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Abstract 

 

Background:  

Preclinical animal experiments measuring vaccine immunogenicity and safety are essential, 

not only to establish if the vaccine should progress further, but to generate information on 

how the vaccine should be administered in humans. Animal models that represent human 

vaccine responses well are vital to translate information about vaccine dose to clinical phases. 

Vaccine dose is a key aspect in creating an effective vaccine. However, if the wrong dose is 

chosen, vaccine candidates may be mistakenly discarded and considerable resources wasted. 

Current methods of finding optimal vaccine dose are mostly empirically based, which may be 

leading to sub-optimal doses progressing into later clinical trials. A current example of this is 

in the tuberculosis (TB) vaccine developmental pipeline, where a series of adjuvanted subunit 

vaccines, the H-series, have progressed through to later stages of clinical development with a 

high dose that has been shown to less immunogenic than lower doses.  In drug development, 

mathematical model-based methods are routinely used alongside empirical evaluations, to 

inform dose-finding. I hypothesised that vaccine development may benefit from the 

application of similar quantitative methods. As such, I launched the new field of vaccine 

immunostimulation/immunodynamic (IS/ID) mathematical modelling. My aims for this thesis 

were 1) to establish differences in Bacillus Calmette–Guérin (BCG) Interferon-Gamma (IFN-γ) 

response by human subpopulation, then develop a IS/ID model to represent these response 

dynamics and identify the most representative macaque subpopulation for human BCG 

responses. Aim 2) was to predict human H-series vaccine IFN-γ response using IS/ID model 

calibrated to mouse multi-dose IFN-γ data and allometric scaling. 

 

Methods: For aim 1, longitudinal data on IFN-γ emitting CD4+ T cells following vaccination 

BCG were available in humans and macaques. Human (sub)population covariates were: 

baseline BCG vaccination status, time since BCG vaccination, gender and 

monocyte/lymphocyte cell count ratio. The macaque (sub)population covariate was colony of 

origin. I developed a two-compartmental mathematical model describing the post-BCG IFN-γ 

immune response dynamics. The model was calibrated to the human and macaque data using 
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Nonlinear Mixed Effects Modelling (NLMEM) to establish if there were differences in IFN-γ 

dynamics for both species subpopulations. I then established which macaque subpopulation 

best described human data. For aim 2, longitudinal data on IFN-γ emitting CD4+ T cells 

following two vaccinations with five doses of novel TB vaccine H56+IC31 in mice were 

generated. I then assessed the shape of the dose response curve at early and late time points. 

I calibrated the T cell model to the mouse data and established the change in key model 

parameters across dose. Using the change in model parameters across dose found in the 

mice, I predicted the immune response dynamics in humans for different doses and which 

dose was most immunogenic. 

 

Results: In aim 1, I found that BCG status in humans (baseline BCG-naïve or baseline BCG-

vaccinated) was associated with differences in the peak and end IFN-γ response after 

vaccination with BCG. When the mathematical model was calibrated to the BCG data for both 

macaques and humans, significant differences (p<0.05) in key model parameters were found 

after stratification by macaque colony and human baseline-BCG status. Indonesian 

cynomolgus macaques had the closest immune response dynamics to the baseline BCG-naïve 

humans. In aim 2, a peaked curve was the best description of the mouse H56+IC31 dose 

response curve for early and late time points. Calibrating a revaccination model to the data 

and mapping changes in the estimated mouse model parameters across dose group to the 

estimated human model parameters, I found at day 224 (a latest time point), the model-

predicted median number of human IFN-γ secreting CD4+ T cells were the highest for the 

dose group in the range 1-10μg H56/H1+500 nmol IC31.  This suggests a dose of 1-10μg may 

be the most immunogenic in humans. 

 

Discussion: Finding the most predictive animal model and optimal vaccine dose is essential 

for efficiently accelerating the development of new, effective, TB vaccines. I demonstrated 

that mathematical modelling was a useful tool to quantify BCG immune response dynamics 

in macaques and humans. I established which macaque subpopulation should be used to 

represent a human BCG (or potentially new TB vaccine) induced IFN-γ response in future 

clinical trials. Using IFN-γ as marker of vaccine immunogenicity, mathematical modelling 

predictions using preclinical data suggested that doses in current novel TB vaccines clinical 
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trials on healthy BCG-vaccinated participants should be between 1-10μg H56/H1+500 nmol 

IC31, a result which has been recently corroborated in an empirical H56+IC31 dose-ranging 

trial. This project has demonstrated the potential utility of mathematical modelling in vaccine 

development. I believe future work on IS/ID modelling should include data on more complex 

immune response networks and different animal and human subpopulations. This future 

work is entirely feasible and would establish IS/ID modelling as a legitimate tool to accelerate 

vaccine development.  
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S14 

Empirical and model predicted number of IFN-γ secreting CD4+ T cells over time for A. 
pooled human data (all data, pooled over vaccine type) (50 µg H56/H1+IC31), and the 
predicted human immune responses following a B. low (mouse-data mapped dose of 
0.3-3.33 µg H56/H1+IC31) or C. middle dose vaccination (mouse-data mapped dose of 
16.7 µg H56/H1+IC31) assuming a dose allometric scaling factor of 3.3. A. Grey points 
correspond to number of IFN-γ secreting CD4+ T cells measured over time by ELISPOT 
assay in human PBMC after receiving vaccination of H56/H1+IC31 at day 0 and day 56. 
Median responses over time are marked by blue triangles, the 75th percentile responses 
by an orange triangle and the 25th percentile responses by a purple triangle. The model 
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prediction (total cells) (parameters in Table S9) is plotted against the median data (blue 
line). The orange and purple dashed lines are the model prediction (total cells) of the 
75th and 25th percentiles of the data, a result of the variation in the estimated 
parameters (standard deviation fixed to 0.5 for all parameters (Table S9)). In B. and C. 
Median (blue dashed), 75th (orange dots) and 25th (purple dots) of the model predicted 
human responses after mapping from the mouse dose group model calibration 
(predicted parameters in Table S9). 
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6.1 
Schema depicting the steps required to incorporate vaccine Immunostimulation (IS) 
/Immunodynamic (ID) modeling into vaccine development 
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Chapter 1. Background and Thesis Overview 

 

Vaccine Development 

 

Vaccines are one of the most important public health discoveries and are the most cost-

efficient intervention known in medicine [1]. The physician Edward Jenner has been widely 

recognised as the pioneer of vaccination when he made a breakthrough discovery against 

smallpox, a deadly disease with a high fatality rate in infants and adults (80% and 20-60%, 

respectively) in the 18th century [2]. In 1798, he observed that dairymaids who were exposed 

to cowpox, were protected from smallpox, and thus inoculation with cowpox pathogen could 

protect against smallpox disease [3]. This was the first recorded vaccine and led to the 

eradication of smallpox [2]. Since then vaccines have been developed and licensed for 

multiple diseases [4]. Currently, both the pipeline and business rationale for new vaccines are 

strong [5]. 

 

The vaccine development process follows a progression of phases to produce a safe and 

effective vaccine which can take up to 10-15 years to complete [1]. After initial discovery, 

vaccine immunogenicity and safety bounds are identified in animals (pre-clinical experiments) 

before the vaccine can be given to humans in clinical trials for further safety and 

immunogenicity testing (phases 1 and 2). Finally, large efficacy trials (phase 3) are conducted 

to assess the vaccine performance in the chosen population and if successful, the vaccine will 

be licensed [6]. Taking a vaccine from discovery to licensure can cost in the region of US$0.8 

billion [7]; the later stage is the most expensive, with phase 3 trials costing in the region of 

US$0.5 billion [1]. With these enormous costs, there is intense pressure to make well-

informed decisions at each stage of the development process; mistakes are expensive and 

delays can waste precious time that could save lives. As such, it is vital that key developmental 

decisions are thoroughly investigated. 

 

Animal models 
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Ideally, the most accurate information regarding vaccine performance would be gained if 

vaccines were tested directly in humans; however, developers are constrained by clinical, 

ethical, and financial concerns. As such, in the early stages of vaccine development animal 

models are employed to help understand the safety, immunogenicity and efficacy (amongst 

other aspects) of a vaccine before administration in humans [8, 9]. Animal models are 

essential to the vaccine development process as developers are able to test a wide range of 

developmental factors quickly at a relatively reduced cost. It is vital that a representative 

animal model is found to enable translation of the findings in pre-clinical experiments to 

clinical trials, as accurately as possible [10].   

 

Nonhuman primates (NHP) are used to represent human vaccine responses as they are 

physiologically and immunologically closer to humans than other animals [9, 11, 12]. In many 

cases NHPs have been shown to be a valuable model for vaccine development, for example, 

in the study of vaccines for HIV [13, 14], measles [15] and yellow fever/dengue [16]. Despite 

their obvious value in vaccine development, the use of NHPs for vaccine research is expensive 

and requires specialist expertise, care and laboratory facilities. Other larger animals have 

proved successful animal models for vaccine development including pigs [17], cattle [18, 19] 

and sheep [20]. 

 

Smaller animals (e.g. rodents) are regularly used in the earliest phases of development as they 

are cheaper, easier to house and monitor. In-bred animals with varying susceptibility to 

numerous diseases allow the testing of specific immunological pathways [21]. However, 

unless genetically modified to be “humanised”, in many cases, smaller animals are less 

predictive of human vaccine responses [22-24]. 

 

The key challenge is to accurately translate vaccine responses from these animal studies to 

humans, as the relationships are still not fully characterized, and fraught with issues of not 

only scale, but physiological differences between species. Many vaccines are still searching 

for the most representative animal model to accelerate vaccine development [25, 26]. 
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Dose selection 

 

A key consideration in developing a vaccine is establishing an optimal vaccine dose 

concentration. Throughout the thesis, I refer primarily to vaccine dose concentration 

(hereafter dose) to mean the amount of antigen in the vaccine that promotes the intended 

immune response [21]. Additionally, vaccine delivery systems, i.e. adjuvants are considered a 

separate component of the vaccine construct and not included in my definition of dose.  

 

Once a representative animal model is identified, a key aim of preclinical experiments is to 

establish a vaccine dose that is safe and a range of doses that are safe and likely to provide 

the highest protection when tested in humans. In the case of a pre-exposure vaccine (a 

vaccine given to prevent infection), the optimal vaccine dose will promote an immune 

response in the host that is sufficient to protect against subsequent infection, whilst 

remaining non-toxic. Further to this, from a cost-effectiveness perspective, the optimal dose 

may be the lowest dose that achieves both of these criteria.  

 

In current vaccine development, effective human doses are estimated based on pre-clinical 

experiments in which developers are able to test large dose ranges over short timeframes. 

Methods for finding optimal vaccine dose are purely empirical [27] and based on the long-

standing assumption that the relationship between dose and host response is saturating. This 

assumes a minimum vaccine dose can be found that gives no host response, followed by a 

window of vaccine doses where the selected immune response rapidly escalates then a clear 

response plateau above a certain dose threshold [28, 29]. The goal of vaccine development 

has then been to increase the dose until the response plateau is reached and assume the 

highest, safe dose is optimal (with some margin of error to allow for host variation). Typically, 

following toxicology tests to establish a safety bounds of the vaccine [30],  a “low” dose in 

mice or other small animals is chosen and increased by half log increments until the maximum 

plateau in response is met. This dose range is then scaled up to be applied in larger animals 

and humans using a proposed allometric dose scaling factor. Allometric scaling is the 

quantifiable relationship between animal body size and characteristic, e.g. the physiological 

relationship between animal size and metabolism or life span [31]. The allometric dose scaling 
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factor is a value by which the developer believes the vaccine dose that is equivalent across 

species (i.e. small to large animal to human. Once the starting dose has been established in 

humans, it is then increased incrementally until a “maximal” safe dose, which is defined by 

predetermined safety criteria, is achieved.  

 

However, this “classic” saturating dose response curve is now being challenged by data from 

newer vaccine platforms. Recent immune data for tuberculosis disease (TB) has highlighted 

the shortcomings of this vaccine dose selection assumption.  

 

Tuberculosis 

 

The burden of tuberculosis disease 

 

Tuberculosis disease (TB) caused by the bacteria Mycobacterium tuberculosis (Mtb.), remains 

a substantial global health problem as one of the top 10 causes of death worldwide [32]. 

There were approximately 10.4 million new cases (11% of which were in people living with 

HIV) and 1.4 million deaths from disease (with an additional 0.4 million deaths from TB disease 

in people living with HIV) worldwide in 2015 [32]. In 2015, there were 480,000 new cases of 

multi-drug resistant TB [32].  Countries with the highest incidence of TB (those that account 

for 60% of new cases) include: India, Indonesia, China, Nigeria, Pakistan and South Africa 

(Figure 1.1). 

 

The Sustainable Development Goals but forward by the United Nations in 2015, have the goal 

to “end TB epidemic by 2030” [33] and the WHO End TB Strategy aims for a 95% reduction in 

TB deaths and 90% reduction in TB incidence (approximately 10 per 100,000 population) 

compared to 2015 by 2035 [34]. TB incidence has declined worldwide by 1.5% between 2014 

and 2015 [32], but to achieve the WHO targets, this rate of decline will have to increase to 4-

5%. Major new technologies will be required to achieve this goal [35].
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Figure 1.1 Estimated TB incidence rates by country, 2015 (WHO, 2016 TB report – permission to use granted 26/6/17 see appendix B for e-mail correspondence) 
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Natural history of Mtb. infection  

 

Once an infection with Mtb. has been established, approximately 10% of individuals will 

progress straight onto active TB disease [36, 37]. In the classic paradigm of tuberculosis 

disease, the remaining individuals will clear the infection or develop latent Mtb. infection 

whereby no TB disease symptoms are observed and it is assumed their infection is in a 

quiescent state [37]. In this case, progression from latency to active is possible and 

approximately 3-10% of those latently infected will progress on to active TB disease in their 

lifetime [36, 37]. This rate is considerably increased to >10% per life-year by factors such as 

age and HIV infection that compromise the immune system [38].  

 

TB immune response   

 

Transmission of Mtb. occurs after an individual with active disease aerosolizes bacilli by 

coughing, sneezing [39]. There is data to suggest a great amount of variability around the 

infectiousness of an aerosol produced when an actively infected person coughs [40] and some 

people with active disease may be more infectiousness than others [41]. TB disease can 

disseminate to other organs within the host (extra-pulmonary TB disease) or remain in the 

lungs (pulmonary TB disease), here I focus on the latter. 

 

The innate response to Mtb. infection 

 

The first line of defence against Mtb. infection is the innate immune response. The innate or 

“natural” immune system is present at birth and does not fundamentally change throughout 

the host’s lifetime [42]. Additionally, the innate immune response is thought not to possess 

memory to previous interaction with pathogens [43, 44]. 

 

In Mtb. infection, the primary innate response is respiratory mucosa located in the hosts 

airways [45]. Respiratory mucosa acts to create a physical barrier that prevents invasion and 

a first-line introduction of Mtb. to key innate immune response cells [46]. Evading this, the 

bacilli will eventually establish in the lung alveoli [40]. Here, the bacilli is phagocytosed by 

alveolar macrophages [47] and taken up by neutrophils [48] and antigen presenting dendritic 
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cells [49]. Once internalized by the macrophage, the Mtb. bacilli are chemically destroyed via 

a process of autophagy, which is activated by cytokines emitted by the adaptive response [50, 

51]. Alternatively, macrophage apoptosis (or cell “suicide”) acts to destroy the internalized 

bacilli, and halt further bacteria replication [52]. Simultaneously, antigen presenting cells, 

dendritic cells process Mtb. and migrate to the draining lymph node for presentation to naïve 

T cells [53, 54]. Naïve T cells then differentiation into the appropriate adaptive cell type. 

 

The adaptive response to Mtb. infection 

 

The adaptive immune system is comprised of B and T lymphocytes, whose role is to stimulate 

(and activate) the innate immune system and store information on invading pathogens in 

order to recognise and immobilize the pathogen more quickly if a repeat infection occurs. In 

the case of infection with Mtb., an intracellular bacteria, it is assumed that a cellular (Th1) 

defence is required. The adaptive immune cells widely acknowledged to be most associated 

with Mtb. infection are Th1-phenotype CD4+ and CD8+ T-cells [55-62] as research has shown 

that both Major Histocompatibility Complex (MHC)-I and MHC-II pathways can be stimulated 

by Mtb. antigens. Once stimulated by an antigen-presenting cell, CD4+ T-cells secrete the 

cytokines IFN-γ, IL-12 and TNF-α, which are known to be essential to the immune response to 

Mtb. infection by facilitating interactions between the innate and adaptive immune response 

cells [63-68]. Cytotoxic CD8+ T cells are known to increase in the later stages of infection as 

bacterial burden increases to kill infected cells [60], although the role of CD8+ T cells in Mtb. 

infection is complex and still an area of research [69]. Regulation of these responses during 

infection are also vital to avoid causing damage to host tissue, as such regulatory T cells 

secreting cytokines such as IL-10 [70] control pro-inflammatory responses [71, 72]. There is 

also emerging evidence to suggest the importance of Th17, γδ- T cells, B-cells, MAIT and NK 

cells in Mtb. infection [73-78]. 

 

Immunological memory 

 

CD4+ T cells in early adaptive response to Mtb. infection are known as effector phenotype 

[79, 80]. Once the pathogen has been cleared, effector cells “contract” by apoptosis or cell 

death [4]. Here it is approximated that up to 95% of the cells die to avoid over-inflammation 
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in the host [81, 82]. The remaining 5% of cells migrate to the lymph nodes and remain in the 

hosts system as long-lived memory cells or “central” memory cells [83]. These cells have the 

ability to rapidly proliferate when the same pathogen is encountered, providing protective 

response to infection [44, 81, 84]. Studies have shown that in the case of Mtb. infection, a 

large pool of central memory T cells is indicative of protection [79, 85, 86] and vaccination 

against the disease should aim to induce these T cells above any other memory type [87, 88] 

(see review in [89] of other memory cells). 

 

Granuloma Formation 

 

A key immune mechanism to slow the progression to active disease is the formation of the 

granuloma in the lung. Following an activated adaptive immune response, macrophages, 

neutrophils and lymphocyte cells gather in the lung to form a physical containment of Mtb. 

bacilli [90]. Inside the granuloma, cells maintain a hypoxic environment encourage a state of 

dormancy in the bacteria [37]. There is still unknown whether an individual will effectively 

sterilize the bacteria as granuloma have been shown to be variable within the host [91]. 

However recent evidence has shown that a balance of pro- and anti-inflammatory cytokines 

inside the granuloma is key to sterilization of the bacteria [92]. Factors such as age and HIV 

infection that compromise the immune system can cause break down of the granuloma 

construct [38]. 

 

Risk factors for Mtb. infection and progression to TB disease 

 

Risk factors associated with increased risk of Mtb. infection are mainly external to the host 

[93], for example, the infectiousness of a TB index case  [94], contact patterns with infectious 

individuals [95-97], residence (e.g. confined spaces such as prisons [98]) or behavioural risk 

factors (e.g. visiting enclosed bars with little ventilation [99, 100]). 

 

Risk factors of progression from Mtb. infection to TB disease are mainly driven by endogenous 

host factors. Human Immunodeficiency virus (HIV) is a major risk factor for TB disease and 

HIV-TB co-infection is highly prevalent in South Africa, a major contributor to global TB disease 

incidence [32]. HIV infection suppresses the cell-mediated response believed to be important 
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for prevention of TB disease progression [101]. For example, HIV infection disrupts the ability 

for Mtb. infected phagocytic cells, such as macrophages to apoptosis providing the bacteria 

more opportunity to replicate [102]. TB disease is also known to exacerbate HIV infection 

[101]. Elimination of TB disease is heavily dependent on addressing this co-epidemic [32]. Co-

infection with other diseases also cause immunosuppression that can lead to TB disease. In 

diabetes infection cell-mediated immune responses are depleted [103], including IFN-γ 

production [104] and impaired movement of innate cells such as neutrophils [105]. 

Additionally, in Helminth-TB coinfection, regulatory cytokines IL-10 are upregulated which 

dampens immune response to protect against TB [106, 107].  

 

There has been recent research into the importance of the monocyte (innate cells) to 

lymphocyte (adaptive cells) (ML ratio) in the risk of TB disease. Recent evidence has shown 

that the ratio of host monocyte to lymphocytes cells (ML ratio) was associated with risk of TB 

disease [108-110]. “Naranbhai et. al. observed that in HIV positive, South African adults on 

combination antiretroviral therapy, this relationship was nonlinear, i.e. low and high, 

compared to moderate, ML ratios were associated with a higher risk of TB disease [108]. Little 

investigation has been made into how ML ratio may affect mycobacterial-specific immune 

responses and further insight into this relationship could potentially inform targeted TB 

interventions.” (quoted text taken from my  paper 1 [111]). 

 

Age of an individual plays an important role in the likelihood of progression to disease. There 

is potentially a non-linear relationship between age and risk of disease progression, where 

infants (< 3 years) [112] and the elderly [113] are at a higher risk than adolescents and adults. 

In both groups, the immune system is compromised leading to higher risk of TB disease 

progression. In infants, increased risk is due to an immature immune system, which struggles 

to contain Mtb. infection [112]. In the elderly, TB disease is more likely due to reactivation as 

the immune system declines and fails to contain latent Mtb. infection [114]. 

 

Socio-economic and behavioural related factors can also increase the risk of disease 

progression [93]. Country of residence is associated with a higher risk of TB disease, where 

the poorest, developing countries experiencing the highest burden of TB [93, 115]. Risk 

factors including poorly ventilated accommodation leading to indoor air pollution and 
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crowding increase the likelihood of exposure to Mtb. Malnutrition [116], high alcohol intake  

[117] and smoking [118, 119], which are also associated with socio-economic status, have 

been shown to increase risk of TB disease progression. In the case of malnutrition risk of TB 

disease progression is increased by between 6 to 10-fold [116], due to reduced cell-mediated 

immunity [120, 121]. However, the authors acknowledge further research is required as TB 

disease itself can lead to malnourishment [122, 123]. The risk of progression to active TB is 

almost three times as high for those who consume above average alcohol [100]; this is due to 

reduced production of the cytokine, TNF-α from T cells [124]. Smoking tobacco causes 

damage to lung mucosa [125], a first line defence against Mtb. infection in the lung and 

reduced CD4+ function due to nicotine intake [126]. 

 

Correlates of protection against TB disease 

 

Despite extensive research into the immune response to Mtb. infection, there is currently no 

definitive correlate of protection against TB disease [127].  A candidate for such a correlate is 

IFN-γ; a key cytokine produced by CD4+ and CD8+ cells, which primarily acts to stimulate 

phagocytic cells, such as macrophages, to clear intracellular pathogens [37, 55]. IFN-γ has 

been shown to be essential in the control of such pathogens as Leishmania major [128].  

Cooper et al. [129] show that mice with a disrupted IFN-γ gene, failed to control their infection 

and succumbed to tuberculosis disease more frequently than that of a control group [129]. 

Similarly, Chakerian et al. [57] demonstrated that mice that could induce an early IFN-γ 

producing T-cell response were better protected than an alternative strain of mouse that 

could not provoke such a response.  These results are supported by many other animal studies 

[64, 130, 131]. Human studies have demonstrated that individuals deficient in the IFN-γ 

receptor gene are more susceptible to infection with Mtb. [66, 132, 133]. For example, 

Newport et al. show that defects in the IFN-γ receptor gene (IFN-γ R1) in four children with 

severe Mtb. infection led to an absence of IFN-γ receptors on innate cell surfaces. 

Consequently, a failure in the up-regulation of a key inflammatory cytokine, TNF-α, by 

macrophages usually provoked by IFN-γ response [133]. As such, IFN-γ has long been 

regarded as one of the best measures of immune response against Mtb. infection [37, 64, 

134]. Despite this, there is mixed evidence as to whether levels of IFN-γ correlate with 

protection against disease in humans [135, 136]. Most notably, a study by Kagina et al [136] 
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on a group of infants in South Africa, showed that there was no difference in T-cell responses, 

including the secretion of IFN-γ between the TB cases and non-TB infected controls. However, 

in research relating to the recent TB vaccine, MVA-85A, T cells secreting IFN-γ were shown to 

be associated with reduced risk of TB disease in infants, amongst other T cell activation 

markers [137]. 

 

As such, IFN-γ has long been regarded as one of the best measures of immune response 

against Mtb. infection [37, 64, 134]. Despite this, there is mixed evidence as to whether levels 

of IFN-γ correlate with protection against disease in humans [135, 136]. A study by Kagina et 

al [136] on a group of infants in South Africa, showed that there was no difference in T-cell 

responses, including the secretion of IFN-γ between the TB cases and non-TB infected 

controls. However, in research relating to the recent TB vaccine, MVA-85A, T cells secreting 

IFN-γ were shown to be associated with reduced risk of TB disease in a large sample of infants 

who were more intensively screened for LTBI and HIV infection, than in the study by Kagina 

et. al. [137]. Surprisingly, Ag85A IgG was also found to be associated with reduced risk of TB 

disease, indicating a potential role for antibodies in addition to IFN-γ in protection from 

disease [137]. 

 

It has been widely acknowledged in the TB community that increased IFN-γ responses are 

necessary but not sufficient to provide a protective response against TB disease [138]. 

Polyfunctionality of T cells (i.e. secreting IFN-γ, TNF-α and IL-2) may be a stronger correlate of 

protection, as has been shown for other pathogens [139]. In addition, as both antibodies and 

other T-cell populations may contribute to the protective immune response against Mtb. 

infection, such as CD8+ T-cells and Natural Killer (NK) cells [59, 62, 74, 140, 141], it is likely 

that a correlate of protection for TB is a complex network of innate, humoral and Th1 immune 

responses [138, 142, 143]. Not only cell types, but the balance of T cell phenotypes which, 

through measurement of T cell differentiation markers are thought to be indicative of 

bacterial load within the host [144, 145]. Host factors may also play a vital role in correlate 

discovery, including age, biology and HIV status, etc. [138]. Finding a correlate of protection 

for TB disease is a priority, and is especially important for TB vaccine development [142]. 

Hannekom et al. [127] suggest IFN-γ and other cytokines should be a reading of “vaccine take” 

until a comprehensive surrogate of protection is established. As such, IFN-γ secreting T cells 
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(measured by ELISPOT assay) and IFN-γ levels (measured by ELISA assay) are the markers of 

choice for the majority of TB immunological studies and the association of IFN-γ with reduced 

risk of TB disease in BCG immunised South African infants supports the continued use of IFN-

γ as a marker of vaccine take [146, 147]. 

 

TB vaccines 

 

The WHO Stop TB strategy has outlined the goal of 90% reduction in TB incidence 

(approximately 10 per 100,000 population) compared to 2015 by 2035 [34]. To reach this 

goal, more effective employment of current treatments and development of new TB control 

technology is paramount [32, 148, 149]. A recent systematic review by Harris et. al. on studies 

that assessed the impact of a new TB vaccine on TB disease using epidemiological 

mathematical models found the incidence rate ratio (IRR) of a new pre-exposure vaccine 25 

years after vaccination was approximately 80% if given to all ages [150, 151]. The IRR for a 

pre-exposure vaccine given only to neonates 40 years after vaccination was approximately 

33% [150, 152]. Similar modelling studies also showed the IRR of a post-exposure vaccine 25-

35 years after vaccination given to all ages was approximately 80-85% [148, 151] and given 

only to neonates was 25-39% [148, 151]. A new vaccine could therefore be key to meeting 

the 2035 targets [153, 154]. 

 

Existing TB vaccine: Bacillus Calmette–Guérin (BCG) 

 

There is currently only one licensed TB vaccine, Bacillus Calmette–Guérin (BCG), a live 

attenuated vaccine, which has been in use for nearly 100 years. BCG is a strain of 

Mycobacterium bovis that went through more than 230 round of attenuation (passage of the 

organism in culture) when developed by Albert Calmette and Camille Guérin  in 1908 [155]. 

Since then, attenuation of BCG continued and was distributed globally, resulting in more than 

16 strains of BCG worldwide [156]. So far, BCG has been administered over 4 billion times 

[153] and shows strong efficacy against tuberculous meningitis in children [157]. BCG efficacy 

against adult pulmonary TB is variable [87, 158]. Studies have shown BCG vaccine to exhibit 

high levels of protection from pulmonary TB, with efficacy as high as 80% [159-161], however 

in other studies it showed little to no protection at all [162-164]. 
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The reason as to exactly why BCG exhibits such variable efficacy is still a prominent question 

in TB vaccine research. It has been shown that one of the major factors contributing to higher 

efficacy was the latitude at which the trial was conducted [165, 166]. One hypothesis to 

explain this trend lies in the observation that latitude is associated with varying levels of 

exposure to non-tuberculous mycobacteria (NTM) [167] and it is thought that lower levels of 

exposure occur in more Northern regions [168]. Regular exposure to NTM is presumed to 

“mask” the effects of BCG vaccination against TB disease by priming the immune system and 

thus introducing a level of protection for the host [169]. Age at vaccination has also been 

suggested as a factor influencing BCG efficacy [166] . As a possible explanation for this, 

Ottenhoff et al. suggest that vaccination of infants/neonates could be detrimental to the 

immune memory required for protection by BCG as very early immune responses are not as 

fully developed as adolescents [153]. Immunosenescence can also affect the efficacy of BCG; 

two of the most common forms are age and infections that target the immune system, such 

as HIV [170-172]. Other factors such as BCG strain have been suggested to influence to 

efficacy of BCG [173]. 

 

Despite widespread use of BCG, tuberculosis continues to be the leading infectious disease 

killer globally [174] as such, a new TB vaccine is required [175]. 

 

New TB vaccines 

 

There are currently 13 candidate TB vaccines in development, with the majority in phase 2 

and 3 (Figure 1.2) [32]. As outlined above, the Th1 type response is important in inducing a 

protective response to Mtb. challenge in animals [129] and in observational human genetic 

studies [66, 133]. The majority of new TB vaccines aim to induce a strong Th1 immune 

response, predominantly CD4+ T cell mediated [35, 88, 155]. Only those candidates that are 

safer, more immunogenic and provide better efficacy then BCG are likely to proceed in the 

vaccine development process [58, 153].  

 

TB vaccines can be classified into three types [35]: whole cell vaccine, viral vectored subunit 

vaccine and adjuvant protein subunit vaccine. New candidate TB vaccines can also be  
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categorised into two strategies: to replace BCG or to boost on previous BCG immune 

responses [176]. A booster vaccine works by building upon the immunity induced by previous 

vaccination [177]. A BCG booster vaccine would be administered following BCG vaccination 

either during infancy or adolescence [174]. In the current pipeline, most of the whole cell 

vaccines are designed to replace BCG and the subunit vaccines are predominantly used as 

BCG boosters. 

 

A brief description of each vaccine candidate can be found in Appendix B. 
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Figure 1.2 2015 developmental pipeline for new TB vaccines by Aeras, TB vaccine developers (permission to use granted 15/6/17 see appendix B for e-mail 

correspondence) 
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H-series 

 

In this thesis, I use data on the H-series subunit, BCG booster vaccines. These vaccines are 

currently in Phase 2 of development (Figure 1.2). The H-series vaccines are protein adjuvant 

vaccines developed by Statens Serum Institut (SSI, Denmark), Aeras and Sanofi Pasteur. Three 

subunit protein vaccines from the H-series, designed to boost BCG vaccination, are currently 

in the vaccine development pipeline: Hybrid-1 (H1), HyVac-4 (H4) and Hybrid-56 (H56). H1 is 

comprised of the antigens Ag85b and ESAT-6 and H56 is comprised of Ag85b, ESAT-6 and 

Rv2660c (see Table B.1 in Appendix B). To address the complication of misdiagnosis of TB 

disease, due to the reliance of an immune response to ESAT-6 in current TB disease diagnostic 

tools [178], the vaccine H4 was developed, comprised of antigens Ag85B and TB10.4. H4, H1 

and H56 have been adjuvanted with, IC31 [179, 180](Table B.1, Appendix B) has been used in 

the majority of preclinical and clinical trials with the H-series vaccines, however animal early 

experimentation also utilised proprietary liposomal adjuvant CAF01 [181, 182]. As I use data 

on H-series vaccines in this thesis, a more detailed outline of the pre-clinical and clinical 

performance can be found below. 

 

Developing new TB vaccines 

 

To test the immunogenicity of new TB vaccines, IFN-γ is commonly chosen as an indicator of 

the induction of vaccine mediated antigen specific immune response, although as mentioned, 

on its own it is necessary but not sufficient for a protective response against TB disease [138]. 

ELISA assays are used to measure IFN-γ concentrations in whole blood by stimulating cells 

using a specific antigen [183]. To measure the number of cells producing IFN-γ in peripheral 

blood mononuclear cells (PBMCs), an enzyme-linked immunosorbent spot (ELISPOT) assay is 

commonly used [184]. Flow cytometric analysis is also used to stain cells for multiple cytokine 

secretion as well as determining cell surface markers which would indicate CD4+ or CD8 T cell 

types and effector or memory cell type [58, 83]. Due to the additional complexity involved in 

flow cytometry, the assay is more expensive than ELISA or ELISPOT so the latter are more 

frequently used. 
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Just as with many vaccines, animal models are exploited in an effort to aid the development 

of TB vaccines. Due to the complex natural history of TB disease, multiple animal models have 

been developed with the aim of representing the different stages of disease progression as 

well as different settings or populations (infant versus adolescent, latently TB infected versus 

Mtb. naïve) [185].  

 

Pre-clinical TB vaccine development is predominantly conducted in the mouse and the 

availability of inbred mouse strains enables reproducible and direct comparison between 

animals and across laboratories [185]. Comparisons of mouse and human immune responses 

have been made extensively due to the large body of data that exists in both species and is 

an active area of research [185-191]. The infection model in mice is thought to reflect the 

early stages of human infection (preceding granuloma formation) as the commonly used 

mouse strains do not make granulomas [188]. While there are established differences in 

mouse and human immunology [23], the fundamental mechanisms of cytokine responses 

secreted by Th1 T cells are thought to be similar [189]. However, broadly speaking, the ability 

of mice to form lesions (granuloma) after Mtb. infection, that reflect the pathology in humans 

is lacking [190] and variable amongst mouse strains [191].  

 

Guinea pigs are also used to model TB disease as post-infection. Guinea pigs experience 

heightened inflammatory responses leading to lesions in the lung, which reflects the 

pathology observed in human Mtb. infection [192]. As a result of the similarities between 

guinea pig and human Mtb. response, it is a promising animal model to use once a vaccine 

has been “screened” in the mouse model [185].  

 

The nonhuman primate (NHP) model is, arguably, the most appropriate TB animal model to 

represent human Mtb. infection and disease pathology as they are genetically and 

physiologically more like humans than small animals [193, 194]. This means direct comparison 

of NHP vaccination studies (immunology and efficacy) can be applied to clinical trials [185]. 

PET-CT imaging in macaques has provided valuable insight into the dynamics of TB lesions 

[91]. “Historically, rhesus (Macaca mulatta) [195] and cynomolgus (Macaca fascicularis) [196] 

macaque species have been used as the primary NHP-model in TB vaccine research [197-200]. 

Both species have been shown to respond to, and be partially protected from, TB by BCG 
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vaccination [147, 201-204]; however, it has been shown that the same experimental 

conditions (infection with Mycobacterium tuberculosis (Mtb) following vaccination or vaccine 

immune response) may lead to divergent outcomes between the two species [193, 205-207]. 

Furthermore, the colony (country of origin) of macaque, even within the same species, has 

been shown to affect the level of protection to infection and response after vaccination [208]. 

For example, differing levels of protection between Chinese and Mauritian cynomolgus 

macaques have been observed, whereby Mauritian cynomolgus macaques developed end 

stage progressive TB in 7 weeks, while the Chinese cynomolgus macaques remained well past 

the end of the study (12 weeks)[209]. Additionally, the cost and expertise required to 

facilitate an NHP study far exceeds that of any small animal studies. Despite this, in 2014, the 

Bill and Melinda Gates Foundation adopted a new strategy for the up-selection of new TB 

vaccine candidates for clinical testing selecting vaccines on immune response and challenge 

results in NHPs [210].” (quoted text taken from my paper 2 [200]) 

 

After pre-clinical evaluation, TB vaccines are progressed into clinical stages to establish 

efficacy in humans. Due to a lack of correlate of protection, this requires large efficacy trials 

that must be carried out in high incidence settings and as TB is a slow progressing disease, 

large numbers and long follow up times are required [88]. Additionally, due to differing 

immunogenicity and levels of susceptibility, there are three distinct populations to target with 

a new TB vaccine [88]: infants, adolescents and HIV infected [38, 175]. In the latter two, latent 

Mtb. infection may be an added complication that new TB vaccines will have to 

accommodate. Depending on the BCG policy of the country where the trial is held, it is likely 

that participants in efficacy trials may already have BCG vaccination, potentially at birth. If 

the vaccine under consideration is a BCG booster then measures may have to be taken to 

prime participants with BCG before enrolment (with sufficient time to build an adequate 

immune response). To establish if a new TB vaccine is an improvement on BCG, BCG 

vaccination may be included in vaccine trials as a control arm [211, 212]. 

 

Recent TB vaccine clinical trials 

 

To date, there has only been one TB vaccine that has progressed through to efficacy trials 

with published results. The first efficacy trial for MVA85A, developed at Oxford university, 
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was in conducted in 2,794 BCG-vaccinated infants in South Africa [213]. The purpose of the 

trial was, primarily, to investigate safety of the vaccine, followed by efficacy against TB disease 

and infection [158]. None of the serious adverse events were associated with the vaccine and 

elevated immune responses were recorded [213]. However, the efficacy of the vaccine 

against TB disease (measured using microbiological and clinical criteria) was calculated at 

17.3% (95% CI: -31.9% to 48.2%) and the efficacy of the vaccine for protection against Mtb. 

infection (measured using the Quantiferon-TB Gold assay) was -3.8% (95% CI: -28.1% to 

15.9%) suggesting this vaccine was not efficacious in this population [213]. The investigators 

of the trial speculated that immature immune systems and low immune responses to 

MVA85A may have affected the MVA85A efficacy in the infants [213]. It is also speculated 

that the high incidence rates of TB in South Africa may be a challenge for any TB vaccine to 

protect the population, especially those with underdeveloped immune systems [158]. Despite 

this, this study demonstrated that a large TB vaccine efficacy trial could be successfully 

conducted that produced meaningful results; a first for the TB vaccine community. A further 

MVA85A efficacy trial was conducted in adults with HIV infection in South Africa and Senegal, 

although following the infant result the study was down-graded to a safety study and had 

insufficient statistical power to assess vaccine efficacy [214]. Similar results were found in this 

trial: the vaccine was safe, however there was no efficacy against Mtb. infection (efficacy of 

11.7% (95% CI: –41.3% to 44.9%)) or against TB disease (efficacy of 32.8% (95% CI: –111.5% 

to 80.3%)) [214]. This study marks an important breakthrough in establishing a safe TB vaccine 

in an HIV infected population [214].  

 

The lack of MVA85A efficacy in the infant trial (efficacy wasn’t tested in the HIV trial) was 

potentially attributed to inadequate understanding of the necessary immune response 

needed for protection against TB disease [214]; new TB vaccines may have to shift focus to 

induce wider immune responses including non-classical T cells, innate and humoral immunity 

[35, 175]. Additionally, it has been suggested that for future TB vaccines to be successful, a 

broader range of Mtb. antigens maybe required [35, 215]. Data from the MVA85A vaccine 

trials have helped in moving forward the correlate of protection work [137] and new TB 

vaccines [216]. As more TB vaccines progress through efficacy trials (M72+AS01E, VPM1002 

and Vaccae are currently in phase 2b and 3 efficacy trials (Figure 1.2, and Appendix B)) more 

data on the responses required for protection against TB disease will become available.  



 40 

 

H-series TB vaccine performance and dose escalation 

 

In animal studies, HyVac-4 (H4) adjuvanted with IC31 (H4+IC31) administered as a BCG boost, 

was shown to be safe, immunogenic and protective when compared to BCG alone [217, 218]. 

Similarly, when administered with the CAF01 adjuvant, the vaccine was protective in mice as 

a pre-exposure vaccine [219, 220]. Following this pre-clinical investigation, a phase I clinical 

trial in South Africa, where a two vaccination regimen, given two months apart, of H4+IC31 

was administered in BCG vaccinated healthy participants in varying antigen dose was 

conducted [221]. Adverse events to the vaccine were minimal and multifunctional (IFN-γ, 

TNF-α and IL-2 or TNF-α and IL-2 producing) CD4+ T cell expansion was long lasting. A similar 

result was found when a two vaccination regimen, given two months apart, of H4+IC31 was 

administered in BCG vaccinated healthy participants in two Scandinavian countries in a phase 

1 trial [222]. The trial escalated both antigen and adjuvant dose. Similarly, small animal 

studies showed that the vaccination with Hybrid-1 (H1) adjuvanted with CAF01 (H1+CAF01) 

induced key polyfunctional immune responses that were long lasting [223, 224] and 

protection against challenge [224, 225]. Nonhuman primate (NHP) studies with H1+IC31 also 

showed reduced bacteria numbers in the lungs and lung pathology after challenge with Mtb. 

[226]. Phase I clinical studies showed that in BCG-naïve, BCG-vaccinated participants and 

latently TB infected participants, a two vaccination regimen, given two months apart, of 

H1+IC31 promotes strong and long lasting T cell (measured by IFN-γ secreting CD4+ + T cells) 

response [227, 228]. The same strong immune response was shown when a two vaccination 

regimen, given two months apart, of H1 was administered with CAF01 adjuvant [181]. The 

effect of HIV infection on T cell responses to H1+IC31 were investigated and showed mixed 

results [229, 230]. The effects of vaccination with Hybrid-56 (H56) adjuvanted with IC31 

(H56+IC31) in BCG-vaccinated NHP’s was effective containment of infection and reduced rate 

of clinical disease. Additionally, strong responses to ESAT-6 and Rv2660c were recorded in 

NHPs [231]. Of note, macaques in this study who received BCG and H56+IC31 did not 

reactivate latent infection after anti-TNF antibody was administered. H56+IC31 was 

administered in a first-in-man study where three vaccinations, two months apart, were given 

to latently infected and healthy participants  [232]. Results showed that both groups (latently 
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infected and healthy participants) expressed Th1 CD4+ T cells. The frequency of T cell 

responses following vaccination were higher in latently infected than in healthy participants.  

 

The dose escalation studies of the H-series vaccines are as follows. Initial dose response 

testing with the H4+IC31 candidate revealed Th1 immunogenicity as low as 0.005 µg of the 

H4 antigen, the highest responses were observed at doses of 0.05 to 1 µg [217]. Here, the 

adjuvant dose was kept constant. The best protection in a challenge model in mice was 

observed with the lowest dose tested, 0.5 µg H4 [217]. The protection and measured 

immunogenicity then decreased at 5 µg and was minimal at 15 µg. A similar dose response 

was shown in an accompanying guinea pig challenge study [217]. However, in further animal 

studies, 20 µg of H4 + IC31 was chosen for a pivotal guinea pig study [218], 5 µg chosen for 

studies of murine post-TB intervention [219, 220, 233], and 100 µg used in cynomolgus 

challenge studies [226]. A potentially important cynomolgus challenge study used H56 + IC31 

at the likely high dose of 50 µg, and whether the results may have been improved with a lower 

dose [231] is unknown. Following this pre-clinical investigation, a “classic” method was 

employed to the clinical environment. The current hypothesis in TB protein vaccine 

developers is that the allometric dose scaling factor of dose between small animals and 

humans is in the range of one to ten (personal communication, Thomas Evans MD), and for 

H56+IC31 a factor of ten has been assumed from mice to human and NHP [230, 234, 235]. 

 

However, the lowest dose tested in a human was 5 µg, despite evidence of protection at 0.1 

µg in the guinea pig (where the scaling factor between small animal and human is believed to 

be less than 50 – see above). The dose escalation went from 5 µg to 15, 50, and 150 µg of the 

H4 + IC31 vaccine in two trials performed in Scandinavia [222]. In those studies, there was no 

difference in response at the 5 and 15 µg doses, the immune response began to drop at 50 

µg and was markedly lessened by 150 µg. This study was then repeated in a BCG vaccinated, 

non-latently infected tuberculosis endemic population in South Africa [221] and the same 

dose response pattern was seen. 15 and 50 µg alone were studied in small numbers in the 

First in Man (FIM) trial of the H56 + IC31 vaccine [232], 50 µg was chosen as a single dose in 

the FIM study of H1 + CAF01 [227, 228] and for the H1 + IC31 studies [229, 230]. To note, 

different dose-response curves may been observed between the H-series vaccine constructs, 
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however H56 and H1 adjuvanted with IC31, result in similar immunological profiles at varying 

doses [236]. 

 

Potential issues with current vaccine dose-finding methods 

 

H-series vaccine development has benefitted from robust dose escalation testing. However, 

the dose ranging data in the animals suggested that the lower doses were the most (Th1) 

immunogenic compared to higher doses, but a comparatively high dose range was chosen to 

be tested in humans. Thus, despite numerous human published studies on the H-series 

vaccines, the lower end of the dose response curve in man has not been established.  

 

These unconventional dose response curves present important evidence that long-standing 

vaccine development assumptions (that the dose response curve is saturating) are flawed and 

as such, suboptimal doses could be progressing to later clinical stages. Similar instances of 

non-saturating dose response curves have also been seen in HIV [237], malaria [238] and 

Influenza [239] vaccines. As an added complication, vaccine responses may differ across 

human subpopulation (e.g. all current TB vaccine clinical trials are stratified by HIV status 

[32]), highlighting the possibility that dose response curves may differ within the human 

population [240]. 

 

Preclinical dose data has potential as an effective predictive tool for human dose decision 

making. However, in TB vaccine development, there is a wide range of scaling factors between 

species; as previously mentioned, a scaling factor is assumed to be ten has been used for H56 

from mice to human and NHP [230, 234, 235], ten times from mouse to human for BCG [241, 

242], 100 times for MVA 85A [213, 241] and 0.5 for VPM1002 [241, 243] (recombinant BCG 

vaccine, currently in phase 2, see vaccine pipeline Figure 1.2). There is little evidence as to 

why these differ so widely. The yellow fever vaccine presents another example of mistakes in 

dose decision making. In this case, due to vaccine shortages, yellow fever vaccine dose 

fractionation studies were carried out and a lower dose was found to be as effective 

(measured using a known correlate) as the current higher licensed dose [244-246].  
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These errors in vaccine dose decision making may be occurring partly because translating 

vaccine responses from animal studies to humans is challenging and a representative animal 

model is required. The relationships between species are still not fully characterized; there 

are issues of not only scale, but physiological differences. Additionally, within human 

differences in vaccine response may require multiple animal models to develop a vaccine for 

a broad population. To my knowledge, no formal assessment of vaccine allometric scaling has 

been undertaken for vaccine development. 

