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Aim: The present study investigated the link between peripheral DNA methylation (DNAm), cognitive im-
pairment and brain aging. Methods: We tested the association between blood genome-wide DNAm pro-
files using the lllumina 450K arrays, cognitive dysfunction and brain MRI measures in selected participants
of the Whitehall Il imaging sub-study. Results: Eight differentially methylated regions were associated
with cognitive impairment. Accelerated aging based on the Hannum epigenetic clock was associated with
mean diffusivity and global fractional anisotropy. We also identified modules of co-methylated loci asso-
ciated with white matter hyperintensities. These co-methylation modules were enriched among pathways
relevant to B-amyloid processing and glutamatergic signaling. Conclusion: Our data support the notion
that blood DNAm changes may have utility as a biomarker for cognitive dysfunction and brain aging.
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DNA methylation (DNAm) changes have been linked with the pathophysiology of brain aging, Alzheimer’s disease
(AD) and other types of dementia [1,2]. Considering the relative stability of DNAm and the fact that it is directly
modulated by both underlying genetic sequence and environmental exposures it appears as a promising peripheral
biomarker for brain-related changes [3]. Peripheral changes in mRNA and proteins that are downstream of DNAm
regulation further support this concept 14,5]. Studies have shown differences in blood DNAm when comparing AD
subjects with controls [6], but interestingly when looking at specific genes there is little overlap between brain and
blood DNAm changes in AD [7,8]. However, a good peripheral biomarker does not have to mirror disease-associated
changes in the brain; it could also simply represent a peripheral response to central pathology. At present, there
is limited data available on the potential utility of peripheral DNAm as a marker for cognitive decline before
the onset of dementia. One study of patients with Type 2 diabetes mellitus who later developed presymptomatic
dementia highlighted leukocyte DNAm changes that were comparable to changes identified in blood in AD patients
and could thus potendially represent early markers of dementia [9). Recently DNAm epigenetic clocks have been
developed, which provide a measure of epigenetic age, based on DNAm levels at 353 CpG sites [10] and 71 CpG
sites [11], respectively. A number of studies have utilized the epigenetic age in blood, based on the DNAm epigenetic
clock, to show correlations with cognitive function, white matter hyperintensities (WMH), Parkinson’s disease,
Down syndrome and all-cause mortality [12-16]. Future s~

Medicine ™

10.2217/epi-2017-0132 © 2018 Leonidas Chouliaras Epigenomics (2018) 10(5), 585-595 ISSN 1750-1911 585



Research Article

Chouliaras, Pishva, Haapakoski et al.

Considering the limited access to brain tissue in living humans, multimodal MRI has been widely used to study
brain aging 7z vivo. MRI measures of reduced brain volume, reduced white matter integrity and increased WMH
have been linked with the risk for developing dementia [17,18]. As such, brain imaging changes are useful surrogate
markers of brain health and aging. Here, we investigated the potential utility of DNAm profiling as a peripheral
marker for cognitive decline and brain health in the Whitehall IT imaging sub-study [19], which provides a valuable
source of longitudinal data to explore factors hypothesized to affect brain health and cognitive aging.

Materials & methods

Participants

Forty-eight participants were selected from subjects recruited to the Whitehall II imaging sub-study between May
2012 and December 2014 [19]. All participants were members of the Whitehall IT study, a prospective occupation
cohort study established in 1985 [20). For the imaging sub-study based at the University of Oxford, a sample of
participants in the 2012-2013 clinical examination was selected at random from the whole Whitehall cohort.
Ethical approval was obtained from the University of Oxford Central University Research Ethics Committee, and
the University College London Medical School Committee on the Ethics of Human Research. Informed written
consent was obtained from all participants [19].

In 2012-2016, participants of the Whitehall II imaging sub-study invited to Oxford had a clinical interview
and cognitive assessment, followed by a multimodal 3T MRI scan (full details are provided in Supplementary
Methods) and subsequently blood samples were taken. The detailed study protocol has been previously published
elsewhere [19]. We assessed cognitive impairment using the Montreal Cognitive Assessment (MoCA) [21], and studied
24 cognitively impaired participants (MoCA <26), who would qualify for a clinical diagnosis of mild cognitive
impairment (MCI), alongside 24 age and gender matched cognitively normal participants (MoCA >26), who were
free from other comorbidities such as depression (Supplementary Table 1). A range of MRI measures were obtained,
including total brain volume, left hippocampal volume (LHV), right hippocampal volume (RHYV), cerebrospinal
fluid volume (CSF), white matter volume (WM), gray matter volume (GM), fractional anisotropy (FA), mean
diffusivity (MD) and WMH, with full details provided in the Supplementary Methods.

