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ABSTRACT 

The benefits of using electronic health records for disease risk screening and personalized 

heathcare decisions are becoming increasingly recognized. We present a computationally 

feasible statistical approach to address the methodological challenges in utilizing historical 

repeat measures of multiple risk factors recorded in electronic health records to systematically 

identify patients at high risk of future disease. The approach is principally based on a two-

stage dynamic landmark model. The first stage estimates current risk factor values from all 

available historical repeat risk factor measurements by landmark-age-specific multivariate 

linear mixed-effects models with correlated random-intercepts, which account for 

sporadically recorded repeat measures, unobserved data and measurements errors. The second 

stage predicts future disease risk from a sex-stratified Cox proportional hazards model, with 

estimated current risk factor values from the first stage. Methods are exemplified by 

developing and validating a dynamic 10-year cardiovascular disease risk prediction model 

using electronic primary care records for age, diabetes status, hypertension treatment, 

smoking status, systolic blood pressure, total and high-density lipoprotein cholesterol from 

41,373 individuals in 10 primary care practices in England and Wales contributing to The 

Health Improvement Network (1997-2016). Using cross-validation, the model was well-

calibrated (Brier score=0.041 [95%CI: 0.039, 0.042]) and had good discrimination (C-

index=0.768 [95%CI: 0.759, 0.777]).  

 

KEYWORDS 

Primacy care records, electronic health records; cardiovascular disease; dynamic risk 

prediction; landmarking; mixed-effects. 
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ABBREVIATIONS 

CI=confidence interval; CVD=cardiovascular disease; Electronic Health Records=EHRs; 

HDL-C=high-density lipoprotein cholesterol 

 

 

Using electronic health records (EHRs) to systematically identify individuals at high risk of 

developing future disease outcomes has the potential to improve cost-effective health care (1), 

however existing risk prediction models do not fully optimize available historical data. The 

development of computationally feasible statistical methods for predicting future disease risk 

from existing  EHRs presents specific methodological challenges and opportunities.  

 

First, risk prediction models are typically developed using traditional prospective designs 

which define a baseline-origin from which to predict future disease risk. However, EHRs are 

dynamic in nature, for example in primary care records an individuals‟ follow-up begins at 

registration with a general practice until they transfer out or die. Defining arbitrary time 

origins for model development without allowing for the in- and out-flow of study participants 

over time can introduce bias (2). Second, risk prediction models typically use single measures 

of error-prone risk factors (e.g., blood pressure and cholesterol), but EHRs often contain risk 

factors measured repeatedly over time which could be utilized both for model development 

and for predicting future disease risk. In particular, repeated measurements can be used to 

predict error-free „estimated current values‟ of risk factors, which may increase their 

predictive ability (3). Third, most risk prediction models require complete risk factor data to 

predict future risk. An exception in cardiovascular disease (CVD) risk prediction is the 

QRISK2 model (4), which has a built-in-tool to substitute missing risk factors using age- and 
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sex-specific population average values. Noteworthy, this substitution approach is not 

compatible with the multiple imputation approach used for model development of QRISK2 

and has not been formally validated (5). Since EHR systems are primarily designed for patient 

management and administrative purposes, there can be large amounts of unobserved 

information on risk factors that needs to be handled appropriately and compatibly in both 

model development and for predicting future disease risk.  

 

While multiple methods exist for developing risk prediction models using EHRs, a previous 

systematic review found that only 8% of studies modelled repeated longitudinal measures, 

54% accounted for missing data, 16% appropriately accounted for censoring and loss to 

follow-up, and none assessed informative observations (where the clinic visit itself provides 

meaningful information) (6). Our aim was to establish a computationally feasible generic 

statistical framework that accounts for these potential advantages and biases of EHRs in the  

development of dynamic risk prediction models that leverage repeated measurements and 

handle unobserved data on routinely recorded risk factors. Our approach combines two 

existing methods, landmark-age models and multivariate linear mixed-effects models (2,7). A 

landmark-age is a reference point (e.g., 40, 45, 50,…,85 years) at which we want to make risk 

predictions using risk factor information collected up to that age. A series of prediction 

models, which we call landmark-age models, are constructed with time origin at the 

landmark-age and past risk factor information from eligible individuals (e.g., in our setting 

these are individuals who are currently registered with a general practice and at future risk of 

disease at the landmark-age). As such, individuals may contribute to one or more prediction 

