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What is already known about this subject:  

• The distribution of birth weight and its positive relationship with childhood 

obesity has not changed during the 20th century, according to a large 

population-based cohort study in Denmark, thereby implicating postnatal 

growth in the development of the obesity epidemic.   

• Rapid infant weight gain is associated with greater obesity risk and adulthood 

body mass index (BMI), but it is unknown whether or not this association is 

stronger for individuals born during the obesity epidemic compared to those 

born earlier in the 20th century.  

 

What this study adds:  

• In the Fels Longitudinal Study, the positive association between infant weight 

gain and young adulthood BMI was over two times stronger among a cohort 

born during the obesity epidemic era (1970-1997) compared to cohorts born 

earlier in the 20th century (1933-1949 and 1950-1969).  

• A similar secular trend was found for the association of infant weight gain with 

adulthood systolic blood pressure, thereby extending the results to another 

measure of cardio-metabolic disease risk. 

• As well as potentially implicating rapid infant weight gain in the development 

of the obesity epidemic, these results demonstrate how the consequences of 

rapid infant weight gain are likely to be dependent on context.  
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ABSTRACT 

 

Background 

Infant weight gain is positively related to adulthood body mass index (BMI), but it is 

unknown whether or not this association is stronger for individuals born during 

(compared to before) the obesity epidemic.  

  

Objectives  

To examine how the infant weight gain–adulthood BMI association might have 

changed across successive birth year cohorts spanning most of the 20th century.   

 

Methods 

The sample comprised 346 participants in the Fels Longitudinal Study. Confounder-

adjusted regression models were used to test the associations of conditional weight-

for-length Z-score (WLZ), capturing weight change between ages 0-2 years, with 

young adulthood BMI and blood pressure, including cohort (1933-1949 (N=137), 

1950-1969 (N=108), 1970-1997 (N=101)) as an effect modifier.   

 

Results 

Conditional WLZ was positively related to adulthood BMI, but there was significant 

effect modification by birth year cohort such that the association was over two times 

stronger in the 1970-1997 cohort (β 2.31; 95% confidence interval 1.59, 3.03) 

compared to the 1933-1949 (0.98; 0.31, 1.65) and 1950-1969 (0.87; 0.21, 1.54) 

cohorts. A similar pattern was found for systolic blood pressure. 
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Conclusions 

The infant weight gain–adulthood BMI association was over two times stronger 

among a cohort born during the obesity epidemic era compared to cohorts born 

earlier in the 20th century. 
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INTRODUCTION  

 

Obesity in the United States of America (USA) is a major public health concern, with 

the epidemic having begun in the 1970-80’s1. Understanding which factors have 

contributed to the secular increase in obesity prevalence may help inform prevention 

and intervention efforts at the population level.  

 

Prenatal growth rate, indexed by birth weight, has generally increased during the 

obesity epidemic2, likely due to higher levels of maternal obesity3. Given that higher 

birth weight is positively related to risk of obesity later in life4, it is possible that the 

secular trend toward increasing birth weight may have contributed to the 

development of the obesity epidemic. Alternatively, birth weight may be implicated if 

its relationship with obesity risk has strengthened over time. Rugholm et al5 tested 

these ideas in a large population-based cohort study of approximately 250,000 

Danish children born between 1936 and 1983, but found no evidence that an 

observed secular increase in childhood overweight at ages 6-13 years was explained 

by changes in the distribution or effect of birth weight. Consequently, the authors 

proposed that early-postnatal environmental influences, likely to affect infant growth, 

may be more important.  

 

Consistent observational evidence has found that rapid weight gain during infancy is 

related to increased risk of overweight and/ or obesity6-9. In a meta-analysis of 

individual-level data on 47,661 participants from 10 cohort studies, for example, 

Druet et al9 found that each one unit increase in weight Z-score change between 

birth and age one year incurred a two-fold increased odds of childhood obesity (odds 
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ratio (OR) 1.97; 95% confidence interval (95% CI) 1.83, 2.12) and a 23% higher 

odds of adulthood obesity (1.23; 1.16, 1.30). Despite the 10 cohort studies covering 

a wide range of birth years (1931-1994), there was little evidence of heterogeneity in 

the effect of infant weight gain. While this finding suggests that the relationship of 

infant weight gain with adulthood body mass index (BMI) has not change over time, it 

is possible that other between-study differences (e.g., population and age at 

outcome assessment) may have masked any secular trend.  

