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Abstract 

Many datasets, especially from surveys, are made available to users with weights. Where the 

derivation of such weights is known, this information can often be incorporated into the 

user’s substantive model (model of interest). When the derivation is unknown, the 

established procedure is to carry out a weighted analysis. However, with non-trivial 

proportions of missing data this is inefficient and may be biased when data are not missing at 

random. Bayesian approaches provide a natural approach for the imputation of missing data, 

but it is unclear how to handle the weights. In this article, we propose a weighted bootstrap 

MCMC algorithm for estimation and inference. A simulation study shows it has good 

inferential properties. We illustrate its utility with an analysis of data from the Millennium 

Cohort Study. 
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Introduction 

 

When analysing survey data, often the data are supplied with weights (e.g. representing the 

design, or to account for non-response). In addition, covariates in our substantive model may 

also have missing data so that in such cases we require models that can simultaneously handle 

both weights and missing data. This has been an active research field, comprehensively 

summarized in Ch. 7-9 of the Handbook of Missing Data Methodology (Molenberghs et al 

2015) 

 

Goldstein, Carpenter and Browne (2014) describe an efficient, general, fully Bayesian 

procedure for handling missing data in a multilevel setting. This does not require multiply 

imputed data sets with the application of Rubin's rules. In this article, we show how this 

approach can be extended to include weights, where we do not wish to, or cannot, condition 

our inferences on either the weights or the (possibly complex functions of) variables that are 

used in their estimation. This is important when we wish to estimate marginal quantities or 

population averaged regression relationships which do not condition on either the weights or 

the variables that are used to estimate the weights. We note that Bayesian approaches to the 

estimation of finite population parameters such as proportions utilise models that include 

functions of weights. Such models, however, do not address the issue of missing data nor the 

main aim of the present paper, which is concerned with inferences about parameters in the 

model of interest, which itself does not explicitly contain any function of the weights (see 

Chen, Elliott and Little, 2010, for a discussion).  

 

Thus, unit weights in this article derive from the study design where, for example, records are 

stratified and weights are used to recover population information, or where units  are missing 

and we wish to assign weights on the basis of auxiliary data, such as interviewer observations 

or geographical information. Where individual items are missing we invoke the Bayesian 

imputation procedure given in Goldstein et al (2014). The present paper derives an inferential 

procedure that simultaneously incorporates both individual unit weights and item missingness. 

We will assume that values are missing either ‘completely at random’ (MCAR) or ‘at random’ 

(MAR). In the latter case we assume that covariates in the model of interest or auxiliary 

variables that enter the imputation part of the model are sufficient, when conditioned on 
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(either explicitly or through the weights), to so that the missingness mechanism can be 

adjusted for (Rubin, 1987). 

 

For example, consider an analysis of data from wave 2 of the Millennium Birth Cohort Study 

(Plewis, 2007), when the children were approximately 3 years old. The study is a multi-

disciplinary research project following the lives of around 19,000 children born in the UK in 

2000-01. The participants were selected from a random sample of electoral wards, that were 

stratified by a measure of deprivation and by a measure of the concentration of Black and 

Asian families, so that areas of high deprivation and high concentrations of these ethnic 

minorities were over-represented. In our example, we seek to understand the relationship 

between the Bracken score of school readiness and the logarithm of family income at the 

wave 2 follow-up (14% missing values), whether the child has ever had hearing problems (14% 

missing values), and the number of siblings in the study child's household (no missing values). 

Overall there are 26% of records with at least one missing value. Further details are provided 

in Section 2 below. 

 

Unfortunately, it is not obvious how directly to incorporate weights in a fully Bayesian 

framework, and a discussion of this issue can be found in Gelman (2007). The approach of the 

present paper is a hybrid one where a Bayesian model is used to handle the missing data and 

a bootstrap is used to incorporate the information from the weights. In this way, the posterior 

estimates incorporate the information in the weights without being conditioned on them.  

