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A. Wells 

Abstract: Rigorous and transparent critical appraisal is a core component of high quality 

systematic reviews. Well-conducted quasi-experiments have been empirically shown to 

estimate credible, unbiased treatment quantities. Conversely, when inappropriately designed 

or executed, these estimates are likely to be biased. This paper draws on recent advances in 

risk of bias assessment. It presents an approach to evaluating the internal validity of credible 

quasi-experiments. These are non-randomised studies using design-based approaches to 

control for unobservable sources of confounding such as difference studies, instrumental 

variables, interrupted time series, natural experiments and regression discontinuity designs. 

Our review suggests that existing risk of bias tools provide, to different degrees, incomplete 

transparent criteria to assess the validity of credible quasi-experiments. We argue that a tool 

is needed to assess risk of bias consistently across credible quasi-experiments. Drawing on 

existing tools, in particular Cochrane’s new tool for non-randomized studies of interventions 

(Sterne et al., 2014), we discuss domains of bias and suggest directions for evaluation 

questions.  

Keywords: risk of bias, systematic review, meta-analysis, quasi-experiment, natural 

experiment, instrumental variables, regression discontinuity, interrupted time series, 

difference in differences, propensity score matching 

                                                           
1 Thanks are due to David Wilson for suggesting the term ‘credible quasi-experiments’ at the Campbell 

Collaboration Methods Group Symposium in Belfast, May 2014, as well to other participants at that meeting 

and participants the Alliance for Health Systems Research workshop on quasi-experimental studies at Harvard 

School of Public Health, November 2013.  
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1. Introduction 

Researchers in health and the social sciences quantify statistically valid treatment effects – 

that is, changes in outcomes which are attributed to a particular treatment – using a range of 

credible quasi-experimental approaches (Dunning, 2012; Reeves et al., this issue). Quasi-

experiments are referred to by various names including natural experiments,2 observational 

studies or simply non-randomized studies.3 ‘Credible quasi-experiments’ are defined here as 

approaches that use rigorous designs and methods of analysis which can enable studies to 

adjust for unobservable sources of confounding. Approaches discussed explicitly in this paper 

are difference-in-differences, instrumental variables, interrupted time-series, natural 

experiments, and regression discontinuity designs. Often these designs are combined with 

methods to control for observable confounding such as statistical matching (e.g. propensity 

score matching, PSM) and adjusted regression analysis.  

All quantitative causal studies are subject to biases relating to design (internal validity) and 

methods of analysis (statistical conclusion validity) (Shadish et al., 2002). In the same way 

that experimental studies (randomized controlled trials, RCTs) can have methodological 

problems in implementation (for example, contagion (contamination), poor allocation 

concealment, non-random attrition, and so on), inappropriately designed or executed quasi-

experiments will not generate good causal evidence. Quasi-experimental studies are, 

however, potentially at higher risk of bias than their experimental counterparts (Higgins et al., 

2012; Rubin, 1974), with perhaps the most critical biases for causal inference being 

confounding and bias in selection of the reported result. They are also harder to assess than 

                                                           
2A UK Medical Research Council (Craig et al. 2011) guidelines refers to on quasi-experimental designs as 

‘natural experiments’; we use ‘natural experiment’ to refer specifically to designs where exogenous variation in 

treatment exists, for example due to random errors in treatment targeting and geographical variation. 
3 Randomized studies are defined here as studies in which assignment to the intervention of interest is 

determined randomly.  
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RCTs, requiring greater qualitative appraisal of potential biases, which in many cases may 

need to draw on advanced theoretical and statistical knowledge.  

Systematic critical appraisal, operationalized through ‘risk of bias’ assessment, provides 

assurance of the credibility of causal studies (Higgins and Green, 2011) and their 

trustworthiness for decision-making (Chalmers, 2014). Risk of bias tools provide 

transparency about the judgments made by reviewers when performing assessments. They are 

usually organized around particular domains of bias, and provide the specific ‘signaling 

questions’ which enable reviewers to evaluate the likelihood of bias.  

This paper discusses how to operationalize risk of bias assessment for credible quasi-

experiments. Section 2 discusses internal validity and Section 3 reviews existing risk of bias 

tools. Section 4 presents proposed evaluation criteria and signaling questions. Section 5 

concludes by proposing an agenda for research in the further development of a risk of bias 

tool.  