 

The aim of the present study was to investigate how the relationship between infant 

weight gain and adulthood BMI may have changed over the 20th century within a 

single population measured at the same ages. Evidence of a strengthening 

association would not only implicate infant weight gain in the development of the 

obesity epidemic, but also indicate that the projected burden of disease (due to infant 

weight gain) might be more severe than currently thought based on analyses of 

historical birth cohorts. This would strengthen the rationale for prevention programs 

targeting rapid infant weight gain.  

 

Adulthood blood pressure was included as a secondary outcome to evaluate 

whether or not any findings for BMI extend to another more direct measure of cardio-

metabolic disease risk. This is a reasonable hypothesis given that obesity is a key 

risk factor for hypertension. 

 

METHODS 
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Sample 

The Fels Longitudinal Study began in 1929 as a study of normative child growth and 

development and continues today as a study of the early-life antecedents of chronic 

diseases of aging. Mother-infant dyads living in Yellow Springs and other towns in 

southwestern Ohio, USA have been enrolled from 1929 onward, with the infants 

being followed-up across their lives.  

 

Starting with a total cohort of 736 participants with available data that consisted of at 

least one measurement in infancy and adulthood, 379 were excluded for missing 

information at either birth or age two years. A further 11 participants were excluded 

because they were preterm births. Gestational age data was missing for 45 

participants; however, they were included in the sample to maximize sample size. 

The 346 participants included in the final sample were predominantly white, non-

Hispanic singleton infants (165 female, 180 male) and were born between 1933 and 

1997. Compared to the final study sample, the excluded sample did not differ with 

respect to race composition, first born birth status, sex ratio, and singleton birth 

status.  

 

All protocols and informed consent documents were approved by the Wright State 

University Institutional Review Board. Parents provided written consent for their 

offspring’s participation until 18 years of age, and children aged 7-18 years provided 

their additional assent, after which written consent was obtained in adulthood. 

 

Variables 
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Exposure: Weight and recumbent length were measured at birth and age two years 

using standard techniques. In brief, length was measured to the nearest 0.1 cm, 

using an infantometer, and weight was measured to the nearest 0.1 kg, using a 

balance beam or digital scale.   

 

Conditional weight-for-length Z-scores (WLZ) were calculated to represent infant 

relative weight gain as the primary exposure. The conditional WLZ are the 

standardized residuals of linear regressions of WLZ at age two years on WLZ at birth 

using the World Health Organization (WHO) growth standards10. The resulting 

variable represents change in WLZ between birth and age two years, independent of 

size at birth (i.e., WLZ at birth) and regression to the mean11. A conditional weight-

for-age Z-score (WAZ) variable was also calculated in the same manner. For 

descriptive purposes, rapid weight gain variables for WAZ and WLZ were calculated 

as the difference between Z-score at age two years and Z-score at birth (using the 

definition of rapid growth as > +0.67 change in Z-score7).  

 

Outcomes: The outcome variables were BMI (weight (kg)/height (m)2) and blood 

pressure (systolic blood pressure (SBP) and diastolic blood pressure (DBP); mmHg), 

measured in adulthood at target age closest to 18 years. Weight and height in 

adulthood were measured using standard techniques. For descriptive purposes, a 

categorical variable was generated based on BMI category (underweight, normal 

weight, overweight, and obese) using established cut-points. SBP and DBP 

measurements were taken with a standard mercury sphygmomanometer while 

participants were seated and at rest. Triplicate measures were taken, and the mean 

of the final two measurements were used in all analyses. 
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Effect modifiers: To capture distinct environmental and social eras in the USA, birth 

year was categorized into tertiles: 1933-1949 to represent a depression/ wartime 

cohort; 1950-1969 to represent a post-war/ baby boomer cohort; and 1970-1997 to 

represent an obesity epidemic cohort. The birth cohort variable was introduced into 

models as an effect modifier to assess its influence on the relationship between 

conditional WLZ and the outcomes.  

