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Abstract

Missing data are common wherever statistical methods are applied in practice. They
present a problem by demanding that additional untestable assumptions be made about
the mechanism leading to the incompleteness of the data. Minimising the strength of
these assumptions and assessing the sensitivity of conclusions to their possible violation

constitute two important aspects of current research in this area.

One attractive approach is the doubly robust (DR) weighting-based method proposed
by Robins and colleagues. By incorporating two models for the missing data process,
inferences are valid when at least one model is correctly specified. The balance be-
tween robustness, efficiency and analytical complexity is one which is difficult to strike,
resulting in a split between the likelihood and multiple imputation (MI) school on one
hand and the weighting and DR school on the other.

We propose a new method, doubly robust multiple imputation (DRMI), combining the
convenience of MI with the robustness of the DR approach, and explore the use of our
new estimator for non-monotone missing at random data, a setting in which, hitherto,
estimators with the DR property have not been implemented. We apply the method
to data from a clinical trial comparing type II diabetes drugs, where we also use MI as
a tool to explore sensitivity to the missing at random assumption. Finally, we study
DRMI in the longitudinal binary data setting and find that it compares favourably
with existing methods.
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Nothing is wrong with making assumptions; on the contrary, they are the
strands that join the field of statistics to scientific disciplines. The quality
of these assumptions, not their existence, is the issue.

Little and Rubin (2000)



Part |

Preliminaries



Introduction

1.1 Background

Missing data are common wherever statistical methods are applied in practice. The
problems they present are manifested in different ways in different contexts, but can
be summarised by the following observation: if some data are missing, additional as-
sumptions must be made about the mechanism leading to the incompleteness of the

data and the relationship between the observed and unobserved data. These assump-

27




1 INTRODUCTION 28

tions are inherently untestable and no amount of sophisticated mathematics can save

us from this fact.

A common example of missing data in medicine is patient dropout in a clinical trial.
Some examples of assumptions that might be made about the missing data in this

context are

A. that the outcome of interest for patients who drop out is, on average, equal to

the outcome of interest for patients who remain in the study, or

B. that the outcome of interest for those who dropped out, had they not dropped

out, would have remained constant at the last observed value.

Both of these are now considered to be implausible and unnecessarily strong in most
settings, and over the last two decades, much work has been done to develop meth-
ods that rely on weaker assumptions than these. For example, a weaker version of

assumption A is that

A’. if two subjects exhibit identical behaviour up to some point, whereafter one
continues in the study but the other drops out, then the subsequent (unobserved)
behaviour of the latter is, in distribution, equal to the subsequent behaviour of

the former.

It transpires that given a fully-parametric model for the (unobserved) full data, models
for the incomplete data based on assumption A’ are identifiable from the observed data
alone, and lead to valid inferences if the full-data model is correct and the assumption
holds. Furthermore, assumption A’ is minimal in this respect, in the sense that any

model for the incomplete data based on a weaker assumption, such as
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A”. if two subjects exhibit identical behaviour up to some point, whereafter one
continues in the study but the other drops out, then the subsequent (unobserved)
behaviour of the latter is, on average, worse than or equal to the subsequent

behaviour of the former,

cannot be identified from the observed data alone. Informally, the matter of ‘how much

worse?’ in assumption A” is one which cannot be determined from the observed data.

Even if we are prepared to make assumption A’, the validity of our inferences remains
reliant on the correct specification of a model for the full data. This, of course, is the
case for any statistical analysis, but if these assumptions are violated, the consequences
(for example, induced bias) are more serious for incomplete data than they are for fully-
observed data. Informally, when there are missing data, we compensate by relying more
heavily on the assumptions of our full data model. This has led to the view, held by
many in this field, that full-data models should be more robust (e.g. semiparametric)

when the data are incomplete.

As is common to all areas of statistics, however, there is a trade-off between robustness
and efficiency, and exactly where the correct balance lies is a matter of considerable
contention. This has led to two broad schools of thought, as Molenberghs explains in

response to Davidian et al. (2005):

“ ..the academic research community is divided between two rather op-
posing schools: the likelihood-oriented school of Rubin and co-workers, on
the one hand, and the weighting-based school of Robins, Rotnitzky and
co-workers, on the other hand. Exchanges between these two schools can
certainly be entertaining, but when the debates are too fierce and go on
too long, the winner is likely to be a third party. In this case, the third
party may well be last observation carried forward (LOCF), complete case
analysis (CC) and related simplistic methods.”
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LOCF and CC are, respectively, the names given to assumptions B and A above. Rubin
and Robins would no doubt agree that the broad aims of any researcher embarking on

the analysis of an incomplete dataset should be

1. to understand and make explicit the assumptions made,

2. to minimise the strength of these assumptions wherever possible, whilst preserv-
ing other desirable properties of the analysis, such as efficiency and computational

manageability, and

3. to investigate the sensitivity of any conclusions drawn to possible violations of the

assumptions made.

Any disagreement between the two would be confined to the second of these aims and
to where exactly the line should be drawn.

1.2 Outline of this thesis

Robins and his colleagues have introduced an attractive set of methods based on inverse
probability weighting, the idea being that the bias induced by missing observations can
be mitigated by weighting up the subjects most similar to those who are missing. By
incorporating, in addition to the model for these weights, a model for the relationship
between the observed and missing data, estimates are doubly robust (DR) in the sense
that inferences are valid when at least one of the two models is correctly specified. The
fact that these two additional models are specified allows the model for the full data to
be less restrictive than might otherwise be the case, and the full-data models proposed
by Robins and colleagues are semiparametric or even nonparametric, leading to the
commonly used label of semiparametric for methods following this approach. Within
their specified semiparametric (or nonparametric) classes, Robins and colleagues have
shown their proposed estimators to be asymptotically optimally efficient.
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On the other hand, one of the main methods proposed and advocated by Rubin,
multiple imputation (MI), is also attractive. In MI, rather than weighting observed
values, the focus is on filling in the missing values with appropriate ‘guesses’, whilst
taking this into account in the subsequent inference so as not to fall into the trap of
‘counting the same information more than once’. MI uses only one of the two additional
models employed in DR procedures: a model for the missing data conditional on the
observed. A model for the weights is not contemplated. The method relies therefore on
the correct specification of the model for the missing data conditional on the observed
data for valid inferences, causing MI to be less robust than Robins’s DR methods.
However, MI’s great strength is its flexibility and convenience in practice. Whereas
DR methods need, in general, to be derived individually for each situation, MI is
largely a ‘one size fits all’ approach, where, once the imputations have been drawn,

valid inferences are obtained using a few simple general formula.

In this thesis, we propose a new method, doubly robust multiple imputation (DRMI),
which combines the convenience of MI with the robustness of the weighting-based ap-
proach. Our aim is to use the computational flexibility of MI to provide a general
framework for constructing DR estimators, extending to settings where, hitherto, esti-
mators with this property have not been implemented. We apply the new method to
data from the RECORD study, a clinical trial comparing type II diabetes drugs.

This thesis is divided into six parts. The remaining chapter of part 1 introduces the
RECORD study dataset used in the remainder of the thesis. Part 2 lays down the
mathematical foundations for the work contained in the thesis, and gives a detailed
account of existing methods in the missing data literature, focussing on those methods
which form the basis for this research. In part 3, we introduce our new method,
doubly robust multiple imputation, and exhibit its properties both theoretically and
using simulations. In part 4 (Chapter 10) we apply DRMI to the RECORD study
dataset and (in Chapter 11} we then explore these data further, using MI to assess
the sensitivity to the assumptions made about the missing data mechanism. Part 5
focusses on repeated binary data, exploring DRMI in this context, but also explaining
theoretically some aspects of other methods hitherto not well understood. The final
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part summarises the main conclusions of the thesis and suggests possible avenues of
further research emanating from this work. Proofs, tables and figures considered not
to be central to the main thrust of the arguments presented have been moved to the
appendices at the end of the thesis, along with the computer code for any novel analysis.



The RECORD study: background

A clinical trial in type II diabetes mellitus patients carried out by GlaxoSmithKline

motivates much of the work presented in this thesis. We introduce this example here.

Two well-established drugs prescribed to patients with type I diabetes are Metformin
(Met) and Sulfonylurea (Su). The progressive nature of the disease, coupled with the
setting of more stringent HbA;. targets by practitioners, means that an increasing
number of patients are taking combination therapies, such as both Met and Su. The

primary aim of the RECORD (Rosiglitazone Evaluated for Cardiac Outcomes and

33
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Figure 2.1: A summary of the design of the RECORD trial

Regulation of glycaemia in Diabetes) study was to evaluate the safety (by looking at
cardiac outcomes) of a third drug, Rosiglitazone (Rosi), when used in combination with
either Met or Su. See, for example, the article by Nissen and Wolski (2007) for some
background on these cardiovascular safety concerns. However, a secondary analysis
was also planned, to assess the efficacy of Rosi as regards glycaemic control. It is with
this secondary analysis, in particular the measurement of HbA;. (a measure of the
average level of glucose in the blood over the 8-12 weeks prior to measurement), that

we are concerned.

The RECORD trial recruited 4458 patients from 330 centres in 23 countries, all of
whom were taking either Met or Su (monotherapy) prior to the start of the trial. The
Met and Su arms were subsequently treated as two separate strata, with patients in
the Met arm randomised to receive either additional Su or additional Rosi, and pa-
tients in the Su arm randomised to receive either additional Met or additional Rosi.
If dual therapy proved not to be effective (HbA;.>8.5% in two consecutive measure-
ments >1 month apart and at least 8 weeks from titration to maximum dose of study
medication), patients in the Met+Rosi or Su+Rosi arm would be given additional Su
or Met respectively, whereas patients in the two non-Rosi arms would be put straight
onto insulin; that is, the protocol for the Rosi and non-Rosi arms differed. This is

summarised in Fig. 2.1.
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HbA,. was collected on patients at baseline, and at 8 further follow-up visits: at 2, 4,
6, 8, 10, 12, 15 and 18 months. Patients who left dual/triple therapy were considered
to belong only to the CV-outcome phase of the trial from the date at which they ceased
dual/triple therapy, and only one subsequent HbA;, measurement was taken on these

patients: at 12 months after randomisation.

Since recruitment was on-going, it was specified that the first 1122 patients randomised
(those randomised before 15 April 2002) would form the cohort for this 18-month
analysis. The aim was to investigate whether or not Rosi in combination with Met or
Su is as good as Met+Su for achieving glycaemic control. The pre-specified endpoint
(see Home et al., 2005) was to look at the change in mean HbA;. from baseline at 18
months after randomisation, but any difference in the trajectories between the different
combination therapies is also of interest. The non-inferiority criterion (upper band 95%
CI of difference) was set at 0.4%.

As in almost all longitudinal studies, there were patients lost to follow-up and also
patients who failed to comply with their treatment protocol for the duration of the
follow-up time. The original analysis of these data (Home et al., 2007) made certain
assumptions about the mechanisms leading to the dropout and noncompliance. In
Chapter 11 we assess the robustness of their conclusions to possible violations of these

assumptions.

HbA,. in type II diabetic patients, as it is a measure of glycaemic control, is likely to
fall outside the range considered to be normal in the general population. However, the
nature of the disease means that HbA,. levels in type II diabetic patients are far more
likely to be abnormally high than abnormally low. As such, we may expect HbA;,
measurements in this population to be non-normal and to exhibit some right skewness.
The original analysis carried out by Home et al. (2007) assumed multivariate normality
for the repeated HbA ;. measurements conditional on baseline HbA;.. In Chapter 10,
we assess the sensitivity of their conclusions by relaxing the multivariate normality
assumption, an assumption which carries extra weight when the data are incomplete.
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Notation and basic definitions

3.1 Full data and associated quantities

Definition 3.1 (Full-data model). The full data are the data we would collect in an
ideal setting, if there were no missing data. Following the notation used by Tsiatis
(2006), we write these full data as

{Zi:izl,...,n}

37
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where n is the number of subjects and Z; is the full data for subject . We assume* that
the Z,’s are independent and identically distributed random vectors from a parametric

model with true density of the form

Pz (Z, 0)

for some true value 8, of the g-dimensional parameter 6.

QOur aim is usually either to make inference about 6, a subset 9 of 8, or a function

¥ (6) of 6.

We will often distinguish between outcomes (Y) and covariates (X), where Z;, =
(X7, YiT)T. Occasionally we will further distinguish between the covariates of interest
(X) and the auzilliary covariates (V), and write Z; = (X7, VT, Yf)T.

Definition 3.2 (Saturated model). If the covariates X; on which we are conditioning
are all categorical, and 6 (or a transformation of @) contains a separate parameter for
the mean of Y; for every possible combination of the categorical covariates, then the

model is said to be saturated.

The subscript 7 € {1,...,n} always indexes subjects, with j € {1,...,J} and t €
{1,...,T} used to index the constituent random variables of Z;, e.g. Z; = (Z,, ..., Z;;,
.z J,i)T. t is reserved for longitudinal data, and j is used either for cross-sectional
data, or in the general case where we do not wish to specify whether the data are
longitudinal or cross-sectional. That is, {Z;; : 1 <t < T} are repeated measurements
of the same outcome on a given subject, and {Z;,;: 1 < j < J} could either be differ-
ent variables measured on the same subject simultaneously, or either of the two cases
when we do not wish to specify. In the longitudinal setting, Z;; (or Z;;) could be
vector-valued, and denoted by Z;; (or Z;;).

*Even when using a semiparametric or nonparametric approach, we assume that there is some
parametric distribution that gave rise to the data under consideration, even if we choose not to
postulate the form of pz (z, 8).
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Unless specified otherwise, the superscript -7 is used to denote matrix transpose and

should not be mistaken for T, the upper bound of ¢.
Definition 3.3 (Full-data score). The full-data score vector, S§ (Z, 0), is defined as:

6 lOg [pZ (Z’ 9)]
00

S5 (Z,6) =

Definition 3.4 (Full-data information). The full-data information matriz, I5, (0), is
defined as:

621 Z,e 0 SF (Z,O)T
w0 - {-Lgpmen) o220

where the expectation is with respect to the true distribution of Z.

Definition 3.5 (Asymptotically linear estimator). An asymptotically linear estimator
0, of 0 is one that satisfies the following:

nz (én - 00) =n"3 Z w(Z;) + 0, (1)
i=1
where ¢ (Z;) is called the ith influence function of én and must satisfy the following:

Elp(Z)] =0

E ¢ (Z) ¢ (Z)"] < o0

Definition 3.6 (Regular asymptotically linear (RAL) estimator). Under certain reg-
ularity conditions (see Tsiatis, 2006), all asymptotically linear estimators share the

property that
ni (én - 90) 2N (0,5) (3.1.1)

asn — oo, where A 1s used to mean tends in distribution in the measure-theoretic sense
as described by Williams (1991). We will call such estimators regular asymptotically
linear or RAL. Conversely, it can be shown that any estimator that satisfies (3.1.1) is
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RAL. Furthermore, this association between RAL estimators and influence functions

is one-to-one.

3.2 Coarsened data

The notion of coarsened data was first introduced by Heitjan and Rubin (1991).
Definition 3.7 (Injective function). A function f : R™ — R™ is injective if f (z) =
f(y) = z =y for any z,y € R™.

Definition 3.8 (Non-injective function). A function f : R™ — R™ which is not injec-
tive is called non-injective. That is, f is non-injective if there exist at least one pair
z,y € R™ such that z # y and f (z) = f (y).

Definition 3.9 (Coarsened data). Suppose that, for each i« = 1,...,n, instead of

observing Z;, we observe a coarsening indicator C; € Z* U {0, 00}, together with
Ge, (Z;), where G, (Z;) is a non-injective function of Z;. Then

{[Ci,Ge, (Z)] :i=1,...,n}

are known as the coarsened data. We will also refer to these as the observed data and
write the observed-data density as pc,gq(z) (¢, &, 8,&), where £ is a set of additional
parameters that govern the distribution of C' given Z.

Intuitively, we can use Fig. 3.1 to conceptualise coarsened data. Consider a dis-
crete (and finite) example where the sample space (2 consists only of 25 possible
one-dimensional values (labelled p1-p25). Now suppose that Q is divided into sub-
spaces Al, A2,..., A8, and that rather than directly observing Z; = Z;, we observe
only the subspace (Al, A2, ..., or A8) in which Z; lies. For example, if Z; = pl4,
then G, (Z;) = A6. For each observation, a different partition of the sample space is
allowed and these different partitions are indexed by ¢ € Z* U {0, c0}.

We use C = oo to denote the case where we observe the full data, i.e. G (Z) = Z.
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Figure 3.1: A visual depiction of coarsened data

3.3 Missing data as a special case of coarsening

Suppose Z; = (Z1;, Z2i,---, 2 _],i)T, then we can view missing data as a special case
of coarsening if we let {Gc (Z;):c=0,...,27 — 1} be all possible subvectors of Z;,
indexed by c. A conventional way of ordering the subvectors is to let Gy (Z;) = @ and
Gai_1(Z;) = Z; so that Gyi_y (Z;) = Goo (Zs).

In the case where Z; = Z; is univariate, each member of the population is either
observed (C; = 0o) or not observed (C; = 0). Fig. 3.2 illustrates missing data as a
special case of coarsened data for univariate Z;. In this case, pl-pl5 are all observed
(G, (px) = Ak = px for k = 1,...,15), whereas G, (pr) = Al6 for k = 16,...,25,
and all we observe is that C; = 0 Vk € {16,...,25}. So for subject i, if Z; = p,
ke {1,...,15} then C; = oo but if Z; = pi, k € {16,...,25} then C; = 0. For
two different subjects, these two sets ({1,...,15} and {16,...,25}) could be defined
differently.

Definition 3.10. Sometimes it is also useful to consider the set

{(C,,Zz)z=1,,n}
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Figure 3.2: A visual depiction of missing data as a special case of coarsening

which we call the unobservable data. These have density

pcz(c.2z,6,§) (3.3.1)

3.4 Observed data quantities

The observed-data score vector and observed-data information matrix are defined in

an analogous way to the full-data equivalents.

Definition 3.11 (Observed-data score). The observed-data score wvector,
S¢[C,Gc (Z),0,§], is defined as:

8log [pC,GC(Z) (C, e 91 E)]

SG [C? GC (Z) ’ 9, 5] = 30

Definition 3.12 (Observed-data information). The observed-data information matriz,
Igo (0), is defined as:

8% log |pcce(z) (¢ 8, 0, €) 0 SO[C»GC(Z),O,QT
L
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where the expectation is with respect to the true distribution of [C, G¢ (Z)).

3.5 Missingness indicators

Although it will sometimes be useful to derive results under the more general notion
of coarsening and subsequently apply these results to the special case of missing data,
coarsened data are not the direct focus of any part of this thesis. For this reason, it is

useful to define missingness indicators as well as the coarsening indicator C;.

As we have seen, the observed data as a function of the full data Z; can be unambigu-
ously described using the univariate coarsening indicator C; € Z+ U {0, c0}. However,
often more useful in practice is the following:

Definition 3.13 (Missingness indicator vector). Let Z; = (21, Z24,..., 2 J’i)T. The

missingness indicator vector, R; is given by
R; = [1 (Z,, is observed) , 1 (Z,; is observed),...,1(Z;; is observed)]T

and R;; is the j* element of Ry, i.e. R;; = 1(Z;; is observed).

Thus, whenever the condition C; = ¢; is used in the coarsened data formulation,
it can be translated as R; = r; in the missing data formulation. Correspondingly,
[Ci, Ge, (Z;)], the observed data in the coarsened data formulation, can be translated as
(R, Z¢*) in the missing data formulation, where Z2> = {Z;; : R;; = 1} (and ZP* =
{Z;;: R;; = 0}).

Furthermore, if {(Ci,Z;) :i=1,...,n} are the unobservable data under coarscning,
then { (R;,Z;) : 4 =1,...,n} are the unobservable data under missingness, with asso-

ciated density
pR,Z (r7z7 07 C) (351)
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3.6 Monotonicity and dropout

Definition 3.14 (Monotone missing data pattern). If
Zi = (Zl,i’ Z2,'i7 ey ZJ,i)T
and there exists a permutation {p;,p,...,ps} of {1,2,...,J} with

2. = (Zpyir Zomis -+ » Zpy i)

)

such that if R, ; = 0 then Ry, ; =0 for all k > j, then the missing data pattern is said

to be monotone.

Definition 3.15 (General missing data pattern). If the missing data pattern is not
monotone, then it is said to be general.

Monotonicity implies that the variables can be ordered as shown in Fig. 3.3. The
condition trivially holds if only one variable is incomplete and can otherwise occur in
clinical trials where data are only missing because of loss-to-follow-up, where patients
leave and never return, in which case the variables would be ordered with increasing

time. For cross-sectional data with more than one incomplete variable, monotonicity
is unlikely to hold.

Definition 3.16 (Dropout indicator). Under monotonicity, R; € {0, I}T (where T is
the upper bound of ¢ and not used here to denote matrix transpose) is restricted to a
vector which must contain a series of D; — 1, say, ones, followed by T — D; + 1 zeros.
D; € {1,...,T + 1} is called the dropout indicator and represents the first time at

which subject ¢ was not observed.

Definition 3.17 (History). For any vector W; = (W, ;, Wy, .. ., WKJ-)T, let the history
of W, up to time k be
Wi = (Wis, Wag, o, Wia)T

Under monotonicity, with D; = d;, Z¢ =Zg4 _1 ;.
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Figure 3.3: A diagrammatic depiction of a monotone missing data pattern (the shaded areas
are unobserved)

It is common to impose the additional restriction D; > 1-—that every subject in the

dataset is observed on at least one occasion.

3.7 Semiparametric model

Definition 3.18 (Semiparametric model). Implicit in our definition (3.5.1) of the
unobservable data density pr.z (r,2,0,¢) is that @ and ¢ are both finite-dimensional.
In a semiparametric model, this assumption is relaxed, and either @ or ¢ (or both) can
be infinite-dimensional. Usually, the parameter of interest is finite-dimensional, e.g.
if 0 = (ﬁT, nT)T and @ is infinite-dimensional, then 3, the parameter of interest, is

finite-dimensional, and 7, the nuisance parameter, is infinite-dimensional. We use S
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to denote this broad class of semiparametric models.

Definition 3.19 (Semiparametric model for incomplete data). Models for incomplete
data often require (in addition to a model for the full data) the specification of either
a model for the probability of observing the data conditional on the observed data
or a model for the full data conditional on the observed data, or—-in some cases—
both. When a method for analysing incomplete data relies on a model for the full
data conditional on the observed data, the method can be semiparametric in the sense
that the distribution of the full data given the observed data (or the aspect of this
distribution needed for the analysis) is estimated non-parametrically from the observed
data. The full-data model remains parametric. We use Z C S to denote this subclass
of semiparametric models. An example is given in §7.2.

Definition 3.20 (Restricted moment model). We use R C S to denote the subclass
of semiparametric models when only the mean of the distribution is modelled, both in
the full-data model and (in an incomplete data problem) the model for the full data

conditional on the observed.

Definition 3.21 (Parametric submodel). Let F denote a family of unobservable semi-
parametric densities of the form pr z (r, z, 6o, (o) Where 6, and { are potentially
infinite-dimensional. In truth, the data have been generated from a parametric density
po = Prz (T, 2, 00, {o) where 6y and (o are finite-dimensional. A parametric submodel
Fo,.c, is a family of unobservable parametric densities of the form pgr z (r,z, ¢, ¢y)

where 65 and ¢y are finite-dimensional such that

1. py € Fy, ;> and

2. fof,gf cF

Definition 3.22 (Semiparametric-efficient estimator). Within each parametric sub-
model Fg, ¢, of a semiparametric family F, let v be the variance of the most efficient
estimator in the family. Then the semiparametric efficiency bound (Newey, 1990) is
the supremum of v across all parametric submodels of F and a semiparametric-efficient

estimator is an estimator with asymptotic variance achieving this bound.



Missing data modelling frameworks

and mechanisms

4.1 Modelling frameworks

Recall that the unobservable data { (R;,Z;) : i = 1,...,n } have density pr z (r, 2, 0, )
Y PR, 10, ¢):
Three different modelling approaches arise from three different factorisations of this

density.

47
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e Selection modelling (Heckman, 1976), where

PRz (r,2,0,() =pz(2,0)priz (r|z,¢)

As we see in the next section, under certain circumstances, pryz (r |z, ¢) can be
ignored in the analysis, making this framework appealing.

e Pattern-mixture modelling (Little, 1993), where

PR,z (rv z, 0’ C) = PzR (Z tl‘ 79) Pr (I‘, C)

This is arguably the most natural framework in longitudinal studies. For example,
in the RECORD study, where patients attend a clinic every few months to be
measured, we could think of their data as being generated in two stages. First,
the patient decides on the morning of the visit whether or not he or she will
attend. Then, given that the patient attends, an HbA .  measurement is taken and
observed. If the patient does not attend, we imagine a counterfactual observation:

that which would have been observed had the patient attended.

e and shared parameter modelling (Wu and Carroll, 1988), where
pra(r,2.6.0) = [ pzm (zlb.6)pmm (rlb,C)pa (b,w)db

Here, B is a set of latent random effects (with realisations b) governing the
distribution of both the full data and the missingness mechanism. Z and R are
conditionally independent given B.

4.2 Missing and coarsened data mechanisms

The classification of missing data as Missing Completely at Random (MCAR), Missing
at Random (MAR) and Missing Not at Random (MNAR) dates back to Rubin (1976)

and is most naturally described in the selection modelling framework of the previous
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section.

Informally, the classification can be thought of as follows. If the probability of observ-
ing a particular data point is completely independent of all other observations in the
dataset (observed and unobserved), then the missing data are said to be MCAR. If
the probability of observing a particular data point depends on other observed data,
but (after conditioning on the observed data) is independent of the unobserved data,
then the missing data are MAR. If, even after conditioning on the observed data, the
probability of observing a particular data point depends on the unobserved data, then
the missing data are MNAR.

More generally, an analogous classification for coarsened data (Heitjan and Rubin,
1991) can be formally defined as follows:

Definition 4.1 (Coarsening completely at random (CCAR)). If P (C = ¢|Z) =, the
data are said to be coarsened completely at random.

Definition 4.2 (Coarsening at random (CAR)). If P(C = ¢|Z) = 7 {c,G.(Z)], the

data are said to be coarsened at random.

Definition 4.3 (Coarsening not at random (CNAR)). If P(C = ¢|Z) = 7 (c,Z), the

data are said to be coarsened not at random.

This classification has remained at the heart of almost all the work in the missing
data area since its introduction in 1976. MCAR is often implausible, and analyses
assuming only MNAR are usually difficult to implement and often rely on additional
information, external to the data. This means that the MAR assumption has become
a central part of much of the literature on missing data methods. This is not to say
that the assumption is justified as often as it is used. In fact, justifying the MAR
assumption from the observed data alone is impossible: a premise formally shown by
Gill et al. (1996) and further explored by Molenberghs et al. (2008). Whether or not the
missingness mechanism depends intrinsically on the unobserved data after conditioning

on the observed data is counterfactual in the sense that it cannot be determined without
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knowing what the unobserved data would have been had we observed them. This means
that in order to proceed, additional assumptions must be made, and consequently, the
sensitivity of any conclusions to violations of the additional assumptions should be

investigated.

Acquiring an intuitive feel for the MAR assumption is easiest when considering mono-
tone missing data. In this setting, the MAR assumption states that if two subjects,
i; and g, exhibit identical behaviour up to some point d — 1, whereafter subject ¢,
continues in the study, while subject i, drops out, then the subsequent (unobserved)
behaviour of subject 45 is identical in distribution to the subsequent behaviour of sub-

ject 4;. More formally, as was shown by Molenberghs et al. (1998),

Proposition 4.1 (MAR under dropout). Under the MAR assumption, if the non-

response is monotone,

P2y Zassr 27| Zas,D (24, 2441, - - - 27 |Za-1, D = d)

= pZd,Zd+1,~-~,ZT|Zd_1,D (24, Zd+15 - - - » 2T |2d—1, D > d)

We must first prove the following lemma:

Lemma 4.2. Under MAR and monotonicity, pp,z (R4 =1|2z) is independent of

Zdy Zd41y - -5 AT

Proof (by induction). Suppose that pg, 1z (Ra-1 =1]|2z) is independent of
Zd—1,2d, - - -, 27 Then,
Pryz (Ra=1|2) = PRy|z,Ra_: (Ra=1|2,Rs-1 =1)pa, 1z (R4-1 = 1|2)
= [1 T PrijzRas (Ra=0]2,R4_1 = 1)] PR,z (R4-1 = 1] 2)
=pa,_ 1z (Ra-1 = 1|2) — priz (Ra-1 = 1, Ry = 0| 2) (4.2.1)
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The first term in (4.2.1) is independent of 241, ..., 2r (and hence zg4, ..., zr) by the
inductive step, and the second term is independent of zg, ..., zr by the MAR assump-
tion.

prijz (R1 = 1|2) is usually assumed to be 1 (hence independent of z), but even when

this convention is not followed,
Prijz (R1 =1|2) =1 - pryjz (R = 0]2)

which must be independent of z by the MAR assumption. O

Now we prove Proposition 4.1.

Proof.

pZd»Zd+1$"'1ZT[Zd—l)D (zd7 Zd+1, e ,zT |2d—17 d)

= Pz42441, 27|20 R (2, Zd415+ - » 27 |Zd—1, Ri_1 = 1, Rg = 0)
(4.2.2)
__Pzr(zZRi1=1,Rs=0)
Pz, R (Zd-1, R4_1=1,Rq = 0)
_ PRz (Ra-1 =1, Ry = 0|2) pz (2)
pRlzd—l (Rd_l = 1’Rd = O| id—l)pid_l (Zd—l)
_ Prjz,, (Ra-1=1,R4 = 0| 24_1) pz ()
Pr|z,., (Ra-1 =1,R4=0]Z4-1) pz,_, (24-1)
__ Pz (z)
bz, (2d~1)

by the MAR assumption.
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Similarly,

pzd,Zd-H,---,ZT’Zd—l,D (Zd, Zd+4ls+ s 2T Izd—l’ D > d)

=PzyZ4s1,.0210|24-1,Ra (2ds Zd41, -+ 27 |Za—1, Ra = 1)  (4.2.3)
_ pzr,(z,Ri=1)
Pz, Ry (Za-1,Rg=1)
_ Pryz (Ra = 12) pz (2)
Pr,|2.-, (Rq = 12a-1) Pz, , (Z4-1)

In (4.2.2) we use the subscript R, whereas in (4.2.3) we use the subscript Ry. This
is since {R4_1 = 1, Ry = 0} completely specifies R, but R4 = 1 does not. This means

that we cannot immediately use the MAR assumption to write
PRy|24-, (Rg=1|24-1) = pa,z (Ra = 1]2) (4.2.4)

However, (4.2.4) holds by Lemma 4.2. Thus,

pzd,Zd+1,---,ZT|Zd_1,D (zd’ Zd+1’ ct zT Iid—l, D > d)
_ Pryjz,, (Rg = 1|2g-1) pz (2)
deIZd—l (Rd = 1| Zd_l)pzd-1 (id—l)

__pz(2)
Pza_, (Zd-1)
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Stage 1 Stage 3 Stage 4
{Y,.Y,}
Q
{Y,Y,} {Y,Y,Y,}
q O
{Y,Y;}

Figure 4.1: A Markov randomised monotone missingness process for J = 3. Dependence on
X is implicit.

4.2.1 Randomised monotone missingness (RMM) processes

We have seen here how the MAR assumption—expressed in the selection modelling
framework—translates into the pattern-mixture language when the data are mono-
tone (Molenberghs et al., 1998). Such a translation does not exist in general for non-

monotone missing data patterns.

The appropriateness of the MAR assumption for non-monotone missing data has been
questioned (see Robins and Gill, 1997). These authors introduce a new mechanism,
randomised monotone missingness (RMM)—a subset of MAR-—and argue that this
is the only plausible non-monotone MAR mechanism that is not MCAR. They show
(in Gill and Robins, 1996) that there exist mechanisms that are MAR but not RMM,
but that in order for a computer to generate data under such a mechanism, it requires
knowledge of the unobserved data which is then ‘concealed’ later in the process. They
call this phenomenon ‘MAR is more than it seems’ and say:
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“We have been unable to conceive of a plausible social, economic, physical
or biological process that would generate MAR processes that are not RMM
representable, due to the subtle and precise manner in which the data
must be ‘hidden’ to insure that the process is MAR. That is, we believe
that natural missing data processes that are not representable as RMM
processes will be [MNAR]).”

Write the full data Z; for subject ¢ as Z; = (X?,YiT)T, where X; is observed with
probability 1 and Y; = (Y. Yo, ... ,Y_],i)T may be incompletely observed. The RMM
process for subject ¢ is described by Robins and Gill as follows. We start by observ-
ing X;. Then, we either observe one of Y;; (j = 1,...,J) with probabilities p;; (X;)
(j = 1,...,J), respectively, or we quit, having only observed X; with probability
1-—- Z;=1 pji (X;i). Suppose we in fact observe Yj, ;. Now, at the next stage, we either
observe one of Y;; (j = 1,...,51 — L,j1 + 1,...J) with probabilities p;; (X7,Y;,:)
G=1...,0—-Lia+1, ... J), respectively, or we quit, having only observed X;
and Yj,; with probability 1 — 3. pjs (X7,Y;,;). Suppose that after m stages
of this algorithm, we have observed (X}",le,i,sz‘i, e ,ij_,,i). At the next stage,
we either observe one of Y;; (7 € {1,...,J} \ {41, J2,...,Im-1}) with probabilities
Pji (X?,thi, e ,ij_,,i) (7 e{1,....,9}\ {41, J2s - - -, Jm-1}), respectively, or we quit
with probability 1 =3 . pis (XT, Yoy Vi)

Markov randomised monotone missingness (MRMM) is a special case of RMM in which
the probability of observing a given variable conditional on the previous outcomes
observed is independent of the order in which these variables were observed. Thus,
for example, p;; (XiT, Y i ng,i) = Dy (X?,ng,i,}’}, ,) Gill and Robins (1996) prove
that any MAR mechanism representable as RMM is also representable as MRMM. The
MRMM process when J = 3 is shown in Fig. 4.1.
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Stage 1 Stage 2 Stage 3 Stage 4
Y
(Vi {YY,}
/j_J O
Q q q 0—}_
./
(Y hne, {\/1,\(3}l {Y,Y,,Y;}
>/
a \¢ q q
{ Y3 }l { Y2’Y3}l
q q

Figure 4.2: A Markov randomised monotone missingness process for longitudinal data

Notice that (omitting the subscript 2), for example,

P (Y1, Y> both observed, Y3 missing) = [p; (X) p2 (XT, Y1) + py (X) p1 (X7, ¥3)]
1 -ps (XT, Y1, 12)]

where p; (X) p2 (X7,Y1) and ps (X) p1 (X7, Y,) are not constrained to be equal. Thus,
the order in which the variables were observed is needed to estimate the probabilities
p;j (-)—even in an MRMM process—but this order is never observed. Robins and Gill
(1997) describe a method for estimating these probabilities, where the unobserved

orderings are treated as missing data.

Intuitively, by allowing the partially-observed variables to be observed in a variety of
different orderings, a non-monotone mechanism can be viewed (within a given ordering)
as a dropout mechanism. In a situation (such as longitudinal repeated measures) when
there exists only one plausible ordering (such as a temporal ordering), MRMM reduces
to a very special case (shown in Fig. 4.2) where the probability of observing Y, say,
is dependent on Y; if and only if Y5 has been observed. As Vansteelandt et al. (2007)
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argue, it is implausible in most settings that the probability of observing Y3 only
depends on Y5 if Y, happens to have been observed and that therefore, MAR is rarely
a sensible assumption for non-monotone repeated measures. However, as a point of
departure for sensitivity analyses it is useful to be aware of the form of this ignorable
mechanism. Estimating the parameters of the mechanism shown in Fig. 4.2 is much
more straightforward than in the general case (as shown in Fig. 4.1) as the order in

which the variables were observed is always known.

Furthermore, Robins and Gill (1997) describe a statistical test of the hypothesis that,
given that the mechanism is MAR, it is also RMM. They argue that if this hypothesis
is not supported by the data, MAR should be ruled out even in situations when it

might be deemed plausible a priori.



Simple methods

One of the reasons that missing data pose a problem is that they destroy the rect-
angular structure (or balance) of the dataset necessary for many statistical analyses
(e.g. multiple linear regression, ANOVA). Because of this, most simple methods for
handling missing data involve deriving a rectangular dataset from a non-rectangular
one, either destructively or constructively, i.e. either by deleting incomplete lines of

data or by imputing data in place of the missing values.
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5.1 Complete case (CC) analysis

Removing all the subjects in the dataset except for those with complete data on all
variables, and analysing the data that remain, is known as a complete case (CC)
analysis. It is clearly inefficient, especially in a dataset with a large number of variables.
Suppose, for example, that 20 variables are collected on 1,000 subjects, and that 5%
of the data on each variable are missing. If the missing data are distributed uniformly
across subjects and independently for each variable, even though only 5% of the data
are missing, only (.95)% - 100 = 36% of the cases can be used in a CC analysis—less
than 38% of the observed data.

Furthermore, except for the case when the missing data are MCAR, a CC analysis is
biased. Assuming that the full-data analysis would have consisted of solving a score

;sg (zi,én) =0

then, the CC estimator of @ is the one that solves

equation of the form

Y " 1(Ci=c0) S5 (zi,égC) =0 (5.1.1)

i=1

The solution to (5.1.1) is consistent if and only if
E [1(Ci = 00) Sg (Zi, 60)] =0

(Cox and Hinkley, 1974). Under the CCAR assumption,

I

E [1(C; = 0) S (Z:,60)] = E{E [1(C; = ) S (Zi,60) |Zs] }
E [P (C; = 00|Z:) SE (Z:, 60)]
E [ (o0, Z;) Sy Zl,Oo)]

[ Zza 00)] =

5.1.2a)
5.1.2h)
5.1.2¢)
5.1.2d)

[

~~

~—~
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since E [S§ (Z;,60)] = 0.

But the penultimate step relies on the CCAR assumption that 7 (00, Z;) = 7, indepen-
dently of Z;, which is not the case under CAR. Hence, CC estimators are inconsistent
under CAR.

5.2 Inverse probability weighted complete case (IPWCC) analysis

The way in which the CC estimator is inconsistent motivates the inverse probability

weighted complete case (IPWCC) estimator, the estimator which solves

> P]igj"___:ooofz).)sg (z.8me) =0
i=1 ¢ ¢

First introduced by Horvitz and Thompson (1952), the idea of weighting each fully-
observed subject by the probability of observing that subject is intuitively sensible.
Informally, subjects who have only a probability of % of being observed are weighted
twice as much as those who are certain of being observed. We can think of these
people as contributing twice: once for themselves, and once for their ‘twin’ who was
not observed. This is analogous to using sampling weights in surveys with unequal

sampling probabilities.

Following a similar argument to (5.1.2a-5.1.2d), we can show that

E
P (C; = 00|Z;)

Sg (Zi, 00) = O

and the estimator is consistent under MAR, making IPWCC considerably better than
CC estimator. The weighting has corrected the bias, but the inefficiency remains.
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5.3 Single imputation methods

Since discarding incomplete lines of data results in a loss of precision, an alternative,
popular approach is to impute data for the missing values and then analyse the aug-
mented data as if they were the original fully-observed dataset.

The main single imputation procedures are:

e Mean imputation, where a missing Z;; is replaced by the mean value of Z; across
all observed subjects, (3 i, R;iZ;i) / (Ooii Rii);

e Regression imputation, where a missing Z;; is replaced by E (Z;,;|Z5>), where
this conditional expectation is calculated using a regression model of Z; on the
variables included in Z%, fitted to those subjects on whom all these variables

were observed;

e Stochastic regression imputation, where a missing Z;; is replaced by a random
draw from the distribution of Z;; given Z®, estimated from the same regression

model as above; and

e Last observation carried forward, used in repeated measures analyses. As the
name suggests, LOCF simply replaces any missing value by the last observed
value for that variable on that subject: each Z,;, for t > D, is replaced by
ZDi—l,i'

Mean imputation can be biased—even under MCAR—depending on the analysis. For
example, suppose that Z; = (X,-,Y})T and that the parameters of interest are those
from the linear regression of Y on X. Suppose that there are missing data on Y alone,
and that these data are missing completely at random. If we replace the missing Y-
values by (3°1; RY:) / (3o, Ri) (which, under MCAR, has expectation equal to the
marginal mean of Y'), we shrink the estimate of the slope towards 0. Intuitively, this

can be seen in Fig. 5.1.
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° y, after mean imputation =~ = ——-—-—- full data regression line
----------- imputed data regression line

Figure 5.1: The bias introduced by mean imputation on the outcome in a linear regression
model with outcomes missing completely at random

Regression imputation, too, can be biased under MCAR. Suppose that Y is fully-
observed, X is missing completely at random for some subjects and we impute the
missing X-values using their conditional expectation given Y as determined from the
complete case regression of X on Y. We know that the parameters of this regression are
consistently estimated in a complete case analysis since the missing data are MCAR.
Thus, asymptotically, this is equivalent to setting )~(,-, the value of X in the imputed

dataset equal to

RX; +(1- R)E(X;|Y;) = RX; + (1 - Ry) [Mx e R uy)}

oyy
where px, py, oxx, oyy are the true marginal means and variances of X and Y
respectively, and pxy is the true correlation between X and Y.
The slope parameter is estimated from the imputed dataset as

oxy

OxXXx
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where 6 xy is a moment-based estimator of oxy, the covariance of X and Y, and dxx
is a moment-based estimator of oxx. The fact that this estimator is biased follows

from the observations that 6xy is unbiased and 6xx is biased:

B[ (% - ) (- )

—{[R X+ 1 - R[22 (8, = )| 4= )}

= 7B ((X: — px) (Y — )] + (1 = 7) pxvy | 25 [(V; — py)?]

oyy
=noxy + (1 — ) pxyv/Oxx0yy

=0Xxy

where 7 = E (R; |X;,Y:), which we assume to be independent of X; and Y;.