2. Internal validity of credible quasi-experiments 

Habicht and Victora (1999) distinguish probability evaluation designs, which are able to 

quantify with statistical precision the change in outcomes attributed to a treatment, from 

plausibility designs, which attempt to rule out observable confounding but are unable to 

address important sources of bias, in particular those arising from unobservables.4 These 

authors explicitly limit probability evaluations to randomized controlled trials. However, 

evidence is emerging which suggests quasi-experiments which are able to address 

                                                           
4 A third category, adequacy evaluations refers to descriptive methods which are not able to address 

confounding (e.g., uncontrolled pre-test post-test studies where no attempt is made to rule out external factors 

which may explain observed changes in outcomes) (Habicht and Victora, 1999). These would include single 

case quasi-experimental designs and other ‘small n’ approaches.   
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unobservable confounding can produce the same effect sizes as RCTs in pooled analysis 

(Table 1).5,6  

Table 1 Pooled effects of RCTs and credible quasi-experiments 

Treatment Design Pooled 

odds ratio4 

95% confidence 

interval 

P>|z| Tau-sq I-Sq Num obs 

Conditional 

cash transfer 

(vs control)1 

RCT 1.43 1.21 1.69 0.000 0.05 90.8% 15 

RCT and 

QE 

1.43 1.28 1.59 0.000 0.04 88.7% 22 

Education 

intervention 

(vs standard 

intervention)2 

RCT 1.33 1.20 1.46 0.000 0.02 90.9% 43 

QE 1.34 1.20 1.52 0.000 0.02 96.7% 16 

Microcredit 

(vs control)3 

RCT 0.99 0.93 1.05 0.437 0.00 0.0% 4 

QE 0.99 0.88 1.12 0.074 0.00 61.6% 3 

Notes: 1/ Baird et al. (2013); outcome is school enrolment. 2/ Petrosino et al. (2012); outcomes is school 

enrolment and attendance. 3/ Vaessen et al. (2014); outcome is ‘woman makes household spending decisions’. 

4/ Pooled odds ratios estimated by inverse-variance weighted random effects meta-analysis. Quasi-experiments 

(QE) included in the analyses are difference-in-differences, instrumental variables, propensity score matching 

and regression discontinuity. Source: author calculations based on reported data. 

Credible quasi-experiments account for unobservable confounding by design, either through 

knowledge about the method of allocation or in the methods of analysis used. They are 

                                                           
5 We note that authors and journal editors may have incentives for selective publishing of favorable comparisons 

between randomized and non-randomized studies. The examples presented in Table 1 are from systematic 

reviews (SRs) of socio-economic interventions in low- and middle-income countries supported by the Campbell 

Collaboration International Development Coordinating Group (IDCG). The findings on experimental and quasi-

experimental approaches are representative of the body of evidence in SRs supported by the IDCG. Other 

examples of comparisons of RCTs and quasi-experiments include Lipsey and Wilson (1993) who provide a 

meta-analysis of North American social programs and Vist et al. (2009) who compare RCTs and cohort studies 

in health care studies. Evidence is also available from (within-study) design replication – that is, studies which 

attempt to compare the same experimental treatment groups with non-randomized comparison groups using 

quasi-experimental methods. One meta-study suggested significant differences between results from RCTs and 

quasi-experiments for US and European labor market programs (Glazerman et al., 2003). However, design 

replications using well-conducted quasi-experimental methods, in which participation has been carefully 

modelled, have also shown the same results as the RCTs they are replicating (Cook et al., 2008; Hansen et al., 

2011).  
6 As noted by Duvendack et al. (2012), effect sizes estimated from credible quasi-experiments may differ 

empirically from those from RCTs due to differences in external validity – that is, due to the population sampled 

and the type of treatment effect estimated (see also Aloe et al., this issue).  
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considered more credible than approaches which rely solely on covariate adjustment of 

observable confounders (Dunning, 2012; Shadish et al. 2002), whose validity usually relies 

on unverifiable assumptions about the strength of the correlation between confounding that 

can be observed and that which cannot (i.e., that observables and unobservables are strongly 

correlated).  

In quasi-experimental designs that use information about the method of allocation to estimate 

a treatment effect, the ability of the study to identify a causal relationship rests on 

assumptions that the identifying variables which determine assignment are highly correlated 

with treatment status but not caused by the outcomes of interest (reverse causality) nor related 

to any of the other causes of the change in outcome (observable and unobservable 

confounding) – that is, they are ‘exogenous’. This is the same rationale on which randomized 

assignment is based, hence we adopt the term ‘as-if randomized’ (Dunning, 2010) for quasi-

experimental designs which are, in theory, able to account for all sources of confounding, 

including unobservables. We differentiate these designs from ‘non-randomized’ quasi-

experiments which are only able to account for observable confounding and unobservables 

under particular conditions (Figure 1).  