 

Covariates: Adjustments were made for available variables known to be associated 

with both the outcome and exposure (i.e., confounder) or just the outcome (i.e., 

competing effect). Sex (female vs. male), WLZ at birth, race (non-white vs. white, 

non-Hispanic), multiple birth (twin or triplet vs. singleton), and birth order (second or 

higher vs. first) were obtained from birth records. Age of adult outcome assessment 

and adult stature (for blood pressure outcomes) were obtained from adulthood visit 

data. 

 

Statistical methods 

Statistical analysis was carried out using Stata (version 14, StataCorp LP, College 

Station, TX). Data were stratified by birth year cohort for descriptive analysis and 

differences between birth cohorts were tested using chi-squared tests (categorical 

variables) and analysis of variance (ANOVA; continuous variables).  

 

Multivariable linear regression was used to evaluate the association between 

conditional WLZ and each outcome variable, including an interaction term between 

birth year cohort and conditional WLZ in all models. Likelihood ratio tests (LRT) were 
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used to test whether the interaction model explained a greater proportion of outcome 

variance compared to a model not including an interaction term. First, unadjusted 

regression models were built testing the conditional WLZ-by-birth year cohort 

interaction. Then, covariates were added to obtain the fully-adjusted models. Only 

the fully adjusted models are presented as adjustment did not noticeably affect the 

beta estimates. Post-estimation commands were used to obtain birth cohort-specific 

estimates of the association between conditional WLZ and respective outcomes and 

Wald tests were used to evaluate the differences between these estimates. To 

examine any effect modification by size at birth, a secondary analysis was used to 

test a WLZ at birth-by-birth year cohort interaction. Conditional WAZ was also tested 

as the exposure (adjusting for WAZ at birth) because this is the typical exposure 

variable in the literature to date.   

 

RESULTS 

 

Descriptive statistics by birth year cohort are provided in Table 1. Birth weight was 

higher, but weight at age two years was lower, in the 1970-1997 cohort compared to 

the 1933-1949 and 1950-1969 cohorts. Therefore, WAZ change from 0-2 years 

decreased from +0.33 Z-scores in the 1933-1949 cohort and +0.38 Z-scores in the 

1950-1969 cohort to -0.26 Z-scores in the 1970-1997 cohort. Adulthood BMI was 

highest in the most recently born cohort, resulting in obesity prevalence being higher 

in the 1970-1997 cohort (16.8%) compared to the 1933-1949 cohort (2.2%) and the 

1950-1969 cohort (1.9%). 
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The results showed that the association between conditional WLZ and adulthood 

BMI was the strongest amongst the most recent birth cohort of participants born 

between 1970-1997. In fully-adjusted regression models (Table 2), the interaction 

term for the 1970-1997 cohort was significant (β 1.33; 95% CI 0.35, 2.32), indicating 

that the effect of infant weight gain was higher in the most recent cohort compared to 

the 1933-1949 (referent) cohort. The LRT comparing this model to a model without 

the birth year cohort-by-WLZ interaction terms provided strong evidence that 

accounting for effect modification significantly improved model fit (p = 0.005). The 

cohort-specific estimates for each birth year cohort are visually represented in Figure 

1. Conditional WLZ was associated with increased adulthood BMI in all three birth 

cohorts; however, effect size was more than doubled in the 1970-1997 cohort, 

compared to the 1950-1969 and 1933-1949 cohorts (β 2.31 versus 0.87 and 0.98; p 

= 0.004 and 0.008, respectively).   

