Serum neurofilament light in familial Alzheimer disease
A marker of early neurodegeneration

ABSTRACT

Objectives: To investigate whether serum neurofilament light (NFL) concentration is increased in familial Alzheimer disease (FAD), both pre and post symptom onset, and whether it is associated with markers of disease stage and severity.

Methods: We recruited 48 individuals from families with PSEN1 or APP mutations to a cross-sectional study: 18 had symptomatic Alzheimer disease (AD) and 30 were asymptomatic but at 50% risk of carrying a mutation. Serum NFL was measured using an ultrasensitive immunoassay on the single molecule array (Simoa) platform. Cognitive testing and MRI were performed; 33 participants had serial MRI, allowing calculation of atrophy rates. Genetic testing established mutation status. A generalized least squares regression model was used to compare serum NFL among symptomatic mutation carriers, presymptomatic carriers, and noncarriers, adjusting for age and sex. Spearman coefficients assessed associations between serum NFL and (1) estimated years to/from symptom onset (EYO), (2) cognitive measures, and (3) MRI measures of atrophy.

Results: Nineteen of the asymptomatic participants were mutation carriers (mean EYO = 9.6); 11 were noncarriers. Compared with noncarriers, serum NFL concentration was higher in both symptomatic (p < 0.0001) and presymptomatic mutation carriers (p = 0.007). Across all mutation carriers, serum NFL correlated with EYO (p = 0.81, p < 0.0001) and multiple cognitive and imaging measures, including Mini-Mental State Examination (p = −0.62, p = 0.0001), Clinical Dementia Rating Scale sum of boxes (p = 0.79, p < 0.0001), baseline brain volume (p = −0.62, p = 0.0002), and whole-brain atrophy rate (p = 0.53, p = 0.01).

Conclusions: Serum NFL concentration is increased in FAD prior to symptom onset and correlates with measures of disease stage and severity. Serum NFL may thus be a feasible biomarker of early AD-related neurodegeneration. Neurology® 2017;89:2167–2175

GLOSSEARY

AD = Alzheimer disease; ALS = amyotrophic lateral sclerosis; CDR = Clinical Dementia Rating Scale; CI = confidence interval; EYO = estimated years from symptom onset; FAD = familial Alzheimer disease; FTD = frontotemporal dementia; MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination; NART = National Adult Reading Test; NFL = neurofilament light; PSP = progressive supranuclear palsy; QC = quality control; RMT = Recognition Memory Test; Simoa = single molecule array; SOB = sum of boxes; TIV = total intracranial volume; WASI = Wechsler Abbreviated Scale of Intelligence.

There is great interest in testing potential disease-modifying treatments for Alzheimer disease (AD) prior to onset of symptoms. To facilitate this, biomarkers are needed to identify at-risk individuals, stage their disease, and track disease progression. Ideally, such biomarkers should be noninvasive, inexpensive, and simple to acquire. Blood-based biomarkers would be very valuable but are more challenging than CSF measures for several reasons, including lower blood concentration of the target analyte, making reliable quantification more difficult.

*These authors contributed equally to this work.

From the Dementia Research Centre (P.S.J.W., T.P., N.S.R., A.N., Y.L., K.M., J.B.M., R.L.A., H.P., J.K., M.N.R., J.M.S., N.C.F.) and MRC Prion Unit (R.D., S.M.), Department of Neuropathological Diseases, UCL Institute of Neurology, Department of Medical Statistics (T.P.), London School of Hygiene & Tropical Medicine, UK; and Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology (K.B., H.Z.), the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.

Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
One promising neurodegeneration biomarker in CSF is neurofilament light (NfL), which increases in a number of neurologic conditions, including AD.4-8 NfL can be detected in serum using standard immunoassay formats,9,10 but many samples have concentrations below the analytical sensitivity of the methods.11 We therefore used a recently developed immunoassay based on the single molecule array (Simoa)12 that is 25-fold as sensitive as the previous electrochemiluminescence-based method for NfL.11

We measured serum NfL concentrations in familial AD (FAD) mutation carriers and mutation-negative relatives. FAD shares many features, pathophysiologically and clinically, with the more common sporadic form of disease.13 FAD mutation carriers have relatively predictable ages at onset,14 which allows prospective study of individuals prior to onset of clinical AD. We hypothesized that, with a more sensitive assay, elevated serum NfL would be detectable in FAD mutation carriers prior to symptom onset, and would correlate with disease stage and rate of decline.

