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a b s t r a c t 

Although treatment for cholera is well-known and cheap, outbreaks in epidemic regions still exact high 

death tolls mostly due to the unpreparedness of health care infrastructures to face unforeseen emergen- 

cies. In this context, mathematical models for the prediction of the evolution of an ongoing outbreak are 

of paramount importance. Here, we test a real-time forecasting framework that readily integrates new 

information as soon as available and periodically issues an updated forecast. The spread of cholera is 

modeled by a spatially-explicit scheme that accounts for the dynamics of susceptible, infected and recov- 

ered individuals hosted in different local communities connected through hydrologic and human mobility 

networks. The framework presents two major innovations for cholera modeling: the use of a data assim- 

ilation technique, specifically an ensemble Kalman filter, to update both state variables and parameters 

based on the observations, and the use of rainfall forecasts to force the model. The exercise of simulating 

the state of the system and the predictive capabilities of the novel tools, set at the initial phase of the 

2010 Haitian cholera outbreak using only information that was available at that time, serves as a bench- 

mark. Our results suggest that the assimilation procedure with the sequential update of the parameters 

outperforms calibration schemes based on Markov chain Monte Carlo. Moreover, in a forecasting mode 

the model usefully predicts the spatial incidence of cholera at least one month ahead. The performance 

decreases for longer time horizons yet allowing sufficient time to plan for deployment of medical supplies 

and staff, and to evaluate alternative strategies of emergency management. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Cholera is a diarrheal disease caused by the ingestion of wa-

er or food contaminated by the bacterium Vibrio cholerae , the

ausative agent of the disease. Although treatment is cheap and

ell-known (chiefly rehydration therapy), cholera is still one of the

eading causes of death in developing countries ( Mathers et al.,

008 ). In regions where the disease is endemic (e.g., Bangladesh)

he case fatality rate is relatively low (around 0.1%, see e.g., Ryan

t al., 20 0 0 ) because health-care staff and infrastructures are

repared and thus symptomatic cases are readily reported and

reated. On the contrary, epidemic regions that are scourged by ir-

egular and severe cholera outbreaks usually exhibit higher mor-

ality, mostly due to the unpreparedness of health care facilities.

n addition, severe cholera outbreaks in epidemic regions, where
∗ Corresponding author. 
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309-1708/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article u
he number of infections is boosted by a relatively low level of

opulation immunity, can locally exceed the allocated treatment

apacity (e.g., number of beds in treatment facilities, number of

ral rehydration therapy units available). A revealing example is

he cholera epidemic that struck Haiti in October 2010, 10 months

fter a catastrophic earthquake that destroyed an already falter-

ng civil and sanitary infrastructure, and is still lingering as of May

016. The epidemic has totalled almost 80 0,0 0 0 reported cases and

200 deaths with an overall case fatality rate of 1.15%, which was

ven higher (around 2%) during the first months ( Barzilay et al.,

013 ) (data available on-line at http://mspp.gouv.ht ). Thus, model-

ng tools which can possibly predict the evolution of an ongoing

utbreak in time for interventions are of paramount importance

o guide health care officials in allocating staff and resources and

valuating alternative control strategies. 

The quasi-real time release of the epidemiological data

uring the Haitian cholera outbreak prompted many research

eams to develop epidemiological models of the outbreak in an
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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effort to provide meaningful insights to guide the emergency

management ( Abrams et al., 2013; Andrews and Basu, 2011;

Bertuzzo et al., 2014, 2011; Chao et al., 2011; Eisenberg et al.,

2013; Gatto et al., 2012; Kirpich et al., 2015; Mari et al., 2015;

Mukandavire et al., 2013; Righetto et al., 2013; Rinaldo et al., 2012;

Tuite et al., 2011 ). Some of these studies ( Abrams et al., 2013; An-

drews and Basu, 2011; Bertuzzo et al., 2014, 2011; Righetto et al.,

2013; Rinaldo et al., 2012 ) attempted to actually forecast the evo-

lution of the unfolding outbreak by calibrating a model on the data

available at a certain moment in time and projecting the simula-

tions into the future. Early attempts show contrasting results (for

a complete reassessment see Rinaldo et al., 2012 ). The ability to

predict under different modeling assumptions has later been an-

alyzed in details ( Mari et al., 2015 ), showing that, when data is

scarce, spatially-explicit models (e.g., Bertuzzo et al., 2011 ) clearly

outperform models that do not account for the spatial coupling

among individual local models (e.g., Andrews and Basu, 2011 ). The

revamping of the outbreak in conjunction with the rainy season in

spring 2011 revealed empirically that, at least in the Haitian con-

text, intense rainfall enhances cholera transmission and therefore

has to be taken into account for future model developments and

predictions ( Rinaldo et al., 2012 ). This consideration further com-

plicates modelers’ task because it implies that in order to predict

cholera incidence one must also predict precipitation intensity in

space and time. So far, this issue has been tackled by producing

realistic rainfall scenarios using stochastic models of rainfall gen-

eration ( Righetto et al., 2013 ) or by bootstrapping of past observed

rainfall fields ( Bertuzzo et al., 2014; Rinaldo et al., 2012 ). 

All the previous examples represent isolated attempts to fore-

cast cholera dynamics, each based on different assumptions to ac-

commodate relevant processes and recalibration on the available

data. Here, we aim at proving the feasibility of a real-time fore-

casting framework during emergencies that: i) flexibly adapts to

account for the dominant processes driving the outbreak, ii) read-

ily integrates new information available, and iii) periodically issues

an updated forecast for a predefined time horizon. We therefore

set ourselves at the initial phase of the Haitian cholera outbreak

and produce weekly bulletins forecasting the spatio-temporal dis-

tribution of new cases for the first two years of the epidemic using

only information that was available at that time. 