N 2 a
E (Xz’ - ﬂx) =E |Ri (Xi — px)* + (1 = Ry) oy = (Vi — py )’
vy
= moxx + (1 = 7) piyoxx

=oxx [1-(1—m) (1-pky)]

<oxx

with equality if and only if either 7 =1 or p%y = 1, i.e. if and only if either there are
no missing data or X and Y are either perfectly correlated or perfectly anti-correlated.
Otherwise, oxx will be underestimated, and the slope parameter in the regression of

Y on the imputed X-values will be overestimated.

This bias applies only to missing covariates. Regression imputation is consistent for
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missing outcomes, although naive estimates of precision from such an analysis will be
biased.

LOCEF is also, in general, biased even under MCAR (see Molenberghs et al., 2004). The
claim that LOCF always leads to conservative estimates is shown by these authors to
be false. A paper by Shao and Zhong (2004) claims that

“ ..the LOCF one-way ANOVA test is actually asymptotically valid (that
is, its asymptotic size is equal to the nominal size) in the special but impor-
tant case where only two treatments are compared and the two treatment
groups have the same number of patients, regardless of whether drop-out

is informative or not.”

However, Carpenter et al. (2004) point out that the alleged validity applies only when
the hypothesis being considered is that at the last observed occasion, the effect of both
treatments is the same. It is not surprising that LOCF is valid in this scenario-—indeed,
as far as this hypothesis is concerned, no data are missing! Carpenter et al. (2004)

argue that this hypothesis is of no clinical interest.

Furthermore, all naive estimates of precision following non-stochastic imputation meth-
ods are biased, since the imputations are deterministic and are thus less variable than
the (unobserved) observations they are replacing. What we have seen above is that
this reduction in variability can also affect parameter estimates, depending on the réle
played by the imputed variable(s) in the analysis. |

Stochastic regression imputation is an attempt both to correct the residual bias of
regression imputation, and to correct the bias in the estimation of standard errors. It
succeeds in the former but not the latter. There are two sources of uncertainty in a
missing data imputation problem: that due to the original variance in the data, and
that due to the missing data. Regression imputation takes into account neither of these

(hence the shrinkage of oxx seen in the imputations above), and stochastic regression
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imputation takes into account only the former, leading to consistent effect estimates,
but biased estimates of precision. As we see in §6.7, it is possible to take both sources

of uncertainty into account, and this can lead to valid inference.



Fully-parametric methods

In the next two chapters, we turn to more principled methods for handling coarsened
or missing data. These methods are broadly divided into fully- and semiparametric
methods. The choice between these can be based both on philosophical and practi-
cal considerations and is the subject of considerable debate in the current literature
(Davidian et al., 2005; Kang and Schafer, 2007).
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6.1 The direct likelihood approach

Suppose we assume CAR and pose a parametric model for the coarsening mechanism

as follows:
P(C =c|Z) =7(c,G.(Z),§)

where £ is a set of parameters governing the coarsening mechanism. To make in-
ference about @ using the observed data, we must write the obscrved-data density
P0.Ge(z) (€ s O, £) in terms of the full-data parameter 6.

PeGe) (€ 8, 0,6) Z/ pcz(c,2,0,§)dz
{z:G:(z)=gc}

:/ P(C=c|lZ=28)pz(2z,0)dz
{zGc(2)=g}

— 7 (c, e, £) / pz (2,0) dz (6.1.1)
{Z:GC(Z);'SC }

due to the CAR assumption. So we see that the CAR assumption means that the
coarsening parameter § and the full-data parameter 8 separate, making likelihood
methods simpler. If the function |, ( 2:C.(z)=g. ) P2 (2, 0) dz could be maximised by a par-
ticular value 8 of 8, then 8 would be a maximum-observed-likelihood estimator. In
other words, when making inference about 8, provided that 6 and £ are distinct (i.e.
that the parameter space of the full vector (oT,gT)T is the product of the individ-
ual parameter spaces), the part of the likelihood involving £ can be ignored and the
missingness mechanism need not be modelled. Within the likelihood framework, the
CAR (or MAR) assumption, coupled with the distinct parameter assumption is called

ignorability.

Although ignorability simplifies the task, it is still necessary to integrate (directly or
indirectly) the full-data likelihood over the missing data. Anderson (1957) was the
first to show how this could be achieved in the bivariate normal case. Suppose that
only r out of n of the X-values are observed and that Y is fully-observed. By first

noting that the parameters (ux,y,0xx,0xy,0yy) can be isomorphically mapped
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onto (qb, Y, OX|Y s HY s ayy), where ¢, v and ox|y are the parameters associated with the
regression of X on Y, what Anderson showed was that in this case the observed-data
likelihood factorises as:

i=1 i=1

p(Zobserved) = {Hp(Y;, My, UYY)} {HP (X¢|}/1, (,b,")’, Ux|y) } (612)

The parameters separate, the two factors can be maximised separately, and a maximum
likelihood solution is obtained. Furthermore, (6.1.2) can be generalised to any number
of variables (see Little and Rubin, 2002, p. 145) if the missing data pattern is monotone.
When the missing data pattern is non-monotone, an iterative algorithm of one sort
of another is required. The Expectation-Maximisation (EM) algorithm is a popular
method—not restricted to multivariate Gaussian data-—and will be discussed in §6.2.
For multivariate Gaussian data, by writing the model in terms of random effects (i.e.
a linear mized model), a method for maximising the observed-data likelihood under a
flexible range of model restrictions is widely used and is discussed in §6.3. When this
model is not expressed in terms of random effects, the same iterative estimation tools
are used, and the model is known as the multivariate linear model.

Likelihood methods are not restricted to Gaussian data. Indeed, as (6.1.1) suggests,
they can be conceived of whenever a parametric likelihood for the full data can be
expressed. The generalised linear mired model is an extension to non-Gaussian out-
comes of the linear mixed model and will be discussed in §6.4. This is a subject-specific
model. Other formulations include the Dale model (Dale, 1986) for categorical data,
the Bahadur model (Bahadur, 1961) for binary data and and the method proposed by
Fitzmaurice and Laird (1993), also for binary data. These are examples of marginal
models. Let us look more closely at this distinction.
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Subject-specific versus marginal models for non-Gaussian data

We denote by Y;; the t* outcome on the i** subject, where 1 <¢ < D; —1 < T and
1<i<n. Let X;,Vi;,Va;...,Vp_1; be a set of p time-stationary covariates measured
on subject i, where X is the covariate of interest (e.g. treatment group). If T = 1,

then we fit an ordinary univariate regression model:
FIE(Y) X, Vi, Vs Voot =+ BXs + Vi + - + Yp-1Vpo1y

for some suitable link function f (-), such as the logit or probit function if Y is binary.
However, when T' > 1, we must take into account the fact that repeated measurements
on the same subject are not independent. We can do this by introducing a random

subject effect, U;, into the linear predictor:
FE(Yaal Xi Vi Vayis - -5 Vo1 Us)l = e + BeXi + meVig + - + Wp-14Vp014 + Ui

Often, interest lies in the treatment effect at the final timepoint. Looking at one specific

subject, ¢, this is:

]E(YT,iI Xz = 17 %,ia ‘/Q,ia L) ‘/p—l,ia U‘L) - E (YT,il Xi - 07 ‘/a.,ia VQ,h ey ‘/p—l,‘ia Ul)
=f (ar +Br+ 7V + -+ Yp-1,7Vp—1, + U;)
- (or+mrVii+ +Ypo17Ve1s +U) (6.1.3)

We could fit this model to find an estimate of:

F Y ar + Br + Vi + + Wo-17Vp-1 + Ui)
— fHar+nrVii+ -+ o1V + Ui

and we would be doing a subject-specific analysis. In other words, we would be looking
at the effect of X; on E (Yr;|U;), conditional on Vi;,...,V,_1;. The key here is the
fact that the expectation is conditional on the random effect U;, and so the effect being

measured is the effect on a particular subject, given his/her value of the random effect.
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We might instead be interested in the effect of X; on the marginal expectation E (Yr,),
conditional on Vj;,...,V,_14 in which case the analysis would be marginal or

population-averaged. The equivalent of equation (6.1.3) is then:

Eu, [E(Yr:| Xi =1, Vi, Vas, .., Vo1, Ud) = E (Y7, Xi = 0, Vi3, Vo, oo, Vipor s, Us))
=Ey, [f " (ar+Br +m17oVii + - + po1,7Vp-1, + Ui)
--f—'1 (aT + ’)’1,TV1,,' + -+ ’yp_lyTV_l,i + Ui)] (6.1.4)

In general, (6.1.3) and (6.1.4) are not equal. For Gaussian data, f(-) is the identity
function, the two U; terms cancel, and this issue doesn’t arise. Thus, for continuous,
Gaussian outcomes Yj;, the effect of X; on a particular subject, and the effect of
X, averaged over the whole population are equal. Another special case is that of
Poisson data with Gaussian random effects when the log link is used. In this case the
population-averaged and subject-specific effects differ only by a multiplicative offset
(Young et al., 2007). But in general we must decide which of the two types of effects

is of interest.

In general, whether we choose to estimate marginal or subject-specific effects, addi-
tional computational methods are required to integrate and then to maximise (6.1.1),
and it is to these methods that we turn our attention next. The approach can either
be purely based on likelihood, or based on the likelihood via a Bayesian analysis. Fre-
quentist methods (not based on likelihood) do not possess the ignorability property
and thus must be adapted if they are to be valid under MAR. These are discussed
further in Chapter 7.
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6.2 Expectation-Maximisation algorithm

Under a general (non-monotone) missing data pattern, evaluating the integral in (6.1.1)
analytically is often impossible. Orchard and Woodbury (1972) were the first to de-
scribe a method, which later became known as the Expectation-Maximisation (EM)
algorithm, when the full data can be assumed to be from a multivariate normal dis-
tribution. The method has since been extended to a much wider range of full-data

models (see Dempster et al., 1977). The basic principle is as follows:

1. Start by computing an initial estimate 6® of 6, e.g. from a complete case anal-
ysis, or one of the other simple methods already discussed. Within some loose
regularity conditions, this can be both biased and inefficient, although the less
biased and more efficient it is, the more quickly the algorithm is likely to converge.

9. The E-step: Using the current parameter estimate, 8©, calculate

q (0 ‘9(‘”) =E [logpz (2)

zobs, é(c) ]

This is made easier if log pz (z) is linear in z™®,

3. The M-step: Find 6©*V that maximises ¢ (0‘9(0)) and return to step 2.,

iterating until convergence.

It has been shown (see Dempster et al., 1977) that under certain regularity conditions,
this algorithm always converges to the maximum observed-data likelihood estimate.
The direct likelihood approach achieves this in one step: the observed-data likelihood
is calculated, and then maximised. When using the EM algorithm, we use our cur-
rent (incorrect) estimate of @ to estimate the observed-data likelihood, and then we

maximise this to obtain a better estimate of 6.
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6.3 The linear mixed model and the multivariate normal linear

model

In the multivariate normal case, assuming we’re interested in the regression of the
(J x 1) multivariate outcome Y; on a (J x p) matrix of covariates X;, we can write
the full-data model as:

Y, ~N;(X;a, V)

independently and identically for each ¢ € {1,...,n}, with no restriction on V. We

call this the multivariate linear model (MLM).

Laird and Ware (1982) suggested the following formulation of a special case of the

MLM:
Y, =X;a+Z,6; +eg; (6.3.1)

where B; is a (g x 1) vector of random effects with distribution
Bi ~ Ny (0,G)

independently and identically for each ¢, with associated design matrix Z;, and
g~ Ny (0O,R)

It follows from this definition that

Y: ~ N; (X, Z,GZ] +R)

This is known as a mized model since it contains a mixture of population fixed effects
() and subject-specific random effects (B;). More specifically, since the expectation
of the vector of repeated measurements is assumed to be a linear function of these
parameters, the model is known as the linear mized model. This model is discussed
extensively by Verbeke and Molenberghs (1997), Diggle et al. (2002) and Brown and
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Prescott (2006).

Often, the restriction R = oI, is imposed, i.e. that, conditional on 3;, the repeated
observations on subject 7 are independent. If sufficiently many random effects are in-
cluded however, it is possible not to impose any restriction on the implied structure
for V, and thus the linear mixed model formulation is equivalent to the multivariate
linear model, with the sole restriction that the variance-covariance matrix is the same
for each subject, independently of the covariates. This restriction can be relaxed to
allow for different variance-covariance matrices in different groups of subjects (com-
plex variation) but it is still the case that the matrix cannot vary continuously with
continuous covariates. Of course, a less general set of random effects can be posited,
whence emerges the flexibility of this formulation. Alternatively, varying the number
and structure of the random effects can be viewed directly as imposing a structure on
V.

Even when the data are incomplete and non-monotone, the observed-data likelihood
can be maximised either by maximum likelihood (ML) or restricted maximum likeli-
hood (REML) (see Patterson and Thompson, 1971), using iterative Newton-Raphson
procedures. Asymptotically, ML and REML estimates converge, but when p is not
negligible compared with n, the estimates can disagree, the difference occurring in
the estimates of variance and covariance parameters. For these parameters, the small-
sample bias is, in general, smaller for REML estimates than for ML estimates (Verbeke
and Molenberghs, 1997). However, since both ML and REML are based on the likeli-
hood, ignorability under MAR applies under both procedures.

6.4 The generalised linear mixed model

For univariate data, linear models for Gaussian data were extended to generalised linear
models for non-Gaussian data by Nelder and Wedderburn (1972) and McCullagh and

Nelder (1989). In a generalised linear model, Y; is assumed to come from a distribution
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(not necessarily Gaussian) belonging to the exponential family of distributions, i.e. that

the density function of Y; satisfies

Py (Yi, ¥i, ) = exp {a (@) [yihi — g (V) + h (v:)] + b(d, v:)}

where 1; is the parameter of interest, ¢ is a nuisance parameter and a(¢) > 0. A link

function f (-) relates ¥; to the covariates such that

f (W) = Xiax

The generalised linear model and the linear mixed model of §6.3 can be combined
to form the generalised linear mized model (GLMM), where, conditional on random

effects 3; the elements Y;; of Y; are independent observations from a density satisfying
py Wi, ¥iir @) = exp{a(9) lysawhis — 9 (¥5) + h(ya)] + 6(4.y54)}

where
F (W) = X + Z,,8;

and

ﬂi ~ Nq (0’ G)

Unlike the linear mixed model, there is no general solution to the problem of inte-
grating these densities over the distribution of the random effects. Thus, approximate
techniques for finding maximum likelihood estimates are needed. For more details, see
Breslow and Clayton (1993), Engel and Keen (1994), and Molenberghs and Verbeke

(2005).
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6.5 Hierarchical generalised linear models

An alternative approach, using Laplace approximations to avoid the integration prob-
lem, is a method based on the hierarchical likelihood proposed by Lee and Nelder
(1996). In this method, the random effects are assumed to have exponential fam-
ily distributions conjugate to those of the outcome variable (such as normal-normal,
Poisson gamma, binomial-beta). The authors propose an efficient algorithm for find-
ing approximate solutions, making the method an attractive candidate for sensitivity
analyses when the number of models to be fitted is higher than would be feasible under

the more computationally-intensive GLMM approach (see Yun et al., 2007).

6.6 Bayesian methods

Given on the one hand the attractive property of ignorability of the missingness model
afforded by likelihood methods under MAR, coupled with the computational difficulty
of obtaining such maximum likelihood estimates in practice on the other, Bayesian
methods which approximate likelihood procedures are a useful tool. For example,
Clayton (1996) and Zeger and Karim (1991) both suggest Bayesian solutions to the
estimation of GLMMs. The distinct parameter condition now translates to the assump-
tion that the prior distributions for the full-data parameters (8) and the parameters

of the coarsening mechanism (§) are independent.

Bayesian approaches are also useful in MNAR sensitivity analyses, where the MAR
assumption is relaxed, and parameters governing the dependence of the selection model
on the unobserved data are introduced. Given that information on the values of these
parameters is not contained in the data, subjective priors for the sensitivity parameters

are naturally introduced.
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6.7 Multiple imputation

6.7.1 Motivation

Integrating the function | (2:Go(2)=g. } P2 (z,0)dz in (6.1.1) and then maximising with
respect to @, as we have noted already in this chapter, can be very difficult to do
analytically. The EM algorithm and Bayesian methods can be used to overcome this

problem; multiple imputation is another solution.

Based on the principle that full-data densities are easier to deal with than observed-
data densities, multiple imputation (MI), (first suggested by Rubin, 1978) is a method
in which (provided the CAR assumption holds) only the full-data model need be con-
sidered, but implemented in such a way that the inference about @ is valid. It also
extends naturally to CNAR mechanisms, a property which sets it apart from the EM
algorithm, and which we explore in Chapter 11.

Suppose that the true value 6, of @ were known to us, along with the true density of the
full data given the observed data, pzic,c.(z) (Z|c, & 6o). Then, given the observed data
{(Ci,Gg,) :i=1,...,n}, the full data {Z;:i=1,...,n} could be generated using
Pzic,Go(z) (21C; 8e, 60)-

Of course, 6y is not known to us. By definition, the observed data are generated
using the true observed-data likelihood. The only difference is that, assuming that the
posited density pzic.c.(z) (2lc, &, 8) be of the correct form, if we were to try to generate
{Z;:i=1,...,n} using pzic,co(2) (2]c, 8, 8), we would substitute an estimate 6 of 6
for 8, as opposed to substituting the true value, 6.

For this reason, imputed datasets cannot have a distribution identical to that of the
full data. An adjustment is therefore required to any inference based on imputed data.
One way of making this adjustment easier, is to impute the data, not once, but several

times. Hence the name: multiple imputation.
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6.7.2 A formal description

In order to be able to describe the work of Chapters 8 and 9, a rigorous formulation
of MI is needed, such as that adopted by Tsiatis (2006), Wang and Robins (1998)
and Robins and Wang (2000), where the frequentist properties of MI estimators are

derived.

Given some initial estimator of 8, (inore details to follow), for each observed-data point
(Cs, G, (Z;)], we sample at random from the conditional distribution, pzic,c.(z) (2lc, &),
m times to obtain

{Z;:i=1,...,n, j=1,...,m}

The jth estimator, é,’;j, is obtained by solving the full-data likelihood equation

En:sg‘ (Zij,é;;j) =0
g=1

That is, we use the data from the jth imputed set and treat them as if they were full-
data to obtain the full-data maximum-likelihood estimator, é;;j. Then, the proposed

multiple imputation estimator is
m
N o1 N*
0,=m E 0;;
=1

Rubin argues that, under appropriate conditions, this estimator is consistent and

asymptotically normal. That is,
ni (é;; - 00) 2 N(0, =)

Furthermore, he suggests that the asymptotic variance £* be estimated by

A -1 A - ~ -
e g )] o ()p BB os)

i=1
(6.7.1)
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That is, an average of the estimates of the full-data asymptotic variance, using the in-
verse of the full-data observed information matrix over the imputed full-data sets, plus
the sample variance of the imputation estimators multiplied by a ‘finite m’ correction
factor, gives us the asymptotic variance of the MI estimator.

The issue remains of how to obtain the initial estimator of 8. There are two approaches:

1. Improper imputation: This is a frequentist approach in which an initial esti-

mator 2 is obtained from the coarsened data, and the imputations Z;; (é{;) are

obtained by sampling from pzicc.(z) <z|c, g, 6,’,)

2. Proper imputation: This is a Bayesian approach (and the one advocated by
Rubin) in which the data are generated from the predictive distribution

pzic,co2) (2|Ci, Ge, (Z;)]
= / Pzic,coz) (21Ci Ge, (Zs) , 8) Poic,cez) 10ICi, Ge, (Zs)) dpe (8)  (6.7.2)

where peic,co(z) [0/Ci, Ge, ()] is the Bayesian posterior distribution of 6 given
the observed data.

6.7.3 Improper vs. proper imputation
Improper imputation

We shall assume that the initial estimator is RAL and inefficient. That is,
1 [ A 1 .
n? (49,’l - 00) =n"2Y q[C;,Ge, (Z)) + 0, (1)
i=1

where q[C;, Gc, (Z;)] is the ith influence function of the estimator é{l
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It can be shown that
q(C;,Ge, (Zy)] = per [Ci, Ge, (Zi)] + R[Cy, G, (Z))] (6.7.3)
where @eg [Ci, Gc, (Z;)] is the efficient influence function defined by
@ett [Ci, Ge, (Z:)] = [Toe (60)] ™" 8o [Ci, G, (Z4)]

and
E {‘Peff [Cia GC;‘ (Z‘t)] hT [Ci7 GCj (Zl)]} = quq

Tsiatis (2006) proves that

Theorem 6.1 (Variance of improper MI estimator).
n} (é;; - oo) 2. N (0,24

where

1

5% = [Tog (60)] ™ +m ™ (155 (80)] ™" (156 (60) = Log (80)] (155 (60)]
+ (155 (80)] " [I56 (80) — Tas (80)] Var {1 [C;, Ge, (Z:))} -
(156 (80) — To6 (80)] (15 (B0)] ™ (6.7.4)

and h[Ci, Ge, (Z;)] is as given in (6.7.3).

Remark 6.1. The asymptotic variance of the most efficient estimator of 6 (i.e. the
estimator that arises from maximising the observed-data likelihood) is [Ige (65)] "

Clearly, there is a loss of efficiency with the use of multiple imputation.

Remark 6.2. We see from the second term in (6.7.4) that the asymptotic variance

decreases as the number of imputations, m, increases.

Remark 6.3. If 61 were an efficient estimator, i.e. if ¢[C;, G¢, (Z:)] = wer [Ci, Ge, (Z:)),
then we see that the third term in (6.7.4) vanishes. In this case, the second term

represents the loss of efficiency due to multiple imputation. This vanishes as m — oo.
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Remark 6.4. The wvariance of the initial estimator OA,{ is  [Ige (60)' +
Var {h[C;, Gg, (Z;)]}. Comparing this with (6.7.4) as m — oo yields a difference of

Var {h [C;, Gc, (Z:)]} — [Tpe (‘90)]_1 (56 (60) — Tge (60)] Var {h[C;, Gc, (Z,)]} -
(155 (B0) — Too (60)] [T55 (60)]

which can be shown to be positive definite. Therefore, if the number of imputations
is sufficiently large, the multiple imputation estimator will be more efficient than the

initial estimator.

Proposition 6.2. The expression on the RHS of (6.7.4) can be rewritten as

15y (00)" =+ (") 5 (6] (850 () — Yoo (80)] 1 (8]

+ [I5e (60)] " [I59 (60) — o6 (60)] Var {q[C:, Ge, (Z.)]} -
(156 (80) — Lee (80)] [I56 (60)] ™ (6.7.5)

Tsiatis (2006) then goes on to prove the following theorem:

Theorem 6.3 (Rubin’s variance formula for improper MI). The exrpression on the
RHS of (6.7.1) is an asymptotically unbiased estimator of

(156 (60)] " + (“n},:_l) (156 (80)] ™" [155 (80) — 16 (60)] [B5e (80)] (6.7.6)

Remark 6.5. This is precisely the 1st two terms in (6.7.5) and hence Rubin’s variance
formula, when used with improper multiple imputation will tend to underestimate

variances, leading to anti-conservative inferences.
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Proper imputation

Let us assume that the sample size is large enough to approximate the posterior distri-
bution of 8 by the sampling distribution of é{l, the initial estimator of @ used for the
improper imputation. Therefore, mimicking the Bayesian proper imputation, at the
jth imputation, we sample 89 from

N (é{v Var {g(C:, e, <z,->1}>

n

and then randomly choose Z;; from the conditional distribution with conditional den-
sity pzic,ce) (2|Ci Ge: (Zs),09)). The jth imputed estimator is the solution to the

equation
>s§ (24 (69).6;,) =0
i=1

and the final estimator is

m
A . —1 N*
0,=m E 0,
J=1

Tsiatis (2006) proves the following results:

Theorem 6.4 (Variance of proper MI estimator).
n} (é;; - 00) 2N (0,5

where

= = [Ig (490)]_1 + (T"%;‘l‘) [Tée (90)]_1 (156 (80) — Tog (80)] (T2 (80)]

+ (m;— 1) [Igo (90)]_1 [Iga (60) — Tgg (60)] Var {q[C;, Ge, (Z;)]}

- [166 (80) — Top (80)] (156 (80)] ' (6.7.7)

Theorem 6.5 (Rubin’s variance formula for proper M1). The erpression on the RHS
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of (6.7.1) is an asymptotically unbiased estimator of

(155 (60)] " + (m—,,?) (156 (80)] ™" 15 (60) — Toa (60)] (156 (85)]

+ (_nz%—_l) [155 (80)] " [I56 (80) — Lee (80)]

-Var {q [C;, Ge, (Z;)]} [Igo (60) — Tos (90)] [Igo (90)] -

Remark 6.6. This is precisely (6.7.7) and hence Rubin’s variance formula, when used

with proper multiple imputation correctly estimates the asymptotic variance.

By comparing (6.7.5) with (6.7.7) we see that improper MI (where the initial estimator

is fixed across imputations) results in a more efficient estimator than proper MI (where

: ; Al Ve Ci,Ge, (Z;
the initial estimator is sampled from N ( 67, ar{qf f“«(z )}

for each imputation).

As m — oo, however, the asymptotic variance of the proper MI estimator converges

to that of the improper MI estimator.

Rubin’s variance estimator underestimates the asymptotic variance when used with
improper imputation but correctly estimates the asymptotic variance when used with
proper imputation. By ‘correctly estimates’ we mean that the variance estimator con-
verges in expectation to the asymptotic variance, i.e. that it is asymptotically unbiased
for any fixed m. As m — oc, however, Rubin’s estimator is also consistent for improper
ML

Consistent estimators can be derived in other ways for either of the MI estimators
(and Tsiatis (2006) explicitly suggests some), but the advantage that Rubin’s variance
formula (used with proper MI) has over other estimators is its simplicity: it is easy
to implement and can be applied to a large range of situations, without need for
adaptation. This is reflected in the fact that routines for the implementation of MI are
now available in most standard statistical software packages.

One feature of Tsiatis’s formulation is that the initial estimator is always of 8, i.e. the
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full parameter vector. When we use MI in practice, this is often not the case. For
example, consider the bivariate normal regression example discussed in §5.3. In this
example, supposing that the parameters of interest are those from the regression of
Y on X: a, B8 and oy|x, we would impute the missing X-values using the estimated
parameters <Z>, 4 and 6xy from the regression of X on Y, and then use the imputed
datasets to make inference about o, 8 and oy|x. Of course, it is always possible to re-
formulate into Tsiatis's formulation, by using the relationships between the parameters.
For example, .
YovyYy
¥26yy + ox|y

(8+iv)

& = fiy —

6.7.4 Multiple imputation using chained equations (MICE)

Thus far, in our discussion of multiple imputation, we have assumed that a para-
metric model for the joint distribution of the full data and the joint distribution of
the coarsened data can be specified. There are many situations in which this might
not be feasible, such as in a large dataset with a mixture of continuous, binary and
categorical variables and/or when the missingness is non-monotone. An approach to
multiple imputation which does not require specification of such joint distributions is
multiple imputation using chained equations (MICE), first suggested by van Buuren
et al. (1999). This approach works by first filling in the missing observations in an ad
hoc fashion using randomly sampled observed values. Then, a univariate regression
model is fitted to the first variable conditional on all the others, after discarding the
ad hoc imputations for the first variable and the missing values are properly imputed
based on this model. Next, the ad hoc imputations are discarded from the second
variable and the second variable is regressed on all other variables. The missing val-
ues for the second variable are then imputed using this second regression model. The
process continues until each variable in turn has had its ad hoc imputations replaced
by the conditional regression imputations. This completes the first cycle. The process
is repeated until a fixed number of cycles have been completed. In the second cycle,
the imputed values from the first cycle are used instead of the ad hoc imputations, but
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these too are discarded whenever the variable in question is the outcome variable in
the regression, i.e. each univariate regression has on its left-hand side only observed
values, but may include imputed values on the right-hand side. The imputed dataset
at this final cycle constitutes the first imputed dataset in the MI procedure. A total
of m imputed datasets are constructed in the same way, where for each imputation
the process starts afresh with a new set of ad hoc imputations, and continues for the

designated number of cycles.

This method is practically very attractive as it can deal with missing data on a large
number of variables with different univariate distributions and without requiring that
the missing data pattern be monotone. However, a full theoretical argument for the
validity of this method has not been presented to date. Indeed, it is unlikely that such
a proof exists except in the multivariate normal case, since a collection of univariate
regression models—not all linear—cannot correspond to a well-defined joint distribu-
tion. The imputation model is inherently uncongenial, i.e. the stationary distribution
to which the Gibbs sampler attempts to converge does not exist. However, simula-
tion studies suggest that the bias caused by the uncongeniality is likely to be small in
practice (Gelman and Raghunathan, 2001; van Buuren et al., 2006).



Semiparametric methods

7.1 Introduction

All the methods described in the previous chapter are likelihood methods, valid under
MAR, when the model is correctly specified. The computational complexity of the
numerical algorithms needed to find approximations to these estimates is one disad-

vantage, but with modern processors, this problem is fast diminishing in many cases

84
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Another disadvantage, which cannot be overcome by increased computing power, is
the necessity to specify the full-data likelihood fully-parametrically. For example, a
linear mixed model assumes that the full data have a multivariate normal structure.
Missing data issues aside, it is now well-known that many common statistical methods
that assume normality are in fact extremely robust to violations of this assumption,
e.g. the t-test (Rasch and Guiard, 2004). However, in missing data problems, the
multivariate normality assumption plays a far greater role in the subsequent inference,
because, not only is it assumed that each variable is marginally normally distributed,
but also that the conditional distribution of each variable given any other variable
is normally distributed. For example, in a repeated measures setting (such as the
RECORD trial) with T' timepoints, suppose that a patient drops out after just one post-
baseline measurement of the outcome variable, then, at each subsequent timepoint, the
linear mixed model implicitly assumes that the present observation, conditional on the
past observations, is normally distributed. In an analysis based on the final timepoint,
any effect due to the violation of the normality assumption is compounded T —1 times

for this patient.

Things are even worse for marginal discrete-data models, where there are problems
in addition to the dependence on intractable modelling assumptions. The Bahadur
model (Bahadur, 1961), for example, being based on correlations (pairwise and higher
order) is easy to write down, but difficult to conceptualise, given our lack of intuition
for (particularly higher order) correlations between binary variables. Furthermore, the
model places heavy restrictions on the parameter space, and this problem intensifies
as the number of timepoints increases. Intuition for whether these restrictions are
plausible in practice is usually impossible to acquire in all but the simplest of settings,

and in the presence of missing data the assumptions cannot be fully tested.

A less restrictive semiparametric approach is therefore an attractive alternative. The
class of semiparametric models is vast and in §3.7 we defined two important subclasses,
7 and R. In §7.2 we give an example (the mean score method) of a method belonging
to Z.



7 SEMIPARAMETRIC METHODS 86

An important example of a method belonging to R is Generalised Estimating Equa-
tions (GEE) (Liang and Zeger, 1986) and this is introduced in §7.3. However, since
this is not a likelihood procedure, in general it is only valid under MCAR, and some
further modelling of the missing value mechanism is necessary for the analysis to be
valid under MAR. Many extensions of GEE for MAR mechanisms have been proposed,
and we describe these in §7.4 and §7.5 of this chapter. In §7.6 we look at the efficiency
of semiparametric methods under MAR according to the general framework proposed
by James Robins and his colleagues. In particular, we describe the estimator similar
to the GEE estimator proposed by Robins and Rotnitzky (1995), which is both con-
sistent under MAR and semiparametric-efficient in a class which contains GEE and its

variants.

Given our interest (in Chapters 12 and 13) in binary data, when discussing non-
Gaussian outcomes, we will focus on binary outcomes, but the theory applies more

generally.

7.2 Mean score method: an example of a method belonging to 7

Recall that the observed-data density (6.1.1) under the CAR assumption can be written
as

Dc,Ge(Z) (C, e 09 6) =7 (C, e, E) Dz (Z, 0) dz (721)
{z:Gc(z)=g }

Thus the observed-data score function can be written as

0
SO [Cv GC (Z)] = —8——0_ log [pC,Gc(Z) (C, &e» 0, 5)]

0
=30 log [ﬂ (c, g, &) rz (2,0) dz]

{2:Gc(2)=g. }

5, %,
= 2a log [7 (¢, g, &)] + 30 log [/{Z:GC(Z)zgc}pz (z,0) dz]
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—0+ 5 Jt26.(0)=g. 1 P2 (2,0) dz
f{ 2:G.(z)=g. } PZ (z,0)dz
_ f{ z:Ge(z)=g. } 5%1’2 (z,0)dz
 Jis6uw)—g.1 P2 (2,0) dz
- JGuin)=g. ) 25108 P2 (2,0)] pz (2,0) dz
B Ji26.(2)=g.) P2 (2, 0) dz
_ E[S§(2,6)|C,Gc(2)]
6. @)=g. ) P2 (2,0) dz

Thus the observed-data score equation is

"\ E [S§ (Z:,6)| Ci, Ge, (Z;)] _
i=1 f{ 2:Ge, (z)=8, }Pzi (Z, 0) dz

0

or, equivalently,
n

Y _E[S§(2:,6)|Ci,Gc, (Z:)] =0

i=1

For missing data problems, this can be written as

S {1(Ci =) S5 (Z:,6) + 1 (Ci <) E[S§ (Z:,0)| 23]} =0 (7.2.2)

=1

Solving this observed-data score equation to find estimates of € is exactly equivalent
to maximising (7.2.1) and hence is a fully-parametric approach. But this requires that
E [Sg (Z;, 0)‘ ngS] be determined analytically as a function of Z?bs and 6.

Suppose instead that we solve

S {1(Ci=00)85 (2.,6) +1(Ci <o) E[S] (2,.0)| Z™]} =0 (7.2.3)
=1
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where E [Sg (Zi,0)| Z;’bs] is estimated semiparametrically (or non-parametrically),

then the resulting estimator belongs to Z.

Reilly and Pepe (1995) suggested that when Z; consists entirely of discrete random
variables, £ [Sg (Z;, 9)| Z?bs] should be estimated as the mean of 8§ (Z;, 9) for subjects
who share the same values of Z$* as the subject for whom S} (Z;, ) is missing. This

is known as the mean score method.

7.3 Generalised estimating equations (GEE): an example of a
method belonging to R

Suppose that (Y1, Y2, -, Yp,—1,) are D; — 1 < T correlated outcomes measured on

cach of 1 1,...,n subjects with fully-observed time-stationary covariates
(X14,..-,Xps). Let X; bea[(D; — 1) x (p+1)T) covariate matrix for subject 4, con-

structed as follows:

e Row 1 is the row vector (1, Xy,...,X,;) followed by (p+ 1) (T — 1) zeros

e Row 2 starts with p + 1 zeros, then the row vector (1, X1,,..., X,;) followed by
(p+ 1) (T — 2) zeros

e Row D;—1starts with (p + 1) (D; — 2) zeros, then the row vector (1, Xy ;,..., X))
followed by (p+ 1) (T — D; + 1) zeros

Let 3; = (850, Bj s - - - ,B;5)7 be a [(p+1) x 1] parameter vector for time 7, such that
E (Y| X1 Xpi) = Mg = “t(m50) = FH(Bjo + Bin X1y + -+ + BipXpi), and let
B=(8T,... ,,B%)T. Let D; be a [(D; — 1) x (D; — 1)] diagonal matrix with (k, k)*®

element
a/J'k,i

3nk,¢
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The reader is asked to note the distinction between D;, the matrix of partial derivatives,
and D;, the dropout indicator. The convention of using a boldface D; for the former and
not for the latter will be maintained throughout. Let C; be the [(D; — 1) x (D; — 1)]

correlation matrix of (Y1, Y24, ...,YD,—1.4),
Vi = dlag [Var (Yl,i) yoe ey Var (YDi—-l,i)] y

W, = VIC,V?
Y1,

vi=| ™

YDi—l,‘i

and
Hi = E (Y‘L |Xl,i7X2,ia e 7Xp,i)

Then the GEE estimate of 3 is the solution to:

> _X{DW (Y- i) =0 (7.3.1)

i=1

For multivariate Gaussian outcomes, the multivariate distribution of Y; is entirely
specified by the 1%- and 2"9-order moments, f () is the identity and (7.3.1) becomes

n
ZXiTWz‘_l (Yi—p)=0
i=1
which can be shown to be equal to the observed-data score equation and thus (assuming
that the model is correctly specified and the parameters of the correlation matrix
consistently estimated), these estimates are fully-efficient.
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However, for non-Gaussian data, this is not true. Some information about the joint
distribution of the outcomes is contained in the 3'¢ and higher order moments, which
are not included in the model and therefore (7.3.1) is not a score equation, and the
procedure is not a maximum likelihood procedure. This means that estimates are not
fully-efficient. However, it can be easily shown (Liang and Zeger, 1986) that GEE esti-
mates are consistent (asymptotically unbiased) as long as the missing data are MCAR,
by showing that the summand in the left hand side of (7.3.1) has zero expectation.
The GEE procedure is viewed favourably in the trade off between efficiency, practicality
and the robustness which comes with the reduction from parametric to semiparametric

modelling assumptions.

7.3.1 Working correlation structure

Another way in which non-Gaussian outcomes differ from Gaussian outcomes is that
their variance is a function of their mean. This is why W,, the variance-covariance
matrix, is split into two components --V;, which is a function of the mean vector g,

and C; the correlation matrix, which is functionally independent of p;— as follows:
1 1
W, =VC,)V;}

We are rarely directly interested in C;, and it is thus common to assume a ‘working’
structure for this matrix, which may or may not be correct. This is legitimate since
it can be shown that our estimates of p; are consistent under MCAR even when C;
is misspecified, although correctly specifying C; leads to greater efficiency (Liang and
Zeger, 1986). Thus GEE belongs to the subclass R of semiparametric models.

Common choices for C; are:

o Independence: C; is the identity matrix. GEE with the independence working

correlation matrix is often called Independence estimating equations or IEE.
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o Exchangeable: C; =

( g2 .. pDim2 \
p 1 p .. pDi”3
e First-order auto-regressive: C; = : :
pD,'—3 p 1
\ pD1—2 “ e p2 p 1 /
/ 1 P1,2 £1,3 P1,D;-1 \
P12 1 P23 e P2,D; -1
e Unstructured: C; = : ‘ :
P1,D;—2 "  PD;-3,D;—2 1 PD;-2,D;—1
K P1,Di-1 "*° PDi=3,D;—1 PD;—2,D;—1 1 )

Once a structure has been chosen, the parameters of C; are estimated. The original

method proposed by Liang and Zeger (1986) uses the Pearson residuals

me A [V(Jv])

where Vz(j’j ) is the (7,7 )th element of V;. For example, in the exchangeable structure,

p is estimated by:

R | Fify
g ZZZ?:I%(Di-l)(Di“Q)—p+1

i=1 t>t/

Smith and Kenward (2000) and Lipsitz et al. (2000) argue against this so-called avail-

able pairs method of estimating C; when data are missing, and suggest a more prin-
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cipled alternative, based on quadratic estimation (Crowder, 1985, 1992). Using the
notation of Smith and Kenward (2000), if r; = (ry, ... ,rD,,_l,i)T is the vector of Pear-
son residuals for the i*" subject, then these are approximately normally distributed
with zero mean and variance-covariance matrix C;, a function of the parameters
p=I(p1,--. ,pr)T. p is obtained from the estimating equations

=, 9C;!
Z apk (Ci—r,-r,r), k=1,...,7‘

i=1
7.3.2  Algorithm for fitting GEE

Assuming a working structure for C;, in order to solve (7.3.1), we expand the summand
in a Taylor series about 8 — 3*, where B is the estimate that satisfies (7.3.1) and 8" is

close to 3. This gives rise to the following Fisher scoring procedure for solving (7.3.1):

1. Choose an initial estimate 3V, for example, by fitting a least squares regression
of the observed Y on X independently for each timepoint.

2. Calculate pi = f! (XiBW) and C; for each 4, using one of the methods out-
lined in §7.3.1.

3. Calculate B@ as

n

-1
B =pWm 4+ {E XD, [ﬁ(l)} \\ [,3(1)] D; [ﬁ(l)] Xi}

i=1
n

-3 XTD; [BV) Wit [BY] (Y — s [BV] )

=1

4. Substitute B2 for BM).

5. Repeat steps 2.-4. until the absolute difference between 3® and BV is smaller
than some pre-specified tolerance.
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7.3.3 Estimating precision using the sandwich estimator

If the structure of C; is correctly specified, and its paramecters consistently estimated,

it can be shown that the asymptotic variance of ﬁ is given by:

n -1
(Z X?DiW{lDi)Q)

i=1

However, as we are unlikely ever to be certain that the structure of C; is correctly
specified, Liang and Zeger (1986) suggest using the following sandwich estimator of
variance, where the residuals are used to correct for any misspecification of C;:

n “lra
(Z X?DiWZIDixi) [Z XTDyWH (Y = ) (Y — )" Wi_lDiXi]

i=1 =1
n -1
- (Z x;r”DiW;‘D,-x,) (7.3.2)

i=1
7.4 Weighted GEE

As we have already mentioned, GEE as described above is only valid in general under
MCAR. One method for eliminating the asymptotic bias of GEE under MAR is inverse-
probability weighting as introduced in §5.2. The weighting can be done either at the
subject level or at the observation level.

