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Abstract 

Unplanned missing data commonly arise in longitudinal trials. \Vhen the mech­

anism driving the missing data process is related to the outcome under inves­

tigation, traditional methods of analysis may yield seriously biased parameter 

estimates. Motivated by data from two clinical trials, this thesis explores various 

approaches to dealing with data incompleteness. 

In the first part, a Monte Carlo EM algorithm is developed and used to 

fit so called random-co efficient-based dropout models; these models relate the 

probability of a patient's dropout in follow-up studies to some subject-specific 

characteristics such as their deviation from the average rate of progression of the 

disea.<;e over time. The approach is used to model incomplete data from a 5-year 

study of patients with Parkinson's disease. 

The validity of the results obtained using these methods however, depends in 

general on distributional and modelling assumptions about the missing data that 

are inherently untestable as no data were collected. For this reason, many have 

advocated the need for a sensitivity analysis aimed at assessing the robustness of 

the conclusions from an analysis that ignores the missing data mechanism. In the 

second part of the thesis we address these issues. In particular, we present results 

from sensitivity analyses ba.<;ed on local influence and sampling-ba.<;ed methods 

used in conjunction with the random-coefficient-ba.<;ed dropout model described 
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in the first part. 

Recently, a more formal approach to sensitivity analysis for missing data 

problems has been proposed whereby traditional point estimates are replaced by 

intervals encoding our lack of knowledge due to incompleteness of the data. In 

the third part of the thesis, we extend these methods to longitudinal ordinal 

data. Also, for cross-sectional discrete data having distribution belonging to the 

exponential family, we propose using the proportion of possible estimates of a 

parameter of interest, over all solutions corresponding to all sample completions, 

as a measure of ignorance. We develop a computationally efficient algorithm to 

calculate this proportion and illustrate our methods using data from a dental 

pain trial. 
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Chapter 1 

I ntrod uction 

Longitudinal data arise naturally in many areas of statistics, not least medical 

applications. Whenever interest lies in the temporal evolution of a certain phe­

nomena, there are distinct advantages in collecting repeated measurements on the 

same units as opposed to a single one in a cross-sectional approach (Diggle et al., 

1994). For instance, in drug development studies, assessment of the efficacy and 

safety of competing treatments often requires the follow-up of patients over time. 

Such study designs are inevitably expensive both in terms of time required to 

reach any conclusions and effort on the part of the investigator to make sure that 

data are as complete as possible. Despite careful planning however, data collected 

longitudinally are likely to be incomplete for many reasons. For example, in a 

clinical trial a patient may move out of the area and be lost to follow-up or may 

miss one or more of the scheduled visits because of illness. The first consequence 

of this is that, an intended balanced data set (with measurements taken at the 

same time on every patient), becomes unbalanced, and the efficiency of the pa­

rameter estimators is reduced. However, from a data analysis perspective, this 

does not in general constitute a serious problem as many techniques are available 

that can handle unbalanced data sets. A second problem is related to the valid­

ity of the results obtained from an incomplete data set. In the case mentioned 
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above, a patient's moving away from the area where the study is being conducted 

is likely to be unrelated to the study itself and valid conclusions can be obtained 

from analysing the incomplete data (as long as maximum likelihood methods are 

used). In the second example however, the missing data mechanism could well be 

related to the outcome that would have been observed had the patient attended 

the schedule visits and ignoring this could lead to substantially biased estimates. 

The issue of how to deal with missing data in longitudinal studies has received 

the attention of many researchers in the last ten years or so. Early approaches 

focused on obtaining adjusted point estimates by joint modelling the response 

and missing data mechanism whenever the latter is though to be related to the 

outcome of interest. However, it was soon realized that such methods rely on 

inherently untestable assumptions and their scope can only be as part of a sensi­

tivity analysis of the results obtained from an analysis of available cases. In most 

cases, the mechanism driving the missing data process is not known and any ad­

justment will depend ultimately on investigators' subjective beliefs. Thus, there 

cannot be a single solution to the problem valid across different study settings 

and for different data sets. Rather, every single study represents a unique chal­

lenge and input from the investigators, far from being detrimental, will serve the 

purpose of narrowing down possible missing data mechanisms in order to obtain 

scnsible conclusions. Contradictory as it may sound, missing data represent and 

important and integral part of the information collected and just like any other 

data collected, their modelling will require careful thought. 

The work presented in this thesis was motivated by two incomplete data sets 

from phase III clinical trials. The first data set consists of scores of Activity of 

Daily Living (ADL) from a randomised double-blind study comparing the safety 

and efficacy of Ropinirole and Levodopa in the treatment of patients in early 

stagcs of Parkinson's disease (Rascol et aI., 2000). Many patients did not COIIl-
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plete the intended follow-up period of five years. To account for this, a random­

coefficient-based model for the missing data mechanism is jointly fitted with a 

linear mixed model for the response variable using a Monte Carlo Expectation­

Maximization (MCEM) algorithm. This choice for the missing data model and 

the description of the MCEM algorithm constitute the focus of Chapter 3. 

The results from this joint modelling approach are supplemented with sensitivity 

analyses in Chapter 4. In particular two methods are considered: Local Influence 

adapted to the chosen model for the missing data mechanism and a sampling­

based approach using finite-element methods. The latter method is also used to 

account for the effect of rescue medication, as in this trial patients whose symp­

toms were not adequately controlled by the randomised treatment could receive 

supplemental open-label Levodopa. 

The second data set motivates the work presented in Chapters 5 and 6. Data 

consists of pain scores form a double-blind placebo-controlled trial conducted to 

assess the efficacy of two drugs in the treatment of post-surgical pain following 

third molar extraction. There is severe attrition with almost 80% of patients ill 

the placebo arm leaving the study prematurely. To account for the large number 

of missing data, the response variable is modelled using the adaptation of the 

GEE method to longitudinal ordinal data and pessimistic-optimistic bounds on 

parameter estimates are obtained using a modified Fisher scoring algorithm under 

different scenarios for the missing data. This approach is the focus of Chapter 

5. Bounds on parameter estimates are also obtained for continuous data using 

a modified IGLS algorithm and results from the application to the Parkinson's 

disea.<;e trial are presented. 

The estimation of bounds for parameter estimates enables a degree of quan­

tification of the extra uncertainty induced by the unplanned missing data. How­

ever, with discrete data, a more interesting question from a clinician's perspective 
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might be the proportion of pseudo-complete data sets that would result in esti­

mates that are greater or smaller than an user-specified threshold. A method is 

described in Chapter 6 which enables calculation of these proportions based on a 

Fisher scoring algorithm with nested saddlepoint approximations. We also extend 

methods based on exact conditional inference for generalized linear models and 

calculate 'expected' exact levels of significance for coefficients of interest, where 

expectations are taken over the distribution of the missing data. Finally, Chapter 

7 contains a discussion and outlines further areas of research. 

Both data sets are described in more detail in Chapter 2 where Rubin's clas­

sification of missing data mechanisms and the notation used throughout are also 

introduced. 
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Chapter 2 

Background 

This chapter is organized in four Sections. A detailed description of the moti­

vating data sets from a Parkinson's disease and dental pain trial is given in the 

first part. In the second, the taxonomy of missing data mechanisms due to Rubin 

(1976) and Little and Rubin (1987) is introduced. Various approaches proposed 

in the literature for dealing with incomplete data are set within this general 

framework. In Section 3 we review EM-type algorithms available for dealing with 

missing data problems; these underlie some of the methods presented in later 

Chapters. Section 4 contains some concluding remarks. 

2.1 Data 

2.1.1 Parkinson's Disease trial 

Parkinson's disease is a common progressive neurological disorder caused by de­

generation of nerve cells (neurons) in a region of the brain that controls move­

ment. This degeneration results in a shortage of the brain-signaling chemical 

(neurotransmitter) known as dopamine, causing impaired movement. 

There is no cure for Parkinson's disease. Many patients are only mildly 

affected and need no treatment for several years after diagnosis. When symptoms 

grow severe, doctors usually prescribe Levodopa (L-dopa), which helps replace the 
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2.1 Data 

brain's dopamine but has long-term complications such as dyskinesia - i.e. a set 

of abnormal, involuntary movements of the mouth or facial area. As a result 

of this, alternative therapies have been sought. One such drug is Ropinirole, a 

dopamine agonist which works by mimicking dopamine. 

The data considered here corne from a study conducted to assess the safety 

and efficacy of Levodopa and Ropinirole in the treatment of patients in early 

stages of the disease. A total of 268 patients were randomised to receive either 

Ropinirole (179) or Levodopa (89). Patients whose symptoms were not adequately 

controlled, received supplemental open-label doses of Levodopa. The main out­

come was time to incidence of dyskinesia. Other symptoms recorded included 

scores of Activities of Daily Living (ADL) which is the outcome analyzed be­

low. Values range from 0 to 52 with 0 indicating no disability and 52 maximum 

impairment. 

The analysis conducted by the investigators compared mean changes from 

baseline in ADL score among subjects completing the 5-year follow-up and found 

no statistically significant difference between the two treatment groups (p=O.08). 

The aim in the first part of this thesis will be to assess how robust these conclu­

sions are to assumptions about the dropout mechanism while taking into account 

the longitudinal nature of the data collected. 

Figure 2.1 plots the mean profiles of ADL scores using all available data at 

each time point over the 5 years in the two treatment arms. The number of 

patients remaining in the study is shown above the x-axis. In all subsequent 

analyses, data from the first two visits have been ignored since, on average, treat­

ment seems to attain its full effect by the third visit (Figure 2.1). Thus, we refer 

to mea.'mrements made 12, 21, 48, 72, 96, 120, 144, 168, 192, 216 and 210 weeks 

after randomisation. 
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2.1 Data 
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Figure 2.1: Mean ADL score in the Ropinirole and Levodopa arms. 

2.1.2 Dental pain trial 

The data come from a multicentre, double-blind placebo-controlled study which 

randomised patients with moderate to severe postsurgical pain following third 

molar extraction to receive a single oral dose of either a test drug at five different 

increa.sing doses (referred to as Test Doses 1 to 5), a positive control or a placebo. 

A total of 366 patients entered the study and were randomised to one of seven 

groups of roughly 50 each. Among other measures of efficacy, pain relief from 

initial onset of pain was recorded using the following self-rating scale: l=none, 

2=a little, 3=some, 4=a lot and 5=complete. Following administration of study 

mcdication, paticnts provided pain evaluations at 15, 30 and 45 minutes, 1 hour, 

1.5 hours, every hour from 2 to 12 hours, 18 and 24 hours. 
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Figure 2.2: Dropouts (%) in the six arms of the dental pain trial. 
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In our analyses, we focus on the contrasts between placebo and the test dose 

groups and omit patients in the positive control group leaving us wit.h 313 sub­

jects. The primary endpoint defined in the protocol was total pain relief 8 hours 

after randomisation, obtained by summing the 12 time specific measurements for 

each patient. In the analysis conducted by the investigators using this endpoint, 

treated patients showed a statistically significant improvement in total pain relief 

compared to the placebo (p< 0.001), with dose levels two or above apparently 

not giving increa.'ied relief. As a result, Test Dose 2 was considered to be the 

lowest dose clinically effective. However, as with the Parkinson's disease trial, in 

this trial it would be interesting to assess how this conclusion is affected by the 

large number of missing scores and use methods for repeated measurements. 

Figure 2.2 shows the percentage of patients dropping out of the study. By 

24 hours after randomisation, around 90% and 40-70% of the data are missing 

in the placebo and active groups respectively. Both interim missing data and 
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dropouts occur. In the original analysis performed by the drug company, linear 

interpolation was used to impute interim missing values; in case of dropouts, 

the patient's last available measurement was carried forward to obtain a pseudo­

complete data set. 

2.2 Missing data mechanisms 

In a broad sense, all studies that involve randomisation of units to treatments are 

affected by missing data since a unit's response for the treatment(s) it was not 

allocated is unobserved. As long as the intended sample is fully observed, so that 

uIlcertainty about parameter estimates falls within theory of sampling inference, 

the missing mechanism is under the control of the statistician (Little and Rubin, 

1987). Often, however, some of the intended observations will be missing from 

the sample and the mechanism that caused this will be outside the control of the 

statistician. In a longitudinal study for instance, some patients may withdraw 

prematurely or miss some of their intended visits. Failure to adjust the analysis to 

take account of this can lead to bias in parameter estimates and hence misleading 

inferences being drawn. 

We now introduce the general notation used in this thesis. Additional nota­

tion will be described as and when needed. 

Let Y i = (ril,"" rinJT indicate a vector valued random variable of intended 

measurements on subject i and Ri = (Ril , ... , Rn.)T the corresponding vector 

of binary indicators flagging whether the intended measurement at time tj was 

observed (Rj = 0) or not (I4j = 1), j = 1, ... , ni. Suppose further that the 

distribution of R is parametrised by a q-dimensional vector 1/;. In what follows, 

we suppose f(Y i , hi I 0, Xi) specifies a mixed model for Y i and let b i be a vector 

of normally distributed subject-specific random coefficients with mean zero as in 

Laird and Ware (1982). The vector 0 comprises both the variance components 
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and the parameters relating Y i to Xi, the ni x P design matrix of covariates 

assumed to be completely observed. 

Continuing to focus on an individual, but dropping the subscript i for simplic­

ity, two approaches can be distinguished depending on how the joint distribution 

f (Y, R, b I X, 0, 'IjJ) of the outcome variable and response indicators is factor­

ized (Little, 1995; Kenward and Molenberghs, 1999). 

In Selection Models it is assumed that 

f(Y, R, b I X, 9, 'IjJ) = f(Y, b I X, O)f(R I Y, b, X, 'IjJ) (2.1) 

where f(R I Y, b, X, 'IjJ) is the conditional distribution of the missing-data indi­

cators conditioning on the Y and b. Thus the incomplete data can be thought 

of being the result of a process of selection based on the values of Y or b. 

There are circumstances where describing the behaviour of Y across different 

patterns of missingness or dropout might be of interest and seems a more sensi­

ble approach to the problem. Consider for example a follow-up study with four 

intended measurement times common to all subjects. Loss of follow up caused 

by attrition may result in a monotone pattern of missingness i.e. for subject i, 

li,j is observed only if li,j-l is observed j = 2, ... ,4 (Little and Rubin, 1987). 

Then the distribution of the response variable within each of the four patterns of 

dropout might be of interest in its own right. This leads to Pattern-Mixture mod­

els. Different parameters characterise the response variable across the different 

patterns or dropout times; the marginal distribution of the response variable is 

then a mixture over these patterns (Little, 1993). 

This uses the factorization 

f(Y, R, b I X, 0, 'IjJ) = f(Y, b I R, X, O)f(R I X, 'IjJ). (2.2) 
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Within these two approaches, different missing-data mechanisms can be distin-

guished following Rubin (1976), Little and Rubin (1987) and Little (1995). In the 

remainder of this thesis however, we will be concerned only with selection models, 

the main reason being that, as discussed later in Chapter 3, for the Parkinson's 

disease data this seems a more sensible choice. 

Also, explicit restrictions about the distribution of the missing data conditional on 

the observed data have to be made in order to identify parameters in the pattern­

mixture framework; for some classes of identifying restrictions the selection and 

pattern-mixture approaches have been show to be equivalent (Molenberghs et al., 

1998). 

2.2.1 Missing completely at random (MCAR) mechanism 

Under this mechanism, the missing-data or dropout mechanism does not depend 

OIl the observed data or on the missing data (i.e. on the values that would have 

been observed had they not been missing for whatever reason). 

Therefore, partitioning the response vector into the observed and missing com­

ponents yobs and ymiss gives f{R I yobs, ymiss, b, X, 1/J) = f{R I X, 1/J). As long 

as the parameters 0 and 1/J of the response and missing-data model are distinct 

(separability condition), the missing-data mechanism can be ignored when calcu­

lating ML estimates of 0, which can be obtained by maximising the log-likelihood 

of the observed data yobs alone. 

To see this note that the likelihood of the observed data is formally obtained by 

integrating expression (2.1) over the distribution of ymi.~s and b. This can be 

written as 

L{O,1/J I YO/I .• , R, X) = J f(yobs, ymiss, b I X, O)f(R I yobs, ymis,,, X, 1/J) dymissdb 

= J f(yobs, ymiss, b I X, O)f(R I X, 1/J) dymissdb 

= f{Yobs I X, O)f(R I X, 1/J) 
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so that the corresponding log-likelihood is given by 

fobs = log f(yobs I X, 0) + log f(R I X, 1/J). 

Covariates that are predictive of missingness should however be included in the 

model for the response variable (Carpenter et al., 2002). 

An intuitive interpretation is that under an MCAR mechanism the observed 

values of Yare assumed to be a random subsample of the intended complete 

data set conditional on observed covariates (Little and Rubin, 1987). Examples 

include all design experiments where the investigator has complete control over 

the values of R. In most cases however, the investigator is faced with data that 

are not MCAR by design and adopting such a mechanism a posteriori makes 

assumptions that are unlikely to hold. 

2.2.2 Missing at Random (MAR) mechanism 

Here we 8.c;sume that the missing-data mechanism depends on the observed com­

ponent yob.~ of y but not on ymiss or b conditional on yobs. Algebraically, 

Likelihood based inferences are still valid under the separability condition. This 

is because we can write 
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L(O,1/J I yobs, R, X) = J f(yobs, ymiss, b I X, O)f(R I yobs, ymiss, X, 1/J) dymis"db 

= J f(yobs, ymiss, b I X, O)f(R I yob.\ X, 1/J) dymissdb 

= f(yobs I X, O)f(R I yobs, X, 1/J) 

and therefore the observed log-likelihood is 

fobs = log f (yobsl X, 0) + log f(R I yobs, X, 1/J). 
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In longitudinal studies with dropouts, a simple graphical inspection of mean 

profiles for completers and subjects 10Rt to follow-up could rule out an MCAR 

assumption and show more evidence of an MAR mechanism (Carpenter et al., 

2002). In a more formal approach, logistic regression could be used to inves­

tigate if "post-randomisation" Y predict dropout after accounting for baseline 

covariates (Carpenter et al., 2002; Jacqmin-Gadda et al., 1997). 

A more formal test for the null hypothesis of MCAR against the alternative of 

MAR in repeated measurement studies was proposed by Diggle (1989). He COll­

siders at each time point, possibly within each treatment group, whether those 

subjects that are about to drop out of the study are characterized by values of 

the response variable that are significantly different from the average level, the 

latter obtained by considering all available measurements up to that time point. 

A set of p-values is obtained, one for each time point within each treatment group, 

which are tested for departure from a uniform distribution on (0,1). 

In some circumstances data are missing at random by design. For instance, in a 

longitudinal study involving serial measurements of blood pressure, the investi­

gator may decide to withdraw a patient from the study for ethical reasons if his 

blood pressure crosses a threshold (Murray and Findlay, 1988). 

Estimation 

For continuous outcomes in longitudinal studies, any of the proposed methods 

that handle incomplete data can be used to obtain ML parameter estimates if 

the missing-data mechanism is MCAR or MAR (Laird and Ware, 1982; Murray 

and Findlay, 1988; Goldstein, 1986; Schluchter, 1988). There are however some 

subtle implications for the expected information matrix. The main point is that, 

under an MAR mechanism, the expected information matrix should be calcu­

lated over the marginal unconditional joint distribution of Y and R and not the 
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"naive" sampling distribution of yobs (Verbeke and Molenberghs, 1997). In linear 

mixed models for instance, the former is no longer block diagonal with respect 

to fixed effect parameters and variance components as would be the case under 

a MCAR mechanism. Consequently, estimation procedures like the scoring algo­

rithm and estimation of standard errors based on the expected Hessian matrix 

should use inversion of the full matrix and not just of the fixed-effect block. A 

more practical alternative is to obtain the variance-covariance matrix of the fixed 

effect parameter estimates from the observed information. 

For incomplete longitudinal discrete data on the other hand, a standard fit­

ting procedure like GEE requires the more stringent assumption of data missing 

completely at random. This is because only when the probability of missingness 

does not depend on the outcome (either observed or unobserved), do the estimat­

ing equations have mean zero so that an unbiased parameter estimate is given 

by the root of the score function (Liang and Zeger, 1986; Kenward et al., 1994; 

Paik, 1997; Laird, 1988). 

Fitzmaurice et al. (1995), use the EM algorithm to find ML estimates of the 

marginal parameters which are valid under the more relaxed MAR assumption. 

More recently, EM-type algorithms have been proposed for ML estimates for the 

broader class of models known as generalized linear mixed models. These methods 

approximate the E-step of the algorithm, which can be intractable in this context, 

with Monte Carlo or quasi-Monte Carlo integration (McCulloch, 1997; Quintana 

et al., 1999; Shi and Lee, 2000; Pan and Thompson, 1998). 

2.2.3 Nonignorable outcome-based missing-data mechanism 

In this case the model for the missing-data mechanism is 

f(R I yobs, ymiss, b, X, 1/J) = f(R I yobs, ymiss, X, 1/J) 
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and to obtain ML estimates, we need to simultaneously maximise the joint model 

for the response and missing data as the separability condition no longer holds. 

The likelihood of the observed data no longer simplifies as in this case we have 

1(0, '¢ I yobs, R, X) = J f(Yobs, ymiss, b I X, 0) 

x f (R I yobs, ymiss, X, '¢) d ymiss db. (2.3) 

Thus, in this setting, an approach which ignores the missing-data mechanism 

will give biased estimates and, in practice, this bias can often be substantial. 

Testing whether a missing-data process is at random or nonignorable requires 

testing hypotheses about parameters whose standard errors depend crucially on 

the distribution chosen for the missing data. However, this distribution has 

to be assumed, because no data were observed. Thus, in practice, we cannot 

differentiate between the two scenarios. Indeed it is now generally agreed that 

the role of non ignorable models is to check the sensitivity of the results from 

a MAR approach (Verbeke and Molenberghs, 1997; Kenward, 1998; Carpenter 

et al., 2002). 

Diggle and Kenward (1994) propose a modelling framework to allow for infor­

mative dropouts in longitudinal studies. A logistic model relates the probability 

of dropping out at each time point to the history of the measurement process up 

to and including dropout. The likelihood is maximised using the simplex algo­

rithm. 

The performance of the approach is tested using simulation. Data are simulated 

under different assumptions about the dropout mechanism (completely at ran­

dom, at random and informative). The results show that as long as the dropout 

mechanism is correctly specified, the method yields unbiased parameter estimates. 

In the discussion of the paper, Little, Rubin and Laird point out that the method 
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might not be robust to misspecification of the dropout model and/or the distri­

bution of the response, and that the use of likelihood ratio tests to distinguish 

between different models can be misleading. Thus, as Verbeke and Molenberghs 

(1997) propose, the main use of these models is to assess the robustness of in­

ferences from MAR analyses to scientifically plausible nonignorable mechanisms. 

This point is clearly illustrated by Kenward (1998). He explicitly considers the 

effect of distributional assumptions and in particular the assumption of multivari­

ate normality for the response variable and how outliers under this assumption 

cause the models to appear informative. This is because the model tends to im­

pute atypically low (for the particular data set considered) values for the missing 

observations in order to counterbalance the presence of the "outliers". The infor­

mative mechanism is no longer supported if the outlying observations are deleted 

or if t-distributions are used instead of the multivariate normal. 

Within the same modelling framework, the role of distributional assumptions 

ha.s bcen further investigated by Attay (1999) who used the Stochastic EM algo­

rithm (Dielbolt and Celeux, 1993) to fit the models. The results reinforce those of 

Kenward (1998); in a variety of settings the choice of response distribution, with 

its implicit characterization of outliers, influences whether ML methods detect 

non-ignorabili ty. 

Within a Bayesian framework, Carpenter et al. (2002) fit an outcome-based 

model to investigate the impact of missing data from a longitudinal asthma study. 

They assess the sensitivity of the results from a MAR analysis by allowing the 

coefficient which relates the probability of missing a visit to the unseen measure­

ments in the dropout model to vary within a plausible range of values, with zero 

corresponding to MAR. The attraction of this approach is that a flexible class of 

models can be fitted easily using available software and can be used to explore the 

effect of various missing-data mechanisms in a fairly routine way. The authors 
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use vague priors, so that their estimates are close to ML estimates. Again, the 

inferences are potentially sensitive to the distributional assumptions. 

For binomial responses Ibrahim and Lipsitz (1996) propose a method for esti­

mating parameters in binomial regression where some measurements are missing 

and the missing mechanism is thought to be nonignorable. The latter is mod­

elled using logistic regression and the approach is fitted using the EM algorithm 

by the method of weights. In the E-step, the expectation of the complete-data 

log-likelihood is obtained as a weighted sum with weights given by conditional 

binomial probabilities conditioning on the missing indicator; these are readily 

calculated given current estimates of all relevant parameters. The maximization 

step involves standard fitting routines for generalized linear models that allow for 

weights. 

Molenberghs et al. (1997) extend the Dale model for longitudinal ordinal data 

to allow for a nonignorable dropout mechanism. Maximum likelihood parameter 

estimates are obtained using the EM algorithm. The response and dropout models 

are assumed independent conditioning on the complete data and this results in a 

straightforward maximization step. 

2.2.4 Nonignomble mndom-coefficient-based missing-data mechanism 

Although outcome-based selection models have a direct and intuitive interpreta­

tion, there are many examples in the literature of so-called random-co efficient­

ba.sed models. 

Here it is assumed that f(R I yobs, ymi88, b, X, -rP) = f(R I b, X, -rP). Note that 

fRlb , though not as explicit as in the outcome-based selection model, consti­

tutes an informative dropout mechanism as the dropout distribution depends on 

both Yi ll., and Yfli88 through the (unobserved) random effects (Hogan and Laird, 

1997). To see this, note that, unless f (R I b, X, -rP) = f (R I X, -rP), the model for 
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dropout R depends on ymiss as 

f (R I YOb8, ymis8, X, 't/J) = J f (R I yobs, ymiss, h, X, 't/J) f (h I yobs, ymiss) db 

= J f (R I b, X, 't/J) f (b I yobs, ymiSS) db. 

There are circumstances where this approach seems more sensible, especially in 

longitudinal studies. The probability of missing a visit or dropping out for in­

stance, can be related to rate of change over time of the outcome rather than 

directly to a specific (potentially missing) outcome, especially when individual 

measurements are highly variable (Hogan and Laird, 1997). 

