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Abstract

Gambiense Human African Trypanosomiasis (HAT), or sleeping sickness, is a vector-borne

disease affecting largely rural populations in Western and Central Africa. The main method

for detecting and treating cases of gambiense HAT are active screening through mobile

teams and passive detection through self-referral of patients to dedicated treatment centres

or hospitals. Strategies based on active case finding and treatment have drastically reduced

the global incidence of the disease over recent decades. However, little is known about the

coverage and transmission impact of passive case detection. We used a mathematical

model to analyse data from the period between active screening sessions in hundreds of

villages that were monitored as part of three HAT control projects run by Médecins Sans

Frontières in Southern Sudan and Uganda in the late 1990s and early 2000s. We found het-

erogeneity in incidence across villages, with a small minority of villages found to have much

higher transmission rates and burdens than the majority. We further found that only a minor-

ity of prevalent cases in the first, haemo-lymphatic stage of the disease were detected pas-

sively (maximum likelihood estimate <30% in all three settings), whereas around 50% of

patients in the second, meningo-encephalitic were detected. We estimated that passive

case detection reduced transmission in affected areas by between 30 and 50%, suggesting

that there is great potential value in improving rates of passive case detection. As gam-

biense HAT is driven towards elimination, it will be important to establish good systems of

passive screening, and estimates such as the ones here will be of value in assessing the

expected impact of moving from a primarily active to a more passive screening regime.
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Author summary

Gambiense Human African Trypanosomiasis, or sleeping sickness, is transmitted by the

tsetse fly and affects rural populations in Western and Central Africa. It is a deadly disease

if untreated, and it is therefore important to find people in the early stages of disease so

that appropriate care and medication can be provided. Because of this, much emphasis is

put on mobile teams going from village to village and actively finding as many potential

patients as possible. This does not reach all infected people, though, and some are only

detected passively, that is they report themselves to a health provider, often in advanced

stages of disease. It is not clear what proportion of cases of sleeping sickness are detected

in this way, or how much onwards transmission is prevented. Here we used a mathemati-

cal model to analyse data from a sleeping sickness control programme in Uganda and

South Sudan, in order to identify which proportion of people infected with the disease are

identified through passive case detection. We found that only a minority of patients are

identified in this way in the early stages of disease, but around half are identified if they

are in the later stages. We further found that passive screening reduced transmission in

affected areas by between 30 and 50%. This suggests that there is great potential value in

improving the rates of passive case detection, and we recommend that more emphasis is

put on tackling potential barriers that prevent people being detected.

Introduction

Human African Trypanosomiasis (HAT, sleeping sickness) is a vector-borne disease caused by

parasites of the species Trypanosoma brucei and transmitted by flies of the genus Glossina. The

West African form (gambiense HAT) is a target for elimination as a public health problem by

2020, with a view to zero incidence by 2030 [1].

While active case detection has been a key strategy to bring gambiense HAT towards elimi-

nation, passive case detection is a basic element of nearly all gambiense HAT control pro-

grammes [2]. Even in programmes that are mainly focused on active screening, patients can

self-refer to the fixed HAT treatment centres that must be established in order to administer

the complicated treatment regimens required for HAT case management.

The coverage of passive case detection depends on whether potential cases are recognised at

the community level, and whether patients spontaneously present to the HAT treatment cen-

tre, or are referred to it by other health facilities. At each of these steps, potential barriers may

arise, but published evidence on these barriers is all but missing, with the exception of studies

from western Democratic Republic of Congo and neighbouring Republic of Congo. These sug-

gest that local beliefs and illness concepts do play an important role in determining treatment

choices, but that biomedical testing and treatment are considered valid ways to decide whether

the illness is of biomedical or spiritual origin [3–6].

While not well documented in the literature, structural and financial barriers may also fea-

ture prominently in treatment seeking decisions: nearly all gambiense HAT foci occur in areas

of great poverty, with minimal transport infrastructure and long distances to negotiate. For

other diseases such as malaria and tuberculosis, communities have been shown to make ratio-

nal decisions that take into account the perceived probability of achieving cure, given the avail-

able treatment options, weighed against the costs of seeking care [7–9].

Because of the complex treatment regimens, HAT programmes are not always well inte-

grated with the routine health system. In a study of rhodesiense HAT in eastern Uganda, 77%

of patients treated by the HAT centre had not been referred by other health facilities, and 71%
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had been seen by at least 3 formal health facilities before finally being diagnosed with HAT

[10]. Sheer lack of knowledge about the specialised HAT treatment centre’s existence may also

explain poor passive screening coverage [11, 12].

The disease progression of gambiense HAT occurs in two stages: The initial haemo-lym-

phatic phase (stage 1) of the infection is characterised by intermittent, mild and non-specific

symptoms such as malaise, headache and fever. Crossing of the blood-brain barrier by the par-

asite initiates the meningo-encephalitic phase (stage 2) of the disease, which features wasting,

organ malfunction, opportunistic infections, and progressively severe neurological symptoms,

including personality changes, altered circadian and sleep cycles, and eventually irreversible

coma.

The timing of detection is therefore a crucial determinant of the impact of passive case

detection: if, for example, all cases were detected passively, but only during the very last phase

of stage 2 disease, the effect of case detection would be very substantial in terms of averting

HAT deaths, but negligible in terms of reducing stage 2 sequelae (since no progressions from

stage 1 would be averted) and prevention of onward transmission.