Dong et al (2014) propose a procedure that has similarities to our own, although discussed in 

terms of generating ‘synthetic’ samples. They adopt a two stage procedure. At the first stage 

they select a set of bootstrap samples from the observed data. Each of these has observations 

with associated weights. At the second stage a weighted (bootstrap) sample is chosen from 

each of these resulting in an equally weighted sample representative of the population of 

interest. Appropriate models are then fitted to each of these samples and inference carried 

out utilising the first stage set of bootstrap replicates. As they point out, missing values can 

be incorporated via standard multiple imputation algorithms. Zhou et al. (2016) propose 

essentially the same procedure, with the specific aim of handling missing data when weights 

are present. They use a chained equation method for multiple imputation and in their 

example their models of interest are fitted by maximum likelihood. 
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In the present paper, using a slightly different formulation but still involving a two stage 

bootstrap, we extend these ideas by utilising the fully Bayesian estimation method for missing 

data proposed by Goldstein et al. (2014). This simultaneously fits the substantive scientific 

model and imputes any missing data. It also allows full flexibility in fitting interaction and 

power terms in the substantive model of interest  

 

The outline for the paper is as follows. We begin by describing our motivating example in 

Section 2. In Section 3 we describe our proposal in the absence of missing data. In Section 4 

we build on Goldstein et al (2014), utilizing the Bayesian approach to handle missing data 

(under the missing at random assumption). We then explore the behaviour of our proposal 

using simulations in Section 5 and apply it to our analysis of data from wave 2 of the 

Millennium Cohort Study. We conclude with a discussion. 

2. The Millennium Cohort Study 

The data consist of 13294 records from the Millennium Cohort Study at wave 2 (around three 

years of age) (see Plewis, 2007 for sample details). We seek to understand factors affecting 

school readiness. Our substantive model is an additive linear regression of the square root of 

the Bracken school readiness score on three explanatory variables: loge(wave 2 family 

income), whether the child has hearing problems (1=yes; 0=no), and the number of siblings. 

The pattern of missing values is shown in Table 1. A description of the weights, derived from 

the sample design and taking account of attrition and non-response can be found in Plewis 

(2007). 

  

Table 1: Missing value patterns in the wave 2 MCS analysis: Missing; 0bserved 

Percentage Hearing Loge(income) 

74% Observed Observed 

12% Observed Missing 

12% Missing Observed 

2% Missing Missing  

 

The estimates using the 74% complete records, with and without weighting, are given in 

columns 2 and 3 respectively of Table 6. 



5  15/12/2017 

 

3. A Hybrid MCMC algorithm for Bayesian estimation incorporating 

weights 

We now outline the core of our proposed algorithm. Our illustrative substantive model of 

interest (which we later generalise) is, for a sample of size N, 

𝑦𝑖 = 𝑥𝑖𝛽 + 𝑒𝑖,      𝑒𝑖~𝑁(0, 𝜎
2),   𝑖 = 1,… ,𝑁      (1) 

where 𝑦𝑖 is the response and 𝑥𝑖  is a vector of covariates, and we write the response vector 

and covariate matrix as 𝑌 = {𝑦𝑖}, 𝑋 = {𝑥𝑖}. 

 

As it stands (1) can be fitted by a variety of algorithms. So that we are able to incorporate 

cases with missing values we fit this using a Bayesian Markov Chain Monte Carlo (MCMC) 

algorithm. This requires us to specify priors for the parameters and for present purposes we 

have chosen weak default priors. For the set of regression coefficients and the variance a 

Gibbs sampling step is used and in the next section when we introduce missing values a 

Metropolis step is used (see Goldstein et al., 2014). As in our previous work, in the following 

models we have chosen the following independent default priors, namely for each of the 

regression coefficients diffuse priors 𝑝(𝛽) ∝ 1 and for the variance 

𝜎−2~𝑔𝑎𝑚𝑚𝑎 (0.001,0.001). 

In general, informative priors may be appropriate for the model of interest, but this raises no 

new issues and we shall not pursue this possibility. We note, however, that in the context of 

multilevel models where the number of higher level clusters is not large, then the choice of 

default priors for the corresponding variance parameters needs careful consideration 

(Gelman, 2006). 