 

It is clear that mistakes are being made in vaccine development concerned with dose-finding. 

The consequences of which could mean wasted resources (e.g. animals), money and 

potentially, lives. Surprisingly, the definitive text on vaccine development does not include 

strategies for dose finding [27] and there is limited regulatory guidance on vaccine dose-

finding methodologies from licensing organizations such as the FDA [147]. 

 

Model-based drug development: Pharmacokinetic/Pharmacodynamic Modelling 

 

Drug development faces similar pressures to those experienced in vaccine development; 

translating evidence from pre-clinical experiments and finding the optimal drug dose is 

paramount for effective, safe treatment. Yet, the drug development decision-making process 

is far more advanced than in vaccine development, mostly due the use of systematic, 

quantitative methods for drug optimization.  

 

Model-based drug development (MBDD) combines data on drug responses and biological 

mechanism through mathematical modelling to quantify within-host drug effects [247] and 

has become an essential tool in developing safe drugs. The main goals of MBDD are to use 

mathematical based simulation to; focus in on promising candidates and develop the right 

dose(s) early on, decrease probability of failed or useless trials, reduce animal resources in 

developmental phases, decrease time to market and avoid post-marketing changes in dose 

or regimen or withdrawals [248]. 

 

MBDD is commonly split in to two components: 
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1. Pharmacokinetics (PK): What the body does to the drug, i.e. the concentration of drug 

in the body (as it is absorbed and eliminated) over time [249], 

2. Pharmacodynamics (PD): What the drug does to the body, i.e. how the “effect” of the 

drug (e.g. in the blood) changes with the concentration of the drug in the body [249].  

These are collectively known as pharmacometrics or PK/PD modelling [250].  

 

Finding an appropriate model to represent the drug course can aid in development of safe 

and optimal drug dose and regimen. PK/PD modelling commonly combines compartmental 

ordinary differential equation models to represent drug dynamics within the host (PK) and a 

continuous nonlinear relationship between drug concertation and clinical effect (PD). In PK 

modelling, ordinary differential equations are used to describe the movement of drug 

concentration between model compartments which represents biological region of the host. 

The parameters of the model dictate the rate of drug movement. These models can either 

represent defined organs (e.g. the stomach or liver) known to be relevant to the drug 

(physiological-based models) or more abstract in that they do not represent a specific part of 

the body [250]. The integration of PK and PD models provides a vital link between drug 

dynamics and the desired effect. See Figures B.1, B.2 for a simple PK example. 

 

Population characteristics such as age, weight or renal function can affect drug response. In 

order to find safe drugs for a target population, it is essential MBDD can incorporate these 

differences [251]. Population PK/PD modelling describes population typical response 

dynamics and how those dynamics vary across a population to gain information on 

appropriate drug dose or regimen for a given sub-population [250, 252].  

 

While it is feasible to assume the biological mechanisms in response to drug (i.e. the model) 

do not change across a heterogeneous population, the magnitude of key mechanistic 

parameters might. Hence, the aim of population PK/PD modelling is to establish differences 

in model parameters associated with population covariates. To achieve this, models are 

calibrated to the response data and the parameters and parameter variation, estimated 

which requires a robust statistical framework. Nonlinear Mixed Effects Modelling is 

commonly used in pharmacometric modelling as it enables simultaneous estimation of both 

the population average responses, the variation in responses across individuals in the 
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population and the effect of population covariates on this variation [252]. Due to the 

nonlinearity of the model-predicted response dynamics advanced computational software 

are required to execute parameter estimation. These methods are outlined in more detail in 

the proposed methods section and appendix B.  

 

MBDD has been in use for approximately 40/50 years. Drawing upon existing modelling 

practises in fields such as economics, meteorology and engineering [251], modelling to inform 

drug trials was first recognised in the late 1990’s [253]. Pivotal work by Sheiner et al. to 

encourage “learning and confirming” [254] using mathematical models in clinical drug trials 

meant MBDD came to the forefront as an innovative and efficient tool to aid drug 

development. MBDD soon began to filter into the drug development community, featuring in 

influential pharmacological conferences [255]  industry [256-258] and gained support from 

regulatory agencies such as the Food and Drug Administration (FDA) [259, 260]. Currently 

there are many consortiums and work groups dedicated to MBDD (e.g. Modelling and 

Simulation Working Group (MSWG) [261], International Society of  Pharmacovigilance (ISOP)) 

and the large pharmaceutical industry has decades of effort applying quantitative analysis to 

improve drug dose and regimen selection for small molecule drugs.  

 

The main applications of PK/PD modelling to drug development are in the following areas. 

 

Translation of drug dynamics between species and “first-in-man” dose selection  

 

Animal experiments are first conducted to understand the concentration and toxicology of 

the active drug components in the relevant regions of the body. This data is used to 

parameterise PK/PD models and establish differences in response dynamics by dose or 

regimen. Here, model simulation can be used optimise the design of animal experiments to 

gain the most information with the least use of resources, thus improving the efficiency of 

pre-clinical testing phase. By applying allometric scaling (based on information on 

physiological scaling due to body mass, variation in metabolic pathway across species or 

major anatomical differences [262-264]), of the model parameters an estimation of the doses 

needed to obtain similar exposure in humans is then derived. For examples see [265, 266]. 

Allometric scaling is also used within species, for example in humans allometry is applied to 
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common PK parameters such as volume of distribution, absorption and clearance of the drug 

by the host’s weight, (e.g. for the drug Isoniazid e.g.[267]).  

 

Clinical Trial Simulation  

Model-based trial simulation is an important tool in drug development to explore drug effects 

without empirical testing. In drug trials, simulation studies can help determine key aspects 

such as the bounds of the dose response curve in a dose escalation simulation [268], 

important for proof-of-concept studies and regimen of drug administration. In the later stages 

of development, confirmatory studies can be fully simulated [256, 269]. As more data 

becomes available, PK/PD models can be used iteratively to refine these simulation estimates, 

aiding in a reduction of the total number of subjects required to establish the desired 

confidence intervals, thus minimizing potential harm. As an example, modelling was able to 

systematically assess the different doses and protocols to derive optimal values for TB drug 

treatments, which previously had never been formally compared [270-272]. 

 

Identifying important subpopulations and personalised medicine 

 

Identification of which population covariates cause substantial variability in model 

parameters can help drug developers to adapt dose or dose regimen to maintain safe, 

effective responses in those populations [251, 273-275]. Personalised medicine is an 

extension to this. Personalised medicine aims to provide individuals with drug dose and 

regimen optimised based on their characteristics [276]. It is thought, by personalizing 

medicine to fit an individual would increase adherence rates as the drug is more likely to be 

safe and effective [277]. Predictions from large scale individual-based PK/PD models have 

been shown to improve treatment in individual cancer patients [278, 279]. 

 

In summary, model based drug development is used to explore drug host interaction; test 

and confirm ranges of safe drug doses by directly translating information from animal 

experiments to first-in-human trials; modify regimens to specific subpopulations of 

individuals and evaluate appropriate study design to reduce numbers of required participants 

and thus exposure to the drug. 
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Model-based drug development (MBDD) methods 

 

Statistical curve models 

 

Statistical curves are regularly used in MBDD to describe drug simple pharmacokinetics [280] 

and pharmacodynamics [281] (e.g. Emax equations). These parametric, analytical models 

have the benefit of being potentially simple (minimal parameters). However, these curves 

focus entirely on descripting the shape of the response data over time with no consideration 

of underlying biological mechanism. This presents limitations if the aim is to make inferences 

on the differences in response biology by subpopulation, for example. 

 

Mechanistic models  

 

The second method is to use a mechanistic compartmental differential equation model to 

represent drug pharmacokinetics [250]. This approach provides biological, mechanistic 

understanding of the longitudinal response to drug exposure by using model compartments 

and differential equations to describe the change in response over time [282]. The method 

seeks to establish how population covariates effects the model parameters and the potential 

biological reasons for this. More complex drug responses could be incorporated in a network 

mechanistic model (with separate models to represent different organs or cells, e.g.). 

Integrating complex interdependent responses would be less intuitive with a statistical curve 

model. However, the complexity involved in representation of biological mechanism could 

potentially be a disadvantage. A mechanistic model may require additional model 

parameters (and thus, degrees of freedom) compared to the simpler statistical curve model.  

 

Nonlinear Mixed Effects Modelling 

 

To calibrate mathematical models representing PK and PD of a drug course, the method of 

nonlinear mixed effects modelling (NLMEM) is regularly employed [283]. NLMEM is used to 

estimate the parameters of mathematical models designed to represent the drug dynamics 

at individual and (sub)population level’. Quantifying the variance of drug dynamics in a 
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population is essential to avoid either sub-therapeutic or toxic exposure to the drug to those 

individuals with widely varying responses.  

 

A brief description of the aims of NLMEM are outlined here, methods and implementation of 

NLMEM employed in this thesis are outlined in appendix B. For a more general and technically 

in-depth explanation of NLMEM and its implementation see [250, 252, 280, 284]. 

 

Nonlinear Mixed Effects Modelling (NLMEM) aims 

 

Nonlinear Mixed Effects Modelling (NLMEM) is a statistical framework which combines a 

mathematical or statistical model to describe the longitudinal response data over time and 

statistical models to capture variation in the mathematical model parameters due to multiple 

individual responses in a population. Using NLMEM inferences can be made about the 

variation in response across a population when population covariate analysis is conducted 

[284, 285]. 

 

The main aims of NLMEM are [252]: 

1. To estimate the parameters of the mathematical model that describe the population 

typical response dynamics over time  

2. Estimate the variation around the population average dynamics as a result of 

individuals in the population (inter-individual variation) as thus estimate the individual 

responses 

3. Establish residual variation between model prediction and response data (intra-

individual variation) 

4. Assess the effect of population covariates on the population typical dynamics 

(mathematical model parameters) and associated variation (statistical model 

parameters) 

 

Due to the nested levels of variation (intra-individual and inter-individual variation), NLMEM 

is also known as hierarchical nonlinear modelling or nested hierarchical nonlinear modelling 

[284].  Nonlinear refers to the nonlinearity in the relationship of the host response to the drug 

(or vaccine), represented by the mathematical model. Mould et. al. give the following 
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definition of fixed and random-effects: “‘Mixed-effects’ refers to the [model] 

parameterization: parameters that do not vary across individuals are referred to as ‘fixed 

effects’, parameters that vary across individuals are called ‘random effects.’” The term ‘mixed 

effects’ refers to the combination of fixed and random effects in the NLMEM framework. 

 

NLMEM employs maximum likelihood based methods to estimate the population and 

individual parameters; further details on these methods and implementation in available 

software are outlined in Appendix B.  

 

Thesis Rationale: Model-based vaccine development – Vaccine 

Immunostimulation/Immunodynamic modelling 

 

There are valid reasons as to why current empirical vaccine development methods might be 

leading to mistakes in dose decision making. For example, thorough evaluation of the dose-

dependent immune response dynamics is not currently undertaken in current vaccine 

development and as a result, is not fully understood. This is leading to unexpected dose 

response relationships such as the H-series TB vaccine highlighted above, essentially being 

missed. These errors in vaccine dose decision making may be occurring partly because 

translating vaccine responses from animal studies to humans is challenging as response 

dynamics are not fully understood and a tool to translate responses from a representative 

animal model is required. More systematic approaches to vaccine development should be 

used to avoid these mistakes.  

 

Vaccine Immunostimulation/Immunodynamic modelling 

 

I intend to develop mechanistic mathematical models to represent vaccine immune response 

dynamics, translate vaccine responses between the animal and human to make better 

predictions for human vaccine dosage.  

 

To reflect the similarities in my methods to that of PK/PD modelling, I introduce this type of 

modelling as vaccine Immunostimulation/Immunodynamic (IS/ID) modelling. Analogous to 

population PK/PD modelling, population vaccine IS/ID modelling uses mathematical models 
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in a statistical framework to explore population typical vaccine responses and the variation in 

response due to individuals. Vaccine IS/ID models describe the immune response stimulation 

(IS) that produce the measured immune response dynamics (ID) following vaccination. 

Mathematical models representing the immune response to infection and vaccination, that 

could be considered suitable IS/ID models exist (e.g. [286, 287] and see literature review for 

TB specific models), but as far as I am aware, no such models have been incorporated into a 

PK/PD style framework to inform vaccine species translation and dose prediction. 

 

To demonstrate the potential utility of IS/ID methods, I apply them to IFN-γ immunogenicity 

data from the H-series TB vaccine. As discussed, these vaccines are currently in the pipeline 

and previous mistakes may have been made in dosing, therefore the implementation of 

mathematical modelling to TB vaccine dosing data could have an immediate impact on 

further development. 

 

TB immune response mathematical modelling: literature review 

 

To investigate the current work on TB immune response modelling, a literature review in the 

Pubmed database was conducted on the topic. I did not confine the search to “vaccine 

immune response to TB” as this search yielded limited results. Instead, I used the search 

terms “Tuberculosis” or “TB” and “mathematical model*” and “immun*” in all fields. The 

flowchart in Figure 1.3 depicts the literature review process in which 30 publications were 

found, 5 of which were excluded for reasons outlined in Figure 1.3, leaving 25 publications 

for the review.  
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Figure 1.3 Flowchart of the literature review process using the search terms 

 

Table B.4 in appendix B outlines the aims, model structure, interventions (e.g. initiation of TB 

drug treatment) and main findings.  

 

Aims of previous TB immune response modelling publications 

 

For 18/25 publications, the primary aim was to build models to simulate an immune response 

to Mtb. infection [53, 60, 288-303]. In 11 of these, the secondary aims were to detect the 

parameters within the model that influence the state of TB disease (latent or active) by 

sensitivity analysis or virtual experiments [53, 60, 288-296]. Five of these publications (the 

majority authored by Marino and Kirschner) focussed specifically on developing models of 

the lung and lymph node then extending these models to investigate specific elements of the 

immune response and their influence on disease state [53, 291, 292, 296, 297]. A further five 

publications focussed on the immune response in a granuloma formation and the conditions 

in which Mtb. infection can be successfully contained [297-301]. An early work by Denise 

Kirschner focussed on the interplay of immune response between HIV and Mtb. infection 

[302] and Ray et. al. aimed to investigate the intracellular mechanisms of macrophage 

activation [303].  
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5/25 publications aimed to model the dynamics of Mtb. itself; the dynamics of bacteria 

replication and death, the conditions required for bacteria transition between active and 

latent states and the effect of TB drugs on drug sensitive and resistant strains  [304-308]. 

 

2/25 publications used a PK/PD model to establish regimen of the TB drug, Rifampin, in mice 

[309, 310]. 

 

Data 

In the majority of publications, data were used to aid parameterisation of the models. Six 

publications calibrated models to longitudinal immune response data [292, 296, 299, 308-

310]. Calibration methods included nonlinear least squares with Latin Hypercube Sampling 

(LHS) of the model parameters [292] , multiple linear regressions to data for different time 

ranges [308] and Bayesian Markov chain Monte Carlo (MCMC) procedures [309, 310]. Six 

publications used experimental data from mice [53, 292, 299, 305, 308-310] and Datta et. al. 

used data from experiments in rabbits to parameterize the model [301]. In the remaining 

publications, parameterisation of the models was conducted using published experimental 

data, weighted towards those conducted in humans where possible.  

 

Methods 

The majority of the publications used compartmental deterministic ordinary differential 

equation (ODE) models (19/25) [53, 60, 288, 289, 291-293, 295, 296, 300, 302-310], with the 

remaining incorporating two other types: Agent Based Models (ABMs) (2/25) [298, 299] and 

Spatio-temporal reaction-diffusion partial differential equation models (4/25) [290, 294, 297, 

301]. Two publications used both ABMs and ODE models [300, 307]. 

 

14/18 publications whose aim it was to model the host immune response to Mtb. infection 

([53, 60, 288-303]), included T cells, eight of those were CD4+ specific and four were CD4+ 

and CD8 specific. Macrophage cell populations featured in 16/18 publications, six of those 

included dendritic cells also. 9/18 included cytokine populations, all of which included IFN-γ 

and three include chemokines. 17/18 of the publications investigating immune responses to 

Mtb. infection included a bacteria population(s), with all but one making the distinction 

between intra- (within macrophages) and extracellular bacteria. One publication did not 



 53 

include any cells or bacteria and focussed that only on the oxygen concentration dispersion 

subject to different boundary conditions across varying layers of a granuloma [301]. 

 

In the publications that aimed to model the dynamics of Mtb. [304-308], all defined an 

“active” state of the Mtb. bacilli, whereby the bacteria were able to replicate. 4/5 also defined 

a “latent” state where replication was considerably slowed and three out of these had models 

for the concentrations of nutrients, iron, oxygen and/or Nitrous Oxide (NO) to explore the 

effects changes in host biochemistry on bacteria transition between the active and latent 

states.  

 

Both publications who aimed to quantify Rifampin PK in mice, included a physiological based 

model of the concentration of Rifampin in 12 compartments of the mouse body (e.g. lung, 

brain, gut, etc.) (Lyons et. al. 2013, 2015) [309, 310]. The later publication by these authors 

added an immune response model including CD4+ and CD8 T cells, macrophages and bacteria 

and a PD model [310]. 

 

Model outcomes representing TB disease 

For those models that included extracellular bacteria, active TB disease was defined as when 

the extracellular bacteria increased to high levels and did not appear to be saturating or 

controlled by the immune response [53, 60, 288-300, 302, 310]. Conversely, latent TB disease 

was established when intracellular bacteria counts reached a constant low level over time 

and extracellular bacteria was eliminated or remained at a very low level. Ray et. al. 

represented bacteria killing that results in elimination of disease by monitoring NO levels 

producing by macrophages in the model [303]. Granuloma outcomes associated with control 

of Mtb. infection included; bacteria  count with the granuloma [297-300], granuloma size and 

amount of diseased tissue or necrosis [297, 298, 300], absence of infected macrophages 

[298], TNF-α [300] and oxygen concentration [301]. Persistence of the active Mtb. bacteria 

versus latent state bacteria was considered indicative of TB disease in models by Pedruzzi et. 

al., Magombedze et. al., Chisholm et. al. and McDaniel et. al. [305-308]. Alavez-Ramirez et. al. 

focus more on the progression of bacteria toward antibiotic resistance [304]. 

 

Interventions 
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Six publications used cytokine “depletion and deletion” experiments. These can be thought 

of as virtual experiment, designed to mimic “knock-out” experiments in laboratory settings. 

They are useful in suggesting which immune response elements are the strongest predictors 

of latency or active disease [60, 289, 291-293, 303]. Model parameter perturbations featured 

in ten of the publications [290, 294-299, 305, 306, 308] with the aim of assessing the effect 

on disease outcome of interest due to; changes in bacteria growth or kill (by macrophages) 

rate [290, 308], infection rate of macrophages [295] or increased immune response 

“strength”, which was considered to be; differing concentrations of nutrients, oxygen and NO 

produced by immune cells and the environment surrounding the bacteria [305] and changes 

in chemokine signalling strength [297, 299]. Additionally, perturbation of multiple key (or all) 

parameters using LHS was conducted to systematically explore the parameter space and its 

correlation with disease outcome [294, 298, 306]. Seven publications introduced TB drug 

interventions [291, 293, 296, 297, 300, 302, 304] by manipulating appropriate parameters 

such as; decreasing growth rate or increasing kill rate of bacteria [302, 304], increasing innate 

cell recruitment [291], decreasing the rate pro-inflammatory cytokine production [297, 300] 

or decreasing the rate of TNF-α production (to assess stability of granuloma formation after 

anti-TNF treatment) [293]. Two publications looked at TB drug dose fractionation. 

Experimental Rifampin concentration data at different doses in mice from [311-313] was used 

to calibrate models in the two PK/PD publications [309, 310]. Finally, vaccination as an 

intervention was considered by Sud et al. [60] by increasing memory T-cells (defined as T-cells 

with extended half-life) as an initial condition (when bacteria is introduced to the immune 

system in the model).  

 

Results 

The main findings of the publications are summarised here: 

 

 In all publications that modelled the immune response to Mtb. infection, both latent 

and active disease states were effectively established (using outcomes outlined 

above). 

 Decreasing inflammatory cytokines (e.g. IFN-γ) led to less effective innate immune 

response performance and increased extracellular-bacterial load indicating active 

disease [289-291, 294, 295, 298].   
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 Inclusion of broader adaptive immune responses (e.g. CD8 helper and cytotoxic cells) 

contributed to more effective protection against active disease [60, 290]. 

 Interactions between innate and adaptive immune response timings between organs, 

i.e. cell trafficking were influential in the state of disease [53]. 

 

Granuloma specific results: 

 A balance between inflammatory and regulatory cytokines led to avoidance of tissue 

damage and unstable granuloma formation [292, 293, 297, 300]. 

 Chemokine levels and distribution determine the formation of the granuloma, the 

stronger the signals, the more successful the granuloma [299]. 

 Only large granulomas can achieve a necrotic core [297, 301]. 

 

Bacteria specific results 

 Persistence of bacteria is a result of latent state (where the gain from latency and 

therefore survival against immune responses outweighs the loss of transmission 

opportunities [307]) and slow replication [288, 299, 308]. 

 Level of Nitrus oxide was most influential on the stability of the system (i.e. controlled 

bacterial growth) [306] and the ability of the bacteria to disrupt iron production by 

the host ensured its survival and persistence [306]. 

 

Intervention specific results: 

 HIV infection exacerbates Mtb. load, however, treatment of TB can have a profound 

effect on HIV as T cell counts improve after TB treatment initiation [302]. 

 By varying combinations of Th1 CD4+ and CD8+ T-cells, the model showed that a 

vaccine that jointly increased CD4+ and cytotoxic CD8+ memory T-cells was most 

effective at clearing bacteria once challenged [60]. 

 Early treatment and a less aggressive adaptive immune response is most affective to 

kill bacteria in the granuloma [297, 300]. 

 When drugs administered, a biphasic bacteria kill curve observed, firstly due to drug, 

secondly to macrophage activation. This reflects clinical data [296]. 
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 PK/PD simulations agreed with Rifampin concentrations and bacteria killing in mice. 

Area under the concentration-time curve most correlated with Rifampin efficacy 

[310].  

 

Publication Conclusions 

Each publication drew specific conclusions that reflected their own results, here I outline the 

overarching, common conclusions drawn by all publications. 

 

It was acknowledged by many of the publications that aimed to model the immune response 

to Mtb. infection, that a balance between inflammatory and regulatory immune responses 

was vital to contain bacteria, avoid TB disease and damage to host lung tissue [60, 289, 292-

295, 302]. Further to this, Clarelli et. al. and Ibarguen-Mondragon et. al. emphasized that 

threshold values in the parameter space that pushed the system from latency to active 

disease needed to be empircally verified [294, 295]. Three publications suggest that strategies 

for the development of more effective therapeutics, i.e. drugs that stimulate innate processes 

[53, 291, 303]. Finally, although all publications use mathematical models to explore their 

aims a few authors highlight explicitly the use of models as tools to; understand the 

immunology of Mtb. infection [290], optimize drug treatment [296, 297, 301, 310], 

understand granulomas (specifically the spatial models) [298, 299] and understand bacteria 

progression from active to latent states [305, 308].  

 

In conclusion, Wigginton and Sud [60, 289] suggest that “executable models enable 

manipulation of the immune system elements to mimic treatment, vaccine or the immune 

system becoming compromised”. The outcome of the immune response models helps us 

understand the complex interactions involved in the immune response and has implications 

for further research [289, 314]. 

 

Literature review summary 

The models covered in this literature review had three main aims, to investigate; the host 

immune response to Mtb. infection, bacteria transition between states and pharmacometrics 

of TB drugs. All models that included immune response processes were Th1 based, i.e. B cell 

and antibody populations were not included in any publication. Assumptions about the 



 57 

immune response to Mtb. infection vary between the models in the review, generating a wide 

range of model complexity from highly parameterised ABM’s [300] to ODE’s with minimal 

compartments [295]. However, the main constituents were T cells, innate cells and bacteria. 

Publications concerned with only the dynamics of cells/cytokines over time were represented 

using ODE models, whereas, ABMs and spatial models were used to represent spatial-

temporal constructs, i.e. the granuloma. In most cases, data were mostly used to 

parameterise the model, not to calibrate the model. The conclusions of the papers 

acknowledge modelling as an effective tool to accelerate knowledge around the TB immune 

response, the effect of intervention or immunosenescence. While I agree with this statement, 

I believe, especially in the case of modelling the effect of vaccination on the TB immune 

response (my focus in this thesis), these dynamics are still largely not understood, therefore 

results of this modelling should be further scrutinized. 

 

Summary of thesis data, IS/ID model and model calibration 

 

I use data on immune responses following vaccination with existing TB vaccine, BCG (aim 1) 

and candidate vaccines h-series, adjuvanted with IC31 (aim 2). The immune response I 

focussed on was the number of IFN-γ secreting CD4+ T cells following. As mentioned 

previously, IFN-γ secreted by CD4+ T cells are believed to be fundamental to a TB vaccine 

immune response [83]. As such, these responses are the current immunogenicity marker of 

choice in TB vaccine development. It is important to note from the outset that in aim 2 where 

my aim was to predict dose response curves, I use the terminology “most immunogenic”, not 

“optimal” dose to make the distinction between a dose that elicits a high IFN-γ response 

versus a dose that is the most protective. For specific information regarding the source of the 

data and laboratory methods used to generate it, see individual chapters. Only data from 

animals and humans who are not latently infected are included, as such we consider the two 

TB vaccines to be pre-exposure vaccines in this thesis. BCG is used in this way, as it is routinely 

given at birth in endemic countries [315]. However, H56 was originally designed as a post-

exposure vaccine [232], nevertheless, it was tested in healthy adults with no latent infection, 

the data of which we use here. Data sample sizes, demographic data as well as vaccine dose 

and regimen (timing of vaccinations) are outlined in the relevant chapters. 
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The T cell mathematical IS/ID model structure used in this thesis represents the dynamics of 

these responses. The models in the above review concerned with immune cell dynamics, 

specifically those including T cells were used to inform the structure of the IS/ID model used 

here. However, as I only had data on number of CD4+ T cells secreting IFN-γ, my model was 

simpler than the majority of models outlined above, despite this, the fundamental dynamics 

are the same. Alongside the literature review, I took expert advice from supervisory and 

advisory panel members (Dr. Helen Fletcher, Prof Richard White, Dr Thomas Evans, Dr. 

Gwenan Knight and Prof. Denise Kirschner) as well as influential publications on T cell 

mechanism (focusing on CD4+) [81, 286, 287, 316, 317]. 

 

To calibrate the mathematical model to longitudinal vaccine response data and establish 

differences in model predictions due to subpopulations, I used the method of Nonlinear 

Mixed Effects Modelling (NLMEM) outlined above and in Appendix B. I implemented NLMEM 

in the software Monolix, a software commonly used in PK/PD modelling,  developed by Lixoft, 

Paris [318], the implementation requirements for Monolix are also outlined in Appendix B.  

 

Thesis Aims and Objectives 

 

The overall purpose of this thesis was to develop a mathematical modelling framework to 

translate TB vaccine response between species and predict the most immunogenic dose in 

humans using animal data. 

 

There were two aims of the thesis. 

1. Establish individual human response differences to the TB vaccine Bacillus Calmette–

Guérin (BCG) Interferon-Gamma (IFN-γ) then develop an IS/ID model to represent 

these response dynamics and identify the most representative macaque 

subpopulation for human BCG responses 

2. Predict the human H-series vaccine IFN-γ response using an IS/ID model calibrated to 

mouse multi-dose IFN-γ data using an allometric scaling assumption. 

 

The aims of the thesis were achieved using the following objectives: 

Aim 1: 
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1. Preliminary data analysis of differences in human IFN-γ response to BCG 

2. Development of the mechanistic IS/ID model to describe IFN-γ response dynamics and 

application of the model to human BCG data to establish differences in IFN-γ response 

dynamics (if any) by human subpopulation 

3. Application of the mechanistic model to macaque BCG IFN-γ response data to 

establish differences in IFN-γ response dynamics by subpopulation 

4. Comparison of the IS/ID modelling results between macaque and human to establish 

most representative macaque for humans in terms of IFN-γ responses 

 

Aim 2: 

5. Generation of IFN-γ response data to multi-dose of the TB vaccine, H56+IC31, in mice 

and assessment of dose response curve in mice for varying time points  

6. Development of a revaccination model and calibration of the IS/ID model to mouse 

IFN-γ response data (stratified by dose) and human H56/H1+IC31 IFN-γ response data  

7. Mapping of the changes in IFN-γ response dynamics across the doses in H56+IC31 in 

mice  

8. Prediction of the human immune response to other H56/H1+IC31 doses using a 

proposed mouse to human allometric dose scaling factor and mapping in objective 7 

 

Thesis overview 

 

Figures 1.4 and 1.5 outline aim 1 and 2 of the thesis, respectively, the objectives to achieving 

these aims, how the objectives align with the thesis chapters, research papers, and the data 

and methods required to completing the objectives. 
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Figure 1.4. Aim 1 of the thesis with corresponding objectives thesis chapters, papers, data requirements and methods 

Data

Methods

Linear regression models to 

determine which population 

covariates significantly correlated 

with key immune response estimates

Mathematical model to the T cell dynamics following vaccination calibrated to the 

human and macaque data using Nonlinear Mixed Effects Modelling to determine 

model parameter estimates for human and macaque subpopulations

Calibration of the macaque 

subpopulation model predictions to the 

human data and assessment of best fit 

using goodness of fit measures

Chapters

Chapter 2
Exploration into the immune 

response to BCG vaccination 

in a heterogeneous human 

population

Chapter 3
Exploration into the immune response to BCG vaccination in a heterogeneous human and macaque population using an 
Immunostimulation/Immunodynamic (IS/ID) mathematical model and the predictive power between macaque and human data

Papers

Objectives

Objective 1

Preliminary data analysis of 
differences in human immune 

response to BCG

Objective 3

Application of the mechanistic 

model to the macaque BCG data to 

establish differences dynamics by 

subpopulation

Objective 4

Comparison of the  mathematical 

modelling results between macaque and 

human

Objective 2
Development of the mechanistic model to 

describe the BCG immune response and 

application to human BCG data to 

establish differences in response 

dynamics by subpopulation

Aim: Develop a mathematical model to represent the T cell dynamics following BCG vaccination to establish differences in BCG immune response dynamics in humans and 
macaques and compare model predictions between human and macaque subpopulation

Aim 1

Paper 1
Individual-level factors associated 

with variation in Mycobacterial-

specific immune response: gender 

and previous BCG vaccination 

status

Paper 2
Using Data from Macaques to Predict Gamma Interferon Responses after Mycobacterium bovis BCG Vaccination in Humans: A 
Proof-of-Concept Study of Immunostimulation/Immunodynamic Modeling Methods

Longitudinal BCG IFN-γ responses (number of CD4 T cells, ELISPOT) in humans 

after one dose and one vaccination and human population covariates

(secondary data)

Longitudinal BCG IFN-γ responses 

(number of CD4 T cells, ELISPOT) in 

macaques after one dose and one 

vaccination and macaque population 

covariates

(secondary data)

No additional data required
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Figure 1.5. Aim 2 of the thesis with corresponding objectives thesis chapters, papers, data requirements and methods 

Data

Methods

ELISPOT assay on mouse 

splenocytes after two vaccinations 

(day 0 and 15) with H56+IC31 for 5 

different doses (plus 0 dose). 

Sampled over eight time points from 

day 0 to 56 (5 mice per dose per time 

point)

Chapters

Chapter 4
Generation of immune response data 
to multi-dose of H56+IC31 in mice for 

the application of Immunostimulation/
Immunodynamic (IS/ID) modelling

Chapter 5
Predicting human multi-dose immune responses to H series vaccination using multi-dose data in mice and an 
Immunostimulation/Immunodynamic (IS/ID) modelling 

Papers

Objectives

Objective 5

Generation of immune response 

data to multi-dose of H56+IC31 in 

mice and assessment of dose 

response curve in mice for varying 

time points 

Objective 7

Mapping of the immune 
response using allometric 

scaling from one dose of 
H56+IC31 in mouse to human

Objective 8

Prediction of the human immune response 

to other H56/H1+IC31 doses using 

mapping and assessment of most 

immunogenic dose at late time point

Objective 6

Development of a revaccination 

model and calibration of the model to 

mouse immune response data 

(stratified by dose) and human 

H56/H1+IC31 immune response data

Aim: Adapt the mathematical model to represent the T cell dynamics following two vaccinations with H-series vaccine and calibrate to multi-dose data in mice to establish 
differences in the immune response dynamics by dose and predict the human multi-dose immune response dynamics using the mouse model predictions.

Aim 2

Paper 3
The TB vaccine H56+IC31 dose-
response curve is peaked not 

saturating: data generation for new 
mathematical modelling methods to 

inform vaccine dose decisions

Paper 4
Animal dose response curve predicts lower optimal TB vaccine dose in humans: A proof-of-concept study of 
Immunostimulation/Immunodynamic modelling methods to inform vaccine dose decision-making

Longitudinal H56+IC31 IFN-γ responses (number of CD4 T cells, ELISPOT) in mice 

after five dose (plus 0 dose) and two vaccinations

(primary data – results of objective 5)

Longitudinal H56 and H1+IC31 (pooled) IFN-g responses (number of CD4 T cells, 

ELISPOT) in humans after one dose and two vaccinations

(secondary data)

Data on allometric scaling for H 

series vaccine

No additional data required

Mathematical model to the T cell 

dynamics following two vaccinations 

calibrated to the mouse multi-dose and 

human single-dose data using 

Nonlinear Mixed Effects Modelling.

Comparison of model parameter 

estimates for each dose in mice and 

using allometric scaling data, mapping 

model parameter estimates from one 

dose in mice to the equivalent dose in 

humans

Prediction of human immune responses 

to multi doses using mapping in 

objective 7. 
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There are six chapters in this thesis. Chapter one provides a detailed background to the thesis. 

Issues arising in the qualitative nature of current vaccine development are outlined and an 

example of a current vaccine for TB, whose dose choice could be misinformed, is presented. 

I then contrast vaccine development methods to the quantitative methods employed in drug 

development. The new field of quantitative IS/ID modelling for vaccine development is then 

presented. The final sections of chapter one is a literature review on current TB immune 

response models, proposed aims for the thesis and this review. 

 

Chapters two to five are research papers, three of which are published and one is under 

review at the time of writing. Research paper chapters include firstly an introduction, then 

the paper, followed by the corresponding supplementary material which is referenced 

throughout the paper. Any other unpublished work that is relevant to the thesis is included 

in the chapter introduction. The thesis concludes with a discussion of the findings and future 

areas of research. A final perspective article was written, but was not included in the thesis 

as a specific chapter; instead the contents were included in the background and discussion 

chapters. 

 

I would like the reader to be aware that each paper was written as a standalone article, and 

as such, there is some repetition of information. I have endeavoured to keep terminology 

consistent throughout the papers, but due to variation in journal specifications differences in 

terminology may exist. The papers are presented in an order conducive to the two aims of 

the thesis (Figures 1.4 and 1.5), which may not be in temporal order of publication. References 

for the thesis body and supplementary material for each chapter are at the end of the thesis 

main body. Each paper has its own set of references as does the appendix. 

 

Chapter 2 is a research paper (paper 1) exploring the immune response to BCG vaccination in 

a heterogeneous human population. 

Main objectives of the paper: 

 To consider how individual-level factors affect BCG immunogenicity as measured by 

tuberculin purified protein derivative (PPD) stimulated interferon gamma (IFN-γ) 

response following vaccination, focusing on long-term responses and short-term 

dynamics. 
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This chapter corresponds to aim 1 and objective 1 of the thesis (see Figure 1.4). 

Citation: Rhodes SJ, Knight GM, Fielding K, Scriba TJ, Pathan AA, McShane H, Fletcher H, 

White RG. 2016. Individual-level factors associated with variation in mycobacterial-specific 

immune response: Gender and previous BCG vaccination status. Tuberculosis (Edinb) 96:37-

43. 

 

Chapter 3 is a research paper (paper 2) exploring the immune response to BCG vaccination in 

a heterogeneous human and macaque population using a mathematical model.  Further, it 

considers and which macaque subpopulation best predicts human IFN-γ response.  

Main objectives of the paper: 

 Develop a model of post-BCG vaccination, IFN-γ producing CD4+ T cell dynamics, and 

assess the suitability of the model structure to predict responses by calibrating to 

data. 

 Investigate the impact of the human and macaque population covariates to explain 

the within-population variation in responses.  

 Test which macaque subpopulation best predicts human IFN-γ response 

This chapter corresponds to aim 1 and objectives 2-4 of the thesis (see Figure 1.4). 

Citation: Rhodes SJ, Sarfas C, Knight GM, White A, Pathan AA, McShane H, Evans TG, 

Fletcher H, Sharpe S, White RG. 2017. Using Data from Macaques to Predict Gamma 

Interferon Responses after Mycobacterium bovis BCG Vaccination in Humans: A Proof-of-

Concept Study of Immunostimulation/Immunodynamic Modeling Methods. Clin Vaccine 

Immunol doi:10.1128/CVI.00525-16. 

 

Chapter 4 is a research paper (paper 3) outlining the generation of immune response data to 

multi-dose of H56+IC31 in mice for the application of mathematical modelling.  

Main objectives of the paper:  

 Generate longitudinal response data in mice for a wide range of H56+IC31 doses for 

use in future mathematical modelling 

 Test whether a ‘saturating’ or ‘peaked’ dose-response curve, better fit the empirical 

data. 

This chapter corresponds to aim 2 and objective 5 of the thesis (see Figure 1.4). 
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Citation: Rhodes SJ, Zelmer A, Knight GM, Prabowo SA, Stockdale L, Evans TG, Lindenstrom 

T, White RG, Fletcher H. 2016. The TB vaccine H56+IC31 dose-response curve is peaked not 

saturating: Data generation for new mathematical modelling methods to inform vaccine dose 

decisions. Vaccine 34:6285-6291. 

 

Chapter 5 is a research paper (paper 4) predicting human multi-dose immune responses to 

H-series vaccination using multi-dose data in mice and mathematical modelling. 

Main objectives: 

 Develop a mathematical model of the IFN-γ producing CD4+ T cell dynamics following 

primary and revaccination with the H56+IC31 vaccine 

 Calibrate the model to the mouse H56+IC31 multi-dose data 

 Calibrate the model to the human H-series (H56/H1+IC31 pooled) data   

 Predict the human immune response dynamics and establish the most immunogenic 

dose in humans. 

This chapter corresponds to aim 2 and objectives 6-8 of the thesis (see Figure 1.4). 

Citation: Rhodes SJ, Guedj J, Lindenstrom T, Fletcher H, Evans TG, Knight GM White RG. 

Animal dose response curve predicts lower optimal TB vaccine dose in humans: A proof-of-

concept study of Immunostimulation/Immunodynamic modelling methods to inform vaccine 

dose decision-making (submitted) 

 

A perspective article with the citation: Rhodes SJ, Knight GM, Kirschner D, White RG, Evans 

TG. Dose finding for new vaccines: the role for immunostimulation/immunodynamic 

modelling (in review at Vaccine), was written during the thesis (paper 5). Contents from this 

paper are included in the background and discussion of the thesis. I would like to acknowledge 

Dr Steven Kern for his input to this paper. The paper and description of author contributions 

can be found in Appendix A. 

 

Author contributions 
 

The overall idea for the PhD project to apply mathematical modelling to vaccine development 

was generated by Dr Thomas Evans and Prof Richard White. Author contributions for papers 

1-4 (as well as the supplementary material) are outlined in the associated chapters. 
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Funding 

 

This PhD project was funded through a studentship granted by Aeras (a tuberculosis vaccine 

development organisation) awarded before I started working on the PhD project. The mouse 

experiment in chapter 4 was funded by a separate grant from the Bill and Melinda Gates 

Foundation, on which I was co-applicant.  
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Chapter 2. Exploration into the immune response to BCG vaccination in a 

heterogeneous human population: Paper 1 

 

Chapter 2 introduction 

 

The objective of paper 1 was to conduct a preliminary exploration into the differences in BCG-

induced IFN-γ immune responses across human subpopulations to account for differences in 

BCG across individuals. This work addresses aim 1, objective 1 of the thesis (Figure 1.4). 

 

I chose BCG to study as, not only is it the only licensed vaccine against TB disease, it is the 

basis for booster vaccines now in the developmental pipeline (see Figure 1.2). Data were 

readily available to my group as supervisory member Dr Helen Fletcher and colleagues 

(McShane et al.) at the Jenner Institute (Oxford university) had recently conducted 

immunogenicity trials on TB viral vector vaccine expressing Mtb. antigen 85A (MVA-85A) 

[319] where BCG was regularly used as a control arm. As such, I was able to combine BCG 

data from multiple MVA-85A trials (referenced in paper 1) to create a BCG longitudinal 

dataset. As all BCG data included in my dataset were generated by the Jenner Institute, lab 

assays and protocols were standardized across all trial sites (in UK and Africa). 

 

I analysed the effect of population covariates on BCG-induced IFN-γ responses 

retrospectively, using trial baseline responses as an indicator of long-term responses before 

BCG was administered in the trials (analysis 1) and prospectively using short-term longitudinal 

data after BCG vaccination in the trials (analysis 2). I used methods of summarising the data 

that are conventional in vaccine development when assessing longitudinal responses, i.e. 

summary measures (Area Under the Curve (AUC)) or point estimates of interest (peak 

responses, late responses) and applied regression to account for differences by population 

covariate. This preliminary analysis on differences in IFN-γ immune responses was conducted 

in preparation for the calibration of an IS/ID model to the data. 

 

I presented the work in paper 1 in poster form at the following conference: 

 Keystone Symposium: Host Response in Tuberculosis, Santa Fe, USA, January 2015. 

“Impacts of key individual-level factors on the variation in Mycobacterium 
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tuberculosis-specific immune response”  S. J. Rhodes, G. M. Knight, K. L. Fielding, T. 

J. Scriba, A. A. Pathan, H. McShane, H. A. Fletcher, R. G. White  
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Paper 1 title: Individual-level factors associated with variation in mycobacterial-specific 

immune response: Gender and previous BCG vaccination status 

 

Authors: Sophie J Rhodes, Gwenan M. Knight, Katherine Fielding, Thomas J. Scriba, Ansar 

A. Pathan, Helen McShane, Helen Fletcher*, Richard G. White* 

 

Author contribution:  

The human BCG data used in paper 1 were provided by Dr. Helen Fletcher, Prof. Helen 

Mcshane, Dr. Thomas Scriba and Dr. Ansar Pathan. These data were the control arms of 

clinical trials for the TB vaccine MVA-85A. Statistical analysis was conducted by myself with 

guidance from my supervisor committee members, modellers Prof. Richard White and Dr. 

Gwenan Knight and advisory panel member Dr. Katherine Fielding. All authors reviewed the 

paper. The interpretation of the results was my own work. 

 

Permission from copyright holder to include this work: 

 

 

https://www.elsevier.com/about/our-business/policies/copyright 
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Supplementary Material for paper 1 

 

The following is the published supplementary material referenced in paper 1. All references 

to the below tables and Figures are preceded with the suffix “S” in the paper. 

 

Additional Results 

 

The demographics of the participants used in the long-term retrospective (LTR) and short-

tern prospective (STP) analyses can be found in S1. The distribution of the ML ratios in the 

participants (measured at baseline) is shown in Figure S1. 

 

  

Long-term retrospective 

(LTR) 

(n=101) (M = 35) 

Short-term prospective 

(STP) 

(n=55) (M = 19) 

Geography: UK 83 (M = 30) 55 (M= 19) 

Time since BCG 

vaccination 

  

  

1 to 9  8 (M = 2) 7 (M = 2) 

10 to 19  13 (M = 8) 10 (M = 6) 

20 to 29  19 (M = 7) 8 (M = 3) 

30+  12 (M = 3) - 

Never  49 (M = 15) 30 (M = 8) 

Table S1. Participant demographics. M = males 
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Figure S1. Distribution of ML ratios of participants included in STP analysis. 

 

Nonlinear regression model for ML ratio on LTR and STP outcome measures 

 

Both linear and quadratic regression models were fitted to establish if a similar relationship 

existed between the LTR and STP outcome measures and ML ratio. Below is an outline of 

these models.  

 

Linear model (M1) 

log⁡(Outcome) = ⁡a +⁡b1 ∗ (ML) 

 

Nonlinear model (M2) 

log⁡(Outcome) = ⁡a +⁡b1 ∗ (ML) + b2 ∗ (ML
2) 

 

 

A model comparison test (ANOVA) was conducted to establish if a non-linear relationship 

more adequately described this association, the F-score and p-value of which are displayed 

in Table S2.  
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LTR STP 

Outcome: Baseline IFN-γ Outcome: AUC Outcome: 24 week Outcome: Peak 

F-score (p-value) F-score (p-value) F-score (p-value) F-score (p-value) 

0.41 (0.53) 0.01 (0.94) 0.27 (0.60) 0.05 (0.82) 

Table S2. ANOVA test results comparing M1 to M2 for LTR and STP outcome measures. This was an 

unadjusted analysis, therefore, no other covariates were included here. 

 

As none of the p-values were below 0.05 I concluded that the quadratic model did not 

improve upon the description of the relationship between ML ratio and the LTR and STP 

outcome variables provided by the linear regression analysis. Therefore, there was no 

evidence of a nonlinear relationship between ML ratio and the LTR and STP outcome variables 

as stated in the main text. 
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Chapter 3. Exploration into the immune response to BCG vaccination in a 

heterogeneous human and macaque population using a vaccine 

Immunostimulation/Immunodynamic (IS/ID) mathematical model and the 

predictive power between macaque and human subpopulation data: paper 2 

 

Chapter 3 introduction 

 

The objectives of this paper were three-fold: 

1. Design and implement a model representing the CD4+ T cell mechanisms producing 

the IFN-γ immune response dynamics in the data and validate this model by calibrating 

it to the human IFN-γ data (paper 1) and longitudinal IFN-γ data in macaques. 