The first major innovation of this study with respect to pre-

vious effort s is the use of a dat a assimilation (DA) framework to

integrate new epidemiological data as soon as they become avail-

able and to update the model forecast without recalibrating. DA

has long been used in weather forecasting ( Navon, 2009; Rabier,

2005 ), where numerical models require frequent re-initializations

to track the real dynamics and to avoid the rapid divergence of the

numerical solution. This procedure is typically performed by the

data assimilation cycle ( Thompson, 1961 ), the sequential repetition

of a forecast step and its correction in the analysis (or update)

step using the newly available system observations. Forecast and

analysis steps are naturally formulated in a Bayesian framework

by the so-called filtering problem ( Jazwinski, 1970 ), which seeks

the posterior probability distribution of the system state, given all

the observations in a time window of interest, and takes into ac-

count the model uncertainties and the observation errors. While

the well-known Kalman–Bucy filter ( Kalman, 1960; Kalmanm and

Bucy, 1961 ) solves the filtering problem in the simple case of lin-

ear models with additive and Gaussian errors, an analytical so-

lution in the presence of nonlinearities does not exist and sev-

eral alternative filters have been proposed in literature (see e.g.,

Arulampalam et al., 2002 ). The ensemble Kalman filter (EnKF), de-

veloped by Evensen ( Evensen, 1994, 2003 ) for nonlinear applica-

tions in the context of ocean modeling, is one of the most pop-

ular DA techniques and consists in an ensemble approximation of

the Kalman filter. Although optimal only for Gaussian distributions
f state variables, EnKF typically delivers satisfactory performances

sing a small number of model realizations also for non-Gaussian

odels ( Zhou et al., 2006 ), a feature that favored its application

n different fields including atmospheric sciences (e.g., Houtekamer

t al., 2005 ) and hydrology (e.g., Camporese et al., 2009; ELSheikh

t al., 2012; Pasetto et al., 2012 ). Another appealing feature of EnKF

s the possibility to infer model parameters at each assimilation

tep by the augmented state technique ( Evensen, 2009; Pasetto

t al., 2015 ). In this manner, the filter corrects the probability dis-

ribution of the parameters during the simulation, reducing the

odel bias and tracking the parameter evolution in time. Lately,

A frameworks have also been applied to forecast epidemics, in

articular for seasonal and pandemic influenza ( Chretien et al.,

014; Shaman and Karspeck, 2012; Shaman et al., 2013; Yang et al.,

015b, 2015a ), HIV/AIDS ( Cazelles and Chau, 1997; Wu and Tan,

0 0 0 ), the Ebola outbreak in Sierra Leone ( Yang et al., 2015c ), and

he cattle disease Theileria orientalis ( Jewell and Brown, 2015 ). 

The second main novelty of our approach is the direct use

f rainfall forecasts as predicted by the Climate Forecast System

CFS) ( Saha et al., 2014 ) of the National Centers for Environmen-

al Prediction (NCEP). CFS models the interaction between oceans,

and, and atmosphere at a global scale assimilating remotely ac-

uired variables. Operational climate forecasts are produced daily

t different spatial scales (down to 0.5 °) and temporal intervals (up

o six months of forecast with a frequency of six hours). An appeal-

ng feature of such datasets is their long forecast horizon, which

llows epidemiological modelers to analyze the long-term impact

f hydrologic drivers on the course of an outbreak. Moreover, CFS

orecasts are freely available at the global scale, thus providing pre-

ipitation data and forecasts also over developing countries where

aterborne diseases are likely but meteorological data are typically

carce. 

. Conceptual framework 

In this section we present the conceptual framework for the op-

rational forecast of a cholera outbreak. The individual components

f the framework, namely the epidemiological model, the calibra-

ion and the DA schemes and the rainfall forecast are described in

etails in Section 3 . 

We assume that there must be a time-lag between the onset of

n outbreak and the moment when the epidemic forecasts are fully

perational. First, a certain amount of time is necessary for health-

are authorities to identify and declare a cholera outbreak. Sec-

nd, if not already in place, a surveillance system that centralizes

pidemiological data must be implemented. The duration of this

ag crucially depends on the preparedness of the healthcare infras-

ructures. In the case of Haiti, the whole process took about one

onth ( Barzilay et al., 2013 ). From the modeling perspective, data

egarding population distribution, climatic and hydrological vari-

bles must be collected and suitably processed. In the following

e term T 0 the onset of the epidemic and T 1 the moment when

orecasts begin to be issued. 

The first set of data pertaining the onset of the outbreak is

sed to calibrate the model through a Markov chain Monte Carlo

MCMC, see Section 3.2 ) scheme, in order to obtain a prelimi-

ary estimation of the posterior parameter distribution. In this case

tudy, the first seven weeks of epidemiological data are used for

alibration, thus T 0 = October 20, 2010 and T 1 = December 12, 2010

see Fig. 1 ). The posterior parameter distribution computed em-

loying MCMC is used to initialize the DA framework and start

he operational forecast. Specifically, N parameter sets are sam-

led from the posterior distribution, along with the corresponding

imulations. This set of trajectories, periodically updated through

A, is kept throughout the whole forecasting period. After the cal-

bration period [ T , T ], the epidemiological forecasts are issued
0 1 



D. Pasetto et al. / Advances in Water Resources 108 (2017) 345–356 347 

0

50

J 
[m

m
/d

ay
]

0

3

W
ee

kl
y 

ca
se

s 
[1

04 ] assimilationcalibration forecast

0

50

J 
[m

m
/d

ay
]

0

3

W
ee

kl
y 

ca
se

s 
[1

04 ] assimilationcalibration forecast

T0 T1        T2 T3

T0 T1        T2 T3

50 km

6.45.64.84.03.22.41.60.8
Cases [103]

50 km

Oct-10 Dec-10 Mar-11 May-11 Jul-11

Oct-10 Dec-10 Mar-11 May-11 Jul-11

a

b
6.45.64.84.03.22.41.60.8

Cases [103]

Fig. 1. Example of two cholera forecasts for the Haitian outbreak computed at T 2 = February 12, 2011 (a) and T 2 = April 23, 2011 (b). Green lines and light-green areas 

represent, respectively, the expected value and the 90% confidence interval of the total weekly cases estimated by the model. Grey circles show recorded cases. Blue lines 

represent the average daily rainfall used as forcing in the cholera model, which is measured from T 0 to T 2 and forecast from T 2 to T 3 . Light blue areas show the 90% 

uncertainty associated with the forecast rainfall. Maps show the expected value of the forecast cumulative cases on each model sub-unit. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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eekly, at every assimilation of the newly reported cases. The

ain steps of the proposed real-time forecast framework are de-

ailed below. At the end of an epidemiological week: 