‘As-if randomized’ quasi-experiments include instrumental variables (IV), interrupted time 

series (ITS), natural experiments (NE) and regression discontinuity (RD) designs. In natural 

experiments treatment is assigned ‘as-if randomly’ due to decisions in implementation or 

take-up, for example by an arbitrary boundary, whether by service provision jurisdiction 

(Snow and Richardson, 1965) or perhaps according to treatment practice (e.g., Zafar et al., 

2014), errors in implementation (e.g., Morris et al., 2004), or manipulated by researchers who 

are using ‘randomized encouragement’, where participants are exposed randomly to 
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information about an intervention which itself may be universally available (King et al., 

2009).7 We may also include non-random methods of assignment such as alternation here.  

‘As-if randomized’ quasi-experiments also include regression-discontinuity designs (RD) 

which exploit local variation around a cut-off on an ordinal or continuous ‘forcing’ variable 

used by decision-makers to determine treatment.8 Examples include treatment assignment by 

diagnostic test score (e.g., Bor et al., 2014), age (e.g., Card et al., 2009), or date as in multiple 

case-series interrupted time-series (ITS) design.9 

In the special case of instrumental variables (Zohoori and Savitz, 1997) and related 

approaches,10 researchers use such exogenous variables to model treatment decisions in 

multiple-stage regression (e.g., 2-stage least squares or simultaneous equations maximum 

likelihood). Exogenous variables used in IV estimation include all of the variables mentioned 

above, such as randomized assignment or encouragement, differences in implementation 

across groups (e.g., Wang et al., 2007) and, frequently, geographical factors such as 

distance11 (e.g., Newhouse and McClellan, 1998), weather or climate conditions (Lawlor et 

al., 2006) and topography (e.g., Duflo and Pande, 2008), among many others.12  

                                                           
7 ‘Randomized encouragement’ designs are classified as natural experiments because the relationship of interest 

in the study is not usually the pragmatic question about the effect of such encouragement, but rather the 

mechanistic question about the effect of the intervention in people who are responsive to encouragement. A 

randomized encouragement study can be analysed conventionally (using intention-to-treat) or using instrumental 

variables estimation. 
8 Where the forcing variable is not correlated with assignment precisely (e.g. due to performance biases), the 

design is referred to as a ‘fuzzy’ RDD and estimation is done using instrumental variables.  
9 ITS here refers to longitudinal panel datasets measured at the disaggregate level (i.e., the same people 

measured multiple times before and after treatment). It is more common for longitudinal datasets to be clustered 

at aggregate levels of care (e.g., the health facility or district). In such cases, confounding by secular trends 

needs to be assessed, for example with reference to a contemporaneous comparison group (controlled 

interrupted time-series) and an assessment of performance bias.  
10 For example, ‘switching regression’ models (for a practical example, see Lockshin and Sajaia, 2004). 

Instrumental variables methods are also used to analyse experimental data, for example to account for non-

compliance (Imbens and Angrist, 1994; for an illustration of the approach in epidemiology, see Greenland, 

2000). 
11 It is worth noting that location is often endogenous – at least in the long-term, people are able to move to gain 

access to better services. Hence distance of participant to treatment facility may often not be a good instrument.  
12 See Dunning (2012) for a comprehensive overview of instrumental variables approaches.  
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Where allocation rules are not exogenous, confounding must be controlled directly in 

adjusted statistical analyses. Methods such as difference-in-differences (DID, also called 

double differences, DD), triple differences (DDD) and fixed effects (FE) regression applied 

to individual level longitudinal data, enable adjustment for time-invariant unobservable 

confounding (at the level of the unit of analysis) by design, and observable confounding in 

adjusted analyses.13 However, these methods are not able to control for time-varying 

unobservables even in theory. In contrast, single difference (SD) estimation applied to case-

control, cohort or cross-sectional data (or in PSM when matching is on baseline 

characteristics14) is not able in theory to control for time-varying or time-invariant 

unobservables, except in the special case of selection on observables.  