 

Now suppose the data {𝑦𝑖, 𝑥𝑖}, 𝑖 = 1, … , 𝑁, are supplied with corresponding weights, 𝑊 =

{𝑤𝑖}, which are inversely proportional to the sampling probabilities. Thus, standard weighted 

regression will give valid estimates of population parameters estimates, though not valid 

estimates of other inferential quantities such as standard errors. Hence in frequentist 

inference, sandwich variance estimators are often used.  
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3.1 Using the bootstrap for inference: a two stage procedure 

 

 

To introduce our proposal we first consider an intuitive one-stage bootstrap approach that is 

outlined in steps A1 and A2 below and then discuss its limitations and why a two-stage 

bootstrap is required.  

 

Consider a weighted nonparametric bootstrap that draws bootstrap samples where records 

are selected using the weights. This then provides a ‘representative’ sample which can fit into  

a Bayesian framework where missing data are handled, with inferences made from the set of 

boostrap sample estimates. The following steps are used, where step A2 uses the MCMC 

algorithm of Goldstein et al (2014), as follows: 

 

Step A1. 

Select a sample with replacement from {𝑦𝑖, 𝑥𝑖}, 𝑖 = 1, … , 𝑁 using the weights W; 

Step A2. 

Perform one iteration of  the MCMC chain for the parameters,. 

 

Steps A1 and A2 are repeated for r iterations. If there are no missing values, then the resulting 

chain gives valid inference for the regression parameter means. This follows because the 

weights have been chosen so that, for each weighted sample, the expectation of the 

regression parameters is equal to the population values. 

 

However, if there are missing data, then at each step A2 we need to additionally generate 

Bayesian draws for the missing values. At step A2 we therefore need a suitable burn in, s, for 

these. We consider the choice of r, s and b in Subsection 3.2 below. 

 

While one might suppose that steps A1 and A2 alone would be sufficient for valid inference, 

in fact this is not the case; the weighting causes underestimation of standard errors (which 

we have illustrated empirically, see Table 4 column 1).  Our intuition for this is as follows: 

when the sampling probabilities (and hence the weights) are a function of the dependent or 

response  variable, the elements of a weighted bootstrap sample are independent, 
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conditional on the weights (for example within strata defined by weights). Our model of 

interest, however, does not condition on the weights and in effect marginalises over the 

weights, so that the elements will no longer be independent. To address this inferential 

problem, we propose to embed steps A1 and A2 in an outer level, equally weighted, bootstrap 

that thus ensures independence, as follows: 

 

Step B1. 

Select an equally weighted sample of size N with replacement from {𝑦𝑖 , 𝑥𝑖}, 𝑖 = 1, … , 𝑁 

(keeping the weight for unit 𝑖).  

Step B2. 

Apply steps A1 and A2. 

  

We then repeat steps B1 and B2 m times. We will refer to the two stages, ‘B’ and ‘A’, as, 

respectively first and second stage bootstraps. 

 

In conventional MCMC, we typically run steps A1 and A2 a large number, K, of times to obtain 

parameter estimates. We propose instead to save computational time by choosing r and m 

so that mr=K.  Our parameter estimates and bootstrap standard errors are calculated as 

follows: 

 

For each cycle i=1,…m,  of stage B, we obtain j=1,…r draws of the vector of model parameters, 

denoted {𝜃𝑖𝑗}. 

Our point estimate of 𝜃 is then 

𝜃 = 1

𝑚𝑟
 ∑ 𝜃𝑖𝑗𝑖𝑗 , 

with estimated covariance matrix 

𝛴̂ = 1

𝑚
∑ 𝜃̃𝑖.

𝑡𝜃̃𝑖.𝑖 , 

where 𝜃𝑖 . =
1

𝑟
 ∑ 𝜃𝑖𝑗 ,𝑗  𝜃𝑖̃ = (𝜃𝑖̂. −𝜃), and for inference we either assume 𝜃~𝑁(𝜃, 𝛴̂) or choose 

m sufficiently large that we can use bootstrap estimates of the quantiles to derive  interval 

estimates.   
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3.2 Choosing m, r and s  

 

For the bootstrap estimate of standard errors, values of m in the range 50-200 have been 

suggested (Efron and Tibshirani, p14), although more will be needed for estimating a 

covariance matrix. We therefore evaluated m=100 in our simulation study below.  