METHODS

Standard protocol approvals, registrations, and patient consents. The study was approved by the local research ethics committee and all participants provided written informed consent.

Participants. We recruited 48 participants from 24 FAD families to a study at the Dementia Research Centre, University College London, between April 2010 and September 2015. Individuals were eligible if they had either a clinical diagnosis of FAD or a parent with FAD. Eighteen participants were symptomatic, with pathogenic mutations in the PSEN1 or APP genes; 30 individuals were asymptomatic but, by virtue of having an affected parent, were at 50% risk of having inherited a mutation and thereby of developing symptoms at a similar age to their parent (see table e-1 at Neurology.org for family mutations).

For all participants, genetic testing using Sanger sequencing was performed by board-certified laboratory technicians. Quality control (QC) sample with a concentration of 13.0 pg/mL, repeatability was 14.0% and intermediate precision was 15.7%. For a QC sample with a concentration of 131.8 pg/mL, repeatability was 13.3% and intermediate precision was 13.3%. All measurements were performed by board-certified laboratory technicians in one round of experiments using one batch of reagents.

MRI acquisition and analysis. MRI was obtained on 43 of the 48 participants at the time of the blood sample. Five participants were not scanned due to either declining or an inability to tolerate the scan (e.g., claustrophobia). For 33 of the 43 participants with an initial scan, a second scan was performed at a separate visit (mean interval ± SD = 1.3 ± 0.46 years); the other 10 individuals had no second scan due to either leaving the study (n = 5) or it finishing before their second scan date (n = 5).

All scans were performed on the same 3T Siemens (Munich, Germany) TIM Trio scanner using a 32-channel phased array head coil. A sagittal 3D magnetization-prepared rapid gradient echo T1-weighted volumetric MRI (echo time/repetition time/inversion time = 2.9/2,200/900 ms, dimensions 256 × 256 × 208, voxel size 1.1 × 1.1 × 1.1 mm) was acquired. Images were visually checked for artifacts. Four baseline scans and 2 follow-up scans were excluded due to either movement or metallic dental artifact, leaving 39 scans available for baseline volume measurements and 30 pairs of scans for rates of atrophy measurements. Whole brain, ventricular, and hippocampal volumes were calculated using semiautomated methods.26 For ventricles and hippocampi, the mean volume from right and left hemispheres was calculated. All volumes were corrected for total intracranial volume (TIV) by dividing a participant’s volume by TIV and multiplying by the group mean TIV. Annualized rates of brain, ventricular, and hippocampal volume change during the interscan interval were calculated using the boundary shift interval, a registration-based measure of within-subject volume change.21

Statistical analysis. The primary objective of the study was to compare serum NfL among symptomatic mutation carriers, presymptomatic mutation carriers, and noncarrier controls. A generalized least squares linear regression model, an extension of the t-test/analysis of variance model that allows different group-specific residual variances, was used to compare NfL between groups, adjusting for age and sex. Family was included as a random effect to assess any effect of clustering within a family.

Spearman correlation coefficients were calculated to assess the association between NfL and EYO, first across all mutation carriers and then with the more common sporadic form of disease.
Participants’ demographic details, cognitive scores, neuroimaging measures, and serum NfL values are shown in table 1 and figure 1. Of the asymptomatic participants, 19 were mutation carriers and 11 were noncarriers; noncarriers were used as healthy controls. The mean EYO of the presymptomatic mutation carriers was −9.6 years. Adjusting for age and sex, serum NfL concentration was significantly higher in symptomatic mutation carriers compared with presymptomatic mutation carriers (estimated difference in means 23.2 pg/mL, 95% confidence interval [CI] 13.1–33.2; \(p < 0.0001 \)) and with noncarriers (29.2 pg/mL, 19.3–39.1; \(p < 0.0001 \)). Presymptomatic mutation carriers had significantly higher NfL concentrations than noncarriers (6.1 pg/mL, 1.6–10.5, \(p = 0.007 \)). Allowing for clustering within a family had no effect on results.