In Figure 1, we group these study designs and methods of analysis into three groups ordered 

from top to bottom according to a priori internal validity in addressing confounding. 

Randomized experiments and ‘as-if randomized’ design-based quasi-experiments are 

considered the most credible methods in theory. Non-randomized quasi-experiments are 

considered less credible in theory, with differencing methods applied to individual level data 

being favored over non-randomized studies relying solely on analysis of observables.  

The choice of design for a comparative assessment should capture the information needed to 

classify a study in this proposed hierarchy (see also Reeves et al., this issue). However, the 

extent to which designs produce valid causal inferences in practice also depends on the 

quality of implementation of the approach and the statistical conclusions drawn (see also 

Vandenbroucke, 1989). Particular flaws in implementation can lead to studies being assessed 

as being of lower quality than suggested by the a priori categories in Figure 1; indeed we 

                                                           
13 Difference studies can only adjust for unobservable confounding at the unit of analysis, hence it is important 

to distinguish studies where data analysis is at the individual level, from those where data analysis is conducted 

at the aggregate level such as the practitioner, health facility, and community or higher.  
14 Difference studies should usually be accompanied by statistical matching (e.g., propensity score matching, 

PSM) in order to identify the treatment effect among observations in the region of common support (Heckman, 

1998). 
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would expect many quasi-experiments to be downgraded because the assumptions underlying 

the design are not met.15  

Figure 1 Study design decision flow for causal studies using statistical methods

Source: Authors draw on Waddington et al. 2012. 

                                                           
15 Conversely, strong implementation might in rare cases lead to studies being assessed as of higher quality. An 

example would be a SD study where selection of participants is based on observable characteristics which are 

measured at baseline and appropriately modelled in the analysis.  
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Risk of bias assessment should therefore incorporate design assessment and implementation 

of analysis (Littell et al., 2008). While the underlying domains of bias (e.g., confounding, 

biases in outcomes data collection and reporting etc.) are relevant across designs, the criteria 

used to verify them may differ between ‘as-if randomized’ and non-randomized study groups 

and even within groups themselves. For instance, let Z be an exogenous variable determining 

assignment, T be a dummy variable representing treatment assignment, and Y be the outcome 

of interest. For ‘as-if randomized’ studies (NE, IV and RD), the validity assessment will need 

to incorporate the following criteria: information provided about the relationship between Z 

and T – in particular, nonzero and monotonic causal relationship between Z and T (Bound et 

al., 1995); the relationship between Z and Y – that is, Z is not affected by Y or any of its 

causes and only affects Y through T (exogeneity, also called the ‘exclusion restriction’); and 

the relationship between treated units – Z for one treatment unit does not affect T for another 

treatment unit (crossovers), T for one treatment unit does not affect Y for another treatment 

unit (spillovers) and there is no variation in T across treatment units (e.g. due to measurement 

errors) – collectively referred to as the ‘stable unit treatment value assumption’ (Chiba, 

2010).16 However, the ‘signaling questions’ on which each of these propositions can be 

verified will differ between NE, IV and RD. For example, IV and RD require greater 

assessment of the statistical methods (e.g., the appropriate bandwidth around forcing variable 

and functional form specification for RD). The assessment of non-randomized quasi-

experiments will be based on different criteria and different signaling questions (Figure 2). 

                                                           
16 The degree of homogeneity of the relationship between T and Y across individuals induced to treatment by Z 

is also of interest for external validity (Angrist & Pischke, 2009). See also fn. 6. 
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Figure 2 Assumptions underpinning validity of credible quasi-experiments 

Natural experiments and instrumental variables: 

• Relationship between assignment variable and treatment status is monotonic and highly correlated 

• Assignment variable does not affect the outcome except through treatment (the ‘exclusion 

restriction’) 

• Assignment variable is not caused by nor shares causes with the outcome 

• Stable unit treatment value assumption (SUTVA) is satisfied 

• There is sufficient variation in assignment variable and appropriate regression specification used for 

instrumental variables 

 

Regression discontinuity and interrupted time series: 

• Forcing variable is continuous, or at least ordinal with sufficient values 

• Forcing variable is not confounded by other causes of the outcome (e.g. it is not used to determine 

allocation to another relevant intervention which affects outcome) 

• Forcing variable is not anticipated or manipulable by participants  

• Forcing variable determines assignment (SUTVA is satisfied) 

• Appropriate bandwidth around forcing threshold and regression specification 

 

Difference studies: 

 

• Differencing (or use of fixed effects) controls for all unobservable time-invariant confounding at 

the level of the unit of analysis 

• All observable sources of time-varying confounding are controlled in adjusted analysis and these 

are correlated with time-varying unobservable confounding 

• Differencing controls for unobservable time varying confounding (the equal trends assumption) 

• Comparable observations are used across groups (common support) 

 

Sources: Gertler et al. (2012), Hombrados & Waddington (2012), Schochet et al. (2010). 

