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Abstract 20 

Cutaneous leishmaniasis (CL) is caused by several species of the protozoan parasite Leishmania 21 

– affecting an estimated 10 million people worldwide. Previously reported strategies for the 22 

development of topical CL treatments have focussed primarily on drug permeation and 23 

formulation optimisation as the means to increase treatment efficacy.  24 

Our approach aims to identify compounds with anti-leishmanial activity and properties 25 

consistent with topical administration. Of the test compounds, five benzoxaboroles showed 26 

potent activity (EC50< 5 µM) against intracellular amastigotes of at least one Leishmania species 27 

and acceptable activity (20 µM< EC50 <30 µM) against two more species. Benzoxaborole 28 

compounds were further prioritised based upon the in vitro evaluation of progression criteria 29 

related to skin permeation such as the partition coefficient and solubility. An MDCK-MDR1 30 

assay showed overall good permeability and no significant interaction with the P-glycoprotein 31 

transporter for all substrates except LSH002 and LSH031. The benzoxaboroles were degraded, 32 

to some extent, by skin enzymes but have superior stability than para-hydroxybenzoate 33 

compounds that are known skin esterase substrates. Permeation evaluation through 34 

reconstructed human epidermis showed LSH002 to be most permeable followed by LSH003 and 35 

LSH001. Skin disposition studies following finite drug formulation application to mouse skin 36 

demonstrated the highest permeation for LSH001 followed by LSH003 and LSH002 with a 37 

significantly higher amount of LSH001 retained in skin compared to other compounds.  38 

Finally, the efficacy of the leads (LSH001, LSH002 and LSH003) was tested in vivo against 39 

Leishmania major. LSH001 suppressed lesion growth upon topical application and LSH003 40 
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reduced the lesion size following oral administration. 41 

42 
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Introduction 43 

The leishmaniases are a group of neglected tropical diseases, caused by the obligate 44 

intracellular protozoan parasite Leishmania that mainly occurs in low- to middle-income 45 

countries. Leishmaniasis is endemic in 98 countries over five continents placing 350 million 46 

people at risk of infection (1). Over 17 different Leishmania species can cause a variety of 47 

clinical symptoms that depend both on host and parasite related factors.  48 

The most common form CL is widely distributed, with 70-75% of the estimated cases occurring 49 

in Afghanistan, Algeria, Colombia, Brazil, Iran, Syria, Ethiopia, North Sudan, Costa Rica and Peru 50 

(1) and continues to spread due to environmental changes such as deforestation, travel, 51 

emigration and agricultural practice (2-5). In its simplest form, CL presents as a single local skin 52 

lesion that tends to heal spontaneously over a period of 3-18 months leaving scars (6). 53 

However, a range of clinical manifestations of variable severity are observed in patients that do 54 

not achieve spontaneous clearance of the parasite. These manifestations include nodules, 55 

ulcers and plaques depending upon the Leishmania species causing the infection and the status 56 

of host immune system (7). Immediate treatment is vital to expedite healing, reduce scar 57 

formation, prevent relapse or to prevent parasite dissemination.  58 

Drugs commonly utilised to treat CL such as pentavalent antimonials, miltefosine, amphotericin 59 

B and paromomycin are limited by parenteral drug administration, toxicity, variable efficacy 60 

and cost. Over the past decade, despite efforts in screening and drug discovery to identify new 61 

chemical series for visceral leishmaniasis (8, 9), only a few novel chemical classes have been 62 

explored for CL. Instead, research mainly focussed on repurposing existing drugs or novel 63 
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formulation strategies. For example amphotericin B, currently approved for parenteral delivery 64 

has been evaluated for topical delivery in formulations (10) including lipid nano-carriers (11, 65 

12), nano-emulsions (13) or cyclodextrin complexes (14). Similarly, the anti-leishmanial drug 66 

paromomycin was formulated in conventional topical vehicles (15-18) and in novel delivery 67 

systems including liposomes (19) in an attempt to increase skin permeation. However, the 68 

physicochemical properties of both drugs are unfavourable for skin permeation and the 69 

reformulation strategies for these compounds have met with limited success.  70 

To enable the further development of treatments for CL we previously characterised how 71 

Leishmania infection impacts the permeability of the skin barrier and how this might influence 72 

topical drug delivery during the acute phase of the treatment (20). These studies have 73 

demonstrated that the skin barrier is compromised during the nodular stage of CL suggesting a 74 

weaker barrier to dermal delivery.  75 

Besides identifying disease related changes to drug delivery, the identification of drug 76 

compounds that are active against a broad range of Leishmania parasites is also key (21). 77 

Benzoxaborole compounds, characterised by the boron atom incorporated in a ring system 78 

fused to an aromatic ring (Table 1), have previously shown activity against bacteria, fungi and 79 

protozoans such as Trypanosoma brucei and Plasmodium falciparum (22-27). Phenotypic 80 

screenings of a library of benzoxaboroles identified in vitro and in vivo activity of 81 

benzoxaboroles 6-carboxamides against T. brucei and T.cruzi, the causative agents of human 82 

African trypanosomiasis (HAT) and Chagas disease (22, 28), respectively. Additionally, more 83 

than 2000 compounds were evaluated against L. donovani amastigotes in THP-1 cells to identify 84 

 on M
arch 8, 2018 by LO

N
D

O
N

 S
C

H
O

O
L O

F
 H

Y
G

IE
N

E
 &

 T
R

O
P

IC
A

L M
E

D
http://aac.asm

.org/
D

ow
nloaded from

 

http://aac.asm.org/


6 
 

drugs to treat visceral leishmaniasis and resulted in several hits with micromolar activity (DNDi 85 

funded work, unpublished data). 86 

Here we describe an approach for the rational pre-clinical selection of candidate molecules for 87 

CL (Figure 1 (A)), using a series of benzoxaboroles that were found to  (i) demonstrate activity 88 

against a selection of Leishmania species (ii) have the ability to permeate skin and (iii) were 89 

appropriately distributed in various skin layers (Figure 1 (B)). 90 
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Materials and Methods 92 

 Materials 93 

Compounds were synthesised by Anacor Pharmaceuticals Inc. and SCYNEXIS Inc. (Research 94 

Triangle Park, NC) and were of >95% purity as determined by HPLC, LC-MS and 1H-NMR 95 

analyses. Stock solutions (1 mM) were prepared in dimethyl sulfoxide (DMSO) for use in the in 96 

vitro experiments. HPLC grade solvents were purchased from Fisher Scientific (Pittsburgh, PA). 97 

Formic acid (≥98% purity, Fluka), caffeine, testosterone, 1-octanol, high grade vacuum silicone 98 

grease (Dow Corning) were acquired from Sigma-Aldrich (St. Louis, MO). Ammonium formate 99 

(99% purity, Alpha Aesar) was purchased from VWR International, LLC (West Chester, PA). 100 

Miglyol 840 (propylene glycol dicaprylate / dicaprate) was obtained from Sasol Germany GmbH 101 

(Witten, Germany). Phosphate buffered saline (PBS) was supplied by Gibco (Invitrogen 102 

Corporation, Carlsbad, CA) as well as the Dulbecco’s modification of Eagle’s medium with 103 

GlutaMAX, the trypsin-EDTA and the Fetal Bovine Serum. Penicillin-Streptomycin solution, 104 

Hank’s balanced salt solution and HEPES buffer were obtained from Sigma Aldrich.  105 

 Mice 106 

Female BALB/c mice (6-8 weeks old) were purchased from Charles River (Margate, UK) and 107 

housed in a controlled environment of 55% relative humidity and 26°C. Tap water and a 108 

standard laboratory diet were provided ad libitum. All in vivo experiments were carried out 109 

under license (PPL 70/8207) at the London School of Hygiene & Tropical Medicine (LSHTM) 110 

after discussion with the veterinarian, clearance through the LSHTM Animal Welfare and Ethical 111 

Review Board and according to UK Home Office regulations. 112 
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Parasite and cell maintenance 113 

L. major (MHOM/SA/85/JISH118); L. panamensis (MHOM/PA/67/BOYNTON); L. aethiopica 114 

(MHOM/ET/84/KH); L. mexicana (MNYC/ BZ/62/M379) and L. tropica (MHOM/IR/2013/HTD4) 115 

were routinely passaged through BALB/c mice, and low passage number promastigotes 116 

(typically below passage number 3) were used for the assays. All promastigotes, except for L. 117 

panamensis and L. aethiopica, were maintained in Schneider’s insect medium (Sigma Aldrich, 118 