• Rainfall data measured during the previous week are collected;
• Each of the N system trajectories is advanced, forced by the

measured rainfall, by one week such as to arrive at the present

time; 
• The newly available epidemiological data is assimilated by

means of an ensemble Kalman filter (EnKF, Section 3.2 ). There-

fore the model state variables (i.e., infected and recovered indi-

viduals, and bacterial concentrations in the water reservoir that

conceptualizes to various degrees infection exposures ( Codeço,

2001 ) at each model node) of each of the N trajectories are up-

dated. The EnKF is applied with the augmented state, thus the

N parameter sets are also updated; 
• The rainfall forecast issued on the same day is retrieved. N dif-

ferent time series of rainfall are generated by adding a random

error to the forecast. 
• Each of the N system trajectories is associated to one rain-

fall time-series and projected into the future for the prescribed

time horizon; 
• The forecast epidemiological variables, such as the total number

of cases and the spatial distribution of the cholera incidence are

published. 

Fig. 1 depicts two examples of forecasts for the Haitian out-

reak where T 2 indicates the time when the bulletin is issued and

 3 the end of the forecast horizon. In this example T 3 − T 2 is equal

o three months. The model trajectories computed using the MCMC

osterior distribution of the model parameters fit the data col-

ected during the calibration period [ T 0 , T 1 ], but are not suitable

or the subsequent time step. The sequential assimilation of the

ata collected during [ T , T ] corrects the model trajectories and
1 2 



348 D. Pasetto et al. / Advances in Water Resources 108 (2017) 345–356 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

H  

t  

t  

d  

i  

d  

t  

c

o  

r  

r  

a  

b  

t  

b  

t  

t  

V  

B  

f  

i  

o  

d  

p  

o  

(  

r  

n  

c  

t

 

p  

t

C  

w

 

R  

(

3

 

s  

x  

o  

e  

t  

m  

B  

i  

c  

w  

t  

s  

H  

H  

l  

t  

a  

m  

o  

W  

p

parameter values toward the real epidemic dynamics. The model

uncertainty gradually increases during the forecast period [ T 2 , T 3 ]

due to the uncertainty in the forecast rainfall, which is a driver of

the model. 

3. Material and methods 

3.1. Epidemiological model 

The cholera epidemiological model used herein derives di-

rectly from the one developed in Bertuzzo et al. (2014) , which, in

turn, builds on previous spatially-explicit epidemiological models

( Bertuzzo et al., 2008, 2010; Mari et al., 2012a, 2012b ). The model

subdivides the total population into n human communities spa-

tially distributed within a domain of n nodes connected by both

human mobility and hydrological networks. Let S i ( t ), I i ( t ) and R i ( t )

denote the local abundances of susceptible, symptomatic infected

and recovered individuals at time t in each node i of the network,

and let B i ( t ) be the environmental concentration of V. cholerae in i .

Cholera transmission dynamics can be described by the following

set of coupled differential equations: 

dS i 
dt 

= μ( H i − S i ) − F i ( t ) S i + ρR i (1)

dI i 
dt 

= σ F i (t) S i − (γ + μ + α) I i (2)

dR i 

dt 
= (1 − σ ) F i (t) S i + γ I i − (ρ + μ) R i (3)

dB i 

dt 
= −μB B i + 

p 

W i 
[ 1 + φJ i (t) ] 

( 

(1 − m ) I i + m 

n ∑ 

j=1 

Q i j I j 

) 

− l 

( 

B i −
n ∑ 

j=1 

P ji 
W j 

W i 

B j 

) 

, (4)

where each node population H i is assumed to be at demographic

equilibrium. Under this assumption, Eq. (1) is equivalent to S i (t) =
H i − I i (t) − R i (t) , which ensures the conservation of the population

during the numerical simulation while reducing the model dimen-

sion. The force of infection F i ( t ), which represents the rate at which

susceptible individuals become infected due to contact with con-

taminated water, is expressed as: 

F i (t) = β

[ 

(1 − m ) 
B i 

K + B i 

+ m 

n ∑ 

j=1 

Q i j 

B j 

K + B j 

] 

. (5)

The parameter β represents the maximum exposure rate. The

model assumes that β is constant, but the framework allows the

EnKF to potentially change its value in time. The fraction B i / (K +
B i ) is the probability of becoming infected due to exposure to a

concentration B i of V. cholerae, K being the half-saturation con-

stant ( Codeço, 2001 ). Because of human mobility, a susceptible in-

dividual residing at node i can, while travelling, be exposed to

pathogens in the destination community j . This is modeled assum-

ing that the force of infection in a given node depends on the local

concentration B i for a fraction ( 1 − m ) of the susceptible hosts and

on the concentration B j of the remote communities for the remain-

ing fraction m . The parameter m represents the community-level

probability that individuals travel outside their node. The concen-

trations B j are weighted according to the probabilities Q ij that an

individual living in node i reaches j as a destination. We apply

a gravity approach ( Erlander and Stewart, 1990 ) to model human

mobility. Accordingly, connection probabilities are defined as 

Q i j = 

H j e 
−d i j /D ∑ n 

k � = i H k e 
−d ik /D 

, (6)
here the attractiveness of node j depends on its population size

 j , while the deterrence factor is assumed to be dependent on

he distance d ij between the two communities via an exponen-

ial kernel (with shape factor D ). A fraction σ of the infected in-

ividuals develops symptoms, thus entering class I i . The remain-

ng fraction (1 − σ ) does not develop symptoms and therefore

oes not contribute to disease transmission and enters directly

he recovered compartment. Symptomatic infected individuals re-

over at a rate γ , or die due to cholera or other causes at rates α
r μ, respectively. Recovered individuals lose their immunity and

eturn to the susceptible compartment at a rate ρ or die at a

ate μ. A fraction m of the symptomatic infected individuals are

ssumed to move among the nodes according to the human mo-

ility model, and thus contribute to the environmental concentra-

ion of V. cholerae at a rate p / W i , where p is the rate at which

acteria excreted by an infected individual reach and contaminate

he local water reservoir of volume W i (assumed to be propor-

ional to population size, i.e., W i = cH i as in Rinaldo et al. (2012) ).