 

3. Review of critical appraisal tools 

A large number of tools exist to facilitate risk of bias assessment of non-randomized causal 

studies. Drawing on the systematic review by Deeks et al. (2003) and a search of more recent 

literature, we selected and appraised relevant risk of bias tools according to the extent to 

which they identified evaluation criteria and signalling questions for credible quasi-

experiments as defined here (Table 2). We included tools aiming to assess both randomized 

and non-randomized studies (Downs & Black, 1998; Cochrane Effective Practice and 
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Organisation of Care (EPOC), undated17; Hombrados & Waddington, 2012; National Institute 

for Health and Clinical Excellence (NICE), 2009; Reisch, 1989; Sherman et al., 1998; 

Scottish Intercollegiate Guidelines Network (SIGN), 2011; Valentine & Cooper, 2008; West 

et al., 2002). We also included tools aiming to appraise only non-randomized studies 

(Cowley, 1995; Effective Public Health Practice Project (EPHPP), undated; Kim et al., 2013; 

Sterne et al., 2014; Wells, undated).  

Our analysis indicated that existing tools contain evaluation criteria for domains of bias that 

are relevant to credible quasi-experiments as defined here. However, most of the tools were 

not designed to assess causal validity of these studies, meaning that the ‘signalling questions’ 

on which biases are evaluated were not sufficiently relevant, particularly in the domains of 

confounding and reporting biases. For example, randomization (sequence generation and 

allocation concealment) is usually the only method to account for unobservable confounding 

that is assessed. No single tool fully evaluated the internal or statistical conclusion validity of 

credible quasi-experimental designs defined here, including the recent tool by Sterne et al. 

(2014) which was operationalized for designs more commonly used in health research such 

as cohort and case-control designs. Only one tool addressed instrumental variables design and 

statistical matching methods (Hombrados & Waddington, 2012) and three tools presented 

signalling questions for discontinuity designs, of which the most comprehensive was 

Schochet et al. (2010). Furthermore, most tools which addressed controlled before and after 

data (e.g., EPOC, n.d.) did not assess the degree to which time-varying unobservables at the 

unit of analysis (e.g., patient, practitioner or health facility) were controlled using DID 

methods applied to disaggregate level data. Most tools that aimed to assess experimental and 

quasi-experimental studies did not enable consistent classification of experimental and quasi-

experimental studies, or of different quasi-experimental designs, across similar evaluation 

                                                           
17 The EPOC tool was developed drawing on the Cochrane risk of bias tool (Higgins et al., 2011).  
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criteria (e.g., NICE, 2009). One tool (Hombrados & Waddington, 2012) attempted to enable 

consistent assessment by evaluation criteria, but it was not sufficiently operationalized to 

capture a priori validity according to the design used in the study (see Figure 1). 

Table 2 Assessment of experiments and quasi-experiments in existing critical appraisal tools 
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Cowley (1995) NA N N N P N 

Cochrane EPOC (undated) Y N N N P P* 

Downs and Black (1998) Y N N N N N 

EPHPP (undated) Y N N N P N 

Hombrados and Waddington (2012) Y P Y P N Y 

Kim et al. (2013) NA N N N P N 

NICE (2009) Y N N N Y N 

Reisch (1989) Y N N N N N 

Schochet et al. (2010) NA NA NA Y P NA 

Sterne et al. (2014) NA N N N P P 

Valentine and Cooper (2008) Y N N P P P 

SIGN (2011) Y N N N N N 

Wells (undated) NA N N N P N 

West et al. (2002) Y N N N N N 

Notes: Y addresses study design and methods of analysis; P partially addresses these; N does not 

address; NA not applicable. * Includes controlled before and after only.  