models depending on their eligibility at the landmark-age reference points. Typically, 

landmark-age models are constructed using Cox proportional hazards models with the last 

observed risk factor values. We propose an extension to this, whereby we replace the last 
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observed values with error-free risk factor values estimated from a multivariate linear mixed-

effects model using all available repeated measures of past risk factor values for each 

landmark-age (8). Multivariate mixed-effects models intrinsically handle unobserved data and 

sporadically recorded repeat measures (9) and their measurement errors (10). The approach 

also provides flexibility to account for the number (or rate) of clinic visits as a proxy for 

illness severity or health anxiety. There is a strong body of statistical evidence showing the 

benefits and potential applications of modelling longitudinal data using mixed-effects linear 

regression models (3,11-14), but this method is not often employed in the development of risk 

prediction models using EHRs (6). Moreover, using landmarking to model data in EHRs has 

been previously proposed (15), and has been combined with univariate mixed-effects 

modelling (16,17) but not in the context of dynamic risk prediction models. In the current 

study, we explore how landmarking can be combined with multivariate mixed-effects linear 

regression models to leverage the advantages of each method to generate dynamic risk 

prediction models suitable for use in EHRs. We illustrate our approach through the estimation 

of 10-year CVD risk using EHRs from 10 general practices in England and Wales. 

 

METHODS 

Data source 

We used patient data from 10 randomly selected general practices that contributed data to The 

Health Improvement Network (18), a United Kingdom (UK) general practice database that 

derives data from routine administrative and clinical practice. During consultations with 

patients, family doctors enter data on medical symptoms and diagnoses using Read codes (19) 

(hierarchical classification system) while information on drug prescriptions is entered 

automatically into the EHRs. The Health Improvement Network captures information on: 

patient demographics, practice-level data, diagnoses and symptoms, specialist referrals, 
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laboratory testing, disease monitoring, prescribing, and death. For this study, we created code 

lists for the risk factors and outcomes using previously described methods (20). Code lists 

were reviewed by a clinician (I. Nazareth) and will be published on ClinicalCodes.org 

following publication.  

 

The main outcome was newly recorded diagnoses of nonfatal or fatal CVD, where CVD was 

defined as with previous primary care risk scores (4) as: angina, myocardial infarction, stroke, 

transient ischaemic attack or major coronary surgery and revascularization. Cause of death 

was ascertained using Read codes. 

 

Risk factors were selected based on those in the validated ACC/AHA Pooled Cohort 

Equations (21,22) and included: age, sex, diabetes status (binary, ascertained using Read 

codes (23)), smoking status (binary), systolic blood pressure (adjusted for hypertension 

treatment), total cholesterol and high density lipoprotein cholesterol (HDL-C). Once 

individuals had a diabetes diagnosis or a prescription for a blood pressure-lowering 

medication they were considered to have this condition/treatment during all follow-up. Values 

of systolic blood pressure, total cholesterol and HDL-C were standardized by centering on 

sex-specific means and dividing by the standard deviation. 

 

Study population 

Data was available from 1 January 1997 to 18 January 2016. Individuals entered the study 

from the latest of: (i) date of registration at general practice plus 6 months, (ii) date for 

acceptable computer usage (quality measurement defined as the year in which a general 

practice continuously used their computer system for recording of medical events and 

prescribing) (24), (iii) date for acceptable mortality reporting (date when mortality recording 
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reflected that of the UK general population) (25), (iv) 30th birth date, or (v) 1st January 1997. 

Individuals exited the study at the earliest of: (i) their first (i.e. „incident‟) newly recorded 

CVD event; (ii) transfer out of the practice; (iii) their date of death, or (iv) 18 January 2016. 

The target population for whom we wanted to estimate CVD risk included individuals with 

genral practice records and without a history of CVD or statin prescriptions (Web Figure 1). 

We excluded participants with statin prescriptions as these individuals are already being 

treated for being at risk of developing CVD and as such would not need to be identified by a 

screening algorithm. In addition, the study sample excluded those with: unknown sex, study 

entry date after age 85, and no measurements of smoking status or systolic blood pressure or 

total cholesterol or HDL-C between study entry and study exit (Web Figure 1).  