Across all mutation carriers, there was evidence of an association between serum NfL concentrations and EYO (Spearman \(p = 0.81 \), \(p < 0.0001 \)), with individuals at a later disease stage having higher NfL concentrations (figure 2). Furthermore, this association was significant separately for both the presymptomatic (\(p = 0.55 \), \(p = 0.01 \)) and symptomatic (\(p = 0.49 \), \(p = 0.04 \)) groups. A post hoc linear regression analysis in mutation carriers found no statistically significant association between NfL and age, after adjusting for EYO (i.e., disease stage) (\(p = 0.15 \)).

Figure 3 shows scatterplots and Spearman coefficients for serum NfL against cognitive and imaging measures for all mutation carriers, with NfL concentration showing a relatively even distribution throughout the spectrum of disease severity.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Participant demographics, cognitive test scores, imaging measures, and serum neurofilament light (NfL) concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Noncarriers</td>
</tr>
<tr>
<td>n</td>
<td>11</td>
</tr>
<tr>
<td>Age, y, mean (SD)</td>
<td>38.9 (9.5)</td>
</tr>
<tr>
<td>Sex, M/F</td>
<td>3/8</td>
</tr>
<tr>
<td>EYO, y</td>
<td>—</td>
</tr>
<tr>
<td>MMSE/30</td>
<td>30.0 (30.0–30.0)</td>
</tr>
<tr>
<td>Global CDR</td>
<td>0 (0–0)</td>
</tr>
<tr>
<td>CDR SOB</td>
<td>0 (0–0)</td>
</tr>
<tr>
<td>NART predicted IQ</td>
<td>101.0 (7.1) (n = 10)</td>
</tr>
<tr>
<td>WASI IQ</td>
<td>110.1 (10.2) (n = 10)</td>
</tr>
<tr>
<td>Estimated change in IQ</td>
<td>9.1 (8.0) (n = 10)</td>
</tr>
<tr>
<td>Combined RMT average/50</td>
<td>46.5 (45.5–47.5) (n = 10)</td>
</tr>
<tr>
<td>Baseline brain volume (corrected for TIV), mL</td>
<td>1,220 (56) (n = 9)</td>
</tr>
<tr>
<td>Rate of whole brain atrophy, %/y</td>
<td>0.1 (0.4) (n = 8)</td>
</tr>
<tr>
<td>Baseline ventricular volume (corrected for TIV), mL</td>
<td>10.5 (5) (n = 9)</td>
</tr>
<tr>
<td>Rate of change in ventricular volume, %/y</td>
<td>0.6 (6.5) (n = 8)</td>
</tr>
<tr>
<td>Baseline hippocampal volume (corrected for TIV), mL</td>
<td>2.8 (0.3) (n = 8)</td>
</tr>
<tr>
<td>Rate of hippocampal atrophy, %/y</td>
<td>0.1 (1.0) (n = 8)</td>
</tr>
<tr>
<td>Serum NfL, pg/mL</td>
<td>12.7 (7.2)</td>
</tr>
</tbody>
</table>

Abbreviations: CDR = Clinical Dementia Rating Scale; EYO = estimated years from onset; MMSE = Mini-Mental State Examination; NART = National Adult Reading Test; RMT = Recognition Memory Test; SOB = sum of boxes; TIV = total intracranial volume; WASI = Wechsler Abbreviated Scale of Intelligence. Estimated change in IQ was calculated by subtracting the current IQ (measured by the WASI) from the predicted premorbid IQ (measured by the NART). All values are group means (with SD), except for constrained variables (MMSE, global CDR, CDR SOB, and combined RMT), which are shown as median (interquartile range). Measures are uncorrected for any covariables. For variables with missing data points, the number of observations is shown after the group average value (e.g., n = x).
were statistically significant correlations between serum NfL and cognitive measures, including MMSE, CDR SOB, and estimated change in IQ, with weaker evidence for a correlation with recognition memory score. In mutation carriers, there was a significant correlation between NfL and cross-sectional neuroimaging measures, including baseline brain volume, baseline ventricular volume, and baseline hippocampal volume. There was also a significant correlation between serum NfL and subsequent rate of change in both brain volume and ventricular volume, but not hippocampal volume. Repeating the analysis including data only from the 19 individuals who completed all assessments did not lead to material change in results, other than for NfL and combined RMT (p value changed from 0.06 to 0.6).