2. Establish which model parameters (if any) are statistically different for different 

subpopulations in both species separately. 

3. Use the model predictions for the macaque subpopulations (if any) to fit to the human 

data and establish which macaque subpopulation model best represents human IFN-

γ immune response dynamics. 

 

This chapter aims fulfil the remainder of aim 1 of the thesis and objective 2-4 (Figure 1.4). 

 

This is my first application of IS/ID modelling to vaccine response data for the purpose of 

immune response translation between species. 

 

Drawing on the results of paper 1, I hypothesized that there would be differences in IFN-γ 

immune response dynamics in humans due to BCG status (baseline BCG-naïve or baseline 

BCG-vaccinated). As there was a weak significant effect on baseline IFN-γ responses by gender 

(long-term retrospective analysis in paper 1), but not in the IFN-γ dynamics after BCG 

vaccination (short-term prospective analysis in paper 1), I hypothesized I would not find a 

difference in model predicted immune response dynamics stratified by gender. As both time 

since BCG vaccination and ML ratio were not significantly associated with differences in either 

baseline or IFN-γ response dynamics after BCG vaccination, I hypothesized I would find no 

differences in model predicted immune response dynamics due to either of these covariates.  
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The macaque BCG data was provided by colleagues at Public Health England (Sally Sharpe, et. 

al.). Data were combined from pre-clinical immunogenicity experiments for the MVA-85A 

vaccine, which preceded the clinical data used here and in paper 1. Preliminary analysis 

(equivalent to my analysis in paper 1) of the macaque subpopulation data was conducted 

prior to my work by Charlotte Sarfas (PHE) who had shown that there were significant 

differences in peak and AUC response by macaque colony of origin (personal communication, 

publication in review). As such, in paper 2 I focused only on investigating the differences in 

the mathematical model parameters to the macaque subpopulation data and not the 

preliminary analysis methods of paper 1. From Charlotte’s work I hypothesized there would 

be differences in mathematical modelling parameters due to macaque colony of origin.  

 

I presented the work in paper 2 in poster form at the following conference: 

 Population Approach Group Europe (PAGE) meeting 2016, Lisbon, Portugal, June 

2016. “Previous BCG vaccination associated with variation in Mycobacterial-specific 

immune response: a modelling study” S. J. Rhodes, G. M. Knight, J. Guedj, H. A. 

Fletcher, R. G. White 

I also presented this work as an oral abstract at the following conference: 

 The 47th Union World Conference on Lung Health, Liverpool, UK, October 2016. 

“Previous BCG vaccination associated with variation in Mycobacterial-specific 

immune response: a modelling study”. S. J. Rhodes, G. M. Knight, J. Guedj, H. A. 

Fletcher, R. G. White 
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Paper 2 title:  Using Data from Macaques to Predict Gamma Interferon Responses after 

Mycobacterium bovis BCG Vaccination in Humans: A Proof-of-Concept Study of 

Immunostimulation/Immunodynamic Modeling Methods 

 

Authors: Sophie J. Rhodes*, Charlotte Sarfas*, Gwenan M. Knight, Andrew White, Ansar 

A. Pathan, Helen McShane, Thomas G. Evans, Helen Fletcher, Sally Sharpe**, Richard G. 

White** 

 

*Joint first author 

**Joint senior author 

 

Author contribution:  

 

The human BCG data was the same dataset used in paper 1. The macaque BCG data were 

provided by Dr. Sally Sharpe, Charlotte Sarfas and Andrew White at PHE. The data were 

collated over multiple experiments by Charlotte Sarfas. The mathematical model of the IFN-

γ secreting T cell response was developed by myself with guidance from Prof. Richard White 

and Dr. Gwenan Knight and advisory panel members, immunological expert Dr. Thomas Evans 

and TB immune response modeller, Prof. Denise Kirschner. The calibration method, Nonlinear 

Mixed Effects Modelling in the software Monolix was implemented soley by myself, however 

training in the program was undertaken with the guidance of advisory panel member Dr. 

Jeremie Guedj. The design of methods to translate responses between species was exclusively 

my own work. All authors reviewed the paper. Joint first authorship was granted to myself for 

developing and applying the mathematical model to the data and writing the paper and 

Charlotte Sarfas for aggregation of the macaque data and reviewing the paper. The 

interpretation of the results was my own work. 
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Supplementary Material for paper 2 

 

The following is the published supplementary material referenced in paper 2. All references 

to the below tables and Figures are preceded with the suffix “S” in the paper. 

 

Additional Methods 

 

Human and macaque demographics and IFN-γ response data longitudinal plots 

 

(The following text on human data and laboratory methods are text taken from my paper 1 [111]) 

 

Human demographic data and IFN-γ longitudinal plot stratified by BCG status can be found in 

Table S1 and Figure S1, respectively. 

Total population  55  

Age; median (range) 25 (18, 55) 

Baseline-BCG status BCG: N= 30, BCG: Y=25 

Gender M=19, F=36 

Time since BCG vaccination   

1 to 9  7 (M = 2) 

10 to 19  10 (M = 6) 

20 to 29  8 (M = 3) 

Never  30 (M = 8) 

ML ratio; median (range) 0.26 (0.07, 0.56) 

Table S1. Human demographics 

The available data were on HIV negative and Mtb. naïve participants (see [242, 319, 320] for 

HIV and Mtb. latency testing procedures). Data on haematological parameters were based on 

routine laboratory haematology testing at baseline and only those participants with values 

within normal limits were included in clinical trials. IFN-γ response was measured using a 

standardized ELISPOT assay which quantifies IFN-γ secreting CD4+ T cells as spot forming units 

(SFU) per million PBMCs using PPD as a stimulant. The same ELISPOT method including plates, 

antibody kits, antigens, developing reagents, washing method, ELISPOT reader and ELISPOT 
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counting method were used in all the data collection. As these BCG studies were conducted 

as part of a series of Phase I clinical trials with MVA85A all lab protocols and lab reagents were 

harmonized as far as possible. For the IFN-γ ELISPOT assay 300,000 PMBC per well were 

performed in duplicate and the results were averaged. Incubation time was 18 hours. For the 

exact laboratory methodology see [242, 319, 320]. 

 

The covariates included in this analysis were gender, BCG vaccination history at baseline and 

baseline ML ratio. For details on how BCG-vaccination history was determined see original 

trial methods [242, 319, 320]. BCG vaccination history was categorised into “never” and 10-

year time-periods since vaccination with the reference group as 1 to 9 years since BCG 

vaccination. Age was not included as a covariate as it was colinear with BCG vaccination 

history. 

 

For macaques, colony demographics can be found in Table S2 and the IFN-γ longitudinal plot 

stratified by colony can be found in Figure S2.  

 

Table S2. Macaque demographics 

Species (% of total 

animals) 

Colony (% of total 

animals) 

Rhesus, n= 58 (72%) India, n= 58 (72%) 

Cynomolgus, n= 23 

(28%) 

Mauritian, n=12 

(15%) 

Chinese, n=6 (8%) 

Indonesian, n= 5 (6%) 
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Figure S1.  Longitudinal IFN-γ responses for analysis for 55 human participants. Baseline-BCG vaccinated (A) and baseline-BCG naive (B). The bold line represents the 
median values of each group at each time point. X-axis is not to scale. Abbreviations: IFN-γ = Interferon gamma ; SFU =  spot forming unit ; PBMC = peripheral blood 
mononuclear cells 
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Figure S2. Number of IFN-γ secreting CD4+ T cells per million PBMCs over time as measured by the ELISPOT assay in macaques. Data is shown for each colony 
separately, Chinese, Indonesian and Mauritian cynomolgus macaques and Indian rhesus macaques. The red line indicates median responses. 
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Mathematical vaccine Immunostimulation/Immunodynamic (IS/ID) Model Equations 

The equations for the IS/ID two-compartmental in Figure 1 in paper 2 were as follows: 

 

 𝑑𝑇𝐸𝑀

𝑑𝑡
= 𝛿 − 𝑝𝜇𝑇𝐸𝑀𝑇𝐸𝑀 −⁡(1 − 𝑝)𝜇𝑇𝐸𝑀𝑇𝐸𝑀 (1) 

   

 𝑑𝐶𝑀

𝑑𝑡
= (1 − 𝑝)𝜇𝑇𝐸𝑀𝑇𝐸𝑀 (2) 

   

Where TEM represents the transitional effector memory (TEM) cell population, CM, the 

resting central memory (CM) cell population, t, the time in days and parameters outlined in 

Figure 1. The equation for the recruitment of the TEM cell population, δ, is: 

𝛿 = 𝐿 ∗
(1 ℎ⁄ )

𝑘

Γ(𝑘)
∗ 𝑡𝑖𝑚𝑒(𝑘−1) ∗ 𝑒−(

1
ℎ
∗𝑡𝑖𝑚𝑒) (3) 

Where L, h and k are the gamma PDF parameters outlined in Figure 1. 

 

Analyses 

Analysis 1: Model calibration to IFN-γ data and exploration of model predictions for 

macaque and humans, separately 

 

Scenario analysis for parameter 𝝁𝑻𝑬𝑴 (per day) 

Table S3 summarises the scenario analysis of parameter μTEM in macaques and humans. 

 Macaque Human 

Param μTEM 

(per day) BIC BIC 

0.5 7269.01 2825.22 

0.25 7259.65 2803.31 

0.167 7254.20 2791.84 

0.125 7248.89 2783.49 

0.1 7251.55 2778.53 

0.083 7254.49 2780.97 
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0.071 7259.81 2780.80 

0.063 7263.44 2782.09 

0.056 7264.81 2785.31 

0.05 7271.37 2792.95 

0.045 7276.46 2798.21 

Table S3. Scenario analysis for parameter μTEM in macaques and humans 

In macaques the value of 0.13 for μTEM resulted in the lowest BIC value, however there was 

no significant difference in the BIC for the values μTEM from 0.167 to 0.083 (shaded) (see [321] 

for significance associated with difference of BIC values). Similarly, in humans the value of 0.1 

for μTEM resulted in the lowest BIC value, with no significant difference between values of 0.1 

to 0.0625 (shaded).  

 

Residual Error (RE) Model 

Table S4 outlines the results of the RE model comparison for macaques and humans 

separately using BIC as an assessment of fit. For a detailed description of the residual error in 

NLMEM and how it is incorporated in Monolix, see Appendix B. 

Error model 
Model 

Description 

Macaque Human 

BIC BIC 

Constant Y = f+a*e 7753.10 2895.72 

Proportional Y = f+b*f*e - 2780.65 

Combined Y = f+(a+b*f)*e 7248.89 2776.66 

Table S4. Results of comparing residual error models using Monolix in-built tool. Definitions: Y = 
observation, f = model prediction, a,b= scalars to be determined during parameter estimation process, e = 
Normally distributed random variable N(0,1). 

The BIC for the human residual error model indicate that a combined model best represented 

the residual error in the data (as the BIC value was lower), however the proportional or 

combined model were not significantly different with respect to calibration to the data (the 

difference between the BIC value was <6, which according to Raftery [321], is a non-significant 

difference).  
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The same comparisons were made for the macaque dataset, however when a proportional 

RE model (i.e. without an additive term) was applied, the parameter TEM0 was poorly 

estimated, potentially due to a lack of data at time=0. Therefore, the BIC was compared 

between only the constant and combined RE models. As the BIC value as a result of calibration 

of the model to the macaque data with a combined RE model was considerably lower than 

the BIC value with the additive model (7248 vs. 7753), the combined RE model was chosen. 

 

The estimated values for the residual error model for macaque and human can be found in 

Table S6. 

 

Test for random effects correlations 

It is important to test if the random effects (the variation) of the model parameters are co-

dependent, i.e. correlated. I tested if any combination of parameters were correlated across 

the population with the inbuilt Monolix tool. Results for the pairwise test for random effects 

correlations for human and macaques are shown in Table S5.  

Combination 

tested 

Macaque Human 

BIC 

Diff to 

“none” 

(BIC) 

Decision 

to 

include BIC 

Diff to 

“none” 

(BIC) 

Decision 

to include 

None 7253 - - 2779 - - 

TEM0 & L 7252 0.94 No 2788 

8.81 

(higher) No 

TEM0 & k 7256 

3.21 

(higher) No 2782 

2.62 

(higher) No 

TEM0 & h 7258 

5.1 

(higher) No 2778 0.95  No 

L & k 7256 2.2 No 2784 

5.37 

(higher) No 

L & h 7257 

3.73 

(higher) No 2778 1.05 No 

k & h 7218 35.6 No* 2787 

8.17 

(higher) No 

Table S5. Tests for random effects correlations for macaques and humans 
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All BIC values in Table S5 were non-significantly different from no random effects correlations 

in the macaque population except for when parameters k and h were correlated. *However, 

applying this correlation meant that some parameters could not be accurately estimated 

(RSE% was NA) so it was not included. In the human population, all BIC values were either 

non-significantly lower, or higher than the model with no random effects correlations, so no 

correlations were considered necessary to apply in further analyses. 

 

Analysis 2: Population covariate impact on within-population variation in model parameter 

estimates 

 

To establish if there were significant differences in response dynamics by population 

covariate, I ran regression analysis on the individual model parameter estimates (resulting 

from analysis 1) with population covariates as the predictors. This was conducted in R [322] 

using graphical plots and non-parametric rank tests for each species separately. The non-

parametric rank tests conducted to establish parameter-covariate relationships are as follows. 

For categorical covariates with 2 levels (BCG status and gender in humans) the Wilcoxon test 

was applied. For categorical covariates with 2+ categories (BCG vaccination history in human 

and colony in macaques) a kruskal-Walllis followed by a Dunn post-hoc test with a Bonferroni 

correction was applied. For continuous covariate, ML ratio, linear regression was applied. If a 

significant association (p-value<0.05) was found between model parameters and a covariate, 

a forward stepwise addition strategy was used in Monolix to establish a subpopulation-model. 

Here, parameter-covariate relationships were added to the subpopulation -model one at a 

time and the likelihood ratio test (LRT) was used to assess if the addition improved the fit. The 

parameter-covariate relationship that provided the best fit (a significant decrease in the -2LL 

using the LRT) provided the subpopulation model for the results of analysis 2. The resulting 

subpopulation model estimated parameter values were reported in the results for analysis 2, 

in paper 2. 

 

The parameter-covariate relationship was multiplicative, for example, the population 

estimation of the initial transitional effector memory cells (TEM0) in accounting for BCG status 

was modelled by TEM0BCG:N=TEM0BCG:Y*eα, where TEM0BCG:Y is the value for TEM0 for those in 
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the BCG:Y subpopulation (the reference subpopulation) and α is the exponentiated scalar of 

this value to represent changes in TEM0 for those in the BCG:Y subpopulation.  The covariate 

effects (α’s) are estimated in the NLMEM analysis alongside the associated p-values, but the 

value for the subpopulation parameter (left hand side of above equation) is reported in the 

results of paper 2.   

 

Analysis 3: Which macaque subpopulations best predicted immune responses in different 

human subpopulations? 

 

In analysis 3, my aim was to calibrate the macaque estimated model parameters stratified by 

colony (analysis 2, Table 1) to the human subpopulation (stratified by BCG status) response 

data to establish which macaque subpopulation model parameters were the best description 

of the human subpopulation data. Here, the resulting BIC value was used to assess the 

goodness of fit of the calibration of the macaque subpopulation estimated model parameter 

values and to compare between macaque subpopulations. To achieve the calibration, my aim 

was to fix all parameter values to those macaque subpopulation values in analysis 2, Table 1 

and record the resulting BIC value. However, to achieve the calibration in Monolix, it was 

necessary to provide one parameter to estimate (as NLMEM needs something to estimate!). 

To get around this, all macaque subpopulation model parameters were fixed at their 

estimated value (table 1) except for parameter L, which was allowed to vary within the range 

[(estimated value of L)-1, (estimated value of L)+1], which is small compared to the magnitude 

of the estimated values of parameter L and thus, would not considered substantially different 

from the estimated value of L for each macaque subpopulation in Table 1. The BIC values for 

this analysis are reported in Figure 4 in paper 2.  

 

Additional Results 

 

Analysis 1: Model calibration to IFN-γ data and exploration of model predictions for 

macaque and humans, separately 

 

Estimates for the residual error model parameters 
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 Macaque Human 

 All (analysis 1) 
Covariate 

(analysis 2) 
All (analysis 1) 

Covariate 

(analysis 2) 

 
Estimated 

Value 

RSE 

(%) 

Estimated 

Value 

RSE 

(%) 

Estimated 

Value 

RSE 

(%) 

Estimated 

Value 

RSE 

(%) 

Additive 

contribution 

(cells) 

5.37 90 5.51 17 3.79 65 6.04 23 

Proportional 

contribution 

(% of 

predicted 

response) 

61 10 61 9 42 10 39 10 

Table S6. Residual error model estimated parameters for a combined residual error model for macaques and 
humans. 

The estimates for the combined residual error model parameters for both macaques and 

humans for analysis 1 and 2 are in Table S6.  

 

Diagnostic plots 

Key diagnostic plots were used to assess the model’s ability to accurately represent the data. 

These were the Visual Predictive Check (VPC) plot and model prediction distribution plots. For 

a description of these diagnostic plots, see Appendix B.  

 

The VPC plot in paper 2 (Figure 2) showed a good fit of the model to the data for humans and 

macaques separately (analysis 1). Model prediction versus response data were also plotted 

to show the how the model predictions compare to the empirical data. Figure S3 below shows 

the that model predicted (total) cells secreting IFN-γ fits through the population median data 

well. Additional diagnostic plots for analysis 1 can be found in Appendix C Figures S4-S7. 
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Figure S3. Data (black points), predicted total number of T cells secreting IFN-γ (black line), predicted number of 
transitional effector memory (TEM) cells (blue line), and predicted number of resting central memory (CM) cells 
(orange line), over time. Model predictions use the estimated parameters from Table 1 for the A) macaque and B) 
human populations.  
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Analysis 2: Population covariate impact on within-population variation in model parameter estimates 

Non-parametric rank test in R on potential differences on the individual macaque estimated model parameter values (from Analysis 1)  by 

macaque population covariate 

Macaque population covariate: Colony 

Table S7 and Figure S8 show significant differences on the individual macaque estimated parameters (estimated in analysis 1) TEM0, L and k between 

the Chinese, Mauritian, Indonesian cynomolgus and Indian rhesus macaques. The colony covariate will be added to the covariate model for macaques 

in analysis 2. 

TEM0 L 

 Cyn: Chi Rhe: Ind Cyn: 
Indo 

 Cyn: 
Chi 

Rhe: Ind Cyn: Indo 

Rhe: Ind NS   Rhe: Ind NS   

Cyn: Indo S NS  Cyn: Indo NS NS  

Cyn: 
Maur 

S S S Cyn: Maur NS NS S 

k h 

 Cyn: Chi Rhe: Ind Cyn: 
Indo 

 Cyn: 
Chi 

Rhe: Ind Cyn: Indo 

Rhe: Ind NS   Rhe: Ind NS   

Cyn: Indo NS NS  Cyn: Indo NS NS  

Cyn: 
Maur 

S NS NS Cyn: Maur NS NS NS 

Table S7. p-value results of applying the non-parametric Kruskal-Wallis and post-hoc Dunn test (for more than two groups) with a Bonferroni correction on individual 
macaque estimated parameters from analysis 1 with colony as the predictor. Abbreviations: Cyn: chi = cynomolgus macaques of Chinese origin, Cyn: Maur = cynomolgus 
macaques of Mauritian origin, Cyn: Indo= cynomolgus macaques of Indonesian origian, Rhe: Ind = Rhesus macaques of Indian origin.  NS equates to non-significant 
(adjusted p-value>0.008=0.05/6), S equates to significant (adjusted p-value<0.008=0.05/6). 
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Figure S8. Boxplot of individual macaque estimated parameters from analysis 1 by macaque colony 

 

 

TEM0 
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Forward stepwise addition method for selecting macaque covariate model 

To select which parameters in the model should be indexed by macaque colony covariate, a forward selection method was adopted. Here, the 

covariate was added to one model parameter seperately and the -2LL recorded (for example, in Table S8, parameter TEM0). The parameter 

which provides the lowest -2LL is this indexed alongside a second model parameter (e.g. TEM0+L and all other pairwise parameters, seperately, 

e.g. TEM0+k and TEM0+h) and the resulting -2LL compared using the likelihood ratio test (chi^2 distribution with the appropriate degrees of 

freedom). This is continued until the model with the most parameters indexed on the colony covariate, with significantly lower -2LL is found. 

The results of Table S8 show that indexing parameters TEM0, L and k on macaque colony provide the lowest -2LL. The estimated values for each 

of these parameters for each macaque colony can be found in Table 1 of paper 2. 

Model # Parameter(s) indexed 
on colony covariate 

-2LL Diff in -2LL (*from 
Model # 0) 

0.05 level significant? (Chi^2 
test 4 d.f.: crit val = 9.48, 8 d.f. 
crit val = 15.5, 12 d.f: crit. Val = 
19.68) 

0 None 7209   

1 TEM0 7189.96 19.04 Yes (4 d.f.) 

2 L 7206.53 3 No (4 d.f.) 

3 k 7209.26 +0.26 No (4 d.f.) 

4 h 7222.45 +13.45 No (4 d.f.) 

 

3 TEM0+L 7183.75 25.25 Yes (8 d.f.) 

4 TEM0+k 7183.89 25.11 Yes (8 d.f.) 

5 TEM0+h 7199.01 9.99  No (8 d.f.) 

 

5 TEM0+L+k 7177.55 31.45  Yes (12 d.f.) 
Table S8. Forward stepwise addition method for selecting a subpopulation-model for colony in macaques. -2LL values are taken from running in Monolix with colony 
applied to the parameter. Difference in -2LL from the full model (model number 0) is calculated and significance is assessed by a chi squared distribution for the 
appropriate degree of freedom. 
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Non-parametric rank test in R on potential differences on the individual human estimated model parameter values (from Analysis 1) by human 

population covariate 

Human population covariate: Gender 
 

Table S9 and Figure S9 show no significant differences on the individual humans estimated parameters (estimated in analysis 1) associated 

with gender. As a result, stratification of model parameters by gender was not considered further in this work. 

 
Parameter Wilcoxon test p-value 

TEM0 0.45 

L 0.26 

k 0.31 

h 0.14 

Table S9. Results of applying the Wilcoxon test on individual human estimated parameters from analysis 1 with gender as the predictor 
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Figure S9. Boxplot of individual human estimated parameters from analysis 1 by gender, F=Female, M=Male 
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Human population covariate: ML Ratio 

Table S10 and Figure S10 show no significant differences on the individual humans estimated parameters (estimated in analysis 1) associated 

with ML ratio. As a result, stratification of model parameters by ML ratio was not considered further in this work. 

Parameter Linear regression slope 

parameter p-value 

TEM0 0.70 

L 0.69 

k 0.33 

h 0.24 

Table S10. Results of applying linear regression on individual human estimated parameters from analysis 1 with ML ratio as the predictor 
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Figure S10. Scatterplots of individual human estimated parameters from analysis 1 against ML ratio 
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Human population covariate: BCG History 

Table S11 and Figure S11 show that there is a significant difference on the individual estimated parameters between the “never” group, and the 

1-9, 10-19 and 20-29 years since BCG vaccination groups, but not between the 1-9, 10-19 and 20-29 years since BCG vaccination groups. As such, 

these groups are considered as “BCG status”, where 1+ years since BCG vaccination groups are aggregated into a BCG:Y group and the “never”, 

BCG:N. 

TEM0 L 

 Never 10-19 yrs 1-9yrs  Never 10-19 yrs 1-9yrs 

10-19 yrs S   10-19 yrs S   

1-9yrs S NS  1-9yrs S NS  

20-29 yrs S NS NS 20-29 yrs S NS NS 

k h 

 Never 10-19 yrs 1-9yrs  Never 10-19 yrs 1-9yrs 

10-19 yrs NS   10-19 yrs NS   

1-9yrs NS NS  1-9yrs NS NS  

20-29 yrs NS NS NS 20-29 yrs NS NS NS 

Table S11. p-value results of applying the non-parametric Kruskal-Wallis and post-hoc Dunn test (for more than two groups) with a Bonferroni correction on individual 
human estimated parameters from analysis 1 with BCG history as the predictor. NS equates to non-significant (adjusted p-value>0.008=0.05/6), S equates to significant 
(adjusted p-value<0.008=0.05/6). 
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Figure S11. Boxplot of individual human estimated parameters from analysis 1 by BCG history 
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Human population covariate: BCG Status 

As BCG status significantly impacted the individual human estimated parameters (Table S12 and Figure S12), it will be used to stratify 

estimated model parameters (Table S12, Figure S12). 

Parameter Wilcoxon test p-

value 

TEM0 2x10-10 

L 9.6x10-9 

k 0.31 

h 0.13 

Table S12. Results of applying the Wilcoxon test on individual human estimated parameters from analysis 1 with BCG status as the predictor 
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Figure S12. Boxplot of individual human estimated parameters from analysis 1 by BCG status 
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Forward stepwise addition method for selecting human covariate model 

The results of Table S13 show that indexing parameters TEM0, L and h on human BCG status provides the lowest significant -2LL. The estimated 

values for each of these parameters for baseline BCG-vaccinated and baseline BCG-naive can be found in Table 1 of paper 2. 

Model # Parameter(s) -2LL Diff in -2LL (*from 
Model # 0) 

0.05 level significant? (Chi^2 
test 2 d.f.: crit val = 5.99, 4 d.f.: 
crit val = 9.49, 6 d.f. crit val = 
12.59, 8 d.f. crit val = 15.5) 

0 None 2738   

1 TEM0 2698.00 40 Yes (2 d.f.) 

2 L 2697.36 40.64 Yes (2 d.f.) 

3 k 2739.45 +1.45  No (2 d.f.) 

4 h 2737.22 0.78 No (2 d.f.) 

 

5 L + TEM0 2665.75 72.25 Yes (4 d.f.) 

6 L + h 2694.01 43.99 Yes (4 d.f.) 

7 L + k 2696.85 41.15 Yes (4 d.f.) 

 

8 L+TEM0+k 2657.75 80.25 Yes (6 d.f.) 

9 L+TEM0+h 2653.96 84.04 Yes (6 d.f.) 

 

10 L+TEM0+h+k 2723.54 14.5 No (8 d.f.) 
Table S13. Forward stepwise addition method for selecting a covariate model for BCG status in humans. -2LL values are taken from running in Monolix with BCG status 
applied to the parameter. Difference in -2LL from the full model (model number 0) is calculated and significance is assessed by a chi squared distribution for the 
appropriate degree of freedom. 

 

 

Diagnostic plots 

Using the estimated model parameter values for the subpopulation models for macaque and humans outlined in Table 1 (i.e. the estimated 

model parameters TEM0, L and k, stratified by macaque colony covariate and TEM0, L and h stratified by human BCG status, provided by the 

subpopulation model analysis in Table S8 and S13), the VPC in Figure S13 and S14 show the model fits well to the macaque and human 
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subpopulations, respectively. Additional diagnostic plots for the macaque and human subpopulation-models can be found in Appendix C, Figures 

S15-S18. The model prediction distribution for the macaque and human subpopulations can be found in Figures S19 and S20, respectively. 
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Figure S13. Visual predictive check plots for all colonies of macaque. Points represent the empirical data. Blue regions represent the ranges of the 90th and 10th 
percentiles of the simulated populations. The pink region represents the range of the 50th percentile. The green line links the observed percentiles (10th, 50th and 90th) 
for each time point. Red regions represent where the observed data falls outside the ranges of the simulated percentiles. 
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Figure S14. Visual predictive check plots for BCG: N and BCG: Y humans. Points represent the observed data. Blue regions represent the ranges of the 90th and 10th 
percentiles of the simulated populations. The pink region represents the range of the 50th percentile. The green line links the observed percentiles (10th, 50th and 90th) 
for each time point. Red regions represent where the observed data falls outside the ranges of the simulated percentiles. 
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Figure S19. Prediction distribution plot for all colonies of macaque. Points represent the empirical data. The bands represent the 10th to 90th percentiles of the 
theoretical predictions using the predicted population parameters and associated variation for analysis 2 (Table 1). The black line shows the median total response 
prediction. 
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Figure S20. Prediction distribution plot for humans by BCG status subpopulation. Points represent the empirical data. The bands represent the 10th to 90th percentiles of 

the theoretical predictions using the predicted population parameters and associated variation for analysis 2 (Table 1). The black line shows the median total response 

prediction. 



 126 

Analysis 3: Which macaque subpopulations best predicted immune responses in different 

human subpopulations? 

 

The results of calibrating the macaque subpopulation estimated model parameter values to 

the human subpopulation data are in Figure 4, paper 2. The VPC plots for these calibrations 

can be found in Figure S21-S24. Further diagnostic plots can be found in Appendix C Figures 

S25-S28 

 

 

 

 

Figure S21. VPC plots for macaque estimated subpopulation-model parameters fit to the human BCG: Y data 
(top) and BCG: N data (bottom) for Chinese cynomolgus macaques. The green line links the observed 
percentiles (10th, 50th and 90th) for each time point for the human BCG: Y data (top) and BCG: N data (bottom). 
Blue regions represent the ranges of the 90th and 10th percentiles of the simulated populations time-matched 
to the observed data points. The pink region represents the range of the 50th percentile. Red regions represent 
where the observed data falls outside the ranges of the simulated percentiles. 
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Figure S22. VPC plot for macaque estimated subpopulation-model parameters fit to the human BCG: Y data 
(top) and BCG: N data (bottom) for Mauritian cynomolgus macaques. The green line links the observed 
percentiles (10th, 50th and 90th) for each time point for the human BCG: Y data (top) and BCG: N data (bottom). 
Blue regions represent the ranges of the 90th and 10th percentiles of the simulated populations time-matched 
to the observed data points. The pink region represents the range of the 50th percentile. Red regions represent 
where the observed data falls outside the ranges of the simulated percentiles. 
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Figure S23. VPC plot for macaque estimated subpopulation-model parameters fit to the human BCG: Y data 
(top) and BCG: N data (bottom) for Indonesian cynomolgus macaques. The green line links the observed 
percentiles (10th, 50th and 90th) for each time point for the human BCG: Y data (top) and BCG: N data (bottom). 
Blue regions represent the ranges of the 90th and 10th percentiles of the simulated populations time-matched 
to the observed data points. The pink region represents the range of the 50th percentile. Red regions represent 
where the observed data falls outside the ranges of the simulated percentiles. 
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Figure S24. VPC plot for macaque estimated subpopulation-model parameters fit to the human BCG: Y data 
(top) and BCG: N data (bottom) for Indian rhesus macaques. The green line links the observed percentiles (10th, 
50th and 90th) for each time point for the human BCG: Y data (top) and BCG: N data (bottom). Blue regions 
represent the ranges of the 90th and 10th percentiles of the simulated populations time-matched to the 
observed data points. The pink region represents the range of the 50th percentile. Red regions represent where 
the observed data falls outside the ranges of the simulated percentiles. 
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Additional Discussion 
 

The main assumptions for the IS/ID model structure used in paper 2 are outlined in Table S14. 

 

IS/ID model assumption Implications for model 

IFN-γ responses are not scaled to host body size 

The ELISPOT assay readout is conventionally measured per million cells in all species and 

as the model represents a systemic response regardless of host blood volume, it was not 

necessary to scale the ELISPOT readout to reflect body size. This was an important 

assumption in this work, where I translate dynamics directly onto the ELISPOT data in 

humans from macaques, however, following from conventional macaque to human 

vaccine translation, scaling by body size is not regularly conducted. 

 

CD4+ T cell stimulation greatly simplified 

The immune response to vaccination is a complex network of cells and cytokines behaving 

nonlinearly over time. In the Th1 response to Mtb. infection (or vaccination), innate and 

adaptive cells interact to optimise and maintain a protective response [37]. Very simply, 

cytokines secreted by innate cells after infection or vaccination, such as IL-12, work to 

stimulate adaptive cells to produce IFN-γ that both encourages innate cells to phagocytose 

bacteria and produce more IL-12 [66, 323]. As such, a feedback stimulation loop is 

established. In addition, to avoid an over-inflammatory response (which is harmful to the 

host) cytokines such as IL-10 are produced to regulate and dampen the immune response 

[324]. In the model, function δ is used to represent the delay of T cell initiation due to 

If data were available on IL-12 or other cytokines 

believed to be important to an immune response to 

BCG, It is possible that δ could be modelled as a parallel 

“innate response” compartmental model. Incorporating 

such a model would provide insight into the innate cell 

mechanisms and thus strengthen the conclusions drawn 

on the T cell dynamics. 



 131 

processes such as antigen processing and presentation and the decline of T cell responses 

due to depreciation of the required stimulation (creating a “n-shaped” curve). However, 

δ neglects the influence of stimulation amplification as a result of cytokine feedback loops, 

amongst other co-stimulation factors. As such, δ is a generalization of the complex 

networks required to protect against infection or vaccination and may not be as prolonged 

as required to generate a response to vaccination. 

Shape of stimulation curve, δ 

The Gamma pdf distribution function fit well for δ for the BCG data in the analysis, so no 

other functional forms were tested. Although an abstract concept, it is possible that a 

different shape may be required if the model was to be applied to different type of vaccine 

(i.e. viral vector vaccines (e.g. novel TB vaccine MVA-85A) deliver a rapid “burst” of 

transitional effector cells compared to a live replicating vaccines (BCG) [communication, 

H. Fletcher]). 

 

Central Memory (CM) cells do not die 

The central memory cell population is assumed to be maintained be a constant turnover, 

the death rate was omitted from the both the human and mouse model [316]. Although 

there is evidence to suggest CD4+ long-term memory cells turnover may diminish with 

time [325, 326], this is assumed not affect the time frame of the model. 

 

No initial recruitment into resting memory compartment  

The model assumes a linear progression from effector cell to resting memory cell 

phenotype [327-329]. However, an alternative model has been suggested, whereby 

To incorporate a nonlinear effector-memory pathway 

into the model, a recruitment term like δ would be 

added to the memory compartment. 
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effector and central memory cells are initiated simultaneously after vaccination [81, 83, 

330]. This could be another possibility for the model. The determining factor as to which 

pathway is optimal is still not fully understood [44]. 

Transition and replication of transitional effector cells happens in Lymph node before 

entering the blood 

The model assumes that the recruited transitional effector cells are former Mtb.-specific 

naïve CD4+ T cells that have clonally expanded within the lymph node and exited into the 

blood stream. Under this assumption, transitional effector cells do not replicate in this 

model. The rate of naïve CD4+ T cell clonal expansion changes with time dependent on 

stimulation from innate processes and antigen presence [44] so could be considered to be 

incorporated into δ. 

To incorporate replication of transitional effector cells 

into the model, a parameter RE would be applied which 

would determine the rate at which replication occurs, 

dependent on the current transitional effector cell 

count. 

Table S14. Main assumptions of the model and implications on challenging these assumptions 
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Chapter 4. Generation of immune response data to multi-dose of H56+IC31 in 

mice for the application of vaccine Immunostimulation/Immunodynamic 

(IS/ID) modelling: paper 3 

 

Chapter 4 introduction 

 

The second aim of the thesis was to predict human H-series vaccine IFN-γ response using IS/ID 

model calibrated to mouse multi-dose IFN-γ data and allometric scaling. In order to achieve 

this, extensive longitudinal data in mice was required.  

 

Mouse data was used in this chapter as I wanted to be able to translate responses over time 

between animal and humans on multiple doses and the majority of H-series dose escalation 

work was conducted in mice as is common in vaccine development. However, a review of the 

existing H56+IC31 data (generated by SSI), showed a lack of extensive time sampling in 

healthy mice, with most data sets measuring immune responses at most three time points 

after vaccination, e.g. [217]. This was sufficient for the purpose of testing immunogenicity in 

the experiments they were designed for, but would not provide enough information to 

provide identifiable model predictions. As a result, we generated the data at LSHTM (see 

author contributions below for details of persons involved in the experiment and to what 

degree). Again, we chose to use mice as the IFN-γ response mechanics are thought not to 

differ between mouse and human [189] and they could be housed at LSHTM for the 

experiment at a cheaper cost than an alternative animal model (e.g. macaque). The design of 

the experiment was developed to provide adequate temporal information on the IFN-γ 

response dynamics to provide an identifiable calibration of the IS/ID model. The logistics and 

resources required to carry out the experiment were managed by experimental PI, Dr. Helen 

Fletcher. The experiment was designed to match a subset of the data from human clinical 

trials outlined in [222, 232] where H56+IC31 or H1+IC31 was given in a two-vaccination 

regimen to healthy, BCG-vaccinated participants (see chapter 5, paper 4). As such, two 

vaccinations of H56+IC31 were given to healthy mice, however the mice did not receive BCG 

vaccination. This was due to evidence that suggests the time course required to generate a 

sufficient BCG immune response in mice equivalent to humans, was too long to complete in 
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the time scale of the thesis (personal communication, Dr Thomas Evans). Whilst it is possible 

that this omission might alter the magnitude of response in mice, we hypothesized it would 

not affect the response dynamics. The time scale used for the vaccinations was taken from 

previous pre-clinical experiments conducted by colleagues at SSI [217, 220, 223, 331]. The 

dose range was chosen to be wide (0.1-15 mg H56 (over 2 log increase)) based on previous 

work on H-series dose response curves which resulted in notable “bounds” in IFN-γ 

immunogenicity [217, 224].  We used the IC31 adjuvant in this experiment in order to mirror 

the human data. However, for the existing H56 pre-clinical mouse experiments, the adjuvant 

CAF01 was predominantly used. We used the dose of IC31 in previous H4 pre-clinical trials 

(100nmol) [217], which was kept constant over antigen dose. For further details on 

experiment design and logistics, see Appendix D. 

 

In summary, the purpose of this chapter was to outline the generation of longitudinal IFN-γ 

immune response data in mice after receiving 5 different doses (and 0 dose) of H56+IC31 (aim 

2, objective 5, Figure 1.5). This data was generated in order to complete aim 2 of the thesis, 

i.e. for the application of an IS/ID model to predict human multi-dose responses (see chapter 

5, paper 4).  

 

Additionally, I wanted to investigate the shape of the H56+IC31 dose response curve in mice 

over time. As stated previously, vaccine development regularly employs the assumption of a 

sigmoidal dose response curve. Based on previous work on H-series vaccine dose response 

which showed a clear peaked (or n-shaped) dose response curve shape [217], I hypothesized 

that the mouse IFN-γ data would show a peaked dose response relationship. To show 

definitively that this was the case, I applied statistical curve fitting to the data and compared 

a saturating (described using a sigmoidal or “Emax” equation [332]) and peaked curve shape 

(described by a gamma PDF equation).  It is important to note that I did not aim here to find 

a curve that provided the “best” fit, but only to show which curve shape out of the two 

(saturating or peaked) was a better representation of the data.  

 

I presented the work in paper 3 in poster form and as a presentation at the following 

conference: 
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 Keystone Symposium: Translational Vaccinology for Global Health, London, UK, 

October 2017 (invited speaker). “Use of mathematical modelling for dose finding in T 

cell mediated vaccines”. S. J. Rhodes, G. M. Knight, A. Zelmer, T. G. Evans, P. 

Andersen, H. Fletcher, R. G. White 
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Paper 3 title:  The TB vaccine H56+IC31 dose-response curve is peaked not saturating: 

Data generation for new mathematical modelling methods to inform vaccine dose 

decisions 

 

Authors: Sophie J. Rhodes*, Andrea Zelmer*, Gwenan M. Knight, Satria Arief Prabowo, 

Lisa Stockdale, Thomas G. Evans, Thomas Lindenstrøm, Richard G. White**, Helen 

Fletcher** 

*Joint first author 

**Joint senior author 

 

Author contributions:  

The mouse H56+IC31 data in paper 3 were generated at LSHTM by Dr. Helen Fletcher, Dr. 

Andrea Zelmer, Satria Arief Prabowo and Lisa Stockdale. The vaccine and adjuvant were 

provided by colleagues at Statens Serum Institut (SSI), Dr. Thomas Lindenstrøm. Animal 

vaccination, sacrifice and splenocyte harvest was conducted by Dr. Andrea Zelmer, Satria 

Arief Prabowo and Lisa Stockdale. My contribution to the data generation was to conduct the 

last stages in the ELISPOT develop protocol for all time points. I was solely responsible for 

designing the experiment, with advice from Dr. Helen Fletcher and Dr. Thomas Evans. The 

methods of statistical curve fitting to establish dose response was conceived and executed by 

myself, with the guidance of Prof. Richard White and Dr. Gwenan Knight. All authors reviewed 

the paper. Joint first authorship was granted to myself for designing the experiment, applying 

statistical modelling methods to the data and writing the paper and Dr. Andrea Zelmer for 

organizing and executing the mouse experiment, writing the laboratory ELISPOT methods and 

reviewing the paper. The interpretation of the results was my own work. 

Permission from copyright holder to include this work: 
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Supplementary material for paper 3 

 

The following is the supplementary material referenced in paper 3. All references to the 

below tables and Figures are preceded with the suffix “S” in the paper. 

 

Additional Methods 

 

Statistical methods 

 

Analysis (i) Summary of IFN-γ response data after two vaccinations with TB vaccine 

H56+IC31 for future mathematical modelling 

 

To compare the magnitude of the IFN-γ response over time between dose grouping, I 

calculated the Area Under the Curve (AUC) from day 0 to 56 for each dose grouping. 

Conventional AUC calculations are conducted on repeated measures data; the area of the 

curve created by connecting responses over time for one host make the AUC value for that 

host. Responses in our experiment are not repeated measures as each IFN-γ response 

measured was taken from a spleen of one euthanized mouse. To account for this in the AUC 

calculation I take samples of all possible AUC’s in one dosing group and compare across 

groups. The procedure for this is as follows. As there are five mice per time point and eight 

time points per dosing group (excluding day 0), there are 58 possible combinations of AUC 

values for each dose grouping (i.e. by linking mouse one at time point one to mouse one at 

time point two, etc. until time point eight. Or mouse one at time point one to mouse two at 

time point two, etc. and calculating the AUC from these combinations of responses over time, 

see Figure S1). I sample 5 (to reflect the use of five mice per time point) out of the total 

possible AUC values (58) for one dose group. I do this for each dosing group. I then compare 

these AUC values across the dosing groups and note the significant differences (using the 

Dunn test with a Bonferroni correction for multiple group comparisons and adjusted p-

value<0.003). I re-sample five AUC values (repeating the procedure above) for each dosing 

group and compare across dosing groups. I sample a total of 200 times. Results are presented 

in Table S3 showing the frequency of observed significantly different AUC’s between dosing 

groups for all 200 samples. 
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Figure S1. Example representation of the possible combinations of AUC calculations.  In this example, there are 5 times points and 5 data points (diamonds) per time 
point. Three lines are shown (solid, dotted and dashed) which AUC would be calculated from. These are 3 random combinations out of the possible 55 combinations 
that could be drawn.
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Analysis (ii) Determine the shape of dose-response curve when examined at varying 

sample times and the best dose predicted by fitted curves 

 

In this analysis, I conducted nonlinear regression using the functional forms gamma pdf and 

sigmoidal in the software Prism. The functional form for the sigmoidal curve is: 

 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 +
𝑅𝑚𝑎𝑥 ∗ 𝐷𝑜𝑠𝑒𝑝

𝑅50 + 𝐷𝑜𝑠𝑒𝑝
 

 

Where Dose is the Dose(log10), Rmax is the saturation maximum, R50 is the value where the 

response is 50% of the saturation maximum. Baseline is the value of the curve when dose is 

0. As I assume that the response at dose 0 is very low (almost zero) due to the lack of exposure 

to the vaccine, I fix this value to the mean response at dose 0 for the different time ranges. 

The functional form for the gamma pdf curve is: 

 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + (𝑆 ∗
𝑟𝑠ℎ

Γ(𝑠ℎ)
∗ 𝐷𝑜𝑠𝑒(𝑠ℎ−1) ∗ 𝑒−𝑟∗𝐷𝑜𝑠𝑒) 

 

S is a scalar multiplying the gamma pdf, r is the gamma rate parameter, and sh, the gamma 

shape parameter. 

 

In the Prism software, nonlinear regression is conducted by minimizing the sum of the squares 

of the residuals (SS), under the assumption that the residuals are normally distributed. Thus I 

used a maximum likelihood method. I fit the curves to all data points in the time range, hence, 

the SS is calculated by summing all squared residuals from all data points. Prism uses the 

derivative-based, Levenberg-Marquardt method to perform the parameter optimization (for 

an in-depth mathematical description see [333]). 

 

To assess the precision of the parameter best-fit estimates I used the standard error of the 

estimates produced by Prism. See [334] for a brief explanation into their calculation. I used 

relative standard error, which is expressed as the percentage of the standard error of the 
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parameter to the best-fit estimate parameter and can give an indication of the relative 

magnitude of the standard error.  

 

To measure the goodness of fit of each model to the data, I used the corrected Akaike 

Information Criteria (AICc). AICc is a recommended criterion to compare the fit of non-nested 

models in nonlinear regression on data from small studies. It is in-built to nonlinear regression 

analysis in Prism. The AICc is calculated using the following formula: 

 

𝐴𝐼𝐶𝑐 = 𝑁 ∗ 𝑙𝑛 (
𝑆𝑆

𝑁
) + 2𝐾 +

2𝐾(𝐾 + 1)

𝑁 − 𝐾 − 1
 

 

where N is the number of data points, K is the number of fitted model parameters (+1) and 

SS is the sum of the squared residuals. To find the “best” model to describe the data, I used 

the in-built model comparison tool in prism, which calculates the probability that the model 

is “correct”, also known as the Akaike weight (see [334-336]) using the model AICc. I also used 

the criteria for model selection using the difference in AICc outlined by Burnham & Anderson 

[336] in Table S1 : 

Difference in AICc between model with 

lowest AICc (MLow) and model being 

compared (MCom) 

Conclusion 

0-2 Substantial support for MCom 

4-7 Considerably less support for MCom 

>10 Essentially no support for MCom 

Table S1. Table outlining Burnham and Anderson’s criteria for support for models using AICc difference 

To assess for homoscedasticity of the data (i.e. the variance of the data around the mean 

response is not dependent on the magnitude of the response), I ran the in-built test in Prism 

[334] (see Tables S4-S6).  If this test failed, this would indicate weighing the data by response 

could be necessary. Additionally, to establish if the estimated parameters were global 

minimums, I ran the regression with varying initial parameter estimates (see Table S7). 
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Additional Results 

 

Statistical results 

Analysis (i) Summary of IFN-γ response data after two vaccinations with TB vaccine 

H56+IC31 for future mathematical modelling 

 

The Wilcoxon test was used to test for differences in IFN-γ responses generated as a result of 

the two ELISPOT incubation times (on data pooled across dose groups and time points). IFN-

γ responses did not differ for the 24 versus the 48 hour ELISPOT incubation times (p-value = 

0.67). Figure S2 shows a comparison between all mouse IFN-γ responses (over all dose 

groupings and all time points) for the two ELISPOT incubation times. Therefore, an incubation 

time of 24 hours was used in paper 3. 