Indeed, while the clinical impact of passive case detection is obvious, the degree to which it

may reduce HAT transmission is unclear. While in general passive case detection may occur

late in infection episodes, even a relatively small reduction in the average duration of infec-

tiousness might have a critical effect, especially if the reproduction number is low and thus

already close to the extinction threshold. A related question is whether, in practical field condi-

tions, the transmission impact of passive case detection alone is sufficient to create conditions

for elimination or at least long lasting control of HAT, without the considerable costs and

human resource inputs of active screening. Theoretically, the reduction in transmission could

be 100% if all cases were detected immediately after infection.

Past HAT programmes have emphasised maximising the coverage of active screening

through community sensitisation and, in the more remote colonial period, coercive measures.

By contrast, rarely have attempts been made to study the determinants of low passive screening

uptake, and to improve its coverage and timeliness [13].

Here, we generated estimates of the coverage and epidemiological impact of passive case

detection for a large number of villages from three Médecins Sans Frontières (MSF) projects in

Southern Sudan and Uganda in the late 1990s and early 2000s. At that time, thousands of cases

of HAT were reported from these countries, but numbers have fallen dramatically since to 4

reported cases in Uganda and 17 in South Sudan in 2016 [14]. We used a mathematical model

of HAT to estimate the transmission intensity and human-to-human reproduction number

(RH!H) of gambiense HAT at the time of the MSF studies. Corollary analyses explored the

association of transmission intensity and coverage with certain variables, including the utilisa-

tion rate of passive screening.

Methods

Ethics statement

The study was approved by the London School of Hygiene and Tropical Medicine Ethics Com-

mittee (Approval #3047).

Data

We identified all instances of consecutive active screenings screening sessions in the Kiri

(Southern Sudan, 2000–2007), Adjumani (Uganda, 1991–1996) and Arua-Yumbe (Uganda,

1995–2002) MSF projects, described previously [15–18]. In all projects, cases detected in stage

1 were treated with pentamidine. In the Uganda sites, during the period of this analysis, both
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standard and short-course first-line regimens of melarsoprol were used for stage 2; relapses

received a variety of compassionate single-drug or combination regimens including melarso-

prol itself, nifurtimox and eflornithine once the latter became available to MSF.

We extracted the number of stage 1 and 2 cases detected actively in each of the two screen-

ing sessions and passively between them (Fig 1). Time series were only retained if they con-

tained population data, and were from villages with an estimated non-zero HAT prevalence at

the time of the first or second active screening session [19], or in which at least one case was

detected passively during the inter-screening period.

Indicators and definitions

We defined he following two passive detection coverage indicators:

• stage 1 detection coverage: the number of stage 1 cases detected, out of the total number of

period-prevalent stage 1 cases, over a given inter-screening period;

• stage 2 detection coverage: the number of stage 2 cases detected, out of the total number of

period-prevalent stage 2 cases, over a given inter-screening period.

These indicators express the direct effect of passive case detection on disease progression

and death. Similarly, we can quantify incomplete coverage as the

• risk of stage 1 to 2 progression: the number of stage 1 to stage 2 progressions, out of the

total number of period prevalent stage 1 cases, over a given inter-screening period; and the

• risk of HAT death: the number of HAT deaths, out of the total number of period prevalent

stage 2 cases, over a given inter-screening period.

Mathematical model

We used a stochastic model of HAT transmission with a closed population and constant inci-

dence rate (Fig 2) that varied between villages, implemented with a binomial tau-leap algo-

rithm using a fixed step size of one month. While all HAT infection involves transmission to

tsetse flies, we did not explicitly model infection in the fly population to simplify calculations.

New stage 1 infections in village i were generated among the susceptible population with

monthly incidence rate (or monthly probability of a given susceptible person to get infected)

λi, encompassing transmission due to the human infectious pool within the village, zoonotic

infections contracted from a putative animal reservoir, and importation of cases due to travel

to other villages or immigration of cases or infected flies. Progression of stage 1 to stage 2

occurred with fixed monthly probability p1, and progressions from stage 2 to death with

monthly probability p2, both held constant across villages.

Fig 1. Schematic representation of the data.

https://doi.org/10.1371/journal.pntd.0006276.g001
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By using a constant incidence rate, we assumed that all vector parameters (size of fly

population, biting rate, proportion of bites taken on humans, probability that a bite by an

infectious fly on a susceptible human results in transmission, probability that a bite by a sus-

ceptible fly on an infectious human results in transmission) remained constant during the

inter-screening periods, and that all uninfected members of the population were at equal risk

of HAT infection. By using closed populations, we assumed that there was no in- and out-

migration of cases (i.e., that travel contributed to incidence only through people becoming

infected while on a trip away from the village). We further assumed that cases did not experi-

ence mortality due to causes other than HAT, as the time series studied were short compared

to human lifespans.

The model was implemented in the C++ programming language.

Accounting for diagnostic accuracy

Diagnosis of HAT usually follows complex algorithms including serological screening followed

by parasitological confirmation and staging. Briefly, the algorithm used in the study sites ana-

lysed here used an initial Card Agglutination Test for Trypanosomiasis (CATT) [20] for

screening and a capillary tube centrifugation (CTC) or the Quantitative Buffy Coat (QBC)

technique in Southern Sudan, and the mini anion exchange centrifugation technique

(mAECT) or QBC in Uganda for parasitological confirmation [21].