Consider the following modification of (7.3.1):

Z P(D, = d X, Y, )Xi D;W; (Y — ;) =0 (7.4.1)

This formulation was suggested by Fitzmaurice et al. (1995). Using a method by
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Rotnitzky and Wypij (1994) for calculating asymptotic bias, Fitzmaurice et al. argue
that their method (known as cluster-weighted GEFE) is asymptotically unbiased under
MAR when the inverse-probability-of-dropout weights are consistently estimated.

In order to apply this method we first estimate the inverse-probability-of-dropout

weights from a series of logistic regression models as follows:

o The first logistic regression model estimates P (D; = 1|X;) =: p§,. (This is often
assumed to be zero for all subjects).

e The second logistic regression model estimates P (D; = 2|X;,Yy;. D, > 1) =: p§..

e The ktt logistic regression model estimates

P(D; =k|X;,. Yii..... Vi1 Di>k—-1) = Pg,i

e The T logistic regression model estimates

P(D, =T |Xi-}/1,i ..... YT_l,,'.D,‘ >T — 1) = pg,i

o p$,.; = 1 by definition.

e Then, we put these together to get the marginal probabilities as follows:

M _ . C
P =Py

and for k > 1,

p}:{l =P (D; =k IX,‘.YL,'. ey Yk—l,i)
—P(D;=k|Xi.Yii... Y1 Di>k—1)
. P(D, >k—1 [X,'.Yl,,- ..... Yk—l,i)
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:P(D, = k|X,~.YL,—,....Yk_1,,-,D,- > k— 1)
1=-P(D; <k—-1|X;.Y1,,..., Y1)

C M M
= Dk (1 — Dy — Py Pzi_l,i)

where throughout we are making the MAR assumption.

We add a cluster-level weight variable to the dataset, where the weight for subject i is

1
~
Py,

and the parameters of the model are estimated using the algorithm described in §7.3.2.

Now let Mg = P (Rt,i =1 IYl,i’ Ceey Y,_l_,-,X,») and

q>,-=diag(
M

and consider the following modification of (7.3.1):

Xn: XTD,W;'®, (Y, - ,1,-) 0 (7.4.2)

i=1
where X;, D;, W, Y, and fi; are the counterfactual T-dimensional versions of X,
D;, W;, Y; and p;, which would have been used in a GEE with all the data fully-
observed. Note that Y, is the only one of these which involves unobserved data, since
the other quantities are all functions only of (X1, ..., X,;) which are always observed.
Furthermore, any unobserved element of Y, corresponds to a column of zeros in &®;,

hence the left-hand side of (7.4.2) is a function only of the observed data and is thus
well-defined.

This is known as observation-weighted GEFE and belongs to the class of estimators
proposed by Robins et al. ( 1995) (although thev advocate the use of a more efficient
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estimator in the same class).

The weights are calculated by taking the inverse of the following estimated probabilities:

p;i,-o = P (Rj,i = 1 ‘Xis }/l,ia seey Yj—l,i)
= P(D, > ] IX,-.YL,-. cen 7}/]'—1,1')
=1-P(D; <j|Xi.Yi.... Y1)

_ MM M
=1—-pyi—Pai— " — P

where the p"’f are as defined in the cluster-level weighting procedure described above.

The equation (7.4.2) now represents a full-data GEE as far as estimation is concerned,
since all the matrices and vectors are of full-data dimension. We have re-weighted the

values of (Y; — ;), and “padded out” the vector with zeros so that it is of full-data

dimension.

If the means model is saturated (see Definition 3.2), the estimates obtained will be the
same, irrespective of the choice of C; (O'Brien et al., 2006), and thus we can carry out
the analysis using the independence correlation matrix. The independence assumption
means that data from previous timepoints are not involved in the estimation of the
effect of interest at the final timepoint and observation-level weighted GEE is thus
(in this case, when the means model is saturated) equivalent to a weighted univariate

logistic regression at the final timepoint. using the observation-level weights.

7.4.1 High variability in the weights

If our estimate of the probability of dropout (for cluster-weighted GEE) or the proba-
bility of being observed (for observation-weighted GEE) is 0, then by definition, there
are no examples in the dataset of such a subject dropping out or being observed, re-

spectively, at that time. This means that at no point is there a practical problem with
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infinite weights. However, if our model predicts values of the probabilities which are
very close to 0, then some observations may have extremely large weights. This can
lead to efficiency problems, with a few observations dominating the analysis, effectively
reducing the sample size. All weighting procedures work best if the weights are mod-
erate and not too variable (see Kang and Schafer, 2007, and the contribution to the

discussion by Robins et al.).

7.5 MI-GEE

We noted in §6.7 that MI is a flexible method applicable in a wide variety of settings.
MI-GEE (Paik, 1997) is one such setting. Under monotonicity, the imputation step
is done sequentially: for each occasion we can impute the current outcome based on
the values of the outcome on all previous occasions and the covariates. Then we fit a
GEE to each completed dataset and combine the results using Rubin’s rules. When
applying MI to repeated binary data in this way there is one theoretical issue which

we now consider.

Implicit in §6.7 is that the imputation and substantive models are both correctly speci-
fied. Otherwise, the MI estimates would be inconsistent. In the case of MI-GEE, a logis-
tic regression is an obvious candidate for the imputation model, and also (marginally
at each timepoint), for the substantive model. Note that the substantive model is
marginal: it is the logistic regression of the outcome at each timepoint conditional
only on the covariates, whereas the imputation model is a series of logistic regressions

in which the outcome is always viewed conditionally on the covariate and all previous

outcomes.

If one replaced ‘logistic’ with ‘linear” in the above paragraph, there would be no prob-
lem, because if a collection of variables has a multivariate Gaussian distribution, then
each of the variables has a marginal univariate Gaussian distribution, and the distri-

bution of any one of the variables conditional on any selection of the others is also
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univariate Gaussian. However, the equivalent does not hold for binary data under lo-
gistic regression. Indeed, if each outcome variable marginally obeys the assumptions of
a univariate logistic regression, then it is impossible for the assumptions of the logistic
regressions to hold conditionally on previous outcomes and vice versa. However, evi-
dence suggests that only in extreme cases does this uncongeniality lead to a noticeable
bias in practice. For more on this issue see Meng (1994), where it is shown that having
as full and rich an imputation model as possible helps to protect against the possible

biases introduced by uncongeniality.

Once the imputations have been drawn, the subsequent GEE analyses are performed
on complete datasets, and therefore. if the means model is saturated, the choice of
covariance structure is irrelevant, and MI-GEE is equivalent to MI-IEE.

7.6 Improved efficiency and double robustness

7.6.1 Augmented inverse probability weighted (AIPW) estimator (Z-type)

Recall that in §5.2, we derived the IPWCC estimator, the estimator that solves

> ity (307 =0
i=1 ! !

We commented on its consistency. but also its inefficiency. Robins, Rotnitzky and

their co-workers have published many papers on how to improve the efficiency of this
estimator by using information on the incomplete cases to augment the IPWCC estima-
tor. The resulting estimator is known as the Augmented Inverse Probability Weighted
(AIPW) estimator. See for example Robins and Rotnitzky (1992), Robins et al. (1994)

and Tsiatis (2006).
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Consider the alternative estimating equation

[ 1(Ci = o) AAIPW
Z {P (C; = ooorz,-)sg (Z"’ OAIP“)

+ [1 - P]té?i:ocofz),-)] ¢ [C,-,GC,. (zi),éAIPW]} =0 (7.6.1)

where ¢ [C;, Gc, (Z;) , 8] is—for the time being —just an arbitrary function. This is a

sensible equation to consider because

E{[l - Pﬂ (€ = ) ] [Ci,Ge, (Zi).el}

(Ci = 00|Z;)
=E (E{ [1 - P]ié'?i::ooorz)i)] ¢[Ci, Ge, (Zs) ~9]'Ci»Gc,v (Zi)})
5 I

under the CAR assumption. and therefore the consistency of the IPWCC estimator is

preserved.

The Hilbert Space/Influence Function theory that underpins most of the work carried
out by Robins et al. in this field can be used to exhibit the optimum (i.e. most effi-
cient) choice of ¢ [Ci, Gc, (Z;) . 8]. Loosely speaking, a Hilbert space is an extension of
Euclidean space that allows for potentially infinite dimensions, and the set of influence
functions for RAL estimators forms a Hilbert space. The advantage of thinking about
estimators in this way is that the length of influence functions as defined by the distance
metric in this Hilbert space is related to the variance of the associated estimator, and
therefore the search for an efficient estimator can be translated into a geometry prob-
lem and the extensive theory of Hilbert spaces (for example, the Projection Theorem)

can be exploited to find answers to our RAL estimator problems.

This theory tells us that the most efficient estimator of this form is found by choosing

6|Ci.Ge, (Z;).0) = E [S§ (Z;.8) |C:. Ge, (Z,)) (7.6.2)
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Therefore, the AIPW estimator is the solution to:

. 1 (C; = 00) AAIPW
Z {P (C; = ooorz,-)sg (Z"’(’AIP“)

+ [1 - PI(C(F: :OOTZ)i)] E [sg (z,-,éAIPW)|C,-,GC, (z,-)]} —0 (7.63)

If E [Sg (Z,-,B)I C;, G, (Z;)] is estimated semiparametrically or non-parametrically,

then this estimator is semiparametric and belongs to the subclass 7 of semiparametric

models.

7.6.2 Double robustness

In order to obtain an estimate of APV we must first obtain estimates of
P (C; = x|Z;) (7.6.4)
and of
E [S§ (Z:.6)|Ci,Gc, (Z;)] (7.6.5)

Robins and his colleagues have shown that the AIPW estimator has a property known

as double robustness:

Theorem 7.1. If either the model that gives (7.6.4) or the model that gives (7.6.5)
(but mot both) is incorrectly specified. then the AIPW estimator remains consistent.

Proof. Let 7 [C;, G, (Z;)] be the true value of P (C; = 00|Z;) and let 7 [C;, G, (Z;)] be
its estimate under the model for (7.6.4). Similarly, let E [ S§ (2, 647V) Ci.Ge, (2, )]

be the estimate of E [sg (z.-, éA“’W) ’ C..Ce. (z,.)],
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For consistency, we need that

1(C; =00) LF |
F (ﬁ- [Ciy GC’,- (Zl)] SO (Z;.Bo)

1 (C, = OO) -
+ {1 -z C:.Ge. (Z)] } E [Sg (Zi700)| Ci,Ge, (Zz)]) =0

Assuming only that the model for (7.6.4) is correct,

1 (G = ) 1(Ci=o0) \;
E (ff [Ci’ GCi (Zz)] Sg (Zi'OO) M {1 B fr [C,'. GC- (Zz)] } E {Sg (Zi’ 00)' Ci’ GCz' (Zz)])

=E [E (fr [Ci, G, (Z:)] So (2::60)

__1(Ci=00) S (GF (7 | |
* {1 #1CrCo (2] } E[S (2:.60)| Ci. G, (Z)]

—E (7' (G, Ge, (Z)] g [S5 (Z:.60)| Ci.Ge, (Z4))]

7 [Ci, Ge, (Z))]
7|Ci, Ge, (Z; .
- Hee 2 J B85 @0 ., @)

~ E{E[S§ (2 60)| C..Ge, (2)] + (1~ 1) E[S] (2..60)| C:. Ge, (2] )
= E{E [S§ (Z:,60)| Ci.Gc, (Z:)]} =E [S§ (Z:.60)] =0

C.02)]

Assuming only that the model for (7.6.5) is correct,

[C:, Go, (Z))]  #[Ci.Ge, (Z4)]

1 (Ci = OC) F
=k [E (fr Ci.Ga (2. o (260

I(C, :30) ;
1= i e sE @l e @)

. (7}1 (Ci=20) grz g+ {1 1{C = o0) } E[S5 (Z:.60)| C.. Ge, (zi)])

. @)
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—E (7r [Ci, GC,' (Zz)] E [Sg (Zi~00)| Ci~GC.- (Z,)]

# [Ci, Ge, (Z:)]
e Ci,G ; Z‘i ~
- B e i e

= E (E [S§ (Z:,80)| Ci. Gc, (Z:)]
{7r [Ci,Ge, (Z:)] _ 7[Ci. G, (Z4)]
#[Ci,Ge, (Z))]  #[Ci.Ge, ()

= E{E[S§ (Z:,80)| C:.Gc, (Z:)] }
=0

}E [Sg (Z:,60)| Ci, G, (z,-)])

By comparing (7.6.3) with (7.2.2), we see how double robustness is gained at the ex-
pense of efficiency. If the model for estimating (7.6.5) is correct, then the asymptotic
efficiency of (7.2.2) is the same as the asymptotic efficiency of the corresponding max-
imum likelihood estimate, but if the model is incorrect, (7.2.2) is inconsistent. When
both models are correct, (7.6.3) is less efficient than (7.2.2), but if the model for esti-
mating (7.6.5) is incorrect. then, as long as the model for estimating (7.6.4) is correct,
(7.6.3) is consistent. If the model for (7.6.5) is incorrect and the model for (7.6.4) is
correct, then the efficiency of (7.6.3) decreases relative to (7.2.2), but (7.6.3) remains

consistent.

What happens to (7.6.3) when both models are incorrect remains a contentious issue
in the literature, with Kang and Schafer (2007) claiming that

“ at least in some settings, two wrong models are not better than one.”

For more on double robustness, see the article (and discussion, in particular the con-
tributions by Tsiatis and Davidian and by Robins et al.) by Kang and Schafer (2007).
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7.6.3 AIPW estimator (R-type)

In §7.6.1, we started by assuming that had we observed the full data we would estimate
6 by solving the full-data score equation

n
Z Sg (Zi. é) =0
=1
However, supposing that we wish to relax these assumptions about the full-data density,

zn:U,, (2:.6) =0
=1

where Uy () is any function satisfying

we could instead propose

E[Ug(Z:.6,)] =0 (7.6.6)

It is trivial that such a function exists. Suppose that E (Z;) = 1, then 1) must be a
function of 8, otherwise @ would not fully describe the distribution of Z;, and thus

Us (z,-.é) =7
is one possible (non-parametric) choice.
Whatever the choice of Ug(-) (as long as it satisfies (7.6.6)), it follows that
—~ 1(Ci = o0) AIPWCC
; P(C, =o0) O° (2.67v) =0

leads to consistent estimates under CAR.
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It also follows that, by considering estimating equations of the form

2 {Plt((fi_—.:ooorz),- )U" (Z" émw)

=1
+[1-
[ P (C; = o0|Z;

)] ¢[ciGe, (zi),éA“’W]} —0 (7.6.7)
the efficiency could be increased.
Robins et al. show that, for a particular choice of Ug (Z;. 8),

#[Ci.Ge, (Z;).6] = E[Ug (Z;.0)|C;,Ge, (Z;)] (7.6.8)

is the optimal choice for o [C;. Gc, (Z;) ,0], and hence, the more general AIPW esti-

mating equation is given by

S (e (o)

=1
4 [1 _ P]éécz :OOTZ))] E [Ue (z,.,é“f’w)‘c,-,cc,. (z,-)]} —0 (7.6.9)

The double robustness property carries through, the only difference now being that
when we compare (7.6.9) with (7.2.2), the comparative efficiency of (7.6.9) is lower
than when we compared (7.6.3) with (7.2.2), since not only are we introducing inverse
probability weights, but Uy (+) is suboptimal in terms of efficiency. Again, however
there is a trade-off between dependence on modelling assumptions and efficiency.

If Ug (Z;,0) poses parametric restrictions only on E (Z;) (and no higher moments),
then the semiparametric estimator belongs to R. Note that (7.6.9) is only the most
efficient estimator of the form given in (7.6.7), i.e. for a particular choice of Ug (Z;, 8).
Rotnitzky and Robins (1997) show how to choose Ug (Z;, 0) to achieve the most effi-
cient estimator in a given semiparametric class (such as R). In general, the optimal

U (Z:,0) is non-obvious, in the sense that it doesn’t correspond to an estimating
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equation (such as GEE) in common use. Moreover, in many situations the optimal
Ug (Z;,0) does not have a closed-formm representation and an iterative algorithm is re-
quired to achieve the semiparametric efficiency bound (see, for example Tsiatis, 2006,
ch. 10). In many situations, the difference in efficiency between the IPWCC and a
sensibly-chosen AIPW estimator is far greater than the difference in efficiency between
this AIPW estimator and the semiparametric-efficient estimator. This, coupled with
the often intractable form of the semiparametric-efficient estimator means that these

optimal estimators are rarely used in practice.

7.6.4 Regression formulation from Bang and Robins

Although AIPW methods have very attractive properties, one feature that has proba-
bly severely restricted their use in practice is that no general method exists for their
derivation. The paper by Bang and Robins (2005), where a reasonably general method
is described for three situations (cross-sectional univariate missing data, longitudinal
data with monotone dropout and marginal structural models) is therefore a very impor-
tant addition to the literature on this topic. First, we describe the Bang and Robins
approach in the univariate cross-sectional setting before describing the extension to

longitudinal data with monotone dropout.

7.6.4.1 Cross-sectional univariate missing data

Let the full data Z; = (X7, Yi)T for subject i € {1,...,n} be a fully-observed vector
of covariates X; and a scalar outcome Y; which could be missing (R; = 0) or observed
(R; = 1) and interest lies is in estimating 4 = E (Y;).

Under the MAR assumption, consistent estimators of  could in theory be obtained in

two ways. First, an IPWCC estimator
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n Ri
Z——P(Rizllxi)(n—ubo

i=1

and second, a regression estimator

Z{E(n 1Xi)—pl =0

The first would require a model for the inverse probability weights and the second
would require a model for Y; conditional on X;.

Bang and Robins (2005) suggest combining these two ideas as follows. First a suitable
regression model (such as logistic regression) is chosen for R conditional on X- we
call this the m-model. Let & be the parameter estimates from this regression and
let # (X, &) be the predicted probabilities (that R; = 1) from this model. Then
we fit a generalised linear model for Y conditional on X and #~1 (i.e. with the inverse
probability weights included as a covariate in the linear predictor) to those subjects who
have complete data. We call the corresponding model without the inverse probability
weights, 1.e.
E(Y: X R =1) = ¥ [s (X, 8)]

the y-model, where ¥ is the canonical link function from an appropriate GLM and

3(X, B) is a known function. We call
E[Y; X, (Xi,&), R = 1] = ¥ [s (X, 8) + 77 (X, &)

the extended y-model.

Let
¢ (X7.6,8) =¥ [s (Xi,8) + 677 (X, 6)]
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be the predictions from the extended y-model. Note that although the extended y-
model was fitted to the complete cases only, € (X,T ,ﬁ, qg) can be calculated for all
subjects. Finally, the proposed estimator is the solution fipr to

n

Z [é (Xf,B, 5) — ,UDR] =0

i=1

Theorem 7.2 (DR cross-sectional estimator). The estimator fipr is doubly robust.
That is, if either the m-model or the y-model is incorrectly specified, but not both
[ipR 18 a consistent estimator of p. Furthermore, its asymptotic efficiency is optimal

amongst estimators which put no parametric restriction on the distribution of Y.

Proof. Let us write é; for é (X;r,,é, dg) and #; for 7 (X;, &). The DR estimating equa-

tion
Z — #or) =0 (7.6.10)
can be rewritten as .
Z [éi — UDR + Rﬂ‘ri‘l (Y; - éi)] =0 (7.6.11)
i=1
This follows from the fact that Y°  R;#; ! (Vi — &;) is numerically zero since we in-

cluded #;! in our GLM for the extended y-model.

But we can rewrite (7.6.11) as

n
> [Rif* (Yi - ppr) + (1 Rifr ") (é — ppr)] =0
i=1
which we immediately recognise as being of the same form as (7.6.9) and thus must be

consistent when the m-model is correctly specified.

Showing that fipg is a consistent estimator of x4 when the y-model is correctly specified
is straightforward. We must show that the expectation of the summand in the LHS

of (7.6.10), at the true parameter-values, is zero. But when the y-model is correctly
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specified, the true value of ¢ is 0, and e; reduces to (the unextended) ¥ [s (X, B)].
Thus, by the MAR assumption, and the consistency of a correctly specified GLM, fipg
is a consistent estimator of x when the y-model is correctly specified.

Asymptotic efficiency follows from the fact that é; is a consistent estimator of E (Y; |X;),
the orthogonal and optimal choice defined in (7.6.8). O

7.6.4.2 Longitudinal data with monotone missingness

Let us now suppose that the full data Z; = (X7,Y7 )T for subject i € {1,...,n}
consist of a fully-observed vector of covariates X; and a vector of repeated measures
Y, =%, YT,i)T subject to monotone dropout and that interest lies is in estimating
p=EYr) Let R; = (Ryg,- - RT,i)T be the vector of missingness indicators with
Ri; =1V, is observed), and let D;,—the earliest ¢ for which R,; = 0 - be the dropout

indicator.

The IPWCC estimator is the solution to:

Rr;

Y i = 0
; P(Rr; =1|X;, Y. .., Yro1y) (Yri = 4)

This represents one way in which we might obtain a consistent (albeit inefficient)
estimator of u under MAR. We would calculate P (Rr; = 1{X,,Y1,, ..., Yr_1;) under
the MAR assumption, by fitting a series of models to estimate

A(tlxhi/l,i?"")/t—l,i) =]P(D1 :t|D2 Ztaxial/l,iv'uv}/t-l,i)

Then, the marginal probabilities m,; = P (Y;; is observed [X;,Y1,,...,Y1;) =
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P(D; >t|X;,Y1;,...,Y;—1;) are estimated as

t
=[]0 =AG1Xi Vi, Yimag)]

J=1

However, there is an alternative regression estimator, analogous to the cross-sectional
case, which—in the longitudinal setting—is best described recursively. Let Hr; = Yr,
if Ry = 1 (Hr; is not defined for Rp; = 0) and, for t < T, Hy; =
E(Hy1: Xi, Y1, .., Ve, Dy > ¢+ 2) (again, with Hy; undefined if D; < t+1). Upon
quick inspection of these recursive functions, we see that, under MAR, E (Hy ;) = p, Vi.
This leads to the following alternative estimating equation for u:

n

Z(ﬁu—ﬂ) =0

i=1

In the first representation, models (such as logistic regression) wmust be chosen for

estimating each
AtXi, Y. Y1) =P(D; =t|D; > ¢, X,,Y1,..., Y 1,)

and in the second representation models (such as linear regression if Y;; is continuous,

logistic regression if Y;; is binary) must be chosen for estimating each

Hy; = E(Hpi X, Y13, Vi, D 2 6 4+ 2)

Bang and Robins (2005) go on to show how a doubly robust estimator may be derived

by combining these two representations. The algorithm is as follows:

1. Fit a series of parametric regression models to estimate A (t |X;,Y],,...,Y_1,),
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from the observed data, and from these obtain estimates
t -~
i = H [1 SRV ED. O SPINNS S )]
=2

2. Let Hr; = Yr;.
3. Fort=T-1T-2,...,2,

(a) For subjects with D; > ¢+ 1, fit a parametric regression model with IA{t,i as

the outcome and X, Y1, Yay, ..., Yio1,; and 7, ; as predictors.

(b) For subjects with D; > ¢, let I:It_lﬂv be the predicted values from the regres-

sion in (a).

4. The doubly robust estimator of u is given by n=* S0 | H ;.

The proof that this estimator is both doubly robust and asymptotically optimally
efficient (amongst estimators which pose no parametric restriction on the distribution

of Y) is similar to the proof given above for the cross-sectional case (see the appendix
of Bang and Robins (2005)).

No variance estimator exists for these regression-formulated DR estimators and Bang

and Robins (2005) suggest using the bootstrap to obtain variance estimates.

7.6.5 A semiparametric-efficient GEE-type estimator

We return to the repeated binary outcome case described in §7.3, and to the problem
of finding a consistent (under MAR) estimator which is more efficient than weighted-
GEE but with the same semiparametric restrictions. More formally, we use a class of
weighted estimating equations to which GEE belongs, as described by Robins et al.

(1995). This class of estimating equations is given by
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;X?DQ‘VV{I@ (Yi - ﬁi) =0 (7.6.12)

where each quantity is deﬁned~as in (7.4.2), except for D!, which is any ([p + 1] T x T)

matrix of functions of X; and 3. Although ®; is thought of as the matrix of observation-

level weights, by setting all the weights (wrongly) to 1 and setting D} = X7D;, we

see that ordinary unweighted GEE belongs to this class as well as observation-level

weighted GEE. Furthermore, by setting all the weights for subject i to be [P (D; = d;)] ™,
we see that cluster-level weighted GEE also belongs to this class.

Many references to Robins et al. (1995) and Robins and Rotnitzky (1995) in the liter-
ature fail to recognise the distinction between (7.4.2) and (7.6.12), and Robins et al.
are often wrongly claimed to advocate the use of (7.4.2). Although (7.4.2) belongs to
the class described by (7.6.12), it is not the most efficient estimator in this class.

Robins and Rotnitzky (1995) derive the most efficient estimator in the (7.6.12) class
and prove that its efficiency attains the semiparametric efficiency bound for this class.

They describe an adaptive procedure for its estimation, which we now describe.

In addition to the notation introduced in §7.3 and §7.4, let

Givi = E (Y — pjs |Rt—1,i =1,Y-1:,X;)

Then the procedure is as follows:

1. Calculate B, an initial (inefficient) estimator of B e.g. from a suitable non-
augmented IPWCC estimating equation.
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2. Specify a regression model (such as logistic) for

10.

11.

P(R;; =1 ,Rt—l,i = 1,17t—1,i,xi)

and estimate its parameters using maximum likelihood. Let 5\j ¢ be the estimate
of P (R;i = 1|Ri—1; = 1,Y;_14 X;) from this model. Monotonicity dictates that

~

’\j,t.i =1ifj <t

Use the estimates Xj,t,,- to calculate estimates

t
Mt = H )\k,k—l,i
k=2

of P (Rt,z' =1 I?;—l,i,xi)-

—a oAl - :
Let Kji = iy (Y;: — u:) and specify a regression model for
E (Kjt-1: |Rj,i =1,%1,X;)

Let ;41 be the estimate of E (Kj;—1 |R;; = 1,Yi_1;, X;) from this model,

Let éj,t,i = AjtiRjt—1,: be an estimate of G ;.

Let Qt,i be a column vector with j** element Loy ilé i if 7 2>t and 0 otherwise.
Let P; = Zz__l <Rt,i - 5\t,t—l,iRt—l,z') Qt,i-

Let U; = &, (?z - ﬁz) where &; is calculated using s and fi; is calculated
using B

Estimate
A=E[(U;- P) (U - P)7| X]

by multivariate least squares.

Let D} be the estimate of 13;-‘ = Xin),- obtained when substituting ,3 for 3.

Let st,,- = ]j:AQt,z
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12. Find @, the partial maximum likelihood estimate of w in

logitAy., ; (w) = logitAse—1; + 67S,; (7.6.13)

13. Update &; using ,\§j>_171. (@).

14. Finally, solve

S DiAd, (V.- i) =0
t=1

to find Badap, the adaptive semiparametric-efficient estimator of 3.

The result as it appears in Robins and Rotnitzky (1995) is more general, since it
relaxes the time-stationary constraint on the covariates and includés an additional set of
covariates (also time-updated) Vi, ..., Vp,_1; for each subject, where the substantive
model is the regression of Y on X, without conditioning on these additional covariates.
The authors in Robins et al. (1995) derive a consistent sandwich estimator for the

variance of Badap-

Note that this estimator is not the augmented version of weighted-GEE. Such an
estimator would improve the efficiency of weighted-GEE, but is not optimally efficient
amongst estimators in the class defined above. Robins and Rotnitzky (1995) have
chosen the optimal semiparametric estimating function U (-), which is not the GEE

estimating function, and the estimator they derive is its augmented counterpart.

This estimator differs from the estimator we would obtain from the Bang and Robins
(2005) procedure described in §7.6.4.2 since the former imposes a parametric restric-
tion on the marginal means of the outcomes whereas the latter is in this sense non-
parametric. In the special case where the marginal means model in the former is
saturated, we would expect the two methods to converge.



Part Il

Multiple imputation for doubly robust estimation



Doubly robust multiple imputation

8.1 Motivation

As we noted in §7.6.1, a consistent, efficient and doubly robust estimator is given by

the solution to the following estimating equation:
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n R )
2 {]P(R,v —1z)5 (2647)
R;

+ [1 - m] E [S{ (zi,gAxpw)‘Ri,G& (Z,»)]} =0 (8.1.1)

Other than in a few simple situations, however, calculating the conditional expecta-
tion in the second term analytically is difficult. Doubly Robust Multiple Imputation
(DRMI) is a novel method which tries to overcome the difficulty associated with this

step using ML

8.2 Description of the method

We start by describing the method in the special case where the full data Z; =
T T . . . , L
(V,:,U,-) for subject ¢ consist of a (d x 1) vector U; which is always observed and
a univariate V; which is observed only for n. of the n subjects. As usual, R; =1 if V
] (3 i

is observed, and R; = 0 otherwise. Let
7¢=(Z1,25...,2,)"

be (after re-ordering) the data for the complete cases and let

- (- - AT
- =(2{,2;,...,Z;)

- T ..
where Z; = (-, U,T) and - denotes a missing value. Then define an augmented data
matrix
7* = (ZcT Z—T)T
Thus Z* has n + n. rows, n. of which are complete. Let V* be the first column of Z*

and U* the remaining d columns.
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Let m; = P (R; = 1) and define weights for the augmented matrix Z* as follows:

we =~

? Tri

Wi“zRi(l——lj>+(1—Ri)

1

wWe = (Wg, W5, ..., W )T

Ne

The missingness indicator for the augmented dataset is

. { 1 if V* is observed

0 if V* is missing

Our proposed method uses multiple imputation to make inference about € in a weighted
analysis on the augmented data, Z", weighted by W*, where 6 is the parameter of
interest, governing the distribution of the original full data, Z. We assuine for now that
the probabilities m; are known. The relationship between the original and augmented

datasets is illustrated in Fig. 8.1.

As described in §6.7, in multiple imputation, an estimator é;f is obtained from cach
of m imputed datasets and the MI estimator is given by 8"/ = m~! PO 6. In the
situation described above, each é; is the solution to

f: A {z;.; [é?’] 6;} =0, (8.2.1)
i=1

where 69 is some initial estimator of 8 (which could be different for each j, depending

on whether the imputations are proper or improper), and Z;; [OA? )] is equal to Z7 if
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Z W 7 w*
i U o Vi U, T
1 1
V2 Uz ?2 Va U, 1
Vnc Unc ,,ic Vnc Un,: WL
Unc+1 Wn;-{-l Ul —_ _1;_1
Unc+2 Tnet+2 U2 o 11’—2
U- E U, 1- L
Unc+1 1
Unc+2 1
U, 1

Figure 8.1: A diagrammatic representation of the robust MI formulation

R =1land Z;!‘j = (Vz;, Ui) if R} = 0, where V. is the imputed value of the missing

ij>
V;* as imputed in the jth of the m datasets.

Equation (8.2.1) can be rewritten as

-~ (Bisp (2.6 R\ gr (e 1500 621 =
which is very similar to (8.1.1). Recall (from §6.7) that Vf; =E [V; ’Ui, égj)] ey
where &;; has zero expectation. Thus the main difference between (8.1.1) and (8.2.2)

is the fact that the expectation in (8.1.1) has been taken inside the score function in

(8.2.2). This is analogous to the difference between the observed-data score equation
(7.2.2):

Zn: {RSE (Z:,6) + (1 - R)E [S§ (2:,0)| 2>]} =0

i=1
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and the ordinary multiple imputation estimating equation (for imputed data set j):

> RS (2:,6)+ (1 - R)SE (2:,6)] =0

i=1

Because of this, we wouldn't expect robust MI to performn as well in finite samples
as analytically-derived doubly-robust estimating procedures. It should, however, be
much easier to implement, especially in complex situations, and the effect of taking
the expectation inside the score function diminishes as the sample size increases for
the same reasons (see Wang and Robins, 1998; Robins and Wang, 2000; Tsiatis, 2006)

that ordinary multiple imputation estimators are consistent.
We carried out a simulation study (results not shown) to assess the propertics of this

proposed robust MI estimator. To facilitate comparison, we used the simple bivariate

normal example, where the AIPW estimator can be analytically derived.

In this example, we let

7, = X; i N, 1 , 05 1
Y; 3 1 25

and looked at the parameters the regression of Y on X, with Y fully-observed for all

individuals, but X missing for some individuals.

In simulations, the robust MI procedure performed very well and almost as well as
the doubly-robust estimator in terms of bias and precision. However, Rubin’s variance
formula for ordinary MI, when applied to robust MI is considerably biased even with
a sample size of 10,000. It is not surprising that Rubin’s variance formula fails: the

data are far from being i.i.d. and a model that would generate the ‘full’ data in our

augmented dataset is inconceivable.

It is clear that a better variance formula is needed if this procedure is to be of use in



8 DOUBLY ROBUST MULTIPLE IMPUTATION 120

practice. This requires a careful derivation of the true variance of the robust multiple

imputation estimator.

8.3 Variance estimation

This section is closely based on Tsiatis (2006), Chapter 14, but what Tsiatis shows for
ordinary multiple imputation is adapted here to robust multiple imputation. To simn-
plify the derivations, we assume for the remainder of this chapter that the missingness

probability 7; is a known, fixed value, specific to each subject, and not a function of

the data.

Lemma 8.1. If 6" is the robust MI estimator of 0, then

.n2 (é*mb—oo):n }:[1,,9 6o)] 1! “IZSG [Z?; (80) , 6]

=1

(52 st 00,00 - S 2 00,0

j=1
_m—lisg [Z;; (60) , 60]
_( - )( —lzs,,{ 5 [67] 60} - lijsf;[z (60), oo]> +0, (1)

The proof of this Lemma is given in Appendix A.1.

Lemma 8.2 (Influence function for improper robust multiple imputation). The ith
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influence function for the improper robust improper imputation estimator is

") S8t (2 @0).0)

+ (126 (80) — Iae (60)] ¢ [R:, Gr, (Z )]—( - )[199(00) I55(60)] q[Ri, G, (Zi)]}

(15 (80)] {;r:m_l Y stz ,60] — (

(8.3.1)

The proof of this Lemma is given in Appendix A.2.

Lemma 8.3 (Variance of the ith influence function for improper robust multiple imn-
putation). The variance of the ith influence function (8.3.1) is given by

(160 (90)]_1 (;12‘ {m™ [I§g (80) — Toe (60)] + Ise (60)}

2
N ( L ’ﬂ‘) {m™ [I5 (80) — 1 (60)] + I (60))}

+ (145 (60) — Ioo (60)] Var {q [Ri,Gr, (Z:)]} [156 (60) — Ios (60)]
2

+(1 7—r m) (160 (60) — Igg (60)] Var {q [Ri, Gr, (Z:)]} [I5g (60) — Igp (60)]

i

) (1 ;?m) {m™ [I56 (60) — Toe (80)] + 15 (60)} + 7% [Z86 (80) — o6 (60)]
—%(1 —'7“') (156 (80) — Ig6 (60)] — im 155 (60) [I4 (80)] ™" (14 (8) — Ise (60)]
_l-m [156 (60) — Ipe (60)) (256 (90)]_1 Igg (60)

o
(1 R m) 15 (80) [1£ (80)] ™" (185 (60) — I3 (80)]

Uy

_ (1 - 7r,) [156 (80) — Iee (60)] Var {q[R:, Gr, (Z:)]} [155 (60) — Ig5 (60)]

i

_( - ’”) (156 (80) — I35 (60)] Var {q[B:, G, (Z:)]} [156 (60) ~ Iag (%)]) (166 (60)]

(8.3.2)



8 DOUBLY ROBUST MULTIPLE IMPUTATION 122

The proof of this Lemma is given in Appendix A.3.

Claim 8.4. The mean of the variances of the n influence function is asymptotically

equal to the variance of n? (é*mb - 90).

Proof. From Definition 3.5, we have that
nd (67 - 6p) = n4 Zcp )+ 0, (1)
where ¢ (Z;) is the ith influence function of §*°.

Usually we require that { @ (Z;) :4=1,...,n} be iid. but in the way we have con-
structed ¢ (Z;), they are independent but not identically distributed.

Thus, .
Var [n% (é"c’b - 00)] —nt ZVar ¢ (Z
i=1

This means that if we can evaluate (8.3.2) from the data, then we know the asymptotic
variance of the improper robust MI estimator. In order to do this, we must estimate

Var {q[R:, Gr, (Z:)]}, I (60), Tae (60) and Igg (6o).

Seeing as é; comes from a simple analysis on the complete cases, an estimate
Var {q[Ri,Gr, (Z;)]} of Var {q[R:,Gr, (Z:)]} should be readily available. Also, Tsi-

atis (2006) shows that we can use

-m li n‘lzn:ase[ (él)’é;]

o067

I3 (60) =

j=1 =1

to estimate 15, (6o).
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As for Igg (6o), he suggests using
n~! 2": (m-1)"".
i=1
> {sifz (8) & -5 ()} {s3 [z (8) &) - 56 ()}

to estimate I, (80) — Ioe (60).

Analogously, we suggest using

n! zn:(m -7
> {85 [z (6r) &3] - 54 (¢7) } {s8 [2: () 5] -2 ()}

j=1

to estimate I}y (60) — Igp (60).

In the case where é}j) is sampled from the posterior distribution p [8|R;, Gg, (Z;)]. We

will assume that the sample is large enough for 0A§j ) to be from

N (éilmproper, V'é‘r {q [Ru GR; (Zz)]}>

n

Lemma 8.5 (Variance of the proper robust multiple imputation estimator). The vari-

ance of ni (é*mb - 00> for robust proper MI is given by

n"1 Z (I35 (60)] - (% {m™" [14g (80) — Ige (60)] + Iea (60)}

. (1 - ”i) {m™ (16 (60) — I3 (80)] + 1% (60))

Ty

P.T.O.
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+ (Tg—l) [I6o (80) — Igs (60)] Var {q (R, Gg, (Z)]} (156 (80) — Ise (60)]

+I\ 71w\
*(mm )( mw> (155 (60) ~ 165 (60)] Var {q|R:, G, (Z:)]} [ 155 (80) ~ 155 (60)]
2

1—m -
9 ( L ) {m™ 15 (B0) — Too (80)] + I3 (60)} + = [1£5 (80) — Too (80)]

™

)

271—m\ —m
—-—< ) [I66 (80) — Igg (60)] — ! T 15% (8o) (145 (80)] ™" [ 16 (80) — Isg (60)]

s ur

LT 12 (80) — Tas (60)] [145 (86)] " 155 (60)

)

1—m; —T;—Tz— -1
w2 (12 (S ) k00 [ 00 (10 (00) ~ 153 0]

i

_ (m ) ( & ) (126 (80) — Ia6 (60)] Var {q [R:, Gr, (Z:))} (155 (60) - IS, (60)]

T

T

1 1-— T U
- (m : ) ( ) (756 (80) — Igg (80)] Var {g [R:, G, (Z:)]} [Ige (60) — loe (90)]>

(15 (80))

The proof of this Lemma is given in Appendix A.4.

8.4 Discussion

The basic idea of using multiple imputation in the way described above to obtain
approximate doubly-robust estimates is very appealing and simulations (not shown)

demonstrate that the bias and precision of the estimates compare well with the true

doubly-robust procedure.

We have failed, however, to derive a Rubin-type variance estimator, i.e. a variance
estimator similar to (6.7.1), even for proper imputation. The fact that (8.3.2) is so
complicated and would take many steps for the user to calculate, probably means that
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the method as it stands is not of much use in practice.

It should be possible to obtain valid estimates of variance using the bootstrap, but
combining bootstrapping with multiple imputation would be computationally very
intensive. As will be seen in the next chapter, going down this road is not necessary
since by re-formulating doubly-robust estimation using the regression representation
proposed by Bang and Robins (2005), multiple imputation for doubly-robust estimation

can be much more successful.



Robust multiple imputation: an

alternative formulation

9.1 Introduction

In §7.6.4, we described the method proposed by Bang and Robins (2005) for con-
structing doubly robust (DR) estimators. One limitation of their approach is that

the bootstrap is required to obtain estimates of variance. Another limitation is that

126



9 ROBUST MULTIPLE IMPUTATION: AN ALTERNATIVE FORMULATION 127

the method does not extend to non-monotone missingness patterns. One further (and
smaller) limitation is that when the number of partially-observed variables is greater
than one and these partially observed variables are binary or categorical, their claim
that the method can be applied using ‘off-the-shelf regression software’ is not quite
true. We return to this point in Chapters 12 and 13 on binary data. Finally, for
longitudinal monotone patterns, we discuss an important feature not made explicit by
Bang and Robins in their paper, namely that their formulation requires the specifi-
cation of suitable regressions for later outcome variables, conditional on some carlier
outcomes, marginalised over intermediate values of the outcomne. We consider this to be
unnatural and potentially difficult when the form of the conditional distribution of the

later variable given all previous outcomes is a non-linear function of the intermediate

variables.

