rntransform” from the GenA-
BEL package in R, which applies a rank-based INT similar
to van de Waerden transformation. To determine whether
the transformed residuals were still linearly uncorrelated
with covariates, the Pearson correlation between the trans-
formed residuals and covariates was calculated.
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Normalization before adjusting for covariates

This was carried out using the same simulated
questionnaire-type and continuous variables and covariates.
The raw questionnaire-type and continuous variables
underwent rank-based INT using a modified version of the
“rntransform” function from GENABEL that randomly
ranks any tied observations. The modified version of
“rntransform”, called “rntransform_random”, is available in
Supplementary Text 6. Linear regression of each covariate
against the corresponding normalized variables was used to
calculate phenotypic residuals, which are linearly uncorre-
lated with the covariates.

One concern with rank-based INT, particularly when
randomly splitting ties, is that the linear relationship
between the phenotypic variable and independent variables
(including covariates) may be severely distorted. To deter-
mine the extent to which rank-based INT when randomly
splitting ties distorts phenotypic variables, the Pearson
correlations between the untransformed and transformed
phenotypic variables were calculated. To determine the
extent to which rank-based INT when randomly splitting
ties distorts the relationship between the phenotypic vari-
ables and covariates, the Pearson correlation between the
transformed phenotypic variables and covariates was
calculated.

Another concern with normalizing the phenotypic vari-
able before regressing out covariates is that the process of
regressing out covariates may re-introduce skew in the
residuals. We therefore calculated the skew of the residuals
after regressing out covariates.

Demonstration using real data

To determine whether the predicted effects (when using
simulated data) of performing rank-based INT before or
after regressing out covariate effects are seen in practice, the
same procedures were applied to real questionnaire data
provided by the Twins Early Development Study
(TEDS) [12]. Data from two questionnaires were used
measuring Paranoia and Anhedonia. Both of these measures
are part of the SPEQ (Specific Psychotic Experiences
Questionnaire) [13]. Individuals with missing
phenotypic data were excluded from all analyses. Sum
scores of unrelated individuals were calculated by summing
the response of each item. Each item of both the Paranoia
and Anhedonia scales were coded as values from 0–5, with
the total ranges of the Paranoia and Anhedonia scales being
0–75 and 0–50, respectively. Sum scores were calculated
using different numbers of items (1, 2, 4, 8) to create dif-
ferent numbers of response bins (5, 10, 20, 40) and
as in the simulation study. The covariates used were age
(continuous variable skew of −0.32) and sex (binary

variable with skew of 0.22). Table 1 shows the skew,
number of response bins (proportion of ties), and correlation
with covariates for each of dependent variable. The TEDS
data were analyzed using the same procedure as the simu-
lated data.

Results

Normalization after adjusting for covariates

As expected, regressing covariates against phenotypic
variables created phenotypic residuals that were linearly
uncorrelated with covariates. Although there was no linear
correlation, in almost all simulations a rank-based correla-
tion remained between the residuals and covariates (Sup-
plementary Figure 1–7). As a consequence, rank-based INT
of residuals re-introduced a linear correlation between the
phenotypic variables and covariates (Supplementary Fig-
ure 8–14). Three factors predicted to affect the re-
introduction of correlation between the phenotypic vari-
ables and covariates were tested. These factors were the
original skew of the phenotypic variable, the original cor-
relation between the phenotypic variable and covariate, and
the proportion of tied observations in the original pheno-
typic data.

First, in terms of skew, greater skew of the phenotypic
variable was associated with a higher correlation between
the normalized phenotypic residuals and the covariate data
(Fig. 1, Supplementary Figure 8–14). The direction of skew
had no effect on the correlation between the normalized
residuals and the covariate data. The effect of normalizing
residuals when skew was equal to zero remained when
kurtosis was also fixed to zero (Supplementary Figure 15).

Second, the direction of the original correlation between
the original phenotypic variable and the covariates was
reversed after rank-based INT of residuals. The magnitude
of correlation between the original dependent variable and

Table 1 Skew, range, and correlation with covariates for dependent
variables derived from TEDS sample

Dependent
variable

Range Skew Pearson
correlation with
age

Pearson
correlation with
sex

Paranoia 5 1.357 0.055 0.018

Paranoia 10 1.195 0.043 −0.026

Paranoia 20 1.095 0.03 −0.022

Paranoia 40 1.296 0.022 −0.059

Anhedonia 5 1.868 −0.006 0.177

Anhedonia 10 0.858 −0.025 0.127

Anhedonia 20 0.651 −0.02 0.135

Anhedonia 40 0.537 −0.013 0.205
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covariates showed different effects according to the pro-
portion of ties. In questionnaire-type data, when the pro-
portion of tied observations was high, the magnitude of
correlation between the original questionnaire data and
covariates had a negative relationship with the degree to
which normalization re-introduced the correlation with
covariates (Supplementary Figure 8). However, this nega-
tive relationship reversed as the proportion of ties decreased
(Supplementary Figure 16). This means that when the
proportion of tied observations was low (or in continuous
data), the magnitude of correlation between the original
questionnaire data and covariates had a positive relationship
with the degree to which normalization re-introduced the
correlation with covariates.