UK) supplemented with 10% heat inactivated foetal calf serum (HiFCS) (Harlan, UK) at 26°C. 119 

M199 medium supplemented with 10% HiFCS was used for the latter two strains.    120 

MDCKII-hMDR1 cells (Netherlands Cancer Institute, Amsterdam, Netherlands) were maintained 121 

in Dulbecco’s Modified Eagles Medium (DMEM) and KB cells in RPMI-1640 medium 122 

supplemented with L-glutamine and 10% HiFCS. Both human-derived cell lines were left in an 123 

incubator at 37ºC and 5% CO2 and passaged to new medium once a week (1/10 ratio).  124 

In vitro anti-leishmanial activity 125 

Mouse peritoneal macrophages (PEM) were isolated from CD-1 mice (Charles River, Margate, 126 

UK) by abdominal lavage with RPMI-1640 medium containing 1% penicillin and streptomycin. 127 

The collected cells were washed, re-suspended and seeded in 16-well Lab-Tek™ slide in RPMI-128 

1640 supplemented with 10% HiFCS at a density of 4x104 per well. After 24 hours incubation at 129 

37°C and 5% CO2/95% air mixture, the adhered PEMs were infected with stationary phase 130 

promastigotes at a ratio of 3 (for L. tropica and L. major) or 5 (for L. mexicana, L. aethiopica and 131 

L. panamensis) promastigotes to 1 macrophage and maintained at 34°C in a 5% CO2/95% air 132 
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mixture. These inoculum ratios were chosen to achieve at least 75% infection of untreated 133 

control macrophages after 72 hours of incubation. 134 

After 24 hours, the cultures were washed to remove extracellular promastigotes and one slide 135 

was fixed with methanol and stained with Giemsa to determine the initial level of infection. If a 136 

sufficient level of infection was obtained, experimental drug solutions over a range of 30, 10, 3 137 

and 1 μM were added in quadruplicate at each concentration. Amphotericin B (Fungizone®) and 138 

miltefosine were included as control drugs. After 72 hours incubation, all slides were methanol-139 

fixed and Giemsa-stained.  140 

The percentage inhibition was determined by microscopically (400x magnification) counting the 141 

infected macrophages in drug treated cultures compared to untreated cultures. The Hill 142 

coefficient, EC50 and EC90 values were calculated by non-linear sigmoidal curve fitting (variable 143 

slope) using Prism Software (GraphPad, Surrey, UK). 144 

 In vitro ADME studies–general pharmacokinetic predictions 145 

The following descriptors of the test compounds: molecular weight, aqueous solubility and 146 

number of H-bond donors and acceptors present were calculated using ChemBioDraw Ultra 147 

13.0 (PerkinElmer, Waltham, MA). 148 

Distribution coefficient. The octanol phase was left to saturate with PBS (pH7.4) on a shaking 149 

plate at 32°C for 48 hours. The test compounds were then dissolved in the 1-octanol at a 150 

concentration of 1 μg/ml and left to equilibrate with an equal volume of PBS on a shaking plate 151 

at 32°C for 48 hours. The 1 ug/ml concentration was selected such that the amount of the 152 

 on M
arch 8, 2018 by LO

N
D

O
N

 S
C

H
O

O
L O

F
 H

Y
G

IE
N

E
 &

 T
R

O
P

IC
A

L M
E

D
http://aac.asm

.org/
D

ow
nloaded from

 

http://aac.asm.org/


10 
 

candidate drug in each phase did not exceed 10% of the solubility limit of that compound.  153 

Aliquots of each phase were taken and diluted in mobile phase followed by LC-MS/MS analysis. 154 

Each experiment was conducted in triplicate. The distribution coefficient was calculated as 155 

shown in Equation 1: 156 

𝐥𝐨𝐠 𝐃 (𝐩𝐇 𝟕. 𝟒) = 𝐥𝐨𝐠 [
[𝐬𝐨𝐥𝐮𝐭𝐞]𝐨𝐜𝐭

[𝐬𝐨𝐥𝐮𝐭𝐞]𝐩𝐛𝐬
𝐢𝐨𝐧 + [𝐬𝐨𝐥𝐮𝐭𝐞]𝐩𝐛𝐬

𝐧𝐞𝐮𝐭𝐫𝐚𝐥]    Equation 1 157 

In vitro prediction of permeability and Pgp-mediated efflux transport. MDCK-MDR1 cells were 158 

seeded in the apical chamber of a 12-well Transwell® plate (Corning Inc., Lowell, MA) at a 159 

density of 6.6x106 cells/well and 1.5 mL of medium was applied in the basolateral chamber. 160 

After 24 hours, non-adhered cells were washed away and new medium was applied to both 161 

chambers. The cells were incubated for an additional 48 hours at 37°C to form confluent 162 

monolayers.  163 

Prior to the addition of the test compounds, the cell culture medium was removed and 164 

replaced with transport medium consisting  of Hanks’s balanced salt solution with 24 mM of 165 

glucose and 24 mM of HEPES buffer. The integrity of the monolayers was assured by measuring 166 

the trans-epithelial resistance (TEER) for each insert (TEER > 160 Ω cm2). Assays were 167 

performed in triplicate by adding 3 μM drug solutions (1 mM DMSO stock solutions diluted in 168 

transport medium) in the absence or presence of 2 μM GF918 (a potent Pgp inhibitor (29)) in 169 

the transport buffer of the apical chamber. The comparator controls propranolol and 170 

amprenavir for transcellular transport and Pgp efflux respectively were included in each assay. 171 

The Transwell® plates were incubated on a shaking plate (160 rpm) at 37°C and 5% CO2 for 1 172 

hour. After incubation, aliquots from both chambers were removed for analysis by LC-MS/MS. 173 
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Values for mass balance, apparent permeability for the apical to the basolateral side (Papp) 174 

(Equation 2), apparent permeability value for the apical to the basolateral in presence of 175 

GF+918 (Papp+GF918), and the absorption quotient (AQ) (Equation 3) were calculated for each 176 

compound (30-32). Test compounds with an AQ ≤ 0.3 were considered non-Pgp substrates, 177 

while AQ > 0.3 were considered Pgp substrates (31, 32). Acceptance criterion for mass balance 178 

was 70–120%.  179 

𝑷𝒂𝒑𝒑 =  
𝒅𝑸 𝒅𝒕⁄

𝑪𝟎×𝑨
     EQUATION 2 180 

      𝑨𝑸 =  
𝑷𝒂𝒑𝒑+ 𝑮𝑭𝟗𝟏𝟖 − 𝑷𝒂𝒑𝒑

𝑷𝒂𝒑𝒑+ 𝑮𝑭𝟗𝟏𝟖
                     EQUATION 3 181 

      182 

Analysis of test compounds in biological samples 183 

Skin tissue homogenisation. For the preparation of the skin homogenates, 20 ml of ice-cold 184 

Dulbecco’s modified PBS (pH 7.4) was added to fine pieces of approximately 2 g of shaved 185 

dorsal full-thickness BALB/c mouse skin (Bioreclamation LLC., Westbury, NY). The tissue 186 

suspension was homogenized using an OMNI probe homogenizer (Kennesaw, GA) and 187 

centrifuged for 10 minutes at 800g to sediment cellular residue. The protein content of the 188 

supernatant was determined using the Pierce BCA protein assay kit (Pierce, Rockford, IL) and 189 

adjusted to 2.5 mg/ml. The supernatant was stored at approximately -80°C until use.  190 

High performance liquid chromatography with tandem mass spectrometry (LC-MS/MS). Sample 191 

analysis was performed by LC-MS/MS. The instrumentation consisted of a CTC Pal Autosampler 192 

(Leap Technologies, Carrboro, NC), two Agilent 1100 series pumps (Agilent Technologies Inc., 193 
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Santa Clara, CA), a CH-30 column heater (Eppendorf, Hauppauge, NY) and an API-3000 triple 194 

quadrupole mass spectrometer (Applied Biosystems, Foster City, CA) equipped with a turbo-ion 195 

electrospray interface for detection. Chromatography was performed on a Luna C18 reversed-196 

phase column (50 x 2 mm; 3 µm) from Phenomenex (Torrance, CA) protected by a matched 197 

phase guard column. The mass spectrometer and peripheral devices were controlled using 198 