. cholerae are assumed to decay in the environment at a rate μB .

acteria undergo hydrologic dispersal at a rate l : pathogens travel

rom node i to j with probability P ij , which is assumed to be one

f node j is the downstream nearest neighborood of i , and zero

therwise. In order to express the worsening of sanitation con-

itions caused by rainfall-induced runoff, which causes additional

athogen loads to enter the water reservoir due to effects such as

verflow of pit latrines and washout of open-air defecation sites

 Gaudart et al., 2013 ), the contamination rate p is increased by the

ainfall intensity J i ( t ) via a coefficient φ ( Righetto et al., 2013; Ri-

aldo et al., 2012 ). By introducing the dimensionless bacterial con-

entration B ∗
i 

= B i /K, it is possible to group three model parame-

ers into a single ratio θ = p/ (cK) ( Bertuzzo et al., 2008 ). 

The estimation of weekly cholera cases (the quantity usually re-

orted in epidemiological records) from the model output requires

o compute 

 i (t k ) = σ

∫ t k 

t k −1 

F i S i dt , (7)

here t k marks the end of the k th week. 

The time-integration of Eqs. (1 –4 ) is performed through the

unge-Kutta (4,5) method, as described in Shampine and Reichelt

1997) . 

.2. Parameter estimation 

At the end of the k th epidemiological week, the model de-

cribes the state of the epidemic by the system vector x k ∈ R 

4 n ,

 k = { (I i,k , R i,k , B i,k , C i,k ) , with i = 1 , . . . , n } , where n is the number

f nodes. The solution of ( 1 –4 ) is driven by the daily rainfall over

ach node, J = (J 1 , . . . , J n ) , and the model epidemiological parame-

ers. While model parameters μ, γ , and α can reasonably be esti-

ated from demographic and epidemiological literature (see, e.g.,

ertuzzo et al., 2014 ), the remaining model parameters are typ-

cally unknown and require to be inferred by calibration. In this

ase, the epidemiological data used for calibration are the observed

eekly cases, in the following indicated with y k ∈ R 

d , where d is

he number of measurements points at time t k (in the Haitian case

tudy d = 10 is the number of departments). The relationship y k =
x k + ξk links the observations to the model state variables, where

 ∈ R 

d×n transfers the modeled weekly cases C from the node

evel to the observation points, and the vector ξk ∈ R 

d represents

he measurement error. The error components ξ i,k , i = 1 , . . . , d,

re modeled as independent Gaussian random variables with zero

ean and standard deviation σ ξ . In the following we call ϑ the set

f the unknown model parameters, ϑ = ( β, ψ, m, D, ρ, σ, μB , θ, l ) .

e consider two methods for the Bayesian estimation of model

arameters as described in the following sections. 
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Fig. 2. Model setup for the Haitian epidemic. (a) Population associated to each of 

the 365 watersheds estimated from the remotely sensed dataset of population dis- 

tribution (LandScan algorithm of the Oak Ridge National Laboratory, http://www. 

ornl.gov/landscan ). (b) Estimates of daily human mobility from the Haitian capital, 

Port-au-Prince, to the other watersheds, computed through the gravity model (6) , 

using m = 0.05 and D = 31.0 km. 
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.2.1. Markov chain Monte Carlo 

We use the Differential Evolution Adaptive Metropolis

DREAM ZS ) ( Vrugt et al., 2009 ) implementation of the MCMC

lgorithm. Given the prior probability density function (pdf) of

he parameters and the collection of observations in the temporal

indow of interest, e.g., t 0 , . . . , t k , DREAM ZS samples the desired

umber of parameter realizations from the posterior distribution

sing multiple MCMC chains that run in parallel and that jointly

ontribute to the computation of the proposal parameter sam-

les. This technique has already been effectively applied to this

pidemiological model ( Bertuzzo et al., 2014; Mari et al., 2015 ).

owever, the calibration with DREAM ZS over long time windows

ight result in overfitted posterior distributions which in most

ases are not realistic and are the consequence of model bias

nd errors possibly due to temporal changes in the parameters.

oreover, in an operational scenario, the calibration should be

epeated each time new epidemiological data becomes available,

ith high computational cost and a reduced capability to promptly

orecast the epidemic. 

.2.2. Data assimilation 

The second method we propose consists in inferring the distri-

ution of the cholera model parameters in a dynamical way using

A. The main idea is that the parameter distribution can change

n time and the DA scheme can sequentially track them using the

ollected data. The parameter update is performed in the analy-

is steps, which correct both the state variables and the parame-

er pdfs in the direction of the new observations, seeking to com-

ute the filtering (or analysis) pdf p(x k , ϑ k | y 1 , . . . , y k ) . Using the

ayes formula, the filtering pdf rewrites in the product of the fore-

ast pdf, i.e., the system state pdf predicted by the evolution of

he model from t k −1 to t k , and the likelihood function L (y k | x k , ϑ k )

see, e.g., Jazwinski, 1970 ). 

The recursion of forecast and analysis pdfs have an analyti-

al solution only for linear and Gaussian models. Here we use an

nKF ( Evensen, 2009 ), a method that approximates the forecast

df with empirical distribution of several model solutions, a tech-

ique frequently adopted when dealing with nonlinear state-space

odel, such as the one defined in ( 1 –4 ). Using the augmented-

tate technique, the filter is initialized with an ensemble of N ran-

om samples from the initial distribution of the state and param-

ter vectors, { x a, j 
0 

, ϑ 

a, j 
0 

} N 
j=1 

∼ p(x 0 , ϑ 0 ) . The forecast pdf at an as-

imilation time t k is approximated by the numerical solutions as-

ociated to the different realizations { x f, j 

k 
} N 

j=1 
, 

 

f, j 

k 
= F 

(
x 

a, j 

k −1 
, J (t) , ϑ 

a, j 

k −1 
, t k −1 , t k 

)
, (8)

here F is the nonlinear operator solving (2) –(7) and the super-

cripts a and f indicate analysis and forecast, respectively. Note that

he parameters are constant during the forecast, i.e., ϑ 

f, j 

k 
= ϑ 

a, j 

k −1 
.