 

Results for SBP indicate that the effect of conditional WLZ was higher in the 1950-

1969 cohort compared to the 1933-1949 cohort (Table 2), with an interaction term 

estimate of 2.58 (95% CI 0.25, 4.92). Similar effect modification (2.18; -0.23, 4.60) 

was observed for the 1970-1997 cohort at alpha 10%. The LRT also indicated 

evidence for a better fit of the interaction model at alpha 10% (p = 0.063). Cohort-

specific estimates (Figure 1) show approximately doubled effect sizes in the 1950-

1969 and 1970-1997 cohorts, compared to the 1933-1949 cohort (β 2.26 and 1.85 

versus -0.33; p = 0.030 and 0.077, respectively).   

 

For DBP, there was no evidence to suggest effect modification (Table 2) and the 

LRT showed no evidence of an improved model fit with interaction terms (p = 0.421).  
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A secondary analysis testing a WLZ at birth-by-birth year cohort interaction indicated 

no evidence of effect modification by size at birth. Replacing the exposure with 

conditional WAZ also produced the same pattern of results across outcomes.   

 

DISCUSSION 

 

Early research on the developmental origins of obesity and adiposity-related 

diseases focused on the influence of birth weight, and later infant growth, in birth 

cohorts from the early- and mid-20th century12-14, before the onset of the obesity 

epidemic and at a time when maternal and infant nutrition (among other factors) 

were far different than today15. While subsequent research has replicated some of 

these findings in more recently born cohorts, there is a dearth of knowledge on how 

these associations might have changed over time. This knowledge is important not 

only because it points towards the factors underlying the development of the obesity 

epidemic, thereby informing prevention and intervention efforts at the population 

level, but also because it demonstrates how the consequences of some disease risk 

factor might be dependent on context. The present study focused on infant weight 

gain, a key risk factor for obesity6-9, and found that a positive relationship with young 

adulthood BMI was over two times stronger among a cohort born during the obesity 

epidemic era (1970-1997) compared to cohorts born earlier in the 20th century (1933-

1949 and 1950-1969). A similar secular trend was found for the association of infant 

weight gain with adulthood systolic blood pressure, thereby extending the results to 

another measure of cardio-metabolic disease risk. These findings provide novel 

evidence that the adverse sequelae of rapid infant weight gain may be more 
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pronounced than might have been previously thought, based on analyses of birth 

cohorts not born into the obesity epidemic.  

  

The association of rapid infant weight gain (and infant BMI) with adulthood BMI has 

been previously established within the Fels Longitudinal Study cohort16,17, and the 

current study findings are in agreement with the larger body of systematic reviews 

and meta-analyses6-9. Unlike one meta-analysis9 which did not find evidence of 

heterogeneity between studies born at different points during the 20th century, 

however, we found clear evidence that the association of infant weight gain with 

adulthood BMI strengthened over time. This discrepancy may be because the 

cohorts included in the meta-analysis were from different populations with childhood 

and adulthood outcomes at a range of ages (e.g., adulthood ages 17-66 years), 

which has the potential to mask any underlying secular trend. Conversely, the Fels 

Longitudinal Study is somewhat unique in its sequential birth cohort design which 

allows for investigation (within a single population) of shifts over a wide range of birth 

years in longitudinal processes and relationships spanning birth to adulthood. One 

large population-based cohort study in Denmark had the available data to ask the 

same research question for birth weight but, similar to our secondary analysis, found 

no evidence of a strengthening relationship with obesity risk over time5. Both studies, 

therefore, provide evidence that environmental influences contributing to the obesity 

epidemic likely operate via accelerated postnatal not prenatal growth.  

 

Despite adulthood obesity prevalence being approximately eight times higher in the 

obesity epidemic cohort (1970-1997) compared to the depression/ wartime (1933-

1949) and post-war/ baby boomer (1950-1969) cohorts, and infant weight gain being 
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positively related to obesity risk, average infant weight gain (unconditional of length) 

was actually lowest in the most recently born cohort. This finding is in agreement 

with previous Fels Longitudinal Study publications showing a secular trend in the 20th 

century toward slower infant weight gain and lower infant BMI peak18,19, as well as 

similar evidence from the United Kingdom and other European studies20,21. A 

strengthening association of infant weight gain with adulthood BMI over time, as 

documented in the present paper, provides one explanation for counterintuitive 

reports of increasing adulthood BMI and decreasing infant weight gain, despite these 

two variables being positively related.  