For presymptomatic carriers only, there was weak evidence of a correlation between NfL and baseline ventricular volume (p = 0.43, \(p = 0.08 \)) and between NfL and CDR SOB (p = 0.40, \(p = 0.08 \)), but no evidence of correlations with any other neuroimaging or cognitive measures.

When including only the 13 presymptomatic individuals with serial imaging, there remained a significant correlation between serum NfL and EYO (table 2). However, when assessing the correlations between each of the 6 imaging measures and EYO in the same individuals, none was statistically significant.

DISCUSSION Using an ultrasensitive immunoassay, we found serum NfL concentrations are increased in a group of symptomatic FAD mutation carriers who on average are only mildly clinically affected (median global CDR 0.5); we also found increased NfL concentrations in presymptomatic mutation carriers, who were on average 9 years from their predicted symptom onset. Serum NfL correlated significantly with the estimated years to/from symptom onset (EYO) across all mutation carriers, as well as in the symptomatic and presymptomatic groups separately.

Across all carriers, serum NfL correlated with CDR SOB and several cognitive measures. There was also a correlation between serum NfL and MRI measures of AD-related neurodegeneration, both in terms of cross-sectional volume loss and subsequent rates of atrophy. This suggests serum NfL concentrations may relate to disease severity or rate of progression.

Our serum NfL concentrations for symptomatic FAD are similar to a recent study of sporadic AD that used the same ultrasensitive immunoassay approach.\(^{22}\) The mean concentration for our symptomatic group (46.0 pg/mL) (which contained a mixture of mild cognitive impairment [MCI] and AD dementia) lies between their mean values for separate sporadic MCI (42.8 pg/mL) and AD dementia (51.0 pg/mL) groups. However, here we extend previous findings by showing that measurable increases in serum NfL precede the onset of symptomatic disease, and are correlated with predicted time to symptom onset. The observed progressive presymptomatic rise is consistent with proposed models of presymptomatic AD neurodegeneration.\(^{23}\)

NfL forms an important part of axonal structural integrity, with its rise likely to reflect early axonal breakdown.\(^{24}\)

Our finding of a presymptomatic increase in serum NfL in FAD mutation carriers contrasts with findings from familial amyotrophic lateral sclerosis (ALS), where no increase was detected until after symptom onset despite symptomatic ALS participants having much higher concentrations than has been detected in either familial or sporadic AD.\(^{25}\) This likely reflects differences in the underlying biology and temporal pattern of neurodegeneration in AD vs ALS. ALS is a more aggressive neurodegenerative process in the symptomatic stage, but without the long, gradually progressive presymptomatic phase characteristic of AD. Importantly, atrophy rates are raised in the 5 years before symptoms in FAD and amyloid deposition appears even earlier.\(^{26–28}\)
The correlation of serum NfL with cognitive measures known to be sensitive to AD-related decline supports the clinical relevance of NfL. While early cognitive changes in FAD most commonly involve episodic memory,29 we found that serum NfL correlated more strongly with global cognitive measures than with memory scores. This may relate to the physiologic role of NfL throughout the brain as an essential component of axonal stability, with initial rise possibly reflecting subtle widespread breakdown of neural networks, rather than focal, hippocampal (gray matter) atrophy. The possibility that elevated serum NfL levels more closely reflect global neurodegeneration is also supported by its correlation, across all carriers, with whole brain and ventricular volume loss. This contrasts with findings in other neurodegenerative diseases, including progressive supranuclear palsy (PSP) and frontotemporal dementia (FTD), where disease-specific focal atrophy appeared to be more strongly associated with NfL than whole brain atrophy.10

It is notable that, while serum NfL correlated significantly with disease stage (i.e., EYO) even when including only presymptomatic participants, imaging and cognitive measures did not. Serum NfL may therefore be a more sensitive marker of early neurodegeneration.

When measured in the CSF of individuals with MCI, NfL has been found to be predictive of subsequent progression to AD dementia.4 Recent studies comparing NfL measurement in CSF and serum have shown close correlation, implying serum NfL may similarly predict subsequent progression, in keeping with our results.