In the inner bootstrap, we initially chose r=25 to give an overall chain length of K=mr=2500 

for estimating the parameter means. In the simulation study we have explored whether 

inference was compromised by smaller values. Lastly, with missing data, we need to choose 

s, the burn in at each step A2 before drawing the values to propagate through the algorithm.  

Since, after the initial burn in, the parameter estimates are stable, it seems intuitively that s 

can be relatively small; we compare s=1 and s=5 below. 

 

3.3 Further comments 

 

We note that this procedure can be used for any model for which an MCMC algorithm exists; 

this includes multilevel and cross-classified data. Similarly, any pattern of missing data can be 

accommodated. To correctly handle non-linear relationships and interactions when data are 

missing we use the fully Bayesian missing data model suggested by Goldstein, Carpenter and 

Browne (2014), as described above. 

 

In order to preserve the properties of the bootstrap, and ensure consistent estimates, where 

the same record with a missing value is sampled more than once in a stage 2 draw, the 

imputed values should be constrained to be equal. This is most conveniently done by imputing 

for the first occurrence of the record and copying the imputed value to the second and 

subsequent occurrences, and is implemented in our software. 

 

Starting values for the missing values need to be given at each step A2, and good choices will 

considerably speed up the algorithm. Our proposal, that we use in our examples, is that the 

algorithm is initiated by estimating the predictive distribution using complete cases in the 

weighted selection drawn the first time step A2 is executed.  
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4. Simulation study 

We evaluate our proposals for m, r and s using a simulation study where the weights are 

related to population strata means. We show a sequence of analyses where we vary the 

number of bootstraps, the sample size and the burn in period for the missing values. 

 

We consider 10 strata. In each stratum (j =1,….,10) define a multivariate normal distribution 

(
𝑦𝑗
𝑋𝑗
)~𝑁(𝜇𝑗, Ωj) where    𝜇𝑗 = (

𝑗

10
,
𝑗

10
,
𝑗

10
,
𝑗

10
,
𝑗

10
). 

We set up the following population model of interest with four explanatory variables 

 𝑦 = 𝑋𝛽 + 𝑒 

𝑦 = {𝑦𝑗}, 𝑋 = {𝑋𝑗} ,  Ω𝑗 = 
1

𝑗

(

 
 

2
1 2.5
1
1
1

1.5
1.5
1.5

2.5
1.5
1.5

2.5
1.5 2.5)

 
 
         (6) 

  

so that the relationship varies across strata. 

Given the definition of the population, we can consider drawing a simple random sample of 

any given size. We shall draw a very large such sample (𝑛 = 106) to obtain good estimates of 

our population parameters.  Thus, given the parameter values in (6)  for stratum 𝑗 = 1, the 

mean population coefficient is estimated as 0.14 and for stratum 10 it is 0.23. For the overall 

model the population coefficient estimates are 𝛽 = ( 0.175, 0.174, 0.173, 0.174). The basic 

sample size for analysis is 1000 and we draw equal numbers from each stratum so that the 

weights are ∝ 1/√𝑗 . We also study the effect of increasing this sample size. 

  

We note that the values of the population units have a distribution that is a weighted normal 

mixture. Thus the marginal conditional relationship in our model is strictly misspecified. For 

our purposes however, we are interested in this model as a summary and our purpose is to 

explore whether the proposed algorithm, using the same distributional assumptions, yields 
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the same summary estimates as would be obtained by fitting the population model to a 

simple random sample from the population.  

Table 2 shows results for 2 different missing value burn in sizes, with 100 first stage 

bootstraps, a sample size of 1000, and 25 second stage weighted bootstraps for each first 

stage bootstrap. We randomly and independently choose about 15% of values for variables 

2-4 to be missing and on average about 40% of records have at least one missing value.  