 

The following measurements were considered biologically implausible and were changed to 

missing for the analysis: systolic blood pressure <60 or >250 mm Hg (26); total cholesterol 

<1.75 or >20 mmol/liter (27); and HDL-C <0.3 or >3.1 mmol/liter (26) (n=12,352 

measurements out of a total 1,675,241 were changed to missing).  

 

The scheme for The Health Improvement Network to obtain and provide anonymous patient 

data was approved by the National Health Service South-East Multicenter Research Ethics 

Committee in 2002 and scientific approval for this study was obtained from Cegegim 

Strategic Data Medical Research's Scientific Review Committee (13-017). EP, AW, DS, JB 

and IP had full access to the data used to create the study population. This article follows 

RECORD reporting guidelines (Web Table 1) (28).   

 

Statistical analysis 

Two-stage dynamic risk prediction model 
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We used a two-stage approach to construct a dynamic risk prediction model, first modelling 

historical repeated risk factor measurements using multivariate mixed-effects linear models 

and then estimating 10-year CVD risk using Cox proportional hazards models (Figure 1). We 

briefly present the methods here and provide more detail in Web Appendix 1. In both stages, 

models were developed at landmark-ages 40, 45,…, 85 years for eligible participants defined 

as those (i) registered with a general practice at the landmark-age (ii) with no CVD diagnoses 

prior to the landmark-age and (iii) no statin prescription prior to the landmark-age. Treating 

each landmark-age as a time origin, past risk factor information was extracted from age 30 

onwards and participants were followed up for 10 years until their first CVD event or study 

exit date (Figure 1). Crude incidence rates by age at study entry, sex, and statin prescription 

by calendar year were calculated.  

 

Estimation of error-free current risk factor values 

For each landmark-age and separately for males and females, we fitted multivariate mixed-

effects linear regression models (9) on past repeat measurements for smoking status, systolic 

blood pressure, total cholesterol and HDL-C. Each model included fixed intercepts and slopes 

for each risk factor, a time-dependent covariate for initiation of blood pressure-lowering 

medications for systolic blood pressure, and correlated individual-specific random intercepts 

for all four risk factors. These models were estimable on individuals with at least one 

measurement of at least one risk factor. From each model we estimated the error-free current 

risk factor values (i.e., the predicted values at the landmark-age) using the best linear 

unbiased predictors from the empirical Bayes posterior distribution of the random intercepts, 

conditional on the past observed risk factor measurements.    

 

Estimating 10-year CVD risk 
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Ten year CVD risk was estimated from a landmark-age Cox proportional hazards model, 

stratified by sex and with time since landmark-age as the underlying time variable. The model 

was adjusted for landmark-age and landmark-age squared, and included the risk factors: last 

observed diabetes status, last observed treatment for hypertension and estimated current risk 

factor values for smoking status, systolic blood pressure, total cholesterol and HDL-C. 

Participants were followed up for a maximum of ten years. Proportional hazards are therefore 

assumed only across a ten-year period. A „super-landmark model‟ approach (7) was used with 

robust standard errors. A super-landmark model is a version of landmarking in which the 

datasets contributing to the landmark models across all landmark-ages are stacked and a 

single time-to-event model is fitted to the stacked dataset (Web Appendix 1). 

 

Assessment of predictive ability  

Performance of the 10-year CVD risk predictions were assessed with measures of calibration 

(i.e., calibration plots by decile of predicted risk), predictive accuracy (i.e., brier scores; an 

average of the squared difference between the observed outcome and predicted risk, where 

lower scores indicate better predictive accuracy and zero means perfect calibration) and 

discrimination (i.e., C-index; a measure of how well the model discriminates between those 

with and without CVD (29,30)). We estimated the C-index over all individuals (calculated 

over pairs of different individuals) and also separately at each landmark-age. The latter is 

estimated on subsets of individuals of the same age, thus we call this an age-adjusted C-index 

which naturally will have lower values to reflect poorer discrimination (31). We used ten-fold 

cross-validation, splitting the data by general practice, to account for over-optimism.  

 

The above 10-year CVD risk predictions were compared against predictions from (i) a „basic‟ 

landmark-age model, which included sex, age, last observed diabetes status and last observed 
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treatment for hypertension; (ii) a dynamic landmark-age model with landmark-age 

interactions with each covariate; (iii) a dynamic landmark-age model with last observed 

measurements of all risk factors instead of estimated current risk factor values; and (iv) a 

dynamic landmark-age model using cumulative means of all historical measurements 

recorded before each landmark-age, of smoking status, systolic blood pressure, total 

cholesterol and HDL-C. Predictions from (iii) and (iv) were only estimable for individuals 

with one or more measurements on all risk factors, which we call the restricted sample. 