In the previous chapter, we suggested using multiple imputation to facilitate the ap-
proximation of doubly robust estimators, but the method failed to be practical because
of the intractable form of the variance of this estimator. In this chapter we pro-
pose an alternative formulation of doubly robust MI-—based on the Bang and Robins
formulation—with the aim of overcoming all the limitations listed above. The proposed
method can be implemented using existing MI software and is very flexible. We start by
describing doubly robust multiple imputation (DRMI) in the cases described by Bang
and Robins (2005) before going on to describe DRMI in broader settings. Finally, we
confirm the theoretical properties of our estimator using simulation studies.

9.2 The proposed method

9.2.1 Univariate ignorable missing data

T Lo
Let the full data Z; = (X7,Y;)” for subject i € {1,...,n} be a fully-observed vector
of covariates X; and a scalar outcome Y; which could be missing (R; = 0) or observed
(R; = 1) and interest lies is in estimating u = E (Y}).
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Following the same idea as proposed by Bang and Robins (2005), first a suitable re-
gression model (such as logistic regression) is chosen for R conditional on X - the
m-model. Let & be the parameter estimates from this regression and let # (X;, &) be
the predicted probabilities (that R; = 1) from this model.

Next, we fit a suitable regression model for Y conditional on X and 77! to those
subjects who have complete data. We call the corresponding model without the inversc

probability weights, i.e.
E(Y;|Xi,Ri =1) =¥ [s(X;,)] (9.2.1)

the y-model, where W™! () is the canonical link function from an appropriate GLM
and s (X, B) is a known function of 3 and X. We call

E[Y; [X;,#7 (Xi, &), Ry = 1] = ¥ [s (X, ) + 677 (X, &)]
the extended y-model.

Let us write @; for 7 (X;, &) and let
é (x}",é,q@, fr;l) =0 [s (xi,B) s (xi,a)]
be the predictions from the extended y-model.

Now we draw m > 1 imputations for each of the missing values of Y based on the
extended y-model. For example, if Y is continuous, and the y-model a linear regression,
let V( 44) be the estimated variance-covariance matrix of ([3, ¢>) and Vy|x,,~,-x be the

estimator from the extended y-model of

Var [Y; |Xi, 771 (Xi, &), Ri = 1]

We draw m times from the large-sample approximation to the posterior distribution
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of (,é, ¢?)

[ﬁ(j),d)(j)] iLd. N [(B, A) ’V(,B,&)] , J=1...,m

and m times from the large-sample approximation to the posterior distribution of

vY[X,‘/‘r"‘ :

j iid. ¢ 1 -1 .
Vg;{,fr—l l,l\, VY|X’7“|—-1 X2nc—p7 7= 1, cee,m
Ne—p

where n, = Z;;l R; and p is the number of parameters estimated in the extended

y-model.

m imputed datasets are then generated with f/i(j) replacing Y in the j*! dataset where

79 = RY+ (1 - R) {e[XT, 89,69, 477 +9)
and €9 "X N [O, V}%{,ﬁ—l]'

When the y-model is not a linear regression model, the imputations are drawn properly

according to the appropriate imputation distribution.

Finally, our proposed estimator is the solution fAprmi to

m n

Z Z [Yi(j) - #DRMI] =0

=1 i=1

Theorem 9.1 (Multiply imputed DR univariate estimator). The estimator fiprmi
doubly robust. That is, if at least one of the two models (the m-model and the y-model)

is correctly specified (but not necessarily both), fiprmi @s a consistent estimator of p.
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Sketch proof. The consistency of iprmi when the y-model is correctly specified follows
(as in the proof of Theorem 7.2) from the fact that the true value of ¢ is zero. If the
m-model is correctly specified, but not the y-model, it is slightly less evident that fiprmi

remains consistent.

We continue to write #; for 7 (X;, &). The DRMI estimating equation

f:[Rim(l_Rw' ~ pora] =0

=1

1=

—

can be rewritten as

$ 50 o - (78,07 i 1 (X087

j=1 =1

+(1 - R;) [Yi(]) — € (X?ﬁ, 9&7@_1)] +é (X?ﬁ»é, ﬁfl) - NDRMI} =0 (9.2.2)

This fOHOWS from the fact that E] o R A'l (Y; — e;) is numerically zero since we
included #;! in our extended y-model GLM.

m wn plyv_s(xT 3 4+ i : -
ZJ.=1 Sy Ri [Y, é (X,- 3,0, )] is also numerically zero, assuming that a con-

stant term is included in our GLM. Furthermore, (1 — R;) [Y’i(j) —€ ( .8, 9, ‘“1)]
has zero expectation, since the proper imputations have been drawn from the posterior

predictive distribution with mean é (X,T B, ¢, 77 1) (see (6.7.2)). Thus we can rewrite
(9.2.2) as

m n

ZZ{RW (Y; — uorwi) + (1 — Rifi] ) [( 8,9, ul) - HDRMI]
j=1 i=1
+(1-R) [V -&(XT.8,6,77)]} =0

which we immediately recognise as being of the same form as (7.6.9) with the added
term (1 — R;) [Yi(J) —é (Xf, B, ¢, 1)] which has zero expectation, even when the
y-model is incorrect. Thus, fiprmi is consistent whenever the m-model is correctly

specified. a
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We propose that Var (fiprmi) be estimated using Rubin’s variance formula (sec §6.7
prop

as
[ o [y(j)_ff(j)]? m [f/(j)_f/r

+1
EZZ 2n—l +mm 2; m— 1 (9.2.3)
pran

where Y = LD Py Y and V = Lywm, yu)

However, this variance estimator has two important drawbacks:

1. It treats the weights as just another covariate in the imputation model. Thus the
variance estimator is conditional on 77! (Xj,&) and ignores the fact that these

weights are estimated from the data.

2. Putting this problem to one side, when the y-model is correctly specified, the
fact that the weights are treated as just another covariate justifies the use of
Rubin’s variance formula. In other words, if the weights were not estimated, the
correct specification of the y-model would render (9.2.3) a consistent estimator of
the variance of fiprmi, by the standard argument for the consistency of Rubin’s
variance formula in (non-DR) ordinary multiple imputation. However, if the y-
model is misspecified, but the 7-model correctly specified, there is no reason to
suppose that (9.2.3) remains consistent. Hence, our proposed variance formula
is (ignoring the added problem noted in 1.) singly robust, but does not inherit
the DR property of the estimator itself.

9.2.2 Longitudinal ignorable missing data

The same idea can be extended to the case of multivariate missing data, and— unlike
the Bang and Robins (2005) approach—the pattern need not be monotone.

Let the full data Z; = (X,T,Y,-T )T for subject ¢ € {1,...,n} consist of a fully-

observed vector of covariates X; and a vector of partially-observed outcome variables
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Y; = (Yl,,-,...,YT,i)T and that interest lies in estimating p = E(Y;r). Let R; =
T .. T .
(Rig,...,Rr;) be the vector of missingness indicators with R;; = 1 (Y;; is observed).

We first describe the DRMI method for monotone longitudinal data before moving to

the case of non-monotone longitudinal data in §9.2.2.2.

9.2.2.1 Monotone longitudinal data

When the missingness pattern is monotone, we can easily estimate 7;; =
P(R,;=1|Z) =P (Rt,i =1 |X,~,Yt_1,,~) at each time ¢, as described in §7.6.4.2, for
example by fitting a logistic regression model to R; conditional on X, \?t—m to those
subjects with R;_; = 1. The marginal probabilities #;; are then obtained as a product
of these conditional probabilities, as described in §7.6.4.2.

We proceed by fitting the model using MI. The y-model is postulated sequentially by
first specifying a model for Y; given X, and then a model for Y; given Y7 and X etc. To
construct an extended y-model, for each t € {1,...,T}, #;} =
P(R;=11X:, Y14, Yy )~ is included as an additional covariate, additional to X
and Y;_1, in the model for Y;;. Starting with Y}, any missing values in Y7 are multiply
imputed, with the imputations drawn from the extended y-model for Y; conditional on
X and 77 ! Next, any missing values in Y, are multiply imputed, with the iimputations
drawn from the extended y-model for Y, conditional on Y;, X and #;'; for subjects
with Y; also missing, the imputed value of Y7 from the jth imputed dataset is used to

impute Y; in the jth imputed dataset, and so on.

By starting with ¥; and working upwards in this way, we encounter a problem which
does not arise in the method proposed by Bang and Robins (2005), which starts with
Yy and works downwards. The problem is that #;; can only be calculated for subjects
who have Y;_; ; observed, but (unlike Bang and Robins (2005)), we require that ,; be

known for all subjects.
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Suppose a particular subject, i1, drops out after being observed at time ¢t — 2. At time
t_— 1, in the jth imputed dataset, a value Yt(J i 4 Of Y11, is imputed, based on X;,,
Y, 24, and #;_y,, which are all observed. But at the next timepoint, ¢, we would like
to impute the missing ¥; ;, using X;,, Yi o4, fﬂ(ﬂ,l , and 7y ;,. The marginal probability
fyq, is the product of #;_;,, and 5\(t ‘Xil,Yt—l,il), the estimate of the conditional
probability that R;;, = 1, conditional on Xj , Yt_u], and R,_1;, = 1, as defined on
page 108. It is this latter conditional probability which cannot be estimated directly
for this subject. However, as a function of the missing Y;_, ;,, it is known. Thus our
proposed method works by imputing a value for #; ;,, based on #,_;,, A (t X, Yoo, )

and Yt 14, as follows:

7I't(Jz)1 = T-1,i; (t |Xi”Yt—2’i”i/t(_j)1’i‘>

In other words, no additional model is fitted to obtain the imputation wt(’z)l, and no

additional draws (for 7r(J ) '), nor additional draws from the Bayesian posterior distribu-
tion of any additional parameters are made. Rather, wt(’,) is imputed as a deterministic
function of #,_y,;, and A (t 1X,~, , Yt_g,,-l,ﬁ(_j)l,il), which, as function of X; and Y,_,,
is estimated using subjects who have Y;_; observed, as previously. This deterministic
imputation is analogous to the way in which quadratic functions of covariates, say,
are dealt with in ordinary multiple imputation. If X and X2 are both covariates in
the analysis model, multiple imputations X; ) of any missing X; are obtained in the
ordinary way, but then the imputed value of X? is 31mply [X G )] the square of the

imputation.

Similarly, for subject i; at time ¢ + 1, our proposed method works by first imputing a

value for 7414, based on frf’z)l A+ 11X, Ve ), Y9, 4, and 17;(51) as follows:

W= 7 (1[0 Fera B2, 70)

and then Y;,, ;, is imputed using X;,, Yi—2,, Y;(’)l i le and 7Tt(]+)1 i
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Finally, fiprmi can be calculated as the solution to

m n

2.2 [Yr(ﬂ) - NDRMI] =0 (9.2.4)

j=1 =1

and a variance estimate analogous to (9.2.3) obtained using Rubin’s variance formula.
The same caveats that this variance estimator does not acknowledge the uncertainty
due to the fact that the weights have been estimated, and (even ignoring this problemn)
is only singly robust, applies equally here as in the univariate case.

Let H, (X?,YM, i, B, (,5) be the predictions from the Bang and Robins procedure
for longitudinal monotone data (as described in §7.6.4.2) after T — ¢ iterations of step
3(a). Let B (Yr,;|Xi, Ye;,7;) be the mean of the distribution from which the DRMI

imputations for Yr;, for a subject who drops out after time ¢, are drawn.

Lemma 9.2.
B [H, (X, Yoo 70 8,8) ]| = B [E (Y [Xe, Yoo )|

where expectations are taken with respect to the true distribution of (Xi, Yr1,).

Sketch proof. That Lemma 9.2 is true is immediate if the y-model is correct, since
both H, (X{,Yt,,-,frt", 18, ¢) and E (Yr; |Xi, Ye, 7)) are consistent estimators of
E (Yr, |X,~,Yt,i). However, the argument (see Tsiatis, 2006, ch. 14) showing that
multiple imputation recovers the full-data distribution when the imputation model is
correctly specified can also be used to show that when it is incorrectly specified, the
incorrect distribution it recovers is equivalent to the hypothetical full-data distribution
implied by that incorrectly specified imputation distribution. O

Theorem 9.3 (Multiply imputed DR monotone longitudinal estimator). The estima-
tor fiprmi 18 doubly robust. That is, if at least one of the two models (the m-model
and the y-model) is correctly specified (but not necessarily both), fiprmi s a consistent

estimator of 1.
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Proof. As for the univariate case, that fprwmr is consistent when only the m-model
is misspecified is intuitively obvious. We therefore concentrate on the consistency of

fprmi when only the y-model is misspecified.

Assuming that Y; is always observed, that D; is the dropout indicator (as defined in
Definition 3.16), and that Z; ; denotes the history of Z; up to and including ¢ (as defined
in Definition 3.17), the general form of the AIPW estimating equation (as described
by Tsiatis, 2006, p.208) can be written as

- 1(D;=T+1)
Z {]P (D; =T +1|X;,Yr;) (Yr; — parpw)

i=1
T
+ 211 (D; 2 t) [1(D; =t) =P (Di =t|D; 2, X, Ye14)] he (Xi, Yeori, parew) }
t=1
=0 (9.2.5)
and the optimal choice of the functions h; (-) is given by

E (YT,z' |Xi, Yt—m‘)_— HAIPW
P (R =1|X;, Y1)

hy (Xi7 Yt—l,i» #AIPW) =

This is not shown here but can be found both in Tsiatis (2006) and in Robins (1999).

In our notation, (9.2.5) can be rewritten as

n

2

i=1

T _
- (Yr; - HAIPW) + E R 1; (A L Rt’i) ( T | ﬁt 1, ) ﬂAIPWJ -0
t,

s P
T, =1 t—1,

(9.2.6)

which is equivalent to

n T
. Ry, _ _
D {E (Y [Xi, Yag) —parew+ D 22 [B (Y [Xi Vi) = B (Y X, Vo) } —0
t=1

i=1 o

(9.2.7)

Our estimator (9.2.4) can be rewritten as
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m n
Jj=1

+ -+ Ry (1= Ryy) [fE (Yr; |Xi,?1,i) - /JDRMI] + (1 - Ryy;) [fE (Yr:1X;) — MDRMI]
+ Rr_1: (1 — Ryy) [)77(’]1) ~-E (Y |Xs, Yeo1s, ;rt—l,i)] + .-

{Rm (Yr; — porwi) + Rr—1,: (1 — Rry) [E (Yr | X, Yoo, Mem1y) — MDRMI]

i=1

-,

+ Ryg (1= Raog) [V — B (Yo [ X0, Vi) | (1= Ruo) [P9) - B (v 1X0)] } =0

and this is equivalent to

n m

Z Z { (Yr: |Xi) — pormr

i=1 j=1

+ Z Rt 1 [ YTZ ‘X’n Yt K3 7Tt1,) (YT,’i IX'ia Yt—-l,h%t—l,i)]

+ZRt 16 (1= Reg) [T — B (Vs [ X, Yoo o 1,)]}:0

t=1

To show that fiprmi is a doubly-robust estimator of y, we must show that

m
<Z { (Yz,;|X;) — torMI

T
+ ZRm []E Yr, 'XzaYt i M) — E (Yr, |xi»Yt—1.ia %t—l,i)]

t=1
T

+ Z Ri_1i (1 — Ryy) [3719@) ~ B (Yr; |Xi, Yi14, 72&-1,1)] }) = ()
t=1

when at least one of the y- and m-models is correctly specified, where the outer expec-

tation is with respect to the true distribution of X;, Yr;.
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The final term is zero (by the definition of (Yr; |X,~,YM, i) as the mean of the
distribution from which Y},’i) is drawn) and thus our requirement becomes that

m
E(Z {IE (Y7 |X;) — pprMr
=1

T
+ Z Ry []E (Y1 |Xi, Yo, i) — E (Yr; X, Yo, 71rt—l,z‘)] }) =
t=1

when at least one of the y- and m-models is correctly specified, or, equivalently:

E{]E (Yr; |Xi) — porMmr

T
+ Z Ry ; []E (Yr, 'Xi,Yt,iv'ﬁ't,z') ~E (Yr; 1Xi, Yioug, "Art—l,i)] } =0
=1

By Lemma 9.2, this can be rewritten as
]E{Ho (XiT,B, ¢A>) — UDRMI

+ iRm‘ [Ht (X,T,Yt,i,%t,i,,é, QS) —Hi (X?,Yt—l,i,ﬁt—l,ivé,fla)] } =0 (9.2.8)

t=1

which is the same as
E{Ho (Xf, ﬁ) — KDRMI

.S 2 [ (X7 Y0i. 500 8.8) = Hoos (XT Vs 108, 9)] } =0 (9:29)

t=1 "B

since both the second term in (9.2.8) and (9.2.9) are numerically zero (assuming that

a constant term was included in the extended y-model).
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Then we are done, since the expression inside the expectation in (9.2.9) is the same as
the summand in (9.2.7). In other words, that the equality (9.2.9) holds whenever at
least one of the y- and m-models is correctly specified follows from the double robustness

of fiarpw. ‘ O

9.2.2.2 Non-monotone longitudinal data

For non-monotone missingness patterns, we recommend first testing the hypothesis that
the missing data mechanism belongs to the randomised monotone missingness (RMM)
sub-class described in §4.2.1 using the test described by Robins and Gill (1997). If
the data do not support this hypothesis, then MAR should be rejected as implausible;
even in this case, however, an analysis which assumes ignorability might be required

as a point of departure for subsequent sensitivity analyses.

Under the assumption that the data are RMM, the parameters shown in Fig. 4.2 (or
the appropriate extension thereof to more timepoints) can be easily estimated. In this
example (where there are three outcome variables, but the argument easily extends to
any number of outcome variables) we start by defining a ‘stage 2’ variable, S, ; taking

the value s;; where
sp; = inf {1,2,3:Y,, ; is observed}

or the value 0 if none of {Y1;, Y2, Y3;} is observed. A multinomial logit model is fitted
to Sy ;, conditional on the covariates, and the probabilities p1 (X.), p2 (X;), and p; (X;)
(as shown in Fig. 4.2) are estimated. Then, a ‘stage 3’ variable, S;;, is defined to take

the value s3; — 1 where
s3; = inf {2,3:Y,,, is observed and Yy ; is observed, where k < s3}

or the value 0 if only one of {Y1; Y2, Y3} is observed. For each level sy; of Sy,
a multinomial logit model is fitted to S3; conditional on Y,,; and the covariates.
The probabilities p2 (X, Y1,), p3 (X;,Y1;), and ps3 (X, Yz;) (as shown in Fig. 4.2) are
estimated. The models are fitted using only the subjects for whom S, ; = s5;.
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Finally, a ‘stage 4’ variable, S4;, taking the value s;; where

1 if Y1,,Y;;, Y5, are all observed
84 = .
0 otherwise

is defined and, for each pair {s2,, s3,i}, a logistic regression is fitted to Sy ; conditional
on Y, i, Yss,i and the covariates. The probabilities p; (X, 11,4, Ya,) are estimated.
These models are fitted using only the subjects for whom {S,;, S3,;} = {s2,, 83}

From these estimated probabilities, we would like to estimate each of

P (Ry; = 1|X;) =p1(Xi) (9.2.10)
P(Ro; = 1|Xi, Y1) = p1 (X)) p2 (X, Yay) + p2 (X)) (9.2.11)

P (Rs; = 1|Xi, Y14, Y2,:) = p1(Xs) p2 (X, Y1) p3 (X, Y13, Y2,) + 1 (Xs) p3 (X, Vi)
+p2 (X) p3 (X, ¥2;) +p3 (Xi) (9.2.12)

Note that even in this non-monotone setting, since the data are longitudinal, it remains
the case that 7r,; = P (R = 1|Z;) = P (Rt,i =1 |X1'7Yt—1,i), i.e. that the missingness
probabilities at each timepoint depend only on past measurements of Y.

There is no problem with (9.2.10) but (9.2.11) and (9.2.12) are undefined for some
subjects. For example, if subject ¢ has only Y> observed then p, (X;,Y;;) cannot be
calculated. Upto a function of the unknown Y3, it can, however, be specified and in
such cases (9.2.11) and (9.2.12) are specified as known functions of the unknown Y;
or Yz;. This completes the description of the m-model.

We proceed by fitting the model using MI, and to cope with the non-monotone pat-
tern, MI using chained equations (MICE) as described in §6.7.4 is used. As with the
monotone case, for each t € {1,...,T}, Loy 2.1 is included as an additional covariate (ad-
ditional to the specified y-model) when imputing ¥;;. As we noted above, #;; itself,

in general, is missing for some subjects, and is therefore imputed (deterministically) as
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a function of the (possibly imputed) 171,,-, e ,fft_lﬂ-.

Although when generating such data, we would only need to consider the distribution
of each outcome variable Y; conditional on the covariates and the previous ¢ — 1 out-
come variables (since the future cannot determine the past), for the analysis model
(the y-model), it will be necessary—in this non-monotone case- to postulate the im-
plied models for Y; given all future outcome variables as well, and the future outcome
variables must be included in the imputation models, e.g. Y, must be included in the
imputation model for Y;. Thus, the extended y-model in the non-monotone case differs
from that of the monotone case, since the imputation model for Y; conditions on all

past and future values of Y, as well as X and #; .

Finally, fiprmi is again calculated as the solution to
7o) _ ~0 0o 1
T,i — MDRMI (9.2.13)

and a variance estimate (subject to the same caveats as above) obtained using Rubin’s

variance formula.

Conjecture 9.4 (Multiply imputed DR non-monotone longitudinal estimator). The
estimator fiprmr 18 doubly robust. That is, if at least one of the two models (the m-model
and the y-model) is correctly specified (but not necessarily both), fiprmr s a consistent

estimator of p.

Sketch proof. The general form of the AIPW estimating equation (Tsiatis, 2000, p.173)
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for non-monotone data can be written as

i Rl!i..'RT,i (Y B )
i=1 P (Rl,i ~+Rp; =1 |X,-, YT,i) Ti — HAIPW
Ry, ---Rr;P(Ry;=rm1,...,Rr; =17)
+ ]lR':T‘,...,R’.Zr _ : ’ R,
rl'g?gl ( 1,3 1 T,i T) P (R1,z~ Cas RT,z’ =1 |Xz’1 YT,z')

g lr oy Goyrr (Xi, Y1) s parew] } =0 (9.2.14)
where the functions g () could be any functions of the observed data.

As we have already noted, although in the general formula given in (9.2.14) the response
probabilities are conditional on all outcomes, since we are restricting our consideration

to non-monotone longitudinal data under a RMM mechanisi, it remains in our case

that
P (R |Xi, Yr,;) = P (R [Xi, Yioy)

For ease of writing, let us drop the subscript 7 and consider a simple example with only
three timepoints and no X. Suppose that Y; is always observed, but that Y2 and Y3
are both subject to missingness, in a non-monotone pattern.

Also for ease of writing, let W> be the inverse of the probability that Y, is observed,
conditional on Yi; let W3 be the inverse of the probability that Y3 is observed, condi-
tional on Y; and Y,; and let Wa3 be the inverse of the probability that both Y3 and Ys

are observed, conditional on Y; and Y;.

Consider the subjects with intermittent missingness, i.e. the subjects who have Y;
observed but Y, missing. Consider the hypothetical dataset which consists of all
the observed data together with the true unobserved values of Y; for these sub-
jects with intermittent missingness. The pattern of missingness in this hypothetical
dataset is clearly monotone. Let H; be the hypothetical predictions from the Bang
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and Robins procedure for longitudinal monotone data (as described in §7.6.4.2) after
T — t iterations of step 3(a), applied to this hypothetical monotone dataset. That is
Hy(Ys) = Vs, Hy(Y1,Ys,Ws) = E(H3 |Y1,Y;,W3) and H, (Y1, W2) = E (Ha |Y1, W3).
Let I?g) = H, (}’1,}72('7), W3 (1/1,172(”)). Finally, let E5 be the mean (over the impu-

tation distribution) of HY.

We can rewrite (9.2.14) as

RyR3W.
E {R233W23 (Y3 —p)+ (R2 - %223) (W, (Hy — Hy) + Hy — y]

RyRsW.
+(R3— 2413Wa3

W, )[W3(Y3—E2)+H1*ﬂ]

RyRsWas  RyRsW.
4+ (1-Ry— R3— RpRgWis + =2 4 2378 )y ) Y =0 (9.2.15)
W, W3

since W (Hz — H1)+ Hy, W3 (Ys — E2) + H; and H, are functions only of the observed
data for subjects with only (Y1, Y2), (Y1, Ys) and Y; observed, respectively.

Using similar arguments to those already used, for example that
ZR2W2 (H, — Hy)

is numerically zero, we can show that the expectation of the summand in (9.2.13) is
equal to the expectation of the summand in (9.2.15). The DR property of the solution
to the latter therefore implies the DR property of iprwmi, which completes the (sketch)

proof. O

9.2.3 Non-monotone cross-sectional ignorable missing data

The arguments above could be extended to the case where the data are not constrained
to be longitudinal, but this would require a method for estimating the weights when the
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order in which the variables were observed is not known. Although Robins and Gill
(1997) propose a method for calculating the complete-case weights in a randomised
monotone missingness setting using an EM algorithm with the path followed by a
particular subject through Fig. 4.1 treated as a missing value, they also prove that the
same method cannot be used to identify the individual path probabilitics, suggesting
that the timepoint-specific missingness probabilities cannot be determined either.

9.2.4 A closer look at Bang and Robins for longitudinal data

In section 3 of their paper, when describing the algorithm for constructing the DR

estimator for longitudinal data, Bang and Robins write

For subjects with C' > m, specify and fit by IRLS a parametric regression
model epy_1 (me—IQIBm—la¢m—l) =V [sm-1 (Lm-1; Bm-1) + ¢y (&)] for
the conditional expectation E [flm (u)‘ C>m, Em_l].

Allowing for slight differences in notation, this corresponds to step 3(a) in our descrip-
tion in §7.6.4.2. The focus for us is the function s,,_; (-) which specifies the functional

form of the linear predictor for the chosen regression. In section 3.1 they describe a

simulation study and write

Let L = (LlT,Lg,Lg,)T represent the full data with L, = (Vi;, Vig, Vi3)T
and Ly = Y. So the censoring variable C takes a value in {1,2,3}. V;
(i =1,2,3) were generated independently from a standard normal, L, from
N [s; (L1; 8),1], and Y from N [s; (Ly; 8) ,1] as presented in Table 1C.

Referring to Table 1C, we see that the functions s; (1) and s (+) are defined as follows:

s; (Li; B) =B (1, Vi, ViuViz)™, B = (0,3,-2)
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82 (f‘2a 13) = ;3 . (1’ %21’ ‘/127 ‘/227 ‘/121/2)Ta :3 = (0» _3a 3, 11 —2)

where V, = L.

Although not stated in so many words, the implication here is that the functions s. (+)
used to generate the data are the exact same functions s. (-) used in step 3(a) as the
linear predictor for the chosen GLMs. Further thought, however, reveals that (except
for the regression of Hr, i.e. the regression which uses s, () in this example) the two
sets of functions do not, in general, coincide and that the example chosen by the authors
for their simulation study is an example in which the s; (-) needed for the analysis is
quite different from the §; () (relabelled 3, (-) to differentiate it from s; (+)) used to
generate the data. In this example, where every variable is normally distributed, it
is relatively straightforward to derive the function needed for the analysis as we now
show. It should come as no surprise that s; () is not equal to §; (-) in general, since
the former is E (Y |L;) and the latter is E (L |Ly ).

The conditional distribution of Lo |L; is
N 3V — 2V W33, 1)
and the conditional distribution of Y |Ls, is
N (—3V{ +3Vip + L3 — 2VipL,,1)
Thus the conditional expectation of Y |L;, is

— 3V +3Vie + 1+ (3Va1 — 2V Vas)® — 2V4, (3Vhy — 2V Vi)
=1+ 3Vip + 6V — 6V Vip — 12V Vig + 4V, Vi Vi + 4VE VA

Thus, when carrying out the simulation study under the ‘both models correct’ scenario,
the authors must have used 1, Vig, Vi3, Vi1 V1o, VA Vi3, V11 V12 Vi3, VA V] as the covariates
for the second linear regression stage, as opposed to 1, V11, V11 Vi3 as the paper strongly
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suggests. In the Gaussian case, this additional step is straightforward, but when the
data are non-Gaussian, a suitable function s; (+) could be difficult (or even impossible)

to derive even if functions s; (-) and §; (-) could be easily postulated.

We note that the corresponding issue does not apply in DRMI, since our imputation
model is formulated for each variable individually conditional on the other variables.
The expectation of Y given L; for a subject with Ly and Y missing is calculated
sequentially by first estimating the distribution of L, given L; and then the distribution
of Y given L, and the imputed value (conditional on L;) of L. We have already noted
this feature of DRMI, since it gives rise to the need to impute the marginal missingness
probability at time ¢ for subjects who dropped out before timme ¢ — 1. Thus, we now
see that the feature which, earlier in our description of the method, seemed to be a
disadvantage when compared with the method of Bang and Robins (2005), the same
feature also offers an advantage here, namely that it is not necessary to postulate

models for Y given L; marginalised over L,.

9.3 Simulation studies

9.3.1 Univariate ignorable missing data

First we repeat the first simulation study carried out by Bang and Robins (2005)
adding our DRMI estimator as a fourth estimator to be compared with the IPWCC
estimator, the outcome regression (OR) estimator and the Bang and Robins doubly

robust (DR) estimator.

The OR estimator is the solution to
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where e (X? , ,@) are the predictions from the (non-extended) y-model (9.2.1). This is

equivalent to a maximum likelihood analysis.

In this simulation study, X = (X, X2, X3) is always fully-observed and generated from
a trivariate normal distribution with mean (0,0,0) and variance-covariance matrix
equal to the (3 x 3) identity matrix. Y is normally distributed with mean sy (X, 3)
and unit variance, where siue (X, 8) = 8 (1, X2, X,, X2 X3)" and 8 = (0,1,2.5,3).

R is generated from the following logistic regression:
logit [furee (X, @)] = (1, Iy, I, Is, I, I)T

where a = (—1,1,0,0,—1) and I; stands for 1 (X; > 0).

To investigate the double robustness property, an incorrect m-model and an incorrect

y-model are specified as follows:
stase (X, 8) = B (1, X1, X3)"
logit [Fraie (X, @)] = a (1, I, I5)T

The simulation study is based on a sample size of 500 and 1,000 simulations, with the
doubly robust MI procedure based on 10 imputations. The results are shown in Table

9.1.

9.3.2 Longitudinal monotone ignorable missing data

Next, we repeat the longitudinal monotone simulation study carried out by Bang and
Robins (2005), again adding our DRMI estimator as a fourth estimator to be compared
with the IPWCC estimator, the OR estimator and the DR estimator.
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Estimator Bias True  Estimated Coverage
variance variance probability
frpwece —0.01 0.11 - —
[loR —-0.00 0.04 - —
fiDR ~0.00 0.04 — _
ADRMI —0.00 0.04 0.04 0.95
prpwec r—fase | —0.36 0.13 - -
[IDR.7—false —0.00 0.04 — -
ﬂDRMI-r—false —-0.01 0.04 0.04 0.95
[LOR.y—false -0.35 0.12 - -
ADR y—false -0.01 0.11 - —
JADRMI.y—false -0.02 0.12 0.12 0.93
ﬁDR.ﬂ-@y_fa]se -0.35 0.13 — -
ADRMI.n@y—fatse | —0.3D 0.14 0.12 0.79

Table 9.1: The results of the first simulation study performed by Bang and Robins (2005)
with doubly robust multiple imputation (DRMI) included in the comparison. No subscript
indicates correct specification of the relevant model(s). m — false indicates that the esti-
mator used an incorrectly-specified m-model, y — false indicates that the estimator used an
incorrectly-specified y-model and 7 & y — false indicates that both the 7- and y-models were
incorrectly specified.

The OR estimator is now the solution to

Xn: [HO (X;‘P,B) - NOR] =0

1=1

where Hp (Xf,[;) is as defined in §9.2.2.

As before, X = (X1, X2, X3) is always fully-observed with X, X, X3 independent
and identically distributed standard normal variables. Y; is normally distributed with
mean 5™ (X, B;) and unit variance, where 3¢ (X, 8) = B, (1, X1, X1X3)” and 8, =
(0,3,2). Y, is normally distributed with mean 53 (X, Y1, 8;) and unit variance, where
s§'* (X, 11, 82) = '32(1’X12’X2’Y12’X2Y1)T and @, = (0,-3,3,1,-2). The implied



9 ROBUST MULTIPLE IMPUTATION: AN ALTERNATIVE FORMULATION 148

st (X, B1) (as we showed in §9.2.4) is

st (X, By) = B (1, Xa, X2, X1 X5, X2Xs, X1 X, Xs, X2X2)

R, is generated from the following logistic regression:
logit [#%"® (X, @1)] = e (1, IX, I I¥, 1X 1)

where a; = (1, —1,—1,1,1) and I;¥ stands for 1 (X; > 0). Conditional on R, = 1, R,

is generated from the following logistic regression:
lOglt [,;r;rue (X’}/l,a2)] = Q¥ (1, If(,IQX,Ig{, I1XIZX711Y,I§{I}/)T
where ay = (0,—1,—-1,0,1,0,2) and I} stands for 1(Y; > 0). If R, = 0 then R, = 0.
To investigate the double robustness property, an incorrect m-model and an incorrect
y-model are specified as follows:
false _ T
8 (Xaﬂ) —,3(1,X1,X2)
Sgalse (Xa Yla ﬁ) = ;B (17 Xh X22) ng Yl)T
logit [#2%¢ (X, )] = a (1, I¥, I¥)"

logit [#2% (X, @)] = & (1,1¥)"

The simulation study is based on a sample size of 500 and 1,000 simulations, with the
DRMI procedure based on 10 imputations. The results are shown in Table 9.2.
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Estimator Bias True  Estimated Coverage

_ variance variance probability
HIPWCC -0.11 10.98 — —
[or 0.06 1.92 - —
(DR 0.06 1.92 - _
ADRMI 0.07 1.91 1.83 0.94
ﬂIPWCC'r—fa]se —3.21 5.87 - —
ﬁ'DR-r—-false 0.06 1.92 —_ —
[ADRMI.7—false 0.08 1.92 1.83 0.93
JLOR.y~false —-4.99 3.51 - -
[IDR.y—false —0.36 10.51 - _
ﬂDRMLy—false —0.37 10.63 4.28 0.74
[DR. r@y—false -2.35 8.13 - -
ﬁDRMI-ﬂ'EBy—fa.]se —-2.37 7.38 3.67 0.57

Table 9.2: The results of the monotone longitudinal simulation study performed by Bang and
Robins (2005) with doubly robust multiple imputation (DRMI) included in the cl(nnparison,
No subscript indicates correct specification of the relevant model(s). m — false indicates that
the estimator used an incorrectly-specified 7-model, y—false indicates that the estimator used
an incorrectly-specified y-model and 7 @ y — false indicates that both the m- and y-models
were incorrectly specified.

9.3.3 Longitudinal non-monotone ignorable missing data

Next, we consider a longitudinal non-monotone simulation study. In this case, neither
the OR nor the DR estimator can be used and thus we compare our DRMI estimator
with the IPWCC estimator and an ordinary multiple imputation (MI) estimator, i.c. an
estimator identical to the DRMI estimator but without the inverse probability weights

as additional covariates.

In this simulation study, X (univariate) is always observed and generated from a stan-
dard normal distribution. Y1 is normally distributed with mean 8¢ (X, 8;) and unit
variance, where 3 (X, 81) = 81 (1, X 97T and B, = (0,1). Yz is normally distributed
with mean s&¢ (X,Y:, 32) and unit variance, where s§* (X,V1, By) = By (L, X, V3)T
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1p,X.Y )

1-p1(X)-p2(X)

g

Figure 9.1: The MRMM longitudinal process used for the longitudinal non-monotone sim-

ulation study.

and B, = (0,—1,2). The implied s (X,Y;,81) is
s (X, Y2, B1) = 81 (1, X, X2, Va)

Note that s; (-) is now a function of Y3. This is essential, since some subjects have Y,
but not Y; observed. If ¥, is omitted from the imputation model for Y}, the resulting
estimator is, in general, biased since the stationary distribution to which the Gibbs
sampler in the MICE procedure converges is not the correct full-data distribution,

even under MAR.

The missingness model is illustrated in Fig. 9.1.
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p1 (X) and p, (X) are defined by the following multinomial logit model:

exp [an (1 \/p(-|)T]
1 + exp [an (1, \/W)T] +exp [am (1, |X|)T:
exp [am (1, \/W)T]
texp s (1.VT) | +exp [ (1, V)|

pﬁ’“e (X, an,012) =

p;me (X,an,alz) =

where a;; = (2, —1) and a; = (0,0.5). Conditional on Y; being observed at the first
stage, ps (X, Y1) is generated from the following logistic regression:

logit [pi™® (X, Y1, @)] = az (1, X, Y2)T
where ay = (0, —2,0.5).
ftree (X, auy, aiz) and 75U (X, Yo, o, o) are then calculated as follows:

Fre (X, oy, ang) = i (X, a1, o)

#ire (X, Yo, g, a2) = p5© (X, @11, 0ag) + pi™ (X, any, aug) pie (X, 11, o)

Thus, 78 (X, Yiau1, s, @) is missing for all subjects for whom Y; is missing and
should be imputed (after Y; and before Y; in each chained equations cycle) determin-
istically based on the current imputed value of Y. The code is given in the Appendix

in §C.2.

To investigate the double robustness property, an incorrect m-model and an incorrect

y-model are specified as follows:

s (X, Y, 81) = Br (L X, Yo)"
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Estimator Bias True Estimated Coverage
variance  variance probability
frpwee 0.00 0.07 _ _
fim1 -0.01 0.03 - -
ADRMI -0.02 0.03 0.03 0.95
AIPWCC —false —0.59 0.05 - -
ﬁDRMI--;r——false —-0.03 0.03 0.03 0.94
ﬁMI.y_false 3.07 x 1031 2.16 x 1065 — —_
ADRMIy~false 0.00 0.04 0.06 0.97
[DRMI.r@y—false 2.32 123.55  5.27 x 108 0.94

Table 9.3: The results of the non-monotone longitudinal simulation study where doubly
robust multiple imputation (DRMI) is compared with IPWCC and ordinary MI. No sub-
script indicates correct specification of the relevant model(s). 7 — false indicates that the
estimator used an incorrectly-specified m-model, y — false indicates that the estimator used
an incorrectly-specified y-model and 7 & y — false indicates that both the #- and y-models
were incorrectly specified.

sk (X, Yy, Ba) = By (1, Y2)"

false X, 011, al2) —_ €xp (al )
o 1+ exp (a11) + exp (a12)
false €xp (012)

X,an1,a12) =
Py (X, enp, an) 1+ exp (ay;) + exp (o12)

logit [pi™¢ (X, Y1, a)] = e (1, X, V)T

The simulation study is based on a sample size of 500 and 1,000 simulations, with
the doubly robust MI procedure based on 10 imputations and 10 cycles of the chained
equations procedure (see §6.7.4). The results are shown in Table 9.3.
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1-p,(X.Y,)

Figure 9.2: The MRMM longitudinal process used for the longitudinal non-monotone sim-
ulation study.

9.3.4 Cross-sectional non-monotone ignorable missing data

Finally, we consider a cross-sectional non-monotone simulation study. Again, neither
the OR nor the DR estimator can be used and thus we compare our DRMI estimator
with the IPWCC estimator and an ordinary MI estimator.

As in the previous simulation study, X (univariate) is always observed and generated
from a standard normal distribution. Y; is normally distributed with mean 8™ (X, 8;)
and unit variance, where 8¢ (X,6:) = B (1, X 2)T and B8; = (0,1). Y; is normally
distributed with mean sf™¢(X,Y1,02) and unit variance, where si™¢(X,Y;,3:) =
8, (1, X,Y1)" and Bz = (0,—1,2). The implied s{™* (X,Y2,81) is

s (X, Y2, 81) = 61 (1, X, X%, 1)

The missingness model is illustrated in Fig. 9.2.
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p1(X) and py (X) are defined by the following multinomial logit model:

exp au(l X, X2)T

pﬁme (Xs all)a12) =
1+ exp [au(l,X X?) ] +exp a2 (1, X, X?) ]

exp am(l X, Xz)T

P (X, a1, ag) =
1+exp [au(l X, X?) ] + exp [alg (1, X, X?) ]

where a1, = (1,-0.5,0.2) and a2 = (0,0.5, —0.3).

Conditional on Y; being observed at the first stage, p, (X, Y1) is generated from the

following logistic regression:

logit [py™ (X, Y1, an)] = oz (1,X,Y3)7
where o = (0,—1,0.3).