 

Table 2. Simulation results based on 100 simulations for sample size N=1000 using bootstrap 

weighting with MCMC estimates with stratum sizes ∝ 1/√𝑗. For each sample the (absolute) 

percentage relative bias and 95% interval % coverage estimate* (in brackets) are shown. 
The number of second stage bootstrap weighted selections for each (of m) first stage equally 
weighted bootstrap is 25 with 100 first stage bootstraps. An overall burn in of 500 is used. 

𝜷̅ is the mean coverage and bias taking account of the sign. Fifteen percent of the values in 
variables 2,3 and 4 are independently  set to be randomly missing. Second stage missing 
data burn in (s) values are shown. Starting values for missing values are chosen as the means 
over the non-missing values and a normal proposal distribution uses the conditional 
variance. 

Parameter N=1000 

s 1 5 

𝛽1 16.3 (93.0) 4.3 (94.0) 

𝛽2 2.7 (92.0) 0.4 (92.0) 

𝛽3 1.9 (97.0) 0.7 (91.0) 

𝛽4 3.1 (97.0) 3.0 (95.0) 

𝛽̅ 3.5 (94.8) 1.9 (93.0) 

𝜎𝑒
2 1.2 (97.0) 2.9  (93.0) 

* The coverage estimates are based on a normal assumption for the parameter estimates. 
For the variance, with a mean of approximately 0.6 and m=100 this will provide a reasonable 
approximation. 

 

Table 2 suggests that a burn in of 5 for the missing covariate values has a small bias of  about 

2% for the fixed effects and 3% for the variance, with reasonable coverage and even a burn 

in of 1 shows acceptable bias and coverage. Further calculations with greater values for s 

suggest little further improvement.  A suitable value for this burn in will depend on the data 

in any application and in practice different values may be tried and this is an area for further 

research.  
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In Table 3 we look at varying the number of second stage replications (r).  

Table 3. Estimates of percentage relative bias, based on simulation results for sample size 
1000 and different values of r with s=5 and other values as in Table 2.  (95% interval % 
coverage estimates). 

Parameter r=5 r=10 

𝛽1 5.4 (97.0)  1.6 (97.0) 

𝛽2 5.5 (96.0) 0.7 (94.0) 

𝛽3 6.0 (100.0) 9.6 (91.0) 

𝛽4 0.2 (96.0) 0.7(96.0) 

𝛽̅ 1.6 (97.3) 2.0 (95.0) 

𝜎𝑒
2 2.6 (97.0) 2.3 (90.0) 

 

We see that we appear to obtain acceptable bias and coverage even for r =5 and in 

subsequent analyses we shall in fact use a conservative value of 10. 

 

In Table 4 we look at varying the sample size. 

  Table 4. Simulation results for different sample sizes N with s=5, r=10 and other values 
as in Table 2. Percentage relative bias (95% interval % coverage estimates). Also shown 
in column 1 are results from omitting the first stage bootstrap. 

Parameter N=1000, no first stage 
bootstrap (m=1) 

N=1000, m=100 N=2000, m=100 

𝛽1 1.7 (84.0) 0.2 (95.0) 0.0 (96.0) 

𝛽2 1.4 (89.0) 4.9 (92.0) 5.4 (98.0) 

𝛽3 1.9 (88.0) 1.2 (92.0) 2.1 (94.0) 

𝛽4 7.0 (90.0) 2.3 (96.0) 0.0 (94.0) 

𝛽̅ 1.2 (87.8) 2.1 (93.8) 1.9 (95.5) 

𝜎𝑒
2 2.7 (84.0) 1.3 (95.0) 1.7 (94.0) 

 

In columns 2 and 3, for both sample sizes the average bias for the fixed parameters is about 

2%, with a smaller bias for the variance. The coverage is good overall. Column 1 shows the 

relatively poor coverage that occurs when the first stage bootstrap is omitted. 

  

We now dichotomise our response so that the simulated responses become 1 if greater than 

zero, otherwise 0.  As in the case of missing predictor variable values, if the same stage two 
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record is sampled more than once, the sampled, latent normal, responses are constrained to 

be equal. 