 

Figure S2. Number of IFN-γ secreting CD4+ T cells after two vaccinations with H56+IC31 from individual mice 
spleens (pooled over time and dose) for the two ELISPOT assay incubation times (24 and 48 hour). There was 
no significant difference between the two incubation times. 
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Table S2 outlines significant changes in median IFN-γ responses between consecutive time points by dosing group (highlighted grey in Table S2). 

For each dose grouping (except the control group) there was a significant difference in median response between the day 2 and day 7 and 

between day 16 and day 21. In both cases (and for all dose groupings) this was a significant increase in median IFN-γ response over time. This is 

presumably because the IFN-γ response increases significantly due to primary vaccination between day 2 and 7 and also increases significantly 

due to revaccination between day 16 and 21. For the dose grouping receiving 5 μg of H56, there were further instants of significant differences 

between time points, namely between day 9 and 14 (an increase) and day 28 and 56 (a decrease). The decrease in response for this dosing group 

is potentially interesting as it suggests the mice receiving 5 μg of H56 experience a significant drop off of immunity in the long term. 

 

Table S2. Median values and p-values using the Wilcox test to compare the five IFN-γ responses between consecutive time points for each dose. Bold and 
highlighted values are below 0.05. 

 

 

 

 

Dose group (μg H56+IC31) 
Median SFU per million cells for two timepoints (p-value for difference) 

control 0.1 0.5 1 5 15 

Significant 
difference 

in response 
between 

days: 

0 & 2 2 & 0 (0.65) 2 & 0 (0.11) 2 & 0 (0.28) 2 & 0 (0.65) 2 & 0 (0.11) 2 & 0 (0.1) 

2 & 7 0 & 0 (0.72)  0 & 100 (0.009) 0 & 142 (0.01) 0 & 146 (0.02) 0 & 54 (0.02) 0 & 124 (0.01) 

7 & 9 0 & 2 (0.5) 100 & 176 (0.55) 142 & 104 (0.55) 146 & 96 (0.55) 54 & 48 (0.69) 124 & 32 (0.35) 

9 & 14 2 & 18 (0.2) 176 & 182 (0.84) 104 & 156 (0.35) 96 & 98 (1) 48 & 124 (0.047) 32 & 96 (0.07) 

14 & 16 18 & 44 (0.12) 182 & 56 (0.1) 156 & 136 (1) 98 & 76 (0.35) 124 & 0 (0.07) 96 & 44 (0.14) 

16 & 21 44 & 6 (0.14) 56 &542 (0.008) 136 & 414 (0.03) 76 & 488 (0.047) 0 & 502 (0.009) 44 & 246 (0.02) 

21 & 28 6 & 8 (0.26) 542 & 590 (0.22) 414 & 258 (0.42) 488 & 394 (0.69) 502 & 332 (0.06) 246 & 190 (0.69) 

28 & 56 8 & 10 (0.83) 590 & 298 (0.15) 258 & 351 (0.42) 394 & 302 (0.31) 332 & 106 (0.049) 190 & 94 (0.55) 
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Table S3 shows the frequency of significant differences in sampled AUC values across dosing groups after 200 samples of 5 AUC values per dosing 

group (see additional methods, analysis (i)). Out of the samples taken to calculate the AUC, the common significance trend showed that dose 

groups 0.1, 0.5 and 1 µg had significantly higher AUC than the control group, and the dose group 0.1 µg had significantly higher AUC than dose 

group 15 µg (Figure 2, Table S3). 

Dose (μg 
H56+IC31) 
grouping 
comparison 

Frequency of significantly 
different (adjusted p-value < 
0.003) AUC values*out of the 
200 samples (% of the 200 
samples) 

control – 0.1  179 (89.5%) 

control – 0.5 167 (83.5%) 

control - 1 164 (82%) 

control - 5 18 (9%) 

control - 15 0 (0%) 

0.1 – 0.5 0 (0%) 

0.1 - 1 0 (0%) 

0.1 - 5 0 (0%) 

0.1 -15 86 (43%) 

0.5 - 1 0 (0%) 

0.5 - 5 0 (0%) 

0.5 - 15 7 (4%) 

1 - 5 0 (0%) 

1 - 15 18 (9%) 

5 - 15 0 (0%) 
Table S3. Frequency of significantly (with a Bonferroni correction 
for multiple groups) different AUC comparisons over 200 samples 
of possible AUC values. *Five AUC values for each dose grouping 
per sample. 
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Statistical results 

 

Analysis (ii) Determine the shape of dose-response curve when examined at varying 

sample times and the best dose predicted by fitted curves 

 

In this analysis, I conducted nonlinear regression using the functional forms gamma pdf and 

sigmoidal in the software Prism. In order to obtain a reasonable nonlinear curve fit to the 

dose response data, constraints on the fitting algorithm were required. I have outlined above 

that the baseline parameter was fixed to 0 for both curves (see above). Additionally, for the 

Gamma curve, I applied the constraint of 1.2 to the shape parameter (sh). This was to avoid 

an exponential shape curve (which violates my peaked curve shape hypothesis), which occurs 

when the shape parameter is equal to 1. For the sigmoidal curve, the parameter E50 was 

constrained to be >0 as a negative E50 would not produce a saturating curve shape. 

Additionally, in preliminary fits where the parameter p was estimated, Prism reported an 

“ambiguous” value. I believe this was due to the right skew of the data which forced the 

sigmoidal curve to increase immediately to the Rmax value. As such, the effect of changing 

parameter p will shift the sigmoidal curve to the right (see Figure S3 for demonstration), but 

does not change the AICc value of the overall fit. As such I fixed the value at p=1. 
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Figure S3. Plot showing the effect of changing parameter p in the sigmoidal curve 
equation the dashed line corresponds to a p=50, the dotted line, p=100 and the solid 
line, p=200 on the day 56 data. If values are increased further (to approximately p=700), 
Prism reports a “bad initial value” error. 

 

Tables S4-S6 outlines the results of the regression analysis on responses for the time ranges 

pre-second vaccination (between first and second vaccination), post-second vaccination and 

day 56. Tables S4-S6 show that the Sigmoidal Rmax parameter was well estimated (low 

relative standard error), except for the day 56 data, which is due to small sample size. For 

every fit, the R50 parameter hit the low bound (very close to zero). This was due to the right 

skew of the data, which forced the sigmoidal curve to increase immediately to the Rmax 

value, and as such, R50 to be very small. A value of absolute zero here would cause an 

inflection point which and the derivative-based fitting algorithm to fail. 

 

The Gamma parameters were not well estimated for in any of the fits. I believed this is due 

to a lack of data in the range between dose 0 and 0.1 (log10) which would provide information 

on the nature increase of the peaked curve. This was most apparent in the pre-second data 

set where the shape parameter (sh) hit the constraint value and as such produced a heavily 

right-skewed curve (Figure 3A). The day 56 data do provide information on the increase of 
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the peaked curve, but the sample size is small, so the relative standard error of the 

parameters is high. 

 

Pre-second vaccination Gamma 
curve fit 

Pre-second vaccination Sigmoidal 
curve fit 

Best-fit parameter values Best-fit parameter values 

Baseline 5 (fixed) Baseline 5 (fixed) 

S 440.5 Rmax 87.02 

r 0.5047 p 1 (fixed) 

sh 1.2 R50 1.8x10-16 

Standard Error (% relative SE) Standard Error (% relative SE) 

Baseline - Baseline - 

S 255.1 (58%) Rmax 21.16 (24%) 

r 0.7405 (150%) p - 

sh Hit constraint R50 Hit constraint 

Goodness of Fit Goodness of Fit 

Degrees of 
Freedom 

117 Degrees of 
Freedom 

118 

Absolute Sum of 
Squares 

786326 
 

Absolute Sum of 
Squares 

851795 
 

AICc 1063 AICc 1070 

Test for 
homoscedasticity 

Passed Test for 
homoscedasticity 

Passed 

Comparison of Gamma and Sigmoidal curve fit 

Simpler model Sigmoidal 

Probability it is correct 2.35% 

Alternative model Gamma 

Probability it is correct 97.65% 

Ratio of probabilities 41.59 

Preferred model Gamma 

Difference in AICc 7.456 

Strength of evidence for model 
with higher AICc (according to 
[336])  

Between “considerably less” and 
“Essentially no” support for 
Sigmoidal – strong support for 
Gamma 

Table S4. Summary of nonlinear regression analysis of the Gamma and Sigmoidal curve 
fitting for the responses pre-second vaccination. 
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Post-second vaccination Gamma 
curve fit 

Post-second vaccination Sigmoidal 
curve fit 

Best-fit parameter values Best-fit parameter values 

Baseline 9 (fixed) Baseline 9 (fixed) 

S 1451 Rmax 336 

r 0.7535 p 1 (fixed) 

sh 1.787 R50 1.8x10-16 

Standard Error (% relative SE) Standard Error (% relative SE) 

Baseline - Baseline - 

S 309.7 (21%) Rmax 50.73 (15%) 

r 0.4175 (55%) p - 

sh 0.7283 (40%) R50 Hit constraint 

Goodness of Fit Goodness of Fit 

Degrees of 
Freedom 

87 Degrees of 
Freedom 

88 

Absolute Sum of 
Squares 

2167842 
 

Absolute Sum of 
Squares 

2737663 
 

AICc 916.5 AICc 935.3 

Test for 
homoscedasticity 

Passed Test for 
homoscedasticity 

Passed 

Comparison of Gamma and Sigmoidal curve fit 

Simpler model Sigmoidal 

Probability it is correct <0.01% 

Alternative model Gamma 

Probability it is correct >99.99% 

Ratio of probabilities  

Preferred model Gamma 

Difference in AICc 18.81 

Strength of evidence for model 
with higher AICc (according to 
[336])  

“Essentially no support” for 
Sigmoidal 

Table S5.  Summary of nonlinear regression analysis of the Gamma and Sigmoidal curve 
fitting for the responses post-second vaccination. 
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Day 56 Gamma curve fit Day 56 Sigmoidal curve fit 

Best-fit parameter values Best-fit parameter values 

Baseline 10 (fixed) Baseline 10 (fixed) 

S 846.3 Rmax 271.8 

r 2.336 p 1 (fixed) 

sh 4.242 R50 1.8x10-16 

Standard Error (% relative SE) Standard Error (% relative SE) 

Baseline - Baseline - 

S 140.4 (17%) Rmax 93.28 (34%) 

r 1.048 (45%) p - 

sh 1.687 (40%) R50 Hit constraint 

Goodness of Fit Goodness of Fit 

Degrees of 
Freedom 

27 Degrees of 
Freedom 

28 

Absolute Sum of 
Squares 

623052 
 

Absolute Sum of 
Squares 

981648 
 

AICc 307.8 AICc 318.8 

Test for 
homoscedasticity 

Passed Test for 
homoscedasticity 

Passed 

Comparison of Gamma and Sigmoidal curve fit 

Simpler model Sigmoidal 

Probability it is correct 0.41% 

Alternative model Gamma 

Probability it is correct 99.59% 

Ratio of probabilities 239.99 

Preferred model Gamma 

Difference in AICc 10.96 

Strength of evidence for model 
with higher AICc (according to 
[336])  

“Essentially no support” for 
Sigmoidal – absolute support for 
Gamma 

Table S6. Summary of nonlinear regression analysis of the Gamma and Sigmoidal curve 
fitting for the responses at day 56. 
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To establish if the estimated parameters were global minimums, I ran the regression with 

varying initial parameter estimates. Table S7 shows varying the initial parameter estimates 

did not impact the best-fit estimates in the regression analysis for any time range. 

 

Time range Curve Initial parameter 
estimates 

Best-fit parameter values 

Pre-second 
vaccination 

Gamma 

S=600, r=3, sh=3 S=440.5, r=0.5047, sh=1.2 

S=100, r=1, sh=1.2 S=440.5, r=0.5047, sh=1.2 

S=2000, r=6, sh=5 S=440.5, r=0.5047, sh=1.2 

Sigmoidal 

Rmax=300, R50=0.001 Rmax=87.02, R50=1.8x10-

16 

Rmax=10,R50=0.000001 Rmax=87.02, R50=1.8x10-

16 

Rmax=2000,R50=2 Rmax=87.02, R50=1.8x10-

16 

Post-second 
vaccination 

Gamma 

S=600, r=3, sh=3 S=1451, r=0.7535, 
sh=1.787 

S=100, r=1, sh=1.2 S=1451, r=0.7535, 
sh=1.787 

S=2000, r=6, sh=5 S=1451, r=0.7535, 
sh=1.787 

Sigmoidal 

Rmax=300, R50=0.001 Rmax=336, R50=1.8x10-16 

Rmax=10,R50=0.000001 Rmax=336, R50=1.8x10-16 

Rmax=2000,R50=2 Rmax=336, R50=1.8x10-16 

Day 56 

Gamma 

S=600, r=3, sh=3 S=846.3, r=2.336, 
sh=4.242 

S=100, r=1, sh=1.2 S=846.3, r=2.336, 
sh=4.242 

S=2000, r=6, sh=5 S=846.3, r=2.336, 
sh=4.242 

Sigmoidal 

Rmax=300, R50=0.001 Rmax=271.8, R50=1.8x10-

16 

Rmax=10,R50=0.000001 Rmax=271.8, R50=1.8x10-

16 

Rmax=2000,R50=2 Rmax=271.8, R50=1.8x10-

16 
Table S7. Testing initial parameter estimates 
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Chapter 5. Predicting human multi-dose immune responses to H-series 

vaccination using multi-dose data in mice and vaccine 

Immunostimulation/Immunodynamic (IS/ID) modelling: paper 4 

 

Chapter 5 introduction 

 

In paper 3, I showed that vaccine dose affects the immune response and to achieve a higher 

IFN-γ response, a lower dose of H56+IC31 may be required. In paper 4, I aimed to identify 

which of the immune response mechanisms in the IS/ID model were affected by dose. This 

was achieved by calibrating the IS/ID model to the longitudinal multi-dose IFN-γ data in mice 

outlined in paper 3. The model was then calibrated to H56/H1+ IC31 response data after one 

dose in humans. I mapped the change in model parameters by dose in mice and used this 

mapping alongside a proposed mouse to human dose scaling factor to predict the human 

immune response to remaining H56/H1+IC31 doses. The work in this chapter falls in line with 

aim 2 and objective 6-8 of the thesis (Figure 1.5). 

 

The human data used in this paper were pooled from two phase 1 clinical trials (see Appendix 

Table D.1) where non-HIV and non-latent TB infected, BCG vaccinated participants were given 

either 50 μg H56 + 500nmol IC31(n=8) or 50 μg H1 + 500nmol IC31 (n=10). The data were 

pooled as it has been shown that H56 and H1 induce similar IFN-γ immune responses in 

humans [236]. Demographic data was not available for the H1 data, so the differences in 

model predicted IFN-γ responses in humans by demographics is not considered in this work. 

Further data on H-series clinical trials was not available to me at the time of this work. 

 

The IS/ID model used in paper 4 is based on the T cell mathematical model used in paper 2. 

However, by incorporating advice from advisory and supervisory panel members (Prof. White, 

Dr. Knight, Dr Fletcher, Dr Evans, Dr Guedj) the model was evolved to incorporate the T cell 

dynamics following revaccination. Key differences in the one vaccination and re vaccination 

models are discussed in the paper supplementary material. 
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vaccine dose in humans: Using vaccine Immunostimulation/Immunodynamic 
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Abstract  

 

Introduction: Unlike drug dose optimisation, mathematical modelling has not been applied 

to vaccine dose finding. We applied a novel Immunostimulation/Immunodynamic 

mathematical model to translate multi-dose TB vaccine immune responses from mice, to 

predict most immunogenic dose in humans. 

 

Methods: Data were available on IFN-γ secreting CD4+ T cells over time for novel TB vaccines 

H56 and H1 adjuvanted with IC31 in mice (3 dose groups (0.1-1,5 and 15 μg H56+IC31), 45 

mice) and humans (1 dose (50 μg H56/H1+IC31), 18 humans). A two-compartment 

mathematical model, describing the dynamics of the post-vaccination IFN-γ T cell response, 

was calibrated to mouse and human data, separately, using nonlinear mixed effects 

methods. We used these calibrated models and a vaccine dose allometric scaling 

assumption, to predict the most immunogenic human dose. 

 

Results: At day 224, the model-predicted median number of human IFN-γ secreting CD4+ T 

cells for the 1-10μg, 50μg and 150μg H56/H1+IC31 dose groups were 374, 188, and 118 

SFU/mill PBMC, respectively, suggesting the 1-10μg dose may be the most immunogenic in 

humans, based on the mouse data.  

 

Conclusion: A 1-10μg of H-series TB vaccines in humans, may be as, or more, immunogenic, 

as larger doses. Mathematical modelling is a novel, and potentially revolutionary tool, to 

predict most immunogenic vaccine doses, and accelerate vaccine development. 
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Introduction 

 

Vaccines are one of the most effective interventions in public health [1]. However, to 

progress a vaccine from discovery to licensure can take decades and cost up to US$0.8 billion 

[2]. With costs so high, it is vital that development is made more efficient. A primary goal in 

vaccine development is to establish optimal vaccine efficacy, and vaccine dose amount 

(hereafter ‘dose’) is a crucial factor in achieving this. The consequences of selecting the 

wrong dose can lead to inadequate protection against disease, and ultimately wasted 

resources and lives. 

 

In humans, vaccine dose decisions are made based on dose escalation trials, the dose range 

of which is based on experiments in animals. In classical pre-clinical experiments, an initial 

dose is tested and incrementally increased until the dose is no longer considered safe. The 

resulting maximum safe dose is then scaled-up to be applied in a clinical setting. Historically, 

pre-clinical dose escalation experiments assume the response ‘saturates’, i.e. increases, then 

plateaus, as vaccine dose is increased. Many vaccines have progressed through 

developmental phases with doses selected under this assumption [3, 4]. 

 

However, recent pre-clinical data suggest that this ‘saturating’ assumption may not always be 

correct. Studies in mice [5], and humans [6], using the potential tuberculosis (TB) vaccine H4 

adjuvanted with IC31® (H4+IC31) have shown that lower vaccine doses have higher 

immunogenicity and protective efficacy than higher doses. We have recently shown that the 

IFN-γ dose-response curve in mice, for the novel TB vaccine H56+IC31, was peaked, not 

saturating [7], and an ongoing phase 1/2a H56+IC31 dose-ranging clinical trial will test this 

prediction in humans (ClinicalTrials.gov No. NCT01865487). Similar non-saturating dose-

response curves have been observed in clinical trials in HIV and Malaria vaccines using other 

adjuvants [8, 9]. These data suggest that developing vaccines based on a ‘saturating dose’ 

response curve assumption is likely to lead to sub-immunogenic doses being selected for later 

stage vaccine development, and risk efficacious vaccine discovery.  

 

In contrast to vaccine development, drug development benefits from systematic, 

quantitative analysis through the application of Pharmacokinetic/Pharmacodynamic (PK/PD) 
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modelling. PK/PD modelling employs mechanistic mathematical models to quantify drug 

concentration dynamics in the host over time (PK) and drug effect as the concentration 

varies (PD) [10]. Model-Based Drug Development (MBDD) is recognized as an efficient tool 

to accelerate and streamline drug development, by minimizing developmental time and 

resources [11]. MBDD has been established for decades in the pharmaceutical industry [12] 

and is often required by regulatory agencies in all stages of drug development. As such, 

MBDD is regularly used to establish optimal drug dose [13] and translate drug response 

dynamics between species [14]. 

 

PK/PD model-based methods have not been applied in vaccine development for dose decision 

making [1]. The application of quantitative methods similar to that of MBDD, could lead to 

better evaluation and translation of the vaccine dose-response data from animals to humans, 

and accelerate vaccine development. 

 

Consequently, we propose the new field of vaccine Immunostimulation/Immunodynamic 

(IS/ID) modelling as a method to inform vaccine dose decision making. Analogous to PK/PD 

modelling, IS/ID modelling applies mathematical models to describe the underlying 

mechanisms, the immune response stimulation (IS) that produce the measured immune 

response dynamics following vaccination (ID).  

 

In anticipation of the release of the dose-ranging clinical trial data (NCT01865487), the aim of 

this work was to employ a novel IS/ID model to translate H56+IC31 TB vaccine immune 

responses from mice to predict the most immunogenic dose in humans. We calibrated our 

model to IFN-γ data following two vaccinations with TB vaccine H56 adjuvanted with IC31 

(H56+IC31) in mice and humans, and H1+IC31 data in humans. The model was used to 

describe the IFN-γ response dynamics of two CD4+ T cell populations, and predict the most 

immunogenic dose in humans.  

Our analysis was in three stages. In analysis 1, the model was calibrated to the mouse data. 

In analysis 2, the model was calibrated to the limited dose data on humans. In analysis 3, we 

used our calibrated models to predict the most immunological dose in humans. 
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Methods 

 

Data 

 

Full details of mouse IFN-γ response data are in [7]. Briefly, female CB6F1 mice were given five 

doses, 0.1, 0.5, 1, 5, or 15 μg H56 adjuvanted with 100 nmol IC31® (supplied by SSI on behalf 

of Valneva Austria GmBH; hereafter designated H56+IC31) plus a control dose of 0 μg 

H56+IC31, at day 0 and 15. Data on the number of H56 antigen stimulated IFN-γ secreting 

CD4+ T cells (in spot forming units (SFU)) per 1 million splenocytes measured by an ex vivo 

IFN-γ Enzyme-Linked ImmunoSpot (ELISPOT) assay, were taken at eight time points over 56 

days (Figure S1 and supplementary methods). Mouse dose groups were: low (0.1, 0.5 and 1 

μg H56+IC31), middle (5 μg H56+IC31) and high (15 μg H56+IC31). 

 

Human IFN-γ response data was pooled from phase I clinical trials for the vaccines H56+IC31 

([15], ClinicalTrials.gov no. NCT01967134) (N=8) and H1+IC31 ([16] ClinicalTrials.gov no. 

NCT00929396) (N=10). H1 is comprised of a subset of the H56 antigens [17]. For both vaccine 

trials, primary vaccination was administered intramuscularly on day 0 and revaccination, day 

56, both at a dose of 50 μg of the vaccine antigen (H1 or H56) and 500 nmol IC31 in healthy, 

BCG vaccinated participants (hereafter, H56/H1+IC31). IFN-γ responses were measured using 

ELISPOT in SFU per 1 million Peripheral Blood Mononuclear Cells (PBMC), taken until day 224 

(Figure S2). Further trial information can be found in Table S1.  

 

The adjuvant dose remained constant across antigen dose for both species (100 nmol and 500 

nmol IC31 in mice and humans, respectively). 

 

Mathematical vaccine Immunostimulation/Immunodynamic (IS/ID) Model 

 

An ordinary differential equations mathematical model was used to describe the IFN-γ 

response dynamics of two CD4+ T cell populations induced following vaccination: transitional 

effector memory [18] which had effector functionality (activated to produce IFN-γ [19]) and 

were short-lived and resting “central” memory (Figure 1). Here, we assumed following primary 
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vaccination, cells were recruited as transitional cells and entered the transitional effector 

memory cells population (TEM) at rate . TEM cells then either died, at rate TEM, or 

transitioned into central memory cells (CM) at rate TEM. CM cells were assumed not to die 

over the short duration modelled (60 and 250 days in mice and humans, respectively). 

Following revaccination, transitional cells entering the TEM population were again recruited 

at rate , and central memory cells replicated at a rate RCM for  days. The time that replication 

occurred for, , was dependent on the CM population size at time of revaccination. Following 

replication, CM cells were recruited back to the TEM pool at rate CM. As with primary 

vaccination, TEM cells transition to CM cells at rate TEM following revaccination. As 

stimulation of T cell responses is delayed following vaccination (due to immune processes such 

as vaccine antigen trafficking and presentation [20, 21]) and does not last indefinitely [21], we 

assumed the TEM cell recruitment rate, δ, was nonlinear. δ was initiated at time of primary 

and re- vaccination and was assumed to be the same at both vaccination points. 

 

The death rate of the TEM cells (TEM) was fixed to values found in literature for mice [22] and 

humans [23], separately. For both species, the replication rate of the CM cells, RCM, was fixed 

to one replicate every 10 hours [24] and the transition rate to TEM pool following replication 

post revaccination, CM , was assumed to be instantaneous. All other parameters were free to 

be estimated. For parameter value description, see Figure 1. 

 

As central memory cells are known to be essentially non-proliferating in the host until 

stimulated by antigen [24]; we assumed they contributed to IFN-γ production, because the 

ELISPOT assay uses the vaccine antigens to stimulate all potentially IFN-γ secreting CD4+ T-

cells. To reflect this, the IFN-γ immune response predicted by the mathematical model was 

assumed equal to the sum of the number of TEM and CM cell populations over time. To 

account for the potential non-zero baseline responses, the initial TEM cell count was fixed at 

the median cell count for mice and humans, separately.  

 

Analyses 
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Analysis 1: Calibration of the IS/ID model to the mouse data, pooled and stratified by dose 

group 

 

In analysis 1, the model was calibrated (i) to all mouse ELISPOT data, pooled over dose groups, 

and (ii) to the data stratified by dose group, to quantify the IFN-γ response dynamics. 

Calibration of the model to the data was achieved using nonlinear mixed effects modelling 

(NLMEM) [25] and the SAEM algorithm implemented in the software Monolix v. 4.3.3 [26]. 

SAEM uses maximum likelihood methods to estimate the free model parameters that best 

describe the population typical IFN-γ response and the inter-individual variability [25]. For 

further description of the NLMEM statistical framework see supplementary methods. 

 

Calibrated model parameters were considered well estimated if their relative standard error 

(RSE) was less than 30% [27]. Model selection was carried out using Bayesian Information 

Criteria (BIC) value assessment, where a lower BIC value was indicative of a better fit. 

Evaluation of the model’s ability to describe the data was assessed primarily using the Visual 

Predictive Check (VPC) and further diagnostic plots (see supplementary methods for 

description). 

 

For analysis 1i, we tested two nonlinear equations for the recruitment of TEM cells (parameter 

δ, Figure 1); a Gaussian equation and a gamma Probability Density Function (PDF) equation. 

We also tested the replacement of rate δ with a naïve T cell compartment, whereby naïve cells 

replicate for N days before transitioning to TEM at rate N. (for mathematical description of 

the forms, see supplementary). All parameters within the forms of δ were free to be 

estimated. The form of δ that resulted in the lowest BIC value when calibrated to the pooled 

mouse data was chosen. This form was then used when the model was calibrated to the 

mouse data stratified by dose group (analysis 1ii) and the human data (analysis 2). 

 

For analysis 1ii, we used the likelihood ratio test (LRT) to identify which model parameters 

should be stratified by dose to improve the model fit, compared to analysis 1i.  

 

Analysis 2: Calibration of the IS/ID model to the pooled human data  
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In analysis 2, the model was calibrated to the human data using the same methods as analysis 

1. We calibrated the model to the pooled human data set (across vaccine H1+IC31 and 

H56+IC31) as the two vaccines are known to have a similar immunological profile [28] (see 

supplementary material for analysis on the human data stratified by vaccine type to validate 

this assumption).  

 

Analysis 3: Use calibrated mathematical models in analysis 1 & 2, and a vaccine dose 

allometric scaling assumption, to predict the human immune response dynamics and predict 

the most immunogenic dose in humans 

 

In analysis 3, the estimated model parameters identified for the dose groups in mice (analysis 

1ii) and for the one dose in humans (analysis 2) were used to predict the IFN-γ response in 

humans for a range of doses. As the current (antigen) dose allometric scaling factor between 

mouse and humans for the H-series vaccines is assumed to be approximately ten [29-31], we 

initially assumed the 50 μg H56/H1+IC31 dose given to humans was equivalent to the middle 

(5 μg H56+IC31) dose group in the mice. Under this assumption, the low and high doses in 

humans were estimated to be 1-10 and 150 μg H56/H1+IC31, respectively.  

 

Firstly, we calculated the percentage change between the mouse-data-estimated model 

parameters from the middle dose group vs the low and high dose groups (found in analysis 

1ii). Then we applied these percentage changes to the human estimated model parameters 

found in analysis 2 (the human middle dose group) to predict the model parameters for the 

low and high dose groups in humans. To establish the ‘most immunogenic’ human dose we 

compared long term (day 224) model-predicted responses for the three human dose groups. 

We conducted a sensitivity analysis on the dose allometric scaling factor by assuming the 

human dose was equivalent to the high (15μg H56 + IC31) dose group in the mice, giving a 

scaling factor of 3.33. 
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Results 

 

Analysis 1: Calibration of the IS/ID model to the mouse data, pooled and stratified by dose 

group 

 

The best (lowest BIC value) form for the TEM recruitment parameter, δ, for primary and 

revaccination was the Gaussian equation (Table S2): 

𝑎 ∗ (𝑒
−(𝑡𝑖𝑚𝑒−𝑏)2

2𝑐2 +⁡𝑒
−(𝑡𝑖𝑚𝑒−(𝑏+𝑟𝑒𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛⁡𝑡𝑖𝑚𝑒))2

2𝑐2 ) 

where a is a scalar, b, the Gaussian equation mean, c, the variance and time is measured in 

days. Using this δ, all free model parameters (including Gaussian equation δ, N=5, Figure 1) 

were well estimated (RSE<30%) (Table 1). The model predicted IFN-γ responses for this 

parameter set (Table 1) are plotted in Figure 2A.  The VPC showed the model predictions 

represented the median pooled data well (Figure S3, further diagnostic plots Figure S4-S5).  

 

Using the LRT and lowest BIC value, the best parameter set of the model for analysis 1ii, was 

when the Transitional Effector Memory (TEM) to Central Memory (CM) cell transition rate 

(TEM) differed by dose group (Table 1, Table S5). Figure 2 shows the model predicted IFN-γ 

response for the low (Fig 2B), middle (Fig 2C) and high (Fig 2D) dose groups (VPC and diagnostic 

plots in Figures S6-S8). In Figure 2A-D, model predictions for the 25th and 75th percentiles of 

the data were not as well estimated as the medians because the parameter standard 

deviations were fixed at 0.5 throughout. 

 

Analysis 2: Calibration of the IS/ID model to the pooled human data 

 

Parameter estimates for all free parameters (including Gaussian equation δ, N=5, Figure 1) for 

analysis 2 can be found in Table 1. Due to the smaller sample size of the human data, 

parameters TEM and  were not identifiably estimated (RSE>30%). Model parameter standard 

deviations were fixed at 0.5. 

 

Figure 3A and the VPC (Figure S9) shows that the model predicted IFN-γ responses from this 

parameter set (Table 1) was a good description of the median data, despite the wide variability 
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over time of the human responses. See Figures S10-S13 for further diagnostic plots and model 

predictions for each participant. 

 

Analysis 3: Use calibrated mathematical models in analysis 1 & 2, and a vaccine dose 

allometric scaling assumption, to predict the human immune response dynamics and predict 

the most immunogenic dose in humans 

 

In analysis 1ii, the estimated parameter TEM increased by 53% (0.15 to 0.23) from the middle 

to low dose group and decreased by 63% (0.15 to 0.056) from the middle to high dose group. 

Applying these changes to parameter TEM in the human model parameter set (Table 1), 

resulted in a value of 0.032 and 0.0074 for the low and high dose group, respectively (Table 

1). Using these values for TEM in humans, the model predicted median number of IFN-γ 

secreting CD4+ T cells at day 224 were 374, 188, and 118 (SFU per million PBMC) for the low, 

middle and high (1-10, 50 and 150μg H56/H1+IC31, respectively) dose groups, suggesting the 

low dose (1-10 μg H56/H1+IC31) may be most immunogenic in humans (Figure 3). In the 

sensitivity analysis, using a vaccine dose allometric scaling factor of 3.33, the low dose range 

(now 0.3-3.3 μg H56/H1+IC31) was also the most immunogenic (Table S9, Figure S14).  
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Discussion 

 

In this work, mathematical models were successfully calibrated to animal and human TB 

vaccine IFN-γ data. At day 224 post primary vaccination the model-predicted median number 

of human IFN-γ secreting CD4+ T cells were 374, 188, and 118 (SFU per million PBMC) for the 

low, middle and high dose groups (1-10, 50 and 150 μg H56/H1+IC31, respectively). This 

indicated that lower doses (1-10 μg H56/H1+IC31) may be the most immunogenic in humans.  

 

A key strength of this work was the application of mathematical modelling techniques to 

vaccine data that are rarely explored quantitatively. We used established, robust quantitative 

and statistical frameworks (compartmental mathematical models with NLMEM [25]) to 

explore and translate the complex biological dynamics between species, giving an early 

example of the utility of Immunostimulation/Immunodynamic modelling. We present here 

the first example of the allometric mapping between vaccine immune dynamics between mice 

and humans through the mapping of estimated model parameters between the two species. 

This mirrors established techniques incorporated in PK/PD modelling for drug development. 

Using diagnostic tests and goodness of fit measures, we showed our IS/ID mathematical model 

was a good description of the mouse dose group and human data and produced potentially 

biological meaningful results. 

 

We made the following key assumptions in this work. Our model was a highly simplified 

version of the complexities of the T cell response following vaccination. Our model assumes a 

linear progression from TEM to CM memory cell phenotype [32, 33]. However, an alternative 

model has been suggested, whereby TEM and CM cells are initiated simultaneously after 

vaccination [18, 19, 24]. Additionally, the death rate of TEM cells may also be affected by 

antigen dose. Both of these assumptions were necessary to avoid over-parameterisation given 

the data sample sizes available to us. See supplementary discussion for further model 

structure assumptions and their impact (Table S3). The IFN-γ secreting CD4+ T cell dynamics 

we incorporate in the IS/ID model was used to describe both the mouse and human response 

to H-series vaccination. This was justified as the fundamental mechanisms of Th1 response 

induction by vaccination are thought not to differ between these two species [34].  
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There were weaknesses in our work. Small data sample sizes meant we had to firstly, group 

the mouse dose data in analysis 1ii, limiting our conclusions on the full range of doses we 

tested. Secondly, due the small human dataset (N=18), two of the model parameters were not 

identifiably estimated, therefore the results of the model fit to the human data should be 

approached with caution. Additionally, due to small sample sizes, we constrained the model 

parameter standard deviations to 0.5 throughout, which restricted the conclusions we could 

make around the inter-individual variability. The geographical location of the clinical trials was 

correlated with vaccine type (H1 or H56), so this was not included as a human population 

covariate. However, as immune response to the current TB vaccine, BCG, are known to vary 

by geographic location [35], this covariate may also influence H-series vaccine responses. We 

did not consider participants with latent TB infection (LTBI) in this analysis, as vaccine take has 

been shown to differ markedly in non-exposed versus LTBI participants [36]. As such, 

predicting the optimal vaccine dose for this population, would require new IS/ID modelling 

efforts to accounts for these effects.  

 

Previous work on the H4+IC31 vaccine  [6, 37] showed that after vaccination with a dose of 50 

μg H4+500 nmol IC31, the median H4-stimulated IFN-γ response measured with the ELISPOT 

assay at day 182 (latest time point) was 222 IFN-γ secreting CD4+ T cells. This is close to our 

model prediction for the equivalent dose with H56/H1+IC31 (a median of 188 total cells). The 

dose response relationship showed a similar trend to our results also, i.e. the lower doses (5, 

15 μg H4+IC31) perform better than the higher doses (50, 150 μg H4+IC31) [6, 37].  

 

Preliminary empirical results from the phase 1/2a clinical dose ranging study of H56 + 500 

nmol IC31 (ClinicalTrials.gov no. NCT01865487) may support our model predictions 

(unpublished, personal communication, Thomas Scriba). These preliminary trial findings from 

NCT01865487 suggest that doses 5, 15 and 50 μg H56+IC31 were equally immunogenic in 

healthy, BCG vaccinated participants, and therefore developers have decided to use 5 μg 

H56+IC31 in future clinical trials, rather than 50 μg in previous trials. If these preliminary 

findings are confirmed, they may support the utility of IS/ID modelling. It must be noted, that 

these results are preliminary, and empirical samples sizes were small. 
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There are several areas for future research. In analysis 3, our vaccine dose allometric 

assumption; that a dose of 5 μg H56+IC31 (middle dose group) in mice was equivalent to a 50 

μg H56/H1+IC31 in humans, is in line with the current hypothesis in TB protein vaccine 

developers [29-31]. However, to our knowledge, no formal assessment of this scaling factor 

has been extensively undertaken and it is possible that this scaling factor could range between 

zero and ten. It is vital that further empirical data are collected to support these allometric 

scaling assumptions for a given antigen-adjuvant combination. Additionally, the effects of 

changing adjuvant dose on the dose-dependent dynamics should be explored. 

 

Further lab assays such as flow cytometry could be conducted to characterise the relative 

number of complex phenotypic cell types (TEM or CM) over time to further parameterize this 

model. Additionally, we use the frequency of IFN-γ secreting CD4+ T cells measured using the 

ELISPOT assay as our chosen immune response readout to reflect the current convention in 

TB vaccine development for dose selection. IFN-γ is a cytokine shown to be associated with 

control of infection or decreased risk of TB disease [38], however these findings have been a 

topic of controversy in TB vaccine development [39]. Despite this, Aagaard et al. showed in 

two independent studies that higher IFN-γ responses in mice correlated with stronger 

protection against Mtb. infection (measured by Mtb. colony forming units) [5]. Additionally, it 

is possible that varying dose may alter the function or type of IFN-γ secreting CD4+ T cells, 

which the ELISPOT assay will not detect. Flow cytometry could provide information on other 

cytokine types which could be incorporated into a more complex network model which can 

provide better understanding of T-cell dynamics. 

 

The clinical data used in this work were from a two vaccination regimen. However, in the H56 

trial [15] an additional vaccination was given after two months (data after third vaccination 

was excluded). Current methods to determine regimen are conducted empirically in early 

clinical phases (1/2a) in vaccine development [40-43]. In contrast, drug regimen is regularly 

explored and optimised using model-based simulation based on early response data. With this 

in mind, IS/ID modelling could be used to explore the effects of timing of a third vaccination, 

providing insight into the opportune time to boost vaccine responses, which can then be 

empirically verified. 
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In summary, using a mathematical model within a new IS/ID framework, we predicted that 

low doses of H-series TB vaccine may increase immune response in humans based on animal 

data. Forthcoming empirical clinical evaluations may support this prediction. We have 

illustrated that mathematical modelling may be a novel and potentially revolutionary tool to 

predict most immunogenic vaccine dose, and accelerate vaccine development. 
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Figure 1. Modelling overview. A) Schematic of the mathematical model representing the immune response dynamics of two IFN-γ secreting CD4+ T cell populations after primary 
and re- vaccination. Dashed arrows correspond to T cell dynamics as a result of only revaccination. B) Table of key model parameters. Model parameters are either fixed to a 

value from literature (TEM and RCM), to an assumed value (CM) or free to be estimated using NLMEM (TEM, , and the parameters that comprise ). Asterisked parameter symbols 
correspond to those resulting from only revaccination. Equations can be found in the supplementary material. The form of δ to be identified in analysis 1i.  
 

 

 

  

Transitional	
Effector	
Memory	
(TEM)	cells

Resting	
Central	
Memory	

(CM)
cells

δ βTEM

μTEM

A B

βCM

RCM, τ

Parameter	

symbol

Parameter	description	(unit) Fixed	or	Free

μTEM TEM cell terminal mortality rate
(day-1)

Fixed to value 0.3 day-1

(mouse) [22] and 0.2 day-1

(human) [23]

βTEM TEM cell transition rate to CM
type (day-1)

Free

RCM* Replication of CM cells in
response to revaccination (day-1)

Fixed to value 0.4 (day-1)
[24]

τ* Time that CM cells replicate in
response to revaccination (days)

Free

βCM* CM cell transition to TEM cell type
after replication in response to
revaccination (day-1)

Fixed to high value

δ TEM cell recruitment rate (day-1) Free
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Mouse Human 

Pooled  
(analysis 1i) 

Dose covariate  
(analysis 1ii) 

Pooled 
(analysis 2) 

Predicting dose 
(analysis 3) 

Parameter (unit)  Value 
RSE 
(%) 

Dose 
group 

Value 
RSE 
(%) 

Value 
RSE 
(%) 

Dose 
group 

Value 

Death rate of Transitional effector memory 

cells, TEM (per day) 
0.3 (F)* -  0.3 (F)* - 0.2 (F)** - 

 
0.2 (F)** 

Transition rate from Transitional Effector to 

Central Memory cell type, TEM (per day) 
 5.5 (E) 17 

Low 0.23 (E) 14 

0.022 (E) 31 

Low 0.032 (P) 

Middle 0.15 (E) 23 Middle 0.022 (F’) 

High 0.056 (E) 26 High 0.0074 (P) 

Replication rate of Central Memory cells (per 
day), RCM 

0.4 (F)*** -  0.4 (F)*** - 0.4 (F)*** - 
 

0.4 (F)*** 

Central Memory cell replication time,  
(days) 

1.1 (E) 2  1.1 (E) 7 0.34 (E) 35 
 

0.34 (F’) 

Transition rate from Central Memory to 

Transitional Effector type, CM (per day) 
10 (F)$ -  10 (F)$ - 10 (F)$ - 

 
10 (F)$ 

Recruitment of Transitional Effector rate : 
Gaussian equation scalar, a (# cells)  

 92.9 (E) 14  103 (E) 13 51 (E) 23 
 

51 (F’) 

Recruitment of Transitional Effector rate : 
Gaussian equation mean, b (days) 

6 (E) 8  6.2 (E) 10 16.6 (E) 20 
 

16.6 (F’) 

Recruitment of Transitional Effector rate : 
Gaussian equation variance, c (days) 

0.91 (E) 15  0.89 (E) 7 5.7 (E) 13  5.7 (F’) 

Table 1. Population parameters for mice and humans from model calibration (analysis 1&2) and prediction (analysis 3). All estimated model parameter standard 
deviations were fixed at 0.5. Abbreviations: RSE = relative standard error, F=Fixed, E=Free parameters that were Estimated using NLMEM, F’ = fixed to value found in 
analysis 2, P=predicted, fixed to value in literature: *[22],**[23], ***[24]. $ Fixed to be high. 

 



 180 

 

Figure 2.  Empirical and model predicted number of IFN-γ secreting CD4+ T cells over time for A. pooled mouse data, B. low dose group 

(0.1-1 µg H56+IC31), C. middle dose group (5 µg H56+IC31) and D. high dose group (15 µg H56+IC31). Grey points correspond to number 

of IFN-γ secreting CD4+ T cells measured over time by ELISPOT assay in mouse splenocytes for each mouse after receiving vaccination 

of H56+IC31 at day 0 and day 15. Median responses over time are marked by a blue triangle, the 75th percentile responses by an orange 

triangle and the 25th percentile responses by a purple triangle. The model prediction (total cells) calibrated to the data in the calibration 

framework (parameters in Table 1) is plotted against the median data (blue line). The orange and purple dashed lines are the model 

prediction (total cells) of the 75th and 25th percentiles of the data, a result of the variation in the estimated parameters (standard 

deviation fixed to 0.5 for all parameters (Table 1)). 
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Figure 3.  Empirical and model predicted number of IFN-γ secreting CD4+ T cells over time for A. pooled human data (all data, pooled over vaccine type) (50 µg H56/H1+IC31),  and the 

predicted human immune responses following a B. low (mouse-data mapped dose of 1-10 µg H56/H1+IC31) or C. high dose vaccination (mouse-data mapped dose of 150 µg H56/H1+IC31). 

A. Grey points correspond to number of IFN-γ secreting CD4+ T cells measured over time by ELISPOT assay in human PBMC after receiving vaccination of H56/H1+IC31 at day 0 and day 56. 

Median responses over time are marked by blue triangles, the 75th percentile responses by an orange triangle and the 25th percentile responses by a purple triangle. The model prediction 

(total cells) (parameters in Table 1) is plotted against the median data (blue line). The orange and purple dashed lines are the model prediction (total cells) of the 75th and 25th percentiles 

of the data, a result of the variation in the estimated parameters (standard deviation fixed to 0.5 for all parameters (Table 1)). In B. and C. Median (blue dashed), 75th (orange dots) and 

25th (purple dots) of the model predicted human responses after mapping from the mouse dose group model calibration (predicted parameters in Table 1) are shown. 
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Supplementary material for paper 4 

The following is the supplementary material referenced in paper 4. All references to the 

below tables and Figures are preceded with the suffix “S” in the paper. 

 

Additional Methods 

 

Data 

 

(The following text on the mouse data and laboratory methods is taken from my paper 3 

[337]) 

 

Mouse IFN-γ ELISPOT data 

The methods and materials used to generate the mouse IFN-γ response data following 

H56+IC31 vaccination are outlined below. These methods are outlined in chapter 4 [337]. 

 

Ethics Statement 

All animal work was carried out in accordance with the Animals (Scientific Procedures) Act 

1986 under a license granted by the UK Home Office (PPL 70/8043), and approved by the 

LSHTM Animal Welfare and Ethics Review Body. 

 

Animals 

Female CB6F1 mice were acquired from Charles River UK at 6-8 weeks of age. Animals were 

housed in specific pathogen-free individually vented cages, were fed ad libitum, and were 

allowed to acclimatize for at least 5 days before the start of any experimental procedure.  