\Vu and Carroll (1988) propose a method for jointly modelling the rate of 

change of a response variable and a primary informative right-censoring process 

in follow-up studies where the main focus is on contrasting mean slopes across 

treatment groups. For a primary right-censoring process they intend loss of follow­

up caused by death or withdrawal although the proposed method can be easily 

extended to account for secondary right-censoring mechanisms. 

The response variable is modelled using a linear mixed model with random in-

terccpts and slopes and the probability of death or withdrawal is related to 

the subject-specific random coefficients using probit regression. The method is 

compared to simple Unweighted Least Squared (U\VLS) and Generalized Least 

Squared estimates (GLS) of the rate of change; a simulation study shows that 

these lead to biased estimates of the group mean slopes and between-group 

differences in the presence of informative right-censoring. 

Wu and Bailey (1989) build on these ideas. They demonstrate that, under 

the model of Wu and Carroll, the conditional expectation of the random slopes 

gi ven the dropout time is a monotonic increasing (decreasing) fUIlction of the 

dropout time if the parameter that relates the latter to the random slope in 
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the probit model is negative (positive). Therefore, the subject-specific Ordinary 

Least Squares (OLS) estimates of the random slopes are related to the (subject­

specific) dropout time using a polynomial function of degree L, where L is chosen 

using stepwise regression and analysis of covariance techniques. It is assumed 

that the variances of the OLS estimates vary according to time of dropout and 

treatment group. If these variances are known, a Linear Minimum Variance 

UnBiased estimator (LMVUB) of the mean group slope is obtained as a weighted 

average of OLS estimates within each group. A second estimator of the mean 

group slope is obtained as weighted average of the individual slope estimates 

with weights found to minimize the :Mean Squared Error (Linear Minimum MSE 

estimator or LMMSE). 

\Vang-Clow et al. (1995) compare these estimation methods in a simulation 

study including maximum likelihood and complete-case analysis. Predictably, 

the results depend heavily on using the correct dropout model; in real situations, 

though, this cannot be determined from the data. Nevertheless, they report that 

UWLS estimates are most inefficient though unbiased under informative pro­

cesses. As we would expect, ML gives the best results under a MAR process 

in terms of bias and standard errors but biased estimates under an informative 

dropout mechanism. LMVUB and LMMSE estimators perform well in terms of 

bias under a nonignorable dropout process but give large standard errors COlIl­

pared to ML and complete-case analysis. Follmann and Wu (1995) generalize 

the results of Wu and Bailey to other link functions and distributions within the 

exponential family. They show that the expectation of the conditional distribu­

tion of the random effects given the response indicators is a monotonic function 

of the response indicators if these are conditionally independent given the ran­

dom effects. This is almost always the case for the kind of models considered 

here. Therefore an approximate conditional model can be fitted where the usual 
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marginal (zero) mean of the random effects in the response model is replaced with 

an approximation to the conditional expectation expressed as a linear function of 

the response indicators. The approach has been adapted to longitudinal binary 

data by TenHave et al. (1997). 

Subsequently, Follmann and Wu (1999) show that, for the same approximate 

conditional model, the expectation of the conditional distribution of the random 

effects can be approximated by considering linear functions of the sufficient statis­

tics of the missingness process. In the case of monotone missingness for instance, 

these are simply the time of dropout and the sum of all possible dropout times 

after this. 

A different approach was proposed by Schluchter (1992) and DeGruttula and 

Tu (1004). They assume that the random effects and dropout indicator have a 

joint multivariate distribution. This allows model fitting using the ErvI algorithm 

treating the unobserved random coefficients as missing data. In the E-step, ex­

pectations of the complete-data missing sufficient statistics are obtained taking 

advantage of the assumed multivariate normality. A slight modification extends 

the approach to individuals that completed the follow-up and thus have unob­

served dropout time; this involves finding conditional moments of the truncated 

normal distribution. 

Similar models were considered by Touloumi et al. (1999). The response vari­

able is modelled using a linear mixed model and the dropout indicator using a 

log-normal model. Like Schluchter (1002), Touloumi et al. assume that the log­

survival time residuals and the subject-specific random intercept and slope have 

a trivariate normal distribution with the form of the covariance matrix governing 

the informativeness of the dropout mechanism (whether or not it allows depen­

dence between the former and the latter). 

Maximum restricted likelihood estimates are obtained using an adaptation of the 
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Restricted Iterative Generalized Least Squares (RIGLS) algorithm (Goldstein, 

1986, 1989). Both the fixed and random effects design matrices are modified to 

take the parameters of the survival model into account. The RIGLS algorithm is 

then implemented on this enlarged model. A slight modification is made for pa­

tients with censored survival times and this involves a nested EM algorithm. At 

each iteration the E-step finds the conditional expectation of survival time given 

the data and the fact that it has to be greater than the observed censored time 

exploiting properties of the conditional moments of the truncated normal distri­

bution. In the M-step new values of the parameters are obtained via RIGLS. The 

application of the model (in both the uninformative and informative versions) is 

illustrated using data on CD4 count data. 

A simulation study is also performed, with true values based on the analysis of the 

actual data. Population slope estimates from the model that ignores the primary 

right-censoring process are biased. This is because, broadly speaking, these esti­

mates are weighted averages of the individual slopes with weights proportional to 

the number of observations available on each subject (Wu and Carroll, 1988); this 

tends to overestimate or underestimate the population parameters by not giving 

much weight to patients that drop out prematurely and have fewer measurements 

taken. 

Goldstein (1999) proposes a bivariate multilevel model for jointly modelling 

the response and missing-data indicator in repeated measures study. Different 

subject-specific random effects are considered for the outcome variable and the 

response indicator and these are assumed to be correlated. A small simulation 

study shows that the approach corrects the bias from a naIve approach which ig­

nores the missing-data mechanism and works best if there is substantial variation 

at the individual level in the probability of missingness. 
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2.3 EM-type algorithms for missing data problems 

In the previous Section, the EM algorithm has emerged as the most commonly 

used tool for dealing with missing data problems. Note the term "missing data" is 

applied here in a broader sense. It includes, for instance, latent variables; indeed 

the EM algorithm can be applied to a variety of problems provided that they 

can be formulated as missing data problems. As such the EM algorithm has an 

important role to play, since, when missing data are present, direct maximum 

likelihood estimation can became impossible because obtaining the likelihood 

of the observed data involves an intractable integral. Little and Rubin (1987) 

present examples of these difficulties in the case of multivariate data with general 

patterns of missingness. 

Below we describe the EM algorithm. Apart from its "original" version due 

to Dempster et al. (1977) (hereafter DLR), other variants have been proposed 

in an attempt to overcome limitations, especially the difficulty of perfoming the 

E-step. These extensions are, broadly, the Stochastic, Monte Carlo and quasi 

Monte Carlo EM algorithms. 

2.3.1 The EM algorithm 

Denote by f(8 I Y) the log-likelihood function of the complete data and let 

f(ymiss I yobs, 8) be the conditional distribution of the missing data given the 

observed data. We wish to calculate ML estimates of 8 by maximising the ob­

served log-likelihood f(8 I yobs). 

Using the factorization 

f(Y I 8) = f(Yobs, ymis81 8) = f(y ob8 1 8)f(ymi .• s I yobs, 8) 
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C(O I yobs) can be written as 

C( 0 I yobs) = C( 0 I Y) - log f (ymiss I yobs, 0). (2.4) 

Taking the expectation of both sides of (2.4) with respect to the conditional 

distribution f(ymiss I yobs, 8) where 8 is the current estimate of the vector 0, we 

write 

C(O I yobs) = Q(O 18) - H(O 18), (2.5) 

where 

and 

JI(O 18) = J log f(ymi8sl yobs, O)f(ymiss I yobs, 8) dymiss. 

3D 

Notice that 0 and 8 play fundamentally different roles in both Q(O 18) and JI(O 18). 

Then we have: 

TilE EM ALGORITHM 

1. E-step: at step t, find 

~(t+I) . . ~(t) 
2. 1\1-step: find (J that maXImIses Q((J I (J ); 

3. iterate between step 1 and 2 until convergence. 

Thus, the EM algorithm replaces maximisation of the observed log-likelihood 

with successive maximisations of the expected value of the complete data log­

likelihood where the expectation is taken with respect to the conditional dis­

tribution of the missing data given the observed data and current parameter 

estimates. 



2.3 EM-type algorithms for missing data problems 

DLR show that each step of the algorithm increases the likelihood of the 

observed data. In fact at the generic iteration t + 1 we have 

f( {P+1) I yobs) _ f( O(t) I yobs) = [Q( 0(1+1) I O(t)) _ Q( O(t) I O(t)) ] 

_ [}J (0(1+1) I O(t)) _ If (O(t) I o(t))] . 
(2.6) 

The first term on the right-hand side of (2.6) is non-negative from the M-step 

of the algorithm and the difference of the H functions can be shown to be negative. 

Thus, if the sequence {O(t)} converges, it converges to a local maximum of the 

observed log-likelihood fobs = 1(0 I yobs). Furthermore, considering the second 

derivatives of both sides of (2.4) with respect to 0 and taking the expectation 

with respect to f(ymissl yobs, 8) we can write 

l
obs [J2 A 82 

A 

J(O y ) = - 828 Q(8 I 8) + 820 H (8 I 8). 

The latter expression is an important result as it states that, in the presence 

of missing data, the observed information is the difference between the complete 

information and the missing information. 

If the log-likelihood of the complete data is linear in the missing data then the 

E-step reduces to the intuitive idea of imputing mean values for the missing data. 

In general, if the response distribution belongs to the exponential family, imple­

mentation of the algorithm only requires substitution of the missing sufficient 

statistics with their expected values, again calculated with respect to the con­

ditional distribution of the missing data given the observed values and current 

parameter estimates. 

The EM algorithm has three well-documented limitations (Celeux et al., 1995; 

McCulloch, 1997; McLachlan and Krishnan, 1997). 

First it can converge very slowly depending on the amount of missing information. 
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2.3 EM-type algorithms for missing data problems 

Secondly, the E-step can be difficult to carry out if high dimensional integration 

is involved or no algebraic form of the integral is available. This is particularly 

true when the algorithm is used to fit informative missing-data models. The 

conditional expectation of the missing data in these circumstances is known only 

up to a normalizing constant, resulting in an intractable E-step. Thirdly, the 

algorithm is only guaranteed to converge to local maxima, hence can be sensitive 

to the chosen initial values. 

2.3.2 The Stochastic EM algorithm 

Many authors have proposed modifications of the EM algorithm in an attempt 

to cope with the above problems, especially the second. One elegant algorithm is 

the Stochastic EM algorithm (SEM) (Dielbolt and Celeux, 1993; Bock, 1983) in 

which the expectation step is replaced by a stochastic step where values from the 

corresponding conditional distribution are sampled to form a pseudo-complete 

data set. Thus the algorithm is as follows: 

TIlE STOCHASTIC EM ALGORITHM 

1. S-step: at step t generate a pseudo-complete data set by drawing ymi .. s from 

f(ymissl yobs, O(t)); 

~(t+l) 
2. M-step: update () to () as the ML estimate of the likelihood of the 

pseudo-complete data obtained in step 1; 

3. iterate between step 1 and 2 until convergence. 

Note that in this case convergence of parameters estimates is not pointwise as 

in the EM algorithm but rather in distribution. After observing convergence, the 

mean of the last few iterations is generally taken to be the final estimate; alter­

natively the value corresponding to the maximum of the observed log-likelihood 

could be used (see Ip in Gilks et al. (1996), eh. 15). The SEM algortihm has 

additional advantages. Its stochastic nature prevents the algorithm getting stuck 
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2.3 EM-type algorithms for missing data pmblems 

around insignificant local maxima and its speed of convergence is generally more 

satisfactory (Celeux et al., 1995). 

2.3.3 The Monte Carlo EM algorithm 

Wei and Tanner (1990) propose a Monte Carlo implementation of the E-step 
~(t) 

where Q(818 ) is replaced by a average based on a sample of size m (m » 1) 

from f(ymiss 1 yobs, {)(t)). 

Thus the algorithm is: THE MONTE CARLO EM ALGORITHM 

1. Sampling step: at step t form m (m » 1) pseudo-complete data sets 

YI ... y m by drawing values from f(ymiss 1 yobs, {)(t)); 
~(t) 

2. Monte Carlo E-step: approximate Q( 81 () ) by 

~(t+l) A ~(t) 
3. M-step: find new estimates () that maximise Q((} 1 () ); 

4. iterate between steps 2 and 3 until convergence. 

'When Tn = 1, the MCEM algorithm reduces to the SEM algorithm. As 

m -+ (Xl the MCEM algorithm behaves like the EM algorithm. The difficulty 

with the MCEM algorithm is the choice of m. Various authors (Wei and Tanner, 

1990; McCulloch, 1997; Quintana et al., 1999) suggest choosing m to be small 

initially, to take advantage of the robustness of the SEM to starting values, and 

then increasing it. 

As mentioned in Chapter 1, recently MCEM algorithms have been proposed 

for ML estimation in the context of Generalized Linear Mixed Models (GLM1'1) 

and latent variable models where the random effects or latent variables are viewed 

as missing data (McCulloch, 1997; Quintana et al., 1999; Shi and Lee, 2000). 
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2.3 EM-type algorithms for missing data problems 

2.3.4 The quasi-Monte Carlo EM algorithm 

In general, the asymptotic rate of approximation of Monte Carlo integration is 

O(m-I/2) where m is the sample size. In an attempt to improve on this, Pan and 

Thompson (199S) propose the use of quasi-Monte Carlo approximations to the 

E-step. The idea is to deterministically choose a set of Cumulative-Distribution­

Function (CDF)-representative points which are used as integration nodes. These 

are chosen to minimize the discrepancy which is a measure of the absolute error 

made in the approximation. 

For an integral on the q-dimensional unit cube Cq the discrepancy correspond­

ing to a set of integration nodes Pm is 

D(Pm ) = sup I Um(x) - U(x) I 
xECq 

where U(x) is the cumulative distribution function of the uniform distribution 

over C q and Um(x) is the empirical cumulative distribution of the set of points 

Pm. Points with the smallest discrepancy lead to a rate of approximation of 

order O((logm)q-ljm). Sets of points with discrepancy close to this optimum 

value have been tabulated and are available (Fang and Wang, 1994). Among 

these, some are known as Good Lattice Points (GLP). Notice that for large q 

it could take an impractically large sample size m for the asymptotic errors to 

be relevant. However, in empirical studies, quasi-Monte Carlo integration pro­

duces significantly smaller biases compared to crude Monte Carlo with much less 

computational effort (Pan and Thompson, 1995). 

For q = 2, m = 610 GLP are represented in Figure 2.3(a). CDF­

representative points b* from the standard bivariate normal distribution N2 (O, h) 

can be obtained from the inverse distribution function of N(O, 1) on each coor­

dinate of the GLP (Pan and Thompson, 1995). The latter can then be used to 
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Figure 2.3 : (a) Good Lattice Points on the unit square (1l1= 610) ; (b) ' TI alldolll ' 
points from a bivariate Honnal distribut ion obtained using (a); (c) Randolll po ill t~ 

from a bivariate normal distribution obtained using the random number generator 
of Splus®. 

oh tain COF-representa tive points b from the generic bivarite normal distribution 

N2(0,~) as b = ~1 /2b* where ~ 1 /2 is the Choleski decomposit ion of ~. Fig­

ure 2.3(b) shows COF-representative points from a normal distributioll N2( O, D ) 

where 

D = (3 o.s) 
0.8 3 

alongside those obtained from the random number generator in Splus® (c). 

The fonner are clearly more COF-representative nodes of integration in the 

sense that the cover the area of illtegra tioll in a more efficient way. We will 

explore this further in Sectioll 3. 2. 

44 



2.4 Discussion 

2.4 Discussion 

The presence of missing data introduces ambiguity into the analysis that goes 

beyond the usual statistical imprecision. Such conceptual problems are com­

pounded by additional technical problems. The easiest approach of ignoring the 

missing data process or, in a follow-up study, discarding subjects with incomplete 

observations makes strong assumptions about the missing-data mechanism that 

are frequently both inappropriate and misleading. 

On the other hand, a model for the missing-data mechanism requires careful 

thought and should be developed in the light of what seems a plausible nOll­

response process within the context of a particular study. 

Outcome-based models are intuitively appealing as they relate the probability of 

non-response to the unseen value of the response variable. The results from this 

approach are usually straightforward to interpret. However, as argued in Sub­

section 2.2.4, in some circumstances random-co efficient-based models are a more 

sensible choice. 

A related problem is the choice of fitting procedure. Many of the strategies dis­

cussed above are problem-specific although EM-type algorithms have emerged as 

very flexible tools. 

In the next chapter, the MCEM and quasi-MCEM algorithms are used to 

fit random-coefficient-based models for informative dropout processes. The ap­

proach is illustrated with Activities of Daily Living (ADL) data from the Parkin­

son's disea.se trial. 
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Chapter 3 

Monte Carlo and quasi-Monte Carlo EM 

algorithms for random-coefficient-based dropout 

models 

In longitudinal studies of neurological disorders, patients are typically followed 

over several years and measurements of their mental and physical status are 

recorded at regular intervals in order to assess the progression of the disease and 

compare the efficacy of different treatments. Many patients, however, will not 

complete the study and if the reason for a patient's drop-out is related to an 

unseen outcome then, as mentioned in the previous Chapter, failing to model 

this could seriously bias the parameter estimates. 

Generally in such studies, disease progression causes slow deterioration in 

an individual's physical and mental abilities which can lead to premature with­

drawal. Therefore it seems sensible to relate the probability of dropping out to 

underlying disease progression, perhaps by expressing it as a function of the indi­

vidual's own random variation about the overall mean rate of change. In Chapter 

2, these models were termed nonignorable random-co efficient-based models (here­

after NIRCBM). They assume separate models for the response variable and the 

dropout indicator which share a common set of random coefficients. 
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3.1 Description of models 

In this Chapter we show how the Monte Carlo and quasi-Monte Carlo EM al­

gorithms (MCEM and quasi-MCEM respectively), described in Subsection 2.2.3, 

can be used to fit NIRCB models (Verzilli and Carpenter, 2002a). The methods 

are illustrated using data from the Parkinson's disease trial described in Subsec­

tion 2.1.1. 

We start by describing the models used for modelling the response variable (ADL 

scores) and the dropout mechanism separately; the algorithms used to fit them 

jointly are illustrated in Section 3.2 where results from a small simulation study 

are also shown. Section 3.3 presents the results from the application of the pro­

posed approach to the real data and Section 3.4 gives concluding remarks. 

3.1 Description of models 

The outcome variable considered here consists of ADL scores from the Parkin­

son's disease trial of Subsection 2.1.1; Figure 2.1 on page 23 shows, at each time 

point, the mean ADL score for the Ropinirole and Levodopa arms using all avail­

able data. A random selection of patient profiles are also plotted in Figures 3.1 

and 3.2 for the Ropinirole and Levodopa arm respectively. Here, we ignore data 

from the first two visits since, as mentioned in Subsection 2.1.1, treatment seems 

to attain its full effect only by the third visit (Figure 2.1). Thus, we model mea­

surements made at 12, 24, 48, 72, 96, 120, 144, 168, 192, 216 and 240 weeks after 

randomization. 

There were 83 patients still in the study at the third visit in the Levodopa 

arm and 167 in the Ropinirole arm. Of these, 31 (37%) and 80 (48%) did not 

complete the study respectively. Dropout rate did not vary greatly across the 

period considered (mean number of dropouts at each visit 11.1, SD 3.17) with a 

slight decrease towards the end of the study. 
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Figure 3.1: Random selection of individual profiles from the Ropinirole treatment 
arm. 

For the generic subject i with ni observations, let yibs be the vector of ob­

served ADL scores. Further, let Ri be a vector of dummy variables flagging 

whether or not the subject is still in the study at each visit with 1 indicating 

dropout. This has length (ni + l)d; (ni)l-d; where di equals 1 if the subject with­

drew prematurely from the study and is 0 otherwise. After a patient drops out, 

we assume that the probability of re-entering the study is equal to zero. Few 

patients had interim missing data with at most two consecutive measurements 

missing. Here we consider all data available from each patient and therefore our 

definition of dropout time implies that no further measurements are available 
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Figure 3.2: Random selection of individual profiles from the Levodopa treatment 
arm. 

after this time point. \Ve indicate with yfisS the first unseen measurement that 

would have been taken at visit ni + 1 had the patient not dropped out. Recall 

from Subsection 2.1.4 that in NIRCBM the joint distribution of Yibs
, yriss, Ri 

and the set of random effects hi given some covariates Xi is factorized as 

(3.1) 

The observed likelihood is then obtained by integrating (3.1) over the distribution 
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3.1 Description of models 

We further assume that the elements of both Yi and R are conditionally 

independent given the random effects, that is 

ni 

fy/b (Yilbi, Xi) = II fy/b (Yijlbi, xd (3.2) 
j=l 

and 
(ni+ 1)di (ni)l-d; 

fRlb (Rilbi, Xi) = II fR/b (~jlbi' xd· (3.3) 
j=l 

We now illustrate separately the models for the ADL scores and the dropout 

mechanism before describing the modified MCEM algorithm used to fit them 

jointly. 

3.1.1 Linear mixed model for ADL scores 

We first chose an appropriate form for the covariance matrix by fitting various 

structures with a saturated model for the mean structure. The saturated mean 

structure is obtained by assuming different parameters for the mean ADL score 

at each visit time within each treatment group. 

Table 3.1 shows the results where dashes distinguish the models used for 

the between and within subject sources of variation. Although the heteroge­

neous Toeplitz structure (see Verbeke and Molenberghs (1997)) seems to fit well, 

the more parsimonious covariance structure corresponding to random intercepts 

and random slopes alone exhibits an acceptable fit (eighth row of Table 3.1). 

This is confirmed by Figure 3.3 where the variance functions corresponding to 

the different structures are plotted alongside the sample variances. Therefore, 

mean ADL scores have been modelled using a linear mixed model with inter­

cepts and slopes varying randomly across subjects. Quadratic trends were also 

considered but did not improve the fit significantly. 
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3.1 Description of models 

Model -2 Log-lik. AIca SBCb df 

Unstructured 9915 -5035 -5253 78 

Heter. Toeplitz 9990 -5018 -5082 23 

RIc /RSd 
- Toeplitz 10053 -5041 -5083 16 

RS - Toeplitz 10057 -5041 -5078 14 

RI/RS - Exp. Ser. Corr. 10155 -G049 -5065 5 

RI/RS - Gauss. Ser. Corr. 10155 -5083 -5100 5 

RI/RS - Power Ser. Corr. 10087 -5018 -5062 5 

RI/RS 10155 -5081 -5092 4 

RI 10489 -5246 -5252 2 

Table 3.1: Results of fitting different covariance structures to the ADL score 
data with a saturated mean structure. a Aikake Information Criterion; bSwartz 
Bayesian Criterion - high values indicate a better fit; crandom intercepts; 
drandom slopes. 

60 100 

Sample variances 
Filled (RI + RS + power) 
Fitted (RI + RS + g8U) 
Fitted (RI+RS) 
Fitted H Toeplltz 

160 200 

Time since start of study(weeks) 

250 

Figure 3.3: Sample variances and fitted variances for different covariance struc-
tures. See Table 3.1 for explanation of abbreviations in legend. 
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3.1 Description of models 

Finally, the variance structure is assumed the same across the two arms. 

Baseline ADL score has been included as a covariate. We found no statis-

tically significant overall treatment-by-time interaction (p=0.97) thus the model 

considers a common fixed slope across the two treatment arms. 

For the generic i-th subject and j-th visit, the model is 

Yij = f30 + biO + (f31 + bi1)weekj + f32treati 

+ f33BaseADLi + eij (3.4) 

where i = 1, ... ,250, j = 1, ... ,ni, treati = {I (Ropinirole) , O(Levodopa)}, eij '" 

N (0, 0'2), hi '" N2 (0, D) and 

D= 
( 

0'2 
b;o 

O'b;o,bil 

Parameter estimates for model (3.4) are reported in the second column of Ta-

ble 3.4 on page 64. 

3.1.2 A random-coefficient-based model for the dropout mechanism 

Simple preliminary analyses can be useful for exploring the dropout process (Car­

penter et al., 2002). Figure 3.4 shows the mean ADL scores (95% CI) for patients 

still in the study at the next visit and for those who are about to drop out. With 

few exceptions, the latter show a higher mean ADL score than the former, which 

suggests that patients with higher mean ADL scores are more likely to withdraw 

from the study prematurely. This is a clinically plausible scenario since high ADL 

scores indicate increased difficulty with the activities of daily life. 

Logistic regression has been used to identify possible predictors of dropout 

by five years from baseline covariates, person-specific intercept and slope and the 
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last observed ADL score (Table 3.2). The results indicate that the initial level 

of ADL and the rate of progression over time are the principal predictors; these 

being the only ones retained in a stepwise selection of covariates. 

Since we have a monotone pattern of missingness and long intervals be-

tween successive measurements, we model the dropout mechanism using a dis-

crete time proportional hazards model (Aitkin et al., 1990). We include the 

explanatory variables highlighted in the previous paragraph, namely baseline 

ADL and the subject-specific random slope bil . 



3.1 Description of models 

95 % CI 
Variable OR 

Lower Upper 
P-value 

Levodopa/Ropinirole 0.65 0.38 1.12 0.12 

Age 1.02 0.99 1.04 0.25 

Age at onset of desease 1.01 0.98 1.04 0.39 

Baseline AD L 1.06 1.01 1.12 0.02 

Last observed ADL 0.99 0.95 1.04 0.67 

PD stagea 1.49 0.88 2.53 0.14 

Selegilineb 1.23 0.75 2.03 0.41 

Male/Female 1.22 0.73 2.05 0.45 

Random interceptC 1.14 1.01 1.28 0.03 

Random sloped 1.26 1.06 1.49 0.01 

Table 3.2: Parameter estimates from univariate logistic regression for the proba­
bility of dropout by year 5. aStage of PD disease measured on Hoehn and Yahr 
scale; bConcomitant treatment with Selegiline (1 =yes, O=no); cAs calculated from 
model (3.4); dAs calculated from model (3.4) and per 0.01 increase. 

The generic i-th subject either drops out at time ti = weekj or is finally censored 

at time ti = weekll . Note that the discrete time proportional hazards model 

corresponds to a generalized linear model where the censoring indicator has a 

Bernoulli distribution with complementary log-log link function. 