Table 5 displays the results for 100 simulations using the same specification as before,  

 

 

Table 5. Simulation results for two sample sizes, N, using bootstrap weighting with 

MCMC estimates with stratum sizes ∝ 1/√𝑗. Binary response model with probit link. 

The absolute percentage relative bias (95% interval % coverage) are shown. The total 
number of second stage bootstrap weighted selections for each  first stage equally 
weighted bootstrap is r=10, with m=100 first stage bootstraps. The overall burn in is 
500 and the burn in for missing values is s=5.  

Parameter N=1000 N=2000 

   

𝛽1 0.9 (95.0) 1.6 (100) 

𝛽2 11.1 (93.0) 5.5 (96.0) 

𝛽3 13.1 (97.0) 0.4 (96.0) 

𝛽4 3.0 (97.0) 5.3 (96.0) 

𝛽̅ 6.6 (95.5) 3.0 (97.0) 

 

 We see that the performance of the algorithm is somewhat worse for a sample size of 1000 

compared to the case of a normal response, although the coverage remains good. For a 

sample size of 2000 the results are comparable to those found with a normal response. In the 

case of binary responses, for a given sample size, we have less information than for normal 

responses so that a poorer performance in terms of bias and coverage is to be expected. 

Further small scale simulations show decreasing amounts of bias as the sample size increases 

further. 

 

The number of distinct weights, in our example the number of strata, as well as their 

heterogeneity can affect the bias and coverage, irrespective of whether there is any missing 

data. We illustrate this in Table 6 where we carry out simulations as above, with no missing 

data, but varying the sample sizes and the number of strata. 
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Table 6. Absolute percentage mean bias (over the 4 regression coefficients) and coverage 
(in brackets) followed by bias (coverage) for the residual variance, by sample size and 
number of strata. 100 simulations, no missing data. r= 10; s=1 since no missing data. 
 

Number 
of strata 

Sample size 

 1000 3000 5000 

10 0.5 (94.8), 3.0 (93.0) 0.1 (94.0), 1.4 (94.0) 0.4 (92.3), 0.9 (92.0) 

50 0.1 (89.8), 6.8 (83.0) 0.1 (95.3), 2.1 (93.0) 0.0 ( 93.8), 0.8 (97.0 ) 

100 0.0 (94.5 ), 12.2 (78 ) 0.0 (93.0), 5.1 (91.0) 0.0 ( 93.0), 1.2 (95.0 ) 

 

We see that for the sample size of 1000, distributed across 50 and 100 strata there is a bias, 

typically negative, for the variance and poor coverage, although the fixed coefficients 

generally exhibit acceptable bias and adequate coverage. For the variance this improves with 

the larger sample sizes. Increasing  r has little effect on the bias or coverage. 

5. Analysis of Millennium Cohort Study  

The data consist of 13294 records from the Millenium Cohort Study at wave 2 (around three 

years of age) (see Plewis, 2007 for sample details) and we fit an additive normal linear 

regression model with an intercept (𝛽0) and the three further explanatory variables and 

missing data pattern as described in Section 2. A description of the weights, derived from the 

sample design and taking account of attrition and non-response can be found in Plewis (2007). 

In Table 7 we present results where the first column fits the model using the two stage 

weighted  bootstrap and imputing missing values,  the second column gives estimates from a 

standard weighted analysis for complete cases with sandwich estimators and the third is for 

a model where the weights are assumed to be equal. 
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Table 7. Different estimation procedures for Millennium Cohort Study data. MCMC chain 
burn in=500, number of iterations=2500 with diffuse priors. Standard errors in brackets. 
N=13294 

 MCMC (r=10, m=100, 
Missing value burn in=5) 

Weighted OLS with sandwich 
estimates (N=9866) 

Equally weighted OLS with 
sandwich estimates (N=9866) 

𝛽0 -0.740 (0.052) -0.729 (0.048) -0.749 (0.045) 

𝛽1 0.314 (0.012) 0.307 (0.012) 0.304 (0.011) 

𝛽2 0.077 (0.031) 0.088 (0.030) 0.088 (0.028) 

𝛽3 -0.209 (0.009) -0.209 (0.009) -0.190 (0.010) 

𝜎𝑒
2 0.797 (0.012) 0.809 (0.014) 0.815 (0.014) 

 

For the complete case analysis an equally weighted fit gives some slightly different estimates 

compared to the weighted analysis for complete cases only. For the bootstrap procedure the 

estimates differ little from the complete cases estimates with similar standard errors. While 

the coefficient for whether the child has ever had hearing problems (𝛽2) is somewhat smaller, 

the associated standard error estimate is large The bootstrap procedure took approximately 

20 hours using non-optimised  test code on a 2.4 Ghz PC  with a X-64 based processor under 

Windows 7. 