In the model runs for each village, any cases detected passively during each month in the

time series were subtracted from the number of current stage 1 and 2 cases, respectively, after

correcting for HAT stage misclassification, a known limitation of diagnostic algorithms used

at the time. To do this, probabilities s�
1

and s�
2

of being correctly classified in stage 1 and stage

2, respectively, were randomly sampled from triangular distributions within previously

derived bounds [21]. The true number of stage 1 and 2 cases detected passively, D1 and D2,

was then randomly sampled from the observed number of stage 1 and stage 2 cases detected

Fig 2. Schematic representation of the model.

https://doi.org/10.1371/journal.pntd.0006276.g002
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Dobs,1 and Dobs,2 using the probabilities

PðD1;D2jDobs;1;Dobs;2Þ ¼
X

minðD1 ;Dobs;2Þ

minðD2 ;Dobs;1Þ

i¼maxð0;Dobs;2� D2Þ

j¼maxð0;Dobs;1� D1Þ

s
�D1 � i
1 ð1 � s�

1
Þ

i
s
�D2 � j
2 ð1 � s�

2
Þ

j
;

which are obtained by summing over all possible permutations of D1 and D2 that could have

led to Dobs,1 and Dobs,1 under the constraints that D1 + D2 = Dobs,1 + Dobs,2.

Estimating the incidence rate

We estimated the incidence rate λi, or the probability of each susceptible person to become

infected in a given month, in each village i using a grid search algorithm. All other parameters

were taken from estimates obtained previously using the same data set (Table 1). Initial condi-

tions were derived by subtracting the number of cases of stage 1 and stage 2 detected during

the first screening session from the estimated true number of stage 1 and stage 2 cases immedi-

ately prior to the screening session [19]. For each village inter-screening time series, we ran the

dynamic model from time t = 0 until t = Ti, where Ti is the number of months between the two

screening sessions in village i, with candidate values of λi ranging from 0 to 0.05 in increments

of 0.0001.

Each candidate value of λi was evaluated with 100 different random numbers of detected

cases after correcting for misclassification, in 1,000,000 runs for each of these samples. In every

run, random values of p1 and p2 were sampled from log-normal distributions with mode and

spread given previously derived estimates [22]. The likelihood of each value of λi was evaluated

by enumerating the proportion of model runs that yielded the correct (estimated) prevalence

of stage 1 and stage 2 cases at the second screening session while maintaining S1� 0 and

S2� 0 at all times during the run.

Table 1. Model parameters. 95% CIs are given in parentheses.

Parameter Symbol Values Source / Notes

Time unit 1 month

Mean number of days in 1 month m 30.41

Duration of inter-screening period in village i Ti Variable Data

Village population size during month t Nt Variable Data

Probability of correct classification in stage 1 s�
1

Kiri (old): 0.68 (0.39–0.87) [21]

Kiri (new): 0.66 (0.39–0.87) [21]

Adjumani: 0.70 (0.39–0.89) [21]

Arua-Yumbe: 0.66 (0.39–0.89) [21]

Probability of correct classification in stage 2 s�
2

Kiri (old): 0.95 (0.82–0.99) [21]

Kiri (new): 0.95 (0.81–0.98) [21]

Adjumani: 0.94 (0.79–0.98) [21]

Arua-Yumbe: 0.93 (0.79–0.98) [21]

Daily rate of progression from stage 1 to 2 r1 0.0019 (0.0012–0.0028) [22]

Daily rate of death once in stage 2 r2 0.0040 (0.0025–0.0058) [22]

Monthly probability of progression from stage 1 to 2 p1 1 � e� mr1 from daily rate

Monthly probability of death once in stage 2 p2 1 � e� mr1 from daily rate

Monthly incidence rate λi Variable (0 to 0.05 per person-month) Estimated

https://doi.org/10.1371/journal.pntd.0006276.t001
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The best estimate of λi for each village time series was provided by the value with maximum

likelihood while confidence intervals (CIs) were obtained from the 95% percentiles of the like-

lihood profile distribution [23]. Best estimates and 95% CIs of λ across villages in the three

project sites were computed through bootstrapping, by (i) drawing 10,000 independent sam-

ples with replacement from the likelihood distribution of λi for each village time series; (ii)

calculating the weighted mean of each set of sampled values, weights being equal to the total

person-time represented by the village time series, i.e.
PT

t¼0
Nt ; and (iii) computing the median

and 95% percentiles of the resulting distribution of 10,000 weighted means.

Once λ was estimated, it was fed back into the model so as to predict the numbers of inci-

dent cases, progressions and deaths during each village time series, as well as other interesting

statistics. Indicators of the coverage and transmission impact of passive case detection were

then obtained from the above numbers. Incidence, coverage and relative transmission impact

were also estimated at the project level, through the bootstrapping method described above.