In fact, denoting by h, Sj and hj the probability mass, survivor and hazard 

function of the resulting discrete survival distribution, we have 
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Sj+l = 1- h. 
s. J, 

J 

i i 

IT Sr+1 IT 
Sj+1 = - = (1- hr ). 

r=l Sr r=l 

The contribution to the likelihood for subject i is then 

j=l 

and for the proportional hazards model we have 

h .. - 1 _ Sij+l 
~J -

Sij 

= 1 - exp [- exp (,B'xd {!fo (t j+1) - !fo (tj)}] 

= 1 - exp [- exp (,B'Xi + 1'j)], 

The model for the dropout mechanism can then be written as 

Pr (~j = 1) = Pr (ti = weeki I ti > weekj_d = hij 

= 1 - exp [- exp (ao + a1treati + a2bi1 + cx3BaseADLi + 1'1)] , 

(3.5) 

where i = 1, ... ,250, j = 1, ... , (ni + 1)d; (ni)l-di and 1'1 are a set of contrasts for 

weekI, l = 2, .. , , ti . 
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3.2 Monte Carlo EM and quasi-Monte Carlo algorithms for random-coefficient-based 

dropout models 

Theoretically, the EM algorithm could be used to find the ML estimates of the 

parameters in (3.4) and (3.5). However, the E-step would involve finding the 

expectation of the complete data log-likelihood 

(3.6) 

where the expectation is with respect to the distribution of the random effects 

b i (the missing data in this perspective) given the data, the vector of censor­

ing indicators R and current estimates of /3, a, ;, (72 and D. The intractable 

conditional distribution of bly, R makes direct calculation of this expectation im­

possible; hence the basic EM algorithm cannot be used. 

As discussed in Subsection 2.2.3, McCulloch (1997) proposes a Monte Carlo 

implementation of the E-step in the context of generalized linear mixed models. A 

nested Metropolis-Hastings (MH) algorithm gives samples of the random effects 

b i which are then used to calculate the Monte Carlo approximation to (3.6). 

This approach can be readily modified to incorporate an informative dropout 

mechanism. Our target distribution can be written as 

To sample from (3.7) using a MH algorithm involves choosing a proposal distri­

bution h (bi ) and accepting candidate values b~k) with probability 

( 

( (k) ) f ( I (k) ) ((k)1 ) ((k-l») ) . fylb Yil hi ,Xi Rib Ri hi ,Xi fb hi D h hi 
mm 1 . 

, (I (k-l) ) f ( I b(k-l) ) ((k-l)1 ) (b(k») fylb Yi b i ,Xi Rib Ri i ,Xi fb bi D h i 
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Taking h (.) == fb (.) i.e. choosing the candidate distribution to be the marginal 

distribution of the random effects, simplifies considerably both the processes of 

drawing new candidate values and calculating the acceptance probability. The 

latter reduces to the ratio of the likelihoods corresponding to b~k) and b~k-l). 

The MCEM algorithm is thus: 

1. Initialization: given initial values for {3, a, [, (]'2 and D obtain a sample 

from the target distribution (3.7) using the MH algorithm. 

2. M-step: given a sample of size m from 1., the maximisation step reduces to 

finding the maximum of a Monte Carlo approximation of (3.6), that is 

From (3.2) new estimates of {3 are obtained by fitting a linear model regressing 

the m E;~~ ni independent observations Yij - b~~) - b~;)weekj on the covariates 

in (3.4) where k = 1, ... , m. Similarly from (3.3) new estimates of the vector a 

of parameters of the dropout model can be obtained fitting a generalized linear 

model with complementary log-log link function to the expanded data set. Finally 

the covariance matrix of the sampled b's yields new estimates of the elements of 

D. 

We have found that the performance of the MCEM algorithm is improved 

by allowing a long burn-in phase in the MH (typically 1500 iterations). The 

sample size m kept at each iteration can be moderate at the beginning and can 

be increased as convergence occurs as discussed in Chapter 2. We started with a 

sample size of 50 and increased it to 1000 by iteration 100 as, by then, parameter 

estimates began to show stability. 

3. Sampling step: given current estimates of relevant parameters from 2. draw 
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m new values of b i using the MH algorithm. 

4. Iterate between 2. and 3. until convergence. 

An alternative approach is to use the quasi-Monte Carlo EM algorithm de­

scribed in Subsection 2.3.4. This avoids the nested MH sampling step. Given 

current estimates of the elements of D at iteration t, D, CDF-representative 

points are obtained from f(bl D) as described in Subsection 2.3.4 which are then 

used to approximate (3.6) as 

m 250 

I: I: wik) InfYlb (Yil b~k), Xj,,B, 0-
2

) fRlb (~I b~k), Xi. Ct,.,) fb ( b!k)1 D) 
k=l i=l 

where, from (3.1), the weights wik
) are defined as 

(k) fylb (Yil b~k), Xi, t3, 0-2
) fRlb (Rd b~k), Xi, 0, i) 

Wi = L~lfYlb (Yilb~k),Xi.t3,0-2) fRlb (Rilb~k),Xi,&,i)· 

Again, the assumption of conditional independence of the Yij and ~j leads 

to a straightforward M-step taking the weights w;k) into account. 

3.2.1 Calculation of standard errors 

Standard errors have been calculated using a conditional parametric bootstrap 

approximation of Louis' formula as suggested by Diebold and Ip (in Gilks et al. 

(1996) editors). 

The Louis identity relates the observed log-likelihood to the complete data 

log-likelihood, 

(3.8) 
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where i and i refer to the Hessian matrix and score vector of the log-likelihood 

function respectively and the expectations are with respect to the conditional dis­

tribution (3.7). In this setting, conditioning of the vector hi, the distributions of 

the responses Yij, the dropout indicators Rij and the marginal distribution of the 

hi are mutually independent. This results in £~oml)l being a block diagonal matrix 

with three blocks corresponding to the parameters of the model for the response 

model, dropout indicator and marginal distribution of the random effects. More 

details and expressions for i and i are given in Appendix A. 

3.2.2 A simulation study 

We performed a simulation study to assess the performance of the proposed 

method. We considered N = 200 subjects in two groups of size 100 and T = 5 

time points from the following model 

where i = 1, ... ,200, j = 1, ... ,ni, grouPi = 0,1 and eij and hi are as in (3.4). 

In the model for the dropout process the probability of dropping out at time 

j is 

where i = 1, ... ,200, j = 1, ... , ti and "II are a set of contrasts as in (3.5), 

l = 2, ... , ti . The true values of 0'2 and 0'3 were fixed at 0.20 and 3.00 implying 

that subjects whose response increased at a greater rate had a higher probability 

of dropping out and that the dependence of the dropout process on subject­

specific slopes differs across the two groups. 
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Estimates (SE) 
Parameters True values 

Missing at random MCEM with informative 

dropout model 

/30 (Intercept) 1.00 1.04 (0.10) 1.03 (0.10) 

/31 (Time) 2.00 1.45 (0.10) 1.84 (0.04) 

/32 (Group) 3.00 3.04 (0.19) 3.08 (0.14) 

/33 (Time-by-group) 2.00 1.62 (0.16) 1.99 (0.10) 

ao (Intercept) -1.00 -1.19 (0.24) 

al (Random intercept) 1.00 1.20 (0.65) 

a2 (Random slope) 0.20 0.18 (0.33) 

a3 (Random slope-by-group) 3.00 3.27 (1.64) 

12 1.00 1.24 (0.48) 

13 1.00 1.14 (0.67) 

14 1.00 1.12 (0.78) 

15 1.00 1.35 (0.89) 

(J2 1.00 1.05 (0.07) 1.02 (0.03) 

2 
(Jint 1.00 0.82 (0.14) 0.86 (0.09) 

2 
(J slope 1.00 0.43 (0.09) 0.78 (0.10) 

(Jint,slope 0.50 0.12 (0.05) 0.38 (0.04) 

Table 3.3: Parameter estimates for models (3.9) and (3.10). 

vVe first fitted a model which ignores the dropout process. As expected (column 3 

of Table 3.3), estimates for the overall slope and the interaction parameter /33 are 

both biased downwards as are those of the variance components. By contrast, 

using the MCEM algorithm to fit the informative dropout model removes much 

of the bias. 

The quasi-Monte Carlo EM algorithm leads to similar results. Figure 3.5 
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Figure 3.5: Sequences of parameter estimates for models (3.9) and (3.10) jointly 
fitted using a MCEM algorithm (dotted line) and aquasi-MCEM algorithm (solid 
line). 
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Figure 3.6: Density plot of random slopes from (3.7) sampled using the MH 
algorithm described in Section 3.2 (solid line) and from a MAR analysis (dotted 
line). 

shows sequences of parameter estimates using the two approaches. The only 

noticeable feature is the underestimation of the covariance of the random effects 

in the qMCEM algorithm. Furthermore, in the latter, the computational time 

saved by avoiding the nested M-H algorithm is outweighted by the fact that a large 

sample is required in order to reproduce the features of (3.7) using the weights 

Wi. Thus, in the application to the real data set we used the MCEM algorithm. 

Figure 3.6 shows the density plot of random slopes drawn using the MCEM 

algorithm. The procedure adjusts the missing at random analysis by accepting 

more small positive and large negative random deviations from the population av­

erage, corresponding to completers and withdrawals respectively, thus correcting 

the estimate of the fixed effects upwards. 

3.3 Application to Parkinson's Disease trial 

In the application to the Parkinson's disease data set, the main focus has been 

on assessing the sensitivity of the results to different clinically plausible assump-
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tions about the dropout process. Results from a missing at random analysis 

which ignores the dropout process are shown in the second column of Table 3.4. 

We first tested the significance of a random slope-by-treatment interaction 

term in the dropout model; that is, we tested whether the dependence of the 

dropout mechanism on the latent progression of the illness varied across the two 

treatment arms. For this purpose we introduced an extra term 0'4 in (3.5) and a 

treatment-by-time interaction term (34 in (3.4). Results are reported in the fourth 

column of Table 3.4. 

The dependence of the dropout process on the random slopes seems particularly 

significant with 0'2 = 1.48 (0.65) causing the overall time trend (32 to increase 

when compared to the MAR estimate. However, there is no evidence that the 

dropout mechanism varies across the two arms; the interaction is not statistically 

significant (0'4 = -0.68 (0.69)) and neither is (34. The treatment effect remains 

almost unchanged. 

We thus fit simpler models (3.4) and (3.5) with no interaction terms. The 

main feature is again an increase in the overall time trend when compared to the 

missing at random analysis, though this is not statistically significant. Treatment 

effect and other fixed parameter estimates remain virtually unchanged. 

The conclusions from the MAR analysis for this data do not appear to be very 

sensitive to the MAR assumptions. The exception is the slight underestimate of 

the rate of increase of the ADL score in the MAR model. 

3.4 Discussion 

In this Chapter we have shown how random-coeffIcient-based dropout models can 

be fitted using Monte Carlo and quasi-Monte Carlo versions of the EM algorithm. 

The approach allows great flexibility in both the response model, which can be 

continuous or di'>crete, and in the model for the dropout process which, we feel, 
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3.4 Discussion 64 

Estimates (SE) 
Parameters MARa M1b M2c 

{30 (Levodopa) 4.332 (0.312) 4.387 (0.258) 4.359 (0.317) 

{31 (Time) 0.017 (0.002) 0.020 (0.002) 0.021 (0.002) 

(32 (Ropinirole-Levodopa) 1.183 (0.377) 1.105 (0.312) 1.126 (0.263) 

(33 (Baseline ADL) 0.459 (0.041) 0.457 (0.035) 0.456 (0.055) 

(34 (Time-by-Treatment) -0.001 (0.001) 

Qo (Intercept) -10.193 (8.580) -10.226 (8.301) 

Q1 (Ropinirole-Levodopa) 0.325 (0.215) 0.437 (0.2G8) 

Q2 (Random slope) 0.937 (0.291) 1.482 (0.652) 

Q3 (Baseline ADL) 0.046 (0.019) 0.046 (0.019) 

Q4 (Random .lope-by-treAtment) -0.684 (0.686) 

')'2 6.801 (8.583) 6.735 (8.303) 

')'3 7.176 (8.582) 7.113 (8.301) 

')'4 7.102 (8.583) 7.039 (8.302) 

')'5 7.328 (8.582) 7.263 (8.302) 

1'6 6.814 (8.586) 6.759 (8.305) 

')'7 7.357 (8.583) 7.299 (8.302) 

')'8 6.696 (8.588) 6.643 (8.303) 

')'9 7.363 (8.584) 7.314 (8.304) 

1'10 7.356 (8.584) 7.307 (8.307) 

I'll 6.990 (8.587) 6.940 (8.308) 

0"2 5.441 (0.205) 5.458 (0.197) 5.463 (0.198) 

2 
O"int 6.244 (0.811) 5.948 (0.744) 5.924 (0.668) 

2 
O"s/ope 0.228 (0.030) 0.246 (0.025) 0.248 (0.018) 

O"int,siope -0.151 (0.198) -0.068 (0.156) -0.060 (0.116) 

Table 3.4: Application to the PD trail: parameter estimates under different as-
sumptions about the dropout mechanism. aMissing At Random. bModels (3.4) 
and (3.5). cModels (3.4) and (3.5) with different slopes across the two arms and 
random slope-by-treatment group interaction in the dropout model. 



3.4 Discussion 

should reflect plausible clinical hypotheses. Thus, the sensitivity of inference 

to assumptions about the dropout mechanism can be assessed. If the inference 

is sensitive to MAR, then the conclusions of the analysis depend on inherently 

untestable assumptions about the dropout process. Otherwise, as in the example 

in Section 3, a sensitivity analysis confirms that the conclusions are robust to 

assumptions about the dropout mechanism. In the next Chapter, more 'formal' 

approaches to sensitivity analysis for missing data problems, based on general­

izations of Cooks' distance (Cook, 1986), will be presented and discussed. 
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Chapter 4 

Sensitivity analysis 

In the previous Chapter we argued that the reason for jointly modeling the re­

sponse variable and the dropout mechanism is to assess the sensitivity of the 

conclusions from a MAR analysis to plausible assumptions about the dropout or 

missing-data mechanism. 

Verbeke and Molenberghs (2000) suggest a 'formal' sensitivity analysis in the con­

text of informative outcome-based dropout models; they consider the Diggle and 

Kenward model (see Subsection 2.2.3) and use local influence to explore the sen­

sitivity of the MAR model to informative dropout. This approach complements 

the methods of the previous Chapter. 

Sensitivity analysis using local influence is described in more detail in the 

first Section of this Chapter where we derive an extension to NIRCB models. 

In the flecond Section, a sampling-based sensitivity analysis for NIRCB models is 

presented, whereby rather that estimating the parameters relating the probability 

of dropping out to the subject-specific random effects in the dropout model, these 

are allowed to vary over sensible ranges. The resulting effect on the parameters 

of interest is then measured using finite-element response surface methods. 

As mentioned in Chapter 2, in the Parkinson's disease trial patients could 

receive open-label Levodopa supplementation if their symptoms were not ad-
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4.1 Sensitivity analysis using Local Influence 

equately controlled by the randomised treatment. There are close similarities 

between missing data and rescue medication problems as in both cases, the treat­

ment effect that would have been observed (had all data been collected or had 

patients remained on the allocated treatment, respectively) are potentially bi­

ased. Thus, in the final Section of this Chapter, the sampling-based sensitivity 

analysis is used to assess the effect of rescue medication in the Parkinson's Dis­

ease trial. Results from using other methods based on summary statistics (White 

et al., 2001) and Robins' Inverse Probability of Censoring \Veighted estimators 

and Structural Nested Mean and Distribution models are also considered (Robins 

and Finkelstein, 2000; Robins and Greenland, 1994; Robins, 1992, 1998). 

4.1 Sensitivity analysis using Local Influence 

The idea behind local influence is to investigate how stable the parameter es­

timates from a particular model are to small perturbations of the data. Cook 

(1986) introduced the concept of likelihood displacement as a measure of stabil­

ity. The objective is to assess the robustness of the model as a q-dimensional 

vector of weights w varies in IRq. In what follows, q == n, the number of subjects. 

In particular, the model tested corresponds to a particular value of w which we 

indicate as w". 

For the random-coefficient-hased model (3.5), the vector of weights w -

(Wi! ... ,wn ) relates to the subject-specific random slope bil as 

Pr (Rij = 1) = Pr (ti = weekjlti > Weekj-I) = hij 

= 1 - exp [- exp (ao + altreati + a2BaseADLi + Wibil + 'Yl)]. 

( 4.1) 
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4.1 Sensitivity analysis using Local Influence 

The model tested is the one corresponding to a MAR analysis with w = w" = 0, a 

vector of zeros, and log-likelihood function f(9Iw"). When w =1= 0, model (4.1) sig­

nifies an informative mechanism with log-likelihood function indicated as f(9Iw). 

In particular when w has only one non-zero entry in position i, this corresponds 

to a situation where we allow the i-th subject to drop out non-randomly. 

The likelihood displacement is defined then as a function of w. If iJ and iJ w 

are the ML estimators of 9 corresponding to w" and w respectively, the likelihood 

displacement function is 

(4.2) 

and can be used to assess the influence of small perturbations of the weights w 

on the parameters of interest. 

The vector wand the corresponding value of g(w) identify an influence sur­

face in ]Rn+1 as w varies in]Rn referred to as a(w) = (w,g(w)). From (4.2) it 

follows that this surface has a minimum of zero at w = w". Interest then lies in 

exploring the behaviour of the surface a(w) in the vicinity of w·, namely how it 

deviates from its tangent plane around the critical point w·; this can be done by 

considering the normal curvature of the surface in w· when we move away from 

it along any arbitrary direction v E sn(o, 1), the unit hypershere. 

When n=2, i.e. in terms of (4.1), there are only two subjects, the normal 

curvature of the surface a{ w) can be represented graphically. Figure 4.1 plots 

a generic surface a(w) = (w, g(w)) = ((WI, W2), g(WI' W2)) in JR3. The plane Z, 

spanned by the generic direction v and the norm N at w· = (0,0), cuts the surface 

a(w) and identifies a normal section. The normal curvature is then defined as 

the projection of the curvature vector onto the norm N. As we rotate the normal 

plane around the norm at w·, the value of the normal curvature changes smoothly 

68 
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Figure 4.1: Normal section at w· of the influence graph C¥, identified by the plane 

Z which is spanned by a generic direction v and the norm N at w·. 

and reaches a maximum and a minimum. 

Directions EI = (1,0) and E2 = (0,1) are interesting in that they correspond 

to perturbing the MAR model by allowing the two subjects to drop out non-

randomly. The normal curvature in this case measures the rate of increase in 

log-likelihood (ratio) around w· when the subject-specific weights WI and W2 

change by infinitesimal quantities. Another interesting direction is the direction 

of maximum curvature. It identifies the value of wand therefore the combination 
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4.1 Sensitivity analysis using Local Influence 

of subject weights that will result in maximum displacement. 

In differential geometry, the normal curvature of the influence graph a in the 

direction v at the point w = w· is defined as the ratio of the second and first 

fundamental forms of g(w)(Poon and Poon, 1999), i.e. the scalar 

c _ II(v, v) _ vTIIv 
v - I(v, v) - vTIv· 

Here I and II are n x n matrices with elements 

and 
1 8 2g 

llij = (1 + /V'(g)j2)l/2 8Wi8wj' 

(4.3) 

(4.4) 

(4.5) 

where in (4.5) V'(g) is the n x 1 vector of first derivatives of 9 with respect to w 

and 8ij = 1 if i = j and is 0 otherwise. 

Expression (4.3) can be written as 

(4.6) 

. H . H .J:.L d I ., tl where the generic element of the n x n matnx 9 IS 9ij = {)WiaWj an n IS le 

n x n identity matrix. 

Notice that when w = w*, \1(g) = 0 and since v E sn(o, 1) implies vTInv == 1 

expression (4.6) simplifies to 

(4.7) 
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4.1 Sensitivity analysis using Local Influence 

From (4.2), applying the chain rule, (4.7) can be written as 

T '··-1 
Cf) = -2[v 6 (£) 6vlI8=8,w=w., (4.8) 

.. .. 82((81) 
where e and 6 are p x p and p x n matrices with generic elements eij = DOiDIJ~ 

82((8Iw) A 

and 6 ij = 8(h8wj evaluated at w = w· = 0 and () = (), the estimates from a 

MAR analysis. 

Poon and Poon (1999) suggest the use of conformal normal curvatures to 

a.ssess local influence. Unlike the normal curvature which can take any value, 

they show that the conformal normal curvature ranges between 0 and 1 and can 

therefore be used as a more objective measure of influence. 

The conformal normal curvature is defined as 

Bv = II(v, v) 
I(v, v)v'trII2 Iw=w. 

where, since II is a symmetric matrix, the trace in the denominator is equal to 

the sum of its squared eigenvalues i.e. trII2 = E~=l >.,r 
As with the normal curvature, at w = w· the expression of the conformal normal 

curvature simplifies to 

( 4.9) 

which involves the same quantities needed to calculate normal curvatures. 

In terms of (4.9), the direction of maximum curvature is given by the eigenvector 

corresponding to the maximum eigenvalue of the quadratic form 6 T (£)-16 in 

the numerator. 
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4 .1 Sensitivity analysis using Local Influence 

The conformal normal curvature has the following interesting properties (Poon 

and Poon, 1999): 

• for any direction v E sn(o, 1) we have that ° ::; Bv ::; 1 

• indicating with emax the eigenvector corresponding to the maximum eigen-

value (Le. the direction of maximal displacement) with generic element 

emax,j, the contribution of basic subject-specific perturbation vectors Ei that 

have the only non-zero entry equal to one in position i, can be measured 

considering how close they are to emax . If the contributions of all subjects 

to the maximal displacement are equal, then lemax,jl = In j = 1, ... , n. 

\Vhen n = 2, this can be easily seen. Suppose the direction of maximum con­

formal normal curvature is emax = (if, if-) then the two subjects are equally 

influential as their basic perturbation vectors E1 = (0,1) and E2 = (1,0) 

are equidistant from emax and lemax,jl = lifl = * = 72 ,j = 1,2. 

• the total contribution of basic perturbation vectors can be measured. This 

measures the closeness of E j to all directions identified by the normalized 

eigeIlvectors ei i = 1, ... , n of 6. T (f) -1 6. and not just em'lX. 

It can be shown that if the basic perturbation vectors have the same total 

contribution this is equal to 

B = tr(ll) 
nJtr(ll2) 

(4.10) 

Therefore jj can be used as an objective benchmark to judge the total in­

fluence of each subject. 
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4 .1 Sensitivity analysis using Local Influence 

4.1.1 Assessment of local influence using conformal normal curvatures in 

random-coefficient-based models 

The quantities involved in the calculation ofthe conformal normal curvatures (4.9) 

are the elements of the Hessian matrix of the log-likelihood function £(Olw) of 

the perturbed model. Since these quantities are evaluated at 0 = () MAR and 

w = w· = 0, they can be obtained using the parametric bootstrap approximation 

to Louis' formula of Subsection 3.2.1. In particular, the quantities on the right­

hand side of expression (4.9) have been approximated using quasi-Monte Carlo 

integration considering a set of cumulative representative points from (3.7) as 

described in Subsection 2.3.4 with all parameters fixed at their MAR estimates. 

Expressions for b"ij are reported in Appendix B. 

It should be pointed out that, with the local influence approach to sensitivity 

analysis illustrated here, each patient in turn is allowed to dropout non-randomly 

that is, the log-likelihood displacement is measured for directions E i , 1, ... ,250 in 

turn. A global measure of influence could be obtained by averaging the curvatures 

corresponding to uniformly distributed directions in the unit hypersphere sn(o, 1). 

Figure 4.2 shows the conformal normal curvatures BEi for patients in the 

two treatment arms obtained from expression (4.9). Different symbols refer to 

com pieters and patients lost to follow up. The dotted line corresponds to B of 

expression (4.10) which, as mentioned above, can be used to judge the total in­

fluence of each patient. Relatively few patients are found to be influential, as 

judged by being above the reference benchmark B; this supports the results of 

Section 3.3 where estimates from a MAR model did not appear sensitive to the 

MAR a.'isUmptioll. 

In both arms, com pieters seem to have a greater influence. Thus allowing com­

pIeters (i.e. those patients with most data) to 'drop out' non-randomly results in 

a larger perturbation of the MAR model Of, equivalently, larger displacement of 
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Figure 4.2: Conformal normal curvatures for patients in the PD trial. Circles 
and triangles correspond to dr£Pouts and completers respectively. The dotted 
line represents the benchmark B (see text for explanation). The cases with high 
influence are labelled. 

the likelihood function around w·. This is explained by com pIeters contributing 

more data to the analysis than dropouts. Inspection of those patients with 

largest influence shows that more patients in the Ropinirole arm tend to remain 

in the study despite a relatively steep positive rate of increase in ADL scores, 

compared to completers in the Levodopa arm. This can be seen in Figure 4.3 

where individual profiles corresponding to some of the completers identified in 

Figure 4.2 are plotted. Qualitatively this latter feature is consistent with the 

sign of the coefficient (\'4 for the treatment-by-random slope interaction term re­

ported in Table 3.4 though this was not statistically significant - i.e. there is less 

evidence in the Ropinirole arm that the dropout mechanism depends on subject-
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4.2 Sampling-based sensitivity analysis using finite-elements methods 
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Figure 4.3: Profiles of influential patients, identified in Figure 4.2, who completed 
follow-up. 

specific random slopes. As for those patients who do not complete the follow-up, 

the Illost influential tend to have steeper rate of change and tend to deviate more 

from the overall mean slope f33 than the less influential ones (Figure 4.4). These 

results are consistent with those found in Section 3.3. 

4.2 Sampling-based sensitivity analysis using finite-elements methods 

The results from the joint modelling approach of Chapter 3 (including assessment 

of the statistical significance of the coefficients in the dropout model) depend on 

the a.<;surnption of normality of the data and random effects. This assumption is 

untestaole for the missing data as no data were collected. 

The idea behind a sampling-based sensitivity analysis is to avoid explicit estima­

tion of the parameters in (3.5) that relate the random effects to dropout. Instead, 
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Figure 4.4: Profiles of eight patients, identified in Figure 4.2, who did not com­
plete follow-up. 

they are allowed to take values over intervals or regions defined by the analyst. 

The response and dropout models are then jointly fit using the methods of the 

previous Chapter with the sensitivity parameters in the dropout model fixed at 

selected values; this produces a 'response surface' for the estimate of interest, say 

treatment effect or the overall rate of disease progression over time. 