Third, independent of the original correlation between
the dependent variable and covariates, the proportion of ties
in the phenotypic variable influenced the extent to which
normalization of residuals reintroduced a correlation with
covariates. A decreased number of response bins in the
questionnaire-type data (i.e., smaller range and more tied
observations) resulted in an increased correlation between
covariates and normalized residuals (Fig. 1). However, even
when there were 160 response bins, or the data were con-
tinuous, rank-based INT still re-introduced a correlation
with covariates when the data had an original skew >0.5
(Supplementary Figure 13 and 14).

As previously mentioned, although there is no linear
correlation between phenotypic residuals and covariates, a
rank-based correlation between the phenotypic residuals
and covariates remained in almost all simulations. The
factors affecting the magnitude of rank-based correlation
between phenotypic residuals and covariates are the same as
those influencing the effect of rank-based INT of residuals
(Supplementary Figure 17–18).

Normalization before adjusting for covariates

Rank-based INT of phenotypic variables, randomly splitting
ties, before subsequent regression of covariates against the
normalized phenotypic data, always resulted in phenotypic
residuals with no linear correlation with covariates, and in
the majority of simulations, skew less than 0.05.

The correlations between the phenotypic variables and
the covariates decreased a small amount (median 5%) after
rank-based INT of the phenotypic variables, compared to
their original correlations (Supplementary Table 1). The
extent to which the correlation decreased was dependent on
the original correlation, the skew of the dependent variable,
and the proportion of tied responses in the dependent
variable (Supplementary Figures 19–24).

Comparing the original values of the dependent variables
to their values after rank-based INT (randomly splitting tied
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observations) yielded correlations between 0.77 and 1.00.
An increased proportion of tied observations and increased
skew led to a decreased correlation after rank-based INT
(Supplementary Figure 25).

Regressing covariates after normalizing the dependent
variables introduced a smaller degree of skew, when cov-
ariates had either a low skew themselves or a low correla-
tion with the dependent variable. The degree to which
regressing covariate effects introduced skew was not
dependent on the proportion of tied observations. Overall,
regressing covariates introduced a small amount of skew to
the dependent variable (0.00–0.11) unless the covariate had
a correlation with the dependent variable over 0.25 and a
skew greater than 0.05 (Supplementary Figure 26). How-
ever, highly skewed covariates may introduce larger
amounts of skew even when exhibiting a low correlation
with the dependent variable.

Real data analysis

The effect of applying INTs to residuals in simulated
questionnaire-type data was then observed in real ques-
tionnaire data from TEDS. When using the age covariate
(continuous) the magnitude and direction of effect of
applying INT to residuals were similar to those of simulated
questionnaire-type data (Supplementary Table 2–3). The
effect of INT on residuals when using real questionnaire
data was slightly reduced in comparison to effects observed,
when using simulated questionnaire-type data.

When the sex covariate (binary) was used, the magni-
tude, and in some cases the direction, of the effect of rank-
based procedures varied from effects observed in simulated
data. Although regressing the effect of a binary covariate
altered the outcome of rank-based procedures, application
of rank-based procedures to residuals still re-introduced a
correlation with covariates (Supplementary Table 4–5).
Importantly, when a dichotomous variable was used, a large
number of ties in the data still existed reducing the efficacy
of rank-based INT.

We then applied rank-based INT (randomly splitting tied
observations) before regressing out covariate effects. The
results in real questionnaire data were comparable to the
effects observed when using simulated data. Rank-based
INT, randomly splitting ties, and subsequent regression of
covariates created residuals that were linearly uncorrelated
with covariates and normally distributed (Supplementary
Table 6–7). The correlation between the dependent variable
and covariate did vary slightly before and after rank-based
INT (Supplementary Table 6–7). Contrary to the observed
effects when using simulated data, the correlation between
the dependent variable and the covariate did not always
decrease. The Pearson correlation between raw and nor-
malized questionnaire data varied between 0.83 and 0.99

dependent on the skew of the raw data and the number of
response bins (Supplementary Table 8). Similar to the
results of our simulations, the effect of regressing covariates
out of the normalized variables did not re-introduce
skew greater than 0.02 in any situation (Supplementary
Table 6–7).

Discussion

This study has demonstrated that regressing covariates
against the dependent (phenotypic) variable and then
using rank-based INT to transform the residuals to nor-
mality re-introduces a correlation between the covariates
and the normalized dependent variable. This effect
occurs because the process of regressing covariates against
the response variable leads to a covariate-based
rank in the residuals, which is then used to redistribute
the data (Fig. 2). This effect of regressing covariates against
response variables occurs when the response variable is
continuous (contains no tied observations) or questionnaire-
type (contains tied observations), however the effect
increases as the proportion of tied observations increases.
The degree to which the covariate correlation is re-
introduced during rank-based INT is dependent on the ori-
ginal skew of the response variable, although when
the data contain a large proportion of tied observations, a
correlation with covariates is re-introduced even when there
is no skew.