Estimating detection coverage, transmission potential and the impact of

passive detection

To estimate the detection coverage, human-to-human reproduction number RH!H, and the

impact of passive case detection, 1,000,000 iterations of the model were run for each village

series; for each run, a random value of λi was sampled with replacement from its likelihood

distribution in village i.
The impact of passive detection on transmission was calculated as the difference in the

cumulative person-time of infectiousness between the actual and counterfactual scenario of

zero passive case detection. This corresponds to a reduction in the human-to-human repro-

duction number RH!H, which we assumed to be linearly related to the duration of infectious-

ness. Detection coverage was calculated as the number of stage 1 and 2 cases detected

passively, out of the total number of period prevalent stage 1 and 2 cases, respectively. The risk

of stage 1 to 2 progression was calculated as the number of stage 1 to stage 2 progressions, out

of the total number of period prevalent stage 1 cases, over a given period. The risk of HAT

death was calculated as the number of HAT deaths, out of the total number of period prevalent

stage 2 cases (excluding detections), over a given period.

Incident cases that occurred in the absence of any prevalent stage 1 or stage 2 cases during

the same or the previous month were classified as due to sources of transmission other than

the local human infectious pool within the village; all other incident cases were assumed to be

due to the human infectious pool. The transmission rate βi of the infection in village i, that is,

the number of secondary infections caused by one infectious person per unit time, was calcu-

lated as the number of incident cases found to be due to the human infectious pool, per infec-

tious person-month, over the period T:

bi ¼

PTi
t¼1

S1;i;new;human;t
PTi

t¼1
ðS1;i;t þ S2;i;tÞ

where S1,i,new,human,t is the number of new (incident) cases found to be due to the human infec-

tious pool at time t and Sj,i,t is the number of prevalent cases in village i in stage j at time t. The

human-to-human reproduction number is estimated as the transmission rate times the dura-

tion of infection, assuming that stage 1 and stage 2 cases are equally transmissible,

RH!H ¼ b
1

p1

þ
1

p2

� �

ð1Þ
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The estimate of RH!H should be regarded as an upper limit, since an unknown proportion of

incident cases assumed to be due to the human infectious pool in the village may in fact be due

to zoonosis or case importation. It refers strictly to the human–fly–human transmission cycle

within a given village or project, in the absence of control and assuming full population suscep-

tibility. It is the square of the basic reproduction number R0 calculated elsewhere with the fly

population explicitly modelled [24, 25].

Point estimates and 95% CIs for detection coverage, transmission impact and RH!H at the

level of each village time series were computed from the bootstrap distributions, by computing

the mode and 95% percentile intervals, respectively. Point estimates and 95% CIs at the level of

each project were also computed through a bootstrap, with samples weighted by the maximum

likelihood estimates of λi as time series with higher incidence contributed more to the denomi-

nators of the above indicators.

Factors associated with the incidence rate and detection coverage

The association between the forces of infection λi and other factors (average village population

size during the analysis period, rate of passive case detection during the analysis period,

expressed as cases per 1000 person-months) at the level of the village time series was explored

in ordinary least squares linear regression models, implemented in the R software. A boot-

strapping technique was implemented to randomly select 10,000 sets of values of λi from their

likelihood profile distributions, and regressions performed on each of these 10,000 sets. Medi-

ans and 95% percentile intervals of the coefficients from each of the 10,000 regression outputs

are presented.

In order to perform the least squares regression, λi was log transformed to normalise its dis-

tribution, while factors were treated as categorical variables. An analytic weight was applied to

each observation, equal to Ti, and model coefficient standard errors were adjusted for cluster-

ing due to repeated observations from the same village.

The association between detection coverage in stage 1 and stage 2 and the passive screening

attendance rate during period Ti (expressed as the number of people screened per 1000 per-

son-months) was also explored in a least squares linear regression. For some time series, data

on the number of people screened passively were missing for one or more months; for this rea-

son, and in order to account for different amounts of person-time represented by each time

series, each observation was weighted by the amount of person-time in the time series for

which passive screening attendance data were available.

Results

Profile of time series included in the analysis

Overall, 324 village time series were included in the analysis, the majority of which were

from the Adjumani project (Table 2). In all three projects, the median duration of the series

was around one year. Arua-Yumbe, a comparatively population dense area of northwest

Uganda, featured large population units, whereas in Kiri, Sudan most villages were very

small (assuming about 6 people per household, a median village size of 207 translates to

about 33 households).

Overall, about 4.4 million person-months across the three projects were included in the

analysis, or 8.1% of about 54.7 million person-months available in the datasets. Most of the

remaining person-time was excluded as it comprised periods either before the first or after the

last active screening round, or time series from villages in which no active screening or only

one active screening ever took place (the majority of villages in all projects were never actively
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screened or only screened once, and thus did not feature the consecutive screenings required

for this analysis).

Estimates of incidence and detection coverage

Incidence estimates were obtained for 323/324 time series (the model did not yield any solu-

tion for one time series from Arua-Yumbe).

Most estimates were somewhat skewed, and there was variation within each project (Fig 3).

Estimates were also fairly imprecise at the village level, particularly in Kiri where the numera-

tors (number of cases) and denominators (village population size) informing the model were,

on average, smallest. Nonetheless, the vast majority of maximum likelihood estimates were

below 5 cases per 1000 person-months (Fig 4), and high incidence outliers were rare.