n scenarios with uncertain rainfall conditions (e.g., when forecast-

ng the future rainfall), it is convenient to model J ( t ) as a random

ariable. In these cases, different samples of the precipitation, J j ( t ),

an be used in (8) for different realizations. In the analysis step of

nKF, both the state vector and the parameters are updated using

he state augmentation: 

 

x 

a, j 

k 

ϑ 

a, j 

k 

) 

= 

( 

x 

f, j 

k 

ϑ 

f, j 

k 

) 

+ K 

f 

k 

(
y j 

k 
− y f, j 

k 

)
(9) 

here y 
f, j 

k 
= Hx 

f, j 

k 
. The vector y 

j 

k 
represents the random pertur-

ations of the observed measurements y k , y 
j 

k 
= y k + ξ j 

k 
, which are

ntroduced to correctly estimate the variance of the updated vari-

bles (e.g., Evensen, 2003 ). K 

f 

k 
is an empirical approximation of the

alman filter, where the correlations between forecast and obser-
ations are computed through the ensemble (for more details see,

.g., Evensen, 2003 ). 

A possible drawbacks of EnKF is the so-called filter inbreeding:

he rapid convergence of the parameter distribution toward one

alue, with the consequent underestimation of the model uncer-

ainty. Here, we use an adaptive inflation of the covariance error

sed in the computation of the Kalman gain (e.g., Anderson, 2007;

i et al., 2009 ) to reduce the inbreeding effect. The idea is to re-

eat the update step by gradually increasing the measurement er-

or variance until the parameter variances σϑ a 
k 

are higher than a

esired tolerance. At the i -th repetition of the update, we set the

easurement error variance equal to c i 
1 
σξ , with c 1 > 1, and the

pdate is accepted if σϑ a 
k 

> c 2 σϑ f 
k 

for each parameter, with 0 < c 2 

 1. This condition controls the decrease of the parameter vari-

nces during the simulation and, thus, of the probability space ex-

lored by the ensemble. The proposed approach is justified in our

pplication by the high uncertainty associated with the epidemio-

ogical data, whose error variance is largely unknown. 

.3. Haitian model setup 

Our model setup is equivalent to a previous application to the

aitian epidemic ( Bertuzzo et al., 2014 ). The computational domain

f the model has been derived by subdividing the Haitian terri-

ory into 365 watersheds, each of them hosting a human com-

unity whose size is determined using remotely acquired data

 Fig. 2 a). This allowed for the identification of the hydrological net-

ork, defining a unique downstream node (or, in coastal areas, the

http://www.ornl.gov/landscan
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sea) for each watershed and leading to the connectivity matrix P .

Distances d ij among communities ( Fig. 2 b) have been extracted

from the road network provided by the OpenStreetMap contribu-

tors (available on-line at www.openstreetmap.org ). 

Two rainfall datasets are used to drive the cholera model,

distinguishing between rainfall measurements and forecast. Daily

rainfall measurements for each watershed have been computed

starting from data collected by the NASA-JAXA’s Tropical Rainfall

Measuring Mission (TRMM_3B42 precipitation estimates, resolu-

tion: 0.25 °, see http://trmm.gsfc.nasa.gov/ for details). Precipitation

fields are first re-sampled at the resolution of the digital terrain

model used to derived the watersheds (0.0 0 083 °) trough linear in-

terpolation and then averaged over the watershed area to obtain a

representative value for each node. We assume these rainfall mea-

surements to be error free. Under this assumption, the model un-

certainty during simulations before the assimilation is completely

determined by the probability distribution of the parameter, which

accounts also for possible bias in the TRMM precipitation esti-

mates. 

The daily rainfall forecasts are obtained from the CFS climate

reforecast from the beginning of the outbreak to March 31, 2011,

and from the CFS operational climate forecast from the April 1,

2011 to present (data available on-line at https://www.ncdc.noaa.

gov ). CFS operational forecasts are computed daily starting at four

different times (00, 06, 12, 18 UTC). For each of the four start-

ing points the climatic data are forecast every six hours for about

six months with a spatial resolution of 0.938 ° in longitude and

0.246 ° in latitude (about 104.3 × 27.46 km over Haiti). CFS cli-

mate reforecasts have the same spatial and temporal resolution but

are available only every five days. We computed the daily fore-

cast rainfall considering the CFS forecasts starting at 00 UTC. For

each forecast day, the rainfall is averaged over the four forecast

hours and then downscaled to the watershed scale as described

for TRMM. To take into account the uncertainties introduced with

the CFS forecasts and their possible bias, we perturb the rainfall

time-series used in the cholera forecast with an additive error. The

empirical error distribution is computed from the comparison be-

tween the CFS forecast rainfall and TRMM estimates from October

2010 to December 2013 and is found to have a temporal correla-

tion of two days. 

The initial conditions for infected people in each watershed,

I i (0), are set according to the number of reported cases detailed

in Piarroux et al. (2011) as of October 20, 2010 (t = 0). Specifi-

cally, I i (0) = 10 0 0 in the watershed hosting Mirebalais, the com-

mune where the first case of cholera was reported. Additional 1100

cases were distributed, according to population size, in the three

watersheds downstream of Mirabelais along the Artibonite river

that host the seven communes that was simultaneously struck by

the outbreak on October 20. The initial number of recovered and

the value of bacteria concentration are assumed to be in equilib-

rium with the infected cases, that is R i (0) = 

1 −σ
σ I i (0) and B ∗

i 
(0) =

θ I i (0) / (H i μB ) . The remaining fraction of the population is assumed

to be susceptible because of the lack of any pre-existing immunity.

The DREAM algorithm is run with three chains, assuming a uni-

form prior distribution of the parameters and reflecting parame-

ter boundaries. Concerning the EnKF setup, preliminary sensitivity

analyses on the ensemble size N and on the tuning parameters c 1 
and c 2 show that stable results are obtained with N = 10 0 0 , c 1 = 2,

and c 2 = 0.8. Reflecting parameter boundaries are enforced after

the update to constrain the parameters within the prior bound-

aries. The condition S i = H i − I i − R i > 0 , for i = 1 , . . . , n, is checked

for each realization of the ensemble, and is required to accept the

updated state variables. The state variables of the realizations that

do not satisfy this condition are not updated. 
c  

i

. Results 

.1. Assimilation analysis 

To demonstrate the reliability of the proposed methodology, we

onsider four different scenarios (S1, S2, S3, and S4) for calibration

nd data assimilation of the model. The performance of the scenar-

os is assessed based on the ability to reproduce the first two years

f the Haitian epidemic, from T 0 = October 20, 2010 to T F = De-

ember 31, 2012. 