Analyst® Software version 1.4.2 (Applied Biosystems, Foster City, CA). The mobile phase used to 199 

elute the compounds consisted of 5 mM ammonium formate and 0.1% (v/v) formic acid in 200 

water (A) and 5 mM ammonium formate and 0.1% (v/v) formic acid in methanol (B). The 201 

samples were introduced on the column using 90% A at a flow rate of 600 followed by a step 202 

gradient to 90% B between 0.5 and 1min. For analytical chromatography, a linear gradient of 203 

10% A was maintained for 2min after which the mobile phase was switched back to 90% A. This 204 

mobile phase composition was maintained till the end of the run (3.5min). Test compounds 205 

eluted between 2-3 min. 206 

In vitro stability and disposition in skin homogenates 207 

Stability in skin homogenates. The stability of the compounds was measured at protein 208 

concentrations of 2.5 mg/ml. Each compound (10 μM) was incubated in mouse skin 209 

homogenate on a shaking plate at 32°C. An aliquot of the incubation mixture was collected at 0, 210 

10, 20, 30 minutes, 1 hour and 2 hours and quenched with 4 volumes of ice-cold methanol 211 

containing 0.1% formic acid. Samples were centrifuged at 3000xg for 10 minutes at 15°C, and 212 

the obtained supernatant was analysed for the test compound by LC-MS/MS. Ethyl- and 213 
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propylparaben, ester compounds known to undergo degradation due to enzymatic hydrolysis 214 

to yield hydroxybenzoic acid were included as positive controls.  215 

Skin tissue binding. Rapid equilibrium dialysis (RED) devices (Pierce, Rockford, IL) in plate format 216 

were used to determine the drug binding to the skin homogenate supernatant. A day prior to 217 

the experiment, the Teflon plate was washed with 30% ethanol and rinsed twice with deionized 218 

water before leaving it to dry. On the day of the experiment, skin supernatant was thawed and 219 

the test compound was added to a final concentration of 10 μM. Samples of fortified skin tissue 220 

homogenate (300μl) were added to the sample chambers of the RED devices and PBS (500μl) 221 

(Pierce, Rockford, IL) was added to each buffer chamber. Plates were incubated on a shaking 222 

plate at 32°C for 2 hours. Aliquots of both phases were collected and treated with 4 volumes of 223 

ice-cold methanol with 0.1% of formic acid to precipitate proteins. Treated sample aliquots 224 

were centrifuged at 3000xg and 15°C for 10 minutes. The resulting supernatants were assayed 225 

for the parent drug concentration by LC-MS/MS. 226 

In vitro prediction of skin permeability. The EpiDerm™ Skin Model EPI-606-X was obtained from 227 

MatTek Corporation (Ashland, MA, USA). The EPI-606-X model is characterised by an enhanced 228 

barrier function and was specifically designed to conduct permeability assays. Upon receipt, the 229 

skin tissue (lot 17860) was stored overnight at 2-8°C. On the day of the experiment, the skin 230 

inserts were transferred to a 6-well plate containing 2ml of Dulbecco’s modified PBS and left to 231 

acclimatise on a heated shaking plate. The temperature was set at 36.6°C which corresponded 232 

to a skin temperature of 32°C.  233 
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Due to a low water solubility, the test compounds were prepared in an ethanol/ Miglyol 840 234 

(1:9) vehicle - a solution that has been used for permeation studies with poorly soluble drugs 235 

(33). After 1 hour, 1.14 ml of a 100 μg/ml donor solution was applied on the model skin using a 236 

positive displacement pipette. The plates were left to incubate with gentle shaking at 95 rpm. 237 

Caffeine (log P=-0.08) and testosterone (log P=3.32) were included as control comparator 238 

compounds in each assay run. Each control was evaluated at the same concentration as the test 239 

compounds. Testosterone, representing a hydrophobic control, was formulated in the 240 

ethanol/Myglyol vehicle, and caffeine representing a hydrophilic control, was prepared in 241 

Dulbecco’s modified PBS. Aliquots were removed from the receiver fluid of each chamber and 242 

replaced with fresh PBS at regular time points over the course of 6 hours incubation. The 243 

samples were assayed for test compound by LC-MS/MS. The permeation of each compound 244 

was evaluated in triplicate. Statistical analyses were performed using SPSS software version 245 

19.0. 246 

Skin disposition 247 

In vitro permeation prediction using full-thickness BALB/c mouse. In vitro permeation studies 248 

were conducted in a semi-automated system comprising 6 water-jacketed, static, vertical type 249 

Franz diffusion cells (FDC) from Logan instruments Ltd. (Somerset, NJ).  The permeation studies 250 

had two objectives (Table 2). The first objective was to compare the permeation of the test 251 

compounds through BALB/c mouse skin to the permeability determined by means of the RHE 252 

assay. Therefore, the experimental conditions were held consistent to those employed for the 253 

RHE assay. The second objective was to compare the permeation of the test compounds using 254 
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the formulation conditions that would be used for topical dose administration in the murine 255 

model of CL. This in vivo study required a low application volume and a 1% (w/v) drug 256 

formulation.  257 

For FDC studies, female BALB/c mouse skin was obtained from Bioreclamation IVT (Westbury, 258 

NY, USA) and stored at -80°C. On the day of each study skin was thawed and hair removed by 259 

careful clipping to avoid skin damage. Excess fat and muscle tissue was removed with the aid of 260 

a scalpel. Discs of skin approximately 2.5cm in diameter were cut and mounted between the 261 

donor and receptor compartment of each FDC and kept in place by the use of a clamp. Vacuum 262 

silicone grease was applied to seal gaps and prevent leakage. The cells were left to equilibrate 263 

until the skin temperature stabilised at 32°C.  264 

The donor and receptor solutions were prepared as described above. Receptor fluid samples 265 

were taken at time intervals over a period of 6 hours. Each test compound was tested in 266 

triplicate. Statistical analysis was performed using SPSS software version 19.0. 267 

Mass balance during FDC studies. Mass balance study was conducted using the formulations 268 

and experimental conditions intended for evaluation in the murine model of CL. The amount of 269 

drug that did not permeate into or through the skin (unabsorbed donor fraction) was obtained 270 

by gently swabbing the skin surface with a cotton bud at the end of the permeation 271 

experiment. This was repeated a second time. The cotton buds were placed in a tube with 1ml 272 

of MeOH/PBS (70:30) and left overnight on a shaker (800 rpm). An aliquot of the extraction 273 

fluid was analysed by LC-MS/MS. 274 
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The Franz diffusion cells were dismantled and the mouse skin was removed and placed in a vial. 275 

Three rounds of extraction with 1ml of MeOH-PBS (7:3) were conducted. At each time, the vial 276 

was left to shake overnight before analysis by LC-MS/MS to extract the amount of drug that 277 

permeated into the skin. Acceptable mass balance was 80-120% representing the total 278 

compound measured in the unabsorbed donor fraction, methanolic skin extracts, and the 279 

samples of receptor chamber fluid. Statistical analyses were performed using SPSS software 280 

version 19.0. 281 

Efficacy in a murine model of cutaneous leishmaniasis 282 

Drugs and formulation preparation. AmBisome®, a liposomal formulation of amphotericin B for 283 

injection was kindly provided by DNDi (Geneva) and prepared according to manufacturer’s 284 

recommendations. Briefly, AmBisome® powder was reconstituted with 12ml of cold sterile 285 

ultra-high purity grade water (>18 MΩ.cm, MilliQ, Hertfordshire) to produce a 4 mg/ml 286 

amphotericin B liposomal suspension. This suspension was vigorously shaken and incubated at 287 

65°C for 10 minutes after which it was allowed to cool to room temperature. This dispersion 288 

was diluted with sterile 5% dextrose solution (w/v) to obtain a final suspension of 0.5mg of 289 

amphotericin B/ml. Every other day up to 5 doses, 200ul of this formulation was administered 290 

by bolus intravenous injection into a lateral tail vein. Leshcutan® ointment, containing 12% of 291 

paromomycin and 15% methylbenzethoniumchloride (Teva, Israel) was purchased from 292 

Israelpharm.com and 0.1ml of a 1ml syringe was applied and gently spread over the nodule 293 

twice daily for 10 days. 294 
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The experimental topical formulations containing compounds LSH001, LSH002 and LSH003 295 

respectively were prepared 24 hours prior to the start of dosing. To allow maximal permeation, 296 

each test compound was applied as a saturated solution. An excess amount of the test 297 

compound was added to a 1:1 (v/v) mixture of propylene glycol (PG) and ethanol (Ethanol). The 298 

mixture was left to stir overnight after which it was centrifuged at 15,668 x g for 15 minutes. 299 