DNA methylation profiling

Samples (peripheral blood mononuclear cells [PBMCs]) were drawn using the Vacutainer CPT tubes (Becton
Dickinson, NJ, USA). Following sample collection each tube was immediately inverted eight times to mix antico-
agulant and processed within 2 h of collection. CPT tubes were centrifuged at 1600 X g for 30 min to separate
serum from peripheral white blood cells and red blood cells. PBMCs were washed with phosphate buffered saline
(PBS), counted, cryopreserved using Cell Freezing Medium (5% DMSO/11% human serum albumin in phosphate
buffered saline) and stored at -80°C until DNA isolation took place. DNA was isolated from all samples simul-
taneously using the QIAamp DNA Mini Kit (Qiagen, Venlo, The Netherlands) according to the manufacturer’s
protocol and tested for degradation and purity before analysis. From each sample, 500 ng of genomic DNA was
bisulfite treated using the EZ-96 DNA Methylation-Gold™ Kit (Zymo Research, CA, USA) according to the man-
ufacturer’s protocol. A total of 48 samples were processed using the Illumina Infinium Human Methylation 450 K
BeadChip (HM450K; Illumina, CA, USA) according to the protocol supplied by the manufacturer. Intensity values
generated by the Illumina iScanner were imported into R statistical software v3.3.2 using the ‘readEPIC’ function
in the Bioconductor package wateRmelon v1.18 [22. Data quality control and normalization were conducted using
the methylumi (23], wateRmelon [22] and minfi [24] R packages according to the pipeline previously described (7).
After the quality control steps, one sample was dropped from the analysis due to possessing an XXY genotype.

Statistical analyses

A linear regression model was conducted to identify differentially methylated positions (DMPs) associated with
cognition, while controlling for covariates. We used the MoCA [21] to determine cognitive impairment (full details
provided in Supplementary Methods). Cellular composition of peripheral blood cells was measured using an online
calculator (https://dnamage.genetics.ucla.edu), and included in the model as a covariate together with gender, age
and processing batch (chip and position on array). We have previously established the multiple testing threshold
(experiment-wide significance) for epigenome-wide association (EWAS) data generated on the HM450K array as
p < 2.2E-07 1251. To identify differentially methylated regions (DMRs) we used the comb-p software tool [26],
to identify greater than or equal to three adjacent significant DMPs in a 1000 bp sliding window. The comb-p
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algorithm corrects the DMP p-values for autocorrelation between probes and then scans the genome for peaks of
association around a seed signal (set to p < 5.0E-05). For each region it calculates the Stouffer—Liptak-corrected
p-value, which is then adjusted for multiple testing using Sidak’s correction [25,26]. Next, we separately tested the
association between blood cell composition and the methylation status of the top 20 MoCA-associated DMPs.
We also performed candidate gene analysis, testing the associations between MoCA and neuroimaging variables
(LHV, RHY, total brain volume, CSE WM, GM, FA, MD, WMH) and the methylation of 45 CpGs that are
included in the 450K array that are related to genes previously associated with AD (20 CpGs in ABCA7, 7 CpGs
in TREM?2, 18 CpGs in SNCA; [27-29)). For the targeted gene analysis we used Bonferroni correction for multiple
testing (o <1.1E-03) and used the same covariates described above.

Our secondary analysis focused on identifying the relationship between accelerated aging in blood (based on
the Horvath and Hannum epigenetic clock age measures) and neuroimaging variables. The Horvath-predicted age
based on 353 CpG probes and the Hannum-predicted age based on 71 CpG probes were generated using online
calculators (https://dnamage.genetics.ucla.edu) [10,11]. The variables AAHOAd]jCellCounts’ and ‘AAHAAdjCell-
Counts’ derived from the online calculator were used in linear regression models as independent variables, and
MoCA and MRI measures (LHV, RHV, GM, WM, CSE FA, MD, WMH) were used as dependent variables. Cell
type composition, gender, age, smoking, alcohol consumption and premorbid IQ (test of premorbid function)
were used as covariates in the model. Bonferroni correction was used for the DNAm clock analyses to adjust for
multiple testing with level of significance set at a <5.5E-03.