 

To take a recent example, the Cochrane Collaboration has recently developed a tool to assess 

risk of bias in non-randomized studies of interventions (Sterne et al., 2014). That tool uses 

sensible evaluation criteria to assess risk of bias, with items grouped at pre-intervention stage 

(baseline confounding and sample selection bias), during intervention (bias in measurement 

of interventions, e.g. due to problems of implementation fidelity or in recalling treatment 

status), and after the intervention has started (time-varying confounding, bias due to 

departures from intended interventions (performance bias), bias due to missing data (e.g. 

attrition), bias in measurement of outcomes, and bias in selection of the reported result). But 
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it does not distinguish separately the ability of a study to control for observable versus 

unobservable sources of confounding, so signalling questions to assess the degree of 

confounding focus solely on methods of observable covariate adjustment. Furthermore, 

important sources of biases for particular quasi-experiments arising from justification of the 

design (e.g., exogeneity of an instrumental variable) and the methods of statistical analysis 

(e.g., bandwidth around a cut-off) are not sufficiently operationalized for credible quasi-

experiments, and some included sources of bias may not be relevant (e.g. non-random 

attrition in a cross-sectional IV study). The concept of the unbiased ‘target trial’ to which all 

non-randomized studies should be compared has been useful in getting reviewers from 

outside of the clinical trials community to think about sources of bias which they may 

previously have been unaware. However, the point about the target trial being unbiased is 

quite crucial, as there are instances where trials may be biased in ways which are not 

applicable to observational studies (e.g. performance bias due to Hawthorne effects, as 

discussed below).  

To summarize, we are not aware of any single tool that sufficiently distinguishes control for 

(unobservable) confounding by design from control for (observable) confounding in analysis, 

for non-randomized studies. Each tool addresses some of the potential biases for particular 

designs, but none provides the specific signalling questions needed to determine whether 

quasi-experiments are credible enough to recommend using the results in practice or policy. 

Application of these instruments is therefore likely to lead to inappropriate risk of bias 

assessment for credible quasi-experiments. 

4. Evaluation criteria for credible quasi-experiments 

In this section we discuss evaluation criteria and potential signalling questions for credible 

quasi-experimental studies. Sterne et al. (2014) categorize seven domains of bias which are 
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relevant for non-randomized studies: confounding; sample selection bias; bias due to missing 

data; bias in measurement of interventions; bias due to departure from intended interventions; 

bias in measurement of outcomes; and bias in selection of the reported result. These domains 

form the basis of evaluation criteria that can be used to operationalize risk of bias assessment 

for credible quasi-experiments. Our discussion focusses on how these domains apply to 

credible quasi-experiments, recognizing that the categories are also applicable for RCTs.  

Confounding refers to the extent to which causality can be attributed to factors determining 

outcomes other than the intervention. Confounding factors that have been shown to influence 

outcomes include self-selection and program placement biases (Sterne et al., 2014). Sources 

of confounding may be observable or unobservable, and time-invariant (identified at 

baseline) or time-varying. Studies using quasi-experimental approaches need to argue 

convincingly, and present appropriate results of statistical verification tests, that the 

identifying variable determining treatment assignment is exogenous to outcomes, and/or that 

the methods of analysis are able to control for unobservable (time-varying and time-invariant) 

confounding (see Hombrados & Waddington, 2012). For example, data permitting, it is 

useful to make assessments of group equivalence at baseline according to observable 

covariates (Hansen, 2008), under the assumption that these are correlated with unobservables. 

Factors which may invalidate group equivalence during the process of implementation, such 

as time-varying confounding, should also be taken into account in estimation.  

Sample selection bias occurs where some eligible treatment units or follow-up periods are 

excluded from data collection or analysis, and this exclusion is correlated with outcome or 

intervention status. Examples are non-random attrition and censoring of data (e.g., where 

outcomes data are not available due to mortality).18 This is particularly important in 

retrospective studies and studies where baseline data are not available. Assessment is needed 

                                                           
18  Sterne et al. (2014) refer to this as inception/lead-time and immortal time biases.  
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of the extent to which the design and methodology account for sample selection biases (e.g., 

through the use of Heckman error correction). A related domain is bias due to missing data, 

which is a specific source of selection bias due to attrition and incomplete data collection 

(e.g., on outcomes, treatment status or covariates measured at baseline and after) (Sterne et 

al., 2014). Biases due to differential attrition are potentially relevant only in prospective 

studies but biases due to incomplete data collection are relevant for all designs. 