 

In addition to changes in infant growth, maternal factors have changed over the 

study period, and it is likely that these contributed to the strengthening infant weight 

gain-adulthood BMI association. For example, an overall increase in maternal BMI 

has been documented in the USA3 and, specifically in the Fels Longitudinal Study, 

the prevalence of maternal overweight or obesity increased from 18% in 1930-1949 

to 48% in 1990-200818. Because maternal obesity is related to offspring obesity22, 

adjusting for maternal BMI in the present analysis may have attenuated the effect 

size for the most recently born cohort and made it more comparable to the effect 

sizes for the other two cohorts. Alternatively, emerging evidence suggests that 

offspring of overweight and obese mothers may have decelerated infant growth23, in 

agreement with the concurrent secular trends toward higher maternal BMI and 

slower infant weight gain discussed in the previous paragraph18-21, perhaps due to 

altered hormone levels in breastmilk suppressing appetite and/ or growth24. In this 

scenario, adjustment for maternal BMI may have accentuated (as opposed to 

attenuated) the effect size for the most recently born cohort. As another related 
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example, breastfeeding is associated with slower infant growth and decreased risk of 

overweight and obesity25. Therefore, a secular trend toward lower breast feeding 

rates in our sample, which is possible given evidence from other studies26, and 

overweight and obese women being less likely to successfully breastfeed compared 

to normal weight women27, may have contributed to the strengthening infant weight 

gain-adulthood BMI association. Unfortunately, maternal BMI and infant feeding are 

not complete within the Fels Longitudinal Study dataset and therefore were not 

included in order to maximize the sample size. 

 

Less clear evidence of a secular trend in the effect of infant weight gain was 

observed for blood pressure outcomes. This may be because infant weight gain is a 

less important determinant of adulthood blood pressure than BMI28, with most 

evidence demonstrating stronger associations of blood pressure with childhood 

growth than infant growth per se29. Also, secular trends in blood pressure are not as 

clear cut as those for obesity and do not follow the same time course, at least in the 

Fels Longitudinal Study30. Nonetheless, tentative evidence was found for SBP, 

thereby extending the results to another measure of cardio-metabolic disease risk. 

 

The Fels Longitudinal Study is unique in that it has assessed growth from birth to 

adulthood in participants born from 1929 onward. This is a key strength as it allows 

longitudinal associations and processes to be modelled over changing social and 

environmental circumstances. In terms of limitations, participants are from a 

homogenous, European-ancestry population in a high-income country, which limits 

generalizability to other populations. In addition, extensive covariate adjustment was 

not possible. Despite adjusting for birth weight, greater infant weight gain may be 
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less deleterious in the older cohorts because it is more likely to represent a normal 

biological response to in utero growth constraint (which we would expect to be more 

common in the older cohorts). Unfortunately, with our limited sample size it was not 

prudent to test this hypothesis by stratifying analyses on birth weight. Although body 

composition data are available in the Fels Longitudinal Study, methods have 

changed over time, which constrains comparisons across different birth year cohorts. 

Therefore, interpreting the current findings in terms of adiposity and cardiovascular 

risk is challenging, as BMI includes both fat and fat-free mass components. Larger 

scale studies with more direct cardio-metabolic disease risk marker outcomes, and 

covariate information on maternal factors, are required. 

 

In conclusion, in the Fels Longitudinal Study, the positive association between infant 

weight gain and young adulthood BMI was over two times stronger among a cohort 

born during the obesity epidemic era (1970-1997) compared to cohorts born earlier 

in the 20th century (1933-1949 and 1950-1969). As well as potentially implicating 

rapid infant weight gain in the development of the obesity epidemic, these results 

demonstrate how the consequences of rapid infant weight gain are likely to be 

dependent on context.  
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FIGURE LEGENDS 

 

Figure 1. Associations (with 95% CIs) of conditional WLZ at age two years with 

adulthood BMI, SBP, and DBP for each birth year cohort, estimated from general 

linear regression models (Table 2) 

 

P-values for differences between the estimates are from Wald tests. 