Our final analysis used weighted gene co-methylation network analysis (WGCNA) [28] to group together highly
correlated probes. First, we calculated the variance of methylation values across all 47 samples for each probe.
Next, we excluded probes showing variance lower than the median of calculated variance in the entire dataset
(variance <5.86E-04). A signed network was constructed using the automatic one-step blockwise modules function
within the WGCNA package, based on a block size of 5000 and using a soft threshold parameter of six. Each
module was then labeled with a unique color identifier according to size. Module-trait associations were examined
using Pearson’s correlation coefficients to examine associations between the module eigengene (ME) values and
cognitive and MRI outcomes (full details provided in Supplementary Methods) including MoCA total scores, and
various MRI measures as described in section 2.1. The association between modules and the covariates that had
been used for our initial linear regression analyses, including gender, age, batch effects and cell type compositions
was also examined. Subsequently, the module membership (MM) of each probe was calculated as the correlation
between DNAm and ME values. To incorporate cognitive performance (MoCA scores) in the WGCNA modules
we calculated the gene significance (GS) of each probe. Thus GS describes the strength of the correlation between
the DNAm of each probe and the MoCA scores while MM quantifies the extent to which a gene conforms to
the characteristics of a module (i.e., correlates with ME) [29]. Subsequently, the correlation between MM and GS
for each probe was computed. The correlation between MM and GS for each probe indicates how central a given
probe is to the determined module and how associated it is with the MoCA scores. Gene ontology (GO) and
KEGG pathway enrichment analysis was conducted for the CpG sites that were grouped in the modules showing
significant associations with the outcomes. The missMethyl package in R (v1.9) [30] was used for this analysis,
which adjusts for the number of CpGs associated with each gene in the HM450K array.

Results & discussion

Blood DNA methylation signatures are associated with cognitive impairment

We identified a number of MoCA-associated DMPs (Table 1), but none reached the multiple testing threshold
for EWAS data (p < 2.2E-07) [25]. Our most significant DMP resided in BNCI (cg26429925; standardized
regression coefficient = -0.75, p = 4.71E-06). Differential methylation of BNCI, which encodes a zinc finger
protein basonuclein, has been previously found in frontal cortex of AD subjects compared with controls (311, and
upregulation of BNCI has been observed in a novel chimeric model of AD [32].

Our subsequent regional analysis identified eight DMRs (each containing more than or equal to three DMPs),
which were significantly associated with MoCA scores, with a Sidak-corrected p < 0.05 (Table 2 & Figure 1A).
The eight identified DMRs were annotated to the HLA-DPAI/HLA-DPBI, DRCI, PRKAA2, CALCB, CDH?2,
RTBDN, ZNF256 and SHANK? genes. The top DMR we identified resided in genes encoding subunits of the
human leukocyte antigen (HLA) DP receptor, which is involved in the immune response. Alterations in the immune
profile of leukocytes have been previously described in MCI patients [29]. Moreover increased RNA expression of
HLA-DPAI and HLA-DPBI in frontal cortex and hippocampus has been associated with the transition from MCI
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Table 1. Differentially methylated loci in peripheral blood mononuclear cells associated with Montreal Cognitive

Assessment.
Chr

chr15
chr13
chr19
chra
chr5
chr16
chr16
chr2
chré
chr16

Position lluminalD Coefficient! p-value Gene name (UCSC) Gene feature Relation_to
_CpG.island
83953775 926429925 -0.75 4.71E-06 BNC1 TSS1500 Island
50202570 908772163 0.68 8.32E-06 ARL11 TSS200
44455454 ¢cg03227078 -0.69 8.97E-06 ZNF221 5'-UTR; 1stExon Island
183243982 cg18351711 0.93 1.14E-05 oDZ3 TSS1500
57756024 cg11821403 -0.72 1.28E-05 PLK2 TSS200 Island
28857989 905666372 0.65 2.54E-05 TUFM TSS1500 Island
619677 cg06486124 0.68 3.16E-05 PIGQ TSS1500 Shore
112939562 €g20313969 -0.88 4.24E-05 FBLN7 Body; Body Island
116601353 902007388 0.68 4.71E-05 TSPYL1; DSE TSS200; 1stExon Shore
89408076 cg05497216 -0.89 4.75E-05 ANKRD11 5-UTR Shore

The most significant DMPs.
'Standardized regression coefficient.
DMP: Differentially methylated position; TSS: Transcription Start Site; UCSC: University of California, Santa Cruz.

Table 2. Differentially methylated loci in peripheral blood mononuclear cells associated with Montreal Cognitive

Assessment.