• S1 : The model is calibrated using DREAM on the complete set

of data collected from T 0 to T F ; N = 10 0 0 random samples of

the posterior distribution of the parameters are then used to

assess the model response during [ T 0 , T F ]. 
• S2 : The posterior distribution of the parameters is computed

using DREAM and considering only the data collected from T 0 
to T 1 = December 12, 2010. During this time window, the lead-

ing driver of the outbreak changed from hydrologic transport

to human mobility, as detailed in Gaudart et al. (2013) . We thus

argue that the calibration window is long enough to sample dif-

ferent epidemiological dynamics and achieve a reasonable pre-

liminary estimate of the parameters. The data collected during

[ T 1 , T F ] are not assimilated during the simulation of the epi-

demics. 
• S3 : The parameters are calibrated as in S2; in the time interval

[ T 1 , T F ] the model state variables are updated weekly using the

EnKF procedure, without changing the associated parameters; 
• S4 : As in S3, but performing the EnKF update on the aug-

mented state, correcting weekly both state variables and pa-

rameters. S4 corresponds to the methodology proposed in

Section 2 . 

Scenario S1 computes the posterior parameter distribution that

etter retrieves the collected data without the use of a DA proce-

ure. While this scenario is not feasible for operational forecasts,

ts comparison with S4 is useful to assess the performance of the

roposed methodology in simulating the epidemics. Scenario S3 al-

ows the assessment of the impact of the EnKF procedure in cor-

ecting the model trajectories. Finally, the comparison between S3

nd S4 assesses the effect of the dynamical update of the parame-

ers. 

The model responses associated to each scenario are illustrated

n terms of weekly cases for the whole country ( Fig. 3 ) and disag-

regated for each department ( Figs. 4 and 5 ). Table 1 reports the

anges of the posterior parameter distribution computed in scenar-

os S1 and S2, while the dynamical update of the parameters in S4

s depicted in Fig. 6 . These results show that the posterior param-

ter distribution obtained in scenario S1 is able to retrieve most of

he epidemic curve. However, parameter uncertainty is underesti-

ated and, as a consequence, the model does not reproduce all the

pidemic peaks, e.g., the one occurring between April and August

012 ( Fig. 3 a). The opposite situation is obtained in S2, where the

osterior parameter distribution computed during the first weeks

f the outbreak is too wide. In this scenario the model response is

ighly uncertain and suitable to assess the epidemic dynamics only

or few months after the end of the calibration period ( Fig. 3 a).

he weekly assimilation of the newly available data with EnKF im-

roves model results, as highlighted in scenario S3 ( Fig. 3 b). Dur-

ng each week the erroneous parameters are driving the model

ar from the real state of the system, but the update steps correct

he epidemic trajectories toward the measurements and reduce the

odel uncertainty. The combined update of the state variables and

odel parameters introduced in S4 reduces the errors during the

orecast step, allowing the model to accurately follow the epidemic

urve for the two years considered, improving the results obtained

n S1 ( Fig. 3 ). 

http://www.openstreetmap.org
http://trmm.gsfc.nasa.gov/
https://www.ncdc.noaa.gov
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Fig. 3. Comparison between the total reported weekly cases during the Haitian cholera epidemic and those estimated by the model in scenarios S1, S2 (a) and scenarios S3, 

S4 (b). For each scenario, the results are obtained with N = 10 0 0 model runs associated to random samples of the posterior distribution of the parameters. Lines and shaded 

areas represent the ensemble mean and the 90% confidence interval, respectively. 

Table 1 

Parameter values of the Haitian cholera model with the associated units as well as upper and 

lower boundaries. The 50th (5th–95th) percentiles of the posterior distributions computed in 

scenarios S1 and S2 are indicated. 

Par. Units Prior S1 S2 

μ day −1 4.5 ×10 −5 

γ day −1 0 .20 

α day −1 0 .004 

β day −1 0 .01–10 0 .25 (0.11–0.34) 4 .80 (0.68–9.42) 

m – 0–1 0 .054 (0.040– 0.065) 0 .043 (0.021–0.088) 

D km 1–300 245 .5 (199.0–277.4) 31 .0 (23.5–38.4) 

ρ day −1 0 .0 0 05–0.02 0 .0 013 (0.0 010–0.0 014) 0 .0 069 (0.0 012–0.0137) 

σ – 0 .03–0.20 0 .0827 (0.0771–0.0937) 0 .0333 (0.0303–0.0408) 

μB day −1 0 .01–1 0 .15 (0.0104–0.26) 0 .0147 (0.0102–0.054) 

θ day −1 0 .01–10 3 .60 (3.43–4.01) 0 .63 (0.21–6.05) 

l day −1 0 .01–1 0 .22 (0.18–0.29) 0 .37 (0.21–0.80) 

φ day/mm 0 .01–2 0 .111 (0.084–0.145) 0 .022 (0.012–0.041) 
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The spatial nature of the cholera model allows us to compare

he four scenarios with the epidemiological data at the department

evel. Fig. 4 presents the results for S1 and S2, while Fig. 5 refers

o S3 and S4. The limitations of scenarios S2 and S3 evinced in the

ggregated results ( Fig. 3 ) are here repeated in most of the depart-

ents. The uncertainty associated to scenario S2 is too wide and

he mean number of modeled cases overestimates the reported

ases in every department during 2012. The analysis of the perfor-

ance of S3 in the different departments ( Fig. 5 ) allows the identi-

cation of a possible drawback of data assimilation technics. In or-

er to track the epidemic peak occurring in May/July 2011 mainly

n the Ouest department, the EnKF overestimates, due to an erro-

eous representation of the spatial cross-correlation at that mo-

ent, the number of cases in all the other departments. This re-

ults in an overall overestimation af this peak at the country scale

 Fig. 3 ). The assimilation with the augmented state (scenario S4,

ig. 5 ) effectively limits such drawback. Under scenarios S1 and

4 the cholera model well retrieves the epidemic curve in the de-

artments of Artibonite, Nord, and Ouest, which are characterized

a

y large numbers of reported cases ( Figs. 4 and 5 ). Both scenario

oorly perform in the departments of Nippes and Sud-Est, where

he small number of reported cases is constantly overestimated.

he main advantage of S4 over S1 is the retrieval of the epidemic

eak occurred during May/June 2012 in the Ouest and Centre de-

artments ( Fig. 5 ). 