The supernatant, i.e. a saturated solution, was pipetted into a clean vial and 50ul was applied to 300 

each mouse twice a day for 10 days (Table 3).  301 

The standard suspension vehicle used to prepare the oral formulations was prepared by 302 

weighing and adding each component (0.5% (w/v) carboxymethylcellulose, 0.5% (v/v) benzyl 303 

alcohol, 0.4% Tween 80 (v/v) in a 0.9% (v/v) NaCl solution) into a clean glass vial. The mixture 304 

was left to stir overnight at room temperature prior to sterilisation by autoclaving. The 305 

experimental oral formulations containing either LSH001, LSH002 or LSH003 in the vehicle were 306 

prepared by adding the appropriate amount of test compound to the vehicle in order to obtain 307 

a final concentration of 2.5mg/ml. The suspension was sonicated for 30 minutes and was 308 

administered orally twice a day for 10 days. All formulations, including the AmBisome and 309 

topical formulations were stored at 4˚C throughout the experiment. 310 

Experimental CL model.  Sixty female BALB/c mice (6-8 weeks old; Charles River Ltd., UK) were 311 

shaved on the rump above the tail and one day later, injected with 2x107 stationary phase L. 312 

major JISH118 promastigotes (200 µl) subcutaneously on the rump above the tail. 313 

Approximately 7 days post infection, small nodules were visible. The nodule size was recorded 314 

daily and when they reached an average diameter of 4.8 mm (±0.8), the mice were randomly 315 
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allocated in groups of 6 and drug administration was started. Formulations were administered 316 

over a period of 10 days. Untreated and topical vehicle only control groups were included.  317 

Treatment efficacy was evaluated by lesion size progression, measuring the lesion diameter in 2 318 

dimensions on a daily basis using digital callipers (Jencons Scientific Ltd., UK). The average 319 

diameter was plotted as a function of time. Statistical analyses of differences between the 320 

average lesion diameter between groups on the last day of treatment was performed using 321 

one-way ANOVA with post-hoc Tukey test (SPSS software version 19.0). Three days after the 322 

end of treatment, the mice were sacrificed and the lesion was excised and stored at -80°C until 323 

the parasite load was quantified using real-time qPCR. Statistical differences in the average 324 

parasite numbers between different groups were analysed using one-way ANOVA with Tukey 325 

post-hoc test (SPSS software, version 19.0). 326 

Quantification of the parasite load in a CL lesion. On the day of extraction the samples of lesion 327 

tissue were defrosted and cut into 2 approximately equal samples. One half was weighed and 328 

cut into fine pieces with a surgical blade before placing in a microcentrifuge tube. The 329 

proteinase K and lysis buffer were added to the tube and samples were incubated at 56°C until 330 

a homogeneous mixture was obtained. The DNA of 200ul of this homogenate was then 331 

extracted using the DNeasy® blood and tissue kit (Qiagen) and eluted in the same volume. The 332 

purity and concentration of DNA was analysed using the NanoDrop™ ND1000 333 

spectrophotometer (Thermo Fisher Scientific). 334 

The primer pair and probe, previously designed and validated by Van Der Meide et al (34) 335 

targeted a 170-bp region in the Leishmania 18S ribosomal gene and are specific for all 336 
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Leishmania species. The respective sequences are shown in Table 4. Conventional PCR was 337 

performed to confirm the presence of PCR product of the correct size and to verify primer 338 

efficacy. 1µl of a 1/100 dilution of the DNA extract was amplified in a final volume of 10µl 339 

containing 2µl of KAPA 2G buffer (Kapa Biosystems, Wilmington, MA) and primers at a 340 

concentration of 0.4µM. The samples were run in a G-Storm GS4 machine (Somerset, UK). The 341 

amplification cycle started with a denaturation step at 95°C for 3 minutes followed by 40 cycles 342 

of 95°C for 15s, 60°C for 1 minute and 72°C for 30 seconds with a final extension of 72°C for 30 343 

seconds. Each run contained a negative sample whereby the extracted DNA was replaced by 344 

UHP water. The PCR products were separated on a 3% agarose gel stained with ethidium 345 

bromide and visualised under UV light. A 100-bp DNA ladder was run in parallel with the 346 

samples.  347 

The parasite load was determined by means of quantitative PCR. For the amplification reaction, 348 

2µl of a 1/100 diluted DNA sample was added to 8µl mix containing 5µl KAPA Probe Fast qPCR 349 

master mix (2x) (Kapa Biosystems, Wilmington, MA), 0.4 µM of each primer and 0.25µM of the 350 

appropriate probe. The tubes were placed in the 72 sample rotor of the instrument (Rotor Gene 351 

3000, Qiagen) and the reaction with the following conditions was initiated: 95°C for 3 minutes 352 

followed by 40 cycles of 95°C for 3 seconds and 60°C for 30 seconds. Each run contained a 353 

standard curve, a no-template-control and a negative control.  354 

 355 

356 

 on M
arch 8, 2018 by LO

N
D

O
N

 S
C

H
O

O
L O

F
 H

Y
G

IE
N

E
 &

 T
R

O
P

IC
A

L M
E

D
http://aac.asm

.org/
D

ow
nloaded from

 

http://aac.asm.org/


20 
 

Results  357 

Structures of the compounds 358 

Benzoxaborole compounds from 4 different chemical classes that had shown anti-parasitic 359 

activity in the P. falciparum, T. brucei, T. cruzi or L. donovani screens were selected from the 360 

library for screening against CL causing species. Some of the subclasses tested are shown in 361 

Table 1 and include benzoxaborole 6-carboxamides (D), benzoxaborole-5-carboxamides (B), 362 

pyrazole 6-carboxamides (C) and benzoxaborininols (E) in which the 5-ring containing the boron 363 

atom is replaced by a 6-ring structure.  364 

In vitro anti-leishmanial activity 365 

Twenty-five compounds were screened against intracellular amastigotes. LSH001, LSH003, 366 

LSH023, LSH024 and LSH025 were the only five compounds that showed activity against at least 367 

one Old World (L. major, L. tropica and L. aethiopica) and one New World (L. mexicana and L. 368 

panamensis) species with an EC50 value below 30 µM (Table 5). These five test compounds were 369 

most active against L. tropica with an EC50 value below 5 µM followed by L. major with EC50 370 

values in the same range. L. mexicana was the least susceptible species with EC50 values ranging 371 

from 9 to 22 µM. For most tested compounds, the EC50 value against L. mexicana was higher 372 

than 30 µM, the highest concentration tested suggesting low activity of the compound.  373 

Amphotericin B, included as positive control, had a high activity with EC50 values ranging from 374 

0.049 to 0.685 μM, indicating a tenfold difference in sensitivity between L. major/L. tropica and 375 

L. mexicana. Miltefosine, the other control drug, was less active than amphotericin B with EC50 376 

values ranging from 7 to 45 μM and 10 to 35 μM respectively.   377 
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At this stage, it was decided to advance all compounds with potent (EC50 <5uM) and/or 378 

moderate activity (5uM<EC50<25uM) against at least one Old World and one New World 379 

Leishmania species. Eight compounds (LSH026-034) with promising activity against other 380 

Leishmania species (DNDi, unpublished data) were also included in further assays. 381 

Physicochemical properties 382 

An initial computational screening of the test compounds was conducted to evaluate 383 

permeation related physicochemical properties i.e. the molecular weight, the presence of H-384 

bond donors or acceptors and the aqueous solubility. The partition coefficient was determined 385 

experimentally. It was found that the benzoxaborole test compounds had appropriate 386 

physicochemical profiles for skin permeation (Table 6), i.e. a molecular weight below 500 387 

g/mol, a log D (at pH 7.4) between 1-3 (except for LSH002 (logD = 0.44) and LSH032 (logD = 388 