This 'black-box' mapping from the domain of the sensitivity parameters in the 

dropout model to the set of possible estimates of the coefficients of interest in the 

response model is dictated primarily by the non-standard model fitting procedure 

used here. Other methods for assessing the sensitivity of the results could in fact 

be used if one were able to obtain a closed-form expression relating the estima-

tor of the parameter of interest to the informative parameters in the dropout 

model (Saltelli et a1., 2000). 
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4.2 Sampling-based sensitivity analysis using finite-elements methods 

We rewrite the random-coefficient-based model for the dropout mechansim 

of Subsection 3.1.2 as 

hij = Pr (ti = weekjlti > Weekj-I) = 

= 1 - exp[ - exp(ao + altreati + a2BaseADLi 

+ 'Ij;I(treati=l)bil + 1]I(treati =O)bil + II)] (4.11) 

where treati = {1(Ropinirole), O(Levodopa)}, i = 1, ... ,250, j = 1, ... , ti, ti = 

dropout time, and II are the set of contrasts for weeki, 1 = 2, ... , ti. The intro­

duction of the terms 1jJ and 1] in the expression above allows the approximate 

log hazard ratio of dropping out to depend on the subject-specific random slopes 

differently in the two treatment arms. 

From the results in Table 3.4, a sensible domain for 1jJ and 1] was chosen to be 

the unit square. 

The next step is to sample values of 1jJ and 1] at which to evaluate the response 

and dropout models jointly. This can be done in different ways. The simplest 

approach is random sampling; as no particular prior distribution is assumed for 

1jJ and 1}, this reduces to sampling from a bivariate uniform distribution on the 

unit square. 

Random sampling can be very inefficient in terms of coverage of sample space 

and for this reason is particularly not well suited for cases where the underlying 

models are expensive to evaluate as here. A better coverage can be obtained 

using other sampling methods such as importance sampling and Latin hypercube 

sampling (McKay et al., 1979). 

Latin hypercube sampling in particular, ensures coverage of the range of each 

variable: domains are first divided into intervals of equal probability and then, 

for each variable, a random value is selected from each interval and paired at 
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4.2 Sampling-based sensitivity analysis using finite-elements methods 

random and without replacement with values obtained for the other variables. 

A third approach, used here, is finite-element methods coupled with Lagrangian 

polynomial interpolation of the resulting response surface. 

4.2.1 Lagrangian polynomial interpolation 

For simplicity, consider the one dimensional case first. Suppose we wish to inter-

polate an (unknown) function u('l/J) over the interval (a, b) using a polynomial of 

degree n. In our setting for example, u( 'l/J) would relate changes in estimates of a 

particular coefficient in the response model to changes in 'l/J in the dropout model 

if this were characterized by a single sensitivity parameter. 

The domain is first divided into sub domains (finite elements) of equal width. 

'Within each subdomain, the values of the function at n + 1 equally spaced nodal 

points 1/)0, 'l/Jl,' .. , 1/Jn , are obtained and denoted by Ul, U2, ..• , Un+l' The La­

grangian interpolation of the target function at 'l/J E (a, b) is then given by 

(4.12) 

where ¢~n), i = 1, ... ,n + 1 are the shape (basis) Lagrangian function of degree n 

(4.13) 

Thus, the value of the target function at any point in (a, b) is calculated as a 

weighted sum of the value of the function at the nodal points with weights given 

by expression (4.13). 

The case where the interpolating polynomial is of degree 2 is shown in Fig­

ure 4.5. The function to be interpolated over the interval (a, b) is shown on the left. 

The domain is divided into 3 subdomains of equal length (this number could be 

increscd to get an improved approximation). Within each subdomain, the value 
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Figure 4.5: Lagrangian interpolation (dotted line in right panel) of function on 
the left on domain (a, b) using quadratic shape functions within each sub domain. 

of the function is evaluated at n + 1 = 3 points (in practice only once for the 

sub domain in the middle). Finally, the original function and the approximation 

uHing Lagrangian interpolation (dotted line) are shown on the right. 

2-Dimellsional shape functions are constructed as the product of the corre-

sponding 1-dimensional functions Le. 

(4.14) 

where TIl anel n2 depend on the degree of the interpolating function for each 

coordinate. For example, with a cubic interpolating function in each coordinate 

i.e. with nl = n2 = 3, we need to obtain the values of the target function u('ljJ, "') 
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Figure 4.6: Grid of nodal points for 2-dimensional Lagrangian interpolation cubic 
in each coordinate. 

at 16 nodal points within each subdomain (finite element) on the regularly spaced 

grid shown in Figure 4.6. The functions (4.14) are referred to in this case as 

bicubic shape functions. The interpolating surface is then constructed as 

16 

u('l/J,T/) = ~¢>i('l/J,T/)Ui' (4.15) 
i=l 

which is again a weighted sum of the values taken by target function at the 

nodal points. Bicubic shape functions corresponding to nodes N(4) = (1,0) and 

N(15) = (2/3,1) are shown in Figure 4.7. Notice how the weight given to the value 

of the target function at the nodal points is higher the closer the interpolating 

point is to the coordinates of the node itself with weight equal to one if the point 

coincides with the node. In our setting, the method is used to interpolate the 

rcsponse surface corresponding to a chosen parameter in (3.4) as the values of'l/J 

and T/ in (4.11) vary on the unit square. 

In summary, the steps involved are 

• selcct nodal pairs 'l/Ji, T/j on the regularly spaced grid, ~ 1, ... ,n'l,j -

• jointly fit the dropout and response models using the MCEM algorithm with 

80 



4.2 Sampling-based sensitivity analysis using finite-elements m ethods 

1.5 
':'" 

' .. 0.8 

. ... ;. 

0.6 

213 
0.4 

~ 

0.5 
1/3 

0.2 

o 
113 213 0 

\V 

-0.5 
-0.2 

1/3 

o 0 

" Figur 4.7: Bicubic shape function for nodes N(4) = (1,0) and N(15) = (2/3,1) 
in Figure 4.6. The weight given to the value of the target function at the nodal 
point is high r the clo er the interpolating point is to the node itself with weight 
qual to one if the point coincides with the node. 

'l/J and TJ fixed at the selected values; 

• obtain the value of the target function (estimate of treatment effect, overall 

rate of hance, etc.); 

• r p at for all pair , and 

• int rpolat th values thu obtained using the Lagrangian shape functions 

as in (4.15) . 

4.2.2 Estimation of benchmark probabilities 

Th interpolating urface (4.15) could be evaluated on pairs ('l/J, TJ) chosen using 

impl , importanc or Latin hypercube ampling from the unit square. However, 

as far as th optimal cov rage of the sampling domain is concerned, the same 
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4.2 Sampling-based sensitivity analysis using finite-elements methods 

considerations made when discussing quasi-Monte Carlo integration apply here. 

We therefore adopt methods similar to those described in Romero and Bankston 

(1998). The idea is to evaluate (4.15) on a set G of good lattice points on the 

unit square (Subsection 2.3.4). The approach will enable calculation of a 'failure 

region' for the response surface defined as the portion of the unit square yield­

ing values of the interpolating function (4.15) that fall above or below a certain 

threshold value T. The failure region F is then estimated as the fraction of good 

lattice points that yield values of the interpolating surface falling above (below) 

the threshold i.e. as F = {("p,1}) E G} :3 ¢("p,1}) 2: (~)T. The results for the 

estimates of interest can then be reported in terms of estimated conditional prob­

abilities offalling above or below the chosen threshold (benchmark probabilities), 

conditional on the domain for the the sensitivity parameters "p and 1} and their 

distribution (uniform in this case). 

4.2.3 Application to the Parkinson's Disease trial 

Recall that, in the application to data from the Parkinson's disease trial, from the 

results shown in Table 3.4, we consider the unit square as the domain for "p and 1} 

in (4.11). This was divided into four finite subdomains. Within each sub domain 

biquadratic Lagrangian interpolation was used. Thus, the methods described 

here required fitting models (3.4) and (4.11) jointly with"p and 1} fixed at the 25 

values on the grid in Figure 4.8. Of course, a larger number of sub domains would 

improve the approximation at the expense of increased computational burden; 

however this is substantial for the model fitting procedure considered here. 

In the Parkinson's disease trial, interest lies in particular on assessing the 

sensitivity of the results for /31 (overall rate of change over time) and /32 (average 

treatment difference between Ropinirole and Levodopa). Results for f31 are shown 

in Figure 4.9. The darker plane represents the interpolating surface for parameter 
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'" Figure 4.8: Application to the Parkinson's disease trial: grid of nodal points for 
2-dimensional Lagrangian interpolation quadratic in each coordinate. 

estimates and the shaded planes the interpolating surfaces for the corresponding 

95% confidence intervals. As expected, higher values for 7j; and 'f} lead to higher 

estimated values for the overall rate of change as non-completers tend to have 

steeper positive slopes are are given more weight as discussed in Section 3.2.2. On 

the other hand, results for (32 are not sensitive to changes in 7j; and 'f} (Figure 4.10). 

In both cases estimates remain statistically significant, so benchmark probabilities 

have not been calculated. 

0.3 

o 
1 

11 0 0 

Figure 4.9: Estimat d response surface for (31 (overall rate of change over time) 
and orresponding 95% CIs, as 7j; and 'f} in (4.11) vary over the unit square. 
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Figure 4.10: Estimated response surface for {32 (average treatment difference be­
tween Ropinirole and Levodopa) and corresponding 95% CIs as 'Ij; and 'r/ in (4.11) 
vary over the unit square. 

4.3 Sensitivity analysis for the effect of Levodopa supplementation 

When som pati nts deviate from the assigned treatment regime, a pragmatic, 

intention to treat (ITT) analysis of treatment policies can yield different results 

from an xplanatory per protocol analysis (Schwartz and Lellouch, 1967). In fact, 

th ITT null hypoth i of quivalen e of treatment policies will coincide with the 

null hypoth i of no ffect of the actual treatments only if we assume that non-

ompli rs would hay report d the same values of the outcome of interest had they 

r main d on treatm nt (Robins, 199 ); an assumption which is likely to be false. 

Alth ugh analysi by iutention to treat is the primary analysis for regulatory 

purpo ,th pharmaceutical fficacy may sometimes be of interest as part of 

additional analy (White and Goetghebeur, 1998; White and Pocock, 1996). As 

m ntion d at the beginning of this Chapter, there are close similarities between 

mis ing data and treatment non-compliance problems: ignoring the missing data 

or th r eu proe is likely to give biased parameter estimates of the true 

tr atm nt f£ t. Lik wise, any adjustment will depend on untestable assumptions 
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4.3 Sensitivity analysis for the effect of Levodopa supplementation 

as the rescue-free measurements are missing for those patients that supplemented 

their randomised treatment with rescue medication. 

In this Section, various approaches for adjusting for non-randomised rescue 

medication are discussed and, for each one in turn, results from their application 

to the Parkinson's disease trial are presented. In particular, the sampling-based 

approach of the previous Section will be used to assess the sensitivity of the 

estimated treatment difference between Ropinirole and Levodopa to the effect of 

open-label Levodopa supplementation. 

Before proceeding any further, some additional notation is required. For sub­

ject i = 1, ... ,250 in treatment arm Z E {I, O}, (l=Levodopa, O=Ropinirole), let 

Yi denote the random variable corresponding to the outcome of interest at the end 

of follow-up period (week 244) and indicate with RWki dummy variables flagging 

whether or not patient i was taking supplementary open-label Levodopa at week 

Wk E {12, 24, 48, 72, 96,120,144,168,192,216, 244}, where RWki = 0 if the patient 

is on the randomhled regime in the interval (Wk' Wk+l] and Rwki = 1 if he receives 

supplemented Levodopa, k = 0, ... ,10. As in Robins (1998), indicate with R Wki 

the subject-specific history of treatment received by patient i up to and including 

week k. 

The objective will then be to estimate and compare mean ADL score at 

week 21.1 = w [( across the two arms had all patients remained on their assigned 

treatment which we indicate as 

E[Y(RwK = O)IZ]. (4.16) 

4.3.1 Methods based on summary statistics 

The analysis of the Parkinson's disease data using summary statistics compares 

each subject's mean of post-randomisation ADL scores (from visit 3 onwards) acr-
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4.3 Sensitivity analysis for the effect of Levodopa supplementation 

Unadjusted for Levodopa Adjusted for Levodopa 

supplementation supplementation 

Method Treatment difference Treatment difference 

Est. (95% CI) P-val. Est. (95% CI) P-val. 

ANCOVA 0.92 (0.10,1.74) 0.024 0.7Sa (0.03,1.52) 0.046 

IPC\V 2.2 (-S.94,12.95)b 

Table 4.1: Estimated treatment difference (Ropinirole-Levodopa) using the meth­
ods described in Subsection 4.3.1 and 4.3.2. a Censoring at rescue; b Bootstrap 
CI (percentile method). Higher ADL scores indicate worse condition. 

oss the two arms using ANCOVA, with the response at randomisation used as 

covariate (Frison and Pocock, 1992). A subject's responses only contribute to this 

mean until he/she starts taking open-label Levodopa or withdraws from the trial. 

The treatment effect is only marginally statistically significant and correction 

seems to favour Ropinirole (first row of Table 4.1). However, this method is a 

crude adjustment prone to selection bias (White et al., 2001). 

4.3.2 Inverse Pr-obability of Censoring Weighted (IPCW) estimator 

Under the rather strong assumption of rescue at random, that is, in our case, 

assuming that for each patient within each treatment arm the probability of 

receiving an additional open-label dose of Levodopa in the interval (Wk' Wk+l] 

does not depend on the ADL score that he would shown under compliance at 

week WK = 244 i.e. at the end of the follow-up, (4.16) is identifiable and is given 

by the mean ADL score for the compliers. This because we are assuming that 

the (unobservable) rescue-free ADL scores for non-compliers constitute a random 

sample of the (observed) ADL scores among compliers. Algebraically, 

k = 1, ... , /{. ( 4.17) 
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4.3 Sensitivity analysis for the effect of Levodopa supplementation 

As mentioned before, this assumption is unlikely to hold as, in general, it is 

reasonable to assume that non-compliers would have shown an even worse ADL 

score without rescue. 

The idea underlying Robins' IPCW estimator approach is to consider data on 

auxiliary covariates that are good predictors of both the counterfactual value 

Y(RwK = 0) and the rescue process so that, conditioning on the past history of 

these covariates, (4.17) is approximately true. The value at week k and the history 

up to week k of these covariates for subject i are indicated with L llIki and L llIki 

respectively. The fundamental assumption of sequential explainable non-random 

non-compliance can then be written as 

(4.18) 

Effort should be put in collecting data on covariates which are likely to make 

(4.18) hold. 

Under (4.1S), (4.16) is identifiable and can be estimated using the G-computation 

algorithm as described in Robins (199S). The latter can be written as the Inverse 

Probability of Censoring Weighted (IPCW) estimator 

(4.19) 

where in the expression above 7r(Wk) = Pr[Rwk = 0IRllIk _ 1 = 0, LllIk , Z] is the 

probability that compliers up to week Wk remain on treatment in the interval 

(Wk' Wk+1] given their past history of covariates L. Therefore n~=o 71"( Wk) is the 

probability of remaining on treatment throughout conditional on covariate and 

treatment history. 
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4.3 Sensitivity analysis for the effect of Levodopa supplementation 

Considering a logistic model for 71"( Wk) with vector of parameters G', the IPCW 

estimator of (4.16) is 

( 4.20) 

where summation is over the compliers and a are ML estimates. Thus, the IPCW 

estimator is a weighted average of the observed scores among compliers. 

Until now we have ignored the additional problem constituted by dropouts. 

Robins derives an extension of (4.20) which takes censoring by loss to follow­

up into account. For subject i, a second dummy variable QWki represents the 

censoring process and is modelled using logistic regression with parameters ¢. 

Expression (4.20) is modified and becomes 

( 4.21) 

where A(Wk' ¢) is the fitted probability of not being censored at week Wk given 

LWk among those patients still in the study at week Wk-l. It is hoped that, as 

for the rescue process, conditioning on covariates L dropout is at random in the 

sense of Rubin (1976). 

For the Parkinson's disease trial, the logistic models for the probability of res­

cue/censoring by loss to follow-up in the interval (Wkl wk+d include the following 

covariates: 

• A"'k = predicted ADL score at visit Wk from a linear model fitted on available 

scores up to and including week Wk; 

• Afwk = predicted Motor score at visit Wk from a linear model fitted OIl 

available scores up to and including week Wk; 

• D"'k = Diskynesia by visit Wk, and 
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4.3 Sensitivity analysis for the effect of Levodopa supplementation 

• SWk = On supplemented Levodopa at visit Wk (in the model for the dropout 

process only). 

The adjusted treatment difference increases to 2.2 compared to the ITT analysis 

and this seems plausible given that, as mentioned in the previous Section, Lev­

odopa supplementation is more frequent in the Ropinirole arm. However, a 95% 

bootstrap confidence interval of (-8.94,12.95) for this difference does not support 

any definite conclusion as to the effect of treatment in the absence of rescue. The 

large confidence interval in particular reflects the fact that many patients received 

supplemental Levodopa. Also, it is much wider than the corresponding interval 

from the ITT analysis as it takes into account the extra uncertainty deriving from 

simultaneous adjustment for the rescue and dropout processes. 

4.3.3 Structural nested distribution and mean models 

A major drawback of the IPCW estimator is that, although the models for the 

rescue and censoring by loss to follow-up processes take into account all available 

data before the patient leaves the randomised treatment regime or drops out, the 

estimator itself is a weighted average of the final observation among com pieters 

remaining on treatment. As such, it can be very inefficient when, as in our case, 

the number of completers that are also compliers is small (less than 30 in both 

the Levodopa and Ropinirole arm out of the 83 and 167 patients randomised, 

respectively) . 

Structural Nested Distribution Models (SNDM) on the other hand, consider all 

available data at the end of the follow-up period. However they make further 

modelling assumptions. 

We specify a surrogate random variable IJ( 'ljJz) for the (possibly) counterfactual 

outcome Y(RWK = 0) such that the former and the latter have the same distri­

bution, Z E {1,0}. A simple form for 1J presented by Robins and used in the 
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4.3 Sensitivity analysis for the effect of Levodopa supplementation 

application to the Parkinson's disease trial is 

K 

Hi (1/J) = )Ii - L 1jJZRwki · (4.22) 
k=O 

Hi(1/JZ) can be interpreted as the rescue-free outcome for patient i, from which the 

cumulative effect of being on rescue is subtracted to obtain the observed outcome, 

)Ii. It can be shown that, fot the true value of 1/Jz, under (4.18) we also have 

( 4.23) 

G-estimation of 1/Jz consists then in a iterative process where we search for the 

value of 1/Jz which makes the parameter 0 relating RWk to II(1/Jz) in the logistic 

model for the rescue process equal to zero. The latter is 

(4.21) 

for k = 0, ... ,10. A 95% confidence interval for 1/J is given by the set of values for 

which a 5% Wald test of () equal zero in (4.24) does not reject (Robins, 1998). If 

a clinically plausible value of 1/J is found and is statistically significant, corrected 

estimates of mean score within each arm are obtained as averages of the H(J;k 

Censoring by loss to follow-up can be accounted for as in the IPCW estimation. 

The estimators are then weighted averages of the H ( J;)i 

E Il(J;)i * I(QwKi = 0, Z)/ rr~=o ..\(Wk' ¢) 
E I{QwKi = 0, Z)/ rr~=o ..\(Wk' ¢) 

(4.25) 

where summation is over completers. Notice that, for patients remaining on 

randomised treatment, II (J;)i = )Ii. 
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4.3 Sensitivity analysis for the effect of Levodopa supplementation 

Figures 4.11 and 4.12 plot the results for the Ropinirole and Levodopa arm 

respectively. Values of a \Vald test statistics for () equal zero, Z (1/J), are plotted 

against plausible values of 1/Jj these have been chosen so that the resulting values 

of H in (4.22) fall within the possible range for the ADL scores. A 95% CI for 1/J 

corresponding to /Z(1/J)1. < 1.96 includes zero suggesting that, if model (4.24) is 

correctly specified and (4.23) holds, there is little scope for adjusting for Levodopa 

supplementation. The confidence interval for 1/J is wider in the Levodopa arm 

compared to the Ropinirole arm possibly reflecting the fact that fewer subjects 

received supplementation in the former. In both arms, point estimates for 1/J are 

negative implying (from (4.22)) larger estimated rescue-free scores than the ones 

actually observed; a scenario which is clinically plausible. 
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Figure 4.11: Test statistic Z(1/Jo) for Ho : () = 0 in (4.24) versus plausible values 
of 1/)0 in the Ropinirole arm. 95% CI for 1/Jo is shown. 
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Figure 4.12: Test statistic Z(1/Jd for Ho : () = 0 in (4.24) versus plausible values 
of 1/Jl in the Levodopa arm. 95% CI for 1/Jl is shown. 

In Continuous-time Structural Nested Mean Models (CSNMM) it is assumed 

that II(t/lz) and the counterfactual outcome Y(RK = 0) are equal in expectation 

rather than in distribution. Indicating with C the random variable measuring 

the number of days after randomisation a patient first received supplemented 

Levodopa, expression (4.24) is replaced by a Cox model for C 

(4.26) 

where At - and J..1t - refer to the fitted ADL and Motor scores prior to the time 

t of start of rescue medication; for a complier, the latter quantities are obtained 

considering all available measurements prior to the final one. 

Using this approach, results similar to those from a SNDM were obtained. 

The G-estimation algorithm described in the previous Section (where we iterate 

now between a continuous version of (4.22) and (4.26)) yields a point estimates 
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(95% percentile bootstrap confidence interval) equal to J;o = 0 (-0.16,0.16) and 

J;1 = 0 (-0.49,0.65) for the Ropinirole and Levodopa arm respectively. 

4.3.4 Sampling-based sensitivity analysis 

The sampling-based sensitivity analysis of Subsection 4.3.2 can be used to explore 

the uncertainty about the true treatment difference by estimating the treatment 

difference in a set of imputed rescue-free data sets where imputation is based on 

a clinically plausible model for the effect of rescue. 

As mentioned before, patients received extra open-label doses of Levodopa when 

their symptoms where found to be poorly controlled by the randomised treatment 

regime. Based on this, it was assumed that a patient who received Levodopa 

supplementation would have shown higher ADL scores had he remained on the 

randomised treatment. In what follows, both the measurement and rescue pro-

cesses are considered as continuous-time processes and days since randomisation 

are used as the time scale. 

In between two successive visits, a decision was made whether to start supple-

mentation for a patient still on assigned treatment or increase the dose of rescue 

for patients already on supplemented Levodopa; in many circumstances several 

increases of supplemented dose would take place in the same time interval. Thus, 

for the generic patient i in treatment arm Z and generic interval (t - 1, t] = 9 

between successive ADL score measurements, the rescue-free ADL score at time 

t is assumed to be given by 

ng 

~: = Yti + L 7Pzdosesdayss ( 4.27) 
s=1 

where Y;i = Yti for patients still on randomised regime at t, ng indicates the num­

ber of different dose prescriptions in period 9 and dayss is the number of days on 
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rescue dose s, s = 1, ... , ng • Notice that we have indexed 'ljJ by treatment group 

in order to allow for a possibly differential effect of the rescue dose in the two 

arms which seems sensible from a clinical point of view (Z E {1, O}, 1 =Levodopa, 

o =Ropinirole). 

We can interpret 'ljJz as the istantaneous effect on yt of receiving one unit of sup­

plemented dose of Levodopa considering the rescue process as a right-continuous 

step function (Robins, 1998). 

Varying 'ljJz within a range of plausible positive values we obtain corresponding 

sets of imputed rescue-free data using (4.27), each of which is then analyzed using 

the linear mixed model 

( 4.28) 

where 

Here we consider the effect on the estimated treatment difference at the end of the 

follow-up period as this was the planned analysis. Figure 4.13 shows the estimated 

treatment difference at the end of the study from model (4.28) as 'ljJz, Z = 0, 1 

in (4.27) vary over the chosen domain. Planes representing 95% CI and the 

null hypothesis of no treatment difference are also shown; the effect of the two 

treatment on ADL scores was not statistically significant under a ITT analysis 

('ljJo = 'ljJ1 = 0). Under a differential effect of rescue i.e., in Figure 4.13, considering 

values of 'ljJ which are not on the diagonal 'ljJo = 'ljJll a statistically significant 

interaction term would more easily result assuming that rescue has a larger effect 

in the Ropinirole arm compared to the Levodopa arm; if the converse was true, 

treatment effect would almost always remain not significant. More interestingly, 
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using the methods of Subsection 4.2.2, the area corresponding to the portion of 

the plane representing the upper bound of the 95% confidence region above the 

zero plane as a fraction of the base surface was calculated and found it to be 

Pb = 0.42. We could then interpret Pb as the conditional benchmark probability 

for the estimated treatment difference at the endpoint to remain statistically 

non-significant as we vary 'Ij; within a plausible region, condit ional on the chosen 

model for the rescue effect (4.27). A bootstrap confidence interval for Pb using 

the percentile method is [0.23,0.85]. Considering the triangles above and below 

the main diagonal and their interpretation in terms of differential effect of rescue 

in the two arms we have PbO = 0.02[0.00,0.35] and Pbl = 0.39[0.23,0.50] which, of 

course, confirm earlier considerations. 
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Figure 4.13: Estimated tr atment difference at week 244 from model (4.28) when 
rescu -free ob rvations ar imputed using (4.27). 



4.4 Discussion 

4.4 Discussion 

In the presence of patient attrition, results obtained from modelling the dropout 

and response jointly using, for example, the methods of the previous Chapter, 

should be subject to careful scrutiny. Conclusions can be sensitive to the distri­

butional and modelling assumptions made which are untestable for the missing 

data. Various methods can be used to assess the robustness of the conclusions. 

The simplest consider different models for the dropout mechanism or different 

distributions for the unseen data or a combination of both; results that do not 

vary substantially under the different scenarios can then be trusted more confi­

dently. A more systematic sensitivity analysis was presented in the first part of 

this Chapter, when we adapted the local influence approach based on Cook's dis­

tance to the case where the dropout mechanism is modelled using NIRCB models. 