 

Vaccination 

The experimental vaccine H56 (comprising Mycobacteria tuberculosis antigens Ag85B-ESAT-

6-Rv2660c [338], provided by Statens Serum Institute (SSI), Copenhagen, Denmark) was 

formulated in IC31® adjuvant (provided by SSI on behalf of Valneva Technologies) and 10 mM 

Tris-HCL buffer (pH 7.4) as described in [339] to obtain a final volume of 200 μl/mouse. The 

adjuvant IC31®consists of a mixture of the cationic peptide KLK (NH2-KLKL5KLK-COOH) and 

the oligodeoxynucleotide ODN1a (oligo-(dIdC)13). Adjuvant doses were 100 nmol peptide 
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and 4 nmol oligonucleotide for every vaccine (H56) dose. Antigen doses of 0.1, 0.5, 1, 5 or 15 

µg of H56 + 100/4 nmol IC31 (hereafter, H56+IC31) were administered per animal at day 0 

and 15, the same dose was used at both vaccination times within a group. Control animals 

received no vaccination. The vaccine was administered subcutaneously into the left or right 

leg flap. 

 

IFN-γ ELISPOT 

IFN-γ secreting CD4+ T cells were measured using the ELISPOT assay. Single cell suspensions 

of mouse splenocytes were prepared by mechanical disruption of spleens throμgh a 100μm 

cell strainer on the day of sacrifice. After lysis of red blood cells, single cell suspensions were 

made up in antibiotic-free media [RPMI-1640 (Sigma-Aldrich, Dorset, UK) + 10% heat-

inactivated FBS (Labtech International Ltd, Uckfield, UK) + 2 mM L-Glutamine (Fisher 

Scientific, Loughboroμgh, UK)]. 96-well microtiter ELISPOT plates (MAIPS4510, Millipore, 

Watford, UK) were coated with 10 µg/ml rat anti-mouse IFN-γ (clone AN18, Mabtech, Nacka 

Strand, Sweden). Free binding sites were blocked with RMPI 1640 supplemented as described 

above. 2.5x105 of total splenocytes were added and incubated in duplicate with H56 (10 

µg/ml), supplemented RPMI as a negative control, or Phorbol myristate acetate (PMA) (50 

µg/ml, Sigma-Aldrich) and Phytohemagglutinin (PHA) (10 µg/ml, Sigma-Aldrich) as a positive 

control. After 24 or 48 hrs of incubation at 37°C in 5% CO2, IFN-γ was detected with 1 µg/ml 

biotin labelled rat anti-mouse antibody (clone R4-6A2, Mabtech) and 1 µg/ml alkaline 

phosphatase-conjugated streptavidin (Mabtech). The enzyme reaction was developed with 

BCIP/NBT substrate (5-Bromo-4-chloro-3-indolyl phosphate/Nitro blue tetrazolium) (MP 

Biochemicals, UK) and stopped by washing the plates with tap water when individual spots 

could be visually detected (up to 5min). ELISPOT plates were analysed using an automatic 

plate reader. IFN-γ-specific cells are expressed as number of spot-forming units (SFU) per 

million spleen cells after non-specific background was subtracted using negative control wells. 

 

Experimental Schedule 

ELISPOTs were carried out at 2, 7, 9, 14, 16, 21, 28, and 56 days after the first vaccination for 

all doses. Five mice were used per time point per dose group (equating to 40 mice in a dose 

group from initiation to conclusion of the experiment). This schedule was designed to reflect 
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the H56+IC31 phase I clinical trial schedule [232] and previous experimental schedules in 

mice using the H-series vaccines by SSI in CB6F1 mice [217, 219, 338, 340]. 

 

Figure S1 shows the ELISPOT results using the 24 hour incubation time for each dosing group. 

Each blue dot represents the responses of one mouse, the black horizontal lines indicate the 

median responses. This Figure is a replication of Figure 1 in [337], chapter 4. 

 

 

Figure S1. Median IFN-γ responses (horizontal black bars) and responses of individual mice per time point (blue points) for 

each dose. As the control group did not receive H56+IC31, the median of all responses from the control group (which did not 

significantly change throughout the experiment) was used to represent all mice at baseline. The Wilcoxon test was used to 

compare consecutive time points, where *equates to p-value<0.05 and **p-value<0.01 (Table S2 in [337]). This Figure is 

duplicated from [337] here as a reminder of the data generated in chapter 4. 
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Human IFN-γ ELISPOT data 

Table S1 summarizes the two H-series trials from which the human ELISPOT data was taken. Figure S2 shows the individual IFN-γ responses (measured using 

ELISPOT assay) over time for both trials and the pooled median response across both trials. 

 Clinical trial Information Data from Clinical trial used in the analysis 

Vaccine ClinicalTrials.gov 
ID/publication 

Phase Purpose of trial 
(taken from 
ClinicalTrials.gov) 

Country 
conducted 

Study arms Study 
arm 
used  

N Response 
measurement 
times (days) 

Median 
age 
(IQR) 

Gender Years 
since BCG 

H56+IC31 NCT01967134/[232] i Evaluation of the 
Safety and 
immunogenicity 
profile of 
H56+IC31 
administered to 
HIV-negative 
adults and 
without LTBI and 
no history or 
evidence of 
tuberculosis (TB) 
disease.  

South Africa 1. N=8, LTBI 
negative, dose = 
50 μg 
H56(+500nmol 
IC31), two 
vaccinations (day 
0, 56) 

2. N=8, LTBI positive, 
dose = 15 μg 
H56(+500nmol IC31), 
two vaccinations (day 
0, 56) 

3. N=9, LTBI positive, 
dose = 50 μg 
H56(+500nmol IC31), 
two vaccinations (day 
0, 56) 

1 8 0, 14, 56, 70, 
112 

32 (19–
38)  
 

M=4, 
F=4 

>10 
(assumed 
to be 
vaccinated 
at birth) 

H1+IC31 NCT00929396/[227] i A safety and 
immunogenicity 
Phase 1 Trial with 
an adjuvanted TB 
subunit vaccine 
H1+IC31 (Ag85B-
ESAT-6 + IC31) 
administered in 
PPD positive 
volunteers at 0 
and 2 months 

Netherlands 1. N=10, LTBI negative, 
BCG positive, dose= 
50 μg H1(+500nmol 
IC31), two 
vaccinations (day 0, 
56) 

2. N=10, LTBI positive, 
dose= 50 μg 
H1(+500nmol IC31), 
two vaccinations (day 
0, 56) 

1 10 0, 7, 42, 63, 
98, 224 

49 (24–
54) 

 

M=7, 
F=3 

>2 

Table S1. Outline of the H56+IC31 and H1+IC31 phase i clinical trials and human demographics for each. Abbreviations: LTBI = Latent Tuberculosis Infection, IQR= Inter 
quartile range. 
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Figure S2. Number of IFN-γ secreting CD4+ T cells in humans in H56+IC31 phase I trial [232] (ClinicalTrials.gov no NCT01967134) and H1+IC31 phase I trial [227] 

(ClinicalTrials.gov no NCT00929396) over time measured using an ELISPOT assay. Vaccinations of the respective vaccines were given at day 0 and day 56. The median of 

the pooled data is shown in red and the responses in those that received H1+IC31 are shown in solid grey and for those that received H56+IC31 are shown in dashed grey.
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Laboratory procedures for the human IFN-γ data 

 

H56+IC31 phase I trial [232]: ClinicalTrials.gov no NCT01967134 

 

Screening procedures for HIV status included a medical history and blood collection for 

baseline chemistry. QuantiFERON®-TB Gold In Tube test (qft, cellestis limited) was used to 

determine latent TB infection (LTBI) status. 

 

H1+IC31 phase I trial [227]: ClinicalTrials.gov no NCT00929396 

 

The ELISPOT methods for the H1+IC31 clinical trial are outlined in [227]. I summarise the 

methods below. 

 

Frozen cells were pre-stimulated for 16-18 hours, followed by 24 hours in the ELISPOT plate. 

1x106 thawed cells/well were stimulated in 24 well plates with H1 antigens (Ag85B and ESAT-

6 proteins) as well as PPD, separate peptide pools and positive and negative controls (see 

[227]). All samples were assayed in triplicate. Incubation was done overnight in a fully 

humidified incubator at 37 ◦C, 5% CO2. Subsequently, cells were resuspended and divided 

over 3 wells (250,000 cells/well) of a mixed cellulose ester-backed 96 well plate (MAHAS45, 

Millipore) which had been pre-coated with anti-IFN--antibody (mAb1-D1K, Mabtech, Sweden) 

and blocked with AIMV medium. The next day biotinylated detector antibody (mAb 7-B6-1, 

Mabtech) was added and spots colored with alkaline phosphatase conjμgated streptavidin 

(Mabtech, Sweden) and FastTMNBT/BCIP (Sigma–Aldrich, The Netherlands). Substrate 

incubation was done at room temperature for 10 min and stopped by rinsing the plates with 

tap water. Plates were dried and spots were counted in the Bioreader 3000 pro (BioSys, 

Germany) using calibrated parameters. 

 

BCG vaccination status was determined by tuberculin-skin-test (TST), whereby a reaction 

range 6–15mm or any documented value between 6 and 15mm on medical file in the past, 

indicated the participant was BCG vaccinated.  To determine LTBI status, a QuantiFERON®-TB 

Gold In Tube test and a 6-day lymphocyte stimulation test (as described in [228]) in addition 
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to chest X-rays, were conducted at screening. HIV status was determined by reviewing 

recorded medical history and conducting standard blood tests. 

 

Mathematical vaccine Immunostimulation/Immunodynamic (IS/ID) Model 

 

The equations for the IS/ID two-compartmental in Figure 1 are as follows: 

 

 𝑑𝑇𝐸𝑀

𝑑𝑡
= 𝛿 − 𝛽𝑇𝐸𝑀𝑇𝐸𝑀−𝜇𝑇𝐸𝑀𝑇𝐸𝑀 +⁡𝛽𝐶𝑀𝐶𝑀 (1) 

   

 𝑑𝐶𝑀

𝑑𝑡
= 𝛽𝑇𝐸𝑀𝑇𝐸𝑀 + 𝑅𝐶𝑀 −⁡𝛽𝐶𝑀𝐶𝑀 (2) 

   

Where TEM represents the transitional effector memory (TEM) cell population, CM, the 

resting central memory (CM) cell population, t, the time in days and the parameters are 

those outlined in Figure 1. The parameters in the model follow the rules: 

 𝛿 initiated at time=0 and time=revaccination and has the same value at both times. 

 𝑅𝐶𝑀⁡= 0 until time = time of revaccination then 0 after time = time of revaccination 

+  

 𝛽𝐶𝑀 = 0 until time = time of revaccination +  then is 0 shortly after (once 95% of 

CM cells have transitioned) time = time of revaccination +  to ensure there is no 

flow back into the TEM compartment other than that due to revaccination. The value 

of 𝛽𝐶𝑀 is fixed arbitrarily high, at a value of 10 cells per day. 

 ⁡μTEM is fixed to values found in literature: 0.3 per day for mice [341] and 0.2 per day 

for humans [297, 317, 342]. 

 

 

Analysis 1: Calibration of the IS/ID model to the mouse data, pooled and stratified by dose 

group 

 

Testing the structural model for parameter  
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Three different mathematical forms were used to represent parameter : 

 

1. Gamma Probability Density Function (PDF) equation: 

𝛿 = 𝐿 ∗
(1 ℎ⁄ )

𝑘

Γ(𝑘)
∗ 𝑡𝑖𝑚𝑒(𝑘−1) ∗ 𝑒−(

1
ℎ
∗𝑡𝑖𝑚𝑒) 

the parameters were: L=multiplier to scale up the gamma PDF, k= Gamma PDF shape 

parameter, h=Gamma PDF scale parameter. 

2. Gaussian function equation: 

𝛿 = 𝑎 ∗ 𝑒𝑥𝑝
−(𝑡𝑖𝑚𝑒 − 𝑏)2

2𝑐2
 

the parameters were: a=height of Gaussian function, b=mean of Gaussian function, 

c=variance of Gaussian function. 

3. Naïve T cell compartment: A naïve T cell compartment was added to the model which 

introduced cells to the Transitional Effector Memory (TEM) compartment. There were 

initially 10 cells in the naïve compartment, which replicated every 10 hours for 𝜏𝑁 

days. After this, they left the Naïve compartment and enter the TEM compartment at 

rate⁡𝛽𝑁. As naïve cells do not express cytokines until they are differentiated [44], they 

do not contribute to IFN-γ output of the model. They were also long-lived cells [343], 

so do not die. 

 

Statistical (NLMEM) model 

 

The residual error model and potential random effects correlations were tested in the 

analyses (see chapter 3 and Appendix B for description of the statistical NLMEM model). 

 

Analysis 3: Use calibrated mathematical models in analysis 1 & 2, and a vaccine dose 

allometric scaling assumption, to predict the human immune response dynamics and 

predict the most immunogenic dose in humans 

 

Sensitivity analysis of vaccine dose allometric scaling factor 
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I assumed a scaling factor of 3.33 instead of 10, so the 50 μg H56/H1 + 500 nmol IC31 dose 

given to humans was now equivalent to the high (15 μg H56 + 100 nmol IC31) dose group in 

the mice. Under this assumption, the low and middle doses in humans were estimated to be 

0.3-3.3 and 16.7 μg H56/H1 + 500 nmol IC31, respectively.  

 

Like in the main analysis, I calculated the percentage change between the mouse-data-

estimated model parameters from the high dose group vs the low and middle dose groups 

(identified in analysis 1ii). Then I applied these percentage changes to the human estimated 

model parameters found in analysis 2 (now assumed to be the human high dose group) to 

predict the model parameters for the low and middle dose groups in humans. To establish the 

‘most immunogenic’ human dose group I compared long term (day 224) model-predicted 

responses for the three human dose groups. 
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Additional Results 
 

Analysis 1: Calibration of the IS/ID model to the mouse data, pooled and stratified by dose 

group 

 

Analysis 1i: Calibration of the IS/ID model to the pooled mouse data: Mouse pooled model 

 

Table S2 shows the result of the calibration of the model to the pooled mouse data for each 

form of  in the model (Figure 1).  The Gaussian equation provided the best fit according to 

the BIC value and all parameters were well estimated (RSE<30%). The estimated parameter 

values for the Gaussian equation calibration are in Table 1. 

 

Form of  

Model parameters (fixed or to be 
estimated in Monolix) 

Results after calibration to pooled 
mouse data 

Parameters 
with RSE >30% 

BIC 
value 

-2LL 
value Fixed (value) 

To be 
estimated 

Gamma PDF 
µTEM (0.3 day-

1)*, CM (10 per 
day-1)& 

L, k, h, TEM,  None 2453 2415 

Gaussian 
equation 

a, b, c, TEM,  None 2379 2341 

Naïve 
compartment 

N, N, TEM,  None 2503 2471 

Table S2. Results of calibrating the model to the pooled mouse data for the three forms of . *Fixed to value found in 
literature, &Fixed to assumed high value 

 

Residual Error (RE) Model 

 

The following residual error models were tested on the pooled mouse data with the Gaussian 

 function: additive, proportional and combined (additive and proportional). An additive 

model resulted in a BIC value of 2732, the proportional; 2430 and the combined 2379 (as in 

table S2). The combined residual error model was therefore used throughout analysis 1. The 

estimated values for the combined residual error model for analysis 1 can be found in Table 

S3. All are well estimated (RSE<30%). 

 

 Pooled (analysis 1i) 
Dose covariate 

(analysis 1ii) 
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Estimated 

Value 

RSE 

(%) 

Estimated 

Value 

RSE 

(%) 

Additive contribution (cells) 0.63 18 0.63 14 

Proportional contribution (% of 

predicted response) 
22 25 21 24 

Table S3. Residual error model estimated parameters for a combined residual error model for mice. 

 

Test for random effects correlations 

 

Results for the pairwise test for random effects correlations for mice are shown in Table S4.  

Combinati

on tested 

Mice 

BIC 

Diff to 

“none” 

(BIC) 

Decisio

n to 

include 

None 2379 - - 

a & b 2401 22 No 

a & c 2402 23 No 

a & TEM 2405 26 No 

a &   2395 16 No 

b & c 2399 20 No 

b & TEM 2398 19 No 

b &   2416 37 No 

c & TEM 2397 18 No 

c &   2413 34 No 

TEM &  2432 53 No 

Table S4. Tests for random effects correlations for mice 

All BIC values in Table S4 were non-significantly different from no random effects correlations 

in the mice population. No correlations were considered necessary to apply in further 

analyses. 
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Diagnostic Plots 

 

The VPC plot, model prediction distribution plot and the observed versus predicted (for the 

population and individual mice) for the pooled mouse model can be found in Figures S3-S5. 

 

The VPC plot shows that the simulated model predictions cover the data well and there are 

little red areas (red areas indicate the simulated model predictions did not adequately cover 

the observed data) (Figure S3). The red areas in the early response stages may be due to 

variable responses at this stage. The red area for the 25th percentile prediction indicates the 

model is under predicting the data. This could be due to the 0.5 value constraint placed on 

the standard deviation of the parameters which limit the degree to which the predictions can 

vary to cover the data. The model prediction distribution plot suggests the percentiles of the 

data are adequately covered (Figure S4), however, as all parameter standard deviations are 

fixed at 0.5, this may be underestimating the responses in some cases (as the observed versus 

predicted individual responses suggests (Figure S5)). Figure 2A in the main paper reflects 

these results.
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Figure S3. Visual Predictive Check (VPC) plot for the pooled mouse model (parameters from Table 1 using the Gaussian equation for  Table S2). Blue points represent the 
observed data. Blue regions represent the ranges of the 75th and 25th percentiles of the simulated populations. The pink region represents the range of the 50th percentile. 
The green line links the observed percentiles (25th, 50th and 75th) for each time point. Red regions represent where the observed data falls outside the ranges of the simulated 
percentiles. 



 198 

 

Figure S4. Prediction distribution plot for the calibration to the mouse data (parameters from Table 1 using the Gaussian equation for  Table S2). The blue points represent the 
data. The bands represent the 25th to 75th percentiles of the theoretical predictions using the estimated population parameters and associated variation for analysis 1i (Table 1). 
The black line shows the median total cell response prediction 
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Figure S5. Mouse observed data versus model predicted IFN-γ responses (parameters from Table 1 using the Gaussian equation for  Table S2) 
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Analysis 1ii: Calibration of the IS/ID model to the mouse data stratified by dose group: Mouse 

covariate model 

 

As described, the LRT was used to establish the mouse covariate model. The selected model 

for analysis 1ii was the one which satisfied the LRT against the pooled model, had all 

estimated model parameters RSE <30%, and had the lowest -2LL. Table S5 shows the result 

of indexing dose group on the estimated model parameters from the pooled model (model 

parameter standard deviations were all 0.5). 

 

-2LL 
value 
for 
pooled 
model 

Dose group 
indexed on 
parameter(s) 

Results Difference 
in -2LL 
from 
pooled 
model 
(pooled-
dose 
group) 

0.01 level significant? (Chi^2 test 
3 d.f.: crit val = 11.34, 6 d.f.: crit 
val = 16.81, 9 d.f.: crit val = 21.67, 
12 d.f.: crit val = 26.22, 15 d.f.: 
crit val = 30.58) 

Parameters 
with RSE 
>30% 

-2LL  

2341 a None 2322 19 (3 d.f.) Yes 

b None 2333 8 (3 d.f.) No 

c None 2322 19 (3 d.f.) Yes 

TEM None 2315 26 (3 d.f.) Yes 

 None 2335 6 (3 d.f.) No 

a, b a 2314 27 (6 d.f.) Yes 

a, c a 2323 18 (6 d.f.) Yes 

a, TEM c 2318 23 (6 d.f.) Yes 

a,  None 2322 19 (6 d.f.) Yes 

b, c None 2315 26 (6 d.f.) Yes 

b, TEM None 2319 22 (6 d.f.) Yes 

b,  None 2329 12 (6 d.f.) No 

c, TEM c 2320 21 (6 d.f.) Yes 

c,  c 2320 21 (6 d.f.) Yes 

TEM,  c 2316 25 (6 d.f.) Yes 

a, b, c a, b, c, bTEM 2313 28 (9 d.f.) Yes 

a, b, TEM a, bTEM 2312 29 (9 d.f.) Yes 

a, b,  a, b,  2316 25 (9 d.f.) Yes 

a, c, TEM a, c, bTEM 2322 19 (9 d.f.) No 

a, c,  a, c, t 2325 16 (9 d.f.) No 

a, TEM,  a, c, bTEM 2319 22 (9 d.f.) Yes 

b, c, TEM bTEM 2317 24 (9 d.f.) Yes 

b, c,  b, c 2316 25 (9 d.f.) Yes 

b, TEM,  TEM 2312 29 (9 d.f.) Yes 
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c, TEM,  bTEM 2322 19 (9 d.f.) No 

a, b, c, TEM a, b, c, bTEM 2317 24 (12 d.f.) No 

a, b, c,  None 2317 24 (12 d.f.) No 

a, b, TEM,  a, bTEM 2315 26 (12 d.f.) No 

a, c, TEM,  a, c, bTEM 2321 20 (12 d.f.) No 

b, c, TEM,  All 2310 31 (12 d.f.) Yes 

a, b, c, TEM, 

 
All 2320 21 (15 d.f.) No 

Table S5. Results of indexing the dose group covariate on all combinations of estimated parameters in the 
mouse pooled model 

 

Table S5 shows that the best covariate model is when dose group was indexed on model 

parameter TEM with all model parameter standard deviations fixed to 0.5 

(highlighted)(allowing the standard deviations to be estimated led to RSE of one or more 

parameters >30%).   

 

Diagnostic Plots 

 

The VPC plot, prediction distribution and observed versus predicted response plots can be 

found in S6-S8. 

 

The VPC shows that for each dosing group (low, middle and high), the model predicts the data 

well (Figure S6), although with less data per group the VPC is not as definitive as for in the 

mouse pooled model (Figure S3). This is due to the small sample size for the high and middle 

dose groups, as the VPC plot does not summarise all responses, either observed data (green 

line) and model simulations (blue and orange regions) for all times points which is why the 

green line, blue and orange regions do not reflect the expected shape of the model prediction, 

i.e. there is no clear peak after primary and revaccination as would be expected from the 

design of the IS/ID model. This is not a reflection of an unidentifiable model calibration, but 

an artefact of the default settings for the VPC plot in Monolix, where model predictions for 

small sample sizes are misrepresented. Figure 2B-D is a better depiction of the model 

prediction versus the observed data. The observed versus predicted response plots in Figure 

S8 suggest that the model predictions fall in line with the observed data for the dose groups 

on a population and individual level.
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Figure S6. Visual Predictive Check (VPC) plot for the covariate mouse model (dose group indexed on parameter βTEM, see Table S5, estimated parameters in Table 1). Blue 
points represent the observed data. Blue regions represent the ranges of the 75th and 25th percentiles of the simulated populations. The pink region represents the range 
of the 50th percentile. The green line links the observed percentiles (25th, 50th and 75th) for each time point. Red regions represent where the observed data falls outside 
the ranges of the simulated percentiles 
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Figure S7. Prediction distribution plot for the calibration to the mouse data stratified by dosing group (dose group indexed on parameter βTEM, see Table S5, estimated 
parameters in Table 1). The blue points represent the data. The bands represent the 25th to 75th percentiles of the theoretical predictions using the estimated 
population parameters and associated variation for analysis 1i (Table 1). The black line shows the median total cell response prediction. Note, Y-axis not on the same 
scale. 
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Figure S8. Mouse observed data versus model predicted IFN-γ responses stratified by dose group (dose group indexed on parameter βTEM, see Table S5, estimated 
parameters in Table 1).
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Analysis 2: Calibration of the IS/ID model to the pooled human data 

 

Analysis 2: Calibration of the IS/ID model to the pooled human data: Human pooled model 

 

The results of the model calibration to the human data can be found in Table 1. As two of the 

parameters were not identifiably estimated, I did not test the effects of estimating model 

parameter standard deviations as it was clear there was not enough data to estimate further 

parameters. 

 

Residual Error (RE) Model 

 

The following residual error models were tested on the pooled human data with the Gaussian 

 function: additive, proportional and combined (additive and proportional). An additive 

model resulted in a BIC value of 1277, the proportional; 1270 and the combined 1248. The 

combined residual error model was therefore used throughout analysis 2. The estimated 

values for the combined residual error model for analysis 2 can be found in Table S6. All are 

well estimated (RSE<30%). 

 

 Pooled (analysis 1i) 

 Estimated Value RSE (%) 

Additive contribution (cells) 24.7 29 

Proportional contribution (% of predicted response) 37 23 

Table S6. Residual error model estimated parameters for a combined residual error model for human. 

 

Test for random effects correlations 

 

Results for the pairwise test for random effects correlations for humans are shown in Table 

S7.  

 

Humans 
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Combinati

on tested BIC 

Diff to 

“none” 

(BIC) 

Decision 

to 

include 

None 1248 - - 

b & c 1308 60 No 

b & TEM 1362 114 No 

b &   1390 142 No 

c & TEM 1275 27 No 

c &   1410 162 No 

TEM &  1274 26 No 

Table S7. Tests for random effects correlations for humans 

 

All BIC values in Table S7 were non-significantly different from no random effects correlations 

in the human population. No correlations were considered necessary to apply in further 

analyses. 

 

Diagnostic Plots 

 

The VPC plot, model prediction distribution plot and the observed versus predicted (for the 

population and individual participants) for the pooled human model can be found in S9-S11. 

 

The VPC plot shows that the simulated model cover the data well and there are no red areas 

(indicating the simulated model predictions did adequately cover the observed data) (Figure 

S9). However, the model prediction is trending toward under estimating the median response 

at latest time point. Again, due to the small sample size, this VPC plot does not summarise all 

responses, either observed data (green line) and model simulations (blue and orange regions) 

for all times points which is why the green line, blue and orange regions do not reflect the 

shape of the model prediction in Figure 3 of the main paper. Similarly, this is not a reflection 

of the calibration of the model, but an artefact of the default settings for the VPC plot in 

Monolix, where model predictions for small sample sizes are misrepresented. However, the 

expected profile from the IS/ID model can be seen better in the model prediction distribution 
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plot, which suggest the percentiles of the data are adequately covered (Figure S10) despite 

widely variable responses over time in the human data set. Figure 3 in the main paper shows 

how the model predictions follow the trend of this variable data. However, similar to the 

mouse pooled model, as all parameter standard deviations are fixed at 0.5, this may be 

underestimating the responses in some cases (although the observed versus predicted 

individual responses suggests the model is a good fit (Figure S11)). Figure 3A in the main paper 

reflects these results. 

 

The individual plots for each human participant can be found in Figure S12 and S13.
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Figure S9. Visual Predictive Check (VPC) plot for the pooled human model (model parameters Table 1). Points represent the observed data. Blue regions represent the 
ranges of the 75th and 25th percentiles of the simulated populations. The pink region represents the range of the 50th percentile. The green line links the observed 
percentiles (25th, 50th and 75th) for each time point. Red regions represent where the observed data falls outside the ranges of the simulated percentiles. 
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Figure S10. Prediction distribution plot for the calibration to the human data. The black points represent the data. The bands represent the 25th to 75th percentiles of the 
theoretical predictions using the estimated population parameters and associated variation for analysis 2 (Table 1). The black line shows the median total cell response 
prediction 
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Figure S11. Human observed data versus model predicted IFN-γ responses 
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Figure S12. Model predictions for each participant of the human data set. Plot 1 of 2. 
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Figure S13. Model predictions for each participant of the human data set. Plot 2 of 2. 
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Validation of Pooling Human data across Vaccine Type 

 

Table S8 shows the result of indexing vaccine type on the estimated model parameters from the human pooled model. 

 

-2LL value for 

pooled model 

Vaccine type 

indexed on 

parameter(s) 

Results Difference in -

2LL from 

pooled model 

(pooled 

model-

covriate 

model) 

0.01 level 

significant? (2 or 4 

d.f.) (Chi^2 test 2 

d.f.: crit val = 9.21, 4 

d.f.: crit val = 13.28) 

Parameters 

with RSE 

>30% 

-2LL  

1231 b TEM,  1281 -50 
(2 d.f.) No  

-2LL larger 

 c b, TEM,  1241 -10 
(2 d.f.) No 

-2LL larger 

 TEM None 1292 -61 
(2 d.f.) No 

-2LL larger 

  b, c, TEM 1326 -95 
(2 d.f.) No 

-2LL larger 
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 b, c c,  1262 -31 
(4 d.f.) No 

-2LL larger 

 b, TEM TEM 1346 -115 
(4 d.f.) No 

-2LL larger 

 b,  All 1363 -132 
(4 d.f.) No 

-2LL larger 

 c, TEM  All 1271 -40 
(4 d.f.) No 

-2LL larger 

 c,   1308 -77 
(4 d.f.) No 

-2LL larger 

 TEM,  All 1518 -287 
(4 d.f.) No 

-2LL larger 

Table S8. Results of indexing the vaccine type covariate on all combinations of estimated parameters in the human pooled model 

Table S8 shows that the vaccine type covariate was not associated with a significant improvement in model fit from the model fit to the pooled 

human data. This result was not surprising as H56 and H1 have been shown to have a similar immunogenicity profile [236]. As indexing on two 

model parameters on vaccine type resulted in unidentifiable model fits (for all), we did not analyse the effect of indexing all combinations of 

three or more model parameters on vaccine type.
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Analysis 3: Use calibrated mathematical models in analysis 1 & 2, and a vaccine dose 

allometric scaling assumption, to predict the human immune response dynamics and 

predict the most immunogenic dose in humans 

 

Sensitivity analysis of vaccine dose allometric scaling factor 

 

In analysis 1ii, the estimated parameter TEM increased by 168% (0.056 to 0.15) from the high 

to middle dose group and by 311% (0.056 to 0.23) from the high to low dose group. Applying 

these changes to parameter TEM in the human model parameter set (Table S9), resulted in a 

value of 0.091 and 0.059 for the low and middle dose group, respectively (Table S9). Using 

these values for TEM in humans, the predicted median number of IFN-γ secreting CD4+ T cells 

at day 224 were 757, 542, and 188 (SFU per million PBMC) for the low, middle and high (0.3-

3.3 μg, 16.7μg and 50μg H56/H1+IC31, respectively) dose groups, suggesting the low dose 

(0.3-3.3 μg H56/H1+IC31) may be most immunogenic in humans (Figure S14). This result which 

supports the findings using a scaling factor of 10. Using both scaling factors, a range of 1-3.3 

μg H56/H1+IC31may be most immunogenic dose in humans. 
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Mouse Human 

Pooled  
(analysis 1i) 

Dose covariate  
(analysis 1ii) 

Pooled 
(analysis 2) 

Predicting dose 
(analysis 3) 

Parameter (unit)  Value 
RSE 
(%) 

Dose 
group 

Value 
RSE 
(%) 

Value 
RSE 
(%) 

Dose 
group 

Value 

Death rate of Transitional effector memory 

cells, TEM (per day) 
0.3 (F)* -  0.3 (F)* - 0.2 (F)** - 

 
0.2 (F)** 

Transition rate from Transitional Effector 

to Central Memory cell type, TEM (per day) 
 5.5 (E) 17 

Low 0.23 (E) 14 

0.022 
(E) 

31 

Low  0.091 (P) 

Middle 0.15 (E) 23 Middle 0.059 (P) 

High 
0.056 
(E) 

26 High 0.022 (F’) 

Replication rate of Central Memory cells 
(per day) 

0.4 (F)*** -  
0.4 
(F)*** 

- 0.4 (F)*** - 
 

0.4 (F)*** 

Central Memory cell replication time,  
(days) 

1.1 (E) 2  1.1 (E) 7 0.34 (E) 35 
 

0.34 (F’) 

Transition rate from Central Memory to 

Transitional Effector type, CM (per day) 
10 (F)$ -  10 (F)$ - 10 (F)$ - 

 
10 (F)$ 

Recruitment of Transitional Effector rate : 
Gaussian equation scalar, a (# cells)  

 92.9 (E) 14  103 (E) 13 51 (E) 23 
 

51 (F’) 

Recruitment of Transitional Effector rate : 
Gaussian equation mean, b (days) 

6 (E) 8  6.2 (E) 10 16.6 (E) 20 
 

16.6 (F’) 

Recruitment of Transitional Effector rate : 
Gaussian equation variance, c (days) 

0.91 (E) 15  0.89 (E) 7 5.7 (E) 13  5.7 (F’) 

Table S9. Population parameters for mice and humans from model calibration (analysis 1&2) and prediction (analysis 3). All estimated model parameter standard deviations were 
fixed at 0.5. Abbreviations: RSE = relative standard error, F=Fixed, E=Free parameters that were Estimated using NLMEM, F’ = fixed to value found in analysis 2, P=predicted (using 
scaling factor 3.33), fixed to value in literature: * [341], **[342], ***[81]. $ Fixed to be very fast. 
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Figure S14.  Empirical and model predicted number of IFN-γ secreting CD4+ T cells over time for A. pooled human data (all data, pooled over vaccine type) (50 µg H56/H1+IC31), and 

the predicted human immune responses following a B. low (mouse-data mapped dose of 0.3-3.33 µg H56/H1+IC31) or C. middle dose vaccination (mouse-data mapped dose of 16.7 

µg H56/H1+IC31) assuming a dose allometric scaling factor of 3.3. A. Grey points correspond to number of IFN-γ secreting CD4+ T cells measured over time by ELISPOT assay in 

human PBMC after receiving vaccination of H56/H1+IC31 at day 0 and day 56. Median responses over time are marked by blue triangles, the 75th percentile responses by an orange 

triangle and the 25th percentile responses by a purple triangle. The model prediction (total cells) (parameters in Table S9) is plotted against the median data (blue line). The orange 

and purple dashed lines are the model prediction (total cells) of the 75th and 25th percentiles of the data, a result of the variation in the estimated parameters (standard deviation 

fixed to 0.5 for all parameters (Table S9)). In B. and C. Median (blue dashed), 75th (orange dots) and 25th (purple dots) of the model predicted human responses after mapping from 

the mouse dose group model calibration (predicted parameters in Table S9). 
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Additional Discussion 
 

Model Assumptions 

 

Key model assumptions from the IS/ID model are outlined in Table S10. 

Assumption Implications for model 

Baseline responses were fixed at the median value  

In this model, the initial values for the Transitional Effector Memory cells (TEM0) 

were not estimated. This is due to the fact that all mice IFN-γ responses at 

baseline were based on measurements from one unvaccinated mouse and 

therefore were all zero. As all human participants in the clinical trials were 

previously BCG vaccinated and no other human covariates were considered that 

could impact on a baseline response, the baseline responses were fixed to the 

median value. This also aided in avoiding over parameterisation compared to the 

small sample size of the human data. 

 

Central Memory (CM) cells do not die 

The central memory cell population is assumed to be maintained be a constant 

turnover, so we assumed the death rate could be omitted from the both the 

human and mouse model [316]. Although there is evidence to suggest CD4+ long-

term memory cells turnover may diminish with time [325, 326], we assumed this 

does not affect the time frame of the model. 

Introducing a death rate of memory cells would result 

in a decline of the long-term responses. 

Replication followed by transition of CM cells after revaccination and rate of 

transition, CM 
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In the model, after revaccination, the CM cells replicated at a fixed rate for time 

, which was estimated in the model calibration stage. Only after replication had 

occurred, the cells transitioned back to TEM cell type at a rate CM, which was 

assumed to be fast. Although this may be a simplification of the host immune 

response dynamics, it was necessary to assume as we did not have information 

on CM. We therefore considered the transition of CM cells to TEM cells as a result 

of revaccination to be a proliferation followed by a “burst” as opposed to a slower 

gradual transition (where proliferation and transition occur simultaneously). We 

believe this assumption is justified as the purpose of CM cells are to mount an 

immune (in our case, IFN-γ) response faster than a primary response as a result 

of re-exposure to the antigen (revaccination) [44] and a “burst” response is an 

effective method to represent this dynamic. 

IFN-γ responses are not scaled to host body size 

The ELISPOT assay readout is conventionally measured per million cells in all 

species and we considered the model to represent a systemic response 

regardless of host blood volume, it was not necessary to scale the ELISPOT 

readout to reflect body size. As our focus was on translating the change in 

dynamics due to change in dose between mouse and human, therefore this 

scaling the ELISPOT readout was not essential. 

 

CD4+ T cell stimulation greatly simplified 

The immune response to vaccination is a complex network of cells and cytokines 

behaving nonlinearly over time. In the Th1 response to Mtb. infection (or 

If data were available on IL-12 or other cytokines 

believed to be important to an immune response to 

BCG, It is possible that δ could be modelled as a 
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vaccination), innate and adaptive cells interact to optimise and maintain a 

protective response [37]. Very simply, cytokines secreted by innate cells after 

infection or vaccination, such as IL-12, work to stimulate adaptive cells to produce 

IFN-γ that both encourages innate cells to phagocytose bacteria and produce 

more IL-12 [66, 323]. As such, a feedback stimulation loop is established. In 

addition, to avoid an over-inflammatory response (which is harmful to the host) 

cytokines such as IL-10 are produced to regulate and dampen the immune 

response [324]. In the model, function δ is used to represent the delay of T cell 

initiation due to processes such as antigen processing and presentation and the 

decline of T cell responses due to depreciation of the required stimulation 

(creating a “n-shaped” curve). However, δ neglects the influence of stimulation 

amplification as a result of cytokine feedback loops, amongst other co-

stimulation factors. As such, δ is a generalization of the complex networks 

required to protect against infection or vaccination and may not be as prolonged 

as required to generate a response to vaccination. 

parallel “innate response” compartmental model. 

Incorporating such a model would provide insight 

into the innate cell mechanisms and thus strengthen 

the conclusions we draw on the T cell dynamics. 

Transition and replication of transitional effector cells happens in Lymph node 

before entering the blood 

The model assumes that the recruited transitional effector cells are former Mtb.-

specific naïve CD4+ T cells that have clonally expanded within the lymph node 

and exited into the blood stream. Under this assumption, transitional effector 

cells do not replicate in this model. The rate of naïve CD4+ T cell clonal expansion 

To incorporate replication of transitional effector 

cells into the model, a parameter RE would be applied 

which would determine the rate at which replication 

occurs, dependent on the current transitional 

effector cell count. 
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changes with time dependent on stimulation from innate processes and antigen 

presence [44] so could be considered to be incorporated into δ. 

Table S10. Main assumptions of the model and implications on challenging these assumptions
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Chapter 6. Discussion & Conclusion 
 

Decision making in vaccine development employs relatively antiquated methods compared 

to the methods employed for drug development. As such, developers may be discarding 

vaccine candidates and wasting considerable resources. This failure to utilise modern 

methods may be, in part, due to the complexities in measuring a biomarker of vaccine efficacy 

and defining the dynamics of the immune system, but also simply represents a failure to 

harness quantitative expertise into vaccine development. In this thesis, I take the initial step 

to explore the potential utility of PK/PD methods for vaccine development, which I define as 

vaccine Immunostimulation/Immunodynamic (IS/ID) modelling. 

 

The strengths, weaknesses and implications of the work outlined in the separate chapters of 

this thesis are discussed in the associated publications. Here I outline strengths, weaknesses, 

implications and future work of the thesis as a whole. 

 

Summary of findings 

 

I aimed to apply mathematical modelling to IFN-γ responses following vaccination with TB 

vaccine, BCG, to establish if differences in response dynamics were due to population 

covariates in humans and macaques. Secondly, I aimed to use these results to determine 

which macaque subpopulation best represented human responses. In addition, we generated 

data on IFN-γ responses in mice after receiving varying doses of novel TB vaccine H56+IC31 

and mathematically determined the shape of the dose-response curve at early and late time 

ranges. I applied IS/ID modelling to the longitudinal mouse responses to establish how dose 

affects key model parameters and to human H56/H1+IC31 clinical data, allowing me to map 

model parameters between species. I then predicted the IFN-γ response dynamics for the 

remaining doses in humans and consequently, potentially the most immunogenic dose.  

 

I found that BCG status in humans (baseline BCG-naïve or baseline BCG-vaccinated) was 

associated with differences in the peak and end response and the long-term IFN-γ response 

after BCG vaccination (using simple regression methods) (paper 1). When the mathematical 
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model was calibrated to the BCG human data, differences in model parameters across the 

BCG status covariate were found; those that dictated the baseline and peak response 

magnitude and timing of peak. In the macaque population, differences in similar model 

parameters were found when the data was stratified by macaque colony of origin and 

Indonesian macaques had the closest immune response dynamics to the baseline BCG-naïve 

humans (paper 2). 

 

A peaked curve was a better description of the mouse H56+IC31 IFN-γ dose-response data 

than a saturating curve for early and late time points (paper 3). Calibrating a revaccination 

model to the data and mapping changes in the estimated mouse model parameters across 

dose group to the estimated human model parameters, I found at day 224 (a latest time 

point), the model-predicted median number of human IFN-γ secreting CD4+ T cells were the 

highest for the dose group in the range 1-10μg H56/H1+500 nmol IC31.  This suggests a dose 

of 1-10μg may be the most immunogenic in humans (paper 4). 

 

Strengths 

 

The strengths of the work from each chapter are summarised as follows (see papers 1-4). 

 

Strengths of chapter 2/paper 1  

 

In chapter 2, I presented an analysis of the differences in key IFN-γ immune response aspects 

(e.g. peak, long term responses and AUC) following BCG vaccination due to population 

covariates. This analysis has not been conducted before and provides valuable insights into 

which human population covariates do (and do not) influence these key response aspects. 

Thus, this work indicates in future stratification of vaccine trials to minimise variation in key 

BCG response aspects. The influence of monocyte to lymphocyte ratio on these responses 

has never been considered before.  

 

Strengths of chapter 3/paper 2 

 



 224 

In chapter 3, I extended the analysis from chapter 2 by applying a mathematical model to the 

human BCG response data and a macaque BCG dataset. This demonstrated the utility of 

mathematical modelling to quantify vaccine immune response dynamics and was an early 

example of IS/ID modelling.  

 

Here, we used data on response to BCG after one vaccination of the licensed dose of BCG to 

determine the most representative macaque subpopulation for the human responses. 

Finding the most representative macaque model to test BCG immunogenicity is an important 

aspect of TB vaccine development, as BCG is regularly used as a control arm in current clinical 

trials. However, these results may not be generalizable to a different vaccination regimen, 

dose or for a new TB vaccine. It is possible that, as some new TB vaccines are BCG boosters 

(Figure 1.2, Table B.1 in Appendix B) and are therefore building on an existing BCG response, 

the most similar macaque model to human (in terms of the BCG response) may also be the 

most similar for these vaccines. To test this hypothesis would require the incorporation of 

new data on new TB vaccines. Despite this, our primary aim in chapter 3 was to apply novel 

mathematical modelling methods to the response data to quantify the dynamic trends of the 

data over time to statistically determine which macaque model should be selected to 

represent human responses. This is an improvement on the historical methods of 

preclinical/clinical comparisons, where qualitative observations, point estimates or summary 

measures such as AUC are used. As these methods rely on the absolute values of the response 

data, they are limited by sampling consistency. For example, sampling times in the macaque 

data differed across within and between macaque subpopulations (and between macaques 

and humans) and showed high variability over time. I would like to re-emphasize that our 

conclusions to chapter 3 are not that we have predicted which macaque model is the 

“winning” macaque model for TB vaccine development, only a macaque model that has the 

most similar responses to BCG as a subpopulation of humans. Other response factors are very 

important and should be considered in combination. For example, the natural susceptibility 

and pathology similarities, which are known to differ between macaque subpopulations [193, 

205-207]. 

 

Although my model was a highly simplified version of the complexities of the immune system 

the model described the data well even for the small macaque sample sizes. A key strength 
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in using a simple model for translational purposes is that, providing the mathematical model 

is appropriate to all species, translating mechanism of response is simply mapping between 

model parameters. Such model-based allometric scaling is used in practice in PK/PD to scale 

drug dynamics between animals and humans [265] but has never before been used in 

vaccines. I presented a first example of vaccine model-based allometric scaling between 

macaques and humans.  

 

Strengths of chapter 4/paper 3 

 

In chapter 4, I successfully generated an intensive time course of IFN-γ response data to 

vaccination where AUC and peak analysis showed a trend toward higher responses over time 

in the lower doses than in the higher doses. By using mathematical curve fitting, I showed 

definitively, that the IFN-γ dose-response follows a peaked shape instead of the commonly 

assumed saturation shape for multiple time ranges. This level of quantitative analysis of 

vaccine dose response curves and the change in dose response shape over time has never 

been conducted before. 

 

Strengths of chapter 5/paper 4 

 

The final work in chapter 5 presents the first example of the allometric relationship between 

vaccine immune dynamics between mice and humans through the mapping of estimated 

model parameters between the two species. I was able to provide a guide of the most 

immunogenic dose in humans, based on mouse IFN-γ responses. This predicted dose range in 

humans has recently been corroborated by preliminary empirical results from the phase 1/2a 

clinical dose ranging study of H56 + 500 nmol IC31 (ClinicalTrials.gov no. NCT01865487) 

(unpublished, personal communication, Thomas Scriba), where developers have decided to 

use 5 μg H56+IC31 in future clinical trials, rather than 50 μg in previous trials. These modelling 

methods mirrors techniques incorporated in PK/PD modelling for drug development and have 

never been used before for this purpose in vaccine development. 

 

Again, although my model was simple, it was a good description of the mouse dose group and 

human data and produced biological meaningful results. Due to data sample size, I was 
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required to constrain aspects of the model parameterization (i.e. fixing the standard 

deviations of the estimated model parameters) and data (i.e. grouping dose). Despite this, my 

choice of constraints provided an optimal balance between obtaining identifiable model 

parameterisations and providing sufficient information on vaccine responses to achieve my 

aims. 

 

Overall strengths of the thesis are as follows. 

 

Novel mathematical modelling methods 

 

My work proposed a new field of science: a mathematical and statistical modelling framework 

for accelerating vaccine development. My work incorporated methods to quantify biological 

mechanism using mathematical models, which, to my knowledge, has never been directly 

integrated into the areas of vaccine development I focused on here, especially in determining 

optimum vaccine dose. Using biological mechanistic models to describing longitudinal data 

has the advantage over a purely statistical description as data on known biological parameters 

of the model across species can aid in more effective allometric translation of vaccine 

responses. We can also make new biological inference using mechanistic models by 

calibrating them to responses by subpopulation (e.g. dose grouping) and IS/ID models can be 

generalised to describe similar response for other vaccines (e.g. T cell mediated vaccines for 

cancer). Purely statistical description is an effective tool for describing and comparing the 

shape of longitudinal data. However, this does not take into account the underlying biological 

mechanism that produced that dataset and as such, may not as generalizable for other 

subpopulations or vaccines. Additionally, integration of further biological complexity with the 

provision of more immunological data is intuitive for mechanistic modelling compared to 

statistical modelling. There is a new recognition of the need for mathematical modelling to 

accelerate vaccine development [185, 344], and I believe I present the first steps in achieving 

this for TB vaccines. 