 

Sensitivity analyses 

We conducted four sensitivity analyses. First instead of using all available historical repeat 

measurements of risk factors, we restricted the data to be within ten years before each 

landmark-age. Second, we adjusted the multivariate mixed-effects models by the annual rate 

of repeated measurements in the five years before each landmark-age (as a proxy to account 

for bias due to sicker or more health conscious individuals having more repeats (32)). Third, 

instead of estimating current risk factor values from only past information we estimated the 

future 10-year average risk factor levels from a multivariate mixed-effects model derived 

from both past and future risk factor information within the 10-year future horizon (Web 

Figure 2). Importantly, only past observed risk factors were subsequently used in the 

prediction of the future 10-year average risk factor levels for the Cox model. Fourth, since it 

might be useful to identify patients who are still at high absolute risk even after treatment with 

statins, we re-ran the main analyses including statin users in the models. The mixed-effects 

model including a time-dependent covariate for statin therapy initiation for total cholesterol 

and statin therapy at landmark-age was included as a risk factor in the Cox model. 
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All analyses were performed using Stata 14.2 (StataCorp) and 95% confidence intervals (95% 

CIs) were generated for all measures of association.  

 

RESULTS 

Description of the study sample 

The target population included 41,373 individuals with general practice records and without a 

history of CVD or statin use at study entry. Of these, 32,328 (78%) individuals had at least 

one measurement of smoking status, systolic blood pressure, total cholesterol or HDL-C 

recorded before first CVD event or statin (Web Figure 1). Mean age at study entry was 47.9 

(standard deviation=13.6) years, 17,592 (54%) were men and 5,617 (17%) were prescribed 

statins after study entry (Table 1). Individuals generally had more repeat measures of systolic 

blood pressure than HDL-C (Table 1). On average, there were 1.1 years between repeated 

measurements of smoking status, 0.5 years between repeated measurements of systolic blood 

pressure, 1.1 years between repeated measurements of total cholesterol, and 1.2 years between 

repeated measurements of HDL-C. Overall, 2,861 participants (7%) had a newly recorded 

CVD event over a mean 10.4 (standard deviation=5.6) years of follow-up. Crude CVD 

incidence rates per 1,000 person-years increased from 2.9 for 40-44 year olds to 35.2 for 80-

84 year olds, were higher in men than women, and decreased among statin users by increasing 

calendar year (Table 2). Participants in the study sample and restricted sample (n=12,292 

(30% of target population); Web Figure 1) were similar in terms of age at study entry, sex, 

systolic blood pressure, and total and HDL-C levels but those in the restricted sample were 

more likely to have diabetes (Table 1). The study sample had more males compared to the 

target population but was otherwise similar (Web Table 2).  

 

Estimates from the landmark models 
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Regression coefficients from the age- and sex-specific multivariate linear mixed-effects 

models and hazard ratios for the Cox models, without 10-fold cross-validation, are provided 

in Web Tables 3-6. Overall the values of the fixed intercepts from the multivariate mixed-

effects linear models show that systolic blood pressure and total cholesterol increased over the 

landmark-ages, whereas HDL-C and smoking status decreased (Web Table 3). In addition, 

hazard ratios were generally stronger for the model using estimated current risk factor values 

compared to using last observed values or cumulative means (Web Table 6).  

 

Assessment of 10-year CVD risk  

28% of individuals had an estimated 10-year CVD risk of  ≥10% and 10% had an estimated 

risk of ≥20% from the landmark model with estimated current risk factor values. The model 

appeared well-calibrated (Web Figure 3b), had Brier score of 0.041 (0.030, 0.042) and overall 

C-index of 0.768 (0.759, 0.777) (Figure 2b). Discrimination was better at younger ages 

(Figure 3). Additional age interactions did not further improve calibration or risk 

discrimination (Figure 2b and Web Figure 3c). The basic model (including only age, diabetes 

status and treatment for hypertension) also appeared well calibrated (Web Figure 3a), had 

Brier score of 0.041 (95% CI: 0.040, 0.043), and a lower overall C-index of 0.752 (95% CI: 

0.742, 0.761) (Figure 2a). Similar to the main model, the basic model also discriminated risk 

better at younger compared to older ages (Web Figure 4).  