For 52/70 (74.3%) of time series in Kiri, 182/206 (88.3%) in Adjumani and 45/47 (95.7%) in

Arua-Yumbe, the model predicted non-zero incidence with probability of one. The probability

Table 2. Profile of time series included in the analysis, by HAT project.

Kiri, Sudan, Adjumani,

Uganda,

Arua-Yumbe,

Uganda

Number of time series 70 206 48

Number of time series following a repeat round of active

screening (%)

34 (48.6) 126 (61.2) 18 (37.5)

Median duration of the inter-screening period in months

(IQR)

11 (8–13) 9 (6–14) 14 (10–24)

Median village population size (IQR) 207 (107–

367)

803 (588–1068) 2517 (2083–3129)

Median passive case detection rate in cases per 1000

person-months (IQR)

0.49 (0.00–

1.05)

0.30 (0.15–0.70) 0.19 (0.08–0.37)

https://doi.org/10.1371/journal.pntd.0006276.t002

Fig 3. Estimates of the incidence rate, by village time series. Shown are maximum likelihood values (points), median values (crosses) and 95%

percentile intervals (vertical lines) for each village time series. Time series are ranked on the x-axis by project and ascending maximum likelihood value.

The y-axis is truncated at 15 cases per 1000 susceptible person-months for clarity purposes.

https://doi.org/10.1371/journal.pntd.0006276.g003
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of non-zero incidence was less than 0.5 in only 1/70 (1.4%), 4/206 (1.9%) and 2/47 (4.3%) time

series, respectively.

At the project level, estimates of the incidence rate were much more precise (Table 3). They

were of similar magnitude in Kiri and Adjumani, while in Arua-Yumbe they were about 50%

lower. These rates are between two and three times as high as the respective passive case detec-

tion rates during the periods analysed (Table 2).

A minimum proportion of 44.0% (95% CI 37.3%–50.7%) of incident cases in Kiri could not

be attributed to the human-fly-human cycle within villages. Elsewhere, fewer than 10% of

cases met this condition.

We further estimated that, among period-prevalent stage 1 cases, about half progressed to

stage 2 without being detected passively. Stage 1 detection coverage was less than 30% in the

three projects. Among stage 2 cases a greater proportion were detected, but a sizable minority

progressed to death without being detected during the period. When divided by the total per-

son-time at risk in the time series, the predicted HAT deaths amounted to a mean estimated

HAT specific mortality rate of 3.8, 5.4 and 2.3 per 1000 person-years in Kiri, Adjumani and

Arua-Yumbe, respectively.

Fig 4. Distribution of maximum likelihood estimates of the incidence rate, by project.

https://doi.org/10.1371/journal.pntd.0006276.g004

Table 3. Estimates of incidence rate and detection coverage, by HAT project. 95%CIs are given in parentheses.

Parameter Kiri, Sudan, Adjumani, Uganda, Arua-Yumbe, Uganda

Number of incident cases 235 (221–252) 1734 (1674–1799) 836 (806–873)

Incidence rate (cases per 1000 susceptible person-months) 0.92 (0.81–1.04) 0.99 (0.94–1.05) 0.45 (0.42–0.48)

Cases appearing to be not due to human reservoir 44.0% (37.3%–50.7%) 8.2% (6.6%–10.1%) 3.3% (2.0%–5.3%)

Stage 1 detection coverage 29.0% (22.3%–38.4%) 25.6% (23.7%–27.4%) 21.8% (19.5%–24.0%)

Risk of stage 1 to 2 progression 58.1% (49.4%–65.1%) 47.8% (45.7%–49.9%) 50.0% (47.2%–52.6%)

Stage 2 detection coverage 48.6% (38.6%–56.5%) 43.3% (40.1%–46.3%) 63.3% (56.8%–59.1%)

Risk of progression from stage 2 to death 39.6% (31.5%–50.2%) 22.5% (19.4%–25.6%) 28.7% (22.6%–34.7%)

https://doi.org/10.1371/journal.pntd.0006276.t003
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Factors associated with incidence and detection coverage

There was some indication (p for trend < 0.05) of decreasing incidence rate with increasing

population size (Table 4). There was also evidence of a positive association (p for trend <

0.001) between incidence and passive case detection rate.

Reproduction numbers and impact of passive case detection on

transmission

Considering only incident infections that could be attributed to the human-fly-human cycle

within villages, mean estimates of the upper limit of the human-to-human reproduction

number RH!H ranged from 3.1 to 5.7 (Table 5). Passive case detection was estimated to have

reduced RH!H by 31.6–48.4% compared to a scenario of no passive case detection.

Discussion

Interpretation of findings

Passive case detection has received relatively little attention in the study of HAT epidemiol-

ogy, yet it is a means whereby much surveillance and case detection take place, and it also

provides much of the information on incidence used to quantify the burden of HAT locally

and globally.

Table 4. Association of incidence rate with village population size and passive case detection rate. Coefficient is the

median adjusted coefficient, and p-value the median adjusted p-value, both with 95% confidence intervals given in

parentheses.