 

CIs, confidence interval; BMI, body mass index; SBP, systolic blood pressure; DBP, 

diastolic blood pressure; WLZ, weight-for-length Z-score 
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Table 1: Descriptive statistics of the study sample in infancy and adulthood, by birth year cohort 
 

  Birth year cohort   

  
1933-1949 
(N = 137) 

1950-1969 
(N = 108) 

1970-1997 
(N = 101) 

p-value1 Total 
(N = 346) 

Female % (n) 46.7 (64) 50.0 (54) 46.5 (47) 0.845 47.7 (165) 

White, non-Hispanic % (n) 100.0 (137) 98.2 (106) 95.1 (96) 0.027 98.0 (339) 

Firstborn % (n) 29.2 (40) 25.9 (28) 39.6 (40) 0.083 31.2 (108) 

Singleton birth % (n) 98.5 (135) 95.4 (103) 94.1 (95) 0.169 96.2 (333) 

Gestational age (wk) (N = 45 missing) Mean (SD) 40.0 (1.34) 39.9 (1.37) 39.7 (1.29) 0.266 39.9 (1.34) 

Birth measures       

   Weight (kg) Mean (SD) 3.33 (0.46)a 3.33 (0.44)b 3.51 (0.49)ab 0.007 3.38 (0.47) 

   Length (cm) Mean (SD) 50.01 (1.99)a 49.83 (2.24)b 51.85 (2.75)ab <0.001 50.49 (2.49) 

   WAZ2 Mean (SD) 0.04 (0.96)a 0.06 (0.95)b 0.39 (0.99)ab 0.010 0.15 (0.97) 

   LAZ Mean (SD) 0.25 (1.03)a 0.17 (1.23)b 1.22 (1.42)ab <0.001 0.51 (1.30) 

   WLZ Mean (SD) -0.17 (1.00) -0.06 (1.45) -0.89 (1.20) <0.001 -0.35 (1.27) 

2 year measures       

   Weight (kg) Mean (SD) 12.43 (1.25) 12.52 (1.30)a 12.12 (1.47)a 0.077 12.37 (1.34) 

   Length (cm) Mean (SD) 87.10 (2.77) 87.84 (2.87)a 86.37 (3.33)a 0.002 87.12 (3.02) 

   WAZ Mean (SD) 0.37 (0.80)a 0.44 (0.86)b 0.13 (0.96)ab 0.030 0.32 (0.87) 

   LAZ Mean (SD) 0.09 (0.87) 0.32 (0.90)a -0.10 (1.06)a 0.006 0.11 (0.95) 

   WLZ Mean (SD) 0.40 (0.82)a 0.32 (0.91)b 0.22 (0.88)ab 0.288 0.32 (0.87) 

WAZ change 0-2 years Mean (SD) 0.33 (1.08)a 0.38 (1.04)b -0.26 (1.19)ab <0.001 0.18 (1.13) 

LAZ change 0-2 years Mean (SD) -0.16 (1.04)a 0.15 (1.21)b -1.33 (1.49)ab <0.001 -0.40 (1.37) 

WLZ change 0-2 years Mean (SD) 0.57 (1.12)a 0.38 (1.60)b 1.10 (1.41)ab <0.001 0.67 (1.40) 

Age of outcome assessment Median (IQR) 20.0 (18.1, 20.2)ab 19.9 (18.0, 20.1)a 18.6 (18.2, 19.8)b <0.001 19.7 (18.1, 20.1) 

Adult weight (kg) Mean (SD) 66.62 (12.93)a 66.22 (12.14)b 72.53 (18.30)ab 0.002 68.22 (14.71) 

Adult stature (cm) Mean (SD) 173.59 (8.92) 171.99 (9.29) 172.28 (9.91) 0.356 172.71 (9.34) 

Adult BMI (kg/m2) Median (IQR) 21.7 (19.7, 23.6)a 21.6 (20.3, 24.1)b 22.7 (20.6, 27.1)ab <0.001 21.8 (20.2, 24.2) 