 

6. Discussion 

Incorporating Bayesian estimation via MCMC within a bootstrap allows us to incorporate 

efficient methods for missing data, especially in the case where there are interaction terms in 

the model of interest (Goldstein et al., 2014), and the resulting inferences utilise  general 

properties of the bootstrap and (as our  simulations show) have good frequentist properties. 

Our simulation results provide indications of likely biases and coverage estimates. Where the 

range of weights is not too large or where the sample size is not small the suggested 

procedure produces good coverage and small bias.  

Where the range of weights, in our case the number of strata is large we would not expect 

our procedure to work well as, as we show in Table 6. In such cases the procedures suggested 

by Carpenter and Kenward (2013, Chapter 11) based upon weighted multiple imputation can 

be used and further work extending these is currently being pursued. Alternatively, as an 

approximation, the weights can be divided into a small number of categories with the mean 
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weight in each category used. We note, however, that, in principle, our procedure will 

automatically deal with the case where every record in a dataset has a unique weight. 

While in our example the weights are a composite of stratum design weights and initial non-

response weights, our simulation only deals with the former. We would argue that any 

weighting for non-response that is derived using additional information, for example through 

propensity matching, is generally better dealt with by incorporating such information via 

auxiliary variables within the imputation model. An area for further exploration, however, is 

the extent to which this is the case.  

In the case of multilevel (hierarchical) data, it seems (Carpenter, Goldstein and Rasbash, 2003) 

that a general nonparametric bootstrap does not exist. Thus an alternative is either a 

semiparametric or fully parametric bootstrap. It is not clear how one would carry out a fully 

parametric bootstrap in our proposed framework, since there appears to be no way to 

associate the weights with the sampled random effects. For a semiparametric bootstrap, in 

the case of a 2-level model, we can replace step B1 as follows to obtain a modified bootstrap 

sample: 

 

Step B1. We carry out an unweighted MCMC model fit, incorporating missing data. Residuals  

at level 1 and level 2 are estimated.    

 

Step B2. Using the reflation procedure (Carpenter et al. 2003 and Goldstein, 2011, Chapter 3) 

we obtain a modified set of random effects, corresponding modified responses and thus a 

bootstrap dataset for passing to the next stage of the algorithm.  

 

Where the model response is non-normal the algorithm essentially consists of the same steps 

but with some small modifications. Specifically, in the case of binary response models, we 

utilise for the model of interest a probit link function with a latent normal specification as 

outlined for the case where there are missing values for binary predictors. This therefore 

entails an extra step in the algorithm that samples a standard normal variable given the binary 

response and current values of the parameters. 

When burning in for the missing values of the explanatory variables it is generally more 

efficient to use the binomial likelihood associated with the MOI rather than sampling a new 

set of latent normal variables at each burn in iteration.  Further work around this issue is 
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planned, especially investigating multilevel structures.  Software for carrying out the 

computations has been written in MATLAB (Mathworks, 2015), available from the first author. 

The estimation is computer intensive and ways of increasing the computational efficiency are 

being studied with a view to incorporating an efficient implementation in the package STAT-

JR (STATJR, 2015). 

Finally, we note that for the missing data we could use a multiple imputation approach rather 

than the fully Bayesian one adopted here, although this will not deal properly with interaction 

terms or multilevel data with missingness at higher levels. Nevertheless, where these 

considerations do not apply, it may be useful, for example for purposes of secondary analyses 

using standard software packages. It may also be faster in that the step for sampling the 

parameters of interest is absent from the chain iterations. 
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