Conditional on Y; being observed at the first stage, p; (X, Yz) is generated from the

following logistic regression:

logit [pi™ (X, Yz, a21)] = a1 (1, X, Ya)"
where o) = (0, —-]., 03)
#tree (X, oy, @y, 0tg1) and 75 (X, Y1ay, g, aipg) are then calculated as follows:

"t
(X ap, agp) = P (X, @y, aug, 1) + 05 (X, e, @) P (X, Ya, agy)

A (X, Yiour, aup, a22) = p5® (X, @, ) + p7 (X, @y, 012) p* (X, Y1, g

In this case, neither #i™¢ (X, a1, aug, ) nor 737 (X, Yiou;, ayg, ) is fully-
observed for all subjects and would need to be imputed deterministically based on

the current imputed values of Y; and Y;. However, because of the difficulty associated
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with estimating the marginal weights (discussed in §9.2.3), we cannot obtain reliable
estimates of ™ (X, a1, @2, 1) and 737 (X, Yiau, @i, @a2) even for the complete
cases. For the purposes of this simulation study, therefore, we will use the true (known)

weights.

To investigate the double robustness property, an incorrect y-model is specified as

follows:
s (X, Y, 81) = B (1, X% V)"

s2l= (X, Y1, B2) = B a1,

Since the true weights are being used, no ‘m-model’ exists. To investigate the double
robustness property, we therefore define #1215 = \/#{™e and fflse = | /rive,

The simulation study is based on a sample size of 500 and 1,000 simulations, with the
MI and doubly robust MI procedures based on 10 imputations and 10 cycles of the

chained equations procedure. The results are shown in Table 9.4.

9.4 Discussion

We have seen that in both the univariate cross-sectional and longitudinal monotone
cases, where the Bang and Robins (2005) method can be applied, its performance
and our estimator’s performance are very similar. In addition, the variance estimates
obtained using Rubin’s variance formula perform well when both models are correctly
specified. As expected, the variance estimates do not share the double robustness
property possessed by the estimates themselves. Our proposed variance estimator
does not take into account the variability of the estimated weights but, at least in our
simulations, this effect is negligible. It should in principle be possible to incorporate
this variability using a sandwich estimator. Further work is needed on this.
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Estimator Bias True  Estimated Coverage
variance variance probability
fipwee 0.01 0.07 _ —
fim 0.00 0.03 _ _
ADRMI —0.00 0.03 0.03 0.95
PIPWCC 7 —false 0.25 0.06 - —
[LDRMI.7—false 0.00 0.03 0.03 0.95
PM1.y—false 0.49 0.05 - -
ApRMIy—fase | —0.04 0.03 0.03 0.95
ADRMLr@y—false | 0.2 0.04 0.04 0.80

Table 9.4: The results of the non-monotone cross-sectional simulation study where doubly
robust multiple imputation (DRMI) is compared with IPWCC and ordinary MI. The known
(true or Vtrue) probability weights were used in the IPWCC and DRMI methods. No
subscript indicates correct specification of the y-model and weights (where applicable). n —
false indicates that the square root of the weights were used, y — false indicates that the
estimator used an incorrectly-specified y-model and 7 @ y — false indicates that both the
weights and y-model were incorrect.

When the missing data are longitudinal but non-monotone, the Bang and Robins
(2005) method can no longer be used, but our estimator works very well: it cxhibits
the desired double robustness property as well as improved efficiency compared with
IPWCC. The loss of efficiency relative to OR and MI is negligible in our simulation
studies. Furthermore, our method is easily implemented in standard software packages

such as ice in Stata.

We have also shown that DRMI could in principle be applied to general (non-
longitudinal) non-monotone data. However, the problem of estimating the variable-
specific inverse probability weights needs first to be resolved. Unfortunately, the
method proposed by Robins and Gill (1997) for estimating the complete-case weights
can not be used to identify the variable-specific weights. We have shown, by substi-
tuting the known true weights, that if a method were developed for estimating these
probabilities, DRMI could be used and would perform very well.

Although our focus has been on examples where the aim is to estimate the marginal
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mean of one of the variables, DRMI can be used much more gencrally (for example to
estimate the parameters of a regression of one variable on another) and as easily to

any appropriate analysis of the imputed data.

We have used proper imputation throughout for the simple reason that Rubin’s variance
formula can then be used. More efficient estimates could in principle be obtained by

imputing smproperly, but bespoke variance estimators would then be required.



Part IV

The RECORD study



Doubly-robust MAR analysis

10.1 Introduction

In Chapter 9, we developed a new method, doubly robust multiple imputation (DRMI),
for constructing doubly robust estimates. One of our method’s main advantages is the
conjectured extension to the non-monotone setting. In Chapter 11, we perform MNAR
sensitivity analyses on the RECORD study data (see Chapter 2 for some background

159
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Figure 10.1: A histogram showing the distribution of the residuals from a linear regression of

HbA . on treatment group and baseline HbA;. for the observed data at the final timepoint.

to this study and §11.2 for a brief description of the missing data patterns). As a point
of departure for our sensitivity analyses, we plan to use a direct likelihood approach
under multivariate normality and MAR. Before we do this, however, it is important
to explore whether or not the Gaussian direct likelihood is an appropriate choice of
analysis for this purpose. The possible non-normality of the HbA;. outcome variable
in the RECORD data (see Fig. 10.1) suggests that a more robust analysis might be
needed. In this chapter, we use the method developed in the previous chapter to
perform a doubly robust analysis of the RECORD data under the MAR assumption

and we compare it with the direct likelihood approach.

10.2 Methods

For the direct likelihood analysis, we use PROC MIXED in SAS. Time is included as

a categorical variable with a fixed and random effect included at each visit. The
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Method Estimated difference in mean HbA .
[M+R]-[M+S] [S+R]-[S+M]
Linear mixed model | 0.087 (0.08) 0.066 (0.08)
Doubly robust MI 0.017 (0.09) 0.033 (0.07)

Table 10.1: A comparison of the results (estimates and standard errors) from the linear
mixed model and the doubly robust MI estimator.

covariance of these random effects is unstructured and is allowed to differ by treatment
group (complex variation). Treatment group and visit-by-treatment-group interactions
are included as fixed effects. Baseline HbA ;. and its interaction with treatment group

are also included as fixed effects.

Then, we apply to the same dataset the DRMI procedure described in §9.2.2. The
missingness model corresponding to Fig. 9.1 is appreciably more complex with 8 vari-
ables rather than 3. It is clear that some reduction in the dimensionality of the problem
must be made if the weights are to be estimated efficiently. There is a trade-off be-
tween efficiency and robustness, but this is necessary in practice with this number of
timepoints. We will impose the restriction that, conditionally on the most recently
observed outcome, the choice of which outcome will be the next non-missing outcome
is independent of all other observed outcomes. Apart from this, the method is identical

to the one described in the simulation study in §9.3.3.

10.3 Results and conclusions

The results are shown in Table 10.1. We see that the results from DRMI are similar
(but not identical) to those from the direct likelihood analysis. Certainly as regards the
pre-specified non-inferiority criterion of 0.4%, neither method supports the rejection of

non-inferiority.

Figs. 10.2-10.5 show the profiles for each treatment group as predicted by the two
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Figure 10.2: A comparison of the HbA . profiles predicted from the direct likelihood analysis
and those predicted from the doubly robust multiple imputation analysis for the Met+Su
arm. The green and red error bars show + the standard errors for the likelihood and DRMI

analyses respectively.
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Figure 10.3: A comparison of the HbA . profiles predicted from the direct likelihood analysis
and those predicted from the doubly robust multiple imputation analysis for the Met+Rosi
arm. The green and red error bars show =+ the standard errors for the likelihood and DRMI

analyses respectively.
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models and Figs. 10.6-10.7 show the differences between these profiles for the two
arms separately ([Met+Rosi]—[Met+Su| in Fig. 10.6 and [Su+Rosi]—[Su+Met] in Fig.
10.7). Again, we find that the profiles are similar but not identical. The differences
are substantively very small and unlikely to be important in practice. If anything,
the DRMI approach suggests a lower HbA,. for the Rosi groups compared w.ith the
corresponding estimates from the direct likelihood method, whereas the estimates for
the standard groups show less of a difference between the two methods. As aresult, Rosi
compared with standard looks to be slightly better under the DRMI analysis suggesting
that the direct likelihood analysis is (in this particular case) slightly conservative in
the sense that it is more likely to conclude that Rosi is inferior.

The reason for there being only a small difference between the two approaches is
probably that the non-normality (as suggested by Fig. 10.1) is very small. We notice
that what little difference there is increases over time. This could be due to the
increased dependence on modelling assumptions in the direct likelihood approach as

the number of missing observations increases.

Given that the skewness (seen in Fig. 10.1) is positive, we would expect an analysis
based on an assumption of normality to ‘impute’ higher values for the missing observa-
tions than would be suggested by a more robust approach. This explains the pattern
seen in Figs. 10.2-10.5: that the DR predictions are somewhat lower than the corre-
sponding direct likelihood predictions. However, as we have already mentioned, these

differences are small.

In summary, we conclude from this analysis that the direct likelihood is sufficiently
robust to the small departures from normality seen in the RECORD study for a more
robust analysis of these data to be unnecessary as a point of departure for the sensitivity
analyses in the next chapter. We have also seen that the DRMI method proposed in

the previous section can be applied easily in a real example with non-monotone missing

data and many timepoints.
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Figure 10.4: A comparison of the HbA;. profiles predicted from the direct likelihood analysis
and those predicted from the doubly robust multiple imputation analysis for the Su+Met
arm. The green and red error bars show + the standard errors for the likelihood and DRMI

analyses respectively.
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Figure 10.5: A comparison of the HbA. profiles predicted from the direct likelihood analysis
and those predicted from the doubly robust multiple imputation analysis for the Su+Rosi
arm. The green and red error bars show + the standard errors for the likelihood and DRMI

analyses respectively.
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Figure 10.6: The differences between the HbA;. profiles for the Met+Rosi and Met+Su
arms. The solid green and red lines show the predicted differences from the likelihood and
DRMI analyses respectively, and the dotted lines show + the pointwise standard errors for

these differences.
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Figure 10.7: The differences between the HbA . profiles for the Su+Rosi and Su+Met arms.
The solid green and red lines show the predicted differences from the likelihood and DRMI
analyses respectively, and the dotted lines show =+ the pointwise standard errors for these

differences.
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MNAR sensitivity analyses

11.1 Aims and outline

The aim of the work presented in this chapter is to assess the potential impact of miss-
ing data and non-compliance on the conclusions drawn from the 18-month RECORD
glycaemic analysis. In particular, having studied (in the previous chapter) the robust-
ness of these conclusions to the multivariate normality assumption, we now look at

robustness of a different kind: that to the MAR assumption inherent in the direct
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likelihood approach.

In §11.2 we give the results of some simple analyses of the patterns of non-compliance
and missing data found in the RECORD 18-month data.

Section 11.3 comprises a discussion of the possible research questions we could ask in
this setting. The issue of non-compliance is key here, and the way in which the preferred
question should be answered 1s inextricably linked to the missing data mechanisin and
the longitudinal structure of the data. Thinking carefully about the precise question
to be answered before formulating a particular analysis is necessary for meaningful
interpretation of the results, and, in the presence of non-compliance and missing data,

even more care is needed.

In §11.4 we present the results of a series of sensitivity analyses carried out to assess the
robustness of the results of the direct likelihood analysis as carried out by Home et al.
(2007) to possible violations of the inherent assumptions (namely missing at random

and compliance at random) made when using this approach.

11.2 Patterns of missing data and non-compliance in the 18-month
RECORD data

A logistic regression of non-missingness at the final time point, with age, gender, race,
and baseline HbA . as predictors provided little or no evidence of an association be-
tween age and non-missingness (p = 0.7), race and non-missingness (p = 0.2) or sex
and non-missingness (p = 0.4). However, there was evidence of an association between
treatment group and the probability of being observed (p = 0.02) and between baseline
HbA;, and the probability of being observed (p = 0.01). After controlling for base-
line HbA,., those on Su+Met had a 51% reduction in their odds (95% CI: 20% 70%)
of being observed as compared with those on Met+Su. After controlling for treat-

ment group, an absolute increase of 1 unit (i.e. 1%) in baseline HbA,. was associated
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with a reduction of 28% (95% CI: 8%-43%) in the odds of being observed at the final

timepoint.

A similar analysis, but this time including non-compliance as a form of missingness,
showed again that there was little or no evidence of an association between age and non-
missingness (p = 0.4), race and non-missingness (p = 0.3) or sex and non-missingness
(p = 0.5). The association between treatment group and the probability of being
observed (and complying) was stronger (p = 0.002). After controlling for bascline
HbA,., those on Met+Rosi had a 47% reduction in their odds (95% CI: 29% 76%) of
being observed as compared with those on Met+Su, with the corresponding reductions
for Su+Met being 50% (95% CI: 31%-81%) and for Su+Rosi 46% (95% CI. 29%

73%). After controlling for treatment group, an absolute increase of 1 unit (i.c. 1%) in
baseline HbA ;. was associated with a reduction of 64% (95% CI: 52% 78%) in the odds
of being observed (and complying with protocol) at the final timepoint (p < 0.001).

This association is also stronger than for loss-to-follow-up alone.

11.3 What are the questions and how can we answer them?

Before we can decide on an appropriate analysis plan, we must be clear on precisely

what are the questions to which we wish to find answers.

11.3.1 Treatment vs. assignment to treatment

The possible questions can be divided into two broad categories:

1. questions about the actual biological effect of a treatment, and

2. questions about the effect of being assigned to a treatment.
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Sometimes, the effect of being assigned to a treatment is what is of interest to us: when
we wish to use the data to choose the best (in public health terms) policy for treating
patients. In most other circumstances, the actual biological effect of a treatment is

more likely to be of interest.

An intent-to-treat (ITT) analysis allows us to answer questions of type 2., but is often
used when 1. is of interest. The reason for this is that a valid ITT analysis (when
there are no missing data) is usually straightforward, since the randomisation can be
relied upon to eliminate bias. Valid analyses that answer questions of type 1. are less
common, apart from in the special case where everyone complies fully to the randomised
treatment, with no loss-to-follow-up, in which case 1. and 2. are the same, and an ITT

analysis will answer both.

In summary, if interest lies in a question of type 2., then we can analyse as randomised
(or by intention to treat), which deals with the issue of non-compliance. In all other
circumstances we have to choose between attempting to answer the appropriate ques-
tion 1., running the risk that the effect of non-compliance has not been adequately
taken into account, or answering correctly the other question (i.e. question 2.), which

we didn’t really want to ask.

11.3.2 Populations

Assuming that we know what it is we would like to ask, there is still the problem
of “about whom do we want to ask it?”. For the RECORD study, here are some

possibilities:

1. All type II diabetics

2. All type II diabetics for whom single therapy is insufficient
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3. All type II diabetics for whom single therapy is insufficient and for whom double

therapy s sufficient

4. All type II diabetics for whom single therapy is insufficient at a particular point
in time (e.g. the beginning of the trial)

5. All type II diabetics for whom single therapy is insufficient and for whom double

therapy is sufficient at a particular point in time (e.g. the beginning of the trial)

6. All type II diabetics who would choose to take double therapy were it to be

offered to them

An added complication is that, for example, 2. and 3. do not define a population
independently of time, but rather the population they define varies over time. In other

words, double therapy may be sufficient for a certain patient in April, but by May it

could cease to be so.

11.3.3 Objectives of the RECORD 18-month analysis

The primary objective of the 18-month Glycaemic Control analysis of the RECORD

data was given as:

“to test whether the 18-month mean change from baseline HbA,;. for the
intention-to-treat (ITT) population (all randomised, treated and with at
least one data point post-randomization) with rosiglitazone oral combi-
nation therapy was at least as good as the respective controls receiving

metformin + sulphonylurea.” (Home et al., 2007)

If
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i. every member of the randomised population had remained on his/her assigned

treatment protocol for the entire 18-month follow up, and

ii. there were no missing data

then an ANCOVA using the HbA,. results at the 18-month observation, adjusted
for baseline, would be the obvious choice of analysis. However, neither of the above
conditions holds in this dataset. This means that in any analysis we choose to carry

out, some assumptions will have to be made about both

i. the mechanism which determines which subjects leave the assigned treatment pro-

tocol, and

ii. the mechanism which determines which observations are missing.

Let us turn first to the issue of missing data, before turning to the issue of non-

compliance in §11.3.3.2.

11.3.3.1 Missing data

In their monograph Missing Data in Randomised Controlled Trials --a Practical Guide,
Carpenter and Kenward (2008) compare two of the main MAR approaches to handling
missing data in clinical trials, namely direct likelihood (or modelling) and multiple
imputation (MI). They make the following remark:

“[I]t is worth noting that, as the imputation model is multivariate normal,
as are the models we fit here, treatment effects can always, in principle,
be estimated directly through modelling. The advantages of modelling are

that it is quicker (our largest models fitted within 10 minutes), involves
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fewer judgments (such as whether the an MCMC sampler has converged)
and yields a unique maximum likelihood estimate. By contrast, inferences
from MI are slightly different each time. Where the precise answer is critical
for decision making, a substantial number of imputations may be necessary
to get the Monte-Carlo variability acceptably low. We therefore advocate
direct modelling, if possible.”

When the dataset is sufficiently large for the gains in efficiency offered by a more par-
simonious model to be very small, Carpenter and Kenward (2008) go on to advocate
the use of direct likelihood, with a separate unstructured covariance structure in cach
treatment group (complex variation), and an unstructured means model which includes
the baseline measurement, baseline-by-visit interaction, and baseline-by-trcatment, in-

teraction.

This is precisely the method adopted in the RECORD 18-month analysis (Home ct al.,
2007). In terms of the analysis at the final timepoint, observations from earlier time-
points on incompletely observed individuals can be used--in a principled way, given
the MAR assumption-—to provide information on the possible values which may have
been observed on these subjects had they been observed at the final timepoint. In
addition, the use of an analysis which models the longitudinal profile of individuals
over time means that should we be interested in anything other than the analysis at

the final timepoint, this information is available to us.

Molenberghs and Kenward (2007) similarly advocate the use of direct likelihood, in the
general sense described above, but both books go on to give a very important caveat.

For example, Molenberghs and Kenward (2007) say:

“[RJegardless of the elegance and beauty of the direct likelihood analysis,
MNAR can almost never be ruled out as a mechanism and therefore one

ought to consider the possible impact of such mechanisms as well.”
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In §11.4 we assess the sensitivity of the results of the direct likelihood analysis as

applied to the 18-month data on HbA,. to possible violations of the MAR assumption.

11.3.3.2 Non-compliance

The analysis originally undertaken of these data by Home et al. (2007) censored (i.c.
treated as missing) any observations from subjects who had left dual therapy, from the
point at which they stopped taking dual therapy. Some of these subjects went on to
receive triple therapy, some started receiving insulin injections and others returned to

the monotherapy they were taking before the trial commenced.

Except for two subjects, once a subject leaves dual therapy, he/she never returns. In

other words, the induced missing data (induced by the adopted censoring policy) are

monotone.

When the missing data are induced by non-compliance, the MAR assumption says:

If two subjects, A and B, exhibit identical behaviour up to some point ¢,
whereafter A continues on dual therapy, while B changes to some other
therapy, then the subsequent behaviour of B, had B stayed on dual ther-
apy (something which we have not observed) is assumed to be identical in
distribution to the subsequent behaviour of A.

We will refer to this as Non-compliance At Random (or NAR), since it assumes that,
after conditioning on a subject’s observations whilst on dual therapy, the probability
of leaving dual therapy is independent of those observations which would have been
observed on dual therapy, had the patient not changed to another treatment.

Ignoring for the time being the issue of missing data beyond that which is potentially

induced by non-compliance, there are two broad approaches to handling the issue of
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non-compliance. The first is to analyse the data from all subjects according to the
treatment protocol to which they were randomised, irrespective of whether or not they
adhered to this protocol. This is called intent-to-treat (or ITT). This has the advan-
tages of preserving the effect of randomisation, and of allowing the practical effects of
implementing such treatment policies to be assessed. For example, if a treatment has
an undesirable side effect which causes many patients to withdraw from taking it, this
will be reflected in the conclusions. On the other hand, if our main interest is in the
biological efficacy of one treatment compared with another, then we might choose the
alternative approach, which is to include in the analysis only those who adhered to the

protocol to which they were assigned. This is called per protocol (or PP).

In his seminal book Clinical Trials: A Practical Approach, Pocock (1983) writes:

“[Should patients] with protocol deviations be included in the main treat-
ment comparisons or should they simply be noted as being deviates and be
excluded from subsequent results? In most circumstances I think the first
approach is required; that is, all eligible patients, regardless of compliance
with protocol should be included in the analysis of results whenever possi-
ble. This ‘pragmatic approach’ is sometimes called ‘analysis by intention to
treat’ and is normally preferred since it provides a more valid assessment,
of treatment efficacy as it relates to actual clinical practice. The alterna-
tive ‘explanatory approach’ would confine analysis to patients who received
therapy according to protocol, i.e. ‘analysis of compliers only’, but this can

distort treatment comparisons.”

However, in a longitudinal setting, where a subject may be observed on protocol up
to a certain point, after which s/he is observed as having deviated from the protocol,
we are faced with a slightly different situation. The main objection to a standard PP
analysis is that to analyse only those subjects who do not deviate from the protocol
makes the (often implausible) assumption that those who do not deviate from the

protocol form a random subset of the whole. Following the above taxonomy, this could
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be thought of as Non-compliance Completely At Random (or NCAR). In a repeated
measures setting, by including observations from subjects up to the point at which
they deviate from the protocol, we assume only NAR (not NCAR), and the objections
are less strong. However, in cases where the NAR assumption is violated, a PP-NAR
analysis (such as the one carried out on these data by Home et al., 2007) could give

rise to a biased estimate of the true biological treatment effect.

This (together with the possible deviations from the MAR assumption discussed in
§11.3.3.1) provide the rationale for the work described in §11.4, but first, let us look
at what a true ITT analysis entails when there are missing data.

11.3.4 ITT analyses with missing data

11.3.4.1 Background

If we restrict ourselves to an ITT analysis, we automatically include in the analysis
all the observations censored in the PP-NAR analysis. Specifically, this means that
the data for those who changed to triple therapy, but who remained to be assessed at

2-monthly intervals, will be included.

However, there remains the problem of how to deal with the data that are truly missing.
By design, any subject leaving dual therapy but not moving to triple therapy (for
example, those from the Met+Su and Su+Met arms who went on to take insulin, or
who returned to monotherapy) were moved to the CV outcomes stage of the trial, in
which HbA;. was only measured on a yearly basis. We have thorough records of the
treatments taken by these subjects during this time. Furthermore, there are other
subjects who genuinely dropped out and for whom we have no further data (neither
for HbA,. nor the treatments they were taking). The question now is, what does an

ITT analysis entail in this situation?
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The first thing to note is that a MAR analysis is likely to be inappropriate, unless those
who drop out (or who move to the CV outcomes phase) continue to take the treatinent
to which they were originally assigned. We know by definition that this cannot be
the case for those who move to the CV outcomes phase; also, for those who drop out
completely, it is not possible for them to continue to take the additional treatment to
which they were randomised once they withdraw from the trial. Thus, we are faced
with a situation similar to the one described by Little and Yau (1996). The authors
of this paper advocate the use of multiple imputation as a way of carrying out MNAR
sensitivity analyses in this sort of situation. In the next section, we describe how MI

may be used in ITT sensitivity analyses with missing data.

11.3.4.2 Multiple imputation and intent-to-treat

If, instead of fitting a model to the incomplete RECORD data by direct likelihood, we
use multiple imputation to complete the data several times, and then fit direct likeli-
hood model to the completed datasets, combining parameter estimates using Rubin’s
rules, then, provided we use the same model for the imputation as we use for the anal-
ysis, the results from both methods (MI and direct likelihood) will tend to the same
parameter estimates (and standard errors) as the number of imputed datasets tends
to infinity. Roughly speaking, this follows from the fact that multiple imputation is a
Bayesian procedure, and Bayesian and likelihood analyses coincide as the sample size
tends to infinity. However, varying the imputation model -specifically, allowing for
an effect due to unobserved variables—allows us to fit a MNAR model. The idea is
particularly natural in our setting, where we know (or can guess) what treatment is
taken by those subjects for whom we have missing observations.

Our aim is first to impute the missing values using multiple imputation where the
imputation model reflects the treatment actually taken by the subject with missing
observations. Following this, the completed datasets are analysed as randomised and
the results combined according to Rubin’s rules in the usual way. Until we pause to
think about this, we may not be entirely happy that this is a true ITT analysis, since
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the first part of the analysis (the imputation step) is “as treated” and only the final
part is “as randomised”. But this is exactly what we mean by an ITT analysis in the
presence of missing data. Intuitively, we can think of the imputation step as imputing
the sort of behaviour we would have expected to see from those who dropped out had
they been observed, keeping all other factors constant. This means that if somcone
stops taking treatment altogether and hence experiences a sharp rise in his/her HbA,,
say, this should be reflected in the imputation. When the imputation has been carried
out in a way that reflects the actual or posited treatment compliance, the imputed

data can be analysed “as randomised”.

11.4 Sensitivity analyses

As we saw in the last section, an ITT analysis of these data requires that any data cen-
sored due to non-compliance must be reintroduced into the analysis. An ITT analysis
assuming MAR would then impute the (genuinely) missing data using a multiple lincar
regression imputation model with observed data and true treatment profile included
as predictors. Our aim now is to assess the sensitivity of these results to the MAR
assumption through the introduction of sensitivity parameters into the imputation
model. This is described in detail in §11.4.1.

For the per protocol analysis, the direct likelihood analysis carried out by Home
et al. (2007), represents the missing at random (MAR) and non-compliance at ran-
dom (NAR) model. We can use a similar imputation approach to assess the sensitivity

of this model to violations of both the MAR and NAR assumptions. This is described
in detail in §11.4.2.
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11.4.1 Strategy for MNAR ITT analyses on the 18-month RECORD data

A treatment profile for each individual was extracted from the various data available on
treatments taken. Those who were not censored from the analysis carried out by Home
et al. (2007) were assumed to be on dual therapy. A “triple therapy flag” variable was
used to identify those on triple therapy, and the profiles for those in the CV outcomes
phase were deduced from the (detailed) information available on the treatments taken
at various times. For those lost-to-follow up, a profile which returned to monotherapy

(equal to their original background therapy) was assumed.

For the censored individuals, and those who were lost-to-follow up, dates for their sched-
uled clinic visits were imputed simply by adding 61 (or 91 for the last two timepoints)
days to their previous clinic visit. This was necessary in order that the treatinent

profile could be converted into treatments taken at different visits.

If we had observed data corresponding to each of the treatment profiles followed by the
subjects with missing data, we could fit one MNAR analysis which used the observed
data from the appropriate treatment profile to impute the missing observations. This
is the case for those on dual or triple therapy. Unfortunately, for treatment profiles
involving insulin or monotherapy, there are some timepoints for which no-one has
observed data corresponding to these profiles. This means that to impute the data for
these subjects, we will need to ‘borrow’ imputations from a different treatment profile,
but we can allow the actual imputations to vary from the borrowed imputations by a
constant parameter, and we can assess the sensitivity of our results to the value taken
by this parameter by carrying out the imputations under several different values for

this parameter.

The strategy can be summarised as follows:

1. Impute (5 times) intermediate missing values for those who have not deviated

from the protocol (128 measurements on 32 subjects) assuming MAR conditional
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only on the past. This is not fully-efficient but is still a valid approach and allows
us to carry out all the imputations in Stata using the regression method with
large-sample normal approximations to the Bayesian posterior distributions of
the parameters, without any need for MCMC chains etc. For ecach timepoint
in turn, the dependent variable in the linear regression imputation model is the
HbA ;. measurement at that visit, and the independent variables are all previous
measurements of HbA,., and the treatments actually taken for the previous 2/3

months.

2. Impute (5 times) monotone missing values for those who have not deviated from
the protocol (163 measurements on 40 subjects) assuming MAR and the regres-
sion imputation method in Stata, as described above.

3. Impute (5 times) missing values for those who have moved to triple therapy (163
measurements on 19 subjects) using the observed data from subjects on triple
therapy. For these imputations, to increase precision, use data from subjects on

both background Met and background Su who have moved to triple therapy.

4. Impute (5 times) missing values for those who have moved onto insulin (48 meca-
surements on 16 subjects) using the observed data from subjects on triple therapy
but adding a constant v, at each timepoint. Those who move onto insulin may
have a lower HbA,., due to insulin being more effective than anti-diabetic drugs;
in which case, we would expect v; to be negative. On the other hand, if those
who move onto insulin do so because of poor control, it is also plausible that v,

be positive.

5. Impute (5 times) missing values for those who have moved back to monotherapy
(4 measurements on 2 subjects) using the observed data from subjects on non-
experimental dual therapy Met+Su but adding a constant 7y, at each timepoint.
Those who return to monotherapy may have a higher HbA,,, if one therapy is

less effective than two; in which case, we would expect v, to be positive.

6. Some people in the CV outcome phase receive and additional anti-diabetic drug
which is not Met, Su nor Rosi. Impute (5 times) missing values for those who
have moved to Met+Other or Su+Other (7 observations on 5 subjects) using
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the observed data from subjects on Met+Su but adding a constant -3 at cach

timepoint.

7. Analyse and combine the 5 completed datasets using PROC MIXED and PROC
MIANALYZE, separately in the two arms and analysing “as randomised”.

8. Carry out steps 1. to 7. for (y1,7%,713) = (0,0,0), (-0.25,0.25,0), ( 0.5,0.5,0),
(-1,1,0), (0.25,-0.25,0), (0.5,-0.5,0), (1, 1,0).

9. Use the fact that HbA,. is measured on some people in the CV outcomes phase
at 12 months to attempt to choose a “best” combination of (y;,72,73). Calculate
multiply imputed values for this measurement as if it had not been observed, un-
der each combination of 7 different values for  (v1,7%2,73),
(v; € {-0.6,-0.4,-0.2,0,0.2,0.4,0.6}), making 73 = 343 combinations in total.
Calculate the mean squared difference between the imputed and observed values
to try to decide on a “best” set of (71,72,73), 1-€. the set that leads to the mini-
mum mean squared difference between the imputed and the observed outcomes
at the 12-month timepoint.

10. Repeat steps 1. to 7. using this “best” combination.

11. Compare the results from each model with regards to the estimate and inference
for the treatment difference at the final time point and compare the profiles

implied by each model.

11.4.2 Strategy for MNAR/NNAR PP analyses on the 18-month
RECORD data

In the previous two sections, we described how MNAR intent-to-treat sensitivity anal-
yses could be carried out to assess the robustness of the MAR/NAR per protocol
model (the direct likelihood approach, with individuals censored at the point of non-
compliance) to violations of the MAR and NAR assumptions. There is no reason why

these sensitivity analyses need be limited to the ITT setting. Supposing instcad that
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we are interested in true difference in biological effect between the therapics, we can
again use MI to fit alternative models that allow for MNAR and NNAR mechanisms.

The strategy differs from that of §11.4.1 in a few important ways:

1. The observations that were censored in the direct likelihood analysis remain

censored.

2. The 12-month observations for those in the CV outcome phase can no longer be
meaningfully compared with the imputations. This is because the objective of
the imputation stage has changed in moving from ITT to PP. The imputations
now aim to reflect what would have been observed in these patients had they
continued to comply with the dual-therapy protocol to the end of the 18-month
follow-up. This means that we expect the imputations to differ from the observed

12-month measurements.

We draw the imputations (5 times) from a normal linear regression imputation model
which exactly matches the analysis model (and thus includes all previous measurcinents
of the outcome and the combination therapy to which the patient was randomised).
Combining (using Rubin’s rules) the results from a direct likelihood analysis on these
completed datasets would lead to a MAR/NAR per protocol analysis, equivalent (as
the number of imputations and the sample size tend to infinity) to the direct likeli-
hood approach on the original incomplete dataset. However, to formn the sensitivity
analyses, we introduce four sensitivity parameters, (61,02,03,04). 47 is added to each of
the MAR/NAR imputations for those individuals lost to follow-up, &, is added to each
of the MAR/NAR imputations for those individuals who went on to triple therapy,
85 is added to each of the MAR/NAR imputations for those individuals who went on
to insulin, and d4 is added to each of the MAR/NAR imputations for those remain-
ing individuals who left dual therapy but did not receive triple therapy nor insulin.
In other words, (01,02,03,04) represent deviations from the MAR/NAR assumptions,

and—if positive-—represent the degree to which the condition of those who were lost
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to follow-up or who left the protocol would have been worse (over and above what is
predicted by the MAR/NAR assumption) than those who complied, had they stayed
on dual therapy. It is important to note that the MAR/NAR model allows the HbA,
of those lost to follow-up or those who did not comply with the protocol to be higher
than that of the other patients, up to the level predicted by the previous measure-
ments, and therefore (8;,02,03,04) represent the additional increase not picked up by
the previous measurements. For completeness, even though less plausible, we will also

consider negative values for these parameters.

We experiment with different values of the sensitivity parameters:

((0,0,0,0)
(0.25,0.25,0.25,0.25)
(0.5,0.5,0.5,0.5)
(1,1,1,1)
(0.25,-0.25,-0.25,0.25)
(0.5,-0.5,-0.5,0.5)

(61,02,03,04) = ¢ (1,-1,-1,1)
(-0.25,0.25,0.25,-0.25)
(-0.5,0.5,0.5,-0.5)
(-1,1,1,-1)
(-0.25,-0.25,-0.25,-0.25)
(-0.5,-0.5,-0.5,-0.5)
(-1,-1,-1,-1)

\

If it transpires that none of the above combinations leads to a conclusion of inferiority
of Rosiglitazone (according to the pre-specified non-inferiority margin of 0.4%), more
extreme combinations will be considered until a combination is found which does imply
inferiority of Rosiglitazone in at least one of the two arms of the trial. In other words,
our aim is to find a tipping point, described in terms of our sensitivity paramecters,
where if the missingness mechanism is further from MAR than this point, our final

conclusions are affected. A clinical expert in diabetes could then give his/her opinion
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on whether or not such a departure is plausible. S/he could give a (subjective) opinion
on whether or not such a difference between compliers and non-compliers or between
observed and unobserved subjects is plausible. By definition, we cannot use the data

to answer this question.

11.4.3 Results

11.43.1 ITT

The top half of Table B.1 summarises the final timepoint analyses under cach of the
different ITT models. Step 10. in the strategy (see §11.4.1) gave rise to a combina-
tion (71,72,7s) = (0.2,0.4,0) and the agreement between the observed HbA;. and the
imputed HbA. at the 12-month timepoint as imputed using this combination is illus-
trated in Fig. B.9. Fig. B.1 shows the profiles under the MAR per protocol analysis,
while Figs. B.2-B.8 and B.10 show the profiles under each of the different MNAR ITT

sensitivity models.

11.4.3.2 Per protocol

The bottom half of Table B.1 summarises the final timepoint analyses under each of the
different PP models. None of the pre-specified combinations of sensitivity parameters
led to a conclusion of inferiority of Rosi and (after increasing the sensitivity parameters
in steps of 0.2), the first model to conclude Rosi to be inferior (in the background Met
arm only) was the one in which (61,02,03,04) = (3,3,3,3). Fig. B.1 shows the profiles
under the MAR per protocol analysis, while Figs. B.11-B.24 show the profiles under
each of the different MNAR/NNAR per protocol sensitivity models.
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11.4.4 Discussion

It should be stressed that the sensitivity analyses reported here account for only a small
proportion of the huge number of sensitivity analyses that could have been considered.
For example, in the ITT analyses we assume throughout that any deviation from the
MAR assumption is purely due to a change in treatment on withdrawal. We may
have reason to believe that those who drop out exhibit further deviations from the
observed subjects, beyond what can be explained by treatment. Also, steps 4. to 7.
in the strategy described in §11.4.1 may be too simplistic. We are implicitly assuming
that, for example, the Met+Su and Met+Other arms deviate by a constant amount
over time. Another assumption made in the ITT sensitivity analyses was that the
treatment profile for any subject who dropped out from the trial completely changed
down to monotherapy at the point at which drop-out occurred. This may not be valid,
as some subjects presumably moved onto insulin or other additional therapics in this
group also. There is no limit to the number of scenarios one could investigate in a
sensitivity analysis setting, and at best we hope to select a few pertinent examples

that may be representative in some way of the changes that might be seen.

The fact that some patients in the CV outcomes phase had data at the 12-mmonth
timepoint at least gave us some scope for checking how plausible our choices of (71,72,73)
in the ITT sensitivity analyses might be. This method suggested that our more extreme
choices (such as (1,-1,0)) were not plausible. Table B.1 and Figs. B.1 B.8 and B.10 all
demonstrate that the results are somewhat sensitive to our choice of model. Only under
the model (y1,72,73) = (~1,1,0) would a conclusion of inferiority of Rosiglitazone be
made according to the pre-specified non-inferiority margin of 0.4%. This is illustrated
on the left hand side of Fig. B.5, where the results are consistent (at a 5% level) with
a difference of 0.4% in favour of Met+Su. However, when we inspect the results from
our “best” model, the only slight difference is that the direction of the estimate of the
difference in the background Su arm has reversed, i.e. if anything, Rosiglitazone looks
better under this model than under the original MAR/NAR per protocol analysis.

Note that the standard errors for our estimates of the treatment differences look to be
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larger for (71,72,73) = (-1,1,0) and (71,72,73) = (1,-1,0). This supports the suggestion
that these imputation models are incorrect, and that spurious variation is being in-
jected into the imputations, due to the overinflated deviations between the borrowed

imputations and the missing observations.

To sum up, it seems from these sensitivity analyses that a conclusion of non-inferiority
is relatively stable to model changes that allow for a MNAR ITT analysis and even
more stable to model changes that allow for a MNAR/NNAR per protocol analysis.
In order for the non-inferiority conclusion to be challenged, it was necessary for the
MAR/NAR model to underestimate the unobserved HbA. by as much as 3%. Given
that all the observed differences in HbA . observed in the trial were less than 1% over
the entire follow-up period, it seems implausible that the MAR/NAR model should
underestimate the HbA;. of the non-compliers and those who left the trial by this
amount. However, by varying the assumptions of the MNAR/NNAR. models, some
differences were seen in the implied profiles and the resulting final timepoint analysis,
even if these differences were of the same order of magnitude as (or smaller than) the
associated standard errors in all models except for one. The results thercfore should not
be seen as casting doubt on the conclusions of the 18-month MAR/NAR per protocol
analysis in this case, but they do illustrate the need to consider scnsitivity analyses
in this kind of setting. Certainly, had the clinical interest been in, say, the difference
between therapies after 12 months, Figs. B.1 to B.24 suggest that the results would

have been considerably more sensitive to violations of the MAR/NAR assumptions.

It is worth noting that if a true ITT analysis is required, then ceasing to collect data on
subjects who deviate from the protocol but who remain in the trial (as was the case for
the subjects in the CV outcomes phase in RECORD) is not sensible. Information on
these subjects could have been very useful in drawing imputations for those who were
completely lost to follow-up and this would have allowed the ITT sensitivity analyses

to be more reliable.

We also note that in almost every model considered here, the only noticeable profile

differences occurred in the background Met arm. This suggests that it is the presence
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or absence of Su (as opposed to Rosi) which has the largest effect. This is echoed in
the results of §11.2 where we noted that the largest difference in loss-to-follow-up was
between the Met+Su and Su+Met arms. Is it possible that Met and Rosi are similar,
with Su being better than both of them? This would explain both the difference in
the (early) profiles between Met+Rosi and Met+Su, and might also explain why more
people in the Su+Met arm chose to withdraw than in the Met+Su arm, where the add-
on treatment was more to the patients’ satisfaction. It is well-documented (Charbonnel
et al., 2005) that the early profile of Su is steeper than that of Met (or Rosi), and this
effect may be the dominating factor in what we see over the first 18 months. Therefore,
when it comes to later analyses of the RECORD data (after a longer follow-up), the
patterns seen might be quite different. However, the approach described here could

be applied in exactly the same way to provide sensitivity analyses for the planned

PP-NAR analysis.

Future work could involve combining the work of the previous chapter with this one to
carry out sensitivity analyses within the doubly robust framework. Since our methods
in both chapters use multiple imputation at their centre, combining the two ideas
should be possible. However, for every MNAR model considered here in the pattern-
mixture framework, an equivalent selection-model representation would be required in

order that the weights be modelled in an analogous way to the outcomes.



Part V

Comparing methods for incomplete longitudinal binary
data



Motivation and simulation studies

12.1 Introduction

Principled methods for analysing incomplete continuous longitudinal data under the
MAR assumption are well-understood and increasingly widely-used in medical studies.
However, when the repeated outcome of interest is binary (or, more generally, discrete),
the best approach to take is often harder to determine and the relative merits of dif-

ferent methods are less clearly understood. In the literature review, we discussed some

188



12 MOTIVATION AND SIMULATION STUDIES 189

of the additional complexities (such as subject-specific versus population-averaged cf-
fects) which arise when analysing longitudinal binary data, and described several of the
methods (likelihood methods, GEE, MI-GEE, weighted GEE and the semiparametric-
efficient generalisation of GEE) that are advocated for use in this setting. In this
chapter, we concentrate on the many population-averaged approaches to analysing

incomplete longitudinal binary data.

Many simulation studies in the literature have compared the performance of some or
all of these methods; see, for example, Fitzmaurice et al. (1995), Fitzmaurice ¢t al.
(2001), Li et al. (2006), Lipsitz et al. (2000), Beunckens et al. (2008) and Preisser ct al.
(2002). Inconsistencies in some aspects of the results between different simulation

studies suggest a need for a more theoretical approach to comparing these methods.