Adult BMI (kg/m2) category        

   Underweight (<18.5) % (n) 12.4 (17) 5.6 (6) 5.9 (6) <0.001 8.4 (29) 
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   Normal (18.5-24.9) % (n) 73.7 (101) 76.9 (83) 62.4 (63)  71.4 (247) 

   Overweight (25-29.9) % (n) 11.7 (16) 15.7 (17) 14.9 (15)  13.9 (48) 

   Obese (≥30) % (n) 2.2 (3) 1.9 (2) 16.8 (17)  6.4 (22) 

SBP (mmHg) (N = 2 missing) Mean (SD) 106.61 (10.80) 107.69 (10.99) 108.37 (9.36) 0.431 107.47 (10.46) 

DBP (mmHg) (N = 2 missing) Mean (SD) 68.13 (7.36)a 64.37 (9.20)ab 67.28 (9.08)b 0.002 66.70 (8.61) 

SD, standard deviation; IQR, inter-quartile range; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; WAZ, weight-for-age Z-
score; LAZ, length-for-age Z-score; WLZ, weight-for-length Z-score 
 
1Birth cohort differences tested using chi-squared tests for categorical variables and ANOVA (with Bonferroni correction) for continuous variables; alphabetic 
superscripts indicate a difference between cohorts (with same superscript) at p < 0.05  
2Z-scores calculated using the 2006 WHO growth standards 
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Table 2: Regression models1 testing the association of conditional WLZ2 with adulthood BMI, SBP, and DBP and for effect 
modification by birth year cohort  
 
 BMI (kg/m2) (N = 346) SBP (mmHg) (N = 344) DBP (mmHg) (N = 344) 

 Estimate 95% CI p Estimate 95% CI p Estimate 95% CI p 

Constant 22.00 21.03, 22.98 <0.001 108.95 106.34, 111.56 <0.001 69.45 67.04, 71.86 <0.001 

Conditional WLZ 0.98 0.31, 1.65 0.004 -0.33 -2.00, 1.35 0.701 0.63 -0.91, 2.18 0.422 

Birth year cohort          

   1933-1949 (referent) ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

   1950-1969 0.68 -0.26, 1.63 0.155 2.06 -0.26, 4.38 0.082 -3.20 -5.34, -1.06 0.003 

   1970-1997 3.07 2.05, 4.08 <0.001 3.18 0.68, 5.68 0.013 0.21 -2.10, 2.51 0.861 

Conditional WLZ-by-birth 
year cohort 

         

   1933-1949 (referent) ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

   1950-1969 -0.11 -1.05, 0.84 0.827 2.58 0.25, 4.92 0.030 -0.04 -2.19, 2.12 0.972 

   1970-1997 1.33 0.35, 2.32 0.008 2.18 -0.23, 4.60 0.077 1.25 -0.98, 3.48 0.272 

Sex          

   Male (referent) ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

   Female -0.54 -1.33, 0.25 0.177 -6.84 -9.75, -3.93 <0.001 -2.71 -5.40, -0.03 0.047 

WLZ at birth 0.24 -0.08, 0.57 0.144 0.20 -0.61, 1.01 0.630 0.39 -0.36, 1.13 0.311 

Age of outcome assessment 0.28 0.12, 0.44 0.001 0.68 0.30, 1.07 0.001 0.59 0.24, 0.95 0.001 

Adult stature ‒ ‒ ‒ 0.17 0.01, 0.32 0.038 -0.01 -0.15, 0.14 0.919 

R2 0.24   0.29   0.11   

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; WLZ, weight-for-length Z-score 
 
1In addition to the focal variables shown, these models were also adjusted for birth order (second or higher vs. first), multiple birth (twin or triplet vs. singleton), 
and race (non-white vs. white) 
2Conditional WLZ calculated as the standardized residuals from linear regressions of Z-score at age two years on Z-score at birth; Z-scores calculated using 
the 2006 WHO growth standards 
 