0.88)) and no more than 2 H-bond donor groups.  389 

Intrinsic permeability 390 

The MDCK-MDR1 assay was performed to identify P-glycoprotein (Pgp) substrate and to 391 

evaluate passive permeability of the test compounds across simple epithelia such as that of the 392 

intestine (35). The test compounds generally demonstrated high passive permeability (Table 7) 393 

in the assay with values ranging from 247-688 nm/s (32) except for compound LSH002 that 394 

showed a low intrinsic permeability of 32.5 nm/s. Further, only one compound (LSH002; AQ 395 

value: 0.492) exceeded the cut-off value (>0.3) for absorptive quotient indicating it was a 396 

potential substrate for the efflux transporter Pgp. For comparison, Amprenavir, the positive 397 

control included as a known Pgp substrate afforded an AQ value of 0.846. Interestingly, the 398 
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most active compounds during in vitro susceptibility studies all showed permeability values 399 

above 300 nm/s and were no Pgp substrates.  400 

Previous research suggested an enhanced permeability of hydrophilic compounds in 401 

Leishmania-infected skin (20). Compounds LSH002 and LSH032 were therefore included in 402 

further assays despite their less favourable physicochemical properties and/or intrinsic 403 

permeability.  404 

Dermal stability, binding and permeability 405 

Stability in skin supernatant. An initial rapid drug degradation of the test compounds was 406 

observed in skin supernatant (Figure 2) during the first 30 minutes, followed by slower drug 407 

metabolism. After two hours, compound recovery was 25 to 60% with LSH001, 002, 024, 025, 408 

028, 031, 032, 034 being moderately stable (% remaining: 25-44) and LSH003, 023, 026, 027, 409 

029, 030, 033, 034 being most stable with 45-75% test compound remaining. The two paraben 410 

compounds, ethyl and propyl paraben, known substrates for skin esterases, were observed to 411 

break down very quickly in presence of the skin supernatant. The recovery of these labile 412 

compounds was 10.9 and 0% respectively after 2 hours of incubation.   413 

Drug binding to skin components. A binding assay showed large variations in unbound fractions 414 

among the benzoxaboroles; unbound fractions from 34% to 92% were observed (Table 8). Only 415 

2 compounds had a high free fraction of 85% or more comprising LSH001 and LSH026. The 416 

majority of the compounds has a free fraction between 50 and 85% and finally LSH003 and 417 

LSH023 with the lowest free fractions of 44 and 34% respectively.  418 
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RHE permeability. RHE was used to evaluate the passive permeability of the test compounds 419 

across multiple layered membranes more representative of skin. The permeation of LSH002 420 

was statistically significant higher compared to LSH001, LSH029 and LSH033 (one-way ANOVA, 421 

p<0.05). As anticipated, the high permeability hydrophilic control caffeine showed the highest 422 

permeation, which was significantly higher when compared to all the test compounds and 423 

testosterone (lower permeability, hydrophobic control) after 6 hours (one-way ANOVA; p < 424 

0.05). When ranking the cumulative amount permeated over 6 hours, the rank order from high 425 

to low was as follows: caffeine > LSH002 > LSH003 > LSH023 > testosterone > LSH024 > LSH033 426 

> LSH001 > LSH029.  427 

Both caffeine and LSH002 are more hydrophilic compounds as indicated by their low log D of -428 

0.08 and 0.44, respectively. The vehicle in which all drugs were applied was ethanol-Miglyol 840 429 

(1:9). LSH002 even though in solution, might have been closer to saturation exhibiting a higher 430 

thermodynamic activity compared to the other test compounds with a higher log D. The higher 431 

permeation exhibited by LSH002 could also involve the higher affinity of this compound for the 432 

RHE compared to the lipophilic vehicle thereby stimulating its preferential partitioning into the 433 

membrane.  434 

Based on the overall data set collected, it was decided to select three compounds (LSH001, 435 

LSH002 and LSH003) for further study. LSH001 was included because it showed potent anti-436 

leishmanial activity and was representative of a lipophilic compound, despite lower 437 

permeability, that may prove helpful for formulation and skin disposition. LSH002 was included 438 

due to its higher solubility in water and hence a control for disposition in the skin permeation 439 
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assay and LSH003 was selected because it was active against the 5 Leishmania species tested 440 

and it was ranked second with regards flux in the permeation assay.  441 

Dermal disposition 442 

The objective of the first permeation study in mouse skin was to verify the rank order of the 443 

three selected compounds and compare them with the results obtained from the previous 444 

permeation experiment where a RHE model was used (Table 9). Therefore, the experimental 445 

conditions and drug formulations were similar to the RHE experiment. The results are shown in 446 

Figure 3 and indicate that the rank order LSH002 > LSH003 > LSH001 is maintained when using 447 

BALB/c mouse skin instead of the RHE membrane. Furthermore, the permeation of LSH002 448 

through BALB/c mouse skin was significantly higher compared to LSH001, LSH003 and 449 

testosterone (one-way ANOVA, p<0.05).  450 

A second permeation study using BALB/c mouse skin aimed to assess the permeation and skin 451 

disposition of the compounds after application of a low volume of a 1% solution of test 452 

compound in ethanol-propylene glycol (E-PG) (1:1) solution (28 µL/cm2) comparable with the 453 

formulation intended for use in the murine CL model. Permeation (Table 8) was statistically 454 

higher for LSH001 and LSH003 (p<0.05, one-way ANOVA) compared to LSH002. The rank order 455 

for flux was LSH001 > LSH003 > LSH002. Of note, in the E-PG formulation the more hydrophobic 456 

compounds (LSH001 and LSH003) achieved greater permeation than LSH002. There was no 457 

difference observed in the lag time for the different compounds (ANOVA; p >0.05).  458 

A skin disposition study (Figure 4) was conducted to compare the amount of test compound 459 

that either: remained on the surface of the skin, retained within the dermal layers or had 460 
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permeated through the skin. Whilst there was no statistical significant difference between the 461 

amounts of compounds that had permeated over 24 hours, the amount of LSH001 in the skin 462 

was significantly higher in comparison to LSH002 and LSH003 (one-way ANOVA; p<0.05). The 463 

mass balance for the total compound recovering was 84%, 87% and 114% for LSH001, LSH002 464 

and LSH003, respectively indicating excellent mass balance was achieved for all compounds 465 

across the compartments. 466 

In vivo anti-leishmanial activity 467 

After 10 days of topical application of the three selected compounds to the closed nodules, 468 

LSH001 halted the lesion size progression and the lesions in this group were statistically smaller 469 

compared to the vehicle control group (One-way ANOVA, p<0.05) whereas no lesion size 470 

reduction was observed for LSH002 or LSH003 (Figure 5 (A)). The lesion sizes and parasite 471 

burden per lesion of the groups 3 days after the last drug administration are shown in Figure 5 472 

(B). The parasite load in the group receiving topical LSH001 is slightly lower than in the other 473 

topically treated groups however there is no statistically significant difference (One-way 474 

ANOVA, p>0.05).  475 

Whilst the primary aim of this work was to investigate the potential of benzoxaboroles for 476 

topical treatment for CL, the in vitro ADME data suggest good overall permeability. Previous 477 

studies of the benzoxaboroles as orally active drugs for HAT suggested good oral bioavailability 478 

for this class. Therefore, we administered the three test compounds LH001, LH002 and LH003 479 

orally to CL infected mice. A significant reduction of lesion size was seen for the groups 480 

receiving LSH003 by the oral route compared to the relevant control group (One-way ANOVA, 481 
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p<0.05). This was also reflected in parasite load as the number parasites per lesion was 482 

statistically significant lower compared to the untreated control group (One-way ANOVA, 483 

p<0.05).  484 

For AmBisome®, the positive control, a statistically significant reduction in lesion diameter and 485 

parasite load was observed compared to the control group (p<0.05) except for the LSH001 486 

topical and LSH003 oral groups (p>0.05). This was expected as per previous reports describing a 487 

reduction of both lesion size and parasite burden (36).  488 

 489 

Discussion 490 

Topical treatment for a dermatological infection limited to the more superficial layers of the 491 

skin, offers an attractive alternative to the currently used routes of administration for CL 492 

treatment as it (i) allows local drug targeting directly to the infection site, (ii) offers the 493 

potential to limit adverse effects, (iii) is not invasive and (iv) is easy to apply by the patient. A 494 

systematic approach to the identification of potential lead compounds to progress to clinical 495 

trials is still lacking. The goal of this work was to explore a novel approach to identify promising 496 

compounds for the treatment of CL. 497 

The benzoxaborole class of anti-parasitics has demonstrated efficacy across multiple parasitic 498 

disease targets including the Leishmania spp. DNDI-6148 is at the preclinical stage of 499 

development for treatment for visceral leishmaniasis (37) and oxaborole SCYX-7158 is now in 500 

phase 2 clinical trials  for the treatment of HAT (37). The goal of these programs was to identify 501 

orally active treatments of these systemic parasitic infections.  502 
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For successful therapeutic activity in vivo in CL, a drug requires both potent anti-leishmanial 503 

activity and an ability to permeate biological membranes in order to reach the Leishmania 504 

parasites in the dermal layer of the skin, a process that is impacted by both the physicochemical 505 

properties of the drug and the route of administration.  506 

Several criteria limit delivery of drugs through the skin; drugs with a molecular weight of < 500 507 

g/mol (38), a partition coefficient between 1 and 3 (39, 40) , a low melting point (< 200oC) (41), 508 

aqueous solubility >1 mg/ml (42) and less than 2 H-bond donor groups (43) are more likely to 509 

permeate. Topically applied drugs also undergo relatively little enzymatic degradation 510 

compared to orally administered drugs that need to pass a monolayer of intestinal epithelium 511 

and have low hepatic first-pass metabolism before it reaches the blood circulation to allow it to 512 

distribute to the skin (40).  513 

Whilst each layer of the skin is a potential hurdle to drug permeation, it is the outer layer of the 514 

skin, the stratum corneum, that is a highly restrictive permeability barrier formed of 10-15 515 

layers of dead keratinized cells imbedded in an intercellular lipid mixture organised in bilayers 516 