In this chapter, we give some motivation for this work using our own simulation study
comparing the methods described in Chapter 7. Then, in Chapter 13, we derive some
theoretical results, confirming some findings suggested by our simulation study. We
hope that by studying the theoretical properties of the various methods for analysing
incomplete binary data, we can present a clearer picture than has been presented to
date of the relationships between the available methods and their relative merits.

12.2 Simulation study

12.2.1 Methods

We consider three binary outcome variables, Y1, Y2 and Y3, and two covariates X; and
X,. The marginal distributions of Y1, Y2 and Y3 conditional on X; and X are given
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by:
. 1
logit []P (Yi =1 |X1,X2)] =X; — '2-X1X2
1 1
lOgit []P (}/2 =1 |X1,X2)] =-1+ le + ZXg - X1X2

1
logit [P (Y3 = 11X1, X2)] = = X1 + 5. X2 = Xa X

In the first two of our three sets of simulations, X, and X, are both binary with
P (X;) =0.5 and P (X3) = 0.25. In the third scenario, X, is binary with P (X;) = 0.5
and X, ~ U (0,1).

As we require Y3, Y2 and Y3 to be correlated, we simulate them from a Bahadur
distribution (Bahadur, 1961; Molenberghs and Verbeke, 2005). In the first and third

sets of simulations, the pairwise correlation matrix of (Y1,Ys,Y3) is

1 03 —-0.15
0.3 1 0.3
-0.15 0.3 1

and the higher-order correlation term, pi23, is given by

(Y1 — p1) (Y2 — p2) (Y3 — p3)

= -01
Vi (1= ) pa (1 — po) pa (1 — pa)

pP123 =

In the second set of simulations, the pairwise correlation matrix of (Y1,Y3,Y3) is

1 02 0
02 1 02
0 02 1
and the higher-order correlation term p;23 = —0.173.

The missing data pattern is set to be monotone with ¥; observed on all subjects.
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Conditional on Y7, X; and X,

: 1 1
lOglt [IP (R2 = 1)] = "2-X1 - §X2 + 3}/1

and conditional on Ry =1, Y7, Y5, X and X,

. 1 1 1
logit [P (R3 = 1| R, = 1)] = —5~ §X1 + —2—X2 +X1Y1 - 1Y, +4Y. X4

This leads to approximately 20% and 60% missing data on Yz and Y; respectively. The
code for the first set of simulations can be found in Appendix C.3.

A sample size of 500 is used, and 1,000 independent simulated datasets arc generated

under each of the three scenarios.

The methods to be compared are:

GEE (with unstructured covariance structure) on the whole datasct;

and, on the incomplete data:
e IEE (independence structure)
e GEE (unstructured)
o cluster-level weighted GEE (unstructured)
e observation-level weighted GEE (unstructured)
e MI-GEE (unstructured)
e semiparametric-efficient estimator as proposed by Robins and Rotnitzky (1995)
e regression-based doubly robust estimator as proposed by Bang and Robins (2005)

doubly robust MI-GEE as we proposed in Chapter 9
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To assess the robustness of these methods to misspecification of the incomplete data
models, in addition to the correct models for the conditional distributions of
(Y3 X1, X2, Y1, Y2), (Y2|X1, X2, Y1), (R3|X1, X2, Y1,Y2, Ry = 1) and (R X3, X2, 1),
the following incorrect models are also defined:

logit [P (Y3 = 1]X1, X5, Y1, Y2)] = ap + on X1 + a0 Xz + a3 X1 X + oY)
+ as X1 Y1 + agYs + a7 X 1Y,
logit [P (Y2 = 1|X1, X3,Y1)] = Bo + 51 X1 + B2Y1 + B3 X111
logit [P (R3 = 1|X1, X2, Y1, Y, Ry = )] = v+ 11 X1 + X
logit [P (Rs = 1| X1, X2, Y1)] = do + 01 X1 + 8, Xa Y1

In each case, the parameter of interest is taken to be the coeflicient of X; in the marginal
(final timepoint) logistic regression of ¥3 on Xi, X, and X1 X,. As in Chapter 9, we
refer to these conditional outcome and missingness models as the y- and 7m-models,

respectively.

12.2.2 Discussion of results

The results comparing the different methods of estimating our parameter of interest in
each of the three sets of simulations are summarised in Tables 12.1 12.3 and further
illustrated using kernel density plots in figures 12.1-12.12. In each of the three tables,
bias refers to the mean bias over all simulations and true SE refers to the standard
deviation of the parameter estimates over all simulations. Z-score for bias is the ratio
of the first and second columns and should be used to gauge the comparative severity
of the bias from methods with different efficiency. The final column, # successful
simulations, gives the number of simulations for which the method converged and
a parameter estimate was obtained. This is the number of simulations on which the

estimates of the previous three columns are based.
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As we would fully expect, there is a loss of information due to the missing data, reflected
in the fact that the standard error of the parameter estimate from the full data is
consistently smaller than the corresponding standard errors from any of the methods
applied to the incomplete data. Again, as we would expect, the Z-scores for bias in both
the cluster- and observation-level weighted GEE analyses increase when the m-model is
misspecified. Correspondingly, the Z-score for bias in the MI-GEE analysis increases
when the y-model is misspecified. Finally, the IEE analysis is biased, suggesting that
our chosen MAR mechanisin represents a non-negligible departure from MCAR. While
these aspects of the results agree with existing theoretical predictions, others require
further explanation. We describe these aspects here and investigate them more fully

(where necessary) in the next chapter.

12.2.2.1 Convergence problems with the Robins and Rotnitzky (1995) estimator

One noticeable feature of the results is that in as many as 30% of our simulations,
the Robins and Rotnitzky estimator fails to converge. The iterative Fisher scoring
algorithm was set to a tolerance of 1075, This means that for convergence, the absolute
difference between successive parameter estimates has to be less than 1075 for all
parameters. To ensure a manageable computational time for the sinulations, the
number of iterations was limited to 100. Inspection of the parameter estimates after
100 iterations for the simulations in which the method failed to converge suggests that
given further iterations the method would have converged; this is inferred from the
fact that the parameter estimates after 100 iterations were- -in most cases - -close to

the correct values, and that the cases in which the algorithm had clearly diverged were

few in number.

It is possible that by updating our estimate of A (step 9. of the algorithin described
in 7.6.5) with every iteration of the Fisher scoring algorithm as opposed to using the
original fixed estimate of A, the convergence rate could have been improved, but the
additional computational time involved in re-calculating A would far outweigh the
time saved. In the first simulation study, the mean value of the Bang and Robins (BR)
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estimate Ogr when the Robins and Rotnitzky (RR) estimator failed to converge is
—0.875, which is 0.125 higher than the true parameter value of —1. This could explain
the downward bias seen in g in Table 12.1.

12.2.2.2 Superiority of doubly robust Ml over the other doubly robust proce-

dures

In contrast with the results of Chapter 9, in this simulation study doubly robust MI
consistently outperforms the Bang and Robins (2005) estimator with respect to both
bias and precision (see Figs. 12.22-12.24). This is a consequence of the fact that the
data are binary and the different ways in which the conditional outcome distributions
are computed in the two approaches in the case of non-Gaussian data. This is discussed

in greater detail in the next chapter.

12.2.2.3 Lack of bias in unweighted GEE

As we have already mentioned, IEE is biased as theory predicts when the mechanism
is MAR. Theory also predicts (Liang and Zeger, 1986) that unweighted GEE be biased
under MAR. In our simulations, however, this bias is much smaller for GEE com-
pared with IEE, with the bias being particularly small in the second simulation study
(see Figs. 12.13-12.15). This feature is explained by the theoretical work in the next

chapter.

12.2.2.4 Differences between cluster- and observation-level weighting

Observation-level weighted GEE appears to be more efficient than cluster-level weighted
GEE, but the difference is very small in the first two simulation studies, where the

means model is saturated, and more pronounced in the third simulation study, where
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the means model is not saturated (see Figs. 12.16-12.18). This will be explored in the

next chapter.

12.2.2.5 Imputation versus weighting

Comparing imputation and weighting has been the subject of many recent papers
in the literature e.g. Carpenter et al. (2006); Wang et al. (2007); Beunckens et al.
(2008). Figs. 12.19-12.21 show the comparison between MI-GEE and observation-level
weighted GEE in our simulations. MI-GEE is more efficient, with the difference again
more pronounced for the non-saturated means model. In the next chapter we study

this comparison in more detail.

12.2.2.6 Doubly robust methods with both models misspecified

The final feature of our simulation results is that when both the y- and m-models are
misspecified, the bias in the doubly robust estimators remains quite small. This is an
artifact of the particular incorrect models chosen, where the bias created by the former

is effectively cancelled out by the bias (in the opposite direction) due to the latter.
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Estimator Bias True Z-score # successful

SE for bias simulations
Bean —0.078 0.229 —0.340 1000
Biex 0.330 0.301  0.845 998
Baze —0.164 0.395 —0.414 998
BewaEE ~0.120 0.434 —0.276 998
BowcEE ~0.100 0.428 —0.232 996
BmiceE —0.051 0.402 —0.128 998
Brr —0.136 0.435 —0.312 748
Ber 0.054 0467  0.116 1000
Borum —-0.019 0.396 —0.049 998
BoweEEr—fke | —0.202 0.421  —0.693 996
BowGEB-—tase | 0.348 0396  0.879 997
BRR x—talse ~0.199 0.482 —0.413 967
BrR.r—talse 0.047 0.470 0.100 1000
BorMmrn_tase | —0.038  0.402  —0.094 998
BrLGEEy—tase | —0.171 0.385  —0.446 998
BrR.y—talse ~0.118 0439 —0.269 682
BBR.y—false ~0.141 0.437  —0.322 992
BorMiy—tase | —0.041 0.402  —0.101 998
BrRroy—fase | —0.103 0.442  —0.232 965
BBRagy—tase | —0.131 0410  —0.318 1000
BorMLrey—tae | —0.069 0426 —0.163 998

Table 12.1: The results of the first longitudinal binary simulation study, where the means
model is saturated. In each case, G refers to the log odds ratio for X; at the third timepoint.
The abbreviations used are: CWGEE (cluster-level weighted GEE), OWGEE (observation-
level weighted GEE), RR (method proposed by Robins and Rotnitzky (1995)), BR (method
proposed by Bang and Robins (2005)) and DRMI (doubly robust MI). No subscript indicates
correct specification of the relevant model(s). m — false indicates that the estimator used
an incorrectly-specified m-model, y — false indicates that the estimator used an incorrectly-
specified y-model and 7 @ y — false indicates that both the 7- and y-models were incorrectly

specified.
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Estimator Bias True Z-score # successful

SE for bias simulations
Bean ~-0.045 0.222  —0.202 1000
Brek 0.197 0.384  0.514 998
Baee ~0.077 0398 —0.194 998
BowaEE ~0.075 0426 —0.177 998
Bowce ~0.063 0421 —0.151 996
ByiGEE —0.005 0390 —0.013 998
Brr ~0.082 0429  —0.192 762
Ber —0.036 0.423  —0.085 1000
Borut 0.023 0395  0.057 998
BowGEEn—tase | —0.180 0417 —0.432 998
BowcEEr—fase | 0194 0.386  0.502 996
BRR.m—talse -0.199 0.501 —0.398 979
BBRr—talse —-0.039 0.422  —0.092 1000
Boruin—tae | 0000 0.402  0.001 998
BuLGEEp—tase | —0.112 0388 —0.288 998
Bre.y—taise ~0.088 0.434 —0.203 77
BBR.y—talse -0.161 0.404 -0.399 989
Bormiy—tose | —0.011 0398  —0.026 998
Brroy-tse | —0.104 0.448  —0.233 979
/BBR~7r@y~fa.lse -0.103 0.389 —0.264 1000
BorMLrey—tase | 0001 0420 0.002 998

Table 12.2: The results of the second longitudinal binary simulation study, where the means
model is saturated but the correlation structure is different from the one used in the first
set of simulations. In each case, 8 refers to the log odds ratio for X; at the third timepoint.
The abbreviations used are: CWGEE (cluster-level weighted GEE), OWGEE (observation-
level weighted GEE), RR (method proposed by Robins and Rotnitzky (1995)), BR (method
proposed by Bang and Robins (2005)) and DRMI (doubly robust MI). No subscript indicates
correct specification of the relevant model(s). m — false indicates that the estimator used
an incorrectly-specified m-model, y — false indicates that the estimator used an incorrectly-
specified y-model and 7 & y — false indicates that both the 7- and y-models were incorrectly

specified.
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Estimator Bias True Z-score # successful

SE for bias simulations
Bul —0.049 0386 —0.127 1000
BiEE 0.338 0.672 0.503 1000
Baeg —0.174 0.662 —0.263 1000
BowGEE ~0.137 0.832  —0.165 1000
BoWGEE —-0.091 0785 —0.116 1000
BMLGEE -0.065 0.651 —0.100 1000
Brr ~0.079 0.813  —0.097 691
Ber 0093 0.802  0.116 993
@DRMI —0.011 0.673 —0.016 1000
BewGEE~—taise | —0-299 0.740  —0.404 987
BowGEEx—fase | 0.332  0.710 0.468 1000
BRR.7—false ~0.162 0.873 —0.185 910
BBR.r—talse 0.065 0.747 0.087 998
@DRMI.,,_false —0.050 0.654 —0.076 1000
BriGEEy—tase | —0.256 0.511  —0.501 1000
BRRy—false —0.087 0795 —0.110 623
BBR.y—talse —~0.268 0.636 —0.421 996
BorMiy_tae | —0.037 0.666  —0.056 1000
BRRaoy—tase | —0.083 0.869  —0.095 887
BBRx@y_tase | —0.293 0.488  —0.601 1000
BorMirey—tase | —0.085 0.677  —0.126 1000

Table 12.3: The results of the third longitudinal binary simulation study, where the means
model is not saturated. In each case, B refers to the log odds ratio for X; at the third
timepoint. The abbreviations used are: CWGEE (cluster-level weighted GEE), OWGEE
(observation-level weighted GEE), RR (method proposed by Robins and Rotnitzky (1995)),
BR (method proposed by Bang and Robins (2005)) and DRMI (doubly robust MI). No
subscript indicates correct specification of the relevant model(s). 7 — false indicates that the
estimator used an incorrectly-specified 7-model, y — false indicates that the estimator used
an incorrectly-specified y-model and 7 & y — false indicates that both the 7- and y-models
were incorrectly specified.



12 MOTIVATION AND SIMULATION STUDIES 199

N —
]
=%
—
0
o -
T T T
-3 -2 -1 0 1
log odds ratio for X1 at final timepoint
Ful data IEE GEE
————————  OwGEE ————————  OWGEE MI-GEE
e RobINS & RoMNtZKY ——————————  Bang & Robins - DRMI

Figure 12.1: Kernel density plots for the sampling distributions of 9 different estimators of
the log odds ratio for X7 at the final timepoint. These estimates are from the first set of
simulations with both models correctly specified.
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Figure 12.2: Kernel density plots for the sampling distributions of 9 different estimators of
the log odds ratio for X, at the final timepoint. These estimates are from the first set of
simulations with the 7-model incorrectly specified.
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Figure 12.3: Kernel density plots for the sampling distributions of 9 different estimators of
the log odds ratio for X at the final timepoint. These estimates are from the first set of
simulations with the y-model incorrectly specified.
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Figure 12.4: Kernel density plots for the sampling distributions of 9 different estimators of
the log odds ratio for X; at the final timepoint. These estimates are from the first set of
simulations with both models incorrectly specified.
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Figure 12.5: Kernel density plots for the sampling distributions of 9 different estimators of
the log odds ratio for X; at the final timepoint. These estimates are from the second set of
simulations with both models correctly specified.
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Figure 12.6: Kernel density plots for the sampling distributions of 9 different estimators of
the log odds ratio for X; at the final timepoint. These estimates are from the second set of
simulations with the 7-model incorrectly specified.
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Figure 12.7: Kernel density plots for the sampling distributions of 9 different estimators of
the log odds ratio for X at the final timepoint. These estimates are from the second set of
simulations with the y-model incorrectly specified.
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Figure 12.8: Kernel density plots for the sampling distributions of 9 different estimators of
the log odds ratio for X1 at the final timepoint. These estimates are from the second set of
simulations with both models incorrectly specified.
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Figure 12.9: Kernel density plots for the sampling distributions of 9 different estimators of
the log odds ratio for X at the final timepoint. These estimates are from the third set of
simulations with both models correctly specified.
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Figure 12.10: Kernel density plots for the sampling distributions of 9 different estimators
of the log odds ratio for X; at the final timepoint. These estimates are from the third set of
simulations with the 7-model incorrectly specified.
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Figure 12.11: Kernel density plots for the sampling distributions of 9 different estimators
of the log odds ratio for X; at the final timepoint. These estimates are from the third set of
simulations with the y-model incorrectly specified.
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Figure 12.12: Kernel density plots for the sampling distributions of 9 different estimators
of the log odds ratio for Xj at the final timepoint. These estimates are from the third set of
simulations with both models incorrectly specified.
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Figure 12.13: Kernel density plots comparing unweighted and observation-level weighted
GEE. These estimates are from the first set of simulations with both models correctly speci-

fied.
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Figure 12.14: Kernel density plots comparing unweighted and observation-level weighted
GEE. These estimates are from the second set of simulations with both models correctly

specified.
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Figure 12.15: Kernel density plots comparing unweighted and observation-level weighted
GEE. These estimates are from the third set of simulations with both models correctly

specified.
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Figure 12.16: Kernel density plots comparing cluster- and observation-level weighted GEE.
These estimates are from the first set of simulations with both models correctly specified.
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Figure 12.17: Kernel density plots comparing cluster- and observation-level weighted GEE.
These estimates are from the second set of simulations with both models correctly specified.
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Figure 12.18: Kernel density plots comparing cluster- and observation-level weighted GEE.
These estimates are from the third set of simulations with both models correctly specified.
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Figure 12.19: Kernel density plots comparing MI-GEE and observation-level weighted GEE.
These estimates are from the first set of simulations with both models correctly specified.

MI-GEE fevel weighted GEE

T T
-3 -2 -1 0 1
log odds ratio for X1 at final timepoint

MI-GEE L weighted GEE |

Figure 12.20: Kernel density plots comparing MI-GEE and observation-level weighted GEE.
These estimates are from the second set of simulations with both models correctly specified.
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Figure 12.21: Kernel density plots comparing MI-GEE and observation-level weighted GEE.
These estimates are from the third set of simulations with both models correctly specified.
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Figure 12.22: Kernel density plots comparing the three doubly robust procedures. These
estimates are from the first set of simulations with both models correctly specified.
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Figure 12.23: Kernel density plots comparing the three doubly robust procedures. These
estimates are from the second set of simulations with both models correctly specified.
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Figure 12.24: Kernel density plots comparing the three doubly robust procedures. These
estimates are from the third set of simulations with both models correctly specified.



13

Theoretical comparison of GEE and

related methods

13.1 Aims and outline

In this chapter we bring together different strands of theoretical work appearing in
the literature on marginal models for repeated binary data, and derive some further

theoretical results of our own, with the aim of presenting a clearer picture of the rela
) ’ ) ’ A=
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tionships between the available methods and their relative merits. We are motivated

throughout by the results of the simulation studies described in the previous chapter.

We start, in §13.2, with a result which underpins much of the following results, namely
the numerical equivalence of observation-level weighted GEE, augmented observation-
level weighted GEE and nonparametric mean quasi score imputation under certain
special conditions. This extends the work done by Wang et al. (2007). In §13.3
we derive conditions under which unweighted GEE is consistent and semiparametric-
efficient under MAR, extending results given in Robins and Rotnitzky (1995) and
Lipsitz et al. (2000). In §13.4 we show that observation-level weighting is always
at least as good as cluster-level weighting, and in §13.5 we argue that MI-GEE is
approximately equivalent to observation-level weighted GEE when the means model is
saturated. Finally, the difference between doubly robust (DR) MI and the other DR
procedures is explained in §13.6, justifying our preference for the former over the latter

for non-Gaussian data.

13.2 Conditions under which observation-level weighted GEE, aug-
mented observation-level weighted GEE and nonparametric

mean quasi score imputation are numerically equivalent

The situation considered by Wang et al. (2007) is one in which Y is the (univariate)
outcome variable for the regression analysis of interest, X are partially observed covari-
ates, Z are always-observable covariates, and W are observable surrogates for X, with
Y and W conditionally independent given (X, Z). They show that in this situation,
nonparametric mean score imputation, IPWCC and AIPW are numerically equivalent.
By following their argument closely, we show a similar result for the longitudinal binary

case. More explicitly, we prove the following theorem.

Theorem 13.1 (Numerical equivalence of OWGEE, AIPW and nonparametric mean

quasi-score imputation). Using the notation of §7.4 we assume that all covariates
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are discrete, that the means model is saturated and that the missing data mecha-
nism is monotone and MAR. Under these conditions, OWGEE, AIPW and nonpara-
metric mean quasi-score imputation, where the quasi-score function Q(X;, Y, pn) =
XTD;W; ! (Y; — i) replaces S§ (Z;,8) in (7.2.3), give numerically identical results,
provided that the weights in OWGEE and AIPW are also estimated nonparametrically.

Proof. We consider each covariate combination separately and the OWGEE equation
(7.4.2) simplifies to

gq’i (Yz‘ - ﬂi) =0 (13.2.1)

applied to distinct subsets of the data corresponding to each covariate combination.
Without loss of generality, we continue as if there were only one covariate combination
without explicitly stating at each stage that we are dealing with the distinct subsets

of the data separately.

(13.2.1) can be rewritten as

n R ;
Y T (Yei—m) =0 Vi (13.2.2)

=1 Tt

Also, since m;; is estimated nonparametrically, we can write

) ZJ lRtJ (Yt 15 = Yi-14)

7rtz—

which in turn means that the LHS of (13.2.2) can be rewritten as

zn: Rt,i Z:=1 1 (Yt—l,k = Yt—l,i) (Y .

el Ty, Z;Ll Rij1 (Y1 = Y1) b
= an 3 Ryl (Yt—l,k = ?t~1,i)

im1 k=1 Tt-1d Z?:l Ry;1 (Yt—l,j = Yt—1,z’)

— 1)

(Yt,i - ﬂt)
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Z Z,_ th Yt 1.k = Yt—1,i) (Yt,z' - ut)
b1 Ty 1,k ZJ 1 Rt; (Yt—l,j = Yt—-l,k)

_ " Ri_14E (Qex lRt—l,k =1, Y1)

-1,k

k=1

where Qp; = Q: (Xi, i, p) is the ¢ element of Q (X, Y, u) and E () is the nonpara-

metric estimator of E (-).

Thus we have shown that

z": RepQu _ i Ry 1 4B (Qek |Recrp = LY 1) (13.2.3)

o1 Ttk 1 Tt—1,k

We can iterate this to show that

En_: RepQuk _ Zn: Re-14E (Qux |Re-1k =1, Yeuk)

s Ty
k=1 bk k=1 Te-1k

_ Xn: Ripl (Quk |Rik = LY1x) _ ¢

1,k

E(Qux) (13.2.4)

k=1 k=1

where at each stage E (-) is defined sequentially and nonparametrically in the sense

that B (Qt,k ‘Rl,k =1, Yl,k) is the nonparametric estimator of

E [E (Qur |Riyre =1, Yok ) |Rik = 1,Yz,k]

Thus observation-level weighted GEE is equivalent to solving

kz E(Q)=0 Wt (13.2.5) .
=]

Using again the fact that the means model is saturated and using the same sequential
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nonparametric estimator of E (Qt,k |Rl,1 =1,Y ), the sequential nonparametric mean

quasi-score imputation estimating equation is equivalent to

Z [Rt,iQt,i +(1— Rey) B (Qes IR, bes)] =0 WVt (13.2.6)

1=1

Since Qi = E (Qu; |Ri, Y?*) when each component of Yy; is observed, R, Qp; =
Ry :E (Q:i | Ry, Y ) and therefore (13.2.6) can be simplified to

Y B (Qui R, Y™®) =0 Vi (13.2.7)

=1

We can write B (Q;; |R;, Y*) as
B (Qrs |Ri, Y$*) = ReiQui + Reo1i (1~ Rey) E (Qui|Re-1 =1, Yeri) + -
v+ Rii (1= Ro) E(Qus [Rui = 1, Y1) + (1 - Ri)) E(Qry)
= Ry [B (QuilRes = 1, ¥1i) = B (Qui [Recas = 1. Y11,
+ Res [B(Qui [Rior = 1, Yiora) = B (Qui | Recas = 1, Vs,
+--+ Ry [E (Qei R =1,Y1;) - E (Qt,z‘)] +E (Qu,)

But due to our sequential definition of the nonparametric mean quasi-score, we can

show that 3 i, R [E (Qus | Bus =1, ¥1s) = B (Qus |Rirs = 1»Y1-1,i)] = 0 for all |
between 1 and t, as follows:

ZRz,ﬂE (QeilRi-1i =1, Yi_1;)
p

_ En:Rl 'Z;-l:l R;1 (Y, = Yi,) E(Q. 1Y)
- doh=t Bel (Yiois = Yioyy)
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_ ZZ RyRijl (Yiiy; =Y, 0,) B(Quy Ry = 1,Y0;)
>orer Rl (Yiere = Yioy)

i Rl (?1—1,1 =Yi1)

>ope1 Bixl (Yioie = Yioyy)

i=1 j=1

n
= Z R[JIAE (Qt,j lRl,j = 1’ Ylvj)

- ZRU Qta lRlJ =1, Yla)

= Z Rl,i [E (Qt,'i |Rl,i = laYl,i) - ]E (Qt,i |Rl_1’1’ = 1,?1_1,1')] =)
i=1

And thus (13.2.7) can be rewritten as
S TE(Qu) =0 vt
=1

which is identical to (13.2.5). That is, when the means model is saturated, observation-
level GEE and sequential nonparametric mean quasi-score lead to numerically identical

estimates.

Now we consider the augmented version of (13.2.2). From (9.2.6), this can be written

as

i=1

- Resi _ Rui) _
Zl;; tz+2( k=14 i )E(Qt,i|Rk—1,¢:1,Yk_1,,~)] =0 Vvt (13.2.8)

But by (13.2.4),

2

" (Ri-1i R g Y
Z(Ak 1,i —A—k’—)E(Qt,ile—l.iz 1,Yk—1,i)j| =0 Wt

Tk—1,i Tk.i
k=1 k 1,11 k,’t

and thus (13.2.8) reduces to (13.2.2), which completes the proof of this theorem, that
when the means model is saturated, observation-level GEE, augmented observation-
level GEE and sequential nonparametric mean quasi-score all lead to numerically iden-

tical estimates. 0
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This numerical equivalence is not precisely reflected in our simulations for a number of
reasons. First, mean quasi-score in its exact form was not included in the simulation
study. However, MI-GEE is related to mean quasi-score and the equivalence between
mean quasi-score and OWGEE gives rise to a near equivalence between MI-GEE and
OWGEE, which is discussed further in §13.5.

As for the equivalence between OWGEE and its augmented counterpart, we would
expect to see this manifested in the comparison between OWGEE and the estimators
of Robins and Rotnitzky (1995) and Bang and Robins (2005). We do indeed sce a
greater difference between these methods and OWGEE when the means model is not
saturated: for example, BR is more efficient than OWGEE only in the third set of
simulations. The fact that they are not numerically the same when the means model
is saturated is due in part to the fact that the model for the probability weights is
not saturated. The weights are generated from a model which contains no interactions
between the covariates and the previous outcomes and this is reflected in the model
used to estimate the weights; in other words the coefficients for the interaction terms
are fixed at their true values of zero. This is enough to cause the final estimates to differ
slightly in their exact numerical values, although they are asymptotically equivalent.
In the third set of simulations—when the means model is non-saturated —BR is more
efficient than OWGEE, since it uses the information on the incomplete cases to learn
about the parameters of the semiparametric model for the observed data distribution,

but when this model is nonparametric, there is nothing to learn.

When the RR model converges, its estimates are very similar to those from OWGEE
and the main difference between the results from these two methods comes as a result
of the poor convergence of the RR method. If the probability weights model were
saturated then we would expect the augmented estimating equation and the non-
augmented OWGEE to share the same root, but we would not necessarily expect the
two methods to converge to this root at the same ratc and with the same success,
which is a point made by Wang et al. (2007).

We wouldn’t expect DRMI to be numerically equivalent to OWGEE, since DRMI is
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merely an approximation to BR, as was discussed at length in Chapter 9.

13.3 Unweighted GEE: conditions for consistency and semipara-

metric efficiency

When there are no missing data and assuming throughout that the truc correlation
matrix is known, (7.3.1) can be written as
n
> X{DW;! (Y,- - ﬂ) =0
i=1

where the ~ above each matrix is used to emphasise its full-data dimension.

< ; . 3 . ot 3 T
When some components of Y; are missing, we can write Y; as (Y°b5iT, mes?’) Con-
;)

sistent estimates of ft could then in theory be obtained by solving
n ~ ~ o~
S E [X?DiW{l (Yi-a) ' Yo, xi] =0
i=1

which is equivalent to
S XTBW; [E (Y,

i=1

ngS,x,') - ﬂ] =0 (13.3.1)

As pointed out by Lipsitz et al. (2000), the GEE method of Liang and Zeger (1986) can

be viewed as an approximate solution to (13.3.1) where the true conditional expectation
E(Y
normality.

Yobs, X¢> is replaced by its approximation under the assumption of multivariate

More specifically, as shown in the appendix of Lipsitz et al. (2000), if we partition W;
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m m,0o
- (5 %)
% Wi

then, under an assumption of multivariate normality,

E Xi) ) [ e WROWRTE (Y — ) ]
' Y‘lpbs

mis

Wi = Var ( i
Y,?bs

Substituting in (13.3.1),

noo _ W:n,oW?—l )
Y _XTD,w;! ( ; ) (Yo — ™) =0 (13.3.2)

i=1

Using the form of the inverse of a partitioned matrix (Seber, 2008, p. 293), the left-hand

side of (13.3.2) can be re-written as

no m~1
Fxn|(M0)
. ( v W ) (we - wreTwrtwpe) (—w:“’”w;“‘l,l)]

I
WoWwe-1
( . )(Y?"S—u;"’s)

Wrotwrewe ! ) X ( -Wpriwpe )

n ~ ~
-gxen| (M I
(We - wreTweTwre) T (~wreTwrmiwre £ W) wg-l]

(Y9 — )
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. ore 0
= XTD. Y?bs — s
Z ' ’(W;"l ) ( )
=) XeTDIW T (Y5 — ™)

i=1

This explicitly confirms the observation made by Lipsitz et al. (2000) that unweighted
GEE under MAR corresponds to an assumption of multivariate normality when the
true correlation matrix is assumed known. This is also consistent with the frequently
quoted property of GEEs—that they give consistent estimates under MAR for Gaussian

data when the correlation structure is correct and its parameters consistently estimated.

A corollary for binary data is that if, conditional on X; and each variable in Yobs,
E (Y;nis) is independent of all pairwise and higher-order interactions between variables
in Y?bs, then the ‘multivariate normality assumption’ holds and GEE gives consistent
estimates under MAR, again under the assumption that the working correlation struc-

ture is the true one. We refer to this condition henceforth as the linearity condition.

In our simulation studies in the previous chapter, the true correlation structure was
changed between the first and second sets of simulations in order to investigate this.
In the logistic regression of Y3 on X;, X» XX, Y1, ¥z and YiYs, the coefficient of
Y,Y, is zero in the second set of simulations, compared with 1.75 in the first set. Cor-
respondingly, we see that the bias in GEE is smaller in the second set of simulations.
The small residual variance could be a consequence of the inconsistency in estimat-
ing the parameters of the correlation matrix which could be reduced using quadratic

estimation as described in §7.3.1.

In Section 4 of Robins and Rotnitzky (1995), the paper which exhibits the
semiparametric-efficient estimator, which we refer to as RR, the authors derive the
condition needed under MCAR for GEE to be semiparametric-efficient among all es-
timators belonging to the restricted moment class R (see Definition 3.20), and this

condition is precisely the linearity condition described above. Their argument appeals
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to the same multivariate normality assumption described above and the MCAR con-
dition is only necessary to ensure consistency. Now that we have established that the

linearity condition leads to consistency under MAR, we have the following result:

Theorem 13.2 (Conditions for the consistency and semiparametric efficiency of GEE).
The solution to .

SXeTDeWe ! (Yo — ) = 0

=1

is a consistent estimator of p under MAR if

e The correlation structure is correctly specified and its parameters consistently

estimated.

e Conditional on X; and each variable in Y, E (YP*) is independent of all

pairwise and higher-order interactions between variables in Yobs,

Furthermore, under these conditions, the asymptotic variance of i attains the semi-

parametric efficiency bound for all estimators in the restricted moment class R.

13.4 Cluster- versus observation-level weighting

If we consider the simplest case of cluster- versus observation-level independence es-
timating equations (CWIEE and OWIEE, respectively), we see that CWIEE is intu-
itively less satisfactory than OWIEE. Under the independence structure, the parameter
estimates are equivalent to estimates from separate logistic regression analyses, one for
each timepoint, and all available observations contribute to both CWIEE and OWIEE.
These available observations are weighted differently, however, in the two analyses, ex-
cept for the final timepoint, since—under monotonicity —the probability of dropping
out after the final timepoint is equal to the probability of being observed at the fi-

nal timepoint, and the cluster- and observation-level weights coincide. However, the
', the
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analyses at the other two timepoints are, in general, different. At the first timepoint,
when we assume that all subjects are observed, the OWIEE analysis weights cach sub-
ject equally, whereas the CWIEE analysis weights the subjects differently according to
their subsequent dropout pattern. This doesn’t make CWIEE inconsistent, since (for

example, when there are three timepoints):

i=1\ 1-m2 m2—73

n (1-R, | Ry—Rs | R
Zi:l (1——7!'2 + To—Tm3 + 73

Zn <I—R2Y'1+R2—R3yl+%yl)
E

- EM)

and Zn (MYz+%Y2)

=1 Toe—T3

E
n Ry—R3 R
Zi=1 (m—m + 7|’3)

— E (V)
as n — 00.

However, the comparison between CWIEE and OWIEE can be thought of as a compar-
ison between two sets of weighted logistic regressions, where, at every timepoint except
for the final one, the former uses weights which are a ‘noisier’ version of the weights
used by the latter. For example, for the second timepoint (again, in an example where
there are three timepoints), when the weights used in OWIEE are w, = 7%2, the weights
used in CWIEE are wy = Wipﬂzﬁm if Y3 is observed, and wj = P(Ts;ngle) other-
wise. If we consider the weighted average Y3 for two subjects who both share identical
values of the covariates and Y;, then they will also both share the same observation-
level weight, w;. However, if one of these two has an observed value of Y3, whereas
the other subject’s Y3 is missing, they will have two different values (wj and wj) of the
cluster-level weight, where both wy and wj are greater than ws. If the variance of Y,
is o2 then the variance of the weighted average of these two observations will be
wy+wf 5, 1,

—f—f _g“ = —g
(w2 + w2)2 2
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Figure 13.1: The variance of the weighted average of two second timepoint observations
from a three timepoint CWIEE. The corresponding OWIEE variance occurs when w = 1.

in the OWIEE analysis, and

2
1 1 3
wl2 + w”2 ™3 + (m2—m3) 2 1+ (772-7r3) 9 1 + w?
st = 30 = 30" = T
i (ran ) (e v
3 m2—73 To—73

where w = ”—2”_—3—“ and, without loss of generality, we can assume that w > 1. There is

no loss of generality here, since, if w < 1, we could redefine w = 7272 ;3" and

wh? + wi? 2 w? +1 52
(wh + wf)® (w + 1)

A graph of the function f(w) = _—T(ii'lwuj is shown in Fig. 13.1 and this shows that the

relative efficiency of CWIEE gets worse as w gets larger and the optimal efficiency is
at w = 1, which corresponds to the OWIEE analysis. This argument gencralises to
n subjects and to any of the T timepoints, leading to the conclusion that OQOWIEE is
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always at least as efficient as CWIEE.

We have already made the observation that at the final timepoint, CWIEE and OWIEE
coincide. There is another special case in which CWIEE and OWIEE coincide at all
timepoints, and this is when the covariates are categorical, the means model saturated

and the weights estimated nonparametrically, as we will now show.

Theorem 13.3 (Numerical equivalence of CWIEE and OWIEE). We assume that
all covariates are discrete, that the means model s saturated and that the missing data
mechanism is monotone and MAR. Under these conditions, CWIEE and OWIEE, give
numerically identical results, provided that the weights in both methods are estimated

nonparametrically.

Proof. Since we are assuming a saturated means model, it is sufficient to show that
cluster- and observation-level weighted averages of Y; are equal, i.e. we need to show

that
n RV n T—1 Ry i—Rry1,: Rr;
diml A _ Di-1 (Ek:t Fhi—Thg 14 Yii + Fri Vi

Te,i )
n Ry T—1 Ri,—Rei1: . Rrs (13.4.1)
Z‘i:l fei Z?:l ( k=t *_::T:;:—: + *_:::)
By (13.2.3), we have that
Z Rt zY;z Z Rt+1,th,i —. — Z RT,Yt i
im1 Mot R
which also implies that, by setting Y3, = 1,
Z Rt+lz _ . Zn: Rrp;
p— 7Tt,’L 7Tt+1 i =1 ﬁT,i
We can re-write the other terms using
(sz"'Rk+1 z) Ykz - Dk+letz (1342)

7rk - 7rk+1' 7rk+11
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and

Ryi— Reyii  Diyag

o ol !
Tki = Tk+1,4 M1,

where Dy, ; is the dropout indicator for dropping out at time k + 1 and 7, +1,; 1s the
probability of dropping out at time k + 1, conditional on Y.

But the sum over i of (13.4.2) can be rewritten as

"\ Der1iYei | >l (Ye,; = Yis)
; Tyl B P (1“7%”_7};: 1 7 =1 Sy D (Vg = Yis)
_ ZZ 1(Ye;=Yei)
i D opey Diaral (Yiy = Yiy)

11_71

Z Zz 1 Yk] = ch z) Dk+1,1Yt,i
“ Tk 2 oper Dit11 (Yi, = Yi;)

2 Ry jYe; Yoicy Dieri? (Yi; = Yy;)
= g >t Dyl (Yiy = Yi )

°\ Ri;Y:;
- Z _"zﬁ (13.4.3)

Dy y1:Ys

Dyy1,:Yys

which also implies that, by setting Y;; =1,

3
=)
x
+
—
3
bl
LN

and thus both the numerator and the denominator on the RHS of (13.4.1) are (T — t + 1)
times the corresponding numerator and denominator on the LHS, which proves the re-

sult. O

Corollary 13.4 (Numerical equivalence of CWIEE and OWGEE). Assuming again
that all covariates are discrete, that the means model is saturated and that the missing
data mechanism is monotone and MAR, then CWIEE and OWGEE give numerically
identical Tesults, for any choice of covariance structure, provided that the weights in
both methods are estimated nonparametrically.
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Proof. This follows trivially from Theorem 13.3 and the fact that when the mecans
model is saturated, full data GEE is equivalent to full data IEE for all choices of the
covariance structure for GEE (O’Brien et al., 2006). As was discussed in §7.4, the way
in which OWGEE is formulated creates what is effectively a full data structure from
the incomplete data. This proves the corollary. 0

It remains now to compare OWIEE and CWGEE when the means model is saturated
and finally to compare OWGEE and CWGEE when the means model is not saturated.

Lemma 13.5. Let Cy be the upper left (d x d) block of the correlation matrix for
{Y1:, You5-- - Yr;} and by be the first d — 1 elements of the d® column of C4. Then

C;'bb?C;' —-Ci'by 0O

Ci! o det C,
-1 __ 1 _ W1 .
Ct_’< 0 0>+detC2 b; C} 1 0]+
0 0 0
C;4b bl C Y, —Cihbiy 0
pdtCer | pr o 10
det Ct—l t—1“t-2
0 0 0
det C;_; Ct‘_llbtthCt‘_l1 —C[_llbt
det Ct "bg‘ct—_ll 1

Proof. This follows immediately from repeated applications of

-1
A Ap a0 —A'Ap -1 ~
= + A —Ay AT
(A21 A22) ( 0 0 I m1 (~AnALLT)

(Seber, 2008, p. 293), where Agy; = Ags — A ATl Ay, and

T U
det = det T det (W — VT_IU)
V W
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(Harville, 1997, p. 189). 0

Lemma 13.6. Under the assumption that all covariates are discrete, that the means
model is saturated and that the missing data mechanism is monotone and MAR, then

the expression
n
Riy — Ry

Tes — T4,

(Ys,i - ﬂs)

t=1

has numerically exactly the same value for all t and s satisfying t > s.

Proof. This follows automatically from (13.4.3) and (13.2.4). 0

Theorem 13.7 (Numerical equivalence of CWGEE and OWGEE). Assuming again
that all covariates are discrete, that the means model is saturated and that the missing
data mechanism is monotone and MAR, then CWGEE and OWGEE give numerically
identical results, for any choice of covariance structure (correct or incorrect), provided

that the weights in both methods are estimated nonparametrically.