Chr Start Stop Probes in DMR p-value Sidak- Gene name Gene feature  Relation_to Direction of
corrected (Ucsq) _CpG.island association with
p-value MoCA

chré 33048253 33048761 10 1.53E-11 2.32E-08 HLA-DPA1; TSS; intron; Island +

HLA-DPB1 exon; 5'-UTR;
CDS

chr2 26624603 26625048 9 1.83E-10 3.16E-07 DRC1 TSS; intron; Island -

5'-UTR; CDS

chr1 57110866 57111123 6 1.15E-08 3.44E-05 PRKAA2; TSS; 5'-UTR; Island -

LOC101929935 CDS;
intron + Exon

chri11 15095016 15095179 6 4.14E-08 1.96E-04 CALCB TSS; Exon; Island -
5-UTR

chr18 25757437 25757711 3 2.73E-07 7.67E-04 CDH2 Intergenic Island -

chr19 12936490 12936803 5 3.75E-07 9.21E-04 RTBDN Intron; UTR3;  Island -
CDS; exon

chr19 58458916 58459359 9 8.59E-07 1.49E-03 ZNF256 TSS; exon; Island -
5-UTR

chr11 70672739 70672987 7 7.12E-07 2.21E-03 SHANK2 Intron Island -

chr1 77747373 77747388 3 1.75E-06 8.57E-02 AK5 Intergenic Island -

chr5 96038284 96038402 7 2.20E-05 1.34E-01 CAST Intron + UTR5; Island -
TSS + exon

chré 31650834 31651095 9 3.88E-04 6.82E-01 LY6G5C Intergenic Island -

The top eight DMRs with Sidak-corrected p < 0.05 are in bold.

CDS: Coding sequence;

DMP: Differentially methylated position; DMR: Differentially methylated region; MoCA: Montreal Cognitive Assessment; TSS: Transcription Start Site; UCSC: Uni-

versity of California, Santa Cruz.

to AD [33). It is unclear whether in our study the observed methylation changes in this DMR could affect gene
expression. However, considering that they span the whole gene, including the transcription start site, it is likely that
these methylation changes alter transcription. Interestingly, methylation changes in a probe of the SHANK?2 gene,
which is involved in the structural and functional organization of the dendritic spine and synaptic junction, have
been previously reported in a study comparing blood DNAm profiles of AD subjects to nondemented controls (7).

We did not find any associations between cell composition and MoCA scores. With regards to candidate gene
analysis the most remarkable finding was a negative association between methylation at cg25748868 in TREM?2
and WMH (standardized regression coefficient = -11,3, p = 3.9-E03); however, this did not survive Bonferroni
correction for multiple testing (a <1.1E-03) and neither did any of the other tested comparisons (full data not
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Figure 1. DNA methylation in peripheral blood mononuclear cells is associated with cognitive and neuroimaging measures. (A)
Manhattan plot of differentially methylated regions (DMRs) associated with Montreal Cognitive Assessment. Red dots indicate the
chromosomal location of individual probes within each DMR. The University of California Santa Cruz gene symbols corresponding to
DMRs with more than three probes after Sidak correction for multiple testing are assigned to the chromosomal locations. (B) Heatmap of
module-trait correlations for the remaining 24 modules, after excluding modules with significant association with the covariates of cell
composition, batch, age, gender, smoking and IQ. Shown are the correlations of Montreal Cognitive Assessment, total brain volume, left
hippocampal volume, right hippocampal volume, cerebrospinal fluid volume, white matter volume, gray matter volume, fractional
anisotropy, mean diffusivity and white matter hyperintensities with each module. For each module-trait pair the upper value is the
Pearson correlation coefficient, while the lower (bracketed) value is the correlation p-value. The cell color represents the strength and
direction of the correlation. Modules are assigned an arbitrary color by the analysis software according to their size. (C) The correlation
between module membership and gene significance for each probe in the ‘yellowgreen’ module.

CSF: Cerebrospinal fluid volume; FA: Fractional anisotropy; GM: Grey matter volume; LHV: Left hippocampal volume; MD: Mean
diffusivity; ME: Module eigengene; MoCA: Montreal Cognitive Assessment; RHV: Right hippocampal volume; WM: White matter volume.
For color figures please see online at: www.futuremedicine.com/doi/10.2217/epi-2017-0132

shown). WMH load has been consistently associated with AD; TREM2 hypomethylation and overexpression have
been previously observed when comparing blood samples of AD and controls, while increased TREM?2 methylation
and hydroxymethylation have been observed in AD brain [34-38). Overall it is likely that previously identified
associations between cell composition and Parkinson’s disease as well as methylation and expression changes in
ABCA7, TREM2 and SNCA with AD and SNCA methylation with dementia with Lewy bodies are specific for

those conditions and thus not present in our dataset [27,34,39-41].