(44, 45). This inherent difference between bio-membranes governs the preferential 517 

permeability of certain drugs (40).  518 

Previously reported strategies for developing topical treatments for CL have focussed solely on 519 

formulation optimisation as means to increase treatment efficacy, whereas we wish to identify 520 

compounds with intrinsic properties consistent with topical administration. To achieve this 521 

objective we systematically evaluated physiologically-based pharmacokinetic parameters and 522 

aimed to correlate these to the physicochemical properties of the compounds. A diverse set of 523 
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benzoxoboroles associated with good drug-like properties in previous anti-parasitic programs 524 

was selected. Compounds were assessed for their likely intrinsic activity against old and new 525 

world CL species by measuring the in vitro activity against the intracellular amastigote form 526 

using a previously reported assay (46).  527 

Dermal drug-like properties were characterised by comparing physicochemical properties, in 528 

vitro permeability through MDCK, and RHE models and stability in skin homogenate. 529 

Subsequently promising compounds were advanced to whole skin permeability, binding and 530 

disposition evaluation. This strategy of selection was employed to advance the most promising 531 

compounds to the more complex assays. Ultimately, this strategy identified 3 compounds each 532 

with unique features for evaluation in a murine model of CL. 533 

Initially, five benzoxaboroles 6-carboxamides showed broad range activity against CL causing 534 

species. To complement this intrinsic activity, in vitro membrane permeability assays were 535 

employed to assess each compound’s ability to cross a cellular barrier. Previously, the MDCK-536 

MDR1 Transwell assay was successfully utilised to classify compounds with a potential high 537 

permeability across the gut when Papp AB +GF918 >50 nm/s (31) or the blood brain barrier when 538 

the Papp AB +GF918 >150 nm/s and the compound is a non-PgP substrate (47). Whilst for dermal 539 

permeation no clear selection criteria were found in literature, our test compounds generally 540 

exhibited high permeability with a Papp AB+GF918 >200 nm/s, except for LSH002 (Papp AB+GF918 541 

= 32.5 nm/s). Furthermore, the MDCK-MDR1 assay allowed us to identify potential substrates 542 

of the P-glycoprotein (PgP) efflux transporter (48-50) which is helpful considering that these 543 

compounds may suffer reduced fraction absorbed following oral delivery (51, 52) but may also 544 
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demonstrate reduced ability to penetrate macrophages. This is important because Leishmania 545 

parasites survive and divide inside macrophages meaning that Pgp substrate drugs might 546 

potentially be less active compared to drugs that are not Pgp substrates as efflux would 547 

attenuate entry into macrophages (53, 54). In fact, reports of inactivity of antimonial drugs 548 

against L. donovani in patients were linked to upregulation of Pgp transporters in the host cells, 549 

leading to low concentrations of drug in the macrophages and thus disease progression (55). In 550 

our set of test compounds, only LSH002 showed an absorption quotient higher than 0.3 551 

indicating it potentially is a Pgp subtrate (31).  552 

Moving on from the cellular models of permeation, the permeability of the test compounds 553 

was further evaluated in complex RHE that has shown ability to predict dermal permeation (56) 554 

allowing us to further rank order our test compounds. The hydrophilic compounds, caffeine and 555 

LSH002, showed highest permeation in this model. Caffeine and LSH002 were the most 556 

hydrophilic compounds amongst the test compounds as was indicated by their log D value of -557 

0.08 and 0.44 respectively. Hence, LSH002 even though in solution, might have been closer to 558 

saturation in the ethanol-Miglyol 840 (1:9) vehicle exhibiting a higher thermodynamic activity 559 

compared to the test compounds with a higher log D. The second highest permeation was 560 

observed for LSH003 the test compound that also showed good in vitro anti-leishmanial activity 561 

against all five spp. LSH001, also active in vitro against all Leishmania spp, showed a slightly 562 

lower permeation than testosterone the lipophilic control drug. 563 

When evaluating the permeation of these three compounds in BALB/c mouse skin using the 564 

same experimental design, the overall permeation and thus flux of the test compounds and 565 
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testosterone were lower compared to the permeation through RHE (one-way ANOVA, p < 0.05) 566 

(Table 6). Several studies have indicated that RHE is more permeable than animal and human 567 

skin (57-59).  The rank order of the test compound’s permeation through mouse skin was the 568 

same as for the RHE (LSH002 > LSH003 > LSH001) and more importantly, the permeation of all 569 

test compounds was higher than that of testosterone. 570 

We next explored the metabolic stability of the benzoxaboroles in both liver-based and skin-571 

based assays.  Degradation of drugs in the skin has been reported (60-62) with the main site of 572 

activity situated in the epidermis (63). We used the supernatant of skin homogenate to 573 

determine the drug stability and observed that all benzoxaborole test compounds showed a 574 

higher stability compared to the paraben compounds that are known substrates for skin 575 

esterases and are therefore expected to breakdown (64). The fraction of parent compound 576 

remaining after 2h of incubation was relatively similar for all compounds ranging from 577 

approximately 30 to 60%. The skin homogenate was prepared using full-thickness BALB/c 578 

mouse skin as opposed to epidermal membranes alone. Epidermal membranes exhibited 579 

reduced enzymatic activity compared to full-thickness skin (65), possibly due to the exposure to 580 

heat required to separate epidermal and dermal membranes. Furthermore, the in vivo efficacy 581 

study will be conducted in female BALB/c mice and thus full-thickness mouse skin was used to 582 

assure consistency between the in vitro – in vivo data set. During the preparation of our 583 

homogenate intracellular enzymes might have been released contributing to the breakdown of 584 

drugs, in which case these results represent an overestimation of drug metabolism (62). How 585 

these results compare to human skin is unclear but a study comparing paraben breakdown in 586 

rat and human skin, observed a higher metabolism, in the order of magnitudes, for rat skin 587 
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indicating that the breakdown in human skin is expected to be lower as compared to the results 588 

obtained here (66).  589 

Drug binding to skin proteins can also result in the inability of the drug to reach or distribute to 590 

its target; it is the unbound (free) fraction of the drug in the dermis that is pharmacologically 591 

active as it can passively permeate into the macrophage and from there into the parasite (67). 592 

After incubation in skin homogenate, our test compounds exhibited a range of unbound 593 

fractions. A certain level of drug-skin binding is desirable to establish a depot effect leading to 594 

slow release of the drug from the skin into the macrophage and Leishmania parasite. As the 595 

unbound fractions across a membrane are in equilibrium, drug being taken up by the 596 

macrophage will cause drug bound to skin components to be released and become available for 597 

uptake into the macrophage. Moreover, the skin binding could prevent systemic exposure and 598 

therefore preliminary drug metabolism and excretion.  599 

Prior to in vivo evaluation, the skin disposition of the compounds was evaluated using BALB/c 600 

mouse skin under real-life conditions e.g. limited volume of a 1% (w/v) test compound 601 

formulation. This showed a lower permeation for LSH002 compared to LSH001 and LSH003 in 602 

contrast to its higher permeation shown in the RHE. This is likely due to the change in vehicle 603 

and thus saturation therein. LSH001 and LSH003 were applied as suspensions with a maximal 604 

thermodynamic activity, while LSH002 was applied as a solution at about 80% of saturation and 605 

thus a suboptimal thermodynamic driving force. Also due to its hydrophilic nature, LSH002 is 606 

likely to have a higher affinity for the ethanol-PG vehicle compared to the skin causing the drug 607 

to remain in the vehicle on the skin surface. In addition, our mass balance data showed a 608 
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significantly lower drug fraction in the skin for both LSH002 and LSH003 compared to LSH001 609 