This study has also evaluated an alternative procedure for
preparing data for parametric analyses, whereby the
response variable undergoes rank-based INT, randomly
separating ties, before regressing out covariate effects. Our
findings demonstrate that this alternative approach is pre-
ferable as it creates a normally distributed response variable
with no correlation with covariates (Fig. 3). The notion of
normalizing the response variables before estimating its
relationship with covariates may seem counterintuitive as
the process of normalization may disrupt the true relation-
ship between variables. Although this may be true in some
scenarios, when the variables are skewed and/or contain tied
observations, the change in relationship between variables
due to normalization (Supplementary Table 6–7) is small
relative to the change in relationship when normalizing
residuals (Supplementary Table 2 and 4). In contrast,
regressing covariates after normalization will leave no
correlation between the variables, meaning that any con-
founding by those covariates will be eliminated. A limita-
tion of applying rank-based INT before controlling for
covariates is the requirement of randomly splitting ties. This
process will introduce random variation in the data, subse-
quently reducing statistical power. However, the alternative
approach of normalizing after controlling for covariates
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introduces non-random variation, leading to a reduction in
power and confounding.

Given the importance of phenotypic transformations,
authors must describe the details of this process. Many
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r = 0.00
Skew = 1.50 

r = -0.47
Skew = 0.00 
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Fig. 2 The effect of applying a rank-based INT to residuals of
questionnaire-type data, i.e., after regressing out covariates. All cor-
relations referred to in this figure are Pearson (linear) correlations. a
Untransformed questionnaire-type variable and its relationship with a
continuous covariate. The questionnaire-type variable has a range of 5.
A weak linear relationship exists between the questionnaire-type
variable and covariate. b Questionnaire-type variable residuals after
regressing out the relationship with the covariate. No linear relation-
ship exists between the questionnaire-type residuals and covariate.
Regressing out covariate effects has led to the separation of many tied
observations, creating a covariate-based rank within the questionnaire-
type variable residuals. c After the rank-based INT of questionnaire-
type variable residuals, the transformed questionnaire-type variable
residuals show a strong linear correlation with the covariate. This
correlation is stronger and in the opposite direction to the original
correlation between the untransformed questionnaire-type variable and
the covariate
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r = 0.05
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Fig. 3 The effect of applying a rank-based INT to questionnaire-type
data before regressing out covariates. All correlations referred to in this
figure are Pearson (linear) correlations. a Untransformed
questionnaire-type variable and its relationship with a continuous
covariate. The questionnaire-type variable has a range of 5. A weak
linear relationship exists between the questionnaire-type variable and
covariate. b Questionnaire-type variable after rank-based INT, ran-
domly splitting tied observations. Relationship between the
questionnaire-type variable remains intact. c Covariate effects have
been regressed from the normalized questionnaire-type variable. There
is no linear relationship between the residuals and the covariate, and
the skew is close to zero
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studies do not clearly describe the details in which the data
are processed, but there are some major studies that have
clearly applied rank-based INT to residuals [7–9]. We do
not believe that the results of these studies are seriously in
error as they have either dealt with traits that have a very
low skew and/or are continuous, or they have replicated
their findings using binary outcomes based on untrans-
formed data. However, we do believe that the potential
problems with rank-based INT of residuals are not well
known, and that researchers should be aware of these issues
before applying such a procedure. There are, of course,
many parametric and non-parametric methods that do not
require normality in residuals, and in an ideal world one
would identify and apply a model that accurately describes
the data at hand. However, this is not always practical in
large genetic studies with many contributing datasets, and
rank-based INTs remain a pragmatic approach of choice in
spite of its well-known limitations [4]. We suggest that, if
rank-based INTs must be used, researchers should adjust for
covariates after rather than before applying the normalizing
transformation.

These findings are not just relevant to rank-based INT of
residuals but highlight the importance of procedures that
introduce or alter the rank of observations. Another proce-
dure that will alter the rank-based relationship between
variables is the calculation of factor scores via principal
components analysis (PCA). PCA is a method that applies
orthogonal transformation to identify linearly uncorrelated
axes of variation among observations. Although the derived
factors are linearly uncorrelated, they may have a rank-
based correlation. Therefore, if the factors are skewed,
subsequent rank-based INT will introduce a linear correla-
tion between factors. Similar to the example of normalizing
residuals, if the original correlation between the latent
variables is positive, rank-based INT will lead to a negative
correlation between derived factors.

Although we conclude that normalization of the depen-
dent variable should be performed prior to adjusting for
covariates, regressing out covariates that are either highly
skewed or highly correlated with the dependent variable
may introduce substantial skew to the residuals. However,
this scenario may be unlikely.

In conclusion, this study has demonstrated that rank-
based INT of phenotypic residuals after adjusting for cov-
ariates can lead to an overcorrection of covariate effects
leading to a correlation in the opposite direction between
the normalized phenotypic residuals and covariates, and in
questionnaire-type data, often of a greater magnitude. This
finding has implications for all rank-based procedures and
highlights the importance of clearly documenting
how the raw data are handled. Normalization of phenotypic
data before regressing out covariates has been shown to
produce normally distributed phenotypic residuals that are

uncorrelated with covariates, and is therefore recommended
in situations when rank-based INT is the pragmatic
choice.
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