Bias in measurement of interventions is not usually considered problematic where 

information is collected at the time of the intervention from sources not affected by the 

outcomes (e.g., enumerators). It is particularly problematic where information about 

treatment status is from participants after implementation who may have an incentive to 

misreport, or where recalling the intervention (e.g., its dose, frequency, intensity or timing) is 

difficult (Sterne et al., 2014). This source of bias is most likely to occur in retrospective 

studies. 

Bias due to departures from intended interventions encompass cross-overs, spillovers and 

implementation fidelity. Cross-overs or switches (including ‘contamination’ of comparison 

groups) occur where individuals receive a treatment different from that assigned. They are 

problematic in non-blinded prospective trials (and double-blinded RCTs with an adaptive 

design where patients cross over if they do not improve sufficiently), as well as designs 

where the identification strategy relies on a natural experiment, instrumental variable or 

regression discontinuity (due to SUTVA). Assessment should therefore be made of the extent 

to which these are accounted for in design or analysis (such as through intention-to-treat or 

instrumental variables estimation). Spillovers occur when members of the comparison group 

are exposed to treatment indirectly, through contact with treated individuals, and are 

potentially problematic for all controlled studies. Cluster-level analysis may be required to 
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ameliorate these sources of bias and/or an assessment of the geographical or social separation 

of groups may be needed.  

Bias in measurement of outcomes due to recall and courtesy biases is potentially problematic 

in all studies where outcomes data are self-reported. But other forms of motivational bias are 

only likely to arise in prospective trials. The classic case is the presence of Hawthorne and 

John Henry effects affecting motivation of participants when they are aware they are part of a 

trial (particularly when they are subjected to repeated measurement). As another example, 

‘survey effects’ may operate whereby groups are sensitized to information that affects 

outcomes through survey questions and then subjected to repeated measurement (Zwane et 

al., 2011). Such effects are less likely to affect motivation where data are collected outside of 

a trial situation with a clear link to an ‘intervention’, and unlikely to be relevant when data 

are collected at one period of time as in a retrospective cross-sectional only (Hombrados & 

Waddington, 2012). Blinding is frequently advocated to reduce bias in outcomes 

measurement. While it may be impossible to prevent participant knowledge of intervention 

status (especially in evaluations of socio-economic interventions), blinding of outcome 

assessors and data analysts usually is feasible, though seldom used. 

Bias in selection of the reported result corresponds to selective reporting of outcomes (e.g., 

among multiple possible outcomes collected), selective reporting of sub-groups of 

participants, or selective reporting of methods of analysis (e.g., where multiple estimation 

strategies or specifications are used) (Rothstein et al., 2005; Sterne et al., 2014). These types 

of bias are particularly likely to be prevalent in retrospective evaluations based on 

observational datasets (e.g., with many IV analyses), but may also arise in prospective studies 

including RCTs where the method of analysis or outcomes are chosen based on results (e.g., 

DID). Presence of a study protocol (pre-analysis plan) can help determine the likelihood of 
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bias (although it is recognized that many such studies still do not contain such plans), as can a 

strong theoretical approach and the assessment of unusual or uncommon methods of analysis. 

5. Operationalizing the approach 

Higgins et al. (2011) present principles for risk of bias tools for RCTs.19 We argue that 

further development of a tool or tools to assess credible quasi-experiments should firstly, aim 

to build on the bias domains and signaling questions in existing tools used by reviewers, in 

particular those articulated by Sterne et al. (2014).20 Second, the tool should address both the 

conceptual and statistical assumptions underpinning validity. This means that appraisals of, 

for example, the plausibility of ‘as-if randomization’ and the exogeneity of identifying 

variables in the confounding domain will need to be incorporated. The evaluation of quasi-

experiments is notoriously more difficult than that of RCTs, relying to a greater extent on 

what we might call ‘qualitative judgment’ informed by both advanced statistical and 

substantive theoretical knowledge. Appraisal by multiple reviewers and inter-rater reliability 

assessment is therefore crucial (Higgins & Green, 2011).  

Third, an integrated assessment tool, covering multiple study designs (RCTs and multiple 

quasi-experimental approaches), should incorporate a priori validity of the designs as well as 

their execution. Analysis should therefore be based on what is being reported regarding the 

assumptions of the designs and the methods with which they are addressed (Littell et al., 

2008).  