Proof. Recall the cluster-weighted estimating equation (7.4.1):

TpD.W-! e qg ) =
Z]P _d|X“Y)XiD1Wi (Yi—p)=0

When the means model is saturated, without loss of generality, by considering cach

covariate combination as a separate dataset, this can be rewritten as

-1 _
Z]P _d|Y)DWz (Yi“l—l‘i)_o

Note that, unlike observation-level weighting, W' is not constant for cluster-level

weighted GEE. Since D; is a diagonal matrix, its effect is to multiply each row, ¢, on
the LHS by a constant factor p, (1 — ;) and thus the combined effect of D,-Vi_% is to
multiply each row by /p: (1 = p¢). Thus we can rewrite CWGEE as T separate scalar
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equations:

A/
7rd+1 i

n T
1(D;=d+1), _;\ _
Z ( )(cdl)(s)ed,,:o vse{l,...,T} (13.4.4)

i=1 d=s

where 7, ; ; = a; — fa41, is the nonparametric estimator of P (D; = d + 1 |Yy;), Cq
is the upper left (d x d) block of the correlation matrix for (Y14, Ya,...,Yr;), (A) .

is the st® row of A and
Y1i—m

vV Hi1(1-py)
Y2,i—u2
— V H2(1-p2)

€4,

Yai~pd
V #a(l=-pq)

By Lemma 13.5, the LHS of (13.4.4) can be rewritten as

T
; 1(Di=k+1)) detC,- o
Z{ (Z ML, ) det Cs1 (_bfca—lﬁs—l + 53)

i=1 k=s ﬂk‘*‘lﬁ
T
1(D;=k+1)\ detC,
+< Z Tt ) det C,11 [(C boribiiCy ) - (CF l33’”)( )€’+1]
k=s+1 ’

+
1(D; =T +1)detCr_, . T el _ -
' 741, det Cr [(CT‘lebTCT‘1)<s> er-1 = (Criibr) ET]

—ZZ Z ad+“ ;,—d+1) (Y — 1)

i=1 t=1 d=max{t,s} T d+1,i

where ag41+ are constants, not dependent on i.

By Lemma 13.6, this can be rewritten as

n T T

Z Z LD =ty 1) (Yei — ) Z Qd+1,t

i=1 t=1 7T t+1y d=max{t,s}
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which, by (13.4.3), can be rewritten as

n T T

S By w) Y aan

i=1 t=1 ' bt d=max{t,s}

But this proves that the OWIEE estimator is also a root of the cluster-weighted esti-
mating equation (7.4.1) in the saturated means case, which-—-if we ignore the possibility
of multiple roots (Heyde and Morton, 1998)—together with Corollary 13.4 proves the
result. | 0

It remains now to compare OWGEE and CWGEE when the means model is not sat-

urated.

Recall that the cluster-weighted estimating equation (7.4.1) is:

Y wXTDW; (Y - X,80VFF) = 0
i=1

where
1

P(D; = di| X, Y3)

Wi =

Treating the weights as fixed (rather than estimated) and using the variance formula
derived by Robins et al. (1995), the variance-covariance matrix of BCWCEE can be

estimated using the following sandwich estimator:

T

-1
n
(Z w,-X,-TDiwi'lD,-Xi)

i=1

: [En: SXTDW; (Ys = XiBOWOPE) (Y, — X, B7WORE) ' W;ID,-X,}
i=1

n -1
| (ZwiX?’DiW:‘DiX‘)

i=1
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Similarly, the variance-covariance matrix of 8°WVCEE  the estimator which solves

;Xff),wz'ltb, (?z - X,-B?WGEE) =0 (1345)

can be consistently estimated using the following sandwich estimator:

T

i=1

n -1
[(E X,.Tf)iv‘v;lqnﬁixi) ]

~
1
e
N——

i=1

. (Z REDW: ', (Y- KAV (¥, - X,povees) g, ip,
"o -1

' inTDiW;l‘I’iﬁif(i)
i=1

To show that OWGEE is always at least as efficient as CWGEE, we must show the

following:

Proposition 13.8.

1

n 17T
(Z wiX;TrDiWi_lD,-X,) :l
i=1

n
. 2XTD,W-!(Y; — X,3CWGEE . ACWGEE \ © 7~
[sz i i ( i Xzﬂz Yl—Xi,Bi EE) Wi lDixz’

is non-negative definite.
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Demonstration using computer simulations. Due to the complex nature of (13.4.6), we
have not been able to prove Proposition 13.8 mathematically. However, for 2, 3 and
4 timepoints, we can demonstrate the results in reasonable generality using computer

simulations, as we now describe.
First we generate two independent covariates, X; and Xs, each from a N (0, 1) distri-
bution. Then we generate each Yj; from a Bahadur distribution with

— €xXp (cj,O + cj,IXl,i + cj,2X2,i + cj,3X1,iX2,j)
1 +exp (CJ\O + CJ',IXl,i + Cj.QXZ,i + Cj,3X1,z'X2,j)

P(Y;; =1]|X14, X2,)

where each c; is generated independently and at random from a U (-1, 1) distribution,
and correlations pj, j,, Pji ja.jsr - - - 8lso generated from U(-1,1) distributions. The
algorithm searches for combinations of these coefficients and correlations which give

rise to a well-defined joint distribution, i.e. one in which
0<P(Y;; =1 le—l,iaXI,iaX2,z') <1
for each ¢ and j.

The data are then subjected to monotone missingness according to a MAR mechanisin,

for example:

P (R3‘i =1 lYQ,i,X].’i, Xg’i, R2,i = 1) =
3+ casXii+ caeXoi +3rX13Xo; +cagYri + 30 X1V + e310X2:Y1
exp | +eannX1,iXo ;Y1 +csieYoi + 313 X1:Yo + €304 X2: Y2 + €315 X1, X2 ;Y2
+C3,16}/1,i)/2,i + 03,17X1,1‘Y1,iY2,i + C3,18X2,,-Y1,iy2,i + C3,19X1,iX2,j}/1,1}/2,i

cas+ 35X+ c36X2 + €37 X1, X5 + c38Y1i + c39X1,: Y14 + €3,00X2: Y1
1+exp| +c311X1iX2;Y1:+cai2Yas + €313X1,: Y + €314 X0,:Yo, + €3,15X1,:X5 ;Y2
+c316Y1,i Y2 + 0317 X1:Y13 Y2 + €318 X2, Y13 Y2 + 300 X1, X2 111 ,:Y2,

where each ¢3 4—C3,10 is generated independently and at random from a U (-1,1) dis-

tribution.
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{ [(E w;XTD,W;'D;X, )_1} '

1,_

{EJXTDW—I(Y - X, 31) Y, - Xlﬁl) -1D¢x,-J

i=1

(
_(iwiX?DiWi‘lDiX) } {[( XTD,W; 1@11‘)1)21)—1]

=1

is then evaluated using the true (known) values of w;, ®; and 3, using the true (known)

pairwise correlations to evaluate W; and W;.

A sample size of 10,000 is used, to keep the Monte Carlo error low. The eigenvalues of
(13.4.7) are then evaluated using Mathematica®. This is repeated for 1,000 datasets
with 2 timepoints, 1,000 datasets with 3 timepoints and 1,000 datasets with 4 time-
points. The eigenvalues are plotted in Figs. 13.2-13.4. Although some eigenvalues are
negative, the magnitude of these is sufficiently small to be explained by Monte Carlo
error. These plots constitute strong evidence that the eigenvalues of (13.4.6) are all
non-negative, which implies (see Harville, 1997, p. 543) that (13.4.6) is non-negative
definite.

The decreased efficiency of cluster-level weighting compared with observation-level
weighting can also be seen in Figs. 13.5 and 13.6. Since cluster-level weights are
inverse probabilities of dropout, as opposed to inverse probabilities of being observed,

the problem gets worse as the number of timepoints increases and the probability of
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eigenvalues

Figure 13.2: The 8 eigenvalues of (13.8) with 2 timepoints evaluated for 1,000 different
datasets.

dropping out at the exact time of dropout decreases. This can be seen in Fig. 13.4

where the eigenvalues increase as the number of timepoints increases.

In summary, we feel that there is never a reason to prefer cluster- over observation-level
weighting, and (except for the equivalence situations described above) observation- is

more efficient than cluster-level weighting.

13.5 MI-GEE and its relationship with observation-level weighted
GEE

In the saturated means model case, if the imputations in MI are drawn nonparamet-
rically, then, in the limit as the number of imputations tends to infinity, the estimates

from MI-GEE are equivalent to those from nonparametric sequential mean quasi-score.
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Figure 13.3: The 12 eigenvalues of (13.8) with 3 timepoints evaluated for 1,000 different
datasets, with the 8 eigenvalues for the 2 timepoints case superimposed.

This follows from the fact that—in the saturated case—imputation of the quasi-scores
is equivalent to the imputation of the missing outcomes, since the only part of the
score which need be considered is Y — . As the number of imputations increases, the
proportion of imputed ones will tend to the corresponding nonparametric estimate of
the expectation of that outcome. Thus, given Theorem 13.1, in the case where the im-
putations are drawn nonparametrically, we would expect MI-GEE to be approximately
equivalent to OWGEE, with a slight reduction in efficiency due to a finite number of
imputations. In our simulation results, however, MI-GEE appears to be more efficient
than OWGEE, even in the case when the means model is saturated. This is due to
the fact that our imputations were not drawn nonparametrically, but rather from the
correct parametric model (when the y-model is correct). This increases the efficiency,
but of course there is a corresponding decrease in robustness, as can be seen in the

simulations when the y-model is incorrect.
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Figure 13.4: The 16 eigenvalues of (13.8) with 4 timepoints evaluated for 1,000 different
datasets, with the 12 eigenvalues for the 3 timepoints case and the 8 eigenvalues for the 2
timepoints case superimposed.

13.6 A comparison of doubly robust Ml and other doubly robust

procedures

As we explained in Chapter 9, DRMI is an approximation to BR and we would not
have expected it to perform as well in the examples where BR can be applied. However,
in our simulations, DRMI was less biased and more efficient. We believe that this is
partly due to a limitation of BR (and RR) which is overcome in DRMI, but is also due

to the way in which we chose to implement BR and RR.

Let us consider an example (similar to our simulations) in which there are three time-
points. The BR implementation involves fitting a ‘suitable regression model’ to the
predictions E (Y3 |Y7, Y, ) on Y) and the RR implementation involves fitting a ‘suitable
regression model’ to the weighted residuals Kj;; = 7?,,,-7}]7"1.1 (Yji — ij4). In both cases,

these quantities are not binary and yet a linear regression is certainly not sensible.
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Figure 13.5: A comparison of the cluster-level and observation-level weights for the first
simulation in the first set.

Robins and Rotnitzky (1995) point this out by saying “let %](t) be the (possibly non-

linear) least squares estimator of T;t)”. However, Bang and Robins (2005) make no
reference to this problem and claim that their method can be implemented using only
“standard off-the-shelf regression software”. Since the predictions in the BR method
come from a logistic regression, and lie strictly between 0 and 1, it would be possible
in theory to use the logistic regression Fisher scoring algorithm to obtain estimates
under the correct nonlinear model, but (at least in Stata) this requires some tweaking
of the logistic regression command, and thus the claim that only “off-the-shelf” soft-
ware need be used is not strictly true. For this reason, we decided in our simulation
study to use linear regression at this stage in the procedure (and in the corresponding
stages in the RR procedure). We believe that this is the reason for the small bias
seen in these methods compared with DRMI. In DRMI, E (Y3 |Y7) is estimated by first
drawing binary imputations Y, from E (Y3 ]Y;) and then fitting a logistic regression to
E (Y3 ’Yl, }72> and this reversal produces in the order of the imputation leads to less
biased and more stable estimates of E (Y3[Y1). For this reason, we believe that DRMI

offers advantages over BR and RR in the non-Gaussian case. This is in addition to the
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Figure 13.6: A comparison of the cluster-level and observation-level weights for the first
simulation in the third set.

superiority of the convergence of the algorithm when compared with RR.
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14

Discussion

14.1 Main conclusions

The main achievement of this thesis has been to show that multiple imputation (MI)
can be used as a tool to obtain doubly robust (DR) estimators. This has built on the
work done by Bang and Robins (2005), and, in our opinion, offers some advantages,
such as an easily computable variance formula courtesy of Rubin’s rules for MI. A larger

advantage, as we showed in Chapter 9, is the conjectured extension to non-monotone

239
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MAR data. In practice, however, the approach is limited to non-monotone longitudinal
data, where a method for identifying the inverse probability weights exists. We have
demonstrated, by repeating the simulation studies carried out by Bang and Robins
(2005) that in settings where their method can also be applied, DRMI is only slightly
inferior, as the theory would predict. A general method for obtaining DR estimators for
MAR non-monotone data has not previously been proposed. In her recently published
overview of inverse probability weighted methods in Fitzmaurice et al. (2008), Andrea

Rotnitzky (under the heading Discussion: A look into the future) writes:

“in some models, such as CAR models with non-monotone data, doubly ro-
bust estimators could in principle be constructed, but their implementation

is not clear.”

It is important to note, however, that a method for obtaining DR estimators in non-
ignorable non-monotone longitudinal data has been proposed by Vausteelandt et al.
(2007), and for reasons discussed on page 55 of this thesis, the mechanism considered
by Vansteelandt et al. (2007) is usually more realistic in the non-monotone longitudinal
setting than the RMM mechanism considered here.

In Chapters 12 and 13 we have shown that for binary data, DRMI outperforms the two
existing methods for constructing DR methods in this setting. This is a consequence
both of the computational power of MI, and the natural way in which it approximates
conditional distributions when the data are not Gaussian. To estimate E (Y3 |Y)) using
either of the methods proposed by Bang and Robins (2005) and Robins and Rot-
nitzky (1995), one must first estimate E (Y3 [Y1,Y2) and then fit a lincar regression to
E (Y3 Y:,Y2) conditional on Y;. But since the predictions are not Gaussian, this leads
to bias and instability in the estimates. In DRMI, however, E (Y3 |Y;) is estimated by
first drawing binary imputations Y, from E (Y3 |Y;) and then fitting a logistic regres-
sion to E (Y3 |Y3, )72) Essentially, this reversal produces less biased and more stable

estimates of E (Y3 |Y1).
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14.2 Other conclusions

During the course of this thesis, we have also drawn several other conclusions. In
Chapter 11 we demonstrated another unconventional use of MI, which is in sensitivity
analyses. The basic principle here was introduced by Little and Yau (1996) and it
exploits the fact that the imputation and analysis models need not be the same. By
varying the imputation model, we can vary the assumptions made about the miss-
ing data mechanism. While Little and Yau (1996) concentrated on analyses within the
intent-to-treat framework, we applied the same idea to per protocol analyses, where the
additional potential violations of the ‘noncompliance at random’ (NAR) assumption
were investigated. The conclusions as regards the findings of the glycaemia analysis
from the RECORD study were that the original analysis, assuming multivariate nor-
mality, MAR and NAR, was reliable and not unduly sensitive to possible departures

from the assumptions made.

In Chapter 13, we combined the results of Lipsitz et al. (2000) and Robins and Rot-
nitzky (1995) in order to derive conditions under which an unweighted GEE analysis
gives consistent estimates under MAR. We also extended the result of Wang et al.
(2007) to the monotone longitudinal case (for binary data, but the result automat-
ically applies to any discrete-data GLM). In particular, we showed that in the lon-
gitudinal setting, the augmented estimating equation introduced by Robins and his
colleagues gives numerically identical results to its non-augmented counterpart when
the means model is saturated. This should not be surprising: double robustness and
augmentation are intrinsically linked to the different smoothing implied by the different
models. When these modelling assumptions are potentially incorrect, we gain robust-
ness by protecting ourselves using two different sets of smoothing assumptions. When
no such assumption is being made (as in the nonparametric case), there is no protection
needed, and correspondingly no efficiency can be gained. In summary, we concluded
that cluster-level weighting need never be used and that augmentation should only be
contemplated when the means model is not saturated. For small samples, we concluded

that even in saturated means models MI-GEE is more efficient than OWGEE, but that
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as the sample size increases, the difference reverses and OWGEE becomes superior. In
our simulations, a sample size of 5,000 was needed to see this reversal. When the means
model is saturated, we see that MI-GEE is more efficient than OWGEE, but it is of
course also less robust to model misspecification. In our simulation studies DRMI was
only slightly less efficient than MI-GEE but it exhibited double robustness. For reasons
outlined above, we believe that DRMI is the best and most practicably useable of the
three DR estimators considered, and would recommend its use above other methods

in this setting.

In Chapter 9, we also drew attention to a practical problem with the Bang and Robins
(2005) method for constructing DR estimators for longitudinal data, namecly that a
model for E (Y3 ]Y}) is required but might not be easily postulated.

14.3 Future work

Although DRMI has been shown to be a promising new approach, several limitations
remain. First, in practice it is not possible to apply the method to non-monotone data
except in the special case of longitudinal data, and even then, the claimed double-
robustness has not been rigorously proved. If a method could be developed for calculat-
ing marginal inverse probability weights in general randomised monotone missingness
mechanisms, DRMI estimators could be explored in this more general setting.

DRMI for general non-monotone patterns relies on MICE, a method which - although
shown to be very effective in simulations—does not have a firm theoretical justification.
Any developments in this area would be highly relevant to strengthen the theoretical
justification for DRML

In this thesis, we have used MI in two different ways: to construct DR estimators and
to carry out sensitivity analyses for parametric models. A possible extension would
be to combine these two approaches and to use MI to construct sensitivity analysecs
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within a DR framework.

In the chapters on binary data, the conditions for the consistency and asymptotic
efficiency of GEE were derived for any means model (saturated or otherwise), as was
the comparison between cluster- and observation-level weighted GEE, but the other
results derived related only to the case when the means model is saturated. This is
a good starting point for understanding how these methods relate to cach other, but

more needs to be done on the comparisons in the non-saturated case.

Also, Chapters 12 and 13 considered only monotone missing data patterns. More work
is needed on the comparison of methods for non-monotone incomplete binary data, but

this work is likely to be mathematically more challenging.

A possible extension of the work on binary data is to consider the case when parame-
ters are shared across timepoints. The theory in this case would be more complex, but
potentially a two-stage process could be envisaged, where first models are fitted with
distinct parameters at each timepoint and then, using a least squares or similar pro-
cedure, inference could be made about a suitable weighted average of these considered
to approximate the shared parameter. Asymptotic properties of the different methods
could then be derived using the two-stage approximation.

In our motivation for the work on binary data, we considered examples in which there
were only three timepoints. As the number of timepoints increases, there is likely to
be perfect prediction, the phenomenon in which estimated conditional probabilities
(such as P (Ym- =1 IYt_l,i )) are either 0 or 1. This can cause problems, particularly in
methods that use multiple imputation since the normal approximation to the Bayesian
posterior distribution of the parameters becomes very poor in the extremes of the
distribution. The latest version of ice in Stata incorporates a solution to this problem,
but some further work to investigate how this influences the comparisons between the

various methods would be useful.

Finally, this research has been largely confined to problems in missing data. Many
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aspects of the problems described are more generally encountered in the field of causal
inference. We believe that some of our proposed methodology, for example DRMI,

could be adapted for use in this wider setting.
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Proofs omitted from the main text

A.1 Proof of Lemma 8.1

The estimating equation for the jth imputed dataset in ordinary MI is

n
> 85 (25, 85%) =0
i=1

2564
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but for robust MI is
i (&SF (Zf é*”") +{1- & sF [7+ [gW)| @rrob
> (St () (- ) s o] 00} o
which we can re-write as
> s {s [0 65}
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where Z;; [éf-j )] and Z{j [éﬁj )] are as defined above.

Expanding in a Taylor series about 6y:
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Now, if R; = 1,

z;, [69] =i (60)
and if R = 0,

z;, [é}”] -7 [é}"’]
and

Z;j (00) = 2:3 (90)
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A.2 Proof of Lemma 8.2

We know (see Tsiatis, 2006, Theorem 14.3 on p.350) that, for ordinary improper MI

55 (e s o) 0 st 00 00)

i=1

n

—n73 Z [I56 (80) — Ioe (60)] 4 [Ri, Gr, (Zi)} + 05 (1) (A.2.1)

i=1

and, provided the response probabilities, m;, are bounded away from zero, for robust

improper MI

AS(152) (- £ 3 ) ) St )

—nt (12 7“’) S 7 (60) — 18 (60)) a|Ri, G, (Zi)] +0, (1) (A22)

[

=1

where (1—;—”1) is the mean of (1—;7"-1) over all 7, and
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Thus,
o0 = S (S0
i=1
+ (1 ;w) {m—lzsg [2;(60) ,60] —m™*> 8§ [zu (60) ao]}
’ j=1 j=1

This means that the ith influence function for the robust improper multiple imputation

estimator is:
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A.3 Proof of Lemma 8.3

The variance of the ith influence function (A.2.3) is given by

[I6 (60)] ! [Var (Term1) + Var (Term2) + Var (Term3) + Var (Termd)
- E (Terml . TeerT) +E (Terml . TermBT) -E (Terml . Term4T)
- E (Ter1n2 . TermlT) -E (Term2 . TermBT) +E (TermZ . TcrluélT)
E (Term3 - Term1”) — E (Term3 - Term2”) — E (Term3 - Termd™)
-E (Term4 . TermlT) +E (Term4 . Term2T) — E (Term4 - TermBT)] [190 (60) ]

Some of these are evaluated by Tsiatis (2006) (pp. 355-357), and the others follow by
similar arguments, giving the required expression for the variance of the ith influence

function.

[
A.4 Proof of Lemma 8.5
Tsiatis (2006) shows that if the initial estimator is proper, (A.2.1) becomes
Z (wlng{ 3 [69].60} - m™ Y85 (2, (60) ,90])
=1 Jj=1 Jj=1
=n"4 Y (145 (60) — Ioo (60)] (R, G, (24)]
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Analogously, (A.2.2) becomes

by (1 ;’“’) <m—1 A {2;;[69] .60} -~ m~! S ss 123, (60) ,oOD
, =1 j=1
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i=1

— 1 — T = 1 Al ~y
+m 1( ) Z [156 (60) — Igp (60)] n2 [9?) - O}mpmper] + 0, (1) (A.4.2)

i=1

Since the variation of the jth initial estimate of @ about its mean is independent of
the first term (in both (A.4.1) and (A.4.2)), the variance of ni (é*mb - 00) for robust

proper MI is as required.



Further tables and figures

The tables and figures excluded from the main text are given here.
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Model Background Treatment

Met Su
[M+RJ]-[M+S] SE | [S+R]-[S+M] SE
MAR PP 0.087 0.08 0.066 0.08

MNAR ITT, (11,72:73) =
(0,0,0) 0.068 0.08 0.067 0.07
(-0.25,0.25,0) 0.101 0.08 -0.121 0.08
(-0.5,0.5,0) 0.133 0.09 0.173 0.10
(-1,1,0) 0.197 0.13 0.280 0.16
(0.25,-0.25,0) 0.036 0.08 -0.013 0.08
(0.5,-0.5,0) 0.004 0.09 0.041 0.10
(1,-1,0) -0.060 0.12 0.149 0.16
(0.4,0.2,0) 0.090 0.08 -0.110 0.08
MNAR/NNAR PP, (6,,05,d3,04) =

(0,0,0,0) 0.078 0.09 0.029 0.08
(0.25,0.25,0.25,0.25) 0.100 0.08 -0.003 0.08
(0.5,0.5,0.5,0.5) 0.112 0.08 0.003 0.08
(1,1,1,1) 0.127 0.09 -0.031 0.08
(0.25,—0.25,4).25,0.25) 0.107 0.08 0.020 0.07
(0.5,-0.5,~0.5,0.5) 0.112 0.09 0.005 0.08
(1,-1-1,1) 0.126 0.09 0.034 0.09
(-0.25,0.25,0.25,-0.25) 0.097 0.08 0.054 0.09
(-0.5,0.5,0.5,-0.5) 0.088 0.08 0.043 0.08
(-1,1,1,-1) 0.074 0.08 0.076 0.08
(-0.25,-0.25,-0.25,-0.25) 0.097 0.08 0.049 0.08
(-0.5,-0.5,-0.5,-0.5) 0.092 0.08 0.033 0.07
(-1,-1,-1,-1) 0.096 0.08 0.099 0.08
(3,3,3,3) 0.179 0.12 -0.139 0.12

Table B.1: Estimates and SEs of the treatment difference (change in HbA;. from baseline
to 18 months) between Met+Rosi and Met+Su, and Su+Rosi and Su+Met, respectively, for
each of the models considered.
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Figure B.1: The profiles (mean + SE) implied by the MAR per protocol analysis
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Figure B.2: The profiles (mean + SE) implied by the MNAR ITT analysis with (y1,72,73) =
(0,0,0)
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Figure B.3: The profiles (mean + SE) implied by the MNAR ITT analysis with (y1,72,73) =
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Figure B.4: The profiles (mean + SE) implied by the MNAR ITT analysis with (y1,72,73) =
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Figure B.6: The profiles (mean = SE) implied by the MNAR ITT analysis with (y;,72,73) =
(0.25,-0.25,0)
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Figure B.7: The profiles (mean + SE) implied by the MNAR ITT analysis with (vy;,72,73) =
(0.5,-0.5,0)
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Figure B.8: The profiles (mean + SE) implied by the MNAR ITT analysis with (y1,72,73) =
(17’170)
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Figure B.9: HbAj. at the 12-month timepoint: imputed vs. observed for the “best” combi-
nation, (71,72,73) = (0.4,0.2,0)
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Figure B.10: The profiles (mean & SE) implied by the MNARITT analysis with (y1,72,73) =

(0.4,0.2,0)
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Figure B.11: The profiles (mean + SE) implied by the MNAR/NNAR PP analysis with
(61362»63754) = (0’070’0)
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Figure B.12: The profiles (mean + SE) implied by the MNAR/NNAR PP analysis with
(61,82,03,04) = (0.25,0.25,0.25,0.25)
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Figure B.13: The profiles (mean £+ SE) implied by the MNAR/NNAR PP analysis with
((51,52,53,54) = (0.5,0.5,0.5,0.5)
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Figure B.14: The profiles (mean + SE) implied by the MNAR/NNAR PP analysis with
(61’62753164) = (171,111)
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Figure B.15: The profiles (mean + SE) implied by the MNAR/NNAR PP analysis with
(61,62,03,04) = (0.25,-0.25,-0.25,0.25)
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Figure B.16: The profiles (mean + SE) implied by the MNAR/NNAR PP analysis with
(51,52,(53,54) — (0.5,‘0.5,*0.5,0.5)
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Figure B.17: The profiles (mean + SE) implied by the MNAR/NNAR PP analysis with
(61,62,03,04) = (1,-1,-1,1)
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Figure B.18: The profiles (mean + SE) implied by the MNAR/NNAR PP analysis with
(61,82,03,04) = (-0.25,0.25,0.25,-0.25)
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Figure B.19: The profiles (mean + SE) implied by the MNAR/NNAR PP analysis with
(51,52,53,(54) = (-0.5,0.5,0.5,-0.5)
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Figure B.20: The profiles (mean + SE) implied by the MNAR/NNAR PP analysis with
(61,02,03,04) = (-1,1,1,-1)
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Figure B.21: The profiles (mean + SE) implied by the MNAR/NNAR PP analysis with
(61,62,03,04) = (-0.25,-0.25,-0.25,-0.25)
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Figure B.22: The profiles (mean £ SE) implied by the MNAR/NNAR PP analysis with
(61,82,03,01) = (-0.5,-0.5,-0.5,-0.5)
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Figure B.23: The profiles (mean + SE) implied by the MNAR/NNAR PP analysis with
(61,02,03,01) = (-1,-1,-1,-1)

0

0

2
VIt
2

4
4

Abgolute difference in HbA1c (%) from baseline
4

Absolute difference in HbA1c (%) from baseline

©
© e
3 T T T T T T T T T T T T T T T T T —uy
O 2REA T8 NS R0 N 12 15 18 DERZFEANN 6T 8 MRY0 3742 15 18
Months after randomisation Months after randomisation
—a— Met+Su —-4—- Mat*Rosl] |+ Su+Met —-0—- Su+ Rosi

Figure B.24: The profiles (mean + SE) implied by the MNAR/NNAR PP analysis with
(51’62753764) = (3»373,3)
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C.1 Robust multiple imputation: original formulation

C.1.1 Improper
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Assume we have y and x, both full, and xmis, the
observed portion of x, saved in a file called
‘incomplete’. Also in the file ‘incomplete’ are

the (known) probabilities, pi, and the missingness
indicator, R.

obs is a local macro containing the sample size of
the full data and imps is a global macro containing
the number of imputed datasets

a4 3k ok 2k o 3K 3 3¢ ok 3 3k 3 2 36 o e K Sk 3 3k 6 e ok 3k 3k ok 2k 2k 3¢ o 3 3k 3k 3k 3k 35 A 3 3 2k 3 ok K 3k 3k 3 6 3 N 2K K o 6k N

* ¥ ¥ ¥ X X x *
* % ¥ ¥ F X ¥ *

qui drop if xmis==.

qui drop xmis

qui save top, replace

use incomplete, clear

egen wO=mean(pi)

egen wi=mean(1/pi)

egen w2=mean((1-pi)/pi)

egen w3=mean(1/(pi~2))

egen wé4=mean((1-pi}/(pi~2))
egen w5=mean(((1-pi)~2)/(pi~2))
qui gen w=1/pi

qui replace w=1 if xmis==.

qui replace w=1-w if xmis!=.
qui drop x xmis

qui gen x=.

qui save bottom, replace

use top, clear

append using bottom

qui gen Rstar=(x!=.)

qui gen S=1-R

qui gen Sstar=1-Rstar

sort Sstar S, stable

qui drop 8 Sstar

qui gen cons=1

qui regress x [pw=w]

local muX=_b[_cons]

local sXX=e(rmse)"2

qui regress y_tamp x [pw=v]
local a=_b[_cons]

local b=_b[x]

local sYgX=e(rmse) "2

local p=(‘muX’*‘sYgK’-‘a’x‘b’x‘sXX’)/(‘sXX’*‘b’"2+‘sYgX’)
local g=(‘b’*‘sXX’)/(‘sXX’*‘b’ "2+ sYgX’)
local e=sqrt(‘sYgX’*‘sXX’/(‘sXX’*‘b’ 2+ sYgX’))
qui regress y_tamp x [pw=w]

mat Vg=‘obs’*swap*e(V)*swap
qui save robust, replace
forvalues j=1 (1) $imps {
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qui gen ximp‘j’=x
) qui replace ximp‘j’=‘p’+‘g’*y+‘e’*invnorm(uniform()) if x==,
global n=_N
proci
local alphaMI=betaMI[1,1]
local betaMI=betaMI[2,1]
qui save imp, replace
qui drop if (R==1 & Rstar==0)
qui save impmod, replace
use imp, clear
qui drop if Rstar==
forvalues j=1 (1) $imps {
rename Xximp‘j’ ximpb‘j’
}
qui drop x
merge using impmod
qui drop w Rstar _merge
mat IFinv=(0,0\0,0)
forvalues j=1 (1) $imps {
qui regress y ximp‘j’
mat Var‘j’=‘obs’*swapxe(V)*swap
mat IFinv=IFinv+Var‘j’
}
mat IFinv=IFinv/$imps
mata: proc2(‘obs’)
mata: proc3(‘obs’)
local wO=w0
local wil=wl
local w2=w2
local w3=w3
local wé=w4
local wb=wb
mata: procd(‘w0’,‘wi’,‘w2’,‘w3’,‘wd’,‘w5’)
local SEalphaMI=sqrt{(VarImp[1,1]/‘obs’)
local SEbetaMI=sqrt(VarImp[2,2]/‘obs’)
local uba=‘alphaMI’+invttail(‘obs’-2,0.025)*‘SEalphaMI’
local lba=‘alphaMI’-invttail(‘obs’-2,0.025)*‘SEalphaMI’
local ubb=‘betaMI’+invttail(‘obs’~2,0.025)*‘SEbetaMI’
local 1lbb=‘betaMI’-invttail(‘obs’-2,0.025)*‘SEbetaMI’
if ‘uba’<1l | ‘1lba’>1 {
local cova=0

}
else {

local cova=1
}

if ‘ubb’<2 | ‘1bb’>2 {
local covb=0
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}
else {

local covb=1
}

capture program drop proci
program define procil
mat betaMI=(0,0,0)’
forvalues j=1(1)$imps {
gen wx=w*ximp‘j’
gen wxx=wx (ximp‘j’~2)
gen wy=wxy
gen wxy=wxy*ximp‘j’
egen sw=sum(w)
egen swx=sum(wX)
egen swxx=sum(wxx)
egen swy=sum(wy)
egen swxy=sum(wxy)
local sw=sw
local swx=swx
local SWXX=SWXX
local swy=suy
local swxy=swxy
mat A=(‘sw’, ‘swx’ \ ‘swx’, ‘swxx’)
mat B=(‘swy’, ‘swxy’)’
mat beta=invsym(A)*B
local al=betal[1,1]
local be=beta(2,1]
gen y_m_yhat=y-‘al’-‘be’*ximp‘j’
gen wy_m_yhat_sg=w*(y_m_yhat"2)
egen swy_m_yhat_sq=sum(wy_m_yhat_sq)
local sYgX=($n/($n-2))*swy_m_yhat_sq/sw
mat beta‘j’=(beta’, ‘sYgX’)’
mat betaMI=betaMI+beta‘j’
drop wx-swy_m_yhat_sq
}
mat betaMI=betaMI/$imps
end

mata:

real matrix proc2(obs)

{
betal=st_matrix("betal")
beta2=st_matrix("beta2")
betal3=st_matrix("beta3")
betad=st_matrix("betad")
betaS=st_matrix("beta5")
betab=st_matrix("betag")
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beta7=st_matrix("beta7")
beta8=st_matrix{("betas")
beta9=st_matrix{("betag")
betalO=st_matrix("betalO")
betaMI=st_matrix("betaMI")
st_view(Xi=.,.,("cons","ximpi"))
st_view(X2=.,.,("cons","ximp2"))

st_view(X3=.,.,("cons","ximp3"))
st_view(X4=.,.,("cons","ximp4"))
st_view(X5=.,.,("cons","ximp5"))

st_view(X6=.,.,("cons","ximp6"))
st_view(X7=.,.,("cons","ximp7"))
st_view(X8=.,.,("cons","ximp8"))
st_view(X9=.,.,("cons","ximp9"))
st_view(X10=.,.,("cons", "ximp10"))
st_view(xi=.,.,("ximpi1"))
st_view(x2=.,., ("ximp2"))
st_view(x3=.,., ("ximp3"))
st_view(x4=.,., ("ximp4"))
st_view(x5=.,., ("ximp5"))
st_view(x6=.,., ("ximp6"))
st_view(x7=.,., ("ximp7"))
st_view(x8=.,.,("ximp8"))
st_view(x9=.,., ("ximp9"))
st_view(x10=.,.,("ximp10"))
st_view(Y=.,.,"y")
V1=(0,0,1)*betal
v2=(0,0,1)*beta2
v3=(0,0,1)*beta3
V4=(0,0,1)*betad
v5=(0,0,1)*betab
v6=(0,0,1)*betab

v7=(0,0,1) *beta?
v8=(0,0,1)*beta8

v9=(0,0,1) *betad
Vv10=(0,0,1)*betalld
VMI=(0,0,1)*betaMI
betal=(1,0,0\0,1,0)*betal
beta2=(1,0,0\0,1,0)*beta2
beta3=(1,0,0\0,1,0)*betal
betad4=(1,0,0\0,1,0)*betad
beta5=(1,0,0\0,1,0)*betab
beta6=(1,0,0\0,1,0)*betad
beta7=(1,0,0\0,1,0)*beta?
betas8=(1,0,0\0,1,0)*beta8
betad9=(1,0,0\0,1,0)*betad
betal10=(1,0,0\0,1,0)*betall
betaMI=(1,0,0\0,1,0)*betaMI
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S1=(1/V1)*(Y-X1*betal)

82=(1/V2) *(Y-X2*beta2)

83=(1/V3) *(Y-X3*beta3)

S4=(1/V4) *(Y-X4*betad)

$5=(1/V5)* (Y-X5*betab)

86=(1/V6) *(Y-X6*betab)

S7=(1/V7) *(Y-XT*betaT)

§8=(1/V8) * (Y-X8*betas)

89=(1/V9) *(Y-X9*beta9)

§10=(1/V10)*(Y-X10*betal0)

T1=x1:%*S1

T2=x2:%S2

T3=x3:%33

T4=x4:*54

T5=x5:*85

T6=x6:%*S6

T7=x7:*S7

T8=x8:%88

T9=x9 :*S9

T10=x10:*510

81=(S1,T1)’

$2=(82,T2)’

83=(83,T3)’

S4=(84,T4)’

§5=(85,T5)’

86=(86,T6)’

87=(87,T7)’

$8=(88,T8)°

$9=(89,T9)’

$10=(S10,T10)’

SavA=(S1+82+83+84+85+S6+87+58+59+510) /10

IFmI1A=(81-SavA)*(S1-SavA)’

IFmI2A=(S2-SavA)* (S2-SavA)’

IFmI3A=(S3-SavA)*(S3-SavA)’

IFmI4A=(S4-SavA)*(S4-SavA)’

IFmISA=(S5-SavA)* (S5-SavA)’

IFmI6A=(S6-SavA)*(S6-SavA)’

IFmI7A=(S7-SavA)*(S7~-Savd)’

IFmI8A=(S8-SavA)* (S8-SavA)’

IFmI9A=(S9-SavA)=*(S9-SavA)’

IFmI10A=(S810-SavA)*(S10-SavA)’

IFmIA=(1/9)*(1/0bs)* (IFmI1A+IFmI2A+IFmI3A+IFmI4A+IFmISA+IFmIGA+IFmI7A
+IFmI8A+IFmI9A+IFmI10A)

return(st_matrix("IFmI",IFmIA))

end

mata:
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real matrix proc3(obs)

{

betal=st_matrix("betali")
beta2=st_matrix("beta2")
beta3=st_matrix("beta3")
betad=st_matrix("betad")
betab=st_matrix("betab")
beta6=st_matrix("betab")
beta7=st_matrix("beta7")
beta8=st_matrix("beta8")
betag9=st_matrix("betad")
betal0=st_matrix("betall")
betaMI=st_matrix("betaMI")

st_view(X1=.
st_view(X2=.
st_view(X3=.
st_view(X4=.
st_view(X5=.
st_view(X6=.
st_view(X7=.
st_view(X8=.
st_view(X9=.

st_view(X10=.

st_view(xi=.
st_view(x2=.
st_view(x3=.
st_view(x4=.
st_view(x5=.
st_view(x6=.
st_view(x7=.
st_view(x8=.
st_view(x9=.

st_view(x10=.,.,("ximpb10"))

’

., ("cons", "ximpb1"))
., ("cons", "ximpb2"))
., ("cons", "ximpb3"))
., ("cons", "ximpb4d"))
., ("cons", "ximpb5"))
., ("cons","ximpb6"))
., ("cons", "ximpb7"))
., ("cons", "ximpb8"))
., ("cons","ximpb9"))
, .5 ("cons","ximpb10"))

.» ("ximpbl"))
.» ("ximpb2"))
. ("ximpb3"))
., ("ximpb4"))
., ("ximpb5"))
., ("ximpb6"))
., ("ximpb7"))
.» ("ximpb8"))
.» ("ximpb9"))

st_view(Y=.,.,"y")
Vi=(0,0,1)*betal
v2=(0,0,1)*beta2
v3=(0,0,1)*beta3
Vv4=(0,0,1)*betad
V5=(0,0,1) *betab
V6=(0,0,1)*betab
v7=(0,0,1)*beta?
v8=(0,0,1)*beta8
v9=(0,0, 1) xbetad
V10=(0,0,1)*betalld
VYMI=(0,0,1)xbetaMI
betal=(1,0,0\0,1,0)*betal
beta2=(1,0,0\0,1,0)*beta?2
beta3=(1,0,0\0,1,0)*beta3
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betad=(1,0,0\0,1,0)*betad
beta5=(1,0,0\0,1,0)*betab
beta6é=(1,0,0\0,1,0)*betab
beta7=(1,0,0\0,1,0)*beta?7
beta8=(1,0,0\0,1,0)*beta8
beta9=(1,0,0\0,1,0)*betad
betal0=(1,0,0\0,1,0)*betald
betaMI=(1,0,0\0,1,0)*xbetaMI
S$1=(1/V1)*(Y-X1*betal)
82=(1/V2)*(Y-X2xbeta2)
83=(1/V3)*(Y-X3*beta3l)
S4=(1/V4)*(Y-X4xbetad)
86=(1/V5) *(Y-X5*betab)
S6=(1/V6)*(Y-X6*betad)
S7=(1/V7)*(Y-X7*beta?)
88=(1/V8) * (Y-X8xbeta8)
89=(1/V9) *(Y-X9*beta9)
$10=(1/V10)*(Y-X10*betal0l)
Ti=x1:%S1

T2=x2:%52

T3=x3:%83

T4=x4:%*54

TS5=x5:*S55

T6=x6:*36

T7=x7:*S7

T8=x8:%*S8

T9=x9:*S9

T10=x10:%510

S1=(S81,T1)°

8§2=(82,T2)’

83=(83,T3)’

84=(S4,T4)’

85=(85,T5)°

S6=(56,T6)*

87=(87,T7)’

58=(88,T8)°

$9=(89,T9)’