Factor Coefficient p-value

Village population size

<250 reference

250–499 -1.08 (-2.05–(-0.08)) 0.074 (0.001–0.776)

500–999 -1.52 (-2.42–(-0.53)) 0.017 (<0.001–0.425)

1000–1999 -1.66 (-2.55–(-0.69)) 0.013 (<0.001–0.314)

� 2000 -2.31 (-3.17–(-1.24)) 0.015 (<0.001–0.182)

Passive case detection rate (per 1000 person-months)

0 reference

0.01–0.49 2.51 (1.60–3.39) <0.001 (<0.001–0.005)

0.50–0.99 3.39 (2.51–4.31) <0.001 (<0.001–<0.001)

1.00–1.99 3.91 (3.04–4.83) <0.001 (<0.001–<0.001)

� 2.00 4.27 (3.40–5.25) <0.001 (<0.001–<0.001)

Project

Adjumani reference

Arua-Yumbe 0.11 (-0.29–0.37) 0.746 (0.378–0.990)

Kiri -0.42 (-1.05–0.10) 0.381 (0.051–0.944)

https://doi.org/10.1371/journal.pntd.0006276.t004

Table 5. Estimates of the human-to-human reproduction number and transmission impact of passive detection,

by HAT project. 95%CIs are given in parentheses.

Parameter Kiri, Sudan, Adjumani, Uganda, Arua-Yumbe, Uganda

Upper limit of RH!H 3.1 (2.2–4.7) 5.7 (4.5–8.1) 4.0 (3.1–5.6)

Impact of passive detection 43.1% (38.2%–48.4%) 39.9% (37.2%–42.4%) 33.1% (31.6%–34.6%)

https://doi.org/10.1371/journal.pntd.0006276.t005
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This study provides what appear to be the first estimates of the coverage of stage 1 and 2

passive case detection in gambiense HAT control programmes. Findings suggest that only a

minority of stage 1 cases are detected by this method of control, i.e. that in a situation without

active screening most pathogenic infections would progress to stage 2. These observations are

broadly consistent with those reported from a variety of other HAT foci [26–33]. Once in stage

2, about half of cases were detected during the course of the inter-screening period, and a good

number among those remaining were detected via active screening.

Though based on an entirely different estimation approach, these coverage estimates are

broadly similar to those obtained for T. brucei rhodesiense epidemics in Tororo, Uganda (20%

for stage 1 and 42% for stage 2) [34] and nearby Serere (about 60%) [35]. It must be noted,

however, that stark differences exist in surveillance, disease progression and treatment

between gambiense and rhodesiense HAT [36]. Whether observed similarities are a coinci-

dence or the result of similar underlying systemic and behavioural factors therefore remains

an open question.

We also estimated the true incidence of HAT in a large number of village time series. These

estimates represent a very considerable disease burden: assuming a mean duration of infection

of 26 months [22], and using the simple rule of (prevalence = incidence x duration) whilst

assuming stable incidence in a closed population, these estimates would translate, in the vil-

lages included in our dataset, into a prevalence of about 2.5% in Adjumani and Kiri, and 1.2%

in Arua-Yumbe. They also imply that, in the absence of case detection and assuming all infec-

tions are pathogenic, about 0.5 to 1% of the total population would get infected with HAT and

thus die, per year: by comparison, a typical crude death rate in Sub-Saharan Africa is 1.5 to 2%

per year, i.e. HAT in these communities would result in a 30 to 60% increase in all cause mor-

tality. However, because of case detection and the fact that the predictions were censored at

the end of the time series, predicted HAT-specific mortality rates were in fact lower.

Considerable heterogeneity in incidence was obvious, with a small minority of villages

found to have much higher transmission rates and burdens. As was previously found with

active case detection [19], larger population sizes were associated with lower burden in relative

terms: possible explanations include: (i) a higher fly-to-human ratio in the smaller villages; and

(ii) greater exposure to flies in smaller villages, particularly if village size is a proxy of proximity

to vector habitats or greater occupational risk. Conversely, as expected passively observed inci-

dence was strongly associated with true incidence: therefore, prioritising villages for control

according to observed caseload seems like an appropriate strategy.

This study raises questions about the possible contribution of animal reservoirs to transmis-

sion [24]. T. b.gambiense are known to perpetuate, asymptomatically, in both human and non-

human warm-blooded animals which share ecosystems with tsetse flies [37]. While we had no

other data to validate our method to distinguish likely infections due to non-human-fly-

human cycle dynamics, it does suggest marked differences between Kiri (44%) and the Ugan-

dan foci (3–8%). The Sudanese focus has been suggested as the source of epidemics in neigh-

bouring Moyo, Uganda and Nimule, Sudan [38]: this study raises the hypothesis that an

animal reservoir might contribute to its persistence. More generally, there is also an urgent

need to identify diagnostic markers of the parasite in both humans and animals, as sustained

elimination could be threatened by cryptic reservoirs.

The human-to-human reproduction numbers here are large compared to the ones esti-

mated in other settings [24, 25]. Correspondingly, the reductions in transmission achieved

through passive case detection are not sufficient to interrupt transmission alone, and would

have to increase considerably to do so. In this context, it should be stressed that all estimates

arising from this study apply only to inter-screening periods. They are unlikely to be represen-

tative of conditions before the first active screening or after the last active screening in a given
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village. Indeed, the time series included in this analysis feature generally high incidence, and

are thus representative of the upper end of the possible range of transmission rates and repro-

duction numbers. On the other hand, these villages contribute a disproportionate amount of

cases, and are critical from the standpoint of control, as they probably fuelled the spatial

dynamics of transmission throughout the focus.