Accelerated blood DNAm age is associated with MRI alterations

Our linear regression analyses showed a significant association between chronological age and various imaging
measures, as to be expected (Supplementary Table 2). We also observed a significant association between accelerated
DNAm age (based on the Hannum epigenetic age clock) and two MRI measures (Supplementary Table 2). Increased
DNAm age (based on the Hannum epigenetic clock) was associated with global measures of increased FA (p = 8.99E-
04) and reduced MD (p = 8.33E-04), with these associations being in the opposite direction to the associations
between global FA and MD with chronological age. Our findings seem paradoxical as reduced FA and increased MD
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Figure 1. DNA methylation in peripheral blood mononuclear cells is associated with cognitive and neuroimaging measures (cont.). (A)
Manhattan plot of differentially methylated regions (DMRs) associated with Montreal Cognitive Assessment. Red dots indicate the
chromosomal location of individual probes within each DMR. The University of California Santa Cruz gene symbols corresponding to
DMRs with more than three probes after Sidak correction for multiple testing are assigned to the chromosomal locations. (B) Heatmap of
module-trait correlations for the remaining 24 modules, after excluding modules with significant association with the covariates of cell
composition, batch, age, gender, smoking and IQ. Shown are the correlations of Montreal Cognitive Assessment, total brain volume, left
hippocampal volume, right hippocampal volume, cerebrospinal fluid volume, white matter volume, gray matter volume, fractional
anisotropy, mean diffusivity and white matter hyperintensities with each module. For each module-trait pair the upper value is the
Pearson correlation coefficient, while the lower (bracketed) value is the correlation p-value. The cell color represents the strength and
direction of the correlation. Modules are assigned an arbitrary color by the analysis software according to their size. (C) The correlation
between module membership and gene significance for each probe in the ‘yellowgreen’ module.

CSF: Cerebrospinal fluid volume; FA: Fractional anisotropy; GM: Grey matter volume; LHV: Left hippocampal volume; MD: Mean
diffusivity; ME: Module eigengene; MoCA: Montreal Cognitive Assessment; RHV: Right hippocampal volume; WM: White matter volume.
For color figures please see online at: www.futuremedicine.com/doi/10.2217 /epi-2017-0132
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Figure 1. DNA methylation in peripheral blood mononuclear cells is associated with cognitive and neuroimaging measures (cont.). (A)
Manhattan plot of differentially methylated regions (DMRs) associated with Montreal Cognitive Assessment. Red dots indicate the
chromosomal location of individual probes within each DMR. The University of California Santa Cruz gene symbols corresponding to
DMRs with more than three probes after Sidak correction for multiple testing are assigned to the chromosomal locations. (B) Heatmap of
module-trait correlations for the remaining 24 modules, after excluding modules with significant association with the covariates of cell
composition, batch, age, gender, smoking and 1Q. Shown are the correlations of Montreal Cognitive Assessment, total brain volume, left
hippocampal volume, right hippocampal volume, cerebrospinal fluid volume, white matter volume, gray matter volume, fractional
anisotropy, mean diffusivity and white matter hyperintensities with each module. For each module-trait pair the upper value is the
Pearson correlation coefficient, while the lower (bracketed) value is the correlation p-value. The cell color represents the strength and
direction of the correlation. Modules are assigned an arbitrary color by the analysis software according to their size. (C) The correlation
between module membership and gene significance for each probe in the ‘yellowgreen’ module.

CSF: Cerebrospinal fluid volume; FA: Fractional anisotropy; GM: Grey matter volume; LHV: Left hippocampal volume; MD: Mean
diffusivity; ME: Module eigengene; MoCA: Montreal Cognitive Assessment; RHV: Right hippocampal volume; WM: White matter volume.
For color figures please see online at: www.futuremedicine.com/doi/10.2217 /epi-2017-0132

have been associated with aging and symptomatic neurodegeneration and could be chance findings. Alternatively,
epigenetic aging associated with increased FA and decreased MD could be linked with comparable findings in
presymptomatic carriers of familial AD mutations, where it has been suggested that such findings could reflect
earlier axonal insults in the pathway toward subsequent neurodegeneration such as neuroinflammatory changes
leading to neuronal and glial swelling (42,43]. Nevertheless most studies indicated no change or decreased FA and
increased MD in preclinical familial AD [42].