 

IS/ID mathematical model based on known CD4+ T cell dynamics 
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I spent considerable time developing the model alongside experts to ensure a simple model 

that provided insight into the IFN-γ immune response. The IS/ID model in this thesis assumes 

a linear immune pathway once vaccination is administered, i.e. effector responses are 

initiated once antigen presentation and naïve T cell differentiation has occurred, they then 

deplete and transition to a memory phenotype. Once memory cells experience exposure to 

antigen again (revaccination), they revert to effector phenotype. This is an acknowledged 

pathway for CD4+ T cells; central memory CD4+ T cells have been shown to have developed 

directly from effector cells [327-329]. I chose this pathway after consideration of the 

literature on TB vaccine immune responses. However, an alternative model has been 

suggested, whereby effector and central memory cells are initiated simultaneously after 

vaccination [81, 83, 330]. This could be another possibility for the model. 

I chose the terminology “Transitional Effector Memory” to coincide the terminology used by 

current TB vaccine developers. Sharpe et al use the term Transitional Effector Memory to 

describe activated, non-lymphoid homing (measured by low expression of CC47 marker) in a 

recent study of BCG vaccination in macaques. These cells were detected early on after 

vaccination with BCG in macaques and correlated with IFN-γ levels, both of which declined 

over time [345]. However, other authors may suggest the terms “Transitional Effector” or 

“Activated Effector” [346] or “Cells with Effector Functionality” [347] as a more appropriate 

name for the assumed the short-lived, activated cells in my model. While I agree these 

definitions would also be appropriate for the IS/ID model, I wanted to take into account the 

possibility that the IFN-γ producing CD4+ T cells initially recruited into the IS/ID model may 

have already been primed by NTM. This would suggest that any cell in the IS/ID model system 

may already be a “memory” cell type. Soares et. al. state that excessive stimulation of CD4+ 

T cells by antigen is likely to lead to an effector memory type response [327]. Considering the 

age of the participants we use in this thesis, is likely that they will have been persistently 

exposed to NTMs, which are known to elicit a mycobacterial specific IFN-γ response in 

vaccination studies [320, 348].  

I also use the terminology “Resting Central Memory” (CM). Soares et. al. and Sharpe et. al. 

show that after BCG vaccination, CM cells (measured by low expression of CD4+5RA and high 

expression of CCR7 [327] and high expression of CD28 and CCR7 [345]) were present in the 

later stages [327, 345] and that these cells transitioned from effector-type activated cells and 
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expressed high levels of Bcl-2, an anti-apoptotic marker indicating long-life [327]. It is 

generally acknowledged, however, that CM cells, produce predominantly IL-2 [83] and less 

IFN-γ than their effector counterparts, however, there is evidence to suggest that they still 

produce IFN-γ even at low levels [327, 349, 350]. The terminology for this group could 

potentially be framed as “Resting Long-Lived Memory” cells.  

 

In conclusion, there may be debate around the immune cell terminology used in the IS/ID in 

this thesis, however I believe the characteristics of the cells in the model and the transitions 

between them should receive the focus, i.e. short versus long lived, active versus resting. It is 

acknowledged also that the dynamics and terminology for CD4+ T cells in TB research is still 

an area of great investigation and discoveries into this field are current and changing. With 

this in mind, my model was designed to clearly communicate with my intended current 

collaborators and future revisions of the IS/ID model will take into account any shifting 

terminology in the field. 

 

Insights into new biological mechanism 

 

During the process of development and parameterisation of the IS/ID model, valuable 

discussion around model structure led to interesting questions around vaccine immune 

response biology and mechanism. For example, in the case of the revaccination model, are 

there important differences in “reactivated” Transitional Effector Memory (TEM) cells due to 

revaccination compared to those following primary vaccination? i.e. would two 

compartments, TEMprimary and a TEMrevaccination, be a more accurate representation of 

revaccination biology? However, without data on these mechanisms (and on the cell groups 

they apply to) it would not be possible to add these to the model. This raises further questions 

around the data availability; what data would I need to parameterise this and do the tools 

exist to be able to collect such data? This thesis and further IS/ID modelling of vaccine immune 

responses may be a catalyst to new discovery around biological mechanism and laboratory 

assays. 

 

Mitigation of potential risks 
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Conducting novel science such as this thesis comes with risk and I worked hard to mitigate 

any risks I felt would jeopardise producing meaningful results. One of the biggest risks we 

faced was the potential of the H56+IC31 multi-dose mouse data to be uninformative, which 

would have not allowed me to complete the predictive dose modelling in chapter 5. To reduce 

this risk, we had early interactions with colleagues at SSI who had previously produced 

informative data with H56+IC31 in mice. Secondly, we doubled the ELISPOT plates for every 

time point testing two incubation times; 24 and 48 hours providing two avenues for results 

(see paper 3). Finally, we regularly read the ELISPOT plates to monitor the results and check 

for anomalies. Risks were also involved in developing the model and calibrating it to the data. 

I needed to ensure my results were precise given the model structure and data sample sizes. 

To achieve this with the data I had available, required using a simple IS/ID model (with a 

maximum of two compartments). These models are easily communicable, which in the 

context of this thesis is vital as I aimed to introduce mathematical modelling to an 

environment where is it not regularly used. Another benefit to these methods is the ability to 

easily adapt model structure, essential for integrating further biological complexity. 

 

The use of the Nonlinear Mixed Effects Modelling framework 

 

I used the method of NLMEM to calibrate my model to the longitudinal data in chapters 3 and 

5. In a survey of PK/PD modelling between 2002 and 2004, 92% of studies used NLMEM as 

the parameter estimation method [283]. However, other methods of parameter estimation 

are available. Naïve pooled analysis assumes all data comes from the same individual and 

while the model parameters can be estimated, any variation in response is ignored, which in 

my case is not appropriate. In a two-stage approach, each individual’s model prediction is 

made and summary statistics on the mean parameters are made. Both of these methods 

require each individual to have extensively sampled and balanced data in order to make 

valuable predictions [351, 352]. Additionally, alternative algorithms to estimate the 

parameters within the NLMEM framework are available. NONMEM [353] is acknowledged as 

one of the first NLMEM software developed for PK/PD analysis and uses the First Order (FO) 

and First Order Conditional Estimation (FOCE) algorithms [354]. FO and FOCE methods use 

simplification of the likelihood equation to estimate the parameters [281]. I used Monolix to 

estimate the parameters [318] which in comparison, is a new software and utilises a more 
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exact method of parameter estimation - the SAEM algorithm. SAEM has shown to be robust 

and accurate even for sparse data [355], more so than other methods (FO and FOCE). 

However, computation time is longer due to the complexity of the method [356, 357]. There 

are benefits and drawbacks to all NLMEM methods depending on the data and model; the 

superiority of one method compared to another has never been shown definitively [352] .  

 

Weaknesses & Challenges 

 

Weaknesses of chapter 2/paper 1 

 

In chapter 2, although I did show differences in key IFN-γ immune response aspects (e.g. peak, 

long term responses and AUC), the fundamental biological mechanisms driving these 

differences were not explored. However, chapter 2 was considered a preliminary analysis of 

the human BCG response and the describing underlying mechanism using an IS/ID model was 

the aim of chapter 3. 

 

Weaknesses of chapter 3/paper 2 

 

In chapter 3, IFN-γ responses in a macaque population were available. However, the sample 

sizes of the macaque colony subpopulations were variable. With these smaller sample sizes 

model parameterization and validation were less reliable than for the larger groups; the 

estimated model parameters were more uncertain. Nevertheless, conventional vaccine 

studies in macaques are often limited to 6-9 per group due to space and cost. These smaller 

macaque experiments are then used to inform clinical vaccine trials, making the small sample 

sizes used here, more representative of current vaccine development. The uncertainty I 

experienced for these small groups highlights the need for larger sample sizes and could be 

used to push the vaccine development field to increase sample numbers to reduce response 

uncertainty. 

 

It may appear that the closeness of the baseline response (in the model, the parameter TEM0) 

could be considered the sole indicator of which macaque subpopulation should be “chosen”. 

However, the goodness of fit (BIC) of the macaque subpopulation model predictions to the 
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baseline BCG-naïve human population data (figure 4, paper 2) are not ordered the same as 

the absolute difference in magnitude of baseline response between the macaque 

subpopulations and the baseline BCG-naïve human population, (i.e. baseline TEM0 value 

closeness ranking were 1. (closest to baseline BCG-naïve human TEM0 value) Indonesian 

cynomologus, 2. Indian rhesus, 3. Chinese cynomologus, 4. Mauritian cynomologus whereas 

the goodness of fit statistic in Figure 4 rankings were: 1. (best fit) Indonesian cynomologus, 2. 

Indian rhesus, 3. Mauritian cynomologus, 4. Chinese cynomologus). This suggests that the 

baseline response is not necessarily the best indicator of similarity between macaque and 

human responses and overall dynamics should be considered. 

 

In chapter 3, I gave the first example of the application of my IS/ID model to vaccine immune 

responses. As discussed, a strength of my IS/ID model is its simplicity. However, in order to 

make a simple model, key assumptions around the immunological mechanism were made, as 

such, some immunological detail had to be omitted. For example, I assumed a nonlinear non-

mechanistic equation for rate parameter, δ, to represent T cell stimulation, attributed to 

innate cell processes. However, δ is not supported by innate response data and therefore 

does not represent a specific group of cells or cytokines. Consequently, there is no direct 

biological interpretation of the δ rate parameters. Variation in vaccine immune responses can 

be large across different ages and populations, possibly attributed to underlying differences 

in genetics or exposure rates. Where demographic data was available, I tested for differential 

IFN-γ responses across human and animal subpopulations. Data on geographical location of 

participants was not available in chapter 3 (I did not have access to longitudinal responses in 

the African participants) so I could not determine differences in IFN-γ dynamics by geography. 

In chapter 3, I stratified the macaque results by colony of origin, but no other population 

covariates. Data is available in these macaques on age and this is intended as further work.  

In summary, limited data constricted the conclusions I could make around immune response 

dynamics (the IS/ID model structure) and how they varied across the population. 

 

Weaknesses of chapter 4/paper 3 

 

In chapter 4, my aim was to generate H56 multi-dose data that would provide sufficient 

longitudinal data for the IS/ID model calibration. Dose concentration feasibility and animal 
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cost limited the size of the study. A wide range of doses were chosen to “capture” a wide 

response range which we believed would provide adequate information on the full dose 

response curve. We successfully predicted a most immunogenic dose by fitting a peaked 

curve to the dose response data (paper 3). However, there was uncertainty associated with 

these predictions which was potentially due to a lack of response information between dose 

0 and 0.1 μg, which would provide information on the increase of the peaked curve. As a 

result, I could not fully capture the H56+IC31 dose response curve as the dosing was weighted 

towards the higher end of the curve. Despite this, I showed a definitive decline in the dose-

response at the higher dose range (approximately after dose 1 μg H56+IC31) and found that 

the probable most immunogenic dose is lower than the minimum dose currently used. I 

suggest further H56+IC31 dose testing in mice to establish the curve between 0 and 0.1 μg 

H56+IC31.  

 

Additionally, in chapter 4, I chose sampling times that would potentially capture the peak of 

response between primary and revaccination, after revaccination and a long-term response 

based on previous H56-series response data. Based on the vaccination times (day 0 and 15) 

we concentrated our sampling between vaccination times and shortly after revaccination to 

try and ensure that the peak responses were captured. Our experiment design led to 

informative results of the IFN-γ dynamics by dose in chapter 5. Nevertheless, it is possible 

that the experiment design could be improved. For example, sampling points were more 

extensively between primary and revaccination than after revaccination (5 and 4 time points, 

respectively). It is possible that redistribution of these sampling points (potentially weighted 

to later time points) may provide a more informative model calibration. Additionally, 

redistributing the mice such that there were more mice per dose and less doses may have 

provided a better model fit. Model-based optimisation techniques are used in drug 

development to establish the optimal experiment by systematically simulating and analysing 

different designs. The goal is to maximise information on response dynamics using the 

minimal resources [358, 359]. We did not have the capacity to use such methods to find an 

optimal experiment design in this thesis, but this is an aim of future work.  

 

Weaknesses of chapter 5/paper 4 
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In chapter 5, the data on human demographics such as age, gender and ethnicity was not 

available for the H1 trial. The small sample size in this human dataset also meant I was forced 

to fix the majority of the model parameters to achieve an identifiable model 

parameterisation. As a result, information on the variation in response dynamics, especially 

by population covariate, was limited. In chapter 5, I relied on vaccine dose allometry to create 

the mapping from mouse to human response. In drugs, the systemic nature of their effect 

allows for dose scaling to be based on animal body weight [360]. It is generally acknowledged 

that vaccine dose allometric scaling does not benefit from precision gained in drug scaling 

[360, 361]. This may be due to the complexity in the immune response elicited by vaccination 

which relies on complex interactions that behave nonlinearly over time and across multiple 

biological scales (e.g. molecular to cellular to whole systems). I assumed a dose allometric 

scaling factor of ten between mouse and human, based on published data by the developers 

of H56 [230, 234, 235] (I also considered the scaling factor 3.33 in a sensitivity analysis). 

However, this scaling factor has not yet been substantiated as without an established 

relationship of dose to efficacy in humans, this scaling is difficult to verify. As mentioned 

previously, for other TB vaccines the dose scaling is variable; a scaling factor is assumed to be 

ten times from mouse to human for BCG [241, 242], 100 times for MVA 85A [213, 241] and 

0.5 for VPM1002 [241, 243]. I also assumed that the scaling factor was linear with respect to 

dose i.e. the scaling factor of ten could be used to predict the dose value of all dose groups in 

humans. Current hypotheses suggest that a nonlinear relationship may be more accurate i.e. 

decreasing as dose decreases (personal communication, Thomas Evans MD). However, there 

is currently no evidence to support this. In conclusion, the H-series dose scaling factor 

between mouse and human is currently vastly under researched. It is vital that further 

predictions of human immune responses using IS/ID modelling should be supported by more 

in depth vaccine dose allometric evaluations. 

 

There were some overall limitations and challenges to this thesis as a whole. 

 

The use of IFN-γ as the sole marker of vaccine immunogenicity and the model as a systemic 

blood model 
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Throughout the thesis, I chose the sole use of IFN-γ as an indicator of TB vaccine immune 

response. This was guided by the data available to me during the project. This choice of TB 

response marker has been a longstanding limitation in the TB vaccine field as there is 

conflicting data on the protective ability of IFN-γ on its own. A protective TB vaccines immune 

response is more likely to be a combination of cytokines or cells types [144]. For example, 

work by Andersen et al. showed that polyfunctional T cell responses emitting combinations 

of IFN-γ, TNF-α and IL-2 after vaccination with H1+CAF01 were well sustained over long-term 

timelines; protective and maintained post-challenge with Mtb. [223]. Similar results were 

found after vaccination with TB vaccine MVA85A [362]. The combination of these cytokines 

secreted by the CD4+ T cells during an immune response to TB vaccination may alter the 

function of the cell [92], for example, it has been shown that when cells lose polyfunctionality 

and produce predominantly IFN-γ they are close to “exhaustion” [363]. Therefore, omission 

of data on these cytokines may have implications for my model parameterisation, i.e. for the 

above example, the cell death rate parameter in the model (both chapter 3 and 5 models) 

may be affected. The nature of T cell cytokine secretion may also be dose dependent; it is 

plausible that the low IFN-γ response observed for high doses (in chapters 4 and 5) could be 

a result of cells being removed quickly from the model due to exhaustion or that a higher 

dose induces CD4+ T cells secreting cytokines other than IFN-γ that the ELISPOT assay cannot 

detect. In summary, the nature of the response for any TB vaccine dose cannot be fully 

characterised with only IFN-γ data. To fully establish an effective immune response in the case 

of TB vaccines requires comparison of immune response against bacteria count measures. I 

did not collect this data in the thesis, as it was not viable for me to do so. I acknowledge that 

the mixed evidence that IFN-γ levels correlate with protection in humans [135-137] and 

macaques [193] is a limitation for the results in chapters 2 and 3. However, I felt that previous 

evidence showing the correlation of bacteria counts and H-series vaccination IFN-γ response 

(i.e. lower bacteria count for low doses) in small animals [217, 224] was sufficient to justify 

the results in chapters 4 and 5. Further to this, as my model represents IFN-γ secreting CD4+ 

T cells measured using the ELISPOT assay in PBMC in humans and macaques, and splenocytes 

in the mouse, it is a generalisation of vaccine immunogenicity, homogenously mixed in the 

blood. However, TB immune activity is mainly focused around the lungs and draining lymph 

nodes [37]. For ethical and logistical reasons, blood is the most viable measure of TB vaccine 

immunogenicity in humans, therefore, it is vital that its ability to accurately reflect localised 
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TB immune responses is understood. This is a current area of TB research with mixed support 

[92, 364]. However, even though the immune marker (and assay choice) have been subject 

to criticism throughout the thesis and as such presented here as limitations, in the current TB 

vaccine pipeline, IFN-γ and the ELISPOT assay are continually used to assess vaccine 

immunogenic in order to progress vaccines through development phases. With this in mind, 

I wanted my IS/ID model structure and output to reflect conventional immunogenicity 

measures used in TB vaccine development. This meant using IFN-γ as the sole marker of 

vaccine immunogenicity and a systemic blood model. In conclusion, while this is a limitation 

of this thesis, it is driven by a limitation of the TB vaccine development field. 

 

Omission of important subpopulations 

 

Two of the most prioritized human subpopulations in TB research are those who have latent 

TB infection (LTBI) and/or HIV positive. TB clinical trials are commonly stratified by these two 

covariates. Data was not available on HIV positive individuals during the project timeline. Even 

though data was available on LTBI status in both the H1 and H56 clinical trials, I did not include 

this covariate to analyse in this thesis. This was due to little information on the influence of 

these LTBI on the precise immune mechanism and dose response [240]. Analysing responses 

from across further subpopulations would be essential in future work. Although I included 

subpopulations where data were available, the implication of not testing for subpopulation 

differences is non-generalizable results. 

 

Implications 

 

Each chapter in the thesis has specific implications for different aspects of vaccine 

development (see papers 1-4). In paper 1 and 2, I showed the BCG vaccination status (baseline 

naïve or vaccinated) has an impact on IFN-γ responses to BCG vaccination, further supporting 

that stratification by the covariate is important in further TB vaccine research.  Paper 2 also 

implies that the colony of origin of macaque used to represent humans in further BCG (and 

potentially new TB vaccine) research should be carefully considered and mathematical 

modelling as a translational tool can inform which macaque colony to select. Results by 

Langermans et al. [207]  and Sharpe et. al. [206] showed a significant difference in IFN-γ 
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responses (after BCG vaccination and Mtb. challenge, respectively) between macaques due 

to colony of origin. However, to my knowledge, no mechanistic and statistical comparison 

from macaque to human BCG response, as presented here, has been published. Paper 3 

suggests that lower doses than previously explored in mice using very similar vaccines [217, 

219, 233, 338, 365], would be preferential for further study, a result supported by previous 

work in H4 + IC31 vaccine [217]. Finally, in paper 4, using the data in paper 3 and modelling 

predictions, my results imply that previous H-series clinical trials are over-dosing and in terms 

of an IFN-γ response, the dose should be reduced in further research. Previous empirical 

evidence [221, 232] and recent results (ClinicalTrials.gov no. NCT01865487) (unpublished, 

personal communication, Thomas Scriba), on the H-series vaccines supports this finding, 

where smaller doses were found to be equally or more immunogenic than larger doses. 

 

Mathematical modelling as a tool to accelerate vaccine development and eventual 

reduction animal and human exposure in testing phases 

 

Collectively, the results of the thesis imply that mathematical modelling may be a useful tool 

to accelerate vaccine development. I believe IS/ID modelling should be integrated into not 

only the early stages of animal experimentation, but used to inform clinical trial design in the 

same way PK/PD is an established tool in drug development. More specifically, further 

incorporation of mathematical modelling to vaccine development could help vaccine 

development move towards reduction in laboratory animals [10] for pre-clinical vaccine 

testing by focussing more on in silico than empirical experimentation (in line with the aims of 

the National Centre for the Replacement, Refinement and Reduction of Animals in Research 

(NC3R’s)).  However, in the preliminary stages of incorporating IS/ID modelling into preclinical 

research, extensive pre-clinical data would have to be gathered to calibrate and make 

inferences on IS/ID models (e.g. for paper 3). Following this, these results can be used to 

iteratively decrease the number of animals needed to design new experiments to test dose 

or vaccination regimen. Additionally, it is plausible that parameter estimation from one T cell 

mediated vaccine, maybe used as prior information for further IS/ID modelling work on other 

T cell mediated vaccines, thus reducing the number of animals required for development. 

Similarly, employing simulation based methods to predict vaccine clinical trial outcomes using 

models can also reduce exposure to humans in clinical trials (in terms of dose amount and 
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required trial sample sizes). My work also implies that, if modelling is to be incorporated into 

vaccine development, a shift in the way vaccine immunogenicity data is collected may have 

to occur. As modelling methods are not regularly used in the development of vaccines, data 

sufficient to populate models is not routinely collected. As such, further discussion around 

adaptation of current pre-clinical procedures to accommodate modelling should be a first 

step in incorporating IS/ID in vaccine development. Finally, common to modelling to inform 

policies in any arena, cross discipline learning and understanding of what models can do (and 

importantly, what they can’t) are essential in the understanding of how IS/ID modelling can 

aid in vaccine development. 

 

Future work 

 

The strengths, weaknesses and implications of this thesis highlight further questions that 

could lead to future work. 

 

Validation of the modelling predictions 

 

The results I produced in paper 4 have been corroborated by a phase 1/2a empirical study 

that ran parallel to the PhD measuring immunogenicity of varying H56 dose. These results are 

not yet published, but we have confirmation that the lowest dose 5ug was chosen, which falls 

within the range of the predictions I made in paper 4. This has been a promising validation of 

IS/ID modelling predictions as a legitimate tool for TB vaccine development.  

 

Although we did not predict dose-dependent H56+IC31 efficacy in this work, the logical 

progression to this is to conduct a clinical efficacy trial to test this dose prediction in a healthy, 

BCG vaccinated population. Animal challenge studies could also be conducted alongside 

further IS/ID modelling to verify model predictions. 

 

Incorporation of important subpopulations 

 

Future IS/ID modelling work should consider the effects further human subpopulations have 

on immune responses to TB vaccination, prioritizing those with LTBI and HIV positive. Other 
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human population covariates to consider may include; age (infant, adolescent or elderly)[366, 

367], sex [368], geographic location [165], and those that contribute to immunosuppression 

such as smoking [369], diabetes status [103] or helminth infection [107] as these have been 

shown to be risk factors for Mtb. infection or TB disease. Care must be taken when 

incorporating these covariates due to the affect they may have on the nature of the IFN-γ 

response to Mtb. infection; elements of the current model may have to be amended. A 

literature review would be required to determine this. In line of the aims of the thesis, 

including more data on different human subpopulations would enable me to establish: 

 Appropriate animal models potentially for each subpopulation 

 Differential dosing by subpopulation. Based on our work in chapter 5, it could be 

possible that vaccine dose may have to be altered for different human 

subpopulations. For example, HIV+ participants, whose T cell counts may be 

depleted compared to HIV- participants, may require lower doses of the vaccine. 

 

Further work should include additional data on animal subpopulations. It has been shown 

that animal age [370], sex [371]  and in the case of mice, strain [372] could result in differential 

immune response to vaccination. 

 

Modelling to explore vaccination regimen and adjuvant dose 

 

In chapter 5, the data selected from the H56/H1+IC31 trials were from a two vaccination 

regimen. This regimen was used to inform the design of the mouse experiment outlined in 

chapter 4. However, in the H56 trial [232] and upcoming trials H56 (not yet published), an 

additional vaccination was given, i.e. a three vaccination regimen, two months apart (data 

after third vaccination was excluded from my analysis in order to pool with the H1 data). More 

generally, the regimens of the current TB vaccines in the pipeline vary, some with one 

vaccination (mostly the BCG replacement vaccines) and some with three (in the case of the 

boost vaccines). The timings between vaccination vary too, from 2 weeks to 4 months apart 

(see background section). Considering that the majority of the TB vaccines in the pipeline 

target a similar immunological response, should vaccination regimens differ as much? Current 

methods to determine regimen are conducted empirically in early clinical phases (1/2a) in 

vaccine development [239, 373-375]. In contrast, drug regimen is regularly explored and 



 239 

optimised using model-based simulation based on early response data. With this in mind, 

IS/ID modelling could be used to explore the effects of timing of a third vaccination, providing 

insight into the opportune time to boost vaccine responses, which can then be empirically 

verified. Not only this, the effects of changing dose within a vaccine regimen could be 

assessed, i.e. escalate (or deescalate) dose between vaccinations. In recent studies with the 

H4 vaccine, the effects of changing adjuvant dose alongside antigen dose were assessed 

[222]. The combination of three adjuvant and four antigen doses were tested here in 100 men 

and women over two trial sites, incurring considerable cost. To test more combinations of 

adjuvant and antigen(s) clinically, would require a large, expensive multi-dimensional factorial 

design trial. Again, IS/ID modelling could be used to simulate and explore a wide range of 

adjuvant and antigen dose combinations.  

 

All the developmental variables discussed; population covariates, vaccine design, vaccination 

timing, variable antigen dosing within a regimen and adjuvant dose could be combined into a 

multi-dimensional simulated trial based on early data, to more effectively explore and narrow 

this space before trials ever began. This would be advantageous to the vaccine development 

community as it would save the vast resources required to achieve this empirically. 

 

Modelling to exploring more complex immune systems with further data 

 

It has already been suggested that a protective TB vaccines immune response is likely to be a 

combination of cytokines or cells types and not solely an IFN-γ response [144]. The roles of 

CD8+ T cells and B cells in TB vaccine responses are less defined, but are believed to play an 

important role [77, 376, 377]. As mentioned, the non-mechanistic nature of the parameter δ 

in my model, highlights the need for incorporation of innate cell data as the nature of the 

vaccine in the study (e.g. live replicating, adjuvanted or viral vector) or population covariates 

may affect the innate cell processes. The complex interaction of cytokines and cells mean a 

more advanced, “network” model, consisting of multiple separate, yet connected models 

would be the next evolution of the IS/ID model to represent TB vaccine immune responses. 

Calibration of this model would require a large amount of data on multiple cytokines and cell 

measures that are achievable with existing tools [378]. However, such data may not exist in 

the longitudinal form required, therefore this thesis serves as a starting point for discussion 
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on the collection of vaccine immune response markers in vaccine studies. It is important to 

note, as more complexity is added; the potential for differences between species immunology 

may arise which would problematic when translating responses from animal to human. 

Discussion between preclinical and clinical vaccinologists and modellers at all stages of 

development would be vital to overcome this. This work should be considered the first step 

in a “complete” translational vaccine performance framework. 

 

Modelling to increase confidence in most immunogenic dose 

 

The work in chapter 4 outlined my findings when multi-doses of H56+IC31 were given to mice 

and corresponding IFN-γ response followed over time. Statistical curves fitted to the dose-

response data enabled me to predict the most immunogenic dose at varying time points. To 

gain confidence in this most immunogenic dose prediction, further dose experiments in mice 

should be conducted. This provides an opportunity to use modelling methods to design an 

optimal mouse experiment, the aim of which would be to gain the most confidence around 

most immunogenic dose using the least mice as possible. I have conducted preliminary work 

towards this aim by simulating new experiment scenarios and assessing the impact on the 

confidence interval bounds (see appendix E for an outline of this work). In summary, by 

simulating IFN-γ response of mice based on the multi-dose data generated in paper 3, I was 

able to establish an experimental design whereby I increased confidence in the most 

immunogenic dose prediction using “optimal” arrangement of the in silico mouse responses. 

Similar work could be conducted on the uncertainty surrounding BCG response prediction 

due to the small macaque sample sizes (chapter 3) to provide vaccine developers with 

adequate macaque sample sizes for confident response predictions to translate to humans. 

To further this analysis, advanced simulation-based trial optimisation methods developed for 

drug trials, should be utilised [358, 359] and the results empirically verified. While using these 

methods to design optimised pre-clinical experiments would aid in better defining a most 

immunogenic dose range to take into early clinical trials, the objective is to apply them in 

optimising clinical trials. My ultimate aim of future work is to use modelling to design a 

vaccine clinical trial to test vaccine dose efficacy using the minimum number of participants, 

thus limiting unnecessary exposure and reducing trial costs. These trials can then be clinically 
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validated. This work is beyond the scope of the thesis, but I believe I have made vital first 

steps in working towards this aim.  

 

Application of IS/ID modelling to diseases other than TB 

 

Here I have explored the use of modelling to accelerate vaccine development in TB, but IS/ID 

modelling, like PK/PD modelling, is a framework that can be applied to vaccine development 

for other diseases. As an example of an opportunity for IS/ID modelling to potentially 

accelerate vaccine development is in yellow fever where the licensed vaccine dose has been 

challenged. As mentioned previously, after shortages of the yellow fever vaccine, 17DD, were 

reported and due to recent yellow fever outbreaks in Africa [379], dose fractionation studies 

were conducted. The results of these studies show a lower dose (ranging from one fifth [246] 

to one tenth [244, 380]) was found to be as protective (measured using a known antibody 

correlate) as the current higher licensed dose [244, 246, 379, 380]. Dose fractionation studies 

for the yellow fever vaccine are ongoing. I believe that IS/ID modelling could have been an 

effective tool, incorporated during preclinical and early clinical development of this vaccine, 

to prioritise the lower, equally as protective 17DD dose. Had this been the case, wasted 

resources and money may have been saved and the vaccine better distributed. As future 

work, I intend to embark on a grant project to investigate this. This will require response data 

on varying doses of 17DD in animals and humans, and a new mathematical model to 

represent the antibody response. However, predictions could be easily validated due to the 

known antibody correlate of protection for yellow fever.  

 

Whether TB of yellow fever vaccines, the generalized steps to integrate modelling into vaccine 

development are outlined below, (a scheme of the steps is in Figure 6.1): 

1. An immunogenic vaccine is developed and a wide range of doses are tested in mice or 

other small animal models to establish an initial approximate dose response curve. An 

aim here is to find the minimum and maximum doses that provide the bounds of the 

dose response curve (within the constraints of the manufacturing process and ability 

of the assay to assess the dose). Of note, if applicable, this process should be repeated 

for a range of adjuvant doses (i.e. the dose response curve should be assumed the 

same shape or magnitude across adjuvant). 
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2. Mechanistic mathematical modelling techniques (IS/ID) are applied to estimate the 

parameters that describe the underlying dynamics of the initial animal-derived dose 

response relationship. Historical data from similar platforms could be used as 

guidance. The modeller then determines the experimental design to yield the 

maximum information on the dose response curve, given limitations on animal 

number, ability to achieve the desired concentrations of the product, and cost. For 

example, the modeller and developer then develop a further study to asymptotically 

approach the best dose, using methods to select both the doses to be studied and the 

number of animals per group. Pre-defined desired confidence intervals can be used to 

determine the groups and group numbers. 

3. The IS/ID model is fit to human response data on limited doses (maybe just one) and 

the animal IS/ID model parameters are mapped to human parameters for the 

equivalent dose. Equivalent dose is based on allometric dose scaling based on 

historical data from similar platforms or products. The mapping is used to predict the 

theoretical human dose response relationship. 

4. A selection of doses is chosen to most rapidly define the extremes of the human 

response based on this theoretical prediction. As in step 1, the aim is to define an 

approximate shape and the confidence bounds of the dose response curve (depending 

on the variability of the immune response measurement(s) chosen), using a limited 

number of human subjects per arm. 

5. IS/ID modelling is applied using the phase 1 data to predict the dose response 

relationship as a guide for a limited number of further doses to be tested, either in an 

adaptive fashion in Phase 1 or incorporated into a future study. A dose-response 

surrogate that can be assessed in essential real-time and an unblinded assessment 

team are needed. 

6. This data is then fed back into the model (step 5) to gain understanding of the 

confidence intervals around the chosen doses. As further human data is collected, the 

IS/ID model is refined, used to hone best dose and to design next phase trials.  

 

Further steps to incorporate IS/ID modelling into vaccine development 
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Compared to drug development, vaccine development faces different challenges. From a 

developmental perspective, there are different expectations from vaccine to drug 

development industry and regulators; model-based vaccine development is not an 

established method in the vaccine development world. Vaccines are based on empirical 

evidence and that is where focus remains, historically and at present. Breaking through this 

expectation will be the next step to fully integrating mathematical modelling into vaccine 

development. I suggest the following actions. 

 

1. A collaborative group of interested parties from academia, biotech, large vaccine 

manufacturers, regulators, governmental and non-governmental agencies must be 

established to aid communication, data access and development of methodology. The 

first meeting of such a group of individuals occurred in May 2015 at the headquarters 

of TB vaccine developers Aeras (Rockville, MD), where a multidisciplinary team met to 

discuss the current state of vaccine dose finding and the potential for mathematical 

modelling to assist in this arena. It was concluded at this meeting that modelling was 

a promising step forward in vaccine development. 

2. Incentives, such as large data packages and a commitment by vaccine developers, 

need to be applied to encourage modellers with experience in drug dosing to move to 

vaccine studies, which has a potentially greater impact on human health than any 

other treatment intervention. Linking to existing modelling consortia such as the TB 

Modelling and Analysis Consortium and International Society of Pharmacometrics 

would also facilitate access to modelling expertise. 

3. In drug development, modellers use all available (relevant and standardized) data to 

refine the understanding of PK/PD findings throughout the product development 

process. This has historically had a great influence on trial design; generating sufficient 

data to enable informative modelling. Therefore, modellers should be involved 

throughout the entire vaccine development process, even before initiating the earliest 

animal studies, to help narrow the design space and predict optimal outcomes at each 

step.  

4. Vaccine funding agencies should be encouraged to consider head to head studies in 

which conventional methods for selecting vaccine dose are used in parallel with the 
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outlined modelling techniques, to better understand the impact on speed of 

development, number of participants exposed and cost of vaccine design. 

 

Conclusion 

 

This thesis has demonstrated the utility of mathematical modelling to compare animal models 

to the humans they aim to represent; quantify vaccine immune response dynamics and 

predict vaccine dose relationship across species. I believe future work on IS/ID modelling to 

include data on more complex immune response networks and different animal and human 

subpopulations is entirely feasible and would establish IS/ID modelling as a legitimate tool to 

accelerate vaccine development.
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Figure 6.1. Schema depicting the steps required to incorporate vaccine Immunostimulation (IS) /Immunodynamic (ID) modeling into vaccine development. [Graphics 
included credited to: The Noun Project https://thenounproject.com/]
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Appendices 
 

 

Appendix A. Paper 5: Dose finding for new vaccines: the role for 

immunostimulation/immunodynamic modelling  

 

The contents of paper 5 were a joint contribution between Dr Thomas Evans and myself. Due 

to his experience in the field, Dr Thomas Evans provided the rationale for the paper and 

contributed to writing the background and rationale to the text. I aggregated the data for the 

figures, wrote the technical aspects of the text and incorporated Dr Evans text. Gwen Knight, 

Richard White and Denise Kirschner reviewed the paper. The participants of the workshop 

entitled “Modelling does responses following vaccination” held on Friday, May 29th 2015 at 

the headquarters of TB vaccine developers Aeras (Rockville, MD) reviewed the paper. 
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Abstract 

 

Vaccine dosing decision making employs relatively antiquated methods compared to the 

methods employed for drug dosing decision making. As such, we may be discarding vaccine 

candidates and wasting considerable resources. This failure to use modern methods may, in 

part, be due to the complexities in measuring a biomarker of vaccine efficacy and defining the 

dynamics of the immune system, but also simply represents a failure to harness quantitative 

expertise into vaccine development. We challenge this status quo by translating the 

mathematical frameworks used for drug dosing to optimise vaccine dosing decision making, 

which we define as immunostimulation/immunodynamic modelling.  
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Introduction to vaccine dose 

  

Vaccines are one of the most important public health discoveries and are the most cost-

efficient intervention known in medicine [1]. Both the pipeline and business rationale for new 

vaccines are strong [2]. However, taking a vaccine from discovery to licensure can cost in the 

region of US$0.8 billion [3]. With these enormous costs, there is intense pressure to make 

well-informed decisions at each stage of the development process; mistakes are expensive 

and delays can waste precious time that could save lives. Finding optimal vaccine dose 

amounts (hereafter dose), as well as identifying appropriate regimens, are key factors in 

reaching maximal vaccine efficacy at the requisite safety level. Ideally, we would gain the 

most accurate information regarding vaccine efficacy if we tested a wide range of doses in 

humans; however, we are constrained by clinical, ethical, historical, and financial concerns. 

Instead, we currently estimate effective human doses based on responses in small animal 

models in which we are able to test large dose ranges over short timeframes. The key 

challenge is then to accurately translate vaccine responses from these animal studies to 

humans, as the relationships are still not fully characterized, and fraught with issues of not 

only scale, but physiological differences between species. Therefore, it is common in later 

stage vaccine studies to allow the momentum of clinical development, despite a lack of clear 

understanding of immune response kinetics, to drive selection of a dose that has not been 

thoroughly evaluated. 

 

So, the question remains: how can we more effectively and systematically identify an optimal 

vaccine dose? Surprisingly, the definitive text on vaccine development does not include 

strategies for dose finding [4] and there is limited regulatory guidance on dose-finding 

methodologies from licensing organizations such as the FDA [5]. Authoritative reviews of the 

recently approved RTSS-S malaria vaccine from WHO and the developer make no mention of 

the confidence of the selection of dose (even after extensive analysis of regimen), despite 

previous data which calls the certainty of dose selection into question [6, 7]. In fact, prior to 

a recent submission the confidence intervals concerning the selection of the “right dose” have 

not been stated. 
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The world of drug development faced similar questions, yet is far more advanced in the use 

of systematic methods for dose optimization. This can be attributed partly to the use of 

pharmacometrics: mechanistic mathematical models that describe within host drug dynamics 

(pharmacokinetics/pharmacodynamics (PK/PD), see Table 1: Mathematical/quantitative 

methods technical glossary, for definition).  

 

In the drug development world, the recognition for the need for quantitative analysis to 

assess drug dose happened 40+ years ago and moved forward with little knowledge of data 

(and software) requirements. Now, the large pharmaceutical industry has decades of effort 

applying quantitative analysis to improve dose selection for small molecule drugs. There is no 

such parallel used for vaccine dosing, which may be due to the diversity and complexity of 

immune responses measured or a lack of appreciation of potential tools. Vaccine 

development is now in a position (40 years later) to borrow from the experiences, expertise 

and technical utilities of model-based drug development, which we believe will vastly 

accelerate effective vaccine development. 

 

Our aim is to launch a new field for to applying quantitative methods to improve vaccine dose 

decision-making and ultimately vaccine discovery: immunostimulation/immunodynamic 

(IS/ID) modelling. We present discussion on existing complexities around dose determination 

for vaccines; techniques used in the drug development field; how these techniques might be 

applied to vaccine studies, and how these studies would be advanced if such a path were 

taken.  

 

Complexities between vaccine dose and response 

 

The immune response required for protection against a disease relies on complex interactions 

that behave nonlinearly over time and across multiple biological scales (e.g. molecular to 

cellular to whole systems). In addition, the variation in immune responses to vaccination can 

be large across different ages and populations, possibly attributed to underlying differences 

in genetics or exposure rates. Assays and protocols for measuring immune response, as well 

as the chosen biomarkers, may also vary in usage and dynamic range across populations.  
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Such complexity can present enormous challenges in the early stages of vaccine 

development. For example, while having access to an agreed biological marker of protective 

response is beneficial, vaccine development is often moved forward without such a marker, 

and it is not until later that efficacy evaluations are determined [8]. Nonetheless, during 

product development dose decisions must be made, regardless of the developer’s faith in the 

biomarker to demonstrate efficacy. As such, our goal here is not to discuss the actual 

surrogates of vaccine efficacy, but how to apply a quantitative, systematic framework to 

increase the likelihood of selecting an optimal dose, once a surrogate is chosen.   

 

A key assumption in the development of new vaccines is an often presupposed relationship 

between dose and host response: historically the sigmoidal, saturation curve (usually on a 

logarithmic axis) has reigned supreme (Figure 1A) [9, 10]. This assumes that a minimum 

vaccine dose can be found that gives no host response, that there is a window of vaccine 

doses where the response rapidly escalates and that there is a clear response plateau above 

a certain dose threshold. The goal of vaccine development has then been to increase the dose 

until the response plateau is reached and assume the highest, safe dose is optimal (with some 

margin of error to allow for host variation). 

 

However, this “classic” sigmoidal response curve is now being challenged by data from newer 

vaccine platforms (Figure 1B-D). For example, a trial of a gp120 vaccine in alum for HIV-1 

infection in humans, as compared to the same protein formulated with QS-21, revealed that 

the surrogate response (at the time this was binding and homologous virus neutralization) at 

a dose of 30 μg was equivalent to that of 300 μg of the same vaccine in alum. A further study 

with 0.5, 3, and 30 μg of the vaccine, revealed no decrease in response (Figure 1B) [11, 12]. 

Functional assays showed a peak response at the lowest dose which was 1,000 fold lower 

than that observed when alum was used as an adjuvant. Thus, neither the lower bound nor 

the curve of the dose response relationship has ever been established (which may or may not 

be sigmoidal), due to an inability to accurately dilute the vaccine.  

 

Figure 1C outlines a dose response curve for the surrogate Tuberculosis (TB) protection 

measure, IFN-γ  level, in mice receiving a candidate vaccine of fusion protein H56 in the IC31 

adjuvant system [13]. When responses were tested two weeks after vaccination, the IFN-γ 
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response was higher at lower doses suggesting a lower dose is optimal. These early animal 

dose response data are reflected in the preliminary human dose response curve [14]. To note, 

responses taken at such early time points may not represent the memory response, which 

could be indicative of long-lasting immunity. However, this information is not regularly 

recorded. 

 

Figure 1D shows our overall experience with a human adenovirus (Ad35) vaccine, in which 

antigen-specific CD4+ and CD8+ T cell cytokine responses are not congruent, exhibiting 

maximum responses at different vaccine doses and highlighting the limitations of achievable 

dose concentrations [15, 16]. Thus, dose response studies will need to be defined by choosing 

one of the cellular responses as primary, or by a pre-determined ratio of the two.  

 

These unexpected dose response curves have not been adequately acknowledged nor 

explored for vaccine development and dosing. Additionally, the influence of varying vaccine 

composition (i.e. antigen and adjuvant formulations) may result in differing dose response 

curves, for example, the inverted U–shaped response [17, 18] described in Fig 1C. To test all 

combinations of adjuvant and antigen(s) clinically, requires a large, expensive multi-

dimensional factorial design trial. A mathematical and computational modelling framework 

would have the capability to more effectively explore and narrow this space before trials ever 

began.  

 

Vaccine dose finding: current methods and comparison to drug dose optimization 

 

Current methods for finding optimal vaccine dose are purely empirical [4]. Typically, a “low” 

dose in mice or other small animals is chosen and increased by half log increments until the 

maximum plateau in response is met. This dose range is then scaled up and applied in larger 

animals and humans. However, no formal assessment of vaccine allometric scaling (see Table 

1 for definition) has been undertaken for vaccine development; vaccine induced immune 

mechanisms and how they differ with species are not considered in this scaling. This may be 

problematic as the immune response between animals and humans appears to range 

between none with some protein formulations to nearly 500-fold scaling with DNA  (from 

microgram in the mouse to milligrams in man [19]). Once the starting dose has been 
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established in humans, it is then increased incrementally until a “maximal” safe dose, which 

is defined by predetermined safety criteria, is achieved.  

 

This empirical methodology means human trials often progress with a pre-defined limited 

number of doses. Ultimately, vaccine dose decisions are being made without a complete 

understanding of the confidence intervals for the full range of the dose response curve. In 

drug development, the determination of optimal dose is based on more quantitative 

approaches: model-based PK/PD determinations and allometry, and toxicology bounds. 

 

Animal experiments are first conducted to determine the exposure and half-life of the active 

drug components in the relevant regions of the body. Mathematical models are then applied 

to this data to predict doses that generate the desired PK/PD outcome. By applying allometric 

scaling to the model parameters, in conjunction with the effects of variation in metabolic 

pathway across species, an estimation of the doses needed to obtain similar exposure in 

humans is then derived. Following this, the PK/PD modeler can then postulate appropriate 

doses to be used in initial clinical studies to estimate the dose response relationship based on 

acceptable toxicity. As more data becomes available, PK/PD models can be used iteratively to 

refine these estimates, aiding in a reduction of the total number of subjects required to 

establish the desired confidence intervals, thus minimizing potential harm. As an example, 

modelling was able to tease through the different doses and protocols to derive optimal 

values for TB drug treatments, which previously had never been formally compared[20]. In 

classic drug trials, toxicology boundaries are established, in healthy volunteers, by quickly 

determining the maximally tolerated dose (MTD). For example, in oncology, drug safety 

bounds are established through iterative learning and confirming; by applying the “3+3 

design” [21] or continual reassessment methodology [22]. 

 

In summary, as modelling is not performed for vaccines, nor is allometric scaling for vaccines 

well understood, both our vaccine trials and final doses are prone to be sub-optimal.  

 

Immunostimulation (IS) /immunodynamic (ID) modelling: Mathematical modelling for 

improved vaccine dose decision making 
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Our proposal for using mathematical modelling to inform vaccine dose finding is based on the 

approach used in drug development. Utilizing pre-clinical dose and toxicology information 

and the method we term vaccine immunostimulation (IS) /immunodynamic (ID) modelling 

(an analogue of the established PK/PD modelling), we aim to translate dose response 

relationships from animals to humans. The proposed steps to achieve this aim, outlined in 

Figure 2, are as follows: 

7. An immunogenic vaccine is developed and a wide range of doses are tested in mice or 

best-other-animal model to establish an initial approximate dose response curve. An 

aim here is to find the minimum and maximum doses that provide the bounds of the 

dose response curve (within the constraints of the manufacturing process and ability 

of the assay to assess the dose). Of note, each new adjuvant formulation of a given 

antigen combination should be considered a unique entity. 