Study limitations

The main limitations of this study are closely tied to some of the modelling assumptions.

The estimates of coverage imply the assumption that, once detected, all cases were treated

and recovered. In reality, about 5-10% across the MSF projects died or defaulted treatment

[39]. The coverage would therefore have to be slightly adjusted downward to arrive at the true

impact on mortality or stage 2 sequelae.

A necessary assumption, in view of the absence of any vector data, was that all vector

parameters (e.g. density, death rate) and vector-host interactions (e.g., degree of anthropoph-

ily) remained constant throughout the time series. This assumption was almost certainly not

met in reality, though to an unknown degree. Similarly, the estimates of the incidence rate

should be viewed as averages for the period to which they refer. Bias would have resulted if a

secular trend had been ongoing throughout the HAT focus: for example, if vector density had

been declining progressively, high incidence at the beginning of the period and low incidence

at the end would have resulted in a proportionately higher period prevalence of stage 1 cases

than predicted by the model due to early accumulation of stage 1 cases, and thus an overesti-

mation of stage 1 detection coverage.

Our estimates are also sensitive to the assumption that stage 1 and stage 2 cases are equally

infectious. A decline in infectiousness in stage 2 might considerably reduce the transmission

effect of passive case detection. While very ill stage 2 cases may be bedridden and thus inacces-

sible to flies, clinical experience suggests that this only encompasses a brief (and therefore epi-

demiologically negligible) period of days/weeks before death or care-seeking. There is likewise

insufficient evidence on infectiousness per fly bite by stage: stage 2 cases might have increased

parasitaemia, but parasites might also be mostly sequestered away from peripheral blood

vessels.

The results of this study are dependent on the validity of previous work, including estima-

tion of stage 1 and 2 progression rates [22] and staging inaccuracy [21]. Much sensitivity analy-

sis was already built into the model, by allowing probabilistic distributions of most of the

above parameters. The starting and ending conditions of the time series, i.e. starting and end-

ing prevalence, are a particularly crucial input: had these been underestimated before [19],

detection coverage would have been overestimated here, as a higher starting and ending preva-

lence implies greater incidence rate during the period, i.e. a larger denominator of period-

prevalent cases based on which to calculate coverage.

Lastly, care must be taken in extrapolating these results to other settings. In particular, pas-

sive detection coverage is a function of health system capacity, and this may differ significantly

in other places.

Conclusions

Our findings suggest that, even in well-established projects enjoying stable funding and con-

siderable resources (by no means the rule across HAT control programmes today), the

reported burden of gambiense HAT is subject to considerable underestimation. Furthermore,

despite several limitations this study demonstrates the importance and difficulty of developing
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methods to measure the impact of control programmes against neglected tropical diseases, for

many of which detection coverage is a key determinant.

For gambiense HAT specifically, this study suggests that there is great potential impact in

improving passive case detection, which has the potential to detect a large proportion of cases,

at a fraction of the cost of active screening. The deployment of oral drugs and rapid diagnostic

tests, now a realistic prospect, offers an opportunity to considerably increase passive detection

rates and shift the average timing of detection towards stage 1, by decentralising diagnosis

and treatment to outpatient health facilities, where stage 1 cases with non-specific symptoms

would likely initially present [40, 41]. In this context, mapping fixed health facilities in at-risk

areas could play a crucial role in identifying gaps in passive detection coverage [42].

Alternatively, relatively cheap modalities of case detection that combine aspects of active

and passive screening, involving existing networks of community health workers to test sus-

pect cases, could be employed. More generally, any approach towards greater emphasis on

passive case detection will need to ensure any existing capacity for passive surveillance (e.g.,

training and knowledge of physicians) is maintained even if active surveillance is scaled down.

Passive surveillance requires a strong enough health system with sufficient attendance rates to

allow the multiple visits to health facilities that are required for correct diagnosis and treat-

ment. Improving passive surveillance will require engagement with the affected communities

and a willingness to tackle structural barriers, such as lack of transport or access to health ser-

vices, that all too often preclude access to diagnosis and, consequently, treatment for one of the

deadliest diseases known to man. As the disease is being pushed towards elimination [25, 43,

44], passive detection will be an ever-more important part of control strategies of gambiense

HAT, and estimates of its coverage and efficacy should be crucial components of post-elimina-

tion strategies.
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Frontières programmes. Trans R Soc Trop Med Hyg. 2009 Mar; 103:280–290. https://doi.org/10.1016/j.

trstmh.2008.09.005 PMID: 18947846

Passive case detection of gambiense Human African Trypanosomiasis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006276 April 6, 2018 16 / 17