 

Estimated 10-year CVD risk appeared slightly higher in models using last observed and 

cumulative mean risk factor values compared to estimated current values (Web Figure 5). 

Calibration, Brier scores and C-indices were similar across the landmark models with last 

observed, cumulative mean or estimated current risk factor values (Web Figures 6 and 7). 
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Risk discrimination was better at younger ages than older ages across all models (Web Figure 

8). 

 

Sensitivity analyses 

There was no difference in risk discrimination when the model was restricted to using 

historical repeated measures data up to 10 years before landmark-age (C-index=0.768 [95% 

CI: 0.758, 0.777]) or when the estimated current risk factor values were adjusted for the rate 

of clinic visits (C-index=0.766 [95% CI: 0.756, 0.775]). However, we observed an increase in 

risk discrimination using estimated future 10-year average risk factor levels (C-index=0.774 

[95% CI: 0.765, 0.783]) instead of estimated current risk factor values. C-indices were lower 

when statin users were included in the analysis but the patterns of risk discrimination and 

calibration remained the same as in the main analysis (Web Tables 7 and 8). 

 

DISCUSSION 

We have presented a computationally feasible statistical framework for developing dynamic 

risk prediction models for use on EHRs with historical repeated measures of risk factors. The 

two-stage landmark approach combines Cox proportional hazards regression and age-specific 

multivariate linear mixed-effects models, which account for sporadically recorded repeat 

measures, unobserved data and measurements errors. We illustrated the framework for the 

derivation and validation of a primary care dynamic risk prediction model for 10-year CVD 

risk, but it has potential for wider application to other diseases and conditions and for use on 

other electronic patient records where repeated measurements are recorded, such as those 

collected in secondary care.  
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Our motivation was based on optimising electronic primary care data for automatically 

identifying high-risk individuals for full formal disease risk assessment, rather like a pre-

screening tool with the potential to improve cost-effective health care. For example, several 

international guidelines for CVD risk assessment and management (21,33-35) recommend 

using a systematic strategy for prioristising people for full formal risk assessment on the basis 

of an estimate of their CVD risk using risk factors already recorded in EHRs. CVD risk 

assessment tools, such as the Framingham risk model (36) and QRISK2 (4), are now 

integrated into electronic primary care record systems, but are not purposefully designed for 

pre-screening use. QRISK2 estimates CVD risk using last observed values for the numerous 

risk factors, and when missing, imputes using age- and sex-specific population averages for 

continuous risk factors or assumes no adverse clinical indicators. Our proposed framework 

optimizes all available historical risk factor values, handling potential bias from spurious one-

off measurements, and when missing, intrinsically imputes using all other risk factor 

information. Future work should formally compare such models for pre-screening use and 

assess their cost-effectiveness.  

 

For illustration, we compared a basic CVD risk model using sex, age, diabetes status and 

treatment for hypertension against extended risk models with additional risk factors 

incorporated as cumulative means, last observed values or estimated current risk factor values 

for smoking status, systolic blood pressure, and HDL-C. Our findings showed a modest 

improvement in risk discrimination when including estimated current values of additional risk 

factors, but no difference in risk discrimination in the restricted dataset when comparing 

additional risk factors incorporated as last observed, cumulative means, or estimated  current 

risk factor values. Cumulative mean risk values handle sporadically recorded repeat 

measurements and account for measurement errors, but they are only estimable for 
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individuals with at least one historical measurement on all risk factors and thus not suitable 

for population-wide screening. A major strength of the landmark model with estimated 

current values of risk factors is that it is estimable for individuals with at least one measure in 

any of the risk factors included in the multivariate mixed model (in our illustration this was 

approximately 80% of individuals).  

 

Another strength of our landmark framework is that it is developed and internally validated 

using data that reflects the complexity and messiness of the EHRs that would be used to 

estimate disease risk for future individuals, unlike risk prediction models developed using 

purpose-designed cohort studies. Importantly, the assumptions made about the dynamic 

nature of the historical repeat measures data, unobserved risk factors and measurement errors 

in the model development are compatible with the assumptions required for making a risk 

prediction for a new individual using data from EHRs. 