8. Mechanistic mathematical modelling techniques (IS/ID) are applied to estimate the 

parameters that describe the underlying dynamics of the initial animal-derived dose 

response relationship. Historical data from similar platforms could be used as 

guidance. The modeler then determines the experimental design to yield the 

maximum information on the dose response curve, given limitations on animal 

number, ability to achieve the desired concentrations of the product, and cost. For 

example, the modeler and developer then develop a further study to asymptotically 

approach the best dose, using methods to select both the doses to be studied and the 

number of animals per group. Pre-defined desired confidence intervals can be used to 

determine the groups and group numbers. 

9.  Allometric scaling based on historical data from similar platforms or products is used 

to translate the IS/ID model parameters from animal to human and thus predict the 

theoretical human dose response relationship. 

10. A selection of doses is chosen to most rapidly define the extremes of the response 

based on this theoretical prediction. As in step 1, the aim is to define an approximate 

shape and the confidence bounds of the dose response curve (depending on the 

variability of the immune response measurement(s) chosen), using a limited number 

of human subjects per arm. 

11. IS/ID modelling is applied using the phase 1 data to predict the dose response 

relationship as a guide for a limited number of further doses to be tested, either in an 
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adaptive fashion in Phase 1 or incorporated into a future study. A dose-response 

surrogate that can be assessed in essential real-time and an unblinded assessment 

team are needed. 

12. This data is then fed back into the model (step 5) to gain understanding of the 

confidence intervals around the chosen doses. As further human data is collected, the 

IS/ID model is refined, used to hone best dose and to design next phase trials.  

 

IS/ID modelling requires the use of not only statistical models, but mechanistic mathematical 

models that yield an understanding of the underlying mechanics of the immune response 

(refer to Table 1 for distinction between statistical and mathematical modelling). At present 

this mechanistic modelling for vaccines is in its infancy, but approaches are now underway 

with B cells and antibodies (however, not yet for dose) [23]. 

 

Mathematical modelling can also be further incorporated into the Phase 2 clinical 

development stage by borrowing techniques used outside the public health field. For 

example, Evolutionary Operation uses modelling to continually evolve trial design by 

perturbing model parameters and assessing effects on model outcome [24, 25]. Modelling 

can then inform trial designs likely to produce a given result whilst minimizing the number of 

participants exposed to the product. These trial designs can then be clinically verified.  

 

Difficulties can be anticipated when predicting response confidence intervals due to between-

patient response variability. However, methods from drug PK/PD analysis are readily available 

to address such variability; for example, nonlinear mixed effects modelling (NLMEM or 

machine learning) is an established statistical framework to characterize the variation within 

and between individual responses in a population (see Table 1).  

  

Another major concern for vaccine developers is the ability to formulate a wide enough range 

of doses needed to adequately assess the dose response relationship. Additionally, assays for 

measuring the dose of the vaccine, or chosen immune response surrogate may potentially be 

unreliable at high or very small doses. These issues need to be taken into consideration when 

initiating the design of dosing studies. 
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Next steps for implementation 

 

How can we implement vaccine dose modelling? First, we believe that a collaborative group 

of interested parties from academia, biotech, large vaccine manufacturers, regulators, 

governmental and non-governmental agencies must be established to aid communication, 

data access and development of methodology. The first meeting of such a group of individuals 

occurred in May 2015 at the headquarters of TB vaccine developers Aeras (Rockville, MD), 

where a multidisciplinary team met to discuss the current state of vaccine dose finding and 

the potential for mathematical modelling to assist in this arena.  

 

Second, we need to apply incentives, such as large data packages and a commitment by 

vaccine developers, to encourage modelers with experience in drug dosing to move to vaccine 

studies, which has a potentially greater impact on human health than any other treatment 

intervention. Linking to existing modelling consortia such as the TB Modelling and Analysis 

Consortium and International Society of Pharmacometrics would also facilitate access to 

modelling expertise. We believe that the vaccine regulatory bodies have also lacked critical 

evaluations of vaccine product dose selection, and that agencies such as FDA should 

encourage modelers to move from the drug side of the agency into vaccines. Thus, the 

motivation and investments must come from both bottom up and top down.  

 

Third, modelers need to be involved throughout the entire vaccine development process, 

even before initiating the earliest animal studies, to help narrow the design space and predict 

optimal outcomes at each step. In drug development, modelers use all available (relevant and 

standardized) data to refine the understanding of PK/PD findings throughout the product 

development process. This has historically had a great influence on trial design; generating 

sufficient data to enable informative modelling. First steps to include modelling into vaccine 

development are under way in TB research. We conducted an intensive animal vaccine multi-

dose study of a candidate TB vaccine (presently in phase 2) designed by a modeler specifically 

to generate data for dose response finding using translational IS/ID methods. IS/ID modelling 

was applied to determine the dose-response curve and shows a definitive n-shape for 

multiple times points after vaccination and that the predicted best dose is likely to be lower 

than previously investigated (manuscript under review). Preliminary work has been 
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conducted to simulate further responses (based on this empirical data) to obtain optimal 

dosing cohorts and narrow the confidence interval around predicted best dose. Additionally, 

we are now also developing a IS/ID mechanistic model of the dose-dependent induction of 

memory, effector, and regulatory T cell subsets (as per [26, 27]) to translate best dose from 

mouse to human. 

 

Fourth, we recommend the creation of large shared data platforms through large-scale 

collaborative efforts with multinational pharmaceutical companies; platforms such as the 

Critical Path Institute already exist in drug development. Creating a parallel venture in vaccine 

development would help achieve the aim of attracting modelers as well as maximizing 

information on vaccine allometric scaling information and model parameterization.  

 

Finally, we encourage the NIH and other vaccine funding agencies to consider head to head 

studies in which conventional methods for selecting vaccine dose are used in parallel with the 

outlined modelling techniques, to better understand the impact on speed of development, 

number of participants exposed and cost of vaccine design. 

Summary 

 

In summary, the field of vaccine dosing determination remains in an undeveloped state 

compared to its far more advanced drug counterpart, due to a lack of a formal quantitative 

methodology, approach and assessment. This may, in part, be due to complex and 

incompletely understood vaccine immune responses, but also simply a failure to harness 

quantitative expertise into vaccine research. To move forward, we need to work 

collaboratively to design more effective pre-clinical experiments and adapt existing 

mathematical frameworks to determine how to systematically identify optimal vaccine dose. 

We challenge this status quo by translating the mathematical frameworks used for drug 

dosing to optimize vaccine dosing decision making, and to launch the field of 

immunostimulation/immunodynamic modelling. 
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Description of mathematical approach Application/Examples 

Mathematical modelling: The use of mathematical language to mimic the 
mechanisms of a naturally occurring system [28]. 

The most commonly used models in mathematical biology are 
“compartmental models” that use ordinary differential equations to 
capture the flow into and out of specified “compartments” believed to 
reflect the important parts or sub-populations of the system. For example, 
in infectious disease modelling, to describe the spread of a pathogen within 
a population, the compartments of susceptible, infected and recovered are 
used (see case studies in [29]). The additional complexity of math models, 
vs. statistical models, yields potentially improved understanding of the 
mechanistic relationships between variables.  

Statistical modelling: A model concerned with identifying the probability 
distributions of data in order to make inferences on tendencies in the 
dataset. Models that attempt to quantify the relationship between 
independent and outcome (dependent) variables. 

Data can be modeled by common parametric continuous distributions such 
as the Gaussian and Gamma, or Poisson for considering frequency of 
events in time. Regression analysis and splines describe the relationship 
between variables. 

Pharmacokinetics (PK): What the body does to the drug, i.e. the 
concentration of drug in the body (as it is absorbed and eliminated) over 
time [30]. 
Pharmacodynamics (PD): What the drug does to the body, i.e. how the 
“effect” of the drug (e.g. in the blood) changes with the concentration of 
the drug in the body [30]. 
PKPD modelling (AKA pharmacometric modelling): The use of a 
mathematical model (e.g. compartmental, Emax equation) to describe the PK 
and PD mechanisms related to a drug in the host [31]. 
Nonlinear Mixed Effects Modelling (NLMEM): A statistical framework in 
which a pharmacometric mathematical model is placed in order to quantify 
the variability in the model parameters across a population. Software such 
as NONMEM[32], Monolix [33] , WinBUGs [34], Adapt [35] have been 
developed specifically for NLMEM analysis. 
Pharmacometric population modelling approach: The use of 
pharmacometric and statistical modelling (NLMEM) to quantify differences 
in individual drug responses across a population and what population 
characteristics can be attributed to causing these differences. 

The pharmacometric population modelling approach has been widely 
accepted and applied in drug development[36] in areas such as: 

 Early “first-in-man” dose selection: Extrapolation of preclinical 
efficacy and safety data to early-stage clinical trials using 
physiological based PK (PBPK) models to make predictions of the 
full time course of PK mechanisms [37].  

 Identifying important subpopulations: Identification of which 
covariates in a population provide an explanation of the nature of 
PK variability in drug responses. As a consequence, 
dosage/regimens may be optimized or “personalized” for these 
populations. 

 Designing and optimizing studies in later stages: Testing dose 
escalation [38] and regimen for designing proof of concept studies 
and optimizing sampling design. In addition, aiding in designing or 
simulating confirmatory studies; “Learning and confirming” [39]. 
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Allometric scaling: The quantifiable relationship between animal body size 
and characteristic, e.g. the physiological relationship between animal size 
and metabolism or life span. Scaling can be used to compare animal 
characteristics over time, as the animal grows (ontogenetic allometry) or 
within a species population (static allometry) or between species 
(evolutionary allometry)[40]. 

In humans, allometric scaling is applied to common PK parameters such as 
volume of distribution, absorption and clearance by using the host’s 
weight, (e.g. for the drug Isoniazid e.g.[41]). Translational studies between 
species (nonhuman to human) compare PK parameters by using power 
equations relating the parameter to body weight[42-44] to scale between 
species. For examples see [45, 46]. 

Table 1. Mathematical/quantitative methods technical glossary 
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Figure 1. Dose response curves for vaccines showing relationships between dose and the corresponding host response. (A) Demonstration of a theoretical sigmoidal dose 

response curve. (B) Results of two independent studies of a HIV-1 gp120 vaccine using either alum or QS-21 and graphically depicted as percent of the maximal response of 

antibody titers (either oligomeric binding or neutralizing). (C) Dose-response curve of two-week IFN-gamma levels emitted by CD4+ T-cells in splenocytes of mice that received 

the candidate TB vaccine of fusion protein H56 in the IC-31 adjuvant system. Median values from 6 mice per dose are shown. The differences in response at each dose are 

significantly different (p<0.05). (D) A dose-response combined parameter for cytokine producing T cells induced by an Ad35 vaccine based on studies conducted in mice, 

rhesus macaques, and humans. CD4+ T cells are induced and maximal at lower doses and CD8+ T cell responses continue to increase with dose. Both the ability to make a 

more concentrated stock and toxicity at the highest dose limited further dose finding in humans. 
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Figure 2. Schema depicting the steps required to incorporate immunostimulation (IS) /immunodynamic (ID) modeling into vaccine development. [Graphics included 
credited to The Noun Project https://thenounproject.com/] 
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Appendix B. Additional Background 

 

New TB Vaccines 

 

A brief description of each vaccine candidate follows based information from the WHO 2016 

TB report [1] .  

 

There are three types [2] of new candidate: whole cell vaccine, viral vectored subunit vaccine 

and adjuvant protein subunit vaccine. New candidate TB vaccines are also categorised into 

two strategies: to replace BCG or to boost on previous BCG immune responses [3]. A booster 

vaccine works by building upon the immunity induced by previous vaccination [4]. A BCG 

booster vaccine would be administered following BCG vaccination either during infancy or 

adolescence [5]. In the current pipeline, most of the whole cell vaccines are designed to 

replace BCG and the subunit vaccines are predominantly used as BCG boosters. 

 

1. Whole cell vaccines 

Whole cell vaccines utilize the whole BCG or Mtb. cell to promote an immune response, 

however the bacteria maybe killed or altered to reduce virulence [15, 44]. Whole cell vaccines 

in TB development are an attractive option they induce a wide, diverse immune response, 

including cellular and humoral responses [69]. Whole cell BCG vaccines aim to improve upon 

current BCG by either adding antigens for example those present in the Mtb. bacilli and not 

in current BCG strains, by enhancing antigens already expressed by BCG, or by removing BCG 

genes thought to be associated with immune evasion [70, 85]. Some whole cell vaccines are 

also designed to target populations where BCG is known to be unsafe, such as children 

infected with HIV [206]. 

 

a. MTBVAC 

MTBVAC is a live Mtb. strain attenuated with deletions of the Mtb. virulence genes, phoP and 

fadD26 [1]. MTBVAC was developed by the University of Zaragoza (Spain), Biofabri (Spain) 

and Institut Pasteur (France). A phase 1, dose-ranging trial in healthy adults was conducted 

to compare immunogenicity to BCG vaccination (clinicaltrials.gov NCT02013245). Each 

participant was given a single vaccination at the beginning of the trial. A phase 1 trial of 
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MTBVAC in infants, administered as a BCG replacement, is ongoing (clinicaltrials.gov 

NCT02729571). 

 

b. DAR-901 

The DAR-901 vaccine, developed by Dartmouth (USA) and Aeras (TB vaccine developers 

(USA)) is a heat inactivated, NTM whole cell vaccine. It is designed as a BCG booster vaccine. 

It has already been shown to be effective in a phase 3 trial in Tanzania in HIV positive, BCG 

primed population [11]. Currently, DAR-901 is a phase 2b trial in BCG vaccinated adolescents 

in which participants receive only one vaccination of DAR-901 at the beginning of the trial 

(clinicaltrials.gov NCT02712424). 

 

c. RUTI 

RUTI is made of non-live, fragmented and detoxified Mtb. bacteria [12], developed by Archivel 

Farma (Spain). RUTI is as an immunotherapeutic vaccine, which is given in conjunction with 

antibiotic therapy with the aim of shortening treatment times. A dose-ranging Phase II trial in 

HIV positive and negative participants who also received one month of Isoniazid treatment 
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Figure 1.2 (repeated here) 2015 developmental pipeline for new TB vaccines by Aeras, TB vaccine developers (permission to use granted 15/6/17 see appendix B for e-

mail correspondence) 
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in South Africa was completed recently (clinicaltrials.gov NCT01136161). Two vaccinations of 

RUTI were administered, one at the beginning of the trial, the second, one month later. 

 

d. VPM 1002  

The VPM 1002 vaccine is a live, recombinant BCG vaccine, originally developed at the Max 

Planck Institute of Infection Biology (Germany). VPM 1002 is the only recombinant BCG 

vaccine in the pipeline, developed to enhance BCG. This is achieved by adding to BCG, in this 

case, the insertion of listeriolysin, which aids to enhance cross priming of CD8 T cells [13]. A 

phase 2b trial is currently being conducted to assess the safety and immunogenicity of VPM 

1002 in HIV infected and uninfected infants in South Africa (clinicaltrials.gov NCT02391415).  

VPM1002 is given once at the beginning of the trial. 

 

e. Vaccae 

The Vaccae vaccine is a NTM developed by the pharmaceutical company Anhui Zhifei 

Longcom (China) [2]. Vaccae is the only TB vaccine in the pipeline to be in phase 3 and has 

been licensed as a therapeutic vaccine to help shorten TB drug regimens in those with drug-

susceptible TB. The current phase 3 Vaccae trial is being conducted to assess the efficacy and 

safety in preventing TB disease in LTBI participants (measured using a PPD skin test). 

Participants are given, in total, six vaccinations with Vaccae intradermally (every two weeks) 

(clinicaltrials.gov NCT01979900). 

 

2. Subunit vaccines 

The remaining vaccines in the TB vaccine pipeline are subunit vaccines. Broadly speaking, a 

subunit vaccine extracts antigens from a pathogen deemed the “best” at stimulating the 

required immune response [7]. Subunit vaccines are potentially safer to use in a broad 

population (i.e. those whose are immunocompromised) than a whole cell vaccine, by only 

containing fragments of the pathogen [14]. However, identifying appropriate antigens for a 

subunit vaccine is challenging and multiple antigens may have to be investigated and 

combined to develop a vaccine that generates a robust, long-lasting immune response  [14].  

 

In TB vaccine pipeline, antigens that contribute to Mtb. virulence, the strength of bacteria’s 

structure or allow for the bacteria to enter immune response cells have been identified for 
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candidate subunit vaccines. These are outlined in Table B.1. The subunit vaccines in the 

pipeline combine them in different combinations. Alongside the antigen, a delivery system is 

required to prolong exposure to the antigen to generate a strong response (delivery system) 

or heighten the response once it is created (immunomodulatory)  [15].  

 

Antigen Description 

Ag85A, 

Ag85B 

Mtb. antigens 85A and 85B are proteins associated with Mtb. cell wall 

maintenance [16, 17]. Both antigens have been shown to induce a substantial 

protective immunity against aerosol Mtb. challenge in mice [18, 19], guinea 

pigs [20] and macaques [21]. 

ESAT-6,  

Rv3619, 

Rv3620 

Mtb. antigen ESAT-6 is an early-stage protein that mediates the entry of 

mycobacteria into cells [22]. ESAT-6 is well recognized in TB patients [23, 24]. 

In mice vaccinated with an ESAT-6 subunit vaccine, strong ESAT-6-specific T cell 

responses were seen that resulted in protective immunity to Mtb. challenge at 

the same level as that provide by BCG [25, 26].  Mtb. antigen Rv3620 and 

Rv3619 are ESAT-6 like proteins associated with Mtb. virulence [27, 28]. IFN-γ, 

IL-12 and IgG responses are heightened to Rv3620 and Rv3619 stimulation in 

mice [29]. 

Rv2660c, 

Rv1813 

 

The late stage antigens Rv2660c and Rv1813 are secreted by Mtb. bacilli during 

latent infection in order for the bacteria to adapt to hostile conditions 

produced by the hosts immune response [30, 31]. Rv2660c is selectively 

recognized by latently infected individuals as compared to individuals with 

active pulmonary TB [32, 33]. Strong CD4+and CD8 T cell responses were 

observed after stimulation with Rv1813 in mice [34]. 

TB10.4 

 

The TB10.4 antigen is associated with virulence of Mtb. [35].  TB10.4 induces 

the largest and broadest immune responses in T cells from TB patients as 

compared to those of BCG-vaccinated and non vaccinated individuals [36, 37]. 

In mice, the administration of TB10.4 was shown to induce Th1 responses 

which were associated with protection against Mtb. infection [38]. 

Rv2608 Rv2608 is a surface-associated cell wall protein of the Mtb. PPE family 
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[39] which provoke Th1 responses and confer protection against Mtb. 

challenge in mice [40]. 

Mtb32A 

 

Mtb. antigen 32a is thought to be associated with bacteria metabolism and 

respiration, which could be associated with bacterial latency. Mtb32a is a BCG 

derived antigen [41]. Mtb32a based vaccines, reduced the bacterial burden 

significantly in the lungs of all mice after challenge [42]. 

Mtb39A Mtb. antigen 39A is known to be important for cell wall maintenance and cell 

wall processes [43]. Strong IFN-γ T cell responses were seen in PBMC after 

stimulation with Mtb39A in humans [44]. Mice immunized with Mtb39A 

showed a decrease in bacterial load after challenge [44]. 

 

Adjuvant Description 

IC31 Developed by Valneva, IC31 is a delivery adjuvant consists of a cationic peptide 

and the TLR9 agonist ODN1a [45] capable of inducing strong cellular and 

humoral responses [46]. 

CAF01 SSI proprietary liposomal adjuvant CAF01, consists of DDA (a cationic peptide), 

the delivery system and TBD (a mycobacterial cord factor) an 

immunomodulator is able to effectively develop Th1 responses [47, 48].  

GLA-SE The GLA-SE adjuvant which contains a synthetic TLR4 agonist, Glucopyranosyl 

Lipid Adjuvant (GLA), an immunomodulator, formulated in oil-in-water 

emulsion (delivery) [49]. GLA-SE provokes strong Th1 responses [50]. 

AS01E The adjuvant AS01E, developed by GSK, is a liposome-based adjuvant 

containing the immunomodulators, 3-O-desacyl-4′-monophosphoryl 

lipid A (MPL), and saponin QS-21 [51]. It is safe and provides strong immune 

responses to Mtb. antigens [51, 52]. 

Table B.1 Antigenic components and adjuvants for TB subunit vaccines. 

 

      2.1 Virus-vectored subunit vaccines 

 

a. Ad5Ag85A  

Ad5Ag85A is an adenovirus serotype 5 vector expressing Mtb. antigen Ag85A, which has been 

developed by McMaster University (Canada). A phase 1 trial, assessing safety and 
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immunogenicity of two doses of Ad5Ag85A in BCG vaccinated and BCG naïve healthy 

participants was found to be safe and able to stimulate polyfunctional T cell responses after 

one vaccination [53]. The clinicaltrials.gov number for this trial is NCT00800670, however 

according to this website, the trial was terminated after the low dose participants were 

enrolled. A safety and immunogenicity phase 1 dose-ranging study of the aerosol 

administration of this vaccine is currently underway (clinicaltrials.gov NCT02337270). 

 

b. MVA85A/MVA85A 

MVA85A is an attenuated vaccinia-vectored vaccine candidate expressing Mtb. antigen 

Ag85A designed as a booster vaccine for BCG, developed at the University of Oxford (UK). 

MVA85A has previously progressed through to phase 2b where it was given to BCG vaccinated 

infants in South Africa [54] and HIV positive adults in South Africa and Senegal [55] (see below 

for more details on these studies). In those trials, MVA85A was administered intradermally. 

In the current pipeline, aerosolized MVA85A has been administered to BCG vaccinated adults 

in the UK in a phase 1 trial (clinicaltrials.gov NCT01497769). Compared to the phase 1 

intradermal trial, aerosolized MVA85A induces a stronger CD4+ T cell response [56]. Another 

phase 1 trial is being conducted to assess the safety and immunogenicity of aerosolized 

MVA85A in LTBI participants and compare against the intradermal injection (clinicaltrials.gov 

NCT02532036). In both clinical trials, one dose of MVA85A was given (either aerosolized or 

intradermally) with a simultaneous boost of placebo (either aerosolized or intradermally) in 

order to blind the experiments. 

 

c. ChAdOx1.85A/MVA85A 

ChAdOx1.85A is a simian adenovirus expressing Mtb. antigen Ag85A, which was developed at 

the University of Oxford as a BCG booster. A phase 1 clinical trial in BCG vaccination adults is 

currently being conducted to assess safety and immunogenicity of ChAdOx1.85A, 

administered alone and with a boost of MVA85A (clinicaltrials.gov NCT01829490). 

Participants receive either one intramuscular vaccination of ChAdOx1.85A or one vaccination 

of ChAdOx1.85A at the beginning of the trial with a boost of MVA85A 2 months later or two 

vaccinations of ChAdOx1.85A 1 month apart followed by a boost with MVA85A after 4 

months. 
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d. TB/FLU-04L 

TB/FLU-04 L is an influenza virus-vectored vaccine that has been developed by the Research 

Institute on Influenza (Russia). Mtb. antigens Ag85A and ESAT-6 are expressed by the 

influenza virus strain H1N1. A phase 1 trial in BCG vaccinated, LTBI negative adults has 

recently been completed (clinicals.gov NCT02501421). Participants were given two 

vaccinations of the same dose, intranasally, 3 weeks apart.  

 

     2.2 Adjuvanted protein subunit vaccines 

 

Adjuvanted protein subunit vaccines are a combination of antigenic proteins combined with 

an adjuvant, a delivery system used to enhance or prolong vaccine antigen exposure to the 

immune response (adjuvant delivery system) or aid the host response by co-stimulating key 

immune cells (immunomodulatory) [15]. Table B.1 describes the adjuvants in use in the TB 

vaccine pipeline. 

 

a. ID93 + GLA-SE 

The protein vaccine ID93 is comprised of antigens Rv2608, Rv3619, Rv3620 and Rv1813 (Table 

B.1) and adjuvanted with GLA-SE. ID93 + GLA-SE was developed by the Infectious Disease 

Research Institute (USA) and Aeras (USA). ID93 + GLA-SE is currently in a phase 2a trial in 

South Africa for HIV-negative participants who have completed TB disease treatment 

(Clinicaltrials.gov NCT02465216). In this trial, participants receive either low or high dose of 

antigen in combination with low or high dose of the adjuvant at the beginning of the trial and 

two months later. 

 

b. M72 + AS01E 

M72 is protein adjuvant vaccine adjuvanted with AS01E developed by GlaxoSmithKline 

pharmaceuticals and Aeras (USA). It is comprised of antigens 32A and 39A (Table B.1). A phase 

2b trial is currently been conducted with M72 + AS01E in HIV negative, LTBI negative 

participants in South Africa, Kenya and Zambia. Participants receive two vaccinations of the 

same dose of M72+AS01E at the beginning of the trial and one month later. The primary 

endpoint of this trial is to assess efficacy against TB disease, secondary endpoints are safety 

and immunogenicity (Clinicaltrials.gov NCT01755598). 
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Simple PK Model Example 

 

A simple example to demonstrate a PK model is too look at the pharmacokinetics of the drug 

Theophylline, used to treat respiratory diseases such as chronic obstructive pulmonary 

disease and asthma [57]. The data in figure B.1 show the concentration of theophylline 

collected repeatedly over 24 hours for 12 individuals (longitudinal data). There is obvious 

variation in the sample as some individuals’ responses peak lower than others ,etc.  

 

Figure B.1. Data open access in R from the nlme package – data collected from study by Upton et al for 

example PK modelling in NONMEM (Boeckmann, A. J., Sheiner, L. B. and Beal, S. L. (1994), NONMEM Users 

Guide: Part V, NONMEM Project Group, University of California, San Francisco.) 

 

To calibrate the model to the individuals data and quantify the variation in the responses, 

complex statistical frameworks are applied, known as NLME statistics [58-60]. 

 



 296 

The mathematical most commonly used to describe this PK data is a one compartmental 

model describing the absorption and elimination over a volume of the drug after a dose has 

been administered. The following equation describes this mathematically: 

𝐷𝑜𝑠𝑒 ∗ 𝑘𝑎
𝑉𝑜𝑙𝑢𝑚𝑒(𝑘𝑎 − 𝑘𝑒)

(𝑒−𝑘𝑒∗𝑡𝑖𝑚𝑒 − 𝑒−𝑘𝑎∗𝑡𝑖𝑚𝑒) 

 

where ka and ke are the rates of theophylline absorption and elimination, respectively. To 

calibrate the model to the individual’s data and quantify the variation in the responses, 

complex statistical frameworks are applied, known as NLME statistics (see below). Figure B.2 

shows the results when this method is used to calibrate the model to the data. With this fit, 

we can then determine how the parameters of the model vary across the 12 individuals. 

 

Figure B.2. Individual fits for the 12 individual theoplyine concentration data of the one compartmental model 
with first order absorption and linear elimination using the nlme package in R. 
 
 

NLMEM: methods, implementation and diagnostics 



 297 

 

NLMEM framework overview and parameter estimation methods 

 

The objective of NLMEM is to estimate the “best” model parameterisation to describe the 

data. Once this is achieved we can then make inferences around the population and individual 

response dynamics. To conduct NLMEM for a population the following is required: 

1. Longitudinal response data. It is advantageous to have extensively sampled data as 

possible, and data does not need to be uniformly sampled over sub-populations. 

2. Population covariate data. If applicable to modelling aims. 

3. A mathematical model. The assumed underlying biological mechanism of the data is 

incorporated into the mathematical model to calibrate to the data (see literature review). 

4. Statistical models to account for individual responses. To account for the following two 

levels of variation, the NLMEM framework statistical model requires two components: 

1. The proposed distribution of the model parameters from the population 

typical response to account for individual responses over time. 

2. The relationship between the error of the data from the mathematical model 

prediction, known as the residual error, on an individual level of time (assumed 

to be the same distribution for each individual). A fundamental assumption to 

NLMEM (and general linear regression) is that the residual errors are normally 

distributed. However, the variation of the normal distribution may be more 

exaggerated depending on the magnitude of the data itself (heteroscedastic 

variation). As such, the purpose of the residual error model is to transform 

potential heteroscedastic variation to normal (homoscedastic) variation 

around the model prediction. 

5. An Objective Function (OF). To quantify the goodness of fit of the model prediction (with 

a specific set of parameters) to the data, a measure is required, this is known as the 

objective function (OF). We use a likelihood based method as the OF in NLMEM. Briefly, 

the likelihood assesses the likelihood of the model prediction under a chosen parameter 

set, to have predicted the observed data [61]. A model parameterisation that produces a 

higher likelihood OF value is seen as more probable to have produce the data. The aim 
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then is to find the parameter set with that produces the maximum likelihood OF value, 

known as the Maximum Likelihood Estimator (MLE). To calculate the OF over all individual 

model predictions in a population requires the product of all OFs for those individuals. As 

the likelihood OF values are probabilities and as such, can be small values (<<1 in some 

cases) finding a product of these values over all individuals can be computationally difficult. 

As a standard practise, and for computational ease, we use -2 times the sum of the log of 

the likelihood (LL) when calculating the multiple likelihood OF’s over all individuals in a 

population, a.k.a. the deviance. If we use the deviance as our objective function we now 

aim to minimise this value instead of maximise (for derivation see [62, 63]). As we assume 

the residual errors of the data to the model prediction is normally distributed, we base the 

likelihood OF on the normal distribution equation (see [62] and [63] for derivation of 

normal LL equation). 

 

6. An algorithm to estimate the “best” model (mathematical and statistical) parameters 

 

The idea of NLMEM is to work through parameter sets (population typical parameters, the 

variation on the parameters needed to account for all individuals and the residual error 

parameters) to find the “best” set. In terms of the OF (-2LL), this is the parameter set that 

minimizes the -2LL value. NLMEM uses a one-stage approach where both population typical 

and the variation of the parameters to account for the individual’s data are estimated 

simultaneously. As mentioned previously, we are using a hierarchical model, the individual 

parameters are related to the population typical parameters by a distribution with the 

population typical parameters as the mean and an unknown variation (which we aim to 

estimate). Another way to consider our problem is: to find the best population typical 

parameter values for our longitudinal data from multiple individuals by looking at the 

probability of the parameter values to produce such data (likelihood), has an intermediary 

step – the unknown individual parameters. To achieve our aim of minimise the -2LL with 

respect to the unknown population typical parameters, we need to incorporate the individual 

parameters into the likelihood OF. As we don’t know what these individual parameters are, 

we have to assess the -2LL of all possible individual parameter values. To achieve this use a 

“marginal” likelihood, (marginal as we are effectively marginalising out the potential 
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individual parameter values). Formally put, the likelihood for finding the population typical 

parameters is (taken from [62]): 

ℒ𝑦(𝜃) ∝ 𝑝(𝒚|𝜃) = ∫𝑝(𝒚,𝝍|𝜃) 𝑑𝝍 

Where L is the likelihood of the data given the population parameters, y represents the 

observed data (for all individuals and time points), 𝜃 are the vector of population parameters, 

and 𝜓 the vector of individual parameters. A marginal likelihood OF is common when trying 

to solve a maximizing (or minimizing) likelihood problem for a certain unknown parameter 

(here, population typical model parameters) with a “latent” or “nuisance” variable (in our 

case the individual parameters). To minimise this OF, requires solving integrals over the 

possible values of the population deviation to cover the individual parameters. This is not 

possible to do analytically in most PK/PD modelling exercises so a numerical integration 

estimation method is usually employed. We have chosen to use an estimation method known 

as Stochastic Approximation to the Expectation Maximisation (SAEM) algorithm. We use the 

software Monolix [64, 65] to implement this method. It is important to note, however that 

this is not the only estimation method used in PK/PD, but we only consider this one in this 

project. 

 

7. Software to estimate parameter values using the estimation algorithm (SAEM) 

We do not go into technical detail of the SAEM algorithm, but a brief description is outlined 

as follows. 

1. A starting value for the population typical parameters and variance is given by 

the user.  

2. Individual parameter values are simulated out from a conditional distribution 

that combines the initial guess of the population parameters and variances and 

the observed data – essentially combining a prior of the population parameters 

and the data resulting in individual parameters that lie in between the two (see 

[62] for technical explanation of this distribution). 

3. The likelihood value given those individual parameters is calculated. 
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4. The individual parameters are then combined and used as the distribution of 

the new population parameter estimates. 

5. The new population parameters is used to simulate another round of 

individual parameters based on the conditional distribution as in step 2. 

6. The likelihood of the data given these individual parameters is calculated and 

compare to the previous likelihood value (from previous population parameter 

estimate). The population parameters that maximises (or minimises in the case 

of -2LL) the likelihood compared to the previous population parameter is taken 

(essentially starting a Markov Chain) - honing in on the distribution that best 

describes the population mean and variance (the parameters we wish to 

estimate). The individual parameters from each iteration are “stored” to 

generate as much information as possible on the best population parameters. 

7. Iterations selecting a population parameter set and simulating out the 

individual parameters continue until a satisfactory convergence (assessed 

using a threshold value of the difference in likelihood value between each 

iteration) is met.  

8. Once satisfactory population parameters are found (step 7), individual 

parameters are simulated to represent the individuals in the population. These 

individual parameter values can be used as a preliminary assessment of the 

influence of population covariates, i.e. using statistical tests to establish 

differences in these estimated parameters between covariate strata. 

 

For a more in-depth and technical explanation see [62, 65] and an informative video on a 

simple SAEM algorithm implementation can be found at 

http://wiki.webpopix.org/images/2/20/saem.mp4. 

 

We choose Monolix and SAEM because it has been shown to be a robust and powerful 

method for estimation in population PK/PD modelling [65-69]. In this project, members on 

the advisory panel with experience in PKPD (Dr Steven Kern (BMGF), Dr Jerermie Guedj 

(INSERM)) who recommend this software and expertise in how to use it was available 

throughout the project.  
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8. A covariate model structure.  

A way of incorporating population covariates to establish if parameter estimates are 

significantly different between subpopulations and what these values are (parameter-

covariate relationship are outlined in the main papers and corresponding supplementary 

material). A systematic way of finding the appropriate covariate model is needed: here we 

use a forward addition method and the LRT to assess model performance (exact methods for 

covariate analysis outlined in the main papers). 

NLMEM Implementation in Monolix 

Table B.2 outlines the requirements in order to implement a NLMEM analysis in Monolix. 

Requirement Description 

Dataset Data on the longitudinal responses over time with covariate 
information in csv format. Each line in the dataset should contain an 
ID (which will be the same for one subject in repeated measures data 
for all times), time and response value minimum. Values for the 
covariate for the subject ID should be repeated for each line. 

Mathematical 
model 

The mathematical model to represent the responses over time should 
be coded in the MlxTran framework in order for Monolix to use for the 
estimation. Guides to the MLXtran language can be found at 
http://mlxtran.lixoft.com/mlxtran-user-guide/. An example of the 
code used to for the BCG vaccination model in paper 2 can be found 
below. 

Initial guesses of 
the population 
parameters 

Visual inspection of the model prediction compared to the data is 
good to establish a starting point for the parameter estimation 
algorithm. This can be done in Monolix or in R. 

Residual error 
model 

The residual error (RE) model is applied to account for discrepancies 
between the observed data and the model prediction. The assumption 
in NLMEM is that the REs are normally distributed, but may be 
dependent on the magnitude of the response (i.e. it is intuitive that 
the error may be higher for higher values of the response than for 
lower values). Three common models are outlined in the table below. 
We only concentrate on these three models in our fitting as they are 
generally considered to reflect lab assay variability patterns [59]. 
Alternatives are outlined in [59]. 

Error model 
Model 

equation 
Description 

Constant Y = f+a*e 
Constant residual error variance 

from the model prediction, f 

http://mlxtran.lixoft.com/mlxtran-user-guide/
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Proportional Y = f+b*f*e 

Proportional residual error 

variance when we believe the 

variance is proportional to the 

model prediction, f 

Combined 
Y = 

f+(a+b*f)*e 

A combination of constant and 

proportional residual error 

variances 

where Y = data point, f = model prediction, a,b= scalars to be 
determined during parameter estimation process, e = Normally 
distributed random variable N(0,1). 

To establish which RE model is best, we used the inbuilt model 
comparison tool in Monolix. Here, for a specific model 
parameterisation different RE models are tested (the three above) 
and the one with the lowest goodness of fit values is chosen to 
represent the RE. 

Covariance model It is important to test if the random effects (the variation) of the model 
parameters are co-dependent, i.e. correlated. We tested if any 
combination of our parameters were correlated across the population 
with the inbuilt Monolix tool. 

Covariate model In both paper 2 and 4, establishing the appropriate covariate model is 
an aim of the work, so methods to do this are outlined in the 
respective papers – explanation of procedure to include covariates 
and the covariate-parameter relationship is outlined in the 
supplementary of the papers. 

Distribution of the 
individual 
parameters 

As it is common in PK/PD modelling for data to follow a lognormal 
distribution and to ensure positivity of estimated individual model 
parameters [59, 70], we used a lognormal distribution to represent 
the distribution of the individual mathematical model parameters. 

Table B.2. Requirements for implementation of NLMEM in Monolix software. 

The outlined requirements are concerned with the models (mathematical and statistical) used 

in the NLMEM framework, which are dependent on the data and model in question. 

Requirements for the execution of the SAEM estimation algorithm were kept at default values 

outlined in see [64]. 

Example MlxTran code for T cell model used in paper 2: 

<MODEL> 
DESCRIPTION: 
Model for one vaccination BCG: Human/Macaque 
[LONGITUDINAL] 
INPUT: 
parameter = [E0, k,h,L,m,p] 
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EQUATION: 
t0 = 0 
E_0 = E0 
M_0 = 0 
d1 = L*(1/factorial(k-1)) d2 = 1/(h^k) d3 = t^(k-1) d4= exp(-t/h) 
d=d1*d2*d3*d4 
ddt_E = d - p*m*E - (1-p)*m*E 
ddt_M = (1-p)*m*E 
Total=E+M 
odeType = stiff 
OUTPUT: 
output = Total 
 

Diagnostics to assess parameter estimation results 

To evaluate the estimated model parameters, we use the following diagnostics: 

1. Goodness of fit measures. The -2*LogLikelihood value evaluated at the estimated model 

parameter values gives an indication of the goodness of fit of the model parameterisation. 

On its own, it is not meaningful, however it can be used to compare across model 

parameterisations (strictly nested models) on the same dataset where a lower value 

indicates a better fit [60]. We use the Likelihood ratio test (LRT) to compare our nested 

models in this work, following the chi squared distribution with the appropriate degrees 

of freedom [62]. For non-nested mechanistic and statistical model comparisons, we 

predominantly use the Bayesian Information Criterion (BIC) [71]. The BIC is an extension 

to the -2*LogLikelihood OF that accounts for the complexity of the model i.e.: 

𝐵𝐼𝐶 = ⁡−2 ∗ 𝐿𝐿 + 𝐿𝑜𝑔(𝑛) ∗ 𝑘 

where LL is the LogLikelihood, n is the number of data points and k, the number of 

estimated model parameters. A complex mathematical model with an equivalent -2LL to a 

simpler model, is penalised for its complexity and as such, the BIC is inflated, indicating a 

worse model fit [72].  

2. Estimated model parameter precision. We use the relative standard error (RSE) of the 

estimated parameters as an indication of the precision of the estimated model 

parameters. The RSE is the standard deviation of the error from the best estimated 

parameter value. Technically speaking, the RSE describes the surface of the OF local to the 

parameter at the predicted best value: a sharply peaked function will give few values that 
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could be considered “best” and consequently, a low RSE, a flat, broad surface would give 

many “best” values and a high RSE, see [73] for technical explanation. The RSE is 

SE/estimated parameter value. We consider a RSE value of <30% to be an acceptable value, 

indicating an identifiable model parameter estimate [58]. 

3. Graphical Plots. We use two main graphical diagnostic plots for the main papers: 

a. Visual Predictive Check (VPC) plot 

The visual predictive check plot (VPC) is a simulation based diagnostic tool for 

assessing the appropriateness of the proposed mathematical model to describe the 

empirical data. This is done by comparing data simulated using the model and 

estimated population mean parameters and associated variances, to the empirical 

data distribution [62]. To construct the VPC, the mathematical model is calibrated to 

the dataset in question and the resulting estimated parameters and associated 

variances are used to simulate a theoretical population dataset, equivalent to the 

size of the population in question. This procedure is repeated 500 times and key 

percentiles (e.g. the 10th, 50th and 90th percentiles) of each simulated population 

dataset are recorded and the ranges of these percentiles are plotted. If the model is 

appropriate to represent the data, when the observed percentiles are plotted 

alongside the VPC, they should fall in the bounds of the simulated percentile ranges. 

These plots are common as a diagnostic tool in PK/PD modelling and have been 

suggested as the most efficient plots to assess a NLMEM parameter estimation [74]. 

The plots are produced by Monolix as a standard output and are included in the 

paper or supplementary in this format. 

b. Parameter prediction plot 

The parameter prediction plots show the prediction of the mathematical model for 

the estimated population parameters compared to the median of the data (the 

population typical response) and the distribution of the model predictions due to the 

estimated parameter variation (to cover the population spread of the data, usually 

the 10th to 90th percentile or the 25th to 75th). Plots included in the work are either 

Monolix standard outputs (those with pink percentile bands) or manually produced 

in R (included in the main papers 2 and 4). 

We add the following diagnostic plots in the supplementary of each paper or in the 

appendix corresponding to the papers chapter: 
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c. Observed versus predicted data plots 

In these plots, the observed data is plotted against the predicted value on a 

population and individual level. Plots where the observed and predicted values are 

similar should show a diagonal distribution along a line of unity (i.e. if the prediction 

is the same as observed value that point will lie on the diagonal line extending from 

the origin of the plot). 

d. Residual plots 

The (weighed) residuals of the model prediction to the data are plotted here. This 

plot allows us to check if the residuals are normally distributed. Ideally, residuals 

should lie uniformly on either side of the mean, within approximately 2 SDs either 

side, corresponding to the 5% and 95% percentiles. Residuals can be plotted against 

i. time and ii. population predictions. Any bias in these plots suggests a mathematical 

model errors (if bias in i.) or residual model errors (if bias in ii.). We include the 

Monolix standard output of these plots 

 

NLMEM software background 

NONlinear Mixed Effects Modelling (NONMEM) is acknowledged to be the first software 

developed for PK/PD modelling [60]. Developed in 1984, NONMEM could efficiently estimate 

PK parameters to even sparse data, paving the way for MBDD for the first time. After 

NONMEM was released, other software were developed with new methods for parameter 

estimation and improvements on user-friendly operation [60]. Table B.3 outlines the main 

software for PK/PD modelling.  

Name Method of parameter estimation 

NONMEM [75] First order approximation, First order 
conditional estimation [76], SAEM 

WinBUGs[77] Markov Chain Monte Carlo (MCMC) 

Monolix [64] Stochastic Approximation to Expectation 
Maximisation (SAEM) 

Pheonix NLME [78] nonparametric 
population pharmacokinetic modelling 
(NPEM) 

S-Adapt 
Adapt[79] 

Monte Carlo Expectation Maximisation 

Table B.3. Main software used in PK/PD modelling and their methods of parameter estimation. 



 306 

TB immune response mathematical modelling: literature review results 

 

No

. 

First 

Author, 

year 

Aims 
Cells/Cytoki

nes 
Bacteria 

Model 

type 

# of 

compartm

ents 

Data 

Disease 

Outcome 

Measure 

Interventions Main results 

1 

Antia 

[80] 

(1996) 

Construct a 

simply 

model to 

explore 

how 

mycobacter

ia interacts 

with host 

immune 

response 

giving rise 

to 

observed 

patterns of 

infection 

T cells (non-

specific) 

In active and 

dormant 

states 

ODE 3 

Used to 

Parameterize 

model 

Extracellular 

bacteria 

increased to 

high levels 

- 

Two mechanisms for 

bacteria to persist: slow 

replication or dormant 

stage. 

 

With only slow replication, 

successful persistence is 

dependent on inoculum 

size – the smaller the 

better. 

 

Successful persistence may 

result in bac proliferation 

as T cells will become 

exhausted in the long run 

and die. 

2 

Kirschner 

[81] 

(1999) 

1. Explore 

the impact 

of 

Mycobacte

rium 

tuberculosi

s, the 

 

Activated 

CD4/CD8T, 

MCs 

HIV viral 

population 

Bac 

population 

(not 

specified 

inter or ex 

bac) 

ODE 4 

Used to 

Parameterize 

model 

Extracellular 

bacteria 

increased to 

high levels 

TB treatment 

affecting the 

Bac growth 

rate 

(non-specific 

drug) 

T- cell populations were 

lower in the presence of 

both Mtb. and HIV than in 

the case of infection with 

HIV alone. 
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bacteria 

that causes 

TB, on the 

HIV- 

infected 

immune 

system 

using a 

mathemati

cal model. 

2. Explore 

the effect 

of TB 

treatment 

on co-

infection 

 

Viral load and Mtb. 

population are higher in 

the co-infected cases, than 

the single-pathogen 

infection cases. 

 

T-cell counts do improve 

over a short period of time 

after treatment initiation. 

Suggesting, treatment of 

TB in HIV-infected 

individuals can have a 

profound effect on their 

progression to AIDS. 

 

A TB drug that suppresses 

bacterial 

growth, as opposed to 

enhancing the bacterial 

death rate, will likely be 

more effective. 

3 

Wigginto

n [82]  

(2001) 

1. Build 

human IR 

model 

characterizi

ng cellular 

and 

cytokine 

MCs (R, I, A): 

CD4TC (0,1 

& 2): 

IL-4, IL-10, 

IFN-γ & IL-12 

 

In & Ex: 

infect only 

MCs 

ODE 

4 biological 

component

s, 12 

compartm

ents. 

Used to 

Parameterize 

model 

Extracellular 

bacteria 

increased to 

high levels 

cytokine D&D 

experiments. 