A study in a FAD mouse model, which knocked out the NfL gene, showed that NfL deficiency significantly increased AD-related neurodegeneration, a finding that might suggest a role for NfL in maintaining neuronal structure in patients with AD.31 Moreover, in APP/PS1 mice, histopathologic examination found NfL-positive neuritic abnormalities, consistent with increased NfL in AD, signifying underlying axonal damage.10 The same study showed serum NfL concentrations increased early in the disease and were closely associated with progression of AD-like pathology. Serum NfL concentrations decreased in response to anti-Aβ immunotherapy, the authors suggesting that serum NfL may serve as a biomarker of treatment response.

There are obvious benefits to identifying AD biomarkers in blood,2 with numerous candidates proposed.52 However, recent comprehensive meta-analyses of blood-based markers showed only total tau reliably differentiated AD from healthy controls.3,33 Moreover, blood tau has only proven useful in identifying AD in established dementia cases, with no evidence that it is useful in earlier disease, and there is often overlap between patient and control groups.3,32 Studies attempting to measure blood concentrations of Aβ1-42, the other core molecular marker of AD pathology, have so far produced conflicting results, with no strong overall evidence of a difference between AD and controls.3,32 Furthermore, even if β-amyloid moieties could be reliably identified and quantified, as cerebral Aβ deposition is thought to plateau some time before symptom onset,28 it may not track progression unless very early in disease. By contrast, a marker of downstream neurodegeneration, such as NfL, which may reflect ongoing (global) disease activity, might be useful as a trial outcome measure, from presymptomatic to symptomatic phases. A blood test for neurodegeneration might also be useful clinically in identifying which individuals with cognitive concerns to prioritize for more detailed investigation.

A number of studies investigated plasma or serum profiles in an attempt to identify a pathologic fingerprint of AD, using profiling approaches including proteomics, lipidomics, and transcriptomics.34–36 However, poor reproducibility remains an issue when assessing large panels of molecules involved in potentially diverse biological pathways, with several follow-up studies showing negative results.37–39 Although our
findings find support from previous studies of serum NfL in symptomatic AD,9,10,22 it will be important (1) to replicate the presymptomatic findings, before now shown only in mice,10 in other at-risk FAD and sporadic AD cohorts (e.g., in amyloid-positive older controls); and (2) to determine the clinical outcomes in these individuals to assess the predictive value and time course of increases in serum NfL.

While our results are encouraging, there are a number of issues regarding the utility of NfL as a biomarker of early AD. While as a group the presymptomatic carriers had higher mean NfL than noncarriers, there was a degree of overlap in observed

Figure 3 Scatterplots of serum neurofilament light (NfL) against cognitive and imaging measures across all mutation carriers

Spearman \(\rho\) and the associated \(p\) value are shown for each scatterplot. Estimated change in IQ was calculated by subtracting the current IQ (measured by the Wechsler Abbreviated Scale of Intelligence) from the predicted premorbid IQ (measured by the National Adult Reading Test). CDR SOB = Clinical Dementia Rating Scale sum of boxes; MMSE = Mini-Mental State Examination; RMT = Recognition Memory Test.
Table 2 Presymptomatic correlations between biomarkers and estimated years from symptom onset (EYO)

<table>
<thead>
<tr>
<th>Correlation between EYO and:</th>
<th>Spearman ρ</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum NfL</td>
<td>0.73</td>
<td>0.005</td>
</tr>
<tr>
<td>MMSE</td>
<td>0.09</td>
<td>0.8</td>
</tr>
<tr>
<td>CDR SOB</td>
<td>0.51</td>
<td>0.07</td>
</tr>
<tr>
<td>Estimated change in IQ</td>
<td>-0.23</td>
<td>0.5</td>
</tr>
<tr>
<td>Average RMT</td>
<td>0.52</td>
<td>0.07</td>
</tr>
<tr>
<td>Baseline brain volume</td>
<td>-0.43</td>
<td>0.1</td>
</tr>
<tr>
<td>Rate of whole brain atrophy</td>
<td>0.09</td>
<td>0.8</td>
</tr>
<tr>
<td>Baseline ventricular volume</td>
<td>0.36</td>
<td>0.2</td>
</tr>
<tr>
<td>Rate of change in ventricular volume</td>
<td>0.52</td>
<td>0.07</td>
</tr>
<tr>
<td>Baseline hippocampal volume</td>
<td>-0.07</td>
<td>0.8</td>
</tr>
<tr>
<td>Rate of hippocampal atrophy</td>
<td>0.18</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Abbreviations: CDR SOB = Clinical Dementia Rating Scale sum of boxes; MMSE = Mini-Mental State Examination; NfL = neurofilament light; RMT = Recognition Memory Test; TIV = total intracranial volume.