$10=(510,T10)°
SavA=(S1+82+83+84+35+S6+37+58+89+510) /10
IFmI1A=(S1-SavA)*(S1-SavA)’
IFmI2A=(S2-SavA)*(S2-SavA)’
IFmI3A=(S3-SavA)*(83-SavA)’
IFmI4A=(S4-SavA)*(S4-SavA)’
IFmISA=(S5-SavA)* (85-SavA)’
IFmI6A=(S6-SavA)*(S6-SavA)’
IFmI7A=(S7-SavA)*(S7-SavA)’
IFmIBA=(S8-SavA)*(S8~Savh)’
IFmI9A=(S9-SavA)*(S9-Sava)’
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IFmI10A=(S10-SavA)*(S10-SavA)’
IFmIA=(1/9)*(1/0bs)* (IFmI1A+IFmI2A+IFmI3A+IFmI4A+IFmISA+IFmI6A+IFmI7A
+IFmIBA+IFMISA+IFmI10A)
return(st_matrix("IFmIY",IFmIA))
}

end

mata:
real matrix proc4(real scalar w0, real scalar wi, real scalar w2,

real scalar w3, real scalar w4, real scalar wb)
{

IFinv=st_matrix("IFinv")

IFmI=st_matrix ("IFmI")

IFmIY=st_matrix("IFmIY")

IF=invsym(IFinv)

I=IF-IFmI

IY=IF-IFmIY

Vq=st_matrix("Vq")

VarImp=IFinv* (w3%((1/10)*IFmI+I)+w5*((1/10)*IFmIY+IY)+(IFmI*Vq*IFmI)
+(w2"2)* (IFmIY*VqQ*IFmIY) -2*wd* ((1/10) * (IF-wO*IFmIY)
+(9/10)*IY) +2xy1x (IFmI) -2%w1*w2* (IFmIY)

-w2% (IY*IFinv*IFmI)

-w2* (IFmI*IFinv*IY)+2% (w2~ 2) * (IY*IFinv*IFmIY)

~Ww2*IFmI*Vq*xIFmIY-w2*IFmIY*Vq*IFmI)*IFinv
return(st_matrix("VarImp",VarImp))

end

C.1.2 Proper

use robust, clear

qui regress x [pw=w]

local muX=_b[_cons]

local semuX=_se[_cons]

local sXX=e(rmse)"2

qui regress y_tamp x [pw=w]

local a=_b[_cons]

local b=_bl[x]

local sYgX=e(rmse)~2

qui regress y_tamp x [pw=w]

mat Vq=‘obs’*swap*e(V)*swap

mat Vq2=Vq/‘obs’

forvalues j=1 (1) $imps {
local a‘j’=‘a’+sqrt(Vq2(1,1])*invnorm(uniform())
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}

local b‘j’=‘b’+(Vq2[1,2]1/Vq2{1,1])*(‘a‘j’’~‘a’)
+sqrt (Vq2[2,2]- ((Vq2[1,2]1°2)/Vq2[1,11))
*invnorm(uniform())
local sYgX‘j’=‘sYgX’*invchi2(‘completers’-2,uniform())/(‘completers’-2)
local muX‘j’=‘muX’+‘semuX’*invnorm(uniform())
local sXX‘j’=‘sXX’*invchi2(‘completers’-2,uniform())/(‘completers’-2)
local p(j:=(cmuxtj))*tsygxtj: )_catjx ’*‘b’*‘sXX’)/(‘sXX’*‘b’“2+‘sYgX’)
local g‘j’=(‘b’*‘sXX’)/(‘sXX’*‘b’"2+‘sYgX’)
local e‘j’=sqrt(‘sYgX’'*‘sXX’/(‘sXX’*‘b’~2+‘sYgX’))
qui gen ximp‘j’=x
qui replace ximp‘j’=‘p‘j’’+‘g‘j’’*y+‘e'j’ *invnorm(uniform()) if x==.

global n=_N

procl

local alphaMI=betaMI[1,1]
local betaMI=betaMI[2,1]

qui
qui
qui
use
qui

save imp, replace

drop if (R==1 & Rstar==0)
save impmod, replace

imp, clear

drop if Rstar==

forvalues j=1 (1) $imps {

}

qui

rename ximp‘j’ ximpb‘j’

drop x

merge using impmod

qui
mat

drop w Rstar _merge
IFinv={(0,0\0,0)

forvalues j=1 (1) $imps {

}

mat

qui regress y ximp‘j’
mat Var‘j’=‘obs’*swap*e(V)*swap
mat IFinv=IFinv+Var‘j’

IFinv=IFinv/$imps

mata: proc2(‘obs’)

mata: proc3(‘obs’)

local wO=w0

local wi=wl

local w2=w2

local w3=w3

local wé=w4d

local w5=wb

mata: proc7(‘w0’,‘wl’,‘w2’,‘w3’,‘w4’, ‘ws’)

local SEalphaMI=sqrt(VarImp[1,1]/‘obs’)

local SEbetaMI=sqrt(VarImp[2,2]/‘obs’)

local uba=‘alphaMI’+invttail(‘obs’~2,0.025)*‘SEalphaMI’
local lba=‘alphaMI’-invttail(‘obs’-2,0.025)*‘SEalphaMI’
local ubb=‘betaMI’+invttail(‘obs’-2,0.025)*‘SEbetaMI’
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local 1bb=‘betaMI’-invttail(‘obs’-2,0.025)*‘SEbetaMI’
if ‘uba’<l | ‘1ba’>1 {
local cova=0

}
else {

local cova=1
}

if ‘ubb’<2 | ‘1bb’>2 {
local covb=0

}

else {
local covb=1

)

mata:

real matrix proc7(real scalar w0, real scalar wi, real scalar w2,
real scalar w3, real scalar w4, real scalar w5)

{

IFinv=st_matrix("IFinv")

IFmI=st_matrix("IFmI")

IFmIY=st_matrix("IFmIY")

IF=invsym(IFinv)

I=IF-IFmI

IY=IF-IFmIY

Vg=st_matrix("Vq")

VarImp=IFinv* (w3 ((1/10)*IFmI+I)+w5% ((1/10)*IFmIY+IY)
+(11/10) * (IFmI*Vq*IFmI)
+(11/10)* (w2~ 2) * (IFmIY*Vg*IFmIY)
~2xud*x ((1/10) * (IF-wO*IFmIY)
+(9/10)*IY)+2*wix (IFmI)-2%wi*w2* (IFmIY)
—w2k (IY*IFinv*IFmI)-w2* (IFmI*IFinv*IY)
+2% (w2~2) * (IY*IFinv*IFmIY)

-(11/10) *w2*xIFmI*Vq*IFmIY
-(11/10) *w2*IFmIY*Vq*IFmI)*IFinv
return(st_matrix("VarImp",VarImp))

end

C.2 Robust multiple imputation: alternative formulation

Here is the Stata command for DRMI (both models correct) used in the simulation
study discussed in §9.3.3.
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#delimit ;

ice x xsq pl p2 pi2a p12b wi yi yisq p12 w2 y2,

C.3

passive(ylsq:y1™2 \ p12: (exp(p12a+pi2b*yisq)/(1+exp(p12a+p12b*yisq)))

m(10) cycles(10) saving(DRMIcc_RMM_longit) replace orderasis

Binary simulation study: scenario 1

clear
set mem 74bm
gset obs 500
local yly2_int=1

qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui

gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen

eq(yl:x xsq y2 wi,y2:x yl w2)

\ tw2: (1/(p2+p1*p12)))

full_11=.
iee_11=.
gee_11=.
cwgee_11=.
owgee_11=.
migee_11=.
br_11=.
rr_11=.
drmi_11=.
full_10=.
iee_10=.
gee_10=.
cugee_10=.
owgee_10=.
migee_10=.
br_10=.
rr_10=.
drmi_10=.
full_01=.
iee_01=.
gee_01=.
cwgee_01=.
owgee_01=.
migee_01=.
br_01=.
rr_01=.
drmi_01=.
full_00=.
iee_00=.
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qui
qui
qui
qui
qui
qui
qui

gen
gen
gen
gen
gen
gen
gen

gee_00=.
cwgee_00=.
owgee_00=.
migee_00=.
br_00=.
rr_00=.
drmi_00=.

forvalues wei=0(1)1 {
local weights=1-‘wei’
forvalues cond=0(1)1 {
local conditional=1-‘cond’
forvalues sim=1(1)1000 {

di ¢
set

keep full_x jiee_* gee_* cwgee_* owgee_* migee_x br_x rr_» drmi_x

gen
gen

sim’> ".." _cont
seed ‘sim’

x1=uniform()<0.5
x2=uniform()<0.25

gen piyl=exp(x1-0.5%x1%x2)/(1+exp(x1-0.5%x1*x2))

gen piy2=exp(-1+0.25*x1+0.25*x2-x1%x2) / (1+exp(-1+0.26*x1+0.26*x2-x1%x2) )

gen piy3=exp(-x1+0.5*x2-x1*x2)/(1+exp(-x1+0.5*x2-x1*x2))
if ‘yly2_int’==1 {

gen
gen
gen
gen
}
else
gen
gen
gen
gen
}
gen
gen
gen
gen
gen
#del

gen piy3gyly2=piy3*(1+gl2*ei*e2+(gl3*el+g23+e2+gl23*elxe2)*((1-piy3)

/sqr
#del
gen

xful
gen
gen
qui
gen

g12=0.3
g13=-0.15
g23=0.3
g123=-0.1

{

g12=0.2
g13=0
g23=0.2
g123=-.173

yil=uniform()<piy1

e1=(y1-piy1)/(sqrt(piy1*(1-piy1)))
piy2gyl=piy2*(1+g12*el1x(1-piy2) /sqrt (piy2*(1-piy2)))
y2=uniform()<piy2gy1
e2=(y2-piy2)/(sqrt(piy2*(1-piy2)))

imit ;

t(piy3*(1-piy3))));
imit cr
y3=uniform()<piy3gyly2

1

x1x2=x1%x2

id=_n

reshape long y, i(id) j(t)
ti=(t==1)
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gen t2=(t==2)

gen t3=(t==3)

gen tixl=ti*xi

gen ti1x2=t1xx2

gen tlx1x2=tl*x1sx2

gen t2x1=t2*x1

gen t2x2=t2*x2

gen t2x1x2=t2*x1*x2

gen t3x1=t3*x1

gen t3x2=t3*x2

gen t3x1ix2=t3*x1x2

#delimit ;

qui xtgee y t1 tixl t1x2 tilx1x2 t2 t2x1 t2x2 t2x1x2 t3 t3x1 t3x2 t3x1x2,
i(id) t(t) family(binomial) link(logit) corr(unstr) vce(robust) nocons;
local full=_b[t3x1];

keep full _* iee_* gee_* cugee_x owgee_x migee_x* br_x

rr_* drmi_* id t y x1 x2 x1x2;

#delimit cr

qui reshape wide y, i(id) j(t)

qui replace full_f‘conditional’‘weights’=‘full’ in ‘sim’

gen pir2=exp(0.5%x1-0.5%x2+3xy1)/(1+exp(0.5*x1-0.5*x2+3%y1))
#delimit ;

gen pir3g2=exp(-0.5-0.5*x1+0.5*x2+x1*xyl-y1sy2+4xy2xx1)/
(1+exp(~0.5-0.5%x1+0.5%x2+x1*y1-y1*y2+4*y2¥x1) ) ;
#delimit cr

gen ril=1

gen r2=uniform()<pir2

qui gen r3=uniform()<pir3g2 if r2==1

qui replace r3=0 if r2==

qui replace y2=. if r2==

qui replace y3=. if r3==0

*iee

qui reshape long y r, i(id) j(t)
gen ti=(t==1)

gen t2=(t==2)

gen t3=(t==3)

gen tixi=tlx*xl

gen tlx2=tl1*x2

gen tlxix2=tlxx1*x2
gen t2x1=t2xx1

gen t2x2=t2*x2

gen t2x1x2=t2*x1*x2
gen t3x1=t3*x1

gen t3x2=t3*x2

gen t3x1x2=t3*x1x2
#delimit ;
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capture qui xtgee y t1 tixl tix2 tix1x2 t2 t2x1 t2x2 t2x1x2 t3 t3x1
t3x2 t3x1x2, i(id) t(t) family(binomial) link(logit) corr(ind)
vce(robust) nocons;
#delimit cr
if abs(e(dif))<e(tol) {
local check=1
}
else {
local check=0
}
local iee=_b[t3x1]
#delimit ;
keep full_* iee_* gee_x* cugee_x owgee_* migee_* br_» rr_x drmi_x
id t y r x1 x2 x1x2;
#delimit cr
qui reshape wide y r, i(id) j(t)
if ‘check’==1 {
qui replace iee_‘conditional’‘weights’=‘iee’ in ‘sim’

}

qui gen yly2=ylxy2
qui gen xlyl=xlx*yl
qui gen x1y2=x1xy2
qui gen x2yl=x2xyl
if ‘weights’==1 {
qui logit r3 x1 x2 x1iyl yly2 x1y2 if r2==1, asis
qui predict p3g2
qui gen 1p3g2a=_b[_cons]+_blx1]*xi+ _b[x2]*x2+_b[x1y1]l*xixyl
qui gen 1p3g2b=_b[y1y2]*yi+_b[x1y2]*x1
qui logit r2 x1 x2 yi1, asis
qui predict p2
qui gen w2=1/p2
qui gen p3=p3g2*p2
qui gen w3=1/p3
qui gen cw=w3 if r3==1
qui replace cw=w2/(1-p3g2) if r3==
qui replace cw=1/(1-p2) if r2==
}
if ‘weights’==0 {
qui logit r3 x1 x1yl if r2==1, asis
qui gen 1p3g2a=_b[_consl+_b[x1]*x1+_b[x1y1]*x1xyl
qui gen 1lp3g2b=0
qui predict p3g2
qui logit r2 x1 x2y1, asis
qui predict p2
qui gen w2=1/p2
qui gen p3=p3g2xp2
qui gen w3=1/p3
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qui gen cw=w3 if r3==
gui replace cw=w2/(1-p3g2) if r3==
qui replace cw=1/(1-p2) if r2==

}

*gee

qui reshape long y r, i(id) j(t)
gen tl=(t==1)

gen t2=(t==2)

gen t3=(t==3)

gen tixl=tl*x1
gen tlx2=t1*x2
gen tixlx2=tlxi*x2
gen t2x1=t2*x1
gen t2x2=t2*x2
gen t2x1x2=t2xx1*x2
gen t3x1=t3*x1
gen t3x2=t3*x2
gen t3x1x2=t3*x1x2
#delimit ;
capture qui xtgee y tl tixl tix2 tixix2 t2 t2x1 t2x2 t2x1x2 t3 t3x1
t3x2 t3x1x2, i(id) t(t) family(binomial) link(logit) corr(unstr)
vce (robust) nocons;
#delimit cr
if abs(e(dif))<e(tol) {
local checki=1i
local gee=_b[t3x1]
qui predict mu
mat b=e(b)
mat b=b’
mat corr=e(R)
}
else {
local checkl=0
qui gen mu=.

}

xcluster-level weighted gee
#delimit ;
capture qui xtgee y tl tixl t1x2 ti1x1x2 t2 t2x1 t2x2 t2x1x2 t3 t3x1
t3x2 t3x1x2 [pw=cw], i(id) t(t) family(binomial) link(logit) corr(unstr)
vce (robust) nocons;
#delimit cr
if abs(e(dif))<e(tol) {
local check2=1
local cwgee=_b[t3x1]
}

else {
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local check2=0
}
#delimit ;
keep full_* iee_x gee_% cwgee_* owgee_x* migee_* br_» rr_x drmi_x
id t y x1 x2 x1x2 r w2 w3 cw mu yly2 p3 p2 p3g2 lp3g2a lp3g2b;
#delimit cr
qui reshape wide y r mu, i(id) j(t)
if ‘check1’==1 {

qui replace gee_‘conditional’ ‘weights’=‘gee’ in ‘sim’
}
if ‘check2’==1 {

qui replace cwgee_‘conditional’‘weights’=‘cwgee’ in ‘sim’

}

*xobservation-level weighted gee
if ‘checkl’==1 {
qui gen pyl=yl-mul
qui gen py2=w2x*(y2-mu2)
qui gen py3=w3*(y3-mu3)
qui replace py2=0 if py2==.
qui replace py3=0 if py3==.
qui gen di=mul*(i-mui)
qui gen d2=mu2+(1-mu2)
qui gen d3=mu3*(1-mu3)
qui replace d2=0 if d2==.
qui replace d3=0 if d3==.
qui gen ri2=corr[1,2]
qui gen ri3=corr[1,3]
qui gen r23=corr(2,3]
mat r=(1,r12[1]1,r13[1]\r12[1],1,r23[1]\r13[1],r23[1],1)
qui gen nul=0
qui gen nu2=0
qui gen nu3=0
local absdiff=1
local count=0
local check_ow=1
local check_ow2=1
while ‘absdiff’>le-5 & ‘count’<500 & ‘check_ow’==1 & ‘check_ow2’==1 {
mat ss1=J(12,12,0)
mat ss2=J(12,1,0)
forvalues sub=1(1)500 {
if ‘check_ow’==1 {
#delimit ;
mat x=(1,0,0\x1[‘sub’],0,0\x2{‘sub’],0,0\x1x2[sub’],0,0\
0,1,0\0,x1[“sub’],0\0,x2[“sub’],0\0,x1x2[‘sub’],0\
0,0,1\0,0,x1[“sub’]\0,0,x2[‘sub’]1\0,0,x1x2[‘sub’])’;
#delimit cr
mat d=(d1[‘sub’],0,0\0,d2[“sub’],0\0,0,d3[‘sub’])
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mat vhalf=(sqrt(di[‘sub’]),0,0\0,sqrt(d2[‘sub’]),0\0,0,sqrt(d3[‘sub’]l))
mat w=vhalfxrxvhalf
if matmissing(w)==0 {
mat invw=invsym(w)
}
else {
local check_ow=0
}
}
if ‘check_ow’==1 {
mat py={(pyll[‘sub’]\py2[‘sub’]\py3[‘sub’])
mat s2=x’*d*invw*py
mat s1=s2xs2’
mat ssl=ssl+sl
mat ss2=ss82+s2
}
}
if ‘check_ow’==1 {
if matmissing(ss1)==0 {
mat diff=invsym(ssi)*ss2
}
else {
local check_ow2=0
}
if ‘check_ow2’==1 {
local absdiff=abs(diff[1,1])
forvalues j=2(1)12 {
if ‘absdiff’<abs(diff(‘j’,1]) {
local absdiff=abs(diffl[‘j’,1])
}
}
mat b=b+diff
forvalues sub=1(1)500 {
#delimit ;
mat x=(1,0,0\x1[‘sub’],0,0\x2[‘sub’],0,0\x1x2[¢sudb’1,0,0\
0,1,0\0,x1[“sub’],0\0,x2[‘sub’],0\0,x1x2[“sub’],0\
0,0,1\0,0,x1{‘sub’]1\0,0,x2[‘sub’J\0,0,x1x2[{‘sub’]) ’;
#delimit cr
mat nu=x*b
qui replace nul=nul1,1] in ‘sub’
qui replace nu2=nul2,1] in ‘sub’
qui replace nu3=nu[3,1] in ‘sub’
}
qui replace muil=exp(nul)/(1+exp(nul))
qui replace mu2=exp(nu2)/(1+exp(nu2))
qui replace mud=exp(nu3)/(1+exp(nu3))
qui replace pyl=yi-mul
qui replace py2=w2x(y2-mu2)
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qui replace py3=w3*(y3-mu3)
qui replace py2=0 if py2==.
qui replace py3=0 if py3==.
qui replace di=muix*(1-mul)
qui replace d2=mu2*(1-mu2)
qui replace d3=mud*(1-mu3)
qui replace d2=0 if d2==,
qui replace d3=0 if d3==.
}
}
local count=‘count’+1
}
if ‘count’>499 {
qui replace owgee_‘conditional’‘weights’=. in ‘sim’
}
else {
if ‘check_ow’==1 & ‘check_ow2’==1 {
qui replace owgee_‘conditional’‘weights’=b[10,1] in ‘sim’
X
}
}

*Robins & Rotnitzky (1995)
qui save thesis_chl2_sat, replace
mat b=(1,-.5,-.75,-.75,-1,-.5)’
qui drop if x1==0
local totsub=_N
local check_rr=1
local check_rr2=1
if ‘checkl’==1 & ‘check_ow’==1 & ‘check_ow2’==1 {
if ‘weights’==1 {
qui logit r3 yi x2
1
if ‘weights’==0 {
qui logit r3 yi
¥
qui predict p3gl
qui gen k21=w2*(y2-mu2)
qui gen k31=u3*(y3-mu3)
qui gen k32=p2*w3*(y3-mu3)
if ‘conditional’==1 {
qui regress k21 yl x2
qui predict kap21
qui regress k31 yl x2
qui predict kap31
qui regress k32 yl y2 yly2 x2
qui predict kap32
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if ¢
qui
qui
qui
qui
qui
qui
)

qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui

conditional’==0 {
regress k21 yl
predict kap21
regress k31 yl x2
predict kap31
regress k32 yl y2 x2
predict kap32

gen g22=p2xkap21

gen g32=p3gl*kap3l

gen g33=p3g2*kap32

gen q22=w2*g22

gen q32=w2%g32

gen q33=w3*g33

replace q22=0 if q22==.
replace q32=0 if q32==.
replace q33=0 if q33==.

gen P2=(r2-p2)*q22

gen P3=(r2-p2)*q32+(r3-r2xp3g2)*q33
gen UmPl=pyl

gen UmP2=py2-P2

gen UmP3=py3-P3

gen UmPUnP11=UmP1"2

gen UmPUmP12=UmP 1xUmP2

gen UmPUnP13=UmP1*UmP3

gen UmPUmP22=UmP272

gen UmPUmP23=UmP2+UmP3

gen UmPUmP33=UmP3"2

regress UmPUmP11 x2

predict 111

regress UmPUmP12 x2

predict 112

regress UmPUmP13 x2

predict 113

regress UmPUmP22 x2

predict 122

regress UmPUmP23 x2

predict 123

regress UmPUmP33 x2

predict 133

gen s12=d1%112xq22+d1%113%q32
gen s22=d2%122%q22+d2*123%q32
gen 832=d3%123%q22+d3%133%q32
gen s13=d1*113*q33

gen s23=d2%123%q33

gen s33=d3%133%q33

gen logit3g2=log(p3g2/(1-p3g2))
gen logit2=log(p2/(1-p2))
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qui logit r3 s13 s23 833 if r2==1, nocons offset(logit3g2)
qui predict p3g2new
qui logit r2 s12 s22 s32, nocons offset(logit2)
qui predict pZ2new
qui gen w2new=1/p2new
qui gen p3new=p2new*p3gnew
qui gen w3new=1/p3new
qui replace py2=w2new* (y2-mu2)
qui replace py3=w3new*(y3-mu3)
qui replace py2=0 if py2==.
qui replace py3=0 if py3==.
local absdiff=1
local count=0
while ‘absdiff’>1e-5 & ‘count’<100 & ‘check_rr’==1 & ‘check_rr2’==1 {
mat ss1=J(6,6,0)
mat ss2=J(6,1,0)
forvalues sub=1(1) ‘totsub’ {
#delimit ;
mat x=(1,0,0\x2[“sub’],0,0\
0,1,0\0,x2([“sub’],0\
0,0,1\0,0,x2([‘sub’])’;
#delimit cr
mat d=(d1[‘sub’],0,0\0,d2[‘sub’],0\0,0,d3[¢sub’])
#delimit ;
mat 1=(111[‘sub’],112[‘sub’],113[(*sub’J\112[‘sub’},122{‘sub’],123[“sub’]
\113{‘sub’1,123[“sub’],133[“sub’]);
#delimit cr
if matmissing(1)==0 {
mat invl=invsym(1l)
}
else {
local check_rr=0
}
if ‘check_rr’==1 {
mat py=(pyll[‘sub’]\py2[‘sub’]\py3[‘sub’})
mat 82=x’*d*invl*py
mat sil=s2%s2’
mat ssl=ssi+si
mat ss2=s52+s2
}
}
if ‘check_rr’==1 {
if matmissing(ss1)==0 {
mat diff=invsym(ssl)*ss2
}
else {
local check_rr2=0

}
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if ‘check_rr2’==1 {
local absdiff=abs(diff[1,1])
forvalues j=2(1)6 {
if ‘absdiff’<abs(diff[‘j’,1]) {
local absdiff=abs(diff[‘j’,1])
}
}
mat b=b+diff
forvalues sub=1(1) ‘totsub’ {
#delimit ;
mat x=(1,0,0\x2{‘sub’},0,0\
0,1,0\0,x2[‘sub’],0\
0,0,1\0,0,x2[‘sub’])’;
#delimit cr
mat nu=xx*b
qui replace nul=nu[i,1] in ‘sub’
qui replace nu2=nu[2,1] in ‘sub’
qui replace nu3=nuf3,1] in ‘sub’
}
qui replace mul=exp(nul)/(1+exp(nul))
qui replace mu2=exp(nu2)/(i+exp(nu2))
qui replace mu3=exp(nu3)/(1+exp(nu3))
qui replace pyl=yl-mul
qui replace py2=w2new*(y2-mu2)
qui replace py3=w3new*(y3-mu3)
qui replace py2=0 if py2==.
qui replace py3=0 if py3==.
qui replace di=mui*(1-mui)
qui replace d2=mu2#(1-mu2)
qui replace d3=mu3*(i-mu3)
qui replace d2=0 if d2==.
qui replace d3=0 if d3==.
}
}
local count=‘count’+1
}
if ‘count’>99 {
local rr_icheck=0
}
else {
if ‘check_rr’==1 & ‘check_rr2’==1 {
local rr_icheck=1
local rr_1=b[5,1]
}
else {
local rr_icheck=0

3
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}

qui use thesis_ch12_sat, replace
mat b=(0,0,-1,.25,0,.5)’
qui drop if xi==1
local totsub=_N
local check_rr=1
local check_rr2=1
if ‘checkl’==1 & ‘check_ow’==1 & ‘check_ow2’==1 {
if ‘weights’==1 {
qui logit r3 y1 x2
}
if ‘weights’==0 {
qui logit r3 yl
}
qui predict p3gi
qui gen k21=vw2+x(y2-mu2)
qui gen k31=w3*(y3-mu3)
qui gen k32=p2*w3*(y3-mu3)
if ‘conditional’==1 {
qui regress k21 y1 x2
qui predict kap21
qui regress k31 yl x2
qui predict kap31
qui regress k32 yl y2 yly2 x2
qui predict kap32
}
if ‘conditional’==0 {
qui regress k21 yi
qui predict kap21
qui regress k31 yl x2
qui predict kap3i
qui regress k32 yl y2 x2
qui predict kap32
}
qui gen g22=p2*kap21
qui gen g32=p3gl*kap3l
qui gen g33=p3g2*kap32
qui gen q22=w2*g22
qui gen q32=w2*g32
qui gen q33=w3*g33
qui replace q22=0 if q22==.
qui replace q32=0 if q32==.
qui replace q33=0 if q33==.
qui gen P2=(r2-p2)*q22
qui gen P3=(r2-p2)*q32+(r3-r2*p3g2)*q33
qui gen UmP1=pyl
qui gen UmP2=py2-P2
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qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui

while ‘absdiff’>1e-5 & ‘count’<100 & ‘check_rr’==1 & ‘check_rr2’==1 {

gen
gen
gen
gen
gen
gen
gen

UmP3=py3-P3
UnPUmP11=UmP1"2
UmPUmP12=UnP1*UmP2
UnPUmP13=UmP1*UmP3
UnPUmP22=UmP2"2
UnPUmP23=UnP2*UmP3
UmPUmP33=UmP3"2

regress UmPUmP11 x2
predict 111
regress UmPUmP12 x2
predict 112
regress UmPUmP13 x2
predict 113
regress UmPUmP22 x2
predict 122
regress UmPUmP23 x2
predict 123
regress UmPUmP33 x2
predict 133

gen
gen
gen
gen
gen
gen
gen
gen

512=d1*112%q22+d1*113%q32
§22=d2%122%q22+d2%123%q32
532=d3%123%q22+d3%133%q32
513=d1*113%q33
523=d2%123%q33
§33=d3*133%q33
logit3g2=log(p3g2/(1-p3g2))
logit2=log(p2/(1-p2))

logit r3 s13 s23 833 if r2==1, nocons offset(logit3g2)
predict p3gZnew

logit r2 s12 822 s32, nocons offset(logit2)

predict p2new

gen
gen
gen

w2new=1/p2new
p3new=p2new*p3g2new
w3new=1/p3new

replace py2=w2new*(y2-mu2)
replace py3=w3new* (y3-mu3)
replace py2=0 if py2==.
replace py3=0 if py3==.
local absdiff=1

local count=0

mat ss1=J(6,6,0)

mat s8s2=J(6,1,0)

forvalues sub=1(1) ‘totsub’ {
#delimit ;

mat x=(1,0,0\x2[‘sub’],0,0\
0,1,0\0,x2[‘sub’],0\
0,0,1\0,0,x2[‘sub’])’;
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#delimit cr
mat d=(d1[‘sub’],0,0\0,d2[‘sub’]),0\0,0,d3[‘sub’])
#delimit ;
mat 1=(111[‘sub’],112([‘sub’],113[‘sub’]\112[‘sub’],122[‘sub’],123[‘sub’]
\113[‘sub’],123[‘sub’]1,133[*sub’]);
#delimit cr
if matmissing(1)==0 {
mat invl=invsym(1)
}
else {
local check_rr=0
}
if ‘check_rr’==1 {
mat py=(pyl[¢sub’]\py2[‘sub’]\py3[‘sub’])
mat s2=x’*d*invl*py
mat sl=s2*s2’
mat ssl=ssi+sil
mat ss2=s82+s2
}
}
if ‘check_rr’==1 {
if matmissing(ssi)==0 {
mat diff=invsym(ssi)*ss2
}
else {
local check_rr2=0
}
if ‘check_rr2’==1 {
local absdiff=abs(diff(i,1])
forvalues j=2(1)6 {
if ‘absdiff’<abs(diffl[‘j’,1]) {
local absdiff=abs(diff[‘j’,1])
}
}
mat b=b+diff
forvalues sub=1(1) ‘totsub’ {
#delimit ;
mat x=(1,0,0\x2[‘sub’],0,0\
0,1,0\0,x2[‘sub’],0\
0,0,1\0,0,x2[‘sub’])’;
#delimit cr
mat nu=x*b
qui replace nui=nu[i,1] in ‘sub’
qui replace nu2=nu[2,1] in ‘sub’
qui replace nu3=nu{3,1] in ‘sub’
}
qui replace mul=exp(nuil)/(i+exp(nul))
qui replace mu2=exp(nu2)/(i+exp(nu2))
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qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
qui
1

}

replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace

mu3=exp{(nu3) /(1+exp(nu3))
pyl=yil-mul
py2=u2new* (y2-mu2)
py3=w3new* (y3-mu3)
py2=0 if py2==.
py3=0 if py3==.
di=mui*(i-mul)
d2=mu2* (1-mu2)
d3=mu3*(1-mu3)
d2=0 if d2==.

d3=0 if d3==.

local count=‘count’+1

}

if ‘count’>99 {
local rr_Ocheck=0

}

else

{

if ‘check_rr’==1 & ‘check_rr2’==1 {
local rr_Ocheck=1
local rr_0=bl[5,1]

}

else {
local rr_Ocheck=0

}
}
}

qui use thesis_chl2_sat, clear
if ‘rr_icheck’==1 & ‘rr_Ocheck’==1 {

qui replace rr_‘conditional’‘weights’=‘rr_1’-‘rr_0’ in ‘sim’

}

*MI-gee
qui save thesis_chl2_sat, replace
qui drop if xi==

if ‘conditional’==1 {

#delimit ;
qui ice y1 y2 yly2 y3 x2, eq(y2:x2 y1, y3:x2 y1 y2 yly2)

passive(yly2:y1¥y2) m(10) cycles(10)

saving(thesis_chi12_sat_xlel MIGEE) replace;

#delimit cr

}

if ‘conditional’==0 {

#delimit ;
qui ice y1 y2 y3 x2, eq(y2:yl, y3:x2 yl1 y2) m(10) cycles(10)
saving(thesis_ch12_sat_xlei_MIGEE) replace;

$4

#delimit cr
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}
qui use thesis_chl2_sat, clear
qui drop if xi==1
if ‘conditional’==1 {
#delimit ;
qui ice y1 y2 yly2 y3 x2, eq(y2:x2 y1, y3:x2 y1 y2 yiy2)
passive(yly2:y1xy2) m(10) cycles(10)
saving(thesis_ch12_sat_x1e0_MIGEE) replace;
#delimit cr
}
if ‘conditional’==0 {
#delimit ;
qui ice yi1 y2 y3 x2, eq(y2:y1, y3:yl y2) m(10) cycles(10)
saving(thesis_ch12_sat_x1e0_MIGEE) replace;
#delimit cr
}
use thesis_ch12_sat_xlel MIGEE, clear
gen idnew=_n
drop yly2
capture drop pyl-nu3
capture drop k21-w3new
qui reshape long y r, i(idnew) j(t)
gen ti=(t==1)
gen t2=(t==2)
gen t3=(t==3)
gen tix2=t1x*x2
gen t2x2=t2%x2
gen t3x2=t3*x2
#delimit ;
capture qui micombine xtgee y t1 ti1x2 t2 t2x2 t3 t3x2,
i(idnew) t(t) family(binomial) link(logit) corr(umstr) vce(robust) nocons;
#delimit cr
if abs(e(dif))<e(tol) {
local migeel=_b[t3]
local check_migeel=1
}
else {
local check_migeel=0
}
use thesis_chi2_sat_x1e0_MIGEE, clear
gen idnew=_n
drop yiy2
capture drop pyl-nu3
capture drop k21-w3new
qui reshape long y r, i(idnew) j(t)
gen ti=(t==1)
gen t2=(t==2)
gen t3=(t==3)
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gen tix2=t1*x2
gen t2x2=t2%x2
gen t3x2=t3%x2
#delimit ;
capture qui micombine xtgee y ti tix2 t2 t2x2 t3 t3x2,
i(idnew) t(t) family(binomial) link(logit) corr(unstr) vce(robust) nocons;
#delimit cr
if abs(e(dif))<e(tol) {
local migeeO=_b[t3]
local check_migee(O=1
}
else {
local check_migee0=0
}
use thesis_chl2_sat, clear
if ‘check_migeel’==1 & ‘check_migee0’==1 {
qui replace migee_‘conditional’‘weights’=‘migeel’-‘migee0’ in ‘sim’

}

*Bang & Robins (2005)
qui gen h3=y3

if ‘conditional’==1 {

qui logit h3 x2 y1 y2 yly2 w3 if r3==1 & xl==
}

if ‘conditional’==0 {

qui logit h3 x2 y1 y2 w3 if r3==1 & xi==

}

qui predict h2 if r2==1 & xi==

if ‘conditional’==1 {

qui logit h3 x2 y1 y2 yly2 w3 if r3==1 & xi==
}

if ‘conditional’==0 {

qui logit h3 x2 y1 y2 w3 if r3==1 & x1==0
}

qui predict h20 if r2==1 & xi==
qui replace h2=h20 if xi==
drop h20

if ‘conditiomal’==1 {

qui regress h2 yl x2 w2 if r2==1 & x1==
}

if ‘conditional’==0 {

qui regress h2 yi1 w2 if r2==1 & xi==

}
qui predict hil if xi==

if ‘conditional’==1 {

qui regress h2 y1 x2 w2 if r2==1 & xi==
}
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if ‘conditional’==0 {

qui regress h2 yl1 w2 if r2==1 & xl==
}

qui predict hi10 if xi==

qui replace hi=h10 if xi==

drop hi0

qui regress hl x2 if xl==

local mi=_b[_cons]

qui regress hil x2 if xi==

local mO=_b[_cons]

#delimit ;

qui replace br_‘conditional’‘weights’=log((‘m1’*(1-‘m0’))/
((1-‘m1’)*‘m0’)) in ‘sim’;

#delimit cr

*Doubly robust MI
qui save thesis_ch12_sat, replace
qui drop if xl==
qui save thesis_chi2_sat_xlel, replace
if ‘conditional’==1 {
if ‘weights’==1 {
#delimit ;
qui ice yi x2 p2 w2 1p3g2a 1p3g2b y2 yly2 p3g2 p3 w3 y3,
eq(y2:x2 y1 w2, y3:x2 y1 y2 y1y2 w3)
passive(yly2:yl*y2 \ p3g2: (exp(1p3g2a+1p3g2b*y2}/
(1+exp(1p3g2a+1p3g2b*y2))) \ p3:p2*p3g2 \ w3:1/p3)
m(10) cycles(10) saving(thesis_chi12_sat_xlel_DRMI) replace;
#delimit cr
}
else {
#delimit ;
qui ice y1 x2 w2 y2 yly2 w3 y3,
eq(y2:x2 yi1 w2, y3:x2 y1 y2 yly2 w3)
passive(yly2:ylxy2)
m(10) cycles(10) saving(thesis_chi12_sat_xlei_DRMI) replace;
#delimit cr
}
}
if ‘conditional’==0 {
if ‘weights’==1 {
#delimit ;
qui ice y1 x2 p2 w2 1lp3g2a 1p3g2b y2 p3g2 p3 w3 y3,
eq(y2:yl w2, y3:y1 y2 x2 w3)
passive (p3g2: (exp(1lp3g2a+1p3g2b*y2) / (1+exp(1p3g2a+1p3g2b*y2)))
\ p3:p2*p3g2 \ w3:1/p3)
m(10) cycles(10) saving(thesis_chi2_sat_xiel DRMI) replace;
#delimit cr
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else {
#delimit ;
qui ice y1 x2 w2 y2 w3 y3,
eq(y2:y1 w2, y3:yl y2 x2 w3)
m(10) cycles(10) saving(thesis_chi2_sat_xlel DRMI) replace;
#delimit cr
}
}

qui use thesis_chl12_sat, clear
qui drop if xi==
qui save thesis_chi2_sat_x1e0, replace
if ‘conditional’==1 {
if ‘weights’==1 {
#delimit ;
qui ice y1 x2 p2 w2 1lp3g2a 1lp3g2b y2 yly2 p3g2 p3 w3 y3,
eq(y2:x2 y1 w2, y3:x2 y1 y2 yl1y2 w3)
passive(yly2:y1xy2 \ p3g2: (exp(lp3g2a+lp3g2b*y2)/
(1+exp(1p3g2a+1p3g2b*y2))) \ p3:p2*p3g2 \ w3:1/p3)
m(10) cycles(10) saving(thesis_chl2_sat_x1e0_DRMI) replace;
#delimit cr
}
else {
#delimit ;
qui ice yi x2 w2 y2 yly2 w3 y3,
eq(y2:x2 y1 w2, y3:x2 y1 y2 yiy2 w3)
passive(yly2:ylxy2)
m(10) cycles(10) saving(thesis_chi2_sat_x1e0_DRMI) replace;
#delimit cr
}
}
if ‘conditional’==0 {
if ‘weights’==1 {
#delimit ;
qui ice yl1 x2 p2 w2 1p3g2a 1p3g2b y2 p3g2 p3 w3 y3,
eq(y2:y1 w2, y3:x2 yi1 y2 w3)
passive (p3g2: (exp(1p3g2a+1p3g2b*y2) / (1+exp(1lp3g2a+lp3g2b*y2)))
\ p3:p2*p3g2 \ w3:1/p3)
m(10) cycles(10) saving(thesis_ch12_sat_x1e0_DRMI) replace;
#delimit cr
}
else {
#delimit ;
qui ice y1 x2 w2 y2 w3 y3,
eq(y2:y1 w2, y3:x2 y1 y2 w3)
m(10) cycles(10) saving(thesis_ch12_sat_x1e0_DRMI) replace;
#delimit cr
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qui

use thesis_chl12_sat_xlel_DRMI, clear

gen

idnew=_n

drop yiy2

capture drop pyl-nu3
capture drop k21-w3new
qui reshape long y r, i(idnew) j(t)

gen ti=(t==1)
gen t2=(t==2)
gen t3=(t==3)
gen t1x2=t1%x2
gen t2x2=t2*x2
gen t3x2=t3%x2
#delimit ;

capture qui micombine xtgee y tl1 t1x2 t2 t2x2 t3 t3x2,
i(idnew) t(t) family(binomial) link(logit) corr(unstr) vce(robust) nocons;

#delimit cr

if abs(e(dif))<e(tol) {
local drmil=_b[t3]
local check_drmil=1

}

else {

local check_drmii=0

3

use thesis_chi12_sat_x1e0_DRMI, clear

gen

idnew=_n

drop yly2

capture drop pyl-nu3
capture drop k21-w3new
reshape long y r, i(idnew) j(t)

gen ti=(t==1)
gen t2=(t==2)
gen t3=(t==3)
gen tix2=t1*x2
gen t2x2=t2*x2
gen t3x2=t3*x2
#delimit ;

capture qui micombine xtgee

#delimit cr

if abs(e(dif))<e(tol) {
local drmiO=_b[t3]
local check_drmiO=1

}

else {

local check_drmi0=0

}

use thesis_ch12_sat, clear
if ‘check_drmil’==1 & ‘check_drmiQ’==1 {

y t1 t1x2 t2 t2x2 t3 t3x2, i(idnew) t(t)
family(binomial) link(logit) corr(unstr) vce(robust) nocoms;
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qui replace drmi_‘conditional’ ‘weights’=‘drmil’-‘drmi0’ in ‘sim’
}
}
}
}

qui save thesis_chl12_sat, replace