http://dx.doi.org/10.1371/journal.pntd.0001233
http://dx.doi.org/10.1186/s13104-015-1244-3
http://press.princeton.edu/titles/8709.html
http://dx.doi.org/10.1371/journal.pcbi.1002855
http://dx.doi.org/10.1371/journal.pcbi.1002855
https://doi.org/10.1186/s13071-015-1131-8
http://www.blackwell-synergy.com/links/doi/10.104%2Fj.1365-3156.2003.01152.x
http://www.blackwell-synergy.com/links/doi/10.104%2Fj.1365-3156.2003.01152.x
http://www.cdc.gov/ncidod/eid/vol11no09/04-1020.htm
https://doi.org/10.1046/j.1365-3156.2001.00714.x
http://www.ncbi.nlm.nih.gov/pubmed/11348529
https://doi.org/10.1136/bmj.38859.531354.7C
https://doi.org/10.1136/bmj.38859.531354.7C
https://doi.org/10.1016/S0140-6736(96)06088-6
https://doi.org/10.1016/S0140-6736(96)06088-6
http://www.ncbi.nlm.nih.gov/pubmed/8937285
https://doi.org/10.1186/1476-072X-4-27
http://www.ncbi.nlm.nih.gov/pubmed/16269078
http://dx.doi.org/10.1111/j.1365-3156.2005.01470.x
http://dx.doi.org/10.1111/j.1365-3156.2005.01470.x
http://dx.doi.org/10.1016/S0140-6736(05)67179-6
http://dx.doi.org/10.1016/S0140-6736(05)67179-6
http://dx.doi.org/10.1016/S0140-6736(09)60829-1
https://doi.org/10.1016/j.pt.2017.11.008
https://doi.org/10.1016/j.pt.2017.11.008
http://www.ncbi.nlm.nih.gov/pubmed/29396200
https://doi.org/10.1016/j.trstmh.2008.09.005
https://doi.org/10.1016/j.trstmh.2008.09.005
http://www.ncbi.nlm.nih.gov/pubmed/18947846
https://doi.org/10.1371/journal.pntd.0006276


40. FIND. Project Update: Uganda; 2016. https://www.finddx.org/wp-content/uploads/2016/05/HAT-

UgandaProjectUpdate-2016-FINAL-17May16-WEB.pdf. Archived at http://www.webcitation.org/

6wMyEacUL on Jan 10, 2018. Available from: https://www.finddx.org/wp-content/uploads/2016/05/

HAT-UgandaProjectUpdate-2016-FINAL-17May16-WEB.pdf.

41. FIND. Project Update: South Sudan; 2016. https://www.finddx.org/wp-content/uploads/2016/09/HAT-

SouthSudan-WEB-Aug2016.pdf. Archived at http://www.webcitation.org/6wMy5SPJn on Jan 10, 2018.

Available from: https://www.finddx.org/wp-content/uploads/2016/05/HAT-UgandaProjectUpdate-2016-

FINAL-17May16-WEB.pdf.

42. Simarro PP, Cecchi G, Franco JR, Paone M, Diarra A, Ruiz-Postigo JA, et al. Mapping the capacities of

fixed health facilities to cover people at risk of gambiense human African trypanosomiasis. International

journal of health geographics. 2014; 13(1):4. https://doi.org/10.1186/1476-072X-13-4 PMID: 24517513

43. Rock KS, Pandey A, Ndeffo-Mbah ML, Atkins KE, Lumbala C, Galvani A, et al. Data-driven models to

predict the elimination of sleeping sickness in former Equateur province of DRC. Epidemics. 2017 Mar;

18:101–112. https://doi.org/10.1016/j.epidem.2017.01.006 PMID: 28279451

44. Rock KS, Torr SJ, Lumbala C, Keeling MJ. Predicting the Impact of Intervention Strategies for Sleeping

Sickness in Two High-Endemicity Health Zones of the Democratic Republic of Congo. PLoS neglected

tropical diseases. 2017 Jan; 11:e0005162. https://doi.org/10.1371/journal.pntd.0005162 PMID:

28056016

Passive case detection of gambiense Human African Trypanosomiasis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006276 April 6, 2018 17 / 17

https://www.finddx.org/wp-content/uploads/2016/05/HAT-UgandaProjectUpdate-2016-FINAL-17May16-WEB.pdf
https://www.finddx.org/wp-content/uploads/2016/05/HAT-UgandaProjectUpdate-2016-FINAL-17May16-WEB.pdf
http://www.webcitation.org/6wMyEacUL
http://www.webcitation.org/6wMyEacUL
https://www.finddx.org/wp-content/uploads/2016/05/HAT-UgandaProjectUpdate-2016-FINAL-17May16-WEB.pdf
https://www.finddx.org/wp-content/uploads/2016/05/HAT-UgandaProjectUpdate-2016-FINAL-17May16-WEB.pdf
https://www.finddx.org/wp-content/uploads/2016/09/HAT-SouthSudan-WEB-Aug2016.pdf
https://www.finddx.org/wp-content/uploads/2016/09/HAT-SouthSudan-WEB-Aug2016.pdf
http://www.webcitation.org/6wMy5SPJn
https://www.finddx.org/wp-content/uploads/2016/05/HAT-UgandaProjectUpdate-2016-FINAL-17May16-WEB.pdf
https://www.finddx.org/wp-content/uploads/2016/05/HAT-UgandaProjectUpdate-2016-FINAL-17May16-WEB.pdf
https://doi.org/10.1186/1476-072X-13-4
http://www.ncbi.nlm.nih.gov/pubmed/24517513
https://doi.org/10.1016/j.epidem.2017.01.006
http://www.ncbi.nlm.nih.gov/pubmed/28279451
https://doi.org/10.1371/journal.pntd.0005162
http://www.ncbi.nlm.nih.gov/pubmed/28056016
https://doi.org/10.1371/journal.pntd.0006276