 

In our sensitivity analysis we investigated using predicted future 10-year average risk factor 

levels instead of estimated current values, and observed a modest improvement in risk 

discrimination. This suggests that future risk factor values of smoking, systolic blood 

pressure, total cholesterol and HDL-C are more predictive of future 10-year CVD risk than 

current values. A considerable limitation in this analysis is that it ignores informative 

censoring of individuals due to death or CVD event in the multivariate mixed-effects model, 

although evidence from empirical and simulation studies (11,14) suggest there is often little to 

be gained from more complex modelling (e.g., joint models (37)).  

 

Other methods with which to develop risk prediction models for use on EHRs exist, including 

machine learning approaches such as neural networks (14,38,39), and statistical approaches 
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such as joint models (14). Prediction models developed using landmark and joint models for 

single risk factors have been previously compared (40) but not in the setting using 

multivariate risk factors. Joint models are more computationally burdensome than landmark 

models, and further development is required before they are computationally feasible for 

application to large EHR datasets. However, landmark models can be developed using any 

standard statistical software with multivariate mixed-effects models and Cox regression. The 

landmark-age- and sex-specific multivariate mixed-effects models can be run in parallel since 

the most computationally burdensome part is extracting the out-of-sample individual-specific 

random intercepts for estimating the current risk factor values.  

 

Certain limitations of our proposed method remain. First, our approach assumes a multivariate 

normal distribution for estimated current values of continuous and binary risk factors. Such an 

assumption is not uncommon in statistical methodology for epidemiology (e.g., in regression 

calibration (10) and multiple imputation  (41)), however, it would be possible to replace with 

a mixture of regression models with correlated latent variables (42). Second, the added 

distributional assumptions on the risk factors may limit transferability and implicate 

recalibration methods for use of the model to other populations, especially in comparison to 

conventional CVD prediction models. Investigating the impact of model misspecification is 

on our future research agenda. Third, uncertainties in the estimated current risk factor values 

are not accounted for in the Cox model. However, our previous work suggest that such 

uncertainties are often negligible relative to the estimated standard errors of the beta-

coefficients in the Cox model (10). Fourth, individuals with more frequent EHRs are more 

likely to have health conditions or health anxiety. We attempted to account for this by 

adjusting the estimated current risk factor values by the annual rate of repeated measurements, 

although it may be plausible to additionally include this as a risk factor in the Cox model. 
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Fifth, for our illustration we assumed a lack of specific Read or drug codes to indicate no 

diagnosis or medication use and cause of death was only available for 13% of those who died, 

meaning the outcome of CVD is underestimated in this study. Sixth, we used the same 

definition of CVD events as used in CVD risk prediction models used in practice, such as 

QRISK2,  which include „soft‟ outcomes such as angina. However, while angina can be a 

symptom of coronary heart disease, it is not a disease itself, and the appropriateness of 

including it in the outcome definition of CVD risk prediction models will depend on the 

clinical context. Finally, despite using contemporary data, CVD screening and treatment 

practices have changed over time and are not accounted for in the models. These limitations 

are unlikely to affect our between model comparisons.  

 

The benefits of optimizing EHRs for disease risk screening and personalized heath care 

decisions are becoming increasingly recognized. There is a growing need for suitable 

statistical methods, data analytics and machine learning approaches to address the 

computational and methodological challenges for the analysis of such “big data”. The 

framework presented in this paper provides a practical, transparent and flexible solution for 

the development of dynamic risk prediction models for use on EHRs. 
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FIGURE LEGENDS 

Figure 1: Schematic showing the landmark age approach 

The dotted line indicates historical repeat measures of smoking status, systolic blood pressure, 

total cholesterol and HDL cholesterol, modelled by landmark-age specific multivariate linear 

mixed-effects models. The diamonds show the landmark age (time of risk prediction). The 

arrows indicate the 10-year follow-up until CVD event or censoring, modelled by Landmark 

Cox model. 

 

Figure 2a: Calibration statistics for each risk prediction model in the study sample 

(n=32,328), data from The Health Improvement Network (United Kingdom, 1997-2016) 

Brier score and 95% confidence intervals (CI) for each model. Lower Brier score is 

interpreted as better calibration. The basic model includes: age, sex + last observed measures 

for diabetes status and hypertension treatment. The model with estimated current values of 

risk factors includes: basic model + predicted current values for smoking status, systolic blood 

pressure, total cholesterol and HDL. The model with age interactions includes: basic model + 

predicted current values for smoking status, systolic blood pressure, total cholesterol and 

HDL + age interactions with all risk factors. 