Using local influence, we can assess the robustness of the conclusions obtained 

from a MAR analysis to small perturbations of the model for the dropout process 

in the direction of nonrandomness. In particular, we can identify subjects that, 

when allowed to dropout informatively, are influential on parameter estimates 

of interest. In the Parkinson's disease trial, very few subjects were found to be 

influential (Figure 4.2) with the most influential being those that, despite their 

steep rate of deterioration, did not drop-out. For NIRCB dropout models, the 

computational burden of this approach is minimal when coupled with the MCEM 

algorithm of the previous Chapter as it only requires a single Monte Carlo in­

tegration with all relevant parameter estimates fixed at their MAR values (see 

Appendix B). A drawback of the local influence method is that, by definition, 

it does not yield a global measure of sensitivity. To this end, as mentioned in 

Subsection 4.1.1, a possible way to proceed is to calculate the average likelihood 
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displacement along directions uniformly distributed on the unit hypershere and 

not just those corresponding to the single subjects. Also, the results obtained do 

not express the sensitivity of parameter estimates of interest, which is often what 

may be required, for example, for regulatory purposes. 

In the second part of this Chapter, we presented a sampling-based sensitivity 

analysis for random-co efficient-based dropout models. The method provides a 

measure of sensitivity for parameters of interest and is, arguably, conceptually 

simpler than the method of local influence. By varying the sensitivity parameters 

that determine informativeness in the model for the dropout mechanism over 

a sensible range, we obtain a 'response surface' for estimates of interest using 

finite-elements methods. Often, results can be represented graphically, as show 

in Subsection 4.2.3 for the Parkinson's disease data, and are therefore easy to 

convey to those without statistical training. 

The method was also used in Section 4.3 to quantify the sensitivity of the esti­

mated treatment difference between Ropinirole and Levodopa at the end of the 

follow-up to non-randomised Levodopa supplementation. The results obtaincd 

depend heavily on the models chosen for the dropout and rescue mechanisms 

the appropriateness of which are again untestable. However, the same holds for 

alternative approaches such as Robin's IPCW estimators discussed in Subsection 

4.3.2. In gencral, the results yielded by any of these methods will depend on sub­

jective hypotheses about the dropout or rescue processes. Their validity therefore 

is enhanced by a sensible choice of models for the dropout and rescue mechanisms 

which should be based on all available information. 

In the next Chapter, we consider a different approach to quantify the uncer­

tainty about estimates of coefficients of interest. The idea will be to replace tradi­

tional point estimates with intervals or regions of estimates which are compatible 

with the observed data while making no assumptions about the mechanism driv-
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ing the missing data process (Verzilli and Carpenter, 2002b; Molenberghs et al., 

2001; Vansteelandt and Goetghebeur, 2001). 
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Chapter 5 

Bounding parameter estimates from incomplete 

data 

In this Chapter we present methods for calculating intervals of ignorance and 

uncertainty (Molenberghs et al., 2001; Vansteelandt and Goetghebeur, 2001) 

for parameter estimates from incomplete longitudinal ordinal and continuous 

data (Verzilli and Carpenter, 2002b). As mentioned in the introduction, the 

general idea behind this approach is to replace traditional point estimates and 

confidence intervals for parameters of interest with intervals of ignorance and un­

certainty, respectively. Intervals of ignorance account for the lack of knowledge 

about point estimates caused by the incompleteness of the data collected. Inter­

vals of uncertainty extend familiar statistical imprecision due to finite sampling 

to the intervals of ignorance i.e. consider their sampling distribution. Intervals of 

ignorance and uncertainty become regions when considering two or more parame­

ters simultaneously. Our proposed algorithms for constructing such intervals will 

be presented together with results from simulation studies. Finally, the meth­

ods will be applied to the dental pain and Parkinson's disease trials described in 

Subsections 2.1.2 and 2.1.1. 
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5.1 Bounds on parameter estimates with incomplete discrete data 

In Chapter 4 we argued that attempts to correct for possible bias in point esti­

mates caused by data incompleteness, which rely on modelling the response and 

missing data process jointly, will inevitably yield different results depending on 

the model used for the missing data process and the distributional assumptions 

made about missing data. This suggests the appropriate way to proceed is via 

sensitivity analysis, varying the former, the latter or both (Kenward, 1998) or 

using other methods like those described in Sections 4.1 and 4.2 for the random­

coefficient-based dropout model of Chapter 3. 

Molenberghs et al. (2001) and Kenward et al. (2001) propose a more system­

atic approach to sensitivity analysis for incomplete categorical data. As discussed 

also in Molenberghs et al. (1999), the main point is that different nonignorable 

models for the missing data mechanism could fit the observed part of the data 

equally well and still give very different predictions of the unobserved data. Thus 

any conclusions on their validity cannot be based on the observed data alone: 

subjective assumptions about the plausibility of the different models used have 

to be made. 

Using data from the Slovenian plebiscite survey described in Rubin et al. 

(1995), Molenberghs et al. (2001) show how the range of possible estimates for a 

parameter of interest obtained by fitting different ad hoc models for the missing 

data mechanism can be recovered by maximizing an overspecified (with respect 

to the observed part of the data) likelihood, using what they call a sensitivity 

parameter approach. Overparametrization is dealt with by fixing certain sensi­

tivity parameters conditional on which all remaining parameters are identifiable; 

by changing the values that these sensitivity parameters can take, different esti­

mates for the coefficients of interest are obtained. The range of these estimates 
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identify the intervals or regions of ignorance. The union of the corresponding 

set of 100(1 - a)% confidence intervals yields the intervals of uncertainty al­

though the coverage properties of the intervals thus obtained are still being in­

vestigated (Vansteelandt et al., 2002). 

The idea of replacing traditional point estimates with intervals is particularly 

suited to situations where the outcome variable is categorical. For example, one 

could obtain optimistic-pessimistic bounds for parameter estimates byenumerat­

ing all possible outcomes for the missing data and examining the corresponding 

set of all possible point estimates. In passing note that, in general, the intervals of 

ignorance given by the approach of Molenberghs et al. (2001) will not correspond 

to the optimistic-pessimistic bounds; in what follows, we will use the term interval 

of ignorance to refer to optimistic-passimistic intervals for parameter estimates 

i.e. the interval identified by the minimum and maximum estimates that are 

compatible with the observed data (as in Vansteelandt and Goetghebeur (2001), 

see below). 

Horowitz and Manski (2000) obtain sharp (i.e., the tightest possible) 

optimistic-pessimistic bounds on parameters (for example, the probability of 

treatment success for individuals assigned at random to that treatment) in a 

nonparametric analysis of randomised experiments. Closed-form unbiased sample 

estimates of these bounds are presented and related inferential issues discussed. 

In particular, they propose constructing confidence intervals for the upper and 

lower bounds by using the bootstrap method. Bootstrap samples are obtained 

by sampling with replacement from the observed part of the data; this yields 

a corresponding number of bootstrap estimates of the upper and lower bounds 

from which their distribution conditional on the data can be estimated. These 

confidence intervals are conceptually equivalent to the intervals of uncertainty in 

Molenberghs et al. (2001). 
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Bounds on treatment effects in experimental studies with noncompliance are 

also obtained by Balke and Pearl (1997). They too use a nonparametric approach 

coupled with linear programming techniques. The bounds they obtain are sharp 

as in Horowitz and Manski (2000) but no measure of uncertainty is given in this 

case. Previous work in this area also include methods discussed in Manski (1989). 

We mentioned above that optimistic-pessimistic bound for parameters could 

be obtained by brute enumeration. However, enumeration of all possible data 

completions becomes unfeasible even with a moderate number of missing data. 

Vansteelandt and Goetghebeur (2001) propose what they call the Imputing to­

wards Directional Extremes (IDE) algorithm to obtain optimistic-pessimistic bo­

unds on parameter estimates in generalized linear models which they again refer 

to as intervals or regions of ignorance. Intervals of uncertainty are obtained using 

the same approach of Molenberghs et al. (2001). This is to identify the lower 

and upper limits of uncertainty as the lower and upper 100(1- a)% limits of the 

lowest and highest parameter estimates in the interval of ignorance. 

In this Chapter we extend the latter approach to marginal models. We de­

scribe how standard procedures used to fit Generalized Estimating Equations 

(GEE) models can be adapted to rapidly obtain intervals of ignorance and uncer­

tainty for parameters of interest. In particular we use the adaptation of the GEE 

approach to ordinal repeated measurements described in Kenward et al. (1994) 

(see also Miller et al. (1993)). The proposed approach will be applied to data 

from the dental pain trial of Subsection 2.1.2. We saw earlier that, in this trial, 

a large percentage of patients (especially in the placebo and low dose groups) 

dropped out early in the follow-up. Interim missingness, however, was limited. 

Using a logistic model for the probability of dropping out, the last reported 

pain relief was found to be strongly related to the probability of completing the 

study (p < 0.001) with patients not experiencing any improvement most likely to 
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terminate the study early. Thus, the mechanism driving drop-out is likely to be 

nonignorable. 

Our aim is to quantify the uncertainty about the true treatment effects at the 

different dose levels by ranges of possible estimates corresponding to possible out­

comes for the missing data while making no assumptions about the distribution 

of the missing data. 

Later, we will also conduct a sensitivity analysis looking at how these bounds 

vary under different scenarios for the missing data i.e. as missing data are allowed 

to vary within prespecified ranges. \Ve start by describing the model for the 

response variable and the algorithm used to obtain the bounds. 

5.1.1 A modified Fisher scoring algorithm 

In what follows, we refer to the extension of GEE to the analysis of longitudinal 

ordinal data described in Kenward et al. (1994). As noted in Subsection 2.2.2, in 

the presence of incomplete data, this approach requires the missing data mecha­

nism to be completely at random for results to be unbiased. On the other hand, 

if there are no missing data, parameter estimates will be similar to those from 

marginal maximum likelihood methods. Since, in essence, our method consid­

ers ranges of possible outcomes in place of missing data, it can be seen as an 

application of the GEE approach to a series of pseudo-complete data sets. 

For subject i let Yi = (}ill ... ,}iT)' denote the response vector of mea­

surements taken at T distinct visits where }it takes values in {I, ... K} and 

t = 1, ... , T. Indicating with Xit a (p x 1) vector of possibly time-specific co­

variates for subject i, a marginal proportional odds model for ¥it can be written 

as 

10git{Pr(¥it ~ k)} = Ok + x~tf3, k = 1, ... ,K - 1. (5.1) 

Consider now a set K - 1 binary variables Zitk such that Zitk = 1 if ¥it ~ k and 
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Zitk = 0 if fit > k for k = 1, . .. ,I( - 1. Then (5.1) is equivalent to performing a 

logistic regression for each of the K - 1 binary variables Zk that is 

logit{Pr(Zitk = 1)} = Cik + x~tf3, k = 1, ... ,K - 1. (5.2) 

This formulation results in an expanded data set with K - 1 binary responses 

at each time point to which the GEE modelling approach can be extended as 

follows. 

Let 0 = (a., (3) and E(Yi ) = J.Li = g( 'TJi) = g(x;O) where Xi is now a column 

vector of dimension (K - 1 + p) = q and includes contrasts for the cutpoint 

parameters Ci in (5.2); for n subjects the system of estimating equations can be 

written as 
n 

2: X TD i W i 1(Zi - J.Li) = 0 (5.3) 
i=l 

with 

where Vi = diag{var(zitk)} is of dimension T(K - 1) x T(K - 1) as is R i , the 

working correlation matrix. Kenward et at. 's definition of the Zitk results in a 

particular form for R i . For example, the assumption of independence between 

observations on the same person corresponds to a block diagonal matrix Ri with 

time-specific blocks R of dimension (K - 1) x (K - 1) expressing the correlation 

between the binary variables Zk which can be written as functions of the cutpoint 

parameters a. (details in Kenward et al. (1994)). Notice that the blocks that make 

up R do not vary with time or between subjects as a result of the proportionality 

a.'lsumption in (5.1). On convergence, standard errors of parameter estimates 

can be calculated using a robust (sandwich) estimator in which the off diagonal, 

between repeated measurement correlations in Ri are estimated using Pearson's 
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residuals. 

In general (5.3) has to be solved iteratively using, for example, a Fisher scoring 

algorithm (Liang and Zeger, 1986; Ziegler et al., 1998). Given current estimates 

of fJ at iteration h, new estimates at h + 1 are obtained as 

O(h+l) = O(h) _ [~x!:5~h)W~h)-I:5(h)X.] -1 ~XT:5~h)W(h)-I(Z. _ A(h») 
~ I I , I t ~ I I I t J-t, . 
i=1 i=1 

(5.4) 

\Vith missing data, estimation of intervals of ignorance and uncertainty for 

all relevant parameters by enumerating all possible pseudo-complete datasets in­

volves fitting this model an unfeasibly high number of times corresponding to 

all possible combinations of the Zitk for the missing measurements. Indeed, this 

will give all possible estimates when in fact interest will mainly be in the mini-

mum or maximum value of, for instance, the treatment effect corresponding to a 

particular dose level. 

To this end, a modified version of the iterative algorithm (5.4), which exploits 

its linearity in the missing data given current estimates of D and W, can be 

used to find the minimum and maximum values of parameter estimates over 

all possible sample completions. Notice that our algorithm adapts that of §3.2 

in Vansteelandt and Goetghebeur (2001) to the case where the model for the 

response variable is given by expression (5.2). 

Suppose, without loss of generality, that we are interested in finding intervals 

of ignorance and uncertainty for the j-th entry of the vector fJ, OJ = ejfJ where ej 

is a q vector of all zeros except for a 1 at the j-th entry. Our proposed algorithm 

is as follows (Verzilli and Carpenter, 2002b): 

1. obtain initial estimate of fJ by fitting (5.2) to all available cases; 

2. at each step of the scoring algorithm, for each subject i with data missing 

at visit t, for the minimum (maximum) of the interval of ignorance choose 
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the (K - 1) x 1 vector Zit such that 

in (5.4) is maximum (minimum) where in the expression above Ut is a T x 1 

vector of all zeros apart from entry t which is equal to one, t E {I, ... , T} 

and ® denotes the Kroneker product; 

3. obtain new estimate of (J and thus of Di and Wi corresponding to the 

minimum (maximum) in step 2, and 

4. iterate between step 2 and 3 until convergence. 

In Appendix C we show that the modified algorithm with this nested maximiza­

tion (minimization) converges to the maximum (minimum) estimate of OJ over all 

possible sample completions, for all j = 1, ... ,q. Upon convergence, the estimate 

of the interval of ignorance is obtained as the interval spanning the minimum to 

the maximum. The corresponding interval of uncertainty can be approximated 

using robust standard errors as [minimum ± 1.96SEmin ] U[maximum ± 1.96SEmax ] 

(Vansteelandt and Goetghebeur, 2001). 

5.1.2 A simulation study 

We conducted a simulation study to confirm the correctness of the results given 

by the proposed algorithm against exact results obtained by enumerating all 

possible estimates corresponding to possible outcomes for the missing data. We 

considered a categorical response variable with K = 3 categories measured at five 

time points on 60 subjects in two treatment groups using the proportional odds 
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Scenarios Interval of Interval of CPU times (sec) 

ignorance uncertainty Enum. MFSt 

Extreme (-0.730,-0.315) [-1.295,0.214] 3138.070 4.300 

A ( -0.697,-0.378) [-1.261,0.146J 182.690 4.900 

B ( -0.536,-0.430) [ -1.055,0.098J 13.350 4.240 

C (-0.708,-0.390) [-1.283,0.136J 347.590 4.460 

t Modified Fisher scoring algorithm of Subsection 5.1.1 

Table 5.1: Intervals of ignorance and uncertainty for /31 in (5.5) using the modified 
Fisher scoring algorithm of Subsection 5.1.1; these were equal to those obtained 
by enumeration. Extreme scenario: no constraint on the values missing obser­
vations can take; Scenario A: intermittent missing observations (or first missing 
observation for dropouts) cannot vary by more than one score from last observed 
measurement; Scenario B: missing observations same or lower than last observed 
value; Scenario C: missing observations same or higher than last observed value. 

model similar to (5.1), 

Here 01 = 2,02 = 2, /31 = -1, /32 = -2.5, /33 = 0.2, treati E {O, 1}, t = 1, ... ,5 

and Xi '" N(20, 7) a generic subject-specific covariate. Notice that with m missing 

observations there will be ]{m possible complete data sets corresponding to all 

possible combinations of values for the missing measurements; for simplicity we 

consider m = 7 missing data randomly chosen. 

Table 5.1 reports the results for /31' In particular, results corresponding to 

four possible scenarios for the missing data are shown. In many practical situ­

ations, it may be possible to restrict the range of values that missing outcomes 

are allowed to take based, for instance, on clinically plausible assumptions. Our 

extreme scenario puts no restriction on the values missing observations can take; 
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Extreme scenario Scenario A Scenario B Scenario C 
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Figure 5.1: Sequences of parameter estimates from the iterative procedure de­
scribed in Subsection 5.1.1. 

under this scenario, we ensure coverage of all possible completed data sets. Thus 

pessimistic-optimistic bounds for the parameter of interest {31 are obtained. In 

scenario A, intermittent missing observations (or the first missing value in case 

of dropouts) cannot vary by more than one category from the last observed mea­

surement. Scenarios Band C constrain missing observations to be the same or 

lower or the same or higher than the last observed value respectively. The same 

four scenarios will be considered in the application to the dental pain data in the 

next Section. In all cases, the proposed algorithm yields the same results as those 

given by the 'exact' enumeration method, the latter in the extreme scenario scan­

ning over 37 = 2187 possible data completions. Predictably, the largest intervals 

of ignorance and uncertainty are obtained under the extreme scenario; scenario 

B results in the narrowest intervals although this need not always be the ca.c;e. 

Figure 5.1 plots sequences of parameter estimates from our iterative pro­

cedure. In most cases, convergence takes place in less than 10 iterations with 

CPU times that are both significantly lower than the corresponding times for the 
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enumeration method and unaffected by the particular scenario considered. All 

analyses have been conducted using R version 1.5.1 Ihaka and Gentleman (1996) 

on a Sun Ultrasparc II workstation. 

5.2 Application to the dental pain trial 

In the application to the dental pain data, the important covariates are patient's 

treatment allocation (differences between the five increasing dose levels of the 

experimental drug and the placebo), height, weight, time and squared time since 

randomisation (up to and including 8 hours): 

Here i = 1, ... ,313 patients, k = 1, ... , K - 1 = 4, (K = 5), treati E {I, ... , 5} 

and hourt E {O, 0.25, 0.5, ... , 8}. We tested for treatment-by-time interaction 

which was found to be not statistically significant (p=O.23). For the parameters 

of interest !3treat;, point estimates and 95% confidence intervals obtained from an 

analysis of available cases are shown in the second column of Table 5.2. Compared 

to patients receiving placebo, patients randomised to the experimental drug show 

a statistically significant reduction in perceived pain at all dose levels except the 

lowest. As discussed earlier however, these results are likely to be biased as the 

dropout mechanism is likely to be non ignorable thus the estimating equations 

have non-zero expectation. 

Intervals of ignorance and uncertainty obtained using the methods of Subsec­

tion 5.1.1 are shown in the last two columns under the four different scenarios 

described in Subsection 5.1.2. The unconstrained, extreme scenario leads to the 

widest intervals of ignorance and uncertainty which do not support the efficacy 

of the experimental drug at any dose level. This scenario however, appears to be 
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Scenarios Est. (95%CI) Intervals of Intervals of 
ignorance uncertainty 

A vailable cases 
Test dose 1 -0.44 (-0.97,0.09) 
Test dose 2 -0.89 (-1.41,-0.36) 
Test dose 3 -0.94 (-1.49,-0.38) 
Test dose 4 -0.99 (-1.54,-0.44) 
Test dose 5 -0.98 (-1.52,-0.45) 

Extreme 
Test dose 1 (-4.01,2.75) [ -4.56,3.17J 
Test dose 2 ( -4.12,1.68) [-4.67,2.04J 
Test dose 3 ( -4.06,1.35) [-4.64,1.74J 
Test dose 4 ( -4.22,1.52) [-4.79,1.88] 
Test dose 5 ( -4.09,1.24) [ -4.64,1.61] 

Scenario A 
Test dose 1 (-3.74,2.39) [-4.27,2.80J 
Test dose 2 ( -3.92,1.29) [-4.47,1.64] 
Test dose 3 ( -3.88,0.96) [-4.44,1.33] 
Test dose 4 ( -4.02,1.15) [-4.58,1.49J 
Test dose 5 ( -3.92,0.85) [-4.46,1.20] 

Scenario n 
Test dose 1 ( -1.37,-0.36) [-1.92,0.24] 
Test dose 2 ( -2.16,-1.09) [-2.70,-0.52] 
Test dose 3 ( -2.29,-1.36) [-2.85,-0.76] 
Test dose 4 ( -2.19,-1.22) [-2.75,-0.62] 
Test dose 5 ( -2.29,-1.44) [-2.87,-0.84] 

Scenario C 
Test dose 1 ( -3.40,2.49) [-3.96,2.87] 
Test dose 2 ( -3.50,1.46) [ -4.06,1.82] 
Test dose 3 ( -3.45,1.27) [-4.03,1.65J 
Test dose 4 ( -3.60,1.39) [-4.18,1.76J 
Test dm.;e 5 ( -3.48,1.18) [ -4.04,1.55J 

Table 5.2: Point estimates and intervals of ignorance and uncertainty for treat­
ment effects (Placebo-Active groups) estimated with data from the first 12 visits 
(up to 8 hours since randomization) under four different scenarios for the missing 
observations. Extreme scenario: no constraint on the values missing observa­
tions can take; Scenario A: intermittent missing observations (or first missing 
observation for dropouts) cannot vary by more than one unit from last observed 
measurement; Scenario il: missing observations same or lower than last observed 
value (worsening pain); Scenario C: missing observations same or higher than last 
ohserved value (improvement in pain). Test doses 1 to 5 correspond to parameters 
J31 to J35 in (5.6). 
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rather unrealistic in our case as it implies that patients who dropped out, presum­

ably because they were not experiencing sufficient pain relief, could have instead 

reported complete relief had they remained in the study; this is even more unre­

alistic considering that the study is a single-dose trial. 

Under scenario A where intermittent missing observations (or first missing 

observation in case of dropouts) cannot vary by more than one category from the 

last observed measurement, narrower intervals of ignorance and uncertainty are 

obtained. They do however still include zero at all dose levels. 

Scenario 13 which implies that patients who missed a visit or dropped out 

would have scored the same value as their last observed measurement or worse 

is arguably the most plausible for this study. Under this assumption, there is 

evidence for the efficacy of the experimental drug compared to placebo at all 

dose levels except the lowest. Interestingly, in this case the intervals of ignorance 

show an increased treatment effect for patients receiving dose level 2 or above 

compared to the point estimates obtained from an analysis of the observed data; 

this is because there are many more patients in the placebo group with 1 as their 

last observed measurement (which will then be carried forward up to visit 12) 

compared to patients in dose groups 2 to 5. Finally, were we to assume scenario 

C, that non-response was related to an increase in pain relief (and a patient 

would re-enter the study when his pain relief decreased) there would again be no 

evidence to support the superiority of the experimental drug. 

The results of using model (5.6) under these four scenarios are displayed in 

Figure 5.2 where, in each case, time points up to and including the values on the 

x-axes have been considered (thus results in Table 5.2 correspond to the rightmost 

intervals). As more time points are included in the analysis, the number of missing 

scores increases and the intervals of ignorance get wider. Again, except under 

scenario 13, there is a large uncertainty as to the real efficacy of the experimental 

drug. 
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Figure 5.2: Intervals of ignorance (solid lines) and uncertainty (dotted lines) for 
differences between placebo and active groups under various scenarios for the 
missing data (at each time point, increasing dose levels are shown from left to 
right). Squares represent point estimates from the fit of model (5.6) to all available 
cases. 

In conclusion, we have shown how standard iterative procedures used to fit 

marginal modcls for longitudinal categorical data can be modified to yield inter­

vals of ignorance and uncertainty for parameters in the presence of missing data. 

These are given by the minimum and maximum values of parameter estimates 

and corresponding lOO(I-a)% confidence intervals as missing measurements are 

allowed to vary within specified ranges. Predictably, the choice of this range has 

a considerable impact on the final results. 
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However, in most practical situations, one should be able to restrict this range to 

plausible values, thus obtaining sensible intervals of ignorance and uncertainty. 

Furthermore, given the flexibility and ease of implementation of this method, one 

can check how results vary under different scenarios. In this way, the robustness 

of the conclusions from a complete or all available case analysis can be readily 

assessed. In the example we saw that the treatment effect is likely to remain 

significant at all dose levels except the lowest under the plausible assumption 

that patients who missed a visit or were lost to follow-up would have shown the 

same or worse pain relief had they remained on treatment (Scenario B). This is 

because we started from highly significant treatment effects; had the latter not 

been statistically significant, the corresponding intervals of uncertainty would 

have presumably included zero even under this scenario. 

An interesting feature of this approach and one that adds to its flexibility is that 

uncertainty about any coefficient and model can be readily assessed. For the den­

tal pain trial for instance, we also considered uncertainty about the interaction 

terms between treatment arms and time. The latter were not statistically signif­

icant when considering the available cases only and the corresponding intervals 

of ignorance and uncertainty included zero under all four scenarios (results not 

shown). 

The method can be extended to allow for estimation of regions of ignorance 

and uncertainty for two or more parameters simultaneously using, for instance, 

the dimension reduction approach as in Vansteelandt and Goetghebeur (2001). 

Further, the approach is still valid in case of independent observations or if we 

replace (5.4) with iterative weighted least squares (or a multivariate extension 

of it ) . 

III the next Section we develop methods for constructing intervals of ignorance 

and uncertainty for parameters in random effects models with incomplete COll-
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tinuous data. A modified Iterative Generalized Least Squares (IGLS) algorithm 

will be presented and used to assess the uncertainty about treatment difference 

between Ropinirole and Levodopa in the Parkinson's disease trial described in 

Subsection 2.1.1. 

5.3 Bounds on parameter estimates with incomplete continuous data 

We mentioned earlier that the idea of replacing point estimates for parameters of 

interest with optimistic-pessimistic bounds to account for the uncertainty induced 

by data incompleteness is particularly appealing with categorical outcomes, as in 

this case the set of possible estimates corresponding to possible data completions 

is closed. With a continuous outcome there is of course no such closed set as the 

number of possible data completions and corresponding point estimates is infi­

nite. A possible approach would be to use the methods of the previous Section 

on a categorized version of the original continuous outcome. The problem with 

this approach is the inevitable loss of information associated with such transfor­

mations. 