No associations were observed between the Horvath epigenetic clock and any of the imaging variables tested and
neither of the epigenetic clocks were associated with cognitive function or presence of cognitive impairment. In
comparison to the study by Raina ez al., we found no associations between accelerated DNAm age and WMH [15].

Weighted gene co-methylation network analysis
WGCNA was used to construct clusters of highly correlated probes. For the current HM450K dataset, we identified
41 modules, with each assigned a unique color (Supplementary Table 3). Of those 41 modules, 16 were significantly
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associated with at least one of the covariates such as gender, age, cell composition estimates (based on Horvath
epigenetic calculator; [10]) or premorbid IQ. The gray module is considered to be ‘background’ CpG sites that are
not clustered into any module, and were thus disregarded from further analyses. From the remaining 24 modules
(Figure 1B), the ‘yellowgreen’ module, which contained 278 probes, showed the greatest association with WMH,
after correcting for multiple tests (r = 0.74, p = 2.28E-09). A positive correlation between MM and GS for each
of the 278 probes in the ‘yellowgreen’ module was found with respect to MoCA scores (r = 0.27, p = 5.35E-06;
Figure 1C). The GO and KEGG enrichment analysis for the probes in the ‘yellowgreen’ module highlighted many
pathways associated with the pathophysiology of cognitive dysfunction and dementia (Supplementary Tables 4 &
5), for example, the GO terms ‘main axon’ (GO:0044304: p = 4.37E-03) and ‘B-amyloid binding’ (GO:0001540:
p =0.0109), and the KEGG pathways ‘glutamatergic synapse’ (hsa04727: p = 4.79E-04) and ‘Alzheimer’s disease’
(hsa05010: p = 0.0491). DNAm and hydroxymethylation changes in genes involved in these pathways, such as axon
and glutamatergic synapse have been previously linked to brain aging and cognition in experimental models [44,45].

Conclusion

The current study has identified DNAm changes in PBMC:s that correlate with age-related cognitive dysfunction,
measures of white matter integrity and WMH. We have identified eight DMRs that were associated with age-related
dysfunction, with the most significant being related to immune response. Another identified DMR, SHANK?2, has
also been previously found to be differentially methylated when comparing blood DNAm profiles of AD cases and
controls, and could represent an early dementia biomarker. We have also identified links between accelerated aging
based on the Hannum epigenetic clock and MRI measures of white matter integrity and have found associations
between WMH and methylation of genes involved in neurodegenerative processes.

Advantages of this study are related to the unique combination of multimodal MRI imaging, cognitive assessments
and genome-wide DNAm analysis in a well characterized cohort with available extensive sociodemographic data
giving the ability to control for confounders such as premorbid functioning. One of the main limitations of this
pilot study is the relatively small sample size for EWAS. Therefore, any results will need to be replicated in larger
independent cohorts. Future research will also need to assess the timing and specificity of such changes and expand
research in more robust sequencing methods as the current arrays only cover a small proportion of DNAm sites.
Moreover, the current approach does not distinguish between DNAm and hydroxymethylation and other DNA
modifications. Additional limitations are related to the use of blood for methylomic profiling and the limited overlap
with brain profiles and hence limited utility in providing novel mechanistic insights with regards to improving
our understanding of the pathophysiology of cognitive dysfunction. This is further supported by the fact that we
have detected correlations between brain WMH and methylation of genes involved in some but not all aspects of
neurodegenerative processes [46-48]. This could be due to several factors, such as the effect of cell differentiation,
developmental programming and tissue specificity of methylation profiles [49]. Moreover, the rapid turnover of
peripheral cells may not mirror the cumulative environmental exposures and hence possible epimutations that a
post mitotic neuron can accumulate over time. Alternatively, technical limitations, such as the limited coverage of
total CpGs by the 450K array may fail to detect cross-tissue overlap that could be driven by genetic or early life
factors [50].

Opverall, these findings suggest that DNAm changes in blood could have potential utility as a peripheral
biomarker for age-related cognitive dysfunction and associated structural brain changes. Considering the need for
robust biomarkers for early detection of dementia to test effective treatments in a timely manner, more research in

the field of epigenetics and MCI is warranted.

Executive summary

e Differentially methylated regions in eight genes are associated with cognitive dysfunction.
e Epigenetic clock age is associated with fractional anisotropy and mean diffusivity.

e White matter hyperintensities co-methylated modules are enriched in pathways involved in B-amyloid processing
and glutamatergic signaling.
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