 

Figure 2b: Risk discrimination statistics for each risk prediction model in the study 

sample (n=32,328), data from The Health Improvement Network (United Kingdom, 

1997-2016) 

C-index and 95% CI for each model. Higher C-index is interpreted as better discrimination. 

The basic model includes: age, sex + last observed measures for diabetes status and 

hypertension treatment. The model with estimated current values of risk factors includes: 

basic model + predicted current values for smoking status, systolic blood pressure, total 
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cholesterol and HDL. The model with age interactions includes: basic model + predicted 

current values for smoking status, systolic blood pressure, total cholesterol and HDL + age 

interactions with all risk factors. 

 

Figure 2c: Change in risk discrimination for each risk prediction model in the study 

sample (n=32,328), data from The Health Improvement Network (United Kingdom, 

1997-2016) 

 Change in C-index between the models in relation to the basic model. The basic model 

includes: age, sex + last observed measures for diabetes status and hypertension treatment. 

The model with estimated current values of risk factors includes: basic model + predicted 

current values for smoking status, systolic blood pressure, total cholesterol and HDL. The 

model with age interactions includes: basic model + predicted current values for smoking 

status, systolic blood pressure, total cholesterol and HDL + age interactions with all risk 

factors. 

 

Figure 3: Overall and age-adjusted C-index, data from The Health Improvement 

Network (United Kingdom, 1997-2016) 
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Table 1. Sample Characteristics of Participants in the Study, data from The Health Improvement Network (United Kingdom, 1997-2016) 
 Baseline characteristics No. measurements  

per year 
 Study sample 

n=32,328 

Restricted sample
a
 

n=12,292 

Study sample Restricted 

sample
a 

 

Characteristics No. of Persons % Mean (SD) No. of Persons % Mean (SD) Mean (SD) Mean (SD) 

Age at study entry, years    47.9 (13.6)   47.5 (12.3)   
Males 17,592 54  6,819 55    
History of diabetes

b
 3,743 12  2,175 18    

Blood pressure-lowering 

medication prescriptions
b
 

9,935 31  4,685 38    

Statin prescriptions
b
 5,617 17  2,003 16    

Current smokers
b
 9,453 31  3,358 27 135.3 (21.1) 0.6 (0.4) 0.6 (0.4) 

Systolic blood pressure, mm Hg
c
    134.8 (21.0)   5.4 (1.0) 1.4 (1.4) 1.6 (1.4) 

Total cholesterol, mmol/liter
c   5.5 (1.1)   1.4 (0.4) 0.4 (0.4) 0.5 (0.4) 

HDL-C, mmol/liter
c
   1.4 (0.4)   135.3 (21.1) 0.3 (0.3) 0.4 (0.3) 

HDL-C=high-density lipoprotein cholesterol; SD=standard deviation. 
arestricted sample contains only patients with at least one measurement of each smoking status, systolic blood pressure, total cholesterol and HDL-C 
bnumber and % calculated across follow-up period (i.e. a diagnosis of diabetes at any point during follow-up is counted as a history of diabetes for that individual) 
cbased on first measurements after study entry 
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Table 2. Crude CVD Incidence Rate per 1,000 Person-years by Entry Age, Sex, and Statin Prescriptions 

by Calendar Year for the Study Sample, data from The Health Improvement Network (United Kingdom. 

1997-2016) 

Factors No. incident CVD cases Total person-years Crude incidence rate 

per 1,000 person-years 

Age (years) at study entry   

 40 – 44  167 57,754 2.9 

 45 – 49   239 53,056 4.5 

 50 – 54  307 49,903 6.2 

 55 – 59  356 37,132 9.6 

 60 – 64   382 29,552 12.9 

 65 – 69  396 22,417 17.7 

 70 – 74  386 15,626 24.7 

 75 – 79  299 10,575 28.3 

 80 – 84  187 5,317 35.2 

Sex    

 Male 1,520 198,797 7.6 

 Female 1,341 232,166 5.8 

Statin initiation by calendar year
a
    

 1997 – 2001  225 4,828 46.6 

 2002 – 2006  968 38,857 24.9 

 2007 – 2011  687 46,662 14.7 

 2012 – 2016  365 27,543 13.3 
CVD=cardiovascular disease 
aIndex statin prescription stratified by calendar year of prescribing date 
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