An alternative way of proceeding, and one that we adopt here, consists in bound­

ing the values that missing continuous outcomes can take and then applying an 

approach similar to that of the previous Section. Although this may seem a crude 

approximation, in many circumstances the analyst can define sensible bounds for 

the values that missing data can take. Consider for example the Parkinson's dis­

ease trial. There, measurements consisted of discrete ADL scores ranging from 

1 to 52; these values therefore provide bounds for the missing scores. Thus the 

distributional assumption made about the missing data concerns their domain. 

Aftcr prescnting our modified IGLS algorithm, we conduct a sensitivity anal­

ysis similar to the one of the previous Section, by considering how the intervals 

of ignorance and uncertainty for the coefficients of interest change as we vary the 
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range of values that missing data are allowed to take. 

5.3.1 A modified IGLS algorithm 

First, we review the Iterative Generalized Least Squares (IGLS) method for fitting 

linear mixed effect models (Goldstein, 1986, 1995). A modified IGLS algorithm 

will then be described and used to construct intervals of ignorance and uncertainty 

for parameter estimates. 

Using the notation introduced in Subsection 2.1.1, for the measurement taken on 

subject i at visit j, a linear mixed model can be written as 

(5.7) 

where Xij is the j-th row of the ni x P design matrix Xi of explanatory variables 

for the fixed effects part of the model, ni the number of observations taken on 

subject i, f3 is the p x 1 vector of fixed effect parameters, Zij is the j-th row of 

the ni x q design matrix Zi for the random part of the model, b f"V Nq(O, D) and 

eij f"V N(O, 0"2) for all j = 1, ... ,ni and i = 1, ... ,m. 

If the variance-covariance parameters in D are known, indicating with X the 

(E:n ni = N) x p matrix obtained by stacking the Xi on top of each other and 

with Y = (Yll, Y12, ... ,Ynmm) the N x 1 vector of responses, the Generalized Least 

Squares estimator of f3 is 

(5.8) 

where V is block diagonal with generic block corresponding to subject i given by 

Vi = ZiDZT + EBi(}2, EBi indicating the ni x ni identity matrix. In general, the 

elements of D have to be estimated; the IGLS algorithm then iterates between 

estimating () and the distinct parameters in D and updating the estimate of f3 

using (5.8). Appendix D describes the IGLS algorithm in more detail. 
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The focus will generally be on assessing the uncertainty about the fixed effects 

parameters in (5.7). \Vith incomplete data, in order to obtain intervals (or re­

gions) of ignorance and uncertainty, we exploit the fact that, given current esti­

mates of the elements in D, expression (5.8) is a linear function of the response 

variable. This leads to a modified IGLS algorithm where, as in the algorithm 

described in the previous Section, at each step a constrained minimisation (max­

imisation) is used to find the minimum (maximum) update of the fixed coefficient 

of interest with constrains given by the assumed ranges for the missing data. 

If interest lies in measuring the uncertainty for two or more parameters simul­

taneously, a dimension reduction approach can be used as described in Vanstee­

landt and Goctghebeur (2001) which will produce regions of ignorance (e.g. a 

convex set for two parameters or convex hull for three parameters). The idea is 

to consider the minimum and maximum of linear combinations of the parameters 

along a chosen direction in the unit hypersphere. By varying these directions we 

outlille the convex hull of ignorance for the parameters considered; this collapses 

to an interval of ignorance when considering a direction corresponding to a par­

ticular coefficient. 

Thus, indicating with w a direction in the unit hypersphere SP, the modified 

IGLS algorithm is implemented as follows: 

• step 1: obtain initial estimates of all relevant parameters from the fit of (5.7) 

to the available data; 

• step 2: find the minimum and maximum of 

where the entries in Y corresponding to missing data are constrained to take 

values in the chosen ranges, as discussed before. Notice that, because of the 
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linearity in Y of the expression above, finding the minimum and maximum 

will reduce to imputing the lower or upper bounds of the domains for the 

missing data, the choice depending on the sign of the corresponding elements 

in w T (XT y- 1X)-lXT Y-1; 

• step 3: obtain estimates of the vector of fixed coefficients {3 corresponding 

to the minimum and maximum, i3min and i3rrw.x respectively; 

• step 4: obtain new estimates of V corresponding to i3min and i3max, VtniTi 

~ 

and V max respectively; 

• step 5: find the minimum of 

and maximum of 

• Step 6: iterate between steps 3 to 5 until convergence. 

The procedure is then repeated a sufficient number of times corresponding to 

different directions w to map out the convex hull of ignorance. Thus, if consid­

ering for example the region of ignorance for three parameters simultaneusly, the 

algorithm will yield values for the three parameters in ]R3 that correspond to the 

minimum and maximum of (5.8) along each of the chosen directions. The convex 

hull corresponding to this set of points gives a graphical representation of the 

ignorance about the three estimates induced by data incompleteness. 

The directions along which minima and maxima are calculated can be ob-

tained by sampling at random points on the surface of the unit hypersphcre SP. 

Here, we shall restrict ourselves to the 3-dirnensional case. To select a random 

point on the surface of the unit sphere, one could pick spherical coordinates () and 
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Figure 5.3: 500 uniformly distributed points on the surface of the unit sphere identi­
fying uniformly distributed directions in JR3. 

<p from uniform distributions e E [0,211") and <P E [0,211"). However, this approach 

would lead to oversampling near the poles. Instead we use the method proposed 

by Marsaglia (1972) which produces a set of points uniformly distributed on the 

unit sphere. Choose pairs (Xl, X2) from independent uniform distributions on 

( -1, 1) and reject pairs for which x~ + x~ ~ 1. From the remaining pairs, obtain 

the coordinates of the points on the surface as 

WI = 2X2 J 1 - x~ - x~ 

W2 = 2X2 J 1 - xi - x~ 
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W3 = 1 - 2(xi + x~). 

An example is given in Figure 5.3 where the 500 points plotted identify directions 

w to be used in the modified IGLS algorithm. 

As mentioned before, when considering the single direction corresponding to 

the jth parameter w = ej = (0,0, ... ,1, ... , O)T given by a vector of all zeros 

apart from the jth element which is equal to one, the modified IGLS algorithm 

will yield the interval of ignorance for /3j, the jth entry of the vector /3. In this 

case 100(1-a)% intervals of uncertainty can be derived as in the previous Section, 

i.e. as the interval joining the lower and upper limits of the classical 100(1- a)% 

confidence intervals for t3jmin and t3jmax respectively. A generalisation of the 

concept of interval of uncertainty to two or more dimensions is also possible but 

will not be considered here. 

5.3.2 Simulation study 

To illustrate our approach, we present results from a small simulation study 

that considers the 3-dimensional case, i.e. we will construct the convex hull 

of ignorance for three parameters. Repeated measurements were simulated for 

200 subjects split into two equally sized groups, at 5 time points using the linear 

mixed model 

where (33 is a slope-by-group fixed interaction term, b "" N2(O, D), eij "" (0, (72) 

for all i = 1, ... , 200, j = 1, ... , 5 and 
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True values for the parameters were (30 = 1.0, (31 = 1.5, (32 = 3.0, (33 1.5, 

(1"2 = 1.5 and 

D = (1.0 0.5). 
0.5 1.0 

About 50% of the observations within each group were randomly deleted to 

produce a pseudo-incomplete data set. In order to apply the methods described 

above, ranges for the missing data were defined. As discussed in the previous sec­

tion, this choice will often involve restricting ranges for the unseen data, perhaps 

drawing on expert opinion to do so. However, by repeating the analysis under 

different scenarios for the missing data, the extent of the uncertainty about para-

mater estimates due to data incompleteness can be readily assessed. In particular, 

in this simulation study, a sensitivity analysis was conducted with missing data 

allowed to take values in symmetric intervals about the predicted values obtained 

by fitting (5.9) to the 'observed' data. The widths of these intervals were defined 

as fractions of the estimated variance of the measurement error, &2. Results for 

two scenarios will be presented. Let, Yij indicate the predicted value for a missing 

observation from (5.9), 

(5.10) 

TheIl, two sets of domains for the missing data were considered: Yij ± 0.5&2 

(Scenario A) and Yij ± &2 (Scenario B). 

The convex hull of ignorance for estimates of /31, /32 and /33 under Scenario 

A is shown in Figure 5.4. This was obtained considering the minimum and 

maximum of the set of estimating equations (5.8) corresponding to model (5.9) 

along each on 300 uniformly distributed directions in the unit sphere. Notice that 

the convex hull of ignorance is an approximation of the true surface of ignorance 
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Figure 5.4: Region of ignorance for parameters PI, (32 and (33 in (5.9) whcll each missi llg 
measurement is allowed to take value in the interval defined as Yij ± 0.50-2 (Scenario A). 
ilLj and 0-2 are the pred icted values for the mean of the missing observations alld the 
estimated variallce of the error term, respectively, from the fit of (5.D) to the available 
cases. 

III three dimensiolls corresponding to the three parameters cousidered . III fact, 

by defini tion, the call vex hull of a dlltll set in n-dimensional space is the slll llllest 

cOllvex region that contains the data set, the latter being in our case the millilll a 

aud maxima ootained from the modified IGLS algorithm. 

Note, the approximatioll can be improved by considerillg lUore directions 0 11 

the uuit sphere. 

From illspection of Figure 5.4, it appears that, for the particular simulated 

data set. considered, there is larger ignorance about fJ2, the overall grollp differellce 

as opposed to the overall slope and slope-by-group iuteractioll , fJ ] alld fJ;1 rcspec-
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Figure 5.5: Convex hull of the region of ignorance for parameters {3l, {32 and {33 in (5.9) 
when each missing measurement is allowed to take values in the interval defined as 
Yij ± O.50-2 (inner hull , Scenario A) and Yi j ± 0-2 (outer hull , Scenario B). Yij and 0-2 are 
the predicted value for the mean of the missing observations and the estimated variance 
of the measurement error term, respectively, from the fit of (5.9) to the available cases. 

t ively. In F igure 5.5, the convex hull under scenario A in plotted within the con­

vex hull corresponding to scenario B. The substantially larger ignorance about 

all thr e parameters under the la t ter scenario is a direct consequence of the wider 

domains for missing data. 

A univaria te analysis was then considered looking a t each of the three param­

ter eparat ly, that is, considering the intervals of ignorance and uncertainty 

orr sponding to directions el , e 2 and e3. In the univariate case, a sensitivity 

analysi con ider how these intervals change as the domains for the missing data 

are gradually wid ned from the predicted values Yij to the intervals Yij ±a2 where, 

as before, the pr dieted values are from the fit of (5.9) to the incomplete data set. 
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Figure 5.6: Changes in estimated intervals of ignorance (solid lines) and uncer­
tainty (dotted lines) for (31) (32 and (33 in (5.9) as missing data are allowed to 
take values in [Vij ± ao-2

], a E [0) 1 J . 
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Figure 5.7: Proj ction of the outer convex hull in Figure 5.5 on the ((33) (32) 
plane; further projections on the axes of (32 and (33 correspond to the intervals of 
ignorance for (32 and (33 in Figure 5.6 when a = 1. 
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Results for f31, f32 and f33 are shown in Figure 5.6. Notice how, for a = 1 the in­

tervals of ignorance correspond to the appropriate projections of the outer convex 

hull of Figure 5.5 as can be seen, for example, in Figure 5.7 for f32 and f33. 

5.3.3 Application to the Parkinson's Disease trial 

In Subsection 3.1.1, the following linear mixed model was fitted to the ADL scores 

from the Parkinson's disease trial 

(5.11) 

where i = 1, ... ,250, j = 1, ... , ni, treati = {I (Ropinirole) , O(Levodopa)}, eij rv 

N (0, (}2), hi rv N2 (0, D) and 

Parameter estimates obtained by fitting model (5.11) to the available data are 

given in the second column of Table 3.4 on page 64. 

Here, we construct intervals of ignorance and uncertainty for the average treat­

IIlent effect, f32, and average slope f31. In particular, as in the simulation study 

described above, we assess how sensitive these intervals are to changes in the 

domain of definition of the missing data. 

Results are shown in Figure 5.8 for the average slope f31 and treatment effect 

f32. We see that there is much greater uncertainty about the average treatment 

effect than the average slope. The former is no longer statistically significant 

when missing data are allowed take value in intervals defined as Yij ± 0.230-2 = 

Yij ± 0.23 x 5.4 (recall that Yij refers to the predicted value for a missing ADL 

score as obtained from the fit of (5.11) to the available cases). 
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Figure 5.8: Changes in estimated intervals of ignorance (solid lines) and uncer-
tainty (dotted lines) for the average slope /31 and treatment effect (32 in (5.11) as 
missing data are allowed to take values in [Yij ± exa2], ex E [0, 0.8J. Yij are the pre­
dicted values for the mean of the missing observations from fitting model (5.11) 
to the available cases. 

Finally, we conducted a sensitivity analysis similar to that performed in the previ­

ous Section with the dental pain trial. Recalling that higher ADL scores indicate 

a deterioration of the patient's ability to perform daily activities, it seems sensible 

to a.'>sume that patients who dropped out of the study would have shown higher 

values. Therefore, we allow the missing observations after a patient's dropout to 

be the same or greater (by no more than 4 or 8 scores under scenarios A and B, 

respectively) than their last observed measurement. The chosen ranges allow for 

a significant increase in ADL scores (see Figures 3.1 and 3.2 on pages 48 and 49). 

For (31 (average slope) and (32 (average treatment effect) in model (5.11), the 

intervals of ignorance and uncertainty thus obtained are given in Table 5.3. Inter-

estingly, under these clinically sensible scenarios, the average treatment difference 

is likely to remain (statistically) significantly in favor of Levodopa. 
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Parameter Scenario 
Interval of Interval of 

ignorance uIlcertainty 

{31 (Avg. slope) 
A (0.435,0.572) [0.361,0.648J 

B (0.384,0.652) [0.305,0.737J 

{32 (A vg. treat. effect) 
A (1.011,1.111) [0.330,1.845J 

B (1.066,1.181 ) [0.345,1.970J 

Table 5.3: Intervals of ignorance and uncertainty for {31 and {32 in (5.11). Scenario 
A: missing observations same or greater (by no more than 4 scores) than last 
observed measurement; Scenario B: missing observations same or greater (by no 
more than 8 scores) than last observed measurement. 

5.4 Discussion 

In this Chapter, we extended the intervals of ignorance and ullcertainty 

of Vansteelandt and Goetghebeur (2001) to longitudinal discrete and continu­

ous data settings. With discrete data, when no restrictions are placed on the 

values that missing data can take, the intervals of ignorance correspond to best­

worse case estimates. With continuous data, bounds on the values that missing 

data can take have to be specified in order to proceed. In many cases, this is not 

8.<; big an obstacle as it may appear as these bounds can be sensibly defined, as 

with the ADL scores from the Parkinson's disease trial. In both the discrete and 

continuous data cases, sensitivity analysis can be readily conducted by varying 

the domains 8.<;sumed for the missing data and looking at the impact that this 

h8.'> on the intervals of ignorance and uncertainty. 

By contrast, the sampling-based sensitivity analysis described in the previous 

Chapter also yielded (loosely termed) intervals of 'ignorance' for the coefficient 

of interest, conditional on the model assumed for the dropout mechanism (as 

in Molellberghs et al. (2001)). However, a drawback of the sampling-based sensi-
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tivity approach is that is is often difficult to justify the domain(s) chosen for the 

sensitivity parameter(s) in the model for the dropout mechanism. In terms of the 

sensitivity of the results, a very different picture may emerge using a different 

domain for a sensitivity parameter or a different model for the dropout process 

or both. This is different to the methods described in this Chapter where for ex­

ample, under the extreme scenario of Subsection 5.1.2, no assumptions are made 

about the missing data. The interval of ignorance for a coefficient then replaces 

the usual point estimate and identifies the range of possible estimates that are 

compatible with the observed data. Admittedly, these intervals may at times 

be very wide and almost of no practical value. However, we agree with Man­

ski (1989) in saying that, in these cases, the wide intervals of ignorance just 

reflect the fact that no definitive conclusions are possible without making fur­

ther assumptions (about, for example, the mechanism driving the missing data 

process). Furthermore, by using these methods, we are able to explore 'what-if' 

scenarios regarding the missing data in a direct way as we saw in the application 

to both the Parkinson's disease and dental pain trials, making results extremely 

easy to convey. 

This approach is particularly attractive when dealing with incomplete dis­

crete data especially ordered categorical data as one can then assess the effect of 

restricting the domain for the missing data to one or more categories and quantify 

the impact that this has on the intervals of ignorance and uncertainty. For exam­

ple, one can then look for a possible domain that makes a statistically significant 

result from an analysis from available data no longer significant or vice versa 

while assessing its likelihood from a clinical perspective (as we did in Section 5.2 

for the dental pain trial). 

The coverage properties of the intervals of uncertainty are currently being in­

vestigated (Vansteelandt et al., 2002) and certainly further research in this area is 

required. In particular, intervals of uncertainty obtained by adding (1 - a)100% 
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confidence limits to the estimated ignorance limits are referred to by Vans tee­

landt et al. (2002) as strong intervals; they show that their coverage levels lie 

between (1 - a) and (1 - a/2). As mentioned earlier in this Chapter, an alter­

native approach for the construction of intervals of uncertainty is the bootstrap 

method. As usual with the bootstrap, its flexibility has to be weighted against 

the computational burden which, however, should in general still be acceptable 

for the algorithms of Subsections 5.1.1 and 5.3.1. Another issue that needs to 

be explored further is related to the fact that, the ignorance intervals refer to es­

timates obtained under all possible data completions; for some pseudo-complete 

samples however, the fit of the chosen model for the response variable may be 

grossly inadequate. Indeed, if it were possible to restrict the analysis to those 

pseudo-complete data sets for which the model fit is acceptable, this would cer­

tainly reduce the width of the intervals of ignorance. A possible way of addressing 

this problem is to consider nested models for the response variable and the use 

the statistical significance levels of the intervals of uncertainty as a criteria for 

model reduction (as we did for the treatment-by-time interaction term in the 

dental pain trial). 

In the next Chapter, we build on the idea of intervals of ignorance and un­

certainty. Rather than quantifying the lack of knowledge caused by missing data 

just in terms of ignorance limits, we argue that it is more sensible to consider 

the proportion of possible estimates of a parameter of interest that are greater 

or smaller than some threshold value chosen by the analyst, over all estimates 

arising under all possible ways of completing the sample. 



Chapter 6 

Further methods for understanding the uncertainty 

about parameter estimates due to data 

i ncom pleteness 

In the previous Chapter, the uncertainty about coefficients of interest caused by 

data incompleteness was quantified in terms of the possible estimates which, under 

various assumptions about the missing data, are compatible with the observed 

data. In particular, intervals or regions of ignorance were derived that correspond 

to optimistic-pessimistic bounds on parameter estimates when, for example, the 

outcome variable is discrete and no constraints are put on the values that missing 

data can take (the extreme scenario of Subsection 5.1.2). 

As a measure of ignorance however, these intervals are quite sensitive to extreme 

results arising under particular data completions. For this reason, with discrete 

data, a more appropriate measure is the proportion of possible estimates that 

are greater (or smaller) than certain thresholds specified by the analyst, possibly 

weighted by the likelihood of such estimates under certain models. 

In the first part of this Chapter we present a modified Fisher scoring algorithm 

with a nested saddlepoint approximation that allows rapid calculation of the 

proportion of parameter estimates above or below a threshold over all values 
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arising from all possible sample completions (Verzilli and Carpenter, 2002c). The 

general idea underlying the method is as follows: first, a data completion yielding 

an estimate as close as possible to the chosen threshold is found and then, the 

proportion of data completions giving rise to estimates above the threshold is 

calculated. The latter step is carried out using a saddlepoint approximation to 

the distribution function of the missing part of the relevant sufficient statistics. 

If sample completions are weighted using probabilities corresponding to plau­

sible scenarios for the missing data, the methods presented yield weighted propor­

tions instead. Thus, ignorance about point estimates can be investigated further 

by means of a sensitivity analysis, varying these weights under different clinically 

plausible scenarios for the missing data. For example, one could set the weights 

equal to the predicted probabilities for the missing data, where the predicted 

probabilities are obtained from the fit of the response model to the observed data 

thus assuming random missingness in the sense of Rubin (1976): ignorance about 

a point estimate would then be reported in terms of the (weighted) proportion of 

estimates that are greater than the chosen threshold across all enumerable solu­

tions, were the missing at random assumption to hold true. 

We can further get confidence intervals for these proportions, which account for 

familiar sampling variability, by bootstrapping the observed part of the data and 

re-running the algorithm on each bootstrapped sample. The proposed approach 

hears close similarities with multiple imputation techniques; however, it has the 

distinct advantage of being computationally efficient, providing a solution close 

to that arising from complete imputation in a computational time that is linear 

in the number of missing observations. 

Bootstrap confidence intervals for the proportion of estimates above a thresh­

old are conceptually similar to the intervals of uncertainty of the previous Chap­

ter: they attempt to address at the same time both our lack of knowledge due 
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to the missing data and traditional sampling variability. In the second part of 

this Chapter, we take a different approach to this end. \Ve extend methods used 

for exact conditional inference in generalized linear models to allow for the extra 

uncertainty caused by missing data with a particular focus on incomplete binary 

data. This time, we consider the one-to-one map from the set of possible val­

ues of the missing part of the sufficient statistic corresponding to a parameter 

of interest to the set of possible p-values (approximated using the double saddle­

point method of Davison (1988)). Importance sampling of the missing part of 

the sufficient statistic is then used to obtain a Monte Carlo approximation to the 

'average' p-value over all possible sample completions. 

The Chapter is organized in 7 sections. We start by reviewing saddlepoint 

t.echniques to approximate the densit.y and distribution function of the sum of 

random variables, as they playa key role in what follows. In Section 2 and 3 

we describe the methods used for computing the proportion of estimates above a 

threshold when data are incomplete in the context of generalized linear models; 

for binary and Poisson data, results from simulation studies are presented in 

Section 4. The application of the proposed approach to the dental pain trial is 

discussed ill Section 5 where, for the purposes of illustrating our methods, we will 

consider only one time point (8 hours since randomisation) and use a dichotomised 

version of the original ordinal outcome. Section 6 illustrates the method used to 

approximate the 'expected' p-value for a particular coefficient in the context of 

incomplete binary data based on importance sampling Monte Carlo integration. 

We end this Chapter with a discussion in Section 7. 



6.1 Saddlepoint approximation of the densities and distribution functions 132 

6.1 Saddlepoint approximation of the density and distribution function of the sum 

of random variables 

Consider n Li.d. random variables Y1 , • •• , Yn with density, moment and cumu­

lant generating functions f(y), Jvf(a) = r:: eOY f(y) dy and K(a) = InM(a), 

respectively. Then, the saddlepoint approximation to the density at t, f(t) is 

[ 
1 ] 1/2 

2n'rlK"(ao) exp{nK(ao) - aot} (6.1) 

where ao is the saddlepoint, a root of 

nK'(a) - t = 0 

and K' and K" are the first and second derivatives of the cumulant generating 

function. 

A saddlcpoint approximation of tail area is obtained as 

P(S ~ s) ~:d - <I>(A) - ¢(A) (~ - ~) 

where in the latter expression 

A = sgn(ao){2[aos - nK(a)J}l/2 

B = a [nK"(ao)] 1/2 • 

(6.2) 

In the case of lattice distributions (when approximating sums of discrete random 

variables), throughout the expressions above, the saddlepoint ao now solves 

nK'(a) = s - ~ 
2 
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and 

B = 2sinh(ao/2)[nK"(aoW/2 

is used in (6.2) (Skovgaard, 1987). 
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In Appendix E, we give further details on the saddlepoint method mainly 

ba.<;ed on the illustration of the technique given in Field and Ronchetti (1990). 

6.2 Estimates above a threshold as a measure of ignorance 

In this Section, we describe a computationally efficient approach that enables 

calculation of the proportion of estimates that are greater that an user-specified 

threshold over all estimates corresponding to all possible sample completions. The 

approach is valid for discrete outcome variables with distributions belonging to 

the exponential family modelled using canonical link functions. In particular, for 

binary and Poisson data, results from simulation studies will be presented. Note 

that we will only consider the case of cross-sectional data here; thus, for example, 

in the application to the dental pain trial, the analysis will consider data collected 

at 8 hours after start (which, incidentally, was the primary endpoint stated in the 

study protocol). 

Indicate with Y = (Yt, ... , Yn ) a vector of length n with components having 

distribution belonging to the exponential family i.e. 

(6.3) 

for known functions a{.), b{.) and c{.). Using standard GLM notation, the link 

function g(.) relates the expected values of Y, IL, to some covariates of interest 

X = (Xl, X2,' .. , x p ), that is 
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p 

g(J-Li) = 'TJi = I: Xijf3j 
j=1 

(G.4) 

for i = 1, ... , n. 

Denote by y the vector of intended observations. With missing measurements, 

partition y into the observed and missing part y = (yobs, ymiss) where ymi.~s is a 

vector of size m, the number of missing data, and yobs is of size (n - m). Also, 

8.'3suming that the discrete outcome can only take C values, indicate with M the 

set of all em possible values of the vector ymiss. 

COIlsider now the finite-dimensional set 8 of estimates of the vector of pa­

rameters {3 corresponding to all possible sample completions that is 8 = {13 k
, k = 

1, ... , em} and denote by 181 the number of elements in this set. Let B j indicate 

the subset of 8 in which the j-th element of the parameter vector {3 is greater 

than some threshold value specified by the analyst. The aim is then to compute 

the proportion IBjl/181 i.e. the proportion of possible estimates of f3j that are 

greater than the chosen critical value. 

This is achieved using a modified version of standard iterative algorithms; in par­

ticular, we use a nested saddlepoint approximation to the distribution of the part 

of the relevant sufficient statistics that refer to the missing observations where the 

latter have probabilities specified by the analyst. Notice that, when all outcomes 

for the missing observations are assumed to be equally likely (corresponding to an 

uncertain scenario where all completions are assumed equally likely), IBjl/181 is 

also the probability of obtaining estimates of f3j that are greater than the thresh­

old, which we approximate using the saddlepoint method. In other words, our 

modified Fisher scoring algorithm gives probabilities of observing estimates above 

the threshold, which correspond to proportions IBjl/181 only when assigning an 

equal probability mass to each sample completion. Thus, in this case, results 

from our algorithm can be checked against the exact proportions obtained from 
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enumerating all possible estimates. 