Estimated change in IQ was calculated by subtracting the current IQ (measured by the Wechsler Abbreviated Scale of Intelligence) from the predicted premorbid IQ (measured by the National Adult Reading Test). Spearman correlation coefficients for serum NfL, cognitive test scores, and imaging measures against EYO, in presymptomatic participants only. To allow for direct comparisons between the different measures, only the 13 presymptomatic mutation carriers for whom serum NfL and serial imaging measures were available are included.

values. The utility of serum NfL to diagnose pre-symptomatic AD at the individual level therefore remains uncertain and needs reassessment in independent cohorts. The changes in serum NfL through the course of the disease were analyzed in cross-sectional data only, so it is also not known whether serum NfL tracks progression at an individual level. Also, while our findings support the use of serum NfL as a marker of neurodegeneration in AD, NfL is not a specific marker to AD and has been shown to increase in a number of other conditions, including HIV-associated dementia, PSP, FTD, and ALS.19-25,30,40 It may therefore be that serum NfL will be most useful for identifying and tracking AD-related neurodegeneration when combined with a test to confirm underlying AD molecular pathology, e.g., CSF tau/Ab$_{1-42}$ or amyloid PET.

Our study has limitations. The sample size was not large, owing primarily to the relative rarity of FAD mutations. However, this remains one of the largest single-center FAD cohorts yet reported. For a number of participants, not all cognitive and imaging assessments were completed. However, minimal changes were seen when rerunning the analyses to include only those participants who had completed all assessments. We estimated the age when each mutation carrier would be expected to develop symptoms based on parental age at onset, which is closely associated with actual age at onset41; however, this remains a proxy measure, and it is only with longitudinal follow-up that age at onset can be confirmed.

We show, using an ultrasensitive assay, that serum NfL concentration is increased in FAD prior to symptomatic disease, and correlates with the number of years to/from predicted symptom onset. Serum NfL also correlated with neuroimaging and cognitive markers of disease severity. Our findings support the further investigation of serum NfL as an easily accessible biomarker of early AD-related neurodegeneration.

AUTHOR CONTRIBUTIONS

P. Weston contributed to the conceptualization and design of the study, collection, analysis, and interpretation of the data, and drafting/revising of the manuscript. T. Poole led the statistical analysis and interpretation of the data and assisted in the drafting/revising of the manuscript. N. Ryan contributed to the collection of the data and drafting/revising of the manuscript. A. Nair contributed to the interpretation of the data and drafting/revising of the manuscript. Y. Liang contributed to the collection of the data and drafting/revising of the manuscript. K. Macpherson contributed to the collection of the data and drafting/revising of the manuscript. R. Dunjic contributed to the analysis of serum samples and drafting/revising of the manuscript. J. Malou contributed to the imaging analysis and drafting/revising of the manuscript. L. Ahsan contributed to the imaging analysis and drafting/revising of the manuscript. R. Bengtsson contributed to the conceptualization and design of the study, analysis of serum samples and interpretation of results, and drafting/revising of the manuscript. H. Pemberton contributed to the imaging analysis and drafting/revising of the manuscript. J. Klomova contributed to the imaging analysis and drafting/revising of the manuscript. S. Mead contributed to the analysis of serum samples, interpretation of the data, and drafting/revising of the manuscript. K. Blennow contributed to the analysis of serum samples, interpretation of the data, and drafting/revising of the manuscript. M. Rossor contributed to the interpretation of the data and drafting/revising of the manuscript. J. Schott contributed to the interpretation of the data and drafting/revising of the manuscript. H. Zetterberg contributed to the conceptualization and design of the study, analysis of serum samples and interpretation of results, and drafting/revising of the manuscript. N. Fox contributed to the conceptualization and design of the study, interpretation of results, and drafting/revising of the manuscript.

ACKNOWLEDGMENT

The authors thank the participants and their families for their participation and Professor Chris Frost for his advice regarding the statistical analysis.