To quantitatively compare model performances, we compute

he root mean square error (RMSE) between the modeled, y f , and

he total reported weekly cases, y , for each ensemble realization j :

j 

k 
= 

√ ∑ d 
i =1 

(
y i,k − y f, j 

i,k 

)2 

d 
(10) 

here k is the epidemiological week, and d is the number of the

easurement points in space, here corresponding to the number

he Haitian departments. Table 2 reports the 50th (5th–95th) per-

entiles of ε j 

k 
averaged over the time-points k . The average errors

ssociated with S4 are smaller than those in the other scenarios. 
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Fig. 4. Comparison between the weekly cases reported at the ten Haitian departments during the cholera epidemic and those estimated by the model in scenarios S1 

and S2. Symbols as in Fig. 3 . Inset shows the map of the ten Haitian departments. Notice that the dataset provided by Ministère de la Santé Publique et de la Population 

( http://mspp.gouv.ht ) lists cases for the capital Port-au-Prince separately form its department, i.e. Ouest. However, due to the difficulties in determining where the cases 

reported at Port-au-Prince were actually coming from, these two time series have been aggregated for calibration. 

Table 2 

Scenario characteristics and associated temporal mean of the 50th (5th–95th) 

ensemble percentiles of the RMSE ε j = 〈 ε j 

k 
〉 k (i.e. ε j 

k 
averaged over the time- 

points k ) described in (10) . 

Scenario Calibration period Data assimilation ε j ( × 10 3 ) 

S1 [ T 0 , T F ] – 0 .41 (0.35–0.44) 

S2 [ T 0 , T 1 ] – 0 .64 (0.31–1.17) 

S3 [ T 0 , T 1 ] States 0 .49 (0.32–0.79) 

S4 [ T 0 , T 1 ] States and parameters 0 .33 (0.30–0.38) 
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4.2. Forecast analysis 

Having demonstrated the reliability of the proposed methodol-

ogy in reproducing cholera dynamics in the past, here we present

the results of real-time forecasts and the associated errors. Fig. 7
resents the number of weekly cases forecast by the framework

escribed in Section 2 one, two, and three months in advance, i.e.,

he ensemble state variables at the beginning of each forecast and

he associated model parameters are computed according to sce-

ario S4. The one-month forecasts retrieve many features of the

emporal dynamic of the epidemic, but slightly delay the peak of

nfection that occurred during June 2011 ( Fig. 7 a). This is proba-

ly due to erroneous model parameters that require to be updated

o reproduce that particular period of the epidemic. This state-

ent is corroborated by the parameter dynamics depicted in Fig. 6 ,

here it is evident that several parameters ( μ, β , φ) are subject to

trong changes during such months. The delay in forecasting the

holera peaks seems to be mitigated after July 2011, showing the

eneral reliability of the one-month cholera predictions ( Fig. 7 a).

he two-month forecasts are subject to similar problems, but with

http://mspp.gouv.ht


D. Pasetto et al. / Advances in Water Resources 108 (2017) 345–356 353 

0

5

10 1 Artibonite 2 Centre

0

2

4
3 Grande Anse 4 Nippes

0

2

4
5 Nord 6 Nord-Est

0

2

4
7 Nord-Ouest 8 Ouest

Oct-10 Mar-11 Jul-11 Nov-11 Mar-12 Aug-12 Dec-12
0

2

4
9 Sud

Oct-10 Mar-11 Jul-11 Nov-11 Mar-12 Aug-12 Dec-12

10 Sud-Est

7

3 4

1
65

2

9
8

0

5

10

0

2

4

0

2

4

0

2

4

0

2

4

data
S3
S4

W
ee

kl
y 

ca
se

s 
[1

03 ]
T0 T1        

10

Fig. 5. Comparison between the weekly cases reported at the ten Haitian departments during the cholera epidemic and those estimated by the model in scenarios S3 and 

S4. Symbols as in Fig. 4 . 
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 stronger discrepancy between model and reported cholera peaks

 Fig. 7 b). The errors highly increase in the three-month forecasts,

here the model response do not reproduce the data ( Fig. 7 c). 

To assess if the update of the parameter distribution is effec-

ively improving the forecast, we compared the results of S4 with

he forecast obtained using scenarios S1, where the parameters are

omputed using DREAM on the whole time series, and S3, where

nly the state variables are updated by the EnKF. Note that S1 is

sed only for comparison purposes, not as a possible alternative

andidate. Indeed S1 cannot be used in a real forecast scenario,

s the parameters are estimated using the whole epidemiological

ataset, information not available at the time of forecast. For each

orecast issued and for each model realization j , we compute the

ollowing spatio-temporal RMSE: 

j 

k 
= 

√ ∑ d 
i =1 

∑ n l 
l=1 

(
y i,k + l − y f, j 

i,k + l 
)2 

d n l 

(11) 
here k is the epidemiological week when the forecast is com-

uted, d the number of measurement points in space, n l is the

umber of weeks in the forecast, and y 
f, j 

i,k + l is the number of fore-

asted cases for the j th realization, at the i th measurement point, l

eeks after k . Table 3 reports the 50th (5th–95th) percentiles of η j 

k 
veraged over the time-points k for n l = 4, 8 and 12 weeks. The ta-

le shows that the errors associated with the proposed methodol-

gy S4 are slightly smaller than the errors obtained by the DREAM

alibration S1, while the forecast obtained without the parameter

pdate (S3) show much higher errors. These results clearly high-

ight that the update of the parameter distribution in the EnKF as-

imilation is crucial in order to reduce the forecast errors. 