                                                           
19 We believe five of these principles are applicable to risk of bias of quasi-experiments: focusing on internal 

validity, choosing bias domains on theoretical and empirical considerations, reporting bias by outcomes, not 

using quality scales, and requiring judgment in assessments. While it is possible to contact authors to obtain 

information, focusing on bias in the data as opposed to in the information reported is likely to require replication 

which is often infeasible for non-trial evidence. Factors relating to motivation of participants (due to 

observation) are of major concern in trials. For social interventions, expectations (such as placebo effects) may 

form an important mechanistic component in the process of behavior change.  
20 Several of the authors have received funding from the UK Medical Research Council to extend the Cochrane 

non-randomized studies risk of bias tool (Sterne et al., 2014) to incorporate design-based quasi-experimental 

approaches.  
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Finally, it is likely that some of the signaling questions used to operationalize evaluation of 

bias will be design-specific, in particular for confounding and reporting biases. For natural 

experiments and instrumental variables, this will require qualitative appraisal of the 

exogeneity of the identifying variable or instrument. For instrumental variables the 

assessment should also incorporate the significance or goodness-of-fit of the first-stage 

instrumenting equation, the individual significance of the instruments and results of an over-

identifying test (Hombrados and Waddington, 2012). For regression discontinuity, the 

assessment should incorporate whether the forcing variable is continuous, or at least ordinal 

with sufficient values,21 the degree to which assignment is exogenous (i.e., not manipulable 

by participants in response to incentives), comparison of covariate means either side of the 

cut-off point, and an assessment of appropriate specification (band-width and use of 

weighting for matches further from the cut-off point) and functional form (e.g. linear or non-

linear relationship between forcing variable and outcome). For difference studies, 

assessments are needed of the unit of analysis at which the differencing or fixed effects 

occurs (determining whether time-invariant unobervables are ‘differenced away’ at, e.g., 

patient, practitioner or health facility level), covariate balance at baseline, adjustment for 

relevant time-varying covariates, differential attrition, and the existence of equal trends in 

outcomes before intervention across treatment and comparison groups (an indicator of 

whether unobservable confounders are changing differentially across group).  

As in the case of randomized studies, information needed to inform risk of bias judgments in 

quasi-experiments must be collected from the studies (see Higgins & Green, 2011, p. 194-

197; Sterne et al., 2014). When specific information about these assumptions is unknown, 

                                                           
21 Schochet et al. (2010) state that ordinal variables should have at least four unique values below the cut-off and 

four unique values above it.  
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reviewers may attempt to obtain such information from the primary study authors.22 The 

information obtained from risk of bias instruments can be used in a variety of ways 

(Ioannidis, 2011). Some feasible alternatives are to use this information as part of the 

inclusion criteria or to use bias information to create moderator variables for a meta-

regression. Ahn and Becker (2011) and Herbison et al. (2006) present evidence that meta-

analysis should not be weighted by quality scores. As a final point, determining overall risk 

of bias is complicated because the degree of bias is a latent construct (i.e., a construct that is 

not directly observable or measureable), but can be useful (see, e.g., Guyatt et al., 2011). 

While evidence suggests it is not appropriate to determine overall bias using weighted quality 

scales (Juni et al., 1999), reviewers have shown that it is possible to assess overall bias based 

on transparent decision criteria (e.g. the reviews reported in Table 1). Others prefer to code 

separate indicators of particular biases to serve as potential moderator variables.  

6. Conclusions 

Current tools used by reviewers do not provide the means to evaluate consistently and 

appropriately the credibility of quasi-experimental studies to address causality. The paper 

justifies the further development of a comprehensive tool (Sterne et al., 2014), and suggests 

how it might incorporate quasi-experiments. Authors have received funding from the UK 

Medical Research Council to undertake this work. The development of a comprehensive tool 

should be based on several principles. Risk of bias should incorporate a priori internal 

validity information based on the classification of study design and an assessment of the 

implementation of the approach. The tool could usefully be operationalized to recognize 

explicitly credible designs like difference studies, instrumental variables, interrupted time 

                                                           
22 Some reviewers may believe that absence of such information is enough to exclude a study from a review. 

This should be explicitly stated as part of the inclusion criteria. Where studies are eligible for inclusion by stated 

design alone, the presence or absence of this information should be incorporated into risk of bias assessment and 

methods such as meta-regression can be used to explore systematic differences between primary studies that do 

or do not provide this information. 
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series, natural experiments and regression discontinuity, and assess them using consistent 

evaluation criteria across bias domains. It is likely that different signaling questions will be 

required for different designs, particularly to address confounding and the reporting of 

appropriate statistical analyses.  
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