Later, we will also conduct a sensitivity analysis by varying the probabilities 

attached to missing observations. In particular, in the application to the dental 

pain data these weights will range from the predicted probabilities obtained from 

the MAR model fitted to the available cases to more clinically plausible scenarios 

where the chance of an improvement for the missing observations are gradually 

decreased from the MAR prediction. In this case, the methods described here 

will yield probabilities corresponding to weighted proportions with weights given 

by the (different) probabilities associated with each sample completion. 

6.3 Computing the proportion of estimates above a threshold 

As a preliminary step to calculating the proportion IBjI/IEI, bounds on parameter 

estimates are obtained using the method described in Subsection 5.1.1 for a binary 

outcome modelled using logistic regression. Let fi;k) and jJ,~k) be estimates of the 

linear predictor and expected value respectively at iteration k and form adjusted 

dependent variables as 

(k) _ _ (k)+( " _ _ (k») dry 
( )

(k) 

Zi - 7h y, J.Li -d . 
J.L i 

A Fisher scoring algorithm updates the current value of the generic parameter {3j 

to 

where W = diag{ ~-l(~):} and V denotes the variance function. 

Without loss of generality, in the case of canonical link functions, we can 
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write (6.5) as 

f3~(k+l) = f3~~k) + ark) + c ymiss + ... + rymiss = f3~~k) + ark) + S(k) 
J Jobs 11 '-'1nm Jobs (6.6) 

where a~:; is the contribution of the observed data to the update of f3j and 

c = (Cl,' .. , cmf is an m-dimensional vector of constants that depends on current 

parameter estimates. 

The range of possible estimates of f3j can be determined by exploiting the 

linearity of (6.6) in the missing data as seen in Subsection 5.1.1. At each step, 

for the maximum we find 

which can be easily determined as it will only depend on the sign of the elements 

of the vector c. Similarly, for the minimum of f3j the minimum of S(k) is found. 

As mentioned at the beginning of this Chapter and shown in the next Section, 

the range of values thus obtained can appear symmetric about the chosen thresh­

old when in fact the proportions of possible estimates greater or smaller than 

the threshold are very different. Hence, ignorance about parameter estimates 

call be explored further by looking at the proportion of estimates either side of 

the threshold. We describe next how this is achieved using a nested saddlepoint 

approximation. 

6.3.1 The EAT algorithm for computing the proportion of parameter Estimates 

Above a Threshold 

Calculation of the proportion of parameter estimates that are greater or smaller 

than a pre-specified value will only make sense if the interval calculated in the 

previous Section includes the threshold itself. 

Assume without loss of generality a threshold value of zero. Then, starting with 
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the value of ymiss which yielded the upper bracket of the interval, the idea is 

to move towards the smallest possible positive estimate and determine the pro­

portion of estimates that are greater than this value. This proportion could be 

calculated at each step of the algorithm to monitor its convergence as we do here, 

or as a one one-off calculation once convergence to the smallest positive estimate 

of (3j is seen. 

Thus, the EAT algorithm is performed in 4 steps as follows 

Step 1 (initialization): consider the quantities in (6.6) corresponding to the 

maximum estimate of the parameter of interest (the upper limit of the in­

terval of ignorance). 

Step 2: given the vectors Ymiss and c which depend on current parameter 

estimates, find a solution to the constrained satisfaction problem (CSP) 

max S(k) 
ymi··'EM 

T(k) = _(3(k) - O(k) < S(k) < 0 
Jobs (6.7) 

i.e. find the value of ymiss and therefore of S(k) that gives a new estimate of 

(3j closest to T(k). 

Simple backtracking or random sampling methods can be employed to solve 

this CSP (Tsang, 1994). Let us write S(k) = clyiiss+C2yiiss+ . . +Cmy;::,iss = 

Zl + Z2 + ... + Zm where ZI ED = {Db D2, ••. ,Dc}, 1 = 1, ... ,m and 

the elements in D depend on the C values taken by the particular discrete 

outcome considered. For binary data, for example, we have 

{ 

CI with probability PI 
ZI= 

o with probability 1 - PI 

where the probabilities PI are specified by the analyst. 

(6.8) 
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Backtracking (in its simplest version) consists then in successively initializ­

ing the variables Zl, l = 1, ... ,m, possibly sorted in decreasing order based 

on their domains, while condition (6.7) is satisfied and, in case of violation, 

backtracking to the last valid initialization, say l = 3, and proceed by choos­

ing a different value from V for Z4. Although this method yields the exact 

solution, for large m, it tends to be computationally inefficient. 

A more efficient approach, and one that we adopt here, is based on random 

sampling the values of Z. Namely, we sample a large number of vectors 

ymiss E M (by sampling with replacement each element of ymiss a corre­

sponding number of times as they are assumed independent) and then retain 

the particular vector giving the best approximation to (6.7). Although this 

method gives an approximate solution to the esp, by calculating and plot­

ting the proportion of estimates above the threshold at each step (Step 3 

described next), one can monitor convergence to a stable solution. Formal 

tools for monitoring convergence could also be used as described in Gilks 

et al. (1996). 

Step 3: in order to calculate the proportion IBil/lBI (or weighted propor­

tion when sample completions are not assumed equally likely), we need to 

calculate the distribution function of the sum S(k). For large values of m we 

would be tempted to approximate the distribution of S(k) by a normal distri­

bution. However, the elements of c can be large or very small which violates 

the Lindeberg condition for the central limit theorem (see Feller (1966), Vol 

2, page 491). Also, in the sensitivity analysis, we shall vary the probabilities 

assumed for different sample completions and these could at times be very 

small. Finally, r(k) could lie in the extreme tail of the distribution of S(k). 

We therefore use the saddlepoint approximation to the distribution function 

of S(k) using (6.2) with s = T(k). 
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Step 4: Update the estimate of /3j using (6.6). 

Step 5: Iterate between steps 2-4 until convergence. 

6.4 Simulation studies 

We report the results of simulation studies conducted to compare the results 

of the EAT algorithm (using the nested saddlepoint approximation) with the 

exact results from complete enumeration. Recall that it is valid to compare 

probabilities produced by the EAT algorithm and the exact proportions obtained 

from enumerating all solutions only when assuming an equal probability mass for 

each sample completion or, equivalently, for each element of B. 

Here, we present results from logistic and Poisson regression. 

6.4.1 Logistic regression 

Data have been simulated from the logistic model 

logit{Pr(Yi = I)} = /30 + /31 Xi (6.9) 

with Xi a generic normally distributed covariate. We simulated data under these 

conditions 

(i) /30=1, /31 = 0.01, n = 50, m = 12 

(ii) /30=1, /31 = 0.005, n = 200, m = 50 

(iii) /30=1, /31 = 0.05, n = 200, m = 50 

(iv) /30=1, /31 = 0.09, n = 200, m = 50 

resulting in 2m possible sample completions in each case. Missing data were 

generated noninformatively. Notice that, from (6.8), we have in this case 

m m 

I: Kl(so) = I: 10g{eSuctPI + (1 - PI)} 
1=1 1=1 
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True MAR Range 
PmpoT'tion of positive estimates 

value estimates (SE) over M 
Exact EAT algorithm 

{enumer.} with SP approx. 

(i) 0.010 -0.0001(0.065) [-0.082,0.113] 0.886 0.887 

(ii) 0.005 -0.009(0.022) [-0.072,0.049] N/A 0.120 

(iii) 0.050 0.031(0.022) [-0.041,0.082] N/A 0.955 

(iv) 0.090 0.109(0.027) [-0.002,0.149] N/A 0.999 

Table 6.1: Minima, maxima and proportion of positive estimates for i31 in (6.9) 
considering all possible sample completions for the simulated data sets: (i) 50 
observations and 12 missing data; (ii) to (iv) 200 observations and 50 missing 
data. All Pl in (6.8) are fixed at 0.5. Enumeration of all possible estimates is not 
feasible for (ii) to (iv). 

where So is the saddlepoint solution of the equation L;:1 1<' = T(k). 

The results for i31 are reported in Table 6.1. In all cases, the probabilities 

in (6.8) for the missing observations are fixed and equal to 0.5. 

From Table 6.1, it can be seen that the Fisher scoring algorithm with nested 

saddlepoint approximation gives results which agree closely with the exact solu-

tions. 

It is interesting to see that, though the interval given by the minimum and max-

irnurn estimates can appear to be, for some simulated data, rather symmetric 

about the threshold considered, the actual proportion of possible estimates above 

and below the threshold can be quite different. 
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Figure 6.1: Sequences of parameter estimates form the EAT algorithm with sad­
dlepoint approximation for simulated data (iii). The last plot refers to the pro­
portion of positive estimates of PI in (6.9) over all possible data completions in 
M. 

Looking then at the results from the larger simulated data sets (ii)-{iv), a clear 

pattern emerges: as the true value of PI increases leading to statistically more 

significant MAR point estimates, the range of possible estimates over M includes 

more positive values and the proportion of positive estimates calculated using the 

EAT algorithm increases. 

Figure 6.1 shows sequences of parameter estimates for model (6.9) using the 

EAT algorithm with nested saddplepoint approximation, for the second simulated 

data set in Table 6.1. The converging sequence for the proportion of positive 

estimates for P1 is also plotted; in general, convergence takes place in less than 

ten iterations. CPU times to calculate IBjl/lBI for the smaller simulated data 

set (i) were 53.96 and 0.14 seconds when enumerating all possible solutions or 

using the saddlepoint approximation, respectively, using R version 1.5.1 (Ihaka 

and Gentleman, 1996) on a Sun Ultrasparc II workstation. 

141 



6.4 Simulation studies 

, 
~ - , 

-~ 
III 
-~ -

o -

, , , , , , , , 
, , 

~o 
I I I I I 

020406080 

"! -

--
- - 0 -

, , 
, , 

- -- -
'-II-or-I-Ir-"TI-,..-JI '-,Ir-"TI-r-I'I--r--ll 

020406080 020406080 

Decrease (%) from MAR fitted probabilities 

Figure 6.2: Weighted proportions (solid lines) of estimates of /31 in (6.9) that 
are greater than zero over all possible sample completions when the values of 
PI in (6.8) vary in the range shown on the x-axis. Dotted lines represent 95% 
bootstrap confidence intervals. Simulated data (ii) to (iv) are shown from left to 
right. 

Next we consider a sensitivity analysis using data sets (ii) to (iv) by varying 

the values of PI in (6.8). In particular, we start by assigning to missing observa­

tions the probabilities predicted from fitting model (6.9) to the observed data and 

then consider scenarios where these probabilities are gradually reduced. Results 

are shown in Figure 6.2 where the solid lines represent the weighted proportions 

corresponding to B j and the dotted lines indicate 95% bootstrap confidence lim-

its. 

The latter have been calculated using the bias corrected and accelerated 

method described, for example, in Carpenter and Bithell (2000); in particular, 

we sample with replacement from the original simulated data sets samples of size 

(n - m) and, for each of the bootstrapped sample, calculate the required weighted 

proportion using the EAT algorithm where the PI in (6.8) for the missing observa-
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tions are obtained from the fit of the MAR model on each bootstrapped sample. 

From Figure 6.2 and Table 6.1 it can be seen that, as the statistical significance 

of the MAR point estimates increases, the uncertainty about the sign of point 

estimates corresponding to possible completions decreases with bootstrap CI for 

situation (iv) that do not come close to zero unless a very sharp decrease is allowed 

from the MAR predicted probabilities for the missing scores. 

6.4.2 Poisson r·egression 

The same methods were applied to simulated Poisson count data. In this case 

however, it is necessary to specify an upper limit for the value that the response 

variable can take. In practical situations, this should not constitute a problem 

as a sensible upper bracket could be defined based, for example, on the empirical 

distribution function of the data at hand. 

\Ve simulated 300 count data from the following model 

(6.10) 

with true values f30 = 0.1, f31 = 0.3 and Xi '" N(30, 1). 

Tn = 8 missing data were generated noninformatively and, for simplicity, allowed 

to take values in {I, 2, 3} giving rise to 38 = 6561 possible ways of completing the 

sample. In this case we have Zl E V = {Cj, 2CI, 3CI} and, placing equal mass on 

each possible outcome i.e. assuming each sample completion is equally probable, 

P(ZI) == 1/3, 1 = 1, ... ,8. The cumulant generating function and its first and 

second derivative can be readily derived and have expression similar to those in 

the previous Subsection. 

Results for parameter f31 in (6.10) are given in Table 6.2. Various threshold values 
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Proportion of positive estimates 

Threshold Exact EAT algorithm 

{enumer.} with SP approx. 

0.305 0.0014 0.0013 

0.290 0.2336 0.2316 

0.270 0.9529 0.9522 

0.260 0.9998 0.9998 

Table 6.2: Proportion of positive estimates for (31 in (6.10), for various thresholds, 
over all possible sample completions for the simulated data. 

have been considered within the range of possible estimates which was 

[0.259, 0.308]. In all cases, the modified Fisher scoring algorithm with nested sad­

dlepoint approximation yielded results that were very similar to those obtained 

by enumerating all possible solutions, even when considering extreme thresholds. 

Also, CPU times did not exceed 10 seconds using the EAT algorithm compared 

to about 300 seconds required by the exact solution. 

6.5 Application to the dental pain trial 

We return now to the dental pain trial described in Subsection 2.1.2. As men­

tioned before, here we use a dichotomized version of the original ordinal outcome 

grouping the first three and last two categories. Also, in what follows we ignore 

patients in either the positive control or highest dose level group and focus on 

the investigators' primary endpoint which was pain relief at 8 hours. 

Assume that the dichotomized scores at 8 hours since randomisation, Y = 

(Yi, ... , Yn ), follow a Bernoulli distribution; the following model relates the com­

plete intended vector of observations y to some covariates of interest including 

treatment arm and patient's weight and age 
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MAR Range 
Proportion of positive estimates 

Parameter EAT algorithm Bootstrap 
est. (SE) overM 

with saddlepoint approx. 95%CI 

/31 -1.09(1.18) [-5.76,4.43] 0.637 [0.267,0.893J 

/32 -0.56(1.19) [-4.51,4.75J 0.918 [0.562,0.987J 

/33 0.30(1.23) [-4.10,5.14J 0.995 [0.948,0.999J 

/34 0.20(1.23) [-4.34,5.49J 0.990 [0.890,0.999J 

Table 6.3: Minima, maxima and proportion of positive estimates for the treatment 
contrasts in (6.11) using the methods described in Section 6.3. All Pi in (6.8) are 
fixed at 0.5. 

(6.11) 

where 9 = 1, ... ,4 indexes treatment contrasts with placebo and i = 1, ... , n. 

The focus here is on the treatment contrasts /39' 9 = 1, ... ,4 between the active 

dose groups and placebo at 8 hours. Parameter estimates and associated standard 

errors for model (6.11) fitted to available cases are reported in the second column 

of Table 6.3. Thus, using a dichotomized outcome, we found no statistically 

significant beneficial effect of the test drug at any dose level compared to the 

placebo. However, these results are affected by the large number of missing 

observations, especially in the placebo and lower dose level groups; it is therefore 

interesting to assess the extent of the uncertainty induced by the large number 

of missing data using the methods described in the previous Section. 

The first step is to obtain maxima and minima for all contrasts over all 

possible data completions. Results are shown in the third column of Table 6.3. 

The very wide intervals reflect the high uncertainty due to the many missing data 

and this is particularly true for the treatment difference between placebo and the 

lowest dose group (third column of Table 6.3). Nevertheless, when considering 
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Figure 6.3: Weighted proportions (solid lines) of estimates of /39 in (6.11), 9 = 
1, ... ,4, that are greater than zero over all possible sample completions when the 
values of PI in (6.8) vary in the range shown on the x-axis. Dotted lines represent 
95% bootstrap confidence intervals. 

the actual proportions of treatment contrasts that remain positive, we are still 

able to draw useful conclusions. 

Under an uncertain scenario where all PI for the missing observations in (6.8) are 

fixed at 0.5 (thUS all sample completions are equally probable)' the proportions 

of treatment contrasts which remain positive over all possible estimates are all 

greater than 0.9 apart from the lowest dose group. None of the 95% bootstrap 

CI for the proportions covers zero and the wider CI for /31 reflects the higher 

uncertainty due to the larger number of missing data in dose group 1. 

A slightly different picture emerges if we assume that all PI are equal to the 

corresponding predicted quantities obtained from the MAR model fitted to the 
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available cases. In particular we have performed a sensitivity analysis using the 

same approach described in Section 6.4 for the simulated binary data. Results 

are plotted in Figure 6.3. 

It can be seen that, were we to use the predicted probabilities from the MAR 

model for the missing observations, this would result in a statistically signifi­

cant (weighted) proportion of positive treatment contrasts (over all enumerable 

estimates) only in the higher dose groups corresponding to Test drug 3 and 4 

which, incidentally, have positive MAR point estimates. However, all propor­

tions become significantly greater than zero when considering lower values for 

these probabilities. It is in fact sensible to assume that for this particular data 

set, if the dropout mechanism was truly nonignorable, these probabilities would 

be lower than the corresponding ones from a MAR model. This is because the 

probability of an improvement in pain score would be reduced if a patient missed 

the scheduled observation. 

In conclusion, there appears to be little uncertainty about the efficacy of the 

test drug at dose level 3 and 4. On the other hand, less definitive conclusions 

can be drawn about the true efficacy of the test drug at dose level 1 and 2. This 

is because of the larger number of missing data in these groups together with 

negative values for the corresponding MAR point estimates of the constrasts 

with placebo. 
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6.6 Importance sampling of missing sufficient statistics and approximate conditional 

inference 

In this Section, we quantify the uncertainty about parameter estimates caused by 

the presence of missing data using a different approach based on exact conditional 

inference. 

There is an extensive literature on methods for exact conditional inference in 

generalized linear models. With conditional testing, the statistical significance 

of a parameter of interest is assessed considering tail probabilities of the con­

ditional distribution of the corresponding sufficient statistic given the value of 

the sufficient statistics associated with nuisance parameters. Davison (1988) de­

scribes an approach based on double saddlepoint approximations to the (univari­

ate) conditional distribution of the sufficient statistic for a coefficient of interest. 

Extensions to the case where hypothesis testing involves more than one parame­

ter have been considered by Kolassa and Tanner (1999); they couple the double 

saddlepoint approximation with noniterative Monte Carlo methods to obtain a 

sample from the joint conditional distribution of the sufficient statistics for the 

parameters of interest. In previous work, the same authors (1994) considered a 

Gibbs sampling approach to generating a Markov chain converging to the desired 

conditional multivariate density. Other methods which do not use saddlepoint 

approximations but rather develop efficient algorithms for enumerating (or sam­

pling) from the reference set of all possible permutations (giving rise to the ob­

served values of the sufficient statistics for the nuisance parameters) have been 

considered by Tritchler (1984), Pagano and Tritchler (1983), Hirji et a1. (1988) 

and Mehta et al. (2000). A review of the various approaches in the context of 

exact conditional logistic regression is given in Corcoran et al. (2001). 
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6.6.1 Formulation 

Consider the vector of independent binary outcomes Y = (Y1, ... , Yn ) following 

a Bernoulli distribution and assume a logistic regression relates the log-odds of 

response to a set of p, possibly subject-specific covariates 

p 

logit{Pr{Yi = I)} = I: Xij!3j = x~f3 
j=O 

(6.12) 

with !30 the intercept term. We write the (p + I)-dimensional vector of sufficient 

statistics for f3 as 

where X is the n x (p+ 1) matrix with i-th row Xi and the corresponding vector of 

observed values of Tis t = (to, tb t2 , ••• , tp). Suppose now that we are interested 

in making inferences about!31 and treat the remaining parameters as nuisance pa­

rameters. Conditional inference then requires finding the conditional probability 

mass function P(T1 = tllTo = to, T2 = t2, . .. ,Tp = tp) = P(T1 = tdT -I = L 1) 

under the null hypothesis of interest (say Ho : !31 = 0). In particular an exact 

level of significance is given by the tail probability 

P = I: P(T1 = tilT_1 = Ld· (6.13) 
ti>tJ 

Consider now the joint cumulant generating function of the vector T 

(6.14) 

A saddlcpoint approximation to the joint density of T at t is given by a multi­

variate version of (6.1) 



6.6 Importance sampling of missing sufficient statistics 150 

(6.15) 

where the saddlepoint u* is now the root of the system of equations 

n 

L 8Ki(U*)/8u* = t 
i=1 

and J(u*) is the (p + 1) x (p + 1) Hessian matrix L~1 82 Ki(U)8u8u' evaluated 

at u*. 

Since the density in (6.13) can be written as the ratio of the marginal densities of 

T and T -1, the double saddlepoint approximation to the conditional density is 

given by the ratio of the corresponding joint saddlepoint approximations where 

the latter for T -1 replaces ·Ul with zero throughout. 

Tail probabilities are then obtained using the Skovgaard (1987) formula adapted 

to the double saddlepoint case 

PSP = 1 - <I>(A) - ¢>(A)(1/A - 1/ B) (6.16) 

where in the previous expression 

and 

B = Ul'" [II(u'")I/II(u_l'")I] 1/2 

with <I> and ¢> the standard normal distribution and density function respectively. 

Whcn some of the intended measurements are missing, we partition the vector 

Y into the obscrved and missing part as (yubs, ymiss) where ymiss is of size 

Tn, the number of missing data. Similarly, we partition the vector of sufficient 

statistics as T = Tobs + Tmiss = (TObs + TO"iSS, TIbs + Triss , T!jbs + T2miss, ... , T;bs + 
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T;iSS). Now, the expected value of (6.13) over the distribution of the missing 

data is arguably a sensible approach to summarizing the extra uncertainty due to 

unplanned missingness. In particular, let us assume that possible outcomes for the 

missing measurements are equally likely i.e. Pr(Yjmiss = 0) = Pr(Yjmiss = 1) = 0.5 

for all j = 1, ... , m. We can write the expected value thus defined as 

E(P) = L 
tmts• t' ~b. +t'l'i" ~ 

tlhlJ+tiiS.9 

where the outer summation is over the set of possible outcomes of the missing 

components of the sufficient statistics. 

We propose a computationally efficient approach to evaluating a Monte-Carlo 

approximation of (6.17) using importance sampling. Candidate values of t miss are 

sampled from a multivariate normal approximation to the density function of the 

vector Tmiss with mean ILTmi •• and, covariance matrix ~Tmi .•• the latter having 

generic entry 
m 

Cov(TmisS r,miS8) = ~ x. x· Va (y!niss) 
8 ,t L..., )S)t r ) 

j=1 

for all s, t E {I, ... ,p} with Var(Yjmiss) = 0.25, j = 1, ... , m. 

For each sampled vector t mi8s (k), weights are calculated as 

(k) _ (21l')-((p+1)/2) II(u*) 1-1/2exp [2:;=1 Kj(U*) - t'miss(k)u*] 

w - (21l')-(p+1)/21~Tmi •• I-l/2exp[-lj2(tmiss(k) _ ILTmi")'~Tmi" -1 (tmiss(k) - JlTnli •• )] 

(6.18) 

the ratio of the saddlepoint approximation (6.15) of the target density evaluated 

at tmis.'I(k) to the importance density, where u* now solves 2:j:1 8Kj(u*)j8u = 

tmiss(k) and, in our case Kj(u*) = In [exp(xju*)O.5+0.5] . In order for the proposal 
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density function to have the same support as the target density, sample values 

are rounded to the nearest integer and values outside the possible ranges for the 

missing sufficient statistics discarded. 

As well as calculating the weights (6.18), pseudo-complete sufficient statistics 

t(l.;) = (t obs + tmiss(k») are used in (6.16) to obtain the corresponding value of 

the tail probability. Also, a continuity correction to (6.16) replaces Ul = 11,1 - .5 

throughout, and B with 

An importance sampling Monte Carlo evaluation of (6.17) with nested double 

saddlepoint approximation is then obtained as 

6.6.2 A simulation study 

To evaluate the proposed method, we simulated data from the following logistic 

regression model with two parameters and a single binary covariate flagging, for 

instance, treatment allocation in a placebo controlled trial 

logit{Pr(Yi = I)} = (30 + (31Xil. (6.20) 

A total sample size of n = 85 was considered with varying number of missing 

observations ml and m2 in the two groups generated noninformatively, with ml + 

Tn2 = 15 in all cases. In particular, Table 6.4 shows results from the following 

artificial data sets 
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(i) n1 = 35, n2 = 35, m1 = 13, m2 = 2 

(ii) n1 = 35, n2 = 35, m1 = 7, m2 = 8 

(iii) n1 = 35, n2 = 35, m1 = 2, m2 = 13. 
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For these small data sets, exact results can be obtained. Namely, for each of the 

215 possible sample completions, tail probabilities under the null hypothesis of no 

treatment effect are calculated using Fisher's exact test and their average value 

computed (PE ). We then compare the exact results with a crude Monte Carlo 

approximation to (6.17), P Me. This is obtained by sampling data completions 

at random from all possible 215 values that ymiss can take and the computing 

the tail probabilities for each pseudo-complete data using the double saddlepoint 

approximation (6.16). Finally, results from the proposed approach which uses a 

Monte Carlo approximation with importance sampling of the missing part of the 

sufficient statistics are also shown (P]SMc). 

In all cases, Monte Carlo with importance sampling gives a better approximation 

compared to plain Monte Carlo. 

For the artificial data considered here, the estimated value of /31 using data 

from the available cases only was equal to -1.47 corresponding to an odds ratio 

of 0.23 (one sided p-value 0.0004). Since we have assumed that outcomes for the 

missing observations are equally likely, we see that, as the number of missing 

observations decreases in group 2 and increases in group 1 (from scenario (iii) to 

scenario (i)), the statistical significance associated with /31 decreases as the odds 

ratio moves towards the null hypothesis. 

The opposite is true when considering scenarios (i) to (iii): with more missing 

data in group 2, the expected p-value for /31 gets closer to the p-value obtained 

from the analysis on available cases and moves away from the null. 