STUDY FUNDING

P.S.J.W. is supported by an MRC Clinical Research Training Fellowship. N.S.R. is supported by a Brain Exit Fellowship. A.N. is supported by a Wellcome Trust Fellowship. S.M. acknowledges support from the Swedish Royal Academy of Sciences, the Research Council Sweden, the Brain Foundation Sweden, and the Alzheimer Foundation Sweden. M.N.R. and N.C.F. are NIHR Senior Investigators. The Dementia Research Centre is an ARUK Coordinating Centre and is grateful for support from the NIHR Biomedical Research Centre, the Swedish Royal Academy of Sciences, the Research Council Sweden, the Brain Foundation Sweden, and the Alzheimer Foundation Sweden. N.S.R. is supported by a Wolfson Foundation fellowship. S.M. receives support from the Swedish Royal Academy of Sciences, the Research Council Sweden, the Brain Foundation Sweden, and the Alzheimer Foundation Sweden. M.N.R. and N.C.F. are NIHR Senior Investigators. The Dementia Research Centre is an ARUK Coordinating Centre and is grateful for support from the NIHR Biomedical Research Centre, the Swedish Royal Academy of Sciences, the Research Council Sweden, the Brain Foundation Sweden, and the Alzheimer Foundation Sweden. M.N.R. and N.C.F. are NIHR Senior Investigators. The Dementia Research Centre is an ARUK Coordinating Centre and is grateful for support from the NIHR Biomedical Research Centre, the Swedish Royal Academy of Sciences, the Research Council Sweden, the Brain Foundation Sweden, and the Alzheimer Foundation Sweden. N.S.R. is supported by a Wolfson Foundation fellowship. S.M. receives support from the Swedish Royal Academy of Sciences, the Research Council Sweden, the Brain Foundation Sweden, and the Alzheimer Foundation Sweden. M.N.R. and N.C.F. are NIHR Senior Investigators.

DISCLOSURE

P. Weston, T. Poole, N. Ryan, A. Nair, Y. Liang, K. Macpherson, R. Dunjic, J. Malone, L. Ahsan, H. Pemberton, J. Klomova, and S. Mead report no disclosures relevant to the manuscript. K. Blennow has served as a consultant or at advisory boards for Alzheon, Eli Lilly, Fujirebio...
Europe, IBL International, Novartis, and Roche Diagnostics, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB, a GU Venture-based platform company at the University of Gothenburg. M. Rossor reports no disclosures relevant to the manuscript. J. Schott has received research funding from AVID Radiopharmaceuticals (a wholly owned subsidiary of Eli Lilly), has consulted for Roche Pharmaceuticals and Eli Lilly, and serves on a Data Safety Monitoring Committee for Axon Neuroscience SE. H. Zetterberg is a co-founder of Brain Biomarker Solutions in Gothenburg AB, a GU Venture-based platform company at the University of Gothenburg. It has served on scientific advisory boards of Roche Diagnostics, Eli Lilly, and Pharmacia Therapeutics. N. Fox reports fees (paid to University College London) for consultancy from Jansen, Eli Lilly, Novartis, Sanofi, Roche/Genentech, and GlaxoSmithKline and for serving on a data monitoring committee for Biogen. Go to Neurology.org for full disclosures.

Received April 14, 2017. Accepted in final form August 21, 2017.

REFERENCES

Serum neurofilament light in familial Alzheimer disease: A marker of early neurodegeneration
Philip S.J. Weston, Teresa Poole, Natalie S. Ryan, et al.
Neurology 2017;89;2167-2175 Published Online before print October 25, 2017
DOI 10.1212/WNL.0000000000004667

This information is current as of October 25, 2017

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/89/21/2167.full.html

Supplementary Material
Supplementary material can be found at:
http://n.neurology.org/content/suppl/2017/10/25/WNL.0000000000004667.DC1
http://n.neurology.org/content/suppl/2017/10/25/WNL.0000000000004667.DC2

References
This article cites 37 articles, 4 of which you can access for free at:
http://n.neurology.org/content/89/21/2167.full.html##ref-list-1

Citations
This article has been cited by 1 HighWire-hosted articles:
http://n.neurology.org/content/89/21/2167.full.html##otherarticles

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Alzheimer's disease
http://n.neurology.org/cgi/collection/alzheimers_disease

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://n.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/misc/addir.xhtml#reprintsus