All disease states 

achievable. IFN-γ present 

but low during latency - 

controlled by IL-10. 

Enhanced during active 

disease. Increased IFN-γ 

causes excessive tissue 

damage. Deletion of IFN-γ 
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behaviour 

during Mtb 

 infection. 

2. 

Investigate 

which 

cytokines/I

R 

behaviour 

are most 

important 

for 

reducing 

bac load. 

causes rapid progression to 

active disease. 

4 

Gammack 

[83] 

(2003) 

1. Build a to 

model to 

investigate 

early 

immune 

response 

dynamics  

2. 

Determine 

which 

conditions 

the 

bacteria 

population 

decreases. 

MCs (R & I): 

Chemokine 

fMET-Leu-

Phe (from 

bac) 

In & Ex: 

Infect MCs.  

Spatial 

PDE 

(diffusio

n eqns) 

 4 

variables. I 

MCs can: 

phagocytos

e & kill, 

phagocytos

e but not 

kill, cannot 

phagocytos

e or kill 

with diff 

params 

Used to 

Parameterize 

model 

Extracellular 

bacteria 

increased to 

high levels 

Change 

params: rate 

of 

phagocytosis, 

rate of 

intracellular 

killing and 

intracellular 

Bac growth. 

MCs become saturated and 

ineffective if Bac growth 

too fast of phagocytosis 

too slow: uncontrolled 

granuloma. No steady 

state was found which 

could indicate adaptive 

response is essential. 
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5 

Marino 

[84] 

(2004)  

1. Build 

human IR 

model 

characterizi

ng cellular 

and 

cytokine 

behaviour 

during Mtb 

infection in 

lung and 

DLN. 2. 

Investigate 

which 

cytokines/I

R 

behaviour 

are most 

important 

for 

different 

disease 

stages. 

Lung: MCs 

(R, I & A) 

DLN: DC (I & 

M): 

Lung: CD4TC 

(0,1 & 2), 

DLN: CD4TC 

(0, 1): 

Lung: IL-4, 

IL-10, IFN-γ, 

IL-12 DLN: 

IL-12 

In & Ex: 

infect only 

macrophages 

ODE 

DLN: 3 

component

s, 3 

compartm

ents. 

Intermedia

te blood 

stage for 

TC 

migration. 

Used to 

Parameterize 

model 

Extracellular 

bacteria 

increased to 

high levels 

Treatment 

effects 

introduced by 

increasing 

amount of 

IDC. 

All disease states 

achievable. IFN-γ levels are 

regulated by IL-10 during 

latency - levels are 3 fold 

higher than active disease - 

activated MCs important 

for latency. Decreasing 

activation rate by IFN-γ is 

strong indicator of active 

disease. 

6 

Marino & 

Pawar 

[85] 

(2004) 

1. Use an 

existing 

model 

(replication 

of Marino 

and K 2004) 

to explore 

how 

altering 

model 

Lung: MCs 

(R, I & A) 

DLN: DC (I & 

M): 

Lung: CD4TC 

(0,1 & 2), 

DLN: CD4TC 

(0, 1): 

In & Ex: 

infect only 

MCs 

ODE 

DLN: 3 

component

s, 3 

compartm

ents. 

Intermedia

te blood 

stage for 

Used to 

Parameterize 

model and 

results of 

model output 

compared to 

published 

data (not 

Extracellular 

bacteria 

increased to 

high levels 

Cytokine D&D 

experiments. 

All disease states 

achievable. Activated macs 

important for latency. DC 

and T-cell trafficking rates 

alter disease status 

between latent and active 

disease. 
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parameters 

effects 

disease 

outcome. 

Lung: IL-4, 

IL-10, IFN-γ, 

IL-12 DLN: 

IL-12 

 

TC 

migration. 

fitted to data) 

– mouse data 

7 

Segovia-

Juarez 

[86] 

(2004) 

1. Create 

an ABM 

representin

g the 

process of 

infection 

and 

granuloma 

formation. 

2. identify 

mechanism

s important 

for 

granuloma 

formation 

and control 

MCs 

(discrete): 

TCs 

(discrete): 

Chemokines 

(continuous) 

Infect and 

replicate in 

MCs. 

ABM - 

Used to 

Parameterize 

model 

Extracellular 

bacteria 

increased to 

high levels - 

bacteria  

count within 

the 

granuloma - 

absence of 

infected 

macrophages 

Sensitivity 

analysis 

provides 3 

separate 

outcomes: 

clearance, 

small 

controlled 

granuloma, 

large necrotic 

granuloma.  

Factors that significantly 

affect granuloma outcome: 

increase in chemokine 

diffusion increases gran 

size, arrival time of TCs, # 

of TCs, ability to activate 

MCs. 

8 
Sud [87] 

(2006) 

1. Use a 

mathemati

cal model 

to simulate 

knock-out 

experiment

s in Mt.b 

infection.2. 

Explore 

role of 

CD8TCs in 

MCs (R, I, A): 

CD4TC (0,1 

& 2), CD8TC 

(0, cyt & 

Effector): 

IL-4, IL-10, 

IFN-γ, IL-12 

& TNF 

In & Ex: 

infect only 

macrophages 

ODE 

5 biological 

component

s, 16 

compartm

ent. 

Used to 

Parameterize 

model 

Extracellular 

bacteria 

increased to 

high levels 

D & D 

experiments. 

Vaccination 

simulated by 

increasing 

memory TCs 

(longer half-

life of cell) at 

initial 

introduction 

All disease states 

achievable. INF-g 

important, but not 

sufficient to control 

infection. Both subsets of 

CD8 important but disease 

controlled without. 

Vaccination -  most 

effective combo: CD4TC1 

and cyto CD8TC most 
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Mtb. 

infection 

 

 

of Mtb. (CD4, 

CD8) 

effective memory combo 

to have to clear.  

9 

Alavez-

Ramirez 

[88] 

(2006) 

1. build a 

model to 

represent 

the effects 

of 

antimicrobi

al drugs on 

a drug 

resistant 

and 

sensitive 

bac 

population. 

Incorporate

d into a 

"immune 

system 

effectivenes

s" rate 

Resistant or 

Sensitive 

states 

ODE 

4: 

Sensitive, 

resistant to 

1, resistant 

to 2 and 

resistant to 

1 & 2 

drugs. 

Used to 

Parameterize 

model 

progression of 

bacteria 

toward 

antibiotic 

resistance 

Two 

antimicrobial 

drug 

treatments 

for LTB (INH & 

RIF) - affect 

killing of 

sensitive Bac 

parameter 

If drug treatment cannot 

eliminate sensitive bac, 

resistence persists, similar 

to if no treatment applied, 

depending on bac fitness. 

Two drugs are more likely 

to keep drug resist strains 

under control. 

10 

Marino & 

Sud [89] 

(2007) 

1. Use 

mathemati

cal model 

to 

characteris

e the role 

of TNF and 

effect of 

anti-TNF 

drugs on 

reactivatio

n. 

MCs (R, I, A): 

CD4TC (0,1 

& 2), CD8TC 

(0, cyt & 

Effector): 

IL-4, IL-10, 

IFN-γ, IL-12 

& TNF 

In & Ex: 

infect only 

MCs 

ODE 

5 biological 

component

s, 16 

compartm

ent. 

Used to 

Parameterize 

model 

Extracellular 

bacteria 

increased to 

high levels 

D&D 

experiments. 

VCT of anti-

TNF 

treatments - 

post-exposure 

treatment 

scenario. 

Small amounts of TNF 

required for latency - high 

in active, but not as much 

as IFN-γ.  Low 

bioavailability (amount of 

TNF available in 

granuloma) for treatment 

is most likely to cause 

reactivation. 

11 

Ray 

[90] 

(2008) 

Build a 

model to 

represent 

the 

 MCs 
 MC 

activation 

components 

 ODE 

 9 proteins 

involved in 

activation, 

1 bacteria 

Used to 

Parameterize 

model 

NO levels 

producing by 

macrophages 

Perturbation 

of params 

using LHCS 

If IFN-γ and TNF signals 

come before infection, 

NOS levels are impaired - 

killing not as effective.  
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intracellula

r 

mechanism

s of MC 

activation 

– see [90] for 

list 

12 

Marino & 

Myers 

[91] 

(2010) 

1. Build a 

human lung 

and DLN 

model to 

identify 

mechanism

s for 

disease 

control 

focusing on 

pro and 

anti 

inflammato

ry 

cytokines  

Lung: MCs 

(R, I , AA, 

CA), DCs (I & 

M) DLN: 

Same as 

lung: 

Lung: 

CD4TCs 

(precursor 1, 

1)  

CD8TC(cyto, 

effector) 

DLN: Same 

as lung plus 

naive CD4, 

naive CD8: 

Lung: TNF, 

IFN-γ, IL-12, 

IL-10 DLN: 

Same as 

lung 

Bac loads 

measured 

from mice. 

ODE 

2 sections: 

Lung : 14 

compartm

ents, DLN : 

18 

compartm

ents 

Model 

calibrated to 

data - 

nonlinear 

least squares 

with Latin 

Hypercube 

Sampling 

(LHS) of the 

model 

parameters - 

mouse data 

Extracellular 

bacteria 

increased to 

high levels 

D&D of TNF, 

IFN-γ, IL-10 

TNF very important for 

Mac and DC recruitment, 

but not anti or pro 

inflammatory phenotype. 

IL-10 important in 

balancing pro/anti 

inflammation response in 

lungs. 

13 

Clarelli 

[92]  

(2010) 

1. Describe 

the innate 

immune 

response 

following 

MCs (R, I): 

Chemoattrac

tant 

move via 

diffusion, 

reproduce 

and killed by 

MCs. 

Spatial 

PDE 

(diffusio

n eqns) 

- 

Used to 

Parameterize 

model 

Extracellular 

bacteria 

increased to 

high levels 

Perturbations 

of equation 

rates to 

determine 

stability of 

Established a critical value 

for the killing efficency 

parameter (for distinct # of 

MCs) between which 

bacteria load explodes or 
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an Mtb. 

infection. 

solution. 

"weak" and 

"strong" 

immune 

response 

introduced 

dies out; more MCs, less 

efficiency needed. 

14 

Ahlers 

[93] 

 (2010) 

Exclude – HIV model 

TB mentioned, but no explicit TB model 

15 
Bru [94] 

(2010) 

1.Create a 

model that 

can explain 

the 

dynamics 

of the 

onset of 

granuloma 

formulation 

Generic 

Chemokines, 

MC (alive (R, 

I) or dead 

(necroctic, 

apoptosed), 

foamy), DC, 

innate 

lymph, T cell 

(alive or 

dead) 

Only grow in 

MC, after 

threshold MC 

nectroic – 

bac become 

extracell. 

ABM - 

Model 

calibrated to 

data  - mouse 

data 

Extracellular 

bacteria 

increased to 

high levels - 

bacteria  

count with 

the 

granuloma 

“tolerance” 

level – 

defined by 

the 

chemokine 

threshold 

(above which 

a new cell is 

attracted 

neighbour 

square in 

model) 

Reinfection 

Chemokine levels and 

distribution determine the 

formation of granulomas 

A higher apoptosis rate 

increases the ability to 

control bacteria growth 

Decrease in duplication 

time is advantageous to 

the bacilli 

Differing inoculum size has 

varying outcome in for high 

and low host tolerance 

level  

16 

Ibarguen-

Mondrag

on [95] 

(2011) 

1. Build a 

model of 

the 

dynamics 

of Mtb. 

infection to 

the 

MC (R,I): 

TC 

one 

population of 

Bac. Infect 

MCs 

ODE 
4: MC (R,I), 

T, Bac 

Used to 

Parameterize 

model 

Extracellular 

bacteria 

increased to 

high levels 

Infection rate 

of MCs only 

parameter 

changed. 

Altering infection rate of 

RMCs led to extinction 

(R0<1), a latency state 

(R0=1.25) and active 

(R0=12.5) 
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minimum 

level 

biologically 

viable and 

determine 

thresholds 

for disease 

progression

. 

17 

Fallahi-

Sichani 

[96] 

(2012) 

1.Build a 

mathemati

cal model 

of the 

granuloma 

to explore 

the affects 

of NF-kB 

(encodes 

TNF) on 

immune 

response to 

Mtb. 

MC (R,I,A): 

Th (effector, 

cyto): 

TNF, NF-kB 

pathway - 

see [96] for 

list 

Infect and 

replicate in 

MCs. 

Replication 

outside MCs 

is slower 

than inside. 

ABM 

[86] & 

ODEs 

(intrace

ll). 

2 for ODE 

Used to 

Parameterize 

model 

Extracellular 

bacteria 

increased to 

high levels - 

bacteria  

count within 

the 

granuloma - 

granuloma 

size and 

amount of 

diseased 

tissue – 

absence of 

TNF-α 

Manipulation 

of the NF-kB 

signalling 

pathway to 

simulate 

treatment 

that 

decreases 

inactivation 

rate of 

pathway 

Sensitive balance between 

slow and fast NF-KB 

pathway signal parameters 

to control for over-

activated MCs 

(inflammation) leading to 

damage or granuloma 

breakdown, resulting in 

disease (slow rates of 

inactivation of pathway 

lead to damage). 

18 

Magombe

dze [97] 

(2012) 

1.Model to 

represent 

Mtb. 

progression 

from active 

to latent to 

dormant 

stages 

No immune 

response 

cell groups  

or 

cyto/chemo

kines 

considered 

Active 

replicating 

Bac, latent 

bac (slow 

replication) 

and dormant 

bac (no 

replication) 

ODE 

8 in total: 3 

bac (active, 

latent, 

dormant), 

nutrient, 

oxygen and 

NO comp, 

gene 

Used to 

Parameterize 

model  - 

mouse data 

Persistence of 

the active 

Mtb. bacteria 

Different 

bacteria 

stress 

conditions 

produced by 

different 

immune 

 



 315 

expression 

of latent 

and 

dormant 

bac 

response 

scenarios. 

19 

Lyons & 

Lenaerts 

[98] 

(2013) 

PBPK/PD 

model, to 

more 

efficiently 

determine 

the in vivo 

multidrug 

dose 

-response 

relationshi

ps new 

anti-TB 

combinatio

n regimens 

in mice 

No immune 

response 

cells 

No bacteria ODE  

Rifampin 

amounts 

moving 

through 12 

compartm

ents of the 

mouse 

physiology 

(lung, 

brain, gut, 

etc.) (PK) 

Model 

calibrated to 

data - 

Bayesian 

Markov chain 

Monte Carlo 

(MCMC) 

procedures  - 

mouse data 

 

Different 

doses of 

rifampin 

Model predictions for 

rifampin 

concentrations in plasma, 

liver, kidneys, and lungs, 

following oral 

administration, fit well to 

experimental data from 

multiple studies. 

 

Model is a starting point 

for the integration 

of rifampin 

pharmacokinetics in mice 

into a larger mathematical 

framework, including the 

immune response to Mtb. 

infection 

20 

Zheng 

[99] 

(2014) 

Exclude – population level model of natural history of TB – Susceptible, Latent, Infected model 

Measure of persistence of Mtb. in a population and investigate how well 

Mtb. can persist as a function of the latent period 
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21 

Pedruzzi 

[100] 

(2015) 

Aimed to 

describe 

the role of 

iron 

homeostasi

s, lipids 

metabolism 

and the 

innate 

immune 

response, 

in terms of 

NO. Which 

factors 

enable or 

hamper 

persistent 

infection? 

MCs – static 

environment 

for bac (no 

dynamics) 

Bac load in 

MCs, Iron, 

Lipid, NO 

concentratio

ns in cells 

ODE 4 

Used to 

Parameterize 

model 

Persistence of 

the active 

Mtb. bacteria 

Parameter 

sensitivity 

analysis to 

assess the 

stability of the 

system (bac 

growth or 

containment) 

under 

different 

parameter 

values (bio 

conditions) 

Model was sensitive to 

parameter governing the 

infection induced NO 

production – small 

perturbations changed 

dynamics from stable 

controlled Bac counts to 

unstable, increasing bac 

counts. 

 

For bacteria to survive, the 

parameter governing bacs 

effect on iron production 

should be dampened. 

22 

 

Lyons & 

Lenaerts 

[101] 

(2015) 

1. 

Physiologic

ally based 

PK/PD 

model for 

rifampin in 

Mtb. 

infected 

mice, 

including a 

population 

model for 

the host-

immune 

MCs, 

CD4&CD8T, 

IL2, IL12, 

IFN-γ, IL10 

Bac in lung, 

ex, or in MC’s 

(activated or 

infected 

MC’s), Bac is 

killed by 

immune 

response and 

concentratio

n of drug in 

lungs from 

the PBPK 

model (see 

Lyons & 

ODE 

8 – 3 bac, 3 

MC’s. 2 T 

 

Rifampin 

amounts 

moving 

through 12 

compartm

ents of the 

mouse 

physiology 

(lung, 

Model 

calibrated to 

data - 

Bayesian 

Markov chain 

Monte Carlo 

(MCMC) 

procedures  - 

mouse data 

Extracellular 

bacteria 

increased to 

high levels 

Dose 

fractionation 

study 

Model fit well to PK data 

for RIF and bacteria counts 

in mice for multiple doses. 
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response to 

infection.  

2. 

Calibration 

to data on 

rifampin in 

mice. 

Lenaerts [98] 

(2013)) 

brain, gut, 

etc.) (PK) 

23 

Datta 

[102] 

(2016) 

Theoretical 

model of 

oxygen 

diffusion 

and 

consumptio

n in TB 

granulomas 

 

- - 

Spatial 

PDE 

(diffusio

n eqns) 

Oxygen 

diffusion 

equations 

over layers 

of a 

spherical 

granuloma 

Used to 

Parameterize 

model – 

rabbit data 

Oxygen levels 

inside the 

granuloma 

and 

granuloma 

size 

Assessment 

of size of 

granuloma 

and 

relationship 

of necrotic 

and hypoxic 

radii inside 

granuloma 

Only the larger granulomas 

(radius>0.2mm) can 

achieve a necrotic (no 

oxygen – bac death) core. 

 

Hypoxic (deprived of 

adequate oxygen – altered 

bac metabolism) and 

necrotic radii increase 

dramatically with 

increasing granuloma size 

for smaller granulomas 

(radius < 0.6 mm), but then 

more gradually for larger 

granulomas (radius > 0.6 

mm). 

  

An approximate analytical 

solution was able to 

predict the size of hypoxic 

and necrotic regions in 

agreement with 
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experimental results from 

the animal model.  

24 
Hao [103] 

(2016) 

The 

evolution 

of a 

granuloma 

model of 

TB (once 

formed) 

Q: Does the 

reduction 

in 

granuloma 

volume 

depend on 

the 

immune 

response, 

and does 

the 

reduction 

in 

granuloma 

volume 

depend on 

the time 

when the 

treatment 

began? 

MCs 

(normal, 

alternative 

activated), 

infected 

MC’s, Th1, 

Th2, DCs, 

Naïve CD4T, 

IL-2, IL-12, 

TNF-α, IL-10, 

IL-13, IFN-γ, 

a and B, IL-

1B. 

Radius of 

gran, 

dynamic 

boundary 

conds 

Intercellular 

or 

extracellular 

Bac 

Spatial 

PDE 

(diffusio

n eqns) 

10 

cells+bac 

Used to 

Parameterize 

model 

Extracellular 

bacteria 

increased to 

high levels - 

bacteria  

count within 

the 

granuloma - 

granuloma 

size and 

amount of 

diseased 

tissue 

“Immune 

strength” - 

parameter 

representing 

influx of 

adaptive cells 

 

IL-10 antibody 

treatment 

As immune strength 

increases, the radius of the 

granuloma increases and 

bac load decreases – too 

strong and pro-

inflammatory causes tissue 

damage. 

 

The sooner treatment is 

started, the more effective 

the loss of bac (both types) 

– a lower immune strength 

and early treatment is best 

(compared to high immune 

strength) (although result 

reported in abstract 

contradicts main text?) 
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25 

6. Lalande 

[104] 

(2016) 

Develop a 

mathemati

cal model 

describing 

time course 

of TB 

infection 

and its 

early 

treatment 

by Isoniazid 

in human 

lung. 

Test dose 

regimens 

 

Cell model 

taken from 

Marino [84] 

(2004) & 

Wigginton 

[82]  (2001) 

(see above) 

 

PK model of 

INH 

distribution 

in plasma, 

alveolar cells 

and lung 

lining fluid 

ODE of effect 

of immune 

response 

cells and INH 

on bacteria 

(ex and int) 

population 

ODE 21 

Model 

calibrated to 

data 

Extracellular 

bacteria 

increased to 

high levels 

Different 

doses of INH, 

19, 37, 75, 

150, 300 600 

mg in one 

regimen 

Adequately reproduced 

properties of the early 

bactericidal activity of INH 

observed in TB patients. 

 

Bacteria kill curves 

simulated with the model 

reproduced 

the biphasic killing effect of 

INH and the predicted 

declines in extracellular 

bacteria were comparable 

to 

clinical data.  

 

The first phase was driven 

by the drug effect. Second 

phase, while drug 

pharmacology 

still influenced bacteria kill,  

dynamics of infected 

macrophages also 

influenced. 

26 

Zhou 

[105] 

(2016) 

Exclude – review on diseases due to poverty, not specifically TB and no new models 

Modelling is mentioned but mostly in context of flu (H7N9) 
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27 

Chisholm 

[106] 

(2016) 

Introduce a 

model of 

Mtb states 

(active or 

latent) 

to  

illuminate 
the 
conditions 
under 
which 
latency can 
emerge 
as an 

evolutionar

y stable 

strategy for 

Mtb. 

survival. 

 

 

 

Immune 

response 

cells do not 

explicitly 

feature. 

Infection 

does not 

protect and 

immunity is 

considered 

not to affect 

host 

susceptibilit

y in the long 

run. The 

more likely 

the 

pathogen to 

become 

latent 

affects the 

host 

recovery 

rate – i.e. 

more 

latency 

means less 

bacterial 

killing by 

immune 

response 

and thus 

A active or L 

latent Mtb 

infection 

compartmen

ts 

ABM,O

DE 

2 for ODE 

(active and 

latent Mtb. 

population

s) 

Used to 

Parameterize 

model 

Persistence of 

the active 

Mtb. bacteria 

Host recovery 

rate is 

changed and 

R0 assessed 

as a result to 

determine if 

latency in 

these cases is 

beneficial 

 

“Latency is an optimal 

evolutionary strategy for 

pathogens when the gain 

from reducing the recovery 

rate outweighs the 

disadvantage of losing 

transmission 

opportunities.”  

[106] 
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lower host 

recovery. 

28 

Wallis 

[107] 

(2016) 

Exclude – not immune response models but summary of three population level models 

1. Looking at innate response resistance in miners 
2. Looking at “relapse” after anti-TNF treatment 
3. Statistical model analysing risk of relapse in person undergoing treatment 

29 

McDaniel 

[108] 

(2016) 

mathemati

cal 

modeling 

to 

investigate 

the rates of 

Mtb. 

replication 

and death 

during 

infection in 

mice 

No immune 

response 

cells 

modelled  

bacteria that 

are plasmid 

bearing or 

plasmid free 

– replication 

and death or 

go into a 

quiescent 

state 

ODE 
2 or 4 

(quiescent) 

Model 

calibrated to 

data - 

multiple 

linear 

regressions to 

data for 

different time 

ranges  - 

mouse data 

Persistence of 

the active 

Mtb. bacteria 

Different 

replication 

and death 

rates 

modelled for 

different time 

periods, no 

explicit 

intervention 

Model with only early 

changes in rates had lower 

AIC indicating that 

replication and death rate 

slows there is no diff in 

replication and death rate 

after approx. 2 months 

 

The majority of bacterial 

cells must be replicating in 

the chronic phase of 

infection to explain the 

data – not the 

conventional hypothesis of 

non-replicating Mtb. in 

chronic phase 

 

30 

Rhodes 

[109] 

(2017) 

Exclude – My paper 2 (chapter 3) included in thesis 

 

Table B.4. Results of TB immune response modelling literature review. Abbreviations: MC – Macrophage, I – Infected, A – Activated, R – Resting, D&D – Depletion 

and Deletion, DC – Dendritic cells, Ma – Mature, Im – Immature, CD4TC – CD4+ T-cell, (0,1,2 – phenotypes), CD8+ T-cell, EC – Effector cell, Bac – Bacteria, In – 
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Intracellular, Ex- Extracellular, ODE – Ordinary Differential Equation, Gran – Granuloma, LHCS – latin hypercube sampling sensitivity analysis, DLN – draining 

lymph node, LTB – latent TB, INH – Isoniazid, RIF – Rifampin, IR – Immune Response, Mtb. – Mycobacterium Tuberculosis, Params – parameters, BAL – 

Bronchoalveolar lavage, VCT – Virtual clinical trial.  

 

Permission for Figure use in Chapter 1 

 

Figure 1.1 

 

Dear Sophie,  

 

Thank you for your request for permission to reprint and reproduce certain WHO copyrighted material. 

 

On behalf of the World Health Organization, we are pleased to authorize your request to reproduce the WHO materials as detailed in the form 

below, subject to the terms and conditions of the non-exclusive licence below. 

We thank you for your interest in WHO published materials and good luck with your project.  

 

Kind regards, 

Catalina 

  

Catalina GRADIN 

Technical Assistant 

WHO Press 
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Strategy, Policy and Information Department 

World Health Organization 

 

The license can be provided if requested. 

 

Figure 1.2 

 

Hi Sophie, 

  

Dara asked me to reach out to you about the TB vaccine pipeline. You are welcome to use it – and I’ve attached the latest version here. Please 

make sure the disclaimer about information being self-reported is included, and let me know if I can help with anything else. 

  

Thanks, 

  

Jennie 

  

Jennie Willson 

Manager, Strategic Communications, External Affairs 



 324 

Phone: 301-547-2867 

Email: jwillson@aeras.org 
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Appendix C. Supplementary Material for paper 2 (chapter 3) 
 

The following are from the supplementary material for paper 2 in chapter 3. The table 

numbers follow from the supplementary outlined in chapter 3. 

 

Additional Results 

 

Diagnostic plots 

Additional diagnostic plots for analysis 1 can be found in S4-S7. 

Figure S4 shows the residual plots for the macaque total cell predictions in analysis 1. The 

residuals seem to be normally distributed, although the IWRES by time and the prediction pdf 

(bottom row) show slight model under prediction. This is most apparent at time points 84 and 

112. However, this may be a result of the large variation in the data between time points 

(particularly for day 84 and 112), which the model is unable to accommodate. Figure S5 shows 

the residual plots for the human total cell predictions in analysis 1. Residual error in this case 

seem to approximate a normal distribution, however there appears to be slight under 

prediction by the model, particularly at day 0 and 28 (IWRES plot, top row). Despite this, the 

VPC in Figure 2, paper 2, indicates that the model is still an adequate prediction of the data, 

for both species. The observed versus predicted response plots in Figure S6 also reflect the 

discrepancy between data and model total cell predictions for population (left column) and 

individual (right column) data for A. macaques and B. humans. 
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Figure S4. Residual (difference between data and total cells as predicted by the model) plots for macaque predicted total responses. The first row shows the individual 
weighted residuals (IWRES) and normalised prediction distribution errors (NPDE) using simulated individual parameters against time. The second row shows the 
residual error against the prediction. The bottom rows show the distribution of the residuals compared to a Gaussian pdf curve so assess the normality of the residuals. 
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Figure S5. Residual (difference between data and total cells as predicted by the model) plots for human predicted total responses. The first row shows the individual 
weighted residuals (IWRES) and normalised prediction distribution errors (NPDE) using simulated individual parameters against time. The second row shows the 
residual error against the prediction. The bottom rows show the distribution of the residuals compared to a Gaussian pdf curve so assess the normality of the residuals. 
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Figure S6. Empirical data versus predicted total IFN-γ responses for A. macaques and B. humans 
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Figure S7. Prediction distribution plot for A. macaques and B. humans. The black points represent the empirical data. The bands represent the 10th to 90th percentiles of 
the theoretical predictions using the estimated population parameters and associated variation for analysis 1 (Table 1, paper 2). The black line shows the median total 
cell response prediction 
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Diagnostic plots 

Additional diagnostic plots for the macaque and human subpopulation-models can be found in Figures S15-S18. 

 

Figures S15 and S16 show the accuracy of the model predictions for the macaque covariate model. Although the residuals are close to normally 

distributed (Figure S15), the Mauritian and Chinese cynomolgus macaque parameter sets over predict for higher IFN-γ responses (Figure S16). 

This could potentially be due to small colony populations. The Indian rhesus and Indonesian cynomolgus macaque predictions better describe 

the data. The VPC plots (Figure S13 see chapter 3 supplementary) show that, although the simulated percentile bands are wide for the Chinese, 

Indonesian and Mauritian cynomolgus macaques due to reduction in population size for these colonies, the empirical percentiles still fall (aside 

from variation between time points in the data) within the simulated bands. 
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Figure S15. Residual (difference between data and total cells as predicted by the model) plots for macaque predicted total responses stratified by colony. The first row 
shows the individual weighted residuals (IWRES) and normalised prediction distribution errors (NPDE) using simulated individual parameters against time. The second 
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row shows the residual error against the prediction. The bottom rows shows the distribution of the residuals compared to a Gaussian pdf curve so assess the normality 
of the residuals 

 

Figure S16. Macaque observed versus predicted IFN-γ total responses stratified by colony 
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Figure S17. Residual (difference between data and total cells as predicted by the model) plots for human predicted total responses stratified by BCG status. The first 
row shows the individual weighted residuals (IWRES) and normalised prediction distribution errors (NPDE) using simulated individual parameters against time. The 
second row shows the residual error against the prediction. The bottom rows shows the distribution of the residuals compared to a Gaussian pdf curve so assess the 
normality of the residuals 
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Figure S18. Human observed versus predicted IFN-γ responses stratified by BCG status 
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Figures S17 and S18 show the accuracy of the model predictions for the human covariate model. For the human subpopulations of BCG status, 

the residuals are close to normally distributed (Figure S17), however both BCG: Y and BCG: N parameter sets under predict the higher IFN-γ 

responses, more so for the BCG: N predictions (Figure S18). Despite this, the VPC plots (Figure S14, see chapter 3 supplementary) show that, the 

empirical percentiles still fall within the simulated bands. 
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Analysis 3: Which macaque subpopulations best predicted immune responses in different human 

subpopulations? 

 

 

Figure S25. Individual empirical data versus individual prediction for macaque estimated subpopulation-model 

parameters fit to human BCG: Y data (top) and BCG: N data (bottom) for Chinese cynomolgus macaques. 
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Figure S26.Individual empirical data versus individual prediction for macaque estimated subpopulation-model 
parameters fit to the human BCG: Y data (top) and BCG: N data (bottom) for Mauritian cynomolgus macaques. 
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Figure S27. Individual empirical data versus individual prediction for macaque estimated subpopulation-model 
parameters fit to the human BCG: Y data (top) and BCG: N data (bottom) for Indonesian cynomolgus macaques. 
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Figure S28. Individual empirical data versus individual prediction for macaque estimated subpopulation-model 
parameters fit to the human BCG: Y data (top) and BCG: N data (bottom) for Indian rhesus macaques
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Appendix D. Supplementary Material for paper 3 (chapter 4) 

 

 

 

 

 

 

Proposal of H56+IC31 vaccine mouse immunogenicity experiment for mathematical 

modelling project 

 

 

Contents 

1. Rationale for H56+IC31 vaccine mouse immunogenicity experiment 

2. H-series clinical trial summary 

3. Outline of mouse experiment 

a. Design 

b. Costing 
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1. Rationale for H56+IC31 vaccine mouse immunogenicity experiment 

 

Rationale for mouse experiment 

 

We aim firstly, to use mathematical models to describe the immune response following vaccination 

with novel TB vaccines in the H-series in mice and humans and secondly, to compare estimated model 

parameters across species and predict dose-dependent immune responses in humans based on 

mouse data. The vaccines under consideration are H56 and H1, both adjuvanted with IC31. The 

cytokine IFN-γ will be used as the immune response read out. Clinical data is available, providing 

adequate time points for modelling, but data in the mouse has been less extensively sampled. This 

experiment will address this gap. 

 

Aim of mouse experiment 

 

To conduct an experiment in mice to provide data matched to the clinical trial regimen and extend 

the same regimen to different dose concentrations.  

 

2. H series clinical trials summary 

 

The H series vaccines are currently in phases 1 of clinical development. Data on H-series vaccination 

given to health, BCG-vaccinated participants is taken from two clinical trials. Table D.1 summarises the 

clinical trials available for the modelling project from the two vaccines H1 and H56 all administered 

with the adjuvant IC31. 

 

To summarise the data, when pooling all the vaccine trials together: 

 There are a total of 18 participants included in the analysis who were not LTBI positive. 

 All were BCG vaccinated at least 2 years prior to start of the trial.  

 All received a dose concentration of 50 μg of antigen with 500 nmol of IC31.  
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 Participants received H-series vaccination at day 0 and day 56.  

 One trial administered a third H-series vaccination at a later time point, but this these 

data are not included in the analysis.  

 

The IFN-γ immune response was measured using an ELISPOT assay and measures were taken at 

various time points during the trials. These are outlined in table D.2. 
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 Clinical trial Information Data from Clinical trial used in our analysis 

Vaccine ClinicalTrials.gov 
ID/publication 

Phase Purpose of trial 
(taken from 
ClinicalTrials.gov) 

Country 
conducted 

Study arms Study 
arm 
used  

N Response 
measurement 
times (days) 

Median 
age 
(IQR) 

Gender Years 
since BCG 

H56+IC31 NCT01967134/[110] i Evaluation of the 
Safety and 
immunogenicity 
profile of 
H56+IC31 
administered to 
HIV-negative 
adults and 
without LTBI and 
no history or 
evidence of 
tuberculosis (TB) 
disease.  

South Africa 4. N=8, LTBI 
negative, dose = 
50 ug 
H56(+500nmol 
IC31), two 
vaccinations (day 
0, 56) 

5. N=8, LTBI positive, 
dose = 15 ug 
H56(+500nmol IC31), 
two vaccinations (day 
0, 56) 

6. N=9, LTBI positive, 
dose = 50 ug 
H56(+500nmol IC31), 
two vaccinations (day 
0, 56) 

1 8 0, 14, 56, 70, 
112 

32 (19–
38)  
 

M=4, 
F=4 

>10 
(assumed 
to be 
vaccinated 
at birth) 

H1+IC31 NCT00929396/[111] i A safety and 
immunogenicity 
Phase 1 Trial with 
an adjuvanted TB 
subunit vaccine 
H1+IC31 (Ag85B-
ESAT-6 + IC31) 
administered in 
PPD positive 
volunteers at 0 
and 2 months 

Netherlands 3. N=10, LTBI negative, 
BCG positive, dose= 
50 ug H1(+500nmol 
IC31), two 
vaccinations (day 0, 
56) 

4. N=10, LTBI positive, 
dose= 50 ug 
H1(+500nmol IC31), 
two vaccinations (day 
0, 56) 

1 10 0, 7, 42, 63, 
98, 224 

49 (24–
54) 
 

M=7, 
F=3 

>2 

Table D.1. Outline of the H56+IC31 and H1+IC31 phase i clinical trials and human demographics for each. Abbreviations: LTBI = Latent Tuberculosis Infection, IQR= Inter 

quartile range. 
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Vaccine 
2+ years 
previous 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

H56 BCG xH  X      XH  X      X                 

H1 BCG xH X     X  H X     X                  X 

Pooled 
(H56/H1) 

BCG xH X X    X  XH X X    X  X                X 

Table D.2. Outline of the data available for the H series clinical trials following the criteria of previous BCG vaccination and a 2 H vaccination regimen. Number 

correspond to weeks. Abbreviations: X = Blood taken for ELISPOT test; H = H vaccine administered; xH = blood taken before vaccination on the same day.
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5. Outline of mouse experiment 

 

a. Design 

 

Regimen: Based on the information from the clinical data Table D.1, it was decided that each mouse 

should receive two H56 vaccinations two weeks apart. This follows published mouse data with H56/H1 

[112, 113]. 

 

Dosing: Doses 0, 0.1, 0.5, 1, 5, 15 μg antigen / 100 nmol IC31 will be used in this experiment. A scaling 

factor of 5 from the human dose [110] for the adjuvant concentration was based on SSI previous work. 

No adverse events are anticipated related to these vaccine dose concentration in the mouse.  

 

Assay: An ELISPOT lab test will be used on mouse splenocytes using a 24 hour and 48 hours incubation 

time to test for significant differences between these two incubation times. 

 

Experiment Design: Each arm of the experiment contains groups of mice, each group containing five 

mice to act as replicates. Each group will be culled and spleens removed at different time points 

depending on the regimen they belong to. The corresponding data generated (within the arm) will be 

aggregated to represent the time course of that arm: 

 

 Regimen matched to H56 clinical time points. In the clinical trials, revaccination was 

given 8 weeks after primary vaccination with H-series vaccine [110], in the existing 

mouse experiments [112, 113], revaccination happened after 2 weeks. Using this time 

mapping (8 weeks human = 2 weeks mouse), the clinical ELISPOT time points were 

translated to the equivalent time points in the mouse. However, there were additional 

considerations to be applied that meant time points had to be shifted or removed, i.e: 

o Any time point that fell on a Friday was shifted to a Thursday to accommodate 

24 hours needed to generate ELISPOT data (without requiring weekend work). 

ELISPOT tests are preferentially taken on Monday and Thursday at LSHTM. 
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o If any time point that fell within a day of another time point, these were 

removed for reduction in cost and time required to conduct two group culls in 

two consecutive days. 

Table D.3 outlines the experiment design details, tables D.4 and D.5 outline the vaccination and culling 

times and table D.6 outlines dosing schedule calendar and culling time for each group of mice. 

 

Title Experiment to match to H series clinical vaccine regimen for 
modelling project 

Test species Mus musculus Balb/c x C57B1/6 (CB6F1) (F1 hybrid mouse 
breed) 

Vaccine H56 

Number of animals 240 + 24 (10%) 

Sex Female 

Administration 
frequency 

Two H56 vaccinations at week 0 and 2.  

Administration route Subcutaneous 

Dose concentrations Doses: 0 (Dose1), 0.1 (Dose2), 0.5 (Dose3), 1 (Dose4), 5 
(Dose5), 15 (Dose6) (all) / 100 nmol IC31  

Study arms Arm 1: 0 vaccinations 

Arm 2: 2 vaccinations of Dose 2 

Arm 3: 2 vaccinations of Dose 3 

Arm 4: 2 vaccinations of Dose 4 

Arm 5: 2 vaccinations of Dose 5 

Arm 6: 2 vaccinations of Dose 6 

Groups per arm (mice 
per group) 
 
 

Arm 1: 8 groups (5 per group) 

Arm 2: 8 groups (5 per group) 

Arm 3: 8 groups (5 per group) 

Arm 4: 8 groups (5 per group) 

Arm 5: 8 groups (5 per group) 

Arm 6: 8 groups (5 per group) 

Length of follow-up 8 weeks (56 days) 

Primary outcome 
measure 

IFN-γ production stimulated by protein vaccine H56 measured 
in the spleen by ELISPOT lab test 

Assay information ELISPOT cells to be done in duplicate, stimulated with H56, 
PHA (positive control) and PMA (negative control) 

Table D.3.  Outline of mouse experiment design 
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Week Dose 0 
H 

      1       2 
H 

      3       4 5 6 7 8 

Days  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29     

DOW  M T W T F S S M T W T F S S M T W T F S S M T W T F S S M M M M M 

Arm 1 0    X    X   X    X   X    X       X    X 

Arm 2 0.1    X    X   X    X   X    X       X    X 

Arm 3 0.5    X    X   X    X   X    X       X    X 

Arm 4 1    X    X   X    X   X    X       X    X 

Arm 5 5    X    X   X    X   X    X       X    X 

Arm 6 15    X    X   X    X   X    X       X    X 

Table D.4.  Dose = ug of H56 antigen. (H) = H56 given at this time point. X = group of 5 mice culled for ELISPOT. DOW = day of week 
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January 2016 

 

Monday Tuesday Wednesday Thursday Friday Saturday Sunday     
1 2 3 

       

4 5 6 7 8 9 10 

First vaccination 

AZ 

 
30 mice spleen harvest 

AZ spleens harvest 

& ELISPOT set-up 

ELISPOT 

SR 

ELISPOT 

SR/SP 

 

  

11 12 13 14 15 16 17 

30 mice spleen harvest 

AZ spleens harvest  

& ELISPOT set-up 

ELISPOT 

SR/LS  

30 mice spleen harvest 

AZ spleens harvest 

ELISPOT 

SR 

ELISPOT 

SR 

ELISPOT 

SR/SP 

  

18 19 20 21 22 23 24 

30 mice spleen harvest  

AZ spleens harvest 

LS ELISPOT set-up 

ELISPOT  

LS/SR 

2nd vaccination 

AZ 

 

30 mice spleen harvest 

AZ spleens harvest  

ELISPOT 

SR 

ELISPOT 

SR 

ELISPOT 

SR/SP 

  

25 26 27 28 29 30 31 
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30 mice spleen harvest  

FC spleens harvest 

LS ELISPOT set-up 

ELISPOT  

LS 

 

ELISPOT 

SR 

    

 

 

 

February 2016 

 

Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

1 2 3 4 5 6 7 

30 mice spleen harvest  

AZ spleens harvest 

SP cell prep 

LS ELISPOT set-up 

ELISPOT 

SR(?)/LS 

ELISPOT 

SR 

    

8 9 10 11 12 13 14 
       

15 16 17 18 19 20 21 
       

22 23 24 25 26 27 28 
       

29 1 
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30 mice spleen harvest  

AZ spleens harvest 

LS ELISPOT set-up  

ELISPOT 

SR/LS 

ELISPOT 

SR 

    

Table D.5. Mouse experiment calendar commencing 4/1/16. AZ=Andrea Zelmer, LS= Lisa Stockdale, SP= Satria Arief Parabow, SR= Sophie Rhodes



351 

 

b. Costing 

Table D.6 outlines an approximation of the costing of the two experiment regimens with regards to buying the mice and upkeep in the lab at LSHTM. Cost of 

upkeep is £26.50 per mouse per month and cost per mouse to buy is £22 (with a possible discount to £20, but prices below are calculated at £22). This costing 

assumes 4 weeks per month (not specified to any particular calendar month) and the cull day for each group is included in the stay. An additional 10% of the 

total mouse count is included to cover mice lost in the experiment due to events external to the experiment. Averages are used in table D.6 as duration of 

stay differs across mouse groups.  

Total Mice 285 (+ 29) 

Timings 

 Weeks Months 

Average time from day 1 to end of trial (calculated per group) 2.86  

Total (average) time at LSHTM 2.86 0.72 

Costs 

 GBP USD 

Cost per mouse per month £26.50  

(Approx) Cost to keep mice for duration £5,400  

Cost per mouse  £22  

Cost for Mice £6,270  

10% additional mice to cover any loss during trial (based on 8 weeks stay) £2,100  

(Approx.) Additional costs for lab equipment/vaccine etc.... £3,500  
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(Approx.) Total Cost for Trial £17,300 $27,000 

Table D.6.  Average cost of upkeep and cost of buying for entire experiment 

  



353 
 
 

 

Appendix E. Additional Discussion 
 

We have carried out some very preliminary, unpublished work to explore whether 

mathematical methods could be used to predict the ‘next best’ empirical experiment 

to most efficiently (i.e. fewer mice and/or financial cost) reduce the uncertainty on 

the optimal dose.  We evaluated a small number of modelling scenarios. Figure E.2A 

shows the confidence interval (CI) for the dose-response curve for day 56 data (Figure 

E.1C taken from paper 3, Figure 3) calculated using monte carlo sampling methods. 

The estimated best dose (green vertical line) and best dose 95% CIs (blue vertical lines) 

was 1.4 µg(log10) (CI 0.2-3.5 µg(log10)). The predicted effect of adding new empirical 

mouse data was simulated by sampling from a simple distribution, parameterized by 

the spread of empirical data. Figure E.2B & C shows two examples the predicted effect 

in reducing the uncertainty on the ‘best dose’, by allocating the mice to two different 

dosing experiments. Our preliminary results suggest, if we added five new mice to 

each dose (total 30 mice), the confidence intervals would narrow by 30% to (0.4, 2.7 

µg(log10)) (Figure E.2B). However, if we used the same total number of mice, but 

added 10 mice each on dose 1, 1.4 and 1.7 µg(log10), we could achieve a decrease of 

36% (0.4, 2.5 µg(log10)) (Figure E.2C). Our preliminary work has suggested that a) the 

maximum safe dose may not be the optimal dose for maximising immune response, 

and that b) novel quantitative methods may have utility for improving the efficiency 

of experimental design for optimising vaccine dose finding. 
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Figure E.1. (Figure taken from paper 3 [114]) Results of the dose-response curve fitting analysis for the time ranges A. between first and second vaccination (aggregated 
responses from days 2, 7, 9 and 14), B. post-second vaccination (days 21, 28 and 56) and C. Day 56 (last time point). Black points correspond to the number of IFN-γ 
secreting CD4+ T cells from one mouse spleen in response to vaccination for the relevant time range, red diamonds show the mean of the responses, the black solid lines 
are the peaked (gamma) fit, the black dashed line show the saturating (sigmoidal) curve fit and the vertical green line indicated the best dose as predicted by the peaked 
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curve fit. The table shows the differences in AICc for A,B and C between the saturating and peaked curve fits. The x-axis is log10(dose: μg H56+IC31) + 2 to transform the 
dose to a log scale and to ensure positivity, but x-axis labels show the non-logged value for clarity (to avoid infinite values, control (dose 0) is not logged). 
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Figure E.2. Modelling to explore the predicted effects of new empirical mouse experiments on reducing uncertainty in ‘best dose’. Simulated gamma-interferon secreting 
CD4+ T cells from the spleens of mice receiving H56+IC31 TB vaccine on the dose response confidence interval (CI) (at day 56 post first vaccination). The dotted line 
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represents the 95% CI using monte carlo sampling techniques, the green vertical line, the best dose as predicted by the gamma pdf curve fit to the original dose response 
curve data (at day 56), the blue lines, where the lower CI at best dose intersects the higher CI. Note, the curve (black line) and CI bounds (dotted line) are fit to 
log10(dose+2). 
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