Monte Carlo approximation errors were assessed using arguments similar to 

those in Booth and Butler (1999). Indicating with j5 the (true) expected value 
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of (6.16) calculated over all possible 2m data completions, an approximation to 

Var(P1sMc ) based on K pseudo-complete datasets is given by 

K 
a2 = ~~ "'(w(k) p(k) _ w(k) p)2 

ISMC iiP K ~ SP 
k=l 

(6.21) 

and the corresponding approximation to Var(PMC) is 

..1 "K (p(k) _ P)2 
,2 K L...tk=l SP 
(IMC = K (6.22) 

In each case we then calculated the number of sampled values K such that 

(6.23) 

where c = 0.001 and Za is the (I-a) quantile ofthe standard normal distribution. 

Results are shown in Table 6.4. For the MC and importance sampling MC 

methods, the values shown refer to averages over 50 separate runs, where the 

number of sampled values in each run is determined by the value of K satisfy­

ing (6.23). In particular, notice how the average value of K is much smaller for 

importance sampling compared to plain Monte Carlo. 

6.6.3 Application to the dental pain trial 

In the application to the dental pain trial, the log-odds of improvement in pain 

score is related to subject-specific covariates using the model 

(6.24) 
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Scenario Enumeration MC ISMC 

P 0.0166 0.0151 0.0168 

(i) CPU 135 169 71 

K 2914 528 

P 0.0127 0.0095 0.0125 

(ii) CPU 125 132 56 

K 2320 504 

P 0.0078 0.0028 0.0078 

(iii) CPU 110 55 19 

K 1016 202 

Table 6.4: Exact (enumeration) and Monte Carlo and importance sampling Monte 
Carlo approximations of expected one-sided p-values for PI in (6.20). In the 
latter two cases, all values reported refer to average values over 50 separate runs, 
the number of sampled values in each run determined by K satisfying (6.22) 
and (6.21). CPU times (averages per run) are in seconds. 

where g = 1, ... ,4 indexes treatment contrasts with placebo and i = 1, ... ,261, 

the number of intended measurements. 

As shown in the previous Section, when fitting (6.24) to the observed data, 

none of the treatment differences between the active dose groups and placebo is 

found to be statistically significant (first two columns of Table 6.5). From a prac-

titioner's point of view however, it would be interesting to assess the robustness 

of these results under different scenarios for the missing data. 

Let us start by considering the case where outcomes for the missing obser­

vatioI1'3 are assumed equally likely, i.e. we consider the extreme scenario of the 

previous Sections first. 
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Arm 
MAR analysis PISMC 

Estimate P-value Extreme MAR fitted prob. 

Dose 1 -1.093 0.353 0.700 0.324 

Dose 2 -0.561 0.638 0.145 0.178 

Dose 3 0.308 0.802 0.018 0.018 

Dose 4 0.205 0.868 0.037 0.030 

Table 6.5: Estimates of /3g, g = 1, ... ,4 in (6.24) considering all available cases 
(MAR analysis) and corresponding estimates of the expected one-sided p-values 
over all possible sample completions using (6.19). 

Results for treatment contrasts /3g, g = 1, ... ,4 under this scenario are shown in 

the third column of Table 6.5; in particular, in each case values refer to the impor­

tance sampling Monte Carlo approximations of the upper tails of the distribution 

of the relevant sufficient statistics for each treatment contrast conditioning on the 

others. 

A clear pattern emerges as we move form the lowest dose group to the highest: 

because of the larger number of missing data in the placebo arm and dose groups 

1 and 2, it is most unlikely that results from pseudo-complete datasets would 

actually show a significant effect of the testing drug at these dose levels. 

Different conclusions apply to the higher dose levels for which the estimated 

expected upper tail probabilities show a statistically significant improvement in 

pain relief at the .05 level. In other words, considering the possible values of the 

missing part of the relevant sufficient statistics, the estimated odds ratios tend 

to move away from the null hypothesis of no treatment effect and towards the 

alternative of an increased efficacy of the test drug at these dose levels. This is 

less evident for test dose two while for test dose one the results strengthen the 
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Figure 6.4: Estimates of the expected p-values corresponding to treatment con­
trasts in (6.24) over all possible possible sample completions assuming that the 
probabilities of pain relief among missing subjects vary in the range shown on 
the x-axis. 

null hypothesis of no treatment effect. Therefore, even under a most uncertain 

scenario for the missing scores, results appear to support the efficacy of the testing 

drug at dose levels 3 and 4 after accounting for the extra uncertainty due to the 

large number of missing data. 

As with the methods of the previous sections, a feature of the proposed ap­

proach is that sensitivity analyses can be readily performed by varying the proba-

bilities assumed for the missing observations. We may again consider a sensitivity 

analysis where we assign to missing observations the predicted probabilities from 

the fit of (6.24) to the available cases and then gradually decrease these values. 

Recall in fact that, here, the missing data mechanism is likely to be non ignorable 

and is therefore sensible to assume a smaller probability of improvement among 

noncompleters compared to the value predicted from the analysis of available 

cases. For each treatment contrast /3g, 9 = 1, ... ,4 results are show in Figure 6.4. 
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The leftmost values are also given in the fourth column of Table 6.5. It is im­

portant to notice that, in this case, as we are implicitly imputing missing data 

using the fitted probabilities from a MAR model, the imbalance in the number 

of missing data in the different arms leads to increased confidence in the efficacy 

of the experimental treatment. This is more evident for dose groups 3 and 4. 

Furthermore, in order to take into account the statistical uncertainty about the 

MAR fitted probabilities, we could construct bootstrap confidence intervals for 

the expected p-values in the spirit of the methods of the previous Subsection. 

These confidence intervals are likely to contain the MAR p-values. 

6.7 Discussion 

When data are missing on a discrete outcome related to some covariate of interest 

using, for example, logistic regression, the set of parameter estimates correspond­

ing to all possible sample completions is finite. However, in many cases, just 

looking at the range of possible estimates does not give a satisfactory measure of 

ignorance in the sense of Vansteelandt and Goetghebeur (2001); for example, if 

we are interested in a particular threshold value, the interval may appear sym­

metric about the critical value when in fact the proportion of possible estimates 

(over all possible sample completions) either side of it may be quite different. 

Assuming that all possible sample completions are equally probable, the 

methods described in Sections 2 and 3 allow an accurate and fast computation 

of the proportion of parameter estimates above or below the chosen threshold. 

Weighted proportions are obtained instead if we assume that sample completions 

are not all equally plausible and use, for instance, the predicted probabilities 

from a model fitted to the observed data for the values in (6.8) corresponding to 
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the unseen observations. Useful conclusions can then be drawn even when the 

number of missing observations is very large as in the dental pain trial. 

Also, a sensitivity analysis can be performed by varying the fitted probabilities 

for the unseen measurements and allowing for different scenarios. In the dental 

pain trial for instance, it was sensible to consider scenarios where the probabilities 

of improvement for the missing observations are lower than their predicted MAR 

counterpart. One can then assess the robustness of the MAR results obtained 

from fitting the model to the available cases only and their sensitivity under clini­

cally plausible scenarios. Results will in any case depend on the number of missing 

observations (possibly within each treatment arm as in our case), and their statis­

tical significance as we have seen in the simulation studies of Section 6.4. Further, 

familiar sampling variability can be taken into account by constructing bootstrap 

confidence intervals for these proportions. 

Our approach could be extended to longitudinal discrete data modelled using, 

for example, the marginal model of Section 5.1. The nested saddlepoint approx­

imation would only require calculation of the cumulant distribution function of 

the discrete outcome as we did with Poisson regression in Section 6.4. Bootstrap 

confidence intervals for the proportions could then be constructed taking into ac­

count the longitudinal nature of the data, although interpretation of the results 

would be less straightforward than in the independent data setting. 

Finally, from the practitioners' point of view, the proposed approach is particu­

larly attractive as it provides an intuitive estimate of the extent of the uncertainty 

about a particular coefficient of interest caused by missing data, making minimal 

or no assumptions about the mechanism driving the missing data process. 

Similar considerations apply to the methods of Section 6. There, we consid­

ered the set of levels of significance over all possible pseudo-complete data and 

the resulting distribution of p-values which could be summarized, for example, 

considering the mean or quantiles (Delucchi, 1994). However, enumeration of 
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all possible permutations is infeasible with only a moderate number of missing 

data. In the context of incomplete binary data, we have shown how the 'expected' 

exact one-sided p-value can be approximated coupling methods used for condi­

tional inference in generalized linear models based on double-saddlepoint tech­

niques with importance sampling Monte Carlo integration. In particular, samples 

of the missing part of the sufficient statistics are obtained from an approximating 

multivariate normal distribution and then used to calculate an importance sam­

pling Monte Carlo approximation to the exact tail probability of the parameter 

of interest with weights given by the ratio of the saddlepoint approximation to 

their joint distribution and the proposal multivariate normal density. Results 

obtained are similar to those from plain Monte Carlo integration but require a 

smaller number of sampled values and attain a better accuracy (see Table 6.4). In 

this case too, sensitivity analyses can be readily performed considering different 

scenarios for the missing data. 

The advantage of this method over those of the previous Chapter and Sec­

tion 6.1 is that it deals directly with the uncertainty of usual levels of significance 

caused by missing data overcoming subtle interpretation issues related to the in­

tervals of uncertainty and the bootstrap confidence intervals for proportions of 

estimates above a threshold. Of course, this approach is particularly suited in 

cases where conditional inference itself is recommended, namely, in the presence 

of sparseness or separability in the data (Albert and Anderson, 1984; Santner and 

Duffy, 1986) and when focus is on few parameters in a model containing a large 

number of parameters with respect to the number of observations (for instance 

when adjusting for various possible confounders in epidemiological studies). The 

proposed approach is valid with any generalized linear models as long as canon­

ical link functions are used; in all these cases in fact, both expressions (6.17) 

and (6.18) are still valid. Extension to longitudinal data models in general and 
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random effect models in particular are not straightforward as conditional infer­

ence itself is more questionable in this setting. For instance, one cannot treat 

the variance components in a random effect model as truly nuisance parameters 

since in most cases they are as relevant as the parameters in the fixed part of the 

model. 



Chapter 7 

Conclusions 

In this thesis we have presented various approaches to the analysis of incomplete 

data, focusing in particular on incomplete longitudinal data. Broadly speaking, 

four non-exclusive methods have been described. These are: the Monte Carlo EM 

algorithm to fit non-ignorable random-co efficient-based dropout models; sensitiv­

ity analyses based on local influence and sampling-based methods; intervals of 

ignorance and uncertainty for the parameters of marginal models for categorical 

data, and the method based on calculation of the proportion of possible estimates 

above (or below) a critical threshold. Common to all approaches is the need to 

make assumptions about the mechanism driving missingness in order to proceed. 

These are stronger for the methods of Chapters 3 and 4 compared to the methods 

described in later chapters. The underlying truth is that part of the intended set 

of observations is missing, and in all cases we are implicitly or explicitly imputing 

the missing data. Therefore efforts should be made to obtain as complete a data 

set as possible; failing to do this, it would be useful to obtain as much infor­

mation as possible about the missing data mechanism, for example by following 

some of the dropouts in a longitudinal study after they have exited that study. 

This knowledge can then be used to assess the need for modelling the dropout 

mechanism and possibly to define an appropriate model for the latter. 
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From a computational point of view, the methods presented may appear 

rather ad hoc; however, as discussed in the introduction, this is almost unavoid­

able, since different missing data mechanisms need tailored approaches. Never­

theless, the methods based on intervals of ignorance and uncertainty described 

in Chapter 5 are at the same time easy to implement and very flexible, as they 

can be applied to continuous and discrete outcomes, leading to conclusions that 

can have a very practical interpretation, for example if the statistical significance 

of a treatment effect is preserved under what we have referred to as an extreme 

scenario for the missing data. Furthermore, various authors have recently pre­

sented convincing evidence in favour of the Monte Carlo EM algorithm for fitting 

generalized linear mixed models (Booth et al., 2001; Booth and Hobert, 1999; 

Ibrahim et al., 2001; Palmgren and Ripatti, 2002); thus, if this were to become 

the mainstream approach for fitting GLMM then our MCEM for NIRCB mod­

els could find wider applications. An important alternative approach that can 

be used to fit outcome-based or random-coefficient-ba.sed missing data models is 

MCMC based Bayesian methods (see Carpenter et al. (2002) for outcome-based 

models). However, a Bayesian approach docs not exempt us from the need to 

make untestable assumptions as, for example, prior distributions for the missing 

data have to be made; on the other hand, sensitivity analyses can be readily 

performed by varying these priors, using, for instance, heavy-tailed distributions. 

7.1 Further areas of research 

The MCEM of Chapter 3 can be used in more complex settings, such as multi­

level models with more than two levels of clustering. In fact, it is not difficult to 

euviiiagc situations where missingness may be related to the deviations, at any 

level of clustering, from the population average, just as in Parkinson's disease 

it was related to a patient's deviation from the overall rate of change. There-
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fore an important area of research is the assessment of the performance of the 

method presented in these situations, both in computational terms and in terms 

of the interpretability of the results. It would also be interesting to compare the 

performance of the MCEM algorithm to the Stochastic EM or other methods 

based, for instance, on Stochastic Approximation (Booth et al., 2001). Another 

issue that should be investigated is the robustness of the results from randorn­

coefficient-based dropout models to the assumption of normality of the random 

effects. Finally, it is straightforward to extend this method to categorical outcome 

data for which, in fact, the MCEM algorithm was originally proposed. Indeed, 

we could have used this method to account for missing data in the dental pain 

trial; however, because of the very short follow-up period, it would not have been 

sensible to relate dropout to some underlying rate of change in pain. Notice that 

all these possible developments carry through to the sensitivity analysis methods 

of Chapter 4, the validity of which, in these new settings, could also be studied. 

The properties of the intervals of ignorance and uncertainty of Chapter 5 

are another interesting area of research, especially with regard to the definition 

of coverage that should apply to the latter, as mentioned at the end of that 

Chapter. In general, the method is particularly suited to situations like the den­

tal pain trial, where the outcome variable is ordered categorical, and sensitivity 

analyses like those of Subsection 5.3.3 lead to useful conclusions. Nevertheless, 

further applications of this approach to the continuous outcome setting would 

show its potential as a practical analysis tool. There are also parallels with fuzzy 

regression where one defines fuzzy membership functions for the outcome variable 

and obtains fuzzy (interval) estimates of the relevant parameter (Kacprzyk and 

Fedrizzi, 1992). Thus, the two approaches could be compared, at least in the case 

of Li.d. continuous outcomes, where fuzzy membership functions would apply 

only to the missing data. Furthermore, possible extensions of fuzzy regression to 
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longitudinal data are another area of research. 

The method based on calculation of the proportion of estimates exceeding 

a threshold over all possible estimates, as a measure of the uncertainty about 

traditional point estimates caused by missing data, could also be investigated 

further. In particular, an interesting alternative approach would be to consider 

Bayesian methods. One could then look at how the posterior distribution (tail 

probabilities) of a coefficient of interest are affected by the choice of domains and 

density functions for the missing observations, as we did in Section G.5. 



Appendix A 

Calculation of standard errors for MCEM estimates 

In the conditional parametric bootstrap approximation of Louis' formula (Diebolt 

and Ip in Gilks et al. (1996)) we draw a sample of size m from (3.7) using the 

methods of Section 3.2 with all relevant parameters fixed at the converging values 

of the MCEM algorithm and then approximate E [-fcomPI] and cov [€comPI] via 

Monte Carlo integration. In particular, here m = 500. 

Expressions for €comp( 
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f)f 250 ni 1 
- = "" "" - treat· A· . f)f31 ~~ 0 2 "1 

, 1 

f)f 250 "i 1 
- = "" "" - BaseADL· A·· f)f33 ~~ 02 I lJ 

, 1 



Aij = (Yij - (30 - (31treati - (32weekj - (33I3aseADLi) 

1]il = aD + al treati + a2b~~) + Cl3I3aseADLi + "II 
I3il = exp( -exp(1]il)) exp(1]iI) 

1 - exp( -exp(1]il)) 

Cit = -exp( -exp(1]il)) exp(1]il) 
exp( -exp( 1]il)) 

The elements of the Hessian matrix fcompl are easily derived considering the second 

derivatives of the expressions above. 
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Elements of the matrix 6 of Section 4.1 

Considering the 21 x 1 vector of parameters 

the matrix ~ corresponds to the 21 x 250 submatrix 8::e~~w) of the Hessian 

fobs(Blw); the latter has been estimated using the parametric bootstrap approx­

imation of the Louis formula where the score vector icompl(Olw) in (3.8) now 

contains the additional elements 

ae 250 (ni+ 1)di (ni)1- di 

aWi = ~ L [~jbilBil + (1- ~j) bi1Cil ] 

l J 

(see Appendix A for expressions for B and C). 
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Appendix C 

Convergence of the modified Fisher scoring 

algorithm of Subsection 5.1.1 

Consider the generic p-dimensional vector of parameters () and a likelihood based 

model fitting. In the presence of missing data and with categorical outcomes, 

define the map AI : M ~ 8 from the set of possible completions of the data 

M to the corresponding set of possible parameter estimates 8. We show that, 

for j E 1, ... ,p, the algorithm described in Subsection 5.1.1 converges to ()i E 8 

where ()i indicates the vector of parameter estimates with the minimum value for 

the jth element of (). Convergence to the maximum can be shown using similar 

arguments and will be omitted. 

We first prove that, globally, the algorithm will convergence to oj. Given a 

starting point 8(k), a step of the Fisher scoring produces a successor point ()(k+l) 

as 

(C.l) 

where f is the log-likelihood function and I = E{H} is the expectation of the 

Hessian matrix H. Expression (C.l) is a point-to-point map, A, generating a 

sequence 8(1),8(2), (){3) , .•. where ()(k+l) = A(()(k)) for each k. In particular for 
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the algorithm in Subsection 5.1.1 it is 

where the superscript j on the RHS indicates that the maximum of the j-th entry 

of the gradient is to be found over all possible completions ill M. 

We want to show that the sequence of points 9(1),9(2)' 9(3), ... with 9(1) > oj 
converges to 9 j where convergence takes place if, given f > 0, 9(k+1) - 8(k) < f 

or, equivalently, if 

From (C.1) and known results on the concavity of the log-likelihood (Pratt, 1981), 

the descent direction of the scoring algorithm is necessarily downhill for min­

imizing f as I is positive (semi)definite. This implies that the succession of 

points generated by A must converge to oj. In fact, if by contradiction we had 
. -j 

9(k) -t 91 > 9 then 

:k> 0: max {Vf(8)}i > f 
y"" .• 8EM 

alld the stopping rule would not be met. Also 

for all k. 

Clm;e to the solution then, usual local convergence properties of the Fisher scoring 

algorithm apply as described, for example, in Osborne (1992) and Bazaraa et al. 

(1993). 
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Appendix 0 

The IGLS algorithm for fitting linear mixed models 

For the measurement taken on subject i at visit j, a linear mixed model can be 

written as 

where Xij is the j-th row of the ni x P design matrix Xi of explanatory variables 

for the fixed effects part of the model, ni the number of observations taken on 

subject i, f3 is the p x 1 vector of fixed effect parameters, Zij is the j-th row of 

the ni x q design matrix Zi for the random part of the model, b '" Nq(O, D) and 

Cij '" N(O, ( 2 ) for all j = 1, ... ,ni and i = 1, ... , N. 

If the variance-covariance parameters in D are known, indicating with X the 

niN x P matrix obtained by stacking the Xi on top of each other and with 

Y = (Yll, Y12, ••• , YnNN) the niN x 1 vector of responses, the Generalized Least 

Squares estimator of f3 is 

(D.1) 

where V is block diagonal with generic block corresponding to subject i given by 

Vi = ZiDZT + $jU2, EElj indicating the ni x ni identity matrix. In general, the 

elements of D have to be estimated. 
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• Step 1: Obtain initial OLS estimates of the fixed coefficients /J . 
• Step 2: Form the vector of raw residuals Y = {Yij} = {Yij - Xij/J} and 

the corresponding cross-product matrix yyT. This can be rearranged as 

a vector by stacking the columns on top of each other to obtain y .... = 

vec(yyT), say. The latter are now considered as observed responses in a 

linear model with the distinct entries of D, 0, as unknown parameters to 

be estimated. For example, in a mixed model with only a random intercept 

term and two subjects we have 

2 Yu 1 1 

Y"* = vec(yyT) = Yl2Yll 2 
1 

+0-2 
0 

= (Jbo e + R = Z*O + R. 

2 
Y22 1 1 

Also, E(Y .... ) = Z*O and therefore the GLS estimator of the vector 0 is 

where in the expression above V" = V ® V, the symbol ® indicating the 

kronecker product of two matrices. 

The generic element of Z*TV .. -1Z" or, similarly, Z*TV .. -1y .... can be written 

as 

L = vec(A?(V-1 ® V-l)vec(B) 

For example, if A refers to a between-subjects covariance term we have 
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if it refers to a between-subjects variance term 

and for the error term we have the identity matrix 

where in all the expressions above the vectors Xl and Xm are the explana­

tory variables whose random coefficients define the relevant covariance and 

variance parameters (Goldstein and Rasbash, 1992). 

A matrix algebra result gives L = tr{ATV-1BV-l} (Searle et al., 1982) 

and since V is block-diagonal we can evaluate L block by block. 

The inverse of the generic block Viis 

V~l = ~-l(I - Z.DG~lZ.~-l) ten; ~ t ~ e 

where, for a white noise ~e = In;0'2 and G i = (Iq + Zr~~lZD) = (Iq + 
ZiE ZiD ). Therefore, for the generic block in L and a covariance term we can 

write 

for a variance term we have 
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and for the (level-1) error term 

• Step 3: obtain new estimates of the fixed coefficients using (D.1) . 

• Step 4: iterate until convergence. 

Upon convergence, the covariance matrix of {3 is estimated as (XTV-1X)-1. The 

IGLS estimates thus obtained are equivalent to maximum likelihood (ML) esti­

mates. The algorithm can be modified to obtain restricted iterative generalised 

least squares estimates (RIGLS) which are equivalent to Restricted Maximum 

Likelihood estimates (REML) (Goldstein, 1989). 

This is done by replacing yyT by yyT + X(XTV-1X)-lXT throughout. 
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Appendix E 

Saddlepoint approximations of densities and 

distribution functions 

The key idea behind the saddlepoint approximation of the density of the sum of 

n random variables is the fact that this can be expressed, by means of Fourier 

transform, as an integral on the complex plane where the integrand has the form 

exp(nw(z)). Thus, for n large, the major contribution to this integral comes from 

a neighborhood of the saddlepoint Zo which is also a zero of w'(z). Using the 

method of steepest descent, one can get a complete expansion of the density with 

terms in powers of n -1. 

Here, we follow the illustration of the technique given in Field and Ronchetti 

(1990). Other references include the original paper by Daniels (1954) and those 

by Reid (1988), Goutis and Casella (1999), Huzurbazar (1999) and Mazumdar 

and Gaver (1984). 

E.l The method of steepest descent to compute asymptotic expansions of integrals 

Suppose our aim is to obtain an asymptotic expansion of the integral 

h evw(z)~(z) dz 
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with v large and positive and w an analytic functions of z in a domain of the 

complex plane containing the path of integration P. The way we proceed is as 

follows (Field and Ronchetti, 1990). We first deform the path of integration so 

that (1) the new path passes through a zero of the derivative w'(z) of wand (2), 

on this new path, the imaginary part of w, ~w(z), is constant. 

\Vrite z = x+iy, Zo = Xo +iyo, w{z) = u{x, y) +iv{x, y). Then, as w'(zo) = 0, 

the Cauchy-Riemann differential equations and the two conditions above imply 

that the new path passes through a saddlepoint of V, the surface (x, y) ~ u(x, y), 

and coincides with the path of steepest ascent or descent on V as we move away 

from the saddlepoint (xo, Yo). Next, considering that on the new path ~w(z) is 

constant and equal to ~w(zo), we have 

w(z) = u(x, y) + iv(xo, Yo) = u(xo, Yo) + iv(xo, Yo)-

(u(xo, Yo) - u(x, y)) = w{zo) - ,(x, y). (E.2) 

In the previous expression 'Y is a real function that either increases to +00 or 

decreases to -00. We choose the direction where 'Y increases to +00 as otherwise 

integral (E.1) diverges; this is the path of steepest descent from the saddlepoint 

and, on this path, (E.1) becomes 

(E.3) 

Therefore, instead of approximating w{z) in the exponent where the error 

would grow very rapidly, we need only approximate ~~. This we do with a series 

expansion near the saddlepoint Zo. 
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E.2 Saddlepoint approximation of the density function of the sum of random vari­

ables 

Consider n LLd. random variables Xl,"" Xn with density, moment and cumu­

lant generating functions f(x), M(a) = r~-: eQX f(x) dx and K(a) = InllJ(a), 

respectively. Then, by Fourier inversion, the density of the sum S = L~=l Xi can 

be written as 

(E.4) 

With the change of variable z = ir the previous expression becomes 

1 j+iOO 1 I T
+

ioo 
-. .Mn(z)e-tz dz = -2 . exp{n[K(z) - zt/n]} dz 
21l"Z -ioo 7rZ T-ioo 

(E.5) 

the latter equality following from the fact that it is possible to shift the path of in­

tegration by considering any straight line parallel to the imaginary axis (Kolassa, 

1994). 

Expression (E.5) is in the same form as (E.1) with v = nw(z) = n{K(z) -

zt / n), ~ (z) = 2~i' t fixed and P any line parallel to the imaginary axis. 

The method of steepest descent then requires a change in the path of integration 

such that this goes through a zero of w' (z) 

w'(z) = nK'(z) - t = O. 

Thus, the saddlepoint Zo is the solution of the equation nK'(zo) = t. 

Daniels (1954) shows that the saddlepoint Zo is real, so w(zo) is real and since on 

the new path SSw(z) is constant, this implies SSw(z) == ~w(zo) = O. Thus, to apply 

the method of steepest descent, we choose a path of integration consisting of a 

straight line parallel to the imaginary axis and that goes through the saddlepoint 
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Zo = ao E R 

On the new path then, consider a small circle around the saddlepoint 0'0 of 

radius c. It can be shown that the contribution to the integral outside this circle 

can be ignored. 

Inside this circle, by definition w(z) is real and write I as in (E.2), that is 

,= w(ao) - w(z) = f{(ao) - aotln - [f{(z) - ztln]. (E.6) 

We now expand the latter expression in a series around ao 

,=- (z - ao)[f{'(ao) - tin] - (z - ao)2 f{1/(ao}/2 (E.7) 

- (z - ao}3 f{II'(ao}/6 - (z - ao}4f{(iv) (ao}/24 - ... 

Then, writing I