(one-way ANOVA; p<0.05). For LSH001 about half of the applied drugs had permeated into the 610 

skin. LSH001 has a high log D which is expected to facilitate partitioning and diffusion into the 611 

stratum corneum. A high log D, however, is unfavourable for the permeation into the dermis. 612 

When evaluating the activity of these test compounds in vivo, LSH001 applied topically was able 613 

to halt the lesion growth, which suggests that the drug was able to permeate through the SC 614 

and reach the parasites situated in the lower epidermis and dermis. LSH003 administered 615 

orally, significantly reduced the lesion size and parasite burden compared to the LSH001 and 616 

LSH002 oral groups. This non-healing BALB/c model is a rigorous test for drugs because (i) upon 617 

infection with Leishmania parasites, the mice develop fulminating infections with ulcers that 618 

quickly progress to death if left untreated (68), and (ii) the drugs were only applied after 619 

establishment of the lesions. For this model lesion size reduction or suppression of lesion 620 

growth is regarded as a promising result (68).  621 

The determination of efficacy of the topical formulations can be difficult to gauge as the mice 622 

are able to remove the formulation by licking the site. For LSH001, there was no change in 623 

lesion progression when the compound was administered orally. This suggests that the drug 624 

that permeated the skin exerts the suppression of nodule growth observed upon topical 625 

application of the same agent. This correlates with the data obtained from the in vitro 626 

permeation experiment using BALB/c mouse skin. Not only did LSH001 show a higher 627 

permeation compared to LSH002 and LSH003, the mass balance study also showed a 628 

statistically higher concentration of LSH001 in the skin compared to the two other test 629 
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compounds. Of the three in vivo tested compounds, LSH001 also exhibited the highest unbound 630 

fraction. It could be hypothesised that even for topical compounds it is beneficial to have a high 631 

unbound fraction in order to exert anti-leishmanial activity as opposed to binding to skin. 632 

LSH001 suppressed nodule growth when applied topically whereas oral administration with the 633 

same agent did not affect lesion size and vice versa for LSH003 whereby oral administration 634 

reduced the lesion size but topical administration had no effect. Since LSH001 and LSH003, 635 

exhibited the same in vitro activity against L. major, it is thus suggested that the difference in 636 

efficacy upon oral administration is due to pharmacokinetic variations between LSH001 and 637 

LSH003.  638 

Conclusions 639 

Previously, the process of drug development for CL mainly focussed on drug activity testing and 640 

formulation optimisation. Current in vitro models to test anti-leishmanial activity rely on 2D 641 

culture systems that demonstrate activity against the intracellular parasite but correlate poorly 642 

with results obtained in animal models (69). This “disconnect” is likely to be caused by the 643 

oversimplification of the in vitro model that is unable to account for pharmacokinetic drug 644 

barriers that occur in vivo.  645 

We have shown that a more complete evaluation of a drug candidate is established by 646 

incorporating physiologically-based pharmacokinetic assays in our drug discovery, leading to an 647 

improved selection of lead candidates, which is essential to improve the likelihood of a success 648 

of clinical candidates (70, 71). 649 
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Furthermore, this step-wise approach allows evaluation of the test compounds at each stage 650 

enables input from medicinal chemistry to alter the core molecule to optimise physicochemical 651 

properties to increase distribution and specificity of the drug in the skin at an early stage of 652 

development. 653 
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Tables 878 

Table 1. The general structure of benzoxaboroles (A) and subclasses: benzoxaborole 6-879 

carboxamides (D), benzoxaboroles 5-carboxamides (B), pyrazole 6-carboxamides (C), 880 

benzoxaborininols (E).   881 

General benzoxaboroles structure 

 

Chemical sub class  Modification Compound ID 

Benzoxaborole 6-

carboxamide 

R1 

 

LSH006, LSH009, LSH010, LSH011, 

LSH012, LSH015, LSH016, LSH019, 

LSH020, LSH021, LSH023, LSH024, 

LSH025 

Benzoxaborole 5-

carboxamide 

R2 

 

LSH002, LSH031 

Pyrazole 6-

carboxamides 

R1 

 

LSH022, LSH027, LSH028, LSH029 

benzoxaborininole  

 

LSH001, LSH033 

Other   LSH004, LSH005, LSH007, LSH013, 

LSH017,LSH018, LSH034 

 882 
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Table 2. Summary of the experimental conditions for the different permeation experiments. 883 

Permeation 
experiment 

Compounds Donor vehicle 
Concentration 

(µg/ml) 
Volume/ skin surface 

(µl/cm2) 

RHE 1 

LSH001; LSH003; LSH011; 
LSH012; LSH023; LSH024; 
LSH029; LSH034; caffeine; 

testosterone 

Ethanol – Miglyol 840 (1:9) 
Except for caffeine 

100 300 

FDC 1 Mix1: LSH001; LSH002 
Mix2: LSH003; LSH034 

Ethanol – Miglyol 840 (1:9) 100 300 

FDC 2 LSH001; 
LSH002; LSH003 

Ethanol – PG (1:1) 
10 000  

(1% w/v) 
28.4 

 884 

Table 3. Summary of the different in vivo experimental groups with their treatment regimen. 885 

Group Formulation Active compound Vehicle 
Administration 

route 
Treatment regimen 

1 Untreated control None None None None 

2 AmBisome® Amphotericin B Dextrose 5% IV 25mg/kg/b.i.d,  5 doses 

3 Leshcutan® 
Paromomycin 
sulphate 15% 

Methylbenzethonium 
chloride 12% in vaseline 

Topical 0.1ml 2/day for 10 days 

4 Vehicle control N/A PG/Ethanol (1:1) Topical 2x50µl/day for 10 days 

5 
Topical formulation 

1 
LSH001 

Saturated drug solution 
in PG/Ethanol (1:1) 

Topical 2x50µl/day for 10 days 6 
Topical formulation 

2 
LSH002 

7 
Topical formulation 

3 
LSH003 

8 Oral formulation 1 LSH001 

Standard suspended 
vehicle 

Oral 2x25mg/kg/day for 10 days 9 Oral formulation 2 LSH002 

10 Oral formulation 3 LSH003 

 886 

 887 
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Table 4. The sequences of the primer and probes used in the PCR and qPCR reactions. 888 

 Gene Primer/probe Primer Sequence 

Leishmania 

species 

18S rDNA 

(170-bp) 

Forward primer 

Reverse primer 

Probe 

5’-C CAA AGT GTG GAG ATC GAA G-3’ 

5’-GGC CGG TAA AGG CCG AAT AG-3’ 

5’-6FAM ACCATTGTAGTCCACACTGC-NFQ-MGB 

 889 

Table 5. Activity of benzoxaborole compounds against intracellular Leishmania amastigotes 890 

(EC50 values (µM) and 95% CI, n=number of experiment repeats). 891 

Compound n L. tropica L. major L. aethiopica L. mexicana L. panamensis 

Amphotericin B 1 
 
2 
 

0.066  
(0.062-0.070) 
0.083  
(0.078-0.089) 

0.043  
(0.037-0.049) 
0.049  
(0.043-0.056) 

0.115  
(0.107-0.122) 
0.107 
(0.096-0.119) 

0.430  
(0.394-0.460) 
0.685  
(0.553-0.692) 

0.143  
(0.131-0.156) 
0.115  
(0.093-0.142) 

Miltefosine 1 
 
2 
 

19.99  
(17.40-22.97) 
9.44  
(7.78-11.45) 

44.85  
(22.02-77.28) 
26.58  
(21.30-33.15) 

7.79  
(6.20-9.78) 
7.95  
(7.26-8.69) 

31.04  
(28.56-33.73) 
45.86  
(36.61-57.45) 

19.98  
(16.17-24.69) 
23.11  
(20.41-26.18) 

LSH001 1 
 
2 
 

2.01  
(1.52-2.67) 
3.12  
(2.38-4.09)) 

4.26  
(2.97-6.11) 
7.61  
(5.48-10.57) 

22.10  
(15.07-32.41) 
26.83  
(19.40-37.11) 