To assess the performance of the CFS estimated rainfall on the

holera forecasts, we consider a final scenario where cholera fore-

asts are performed with the observed rainfall. The associated er-

ors, reported in the last row of Table 3 , are comparable with those

f scenario 4 obtained using the forecast rainfall. 



354 D. Pasetto et al. / Advances in Water Resources 108 (2017) 345–356 

0

2

4

6

8

10

θ
.2

.4

.6

.8
1

l

00

0.1

0.2

0.3

m

20

0

40

60

D

0

.1

φ

0

10

β

01/11 07/11 01/12 07/12 12/12
0

.1

μ B

01/11 07/11 01/12 07/12 12/12
0

.01
ρ

01/11 07/11 01/12 07/12 12/12
.03

.04

.05

σ

Time
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Table 3 

Forecast scenarios characteristics and associated temporal mean of the 50th (5th–95th) en- 

semble percentiles of the RMSE η j = 〈 η j 

k 
〉 k (i.e. η j 

k 
averaged over the time-points k ) de- 

scribed in (11) . 

Scenario Rainfall model η j ( × 10 3 ) 

At one month At two months At three months 

S2 CFS forecasts 0 .88 (0.61–1.63) 1 .40 (0.93–2.62) 1 .81 (1.20–3.14) 

S3 CFS forecasts 1 .08 (0.70–1.72) 1 .54 (1.02–2.66) 2 .04 (1.32–3.70) 

S4 CFS forecasts 0 .74 (0.62–0.99) 1 .23 (1.01–1.67) 1 .69 (1.38–2.28) 

S4 Measured 0 .76 (0.63–1.02) 1 .27 (1.03–1.73) 1 .79 (1.42–2.45) 
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5. Discussion and conclusions 

We presented an innovative methodology for the real-time fore-

casting of cholera epidemics, which employs a spatially-explicit

numerical model driven by CFS rainfall forecasts. The model is cal-

ibrated on the epidemiological data collected at the beginning of

the epidemic using a MCMC scheme, while EnKF is used for the

on-line update of the state variable and parameter distributions

during the simulation. Forecast spatial distribution of cholera in-

cidence is reliable for at least one month, while errors expectedly

increase for longer time horizons. However, one month lead time

seems like a worthwhile goal of public health predictions any-

where, in the writers’ view, to assess needs of medical supplies

and staff/infrastructure. 

A possible alternative to the use of DA schemes is to recali-

brate the model parameters every week, using the whole dataset

from the beginning of the epidemic to the latest datapoint avail-

able, and to use the parameter posterior distribution to project the

future evolution of the outbreak. We argue that a DA scheme offers

several advantages with respect to a repeated calibration scheme.

The first advantage is rather technical and is related to computa-

tional time. An update of state variables and parameters in our DA

scheme takes less than a second on a standard desktop machine.

On the other hand, calibration requires on the order of 10 5 model

runs (around 1 day of computing time spread over 12 cores). The
omputing time argument might not be conclusive, in particular

f the forecast bulletins are foreseen to be issued with a weekly

requency; however, it should not be completely discarded as the

ramework is supposed to be implemented during emergencies.

n terms of forecasting performance, the DA scheme updates the

tate of the system based on the latest observations; therefore the

orecast starts from a state which is close to the observed one, a

eature that is not necessarily satisfied by a standard calibration

cheme. Finally, the main advantage of using a DA scheme with the

tate augmentation technique ( Evensen, 2009 ) is that it can track

he possible time-evolution of parameters and thus detect possible

irectional changes. Indeed, some of the model parameters may

hange during an outbreak. In particular, exposure to cholera (here

epresented by the rate β) reportedly decreases as interventions

nfold (e.g., distribution of safe water and information campaigns)

nd the population awareness of cholera transmission risk factors

ncreases ( de Rochars et al., 2011 ). The time evolution of the pa-

ameter β ( Fig. 6 ) seems to suggest such a trend. However, a trend

n the time evolution of a parameter might not necessarily reflect

hanges in the actual processes but rather be a byproduct of the

hallenge of identifying such parameter as the dominant drivers of

he epidemic change. This is likely to be the case for the rate of

oss of acquired immunity, ρ . Indeed, the process of immunity loss

an affect the outbreak dynamics only when previously infected

eople replenish the susceptible population. Therefore the onset of
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he outbreak is almost insensible to the rate ρ , which can be iden-

ified only at later stages ( Fig. 6 ). The same issue could also apply

o the fraction of mobile people m , which is crucial at the begin-

ing of the outbreak but becomes difficult to estimate once the

pidemic has spread over the whole country. 

Our results indicate that the EnKF sequential assimilation im-

roves the spatio-temporal reproduction of the epidemics with re-

pect the classical model calibration on the whole dataset, with

he consequential reduction of the forecast error on the reported

ases ( Table 3 ). Discrepancies between model forecasts and obser-

ations can be attributed to three main sources: model structural

rrors, parameter uncertainty and rainfall forecast uncertainty. The

omparison between the projections obtained using forecast and

bserved rainfall shows that rainfall projections are relatively good

n this context and that most of the uncertainty comes from the

pidemiological dynamics rather than external forcing. This result

ight also be due to the fact that high frequency components

f rainfall are filtered out by the epidemiological dynamics and

nly seasonal components, which are arguably well-captured by

he forecasts, matter. 

The feasibility of a real-time forecasting system for cholera out-

reak critically depends on the immediate implementation of a

urveillance system and the release of the relevant epidemiolog-

cal data. In the case of the outbreak in Haiti, data aggregated
ver the ten departments ( Fig. 2 ) were made readily available.

his dataset was processed starting from higher resolution data

 Barzilay et al., 2013 ), which, however, were not publicly released.

patially-distributed data is indeed crucial for the calibration of

patially-explicit models like the one considered in this study, as

hey might allow to consider heterogeneous parameters over the

nfected area. In this scenario, owing to a much larger number of

arameters, classical Bayesian methods for the calibration of the

odel might face major difficulties. On the contrary, several stud-

es (e.g., ELSheikh et al., 2012; Pasetto et al., 2015 ) show the ef-

ectiveness of sequential approaches, such as EnKF, to retrieve the

patial distributions of model parameters, demonstrating the im-

ortance of considering DA procedures for epidemiological projec-

ions. 
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