23.04  
(15.99-33.19) 
16.94  
(9.62-29.83) 

18.82  
(14.08-25.14) 
13.96  
(10.06-19.44) 

LSH002 1 14.96  
(11.38-19.67) 

16.52  
(11.56-23.61) 

> 30 > 30 > 30 

LSH003 1 
 
2 
 

2.46  
(1.78-3.41) 
3.94  
(2.96-5.25)) 

3.93  
(3.32-4.64) 
3.10  
(2.25-4.26)) 

11.12  
(7.67-16.13) 
> 30 

18.94  
(10.78-33.29) 
> 30 

8.09  
(6.56-9.96) 
19.05  
(15.03-24.16) 

LSH004 1 16.08      
(13.70-18.80) 

- 29.97      
(19.04-47.16) 

> 30 > 30 

LSH005 1 6.81          
(5.84-7.94) 

- 21.25     
(13.18-34.26) 

> 30 > 30 

LSH006 1 > 30 - 25.36     
(15.88-40.50) 

> 30 > 30 

LSH007 1 5.71          
(4.39-7.43) 

- 27.18     
(17.16-43.04) 

> 30 > 30 

LSH008 1 > 30 - > 30 > 30 > 30 
LSH009 1 3.08         

(2.51-3.79) 
- 17.66     

(12.10-25.76) 
> 30 > 30 

LSH010 1 6.23         
(5.49-7.06) 

> 30 11.71       
(7.22-19.00) 

> 30 > 30 

LSH011 1 
 

2.31         
(1.73-3.08) 

9.92         
(8.49-11.59) 

> 30 
 

> 30 
 

> 30 
 

LSH012 1 24.61      9.52          > 30 > 30 > 30 
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 (14.31-42.30) (6.80-13.32)    
LSH013 1 > 30* > 30 > 30  > 30 > 30 
LSH014 1 5.91*        

(4.63-7.54) 
4.15         
(3.42-5.04) 

> 30 > 30 29.59       
(20.59-42.53) 

LSH015 1 6.92         
(4.95-9.66) 

> 30 > 30 > 30 > 30 

LSH016 1 5.40         
(4.02-7.26) 

> 30 21.84      
(14.60-32.66) 

> 30 > 30 

LSH017 1 > 30 > 30 > 30 > 30 > 30 
LSH018 1 > 30 > 30 > 30 > 30 > 30 
LSH019 1 21.01        

(4.07-108.4) 
> 30 > 30 > 30 > 30 

LSH020 1 > 30 > 30 > 30 > 30 > 30 
LSH021 1 28.81      

(17.03-48.74) 
> 30 > 30 > 30 > 30 

LSH022 1 > 30 > 30 > 30 > 30 > 30 
LSH023 1 1.19*        

(0.78-1.80) 
1.57          
(1.17-2.10) 

23.05      
(10.09-52.62) 

6.31          
(4.18-9.54) 

2.98             
(2.28-3.90) 

LSH024 1 4.72*        
(3.31-6.74) 

13.96      
(11.52-16.91) 

> 30 > 30 22.34        
(17.66-28.25) 

LSH025 1 2.21*        
(1.51-3.25) 

5.93         
(5.08-6.92) 

> 30 25.39      
(15.81-40.78) 

15.85        
(12.85-19.56) 

 892 

Table 6. Physicochemical properties of benzoxaborole compounds. 893 

Compound Molecular weight* 
(g/mol) 

H bond 
donor/acceptor* 

Aqueous solubility* 
(μg/ml) 

Log D  
(pH 7.4)** 

Ideal skin permeant < 500 < 3  1-3 
LSH001 387 2/5 9 > 2.63 
LSH002 421 2/5 37 0.44±0.06 
LSH003 321 2/7 165 2.18±0.08 
LSH023 334 2/5 103 2.45±0.04 
LSH024 368 2/6 45 2.16±0.07 
LSH026 306 2/4 22 1.86±0.07 
LSH027 325 2/8 103 1.53*** 
LSH028 334 2/6 53 1.86±0.02 
LSH029 393 2/11 14 1.95±0.10 
LSH030 373 2/5 13 1.94±0.06 
LSH032 386 2/5 11 0.88±0.15 
LSH033 400 2/5 7 1.70±0.15 

* Data obtained using ChemBio 3D Ultra 13.0 modeling software 894 
** Experimental data, Mean±SD, n=3 895 
*** Experimental data, n=1 896 

 897 

 898 
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Table 7. The Papp values with and without GF918 and the absorptive quotient (AQ) for the 899 

MDCK-MDR1 assay. 900 

Compound Papp(nm/s) Papp +GF918 (nm/s) AQ 

Amprenavir 58.3 378 0.846 
Propranolol 395 441 0.104 

LSH001 583 599 0.027 
LSH002 16.5 32.5 0.492 
LSH003 626 635 0.014 
LSH023 605 593 -0.020 
LSH024 236 314 0.248 
LSH025 322 349 0.077 
LSH026 652 655 0.005 
LSH027 209 247 0.154 
LSH028 397 424 0.064 
LSH029 229 268 0.146 
LSH030 436 524 0.168 
LSH032 232 327 0.291 
LSH033 404 482 0.162 
LSH034 543 538 -0.009 

 901 

Table 8. Fractions of unbound compound and remaining compound after 2 hours incubation 902 

with mouse skin supernatant (protein content 2.5 mg/ml). 903 

Compound % unbound % remaining       
test compound 

ethyl paraben  10.9 
propyl paraben  0.0 

LSH001 87 44.1 
LSH002 59 28.0 
LSH003 44 51.0 
LSH023 34 50.2 
LSH024 50 35.0 
LSH025 66 34.3 
LSH026 92 50.8 
LSH027 62 53.8 
LSH028 60 41.5 
LSH029 79 64.2 
LSH030 67 46.2 
LSH032 57 41.7 
LSH033 65 46.3 

 904 

 905 

 906 

 907 
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Table 9. The permeation parameters: flux and lag time when using RHE and BALB/c mouse skin 908 

under same conditions and BALB/c mouse skin when applying a low volume (mean±sd; n=3 909 

except for * where n=2). 910 

 
RHE BALB/c 

BALB/c 
Low volume 

Testosterone  
flux (ng/cm2/h) 

lag time (h) 

 
28.0±0.8 
0.7±0.1 

 
2.2±0.8 
1.1±0.6 

 
 

LSH001 
 flux (ng/cm2/h) 

lag time (h) 

 
21.8±0.1 
2.2±0.1 

 
6.6±0.3* 
2.4±0.4 

 
88.7±8.8 
2.7±0.5* 

LSH002  
flux (ng/cm2/h) 

lag time (h) 

 
143.9±44.2 
1.7±0.8 

 
35.8±0.9* 
2.8±0.3 

 
13.5±8.7* 
2.7±0.7 

LSH003 
flux (ng/cm2/h) 

lag time (h)  

 
45.1±5.9 
2.1±0.1 

 
8.0±1.5* 
2.5±0.3 

 
71.8±18.0 
2.7±0.9 

911 
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Figure Legends 912 

Figure 1. Drug delivery for CL. (A) Progression pathway during lead optimization of drugs as 913 

potential topical treatment for CL. (B) Histology of BALB/c mouse skin infected with L. major. 914 

(A) Schematic of the route of the active drug through Leishmania infected BALB/c mouse skin 915 

before reaching (B) the Leishmania amastigotes situated in phagolysosome of dermal 916 

macrophages.  917 

Figure 2. In vitro stability of test compounds in skin homogenate. The remaining fraction (%) 918 

of test compound left in supernatant with a protein content of 2.5mg/ml as a function of time 919 

(mean±SD, n=3) 920 

Figure 3. In vitro permeation through BALB/c mouse skin. The cumulative amount permeated 921 

in time for LSH001, LSH002 and LSH003 using Franz diffusion cells (mean±SD, n=3).  922 

Figure 4. Skin disposition evaluation. The amounts of benzoxaboroles that permeated or were 923 

found in and on the skin expressed as percentage of the dosage retrieved.  924 

Figure 5. In vivo anti-leishmanial activity of benzoxaboroles upon oral and topical application. 925 

(A) The progression of the main lesion size (measured using digital callipers) per group in 926 

function of time post infection (n=6, mean±SD); (B) The average number of amastigotes found 927 

per lesion as analysed by qPCR and the average lesion size per group 3 days after the end of the 928 

treatment (mean±SD, n=5).  929 

 930 

 931 

 932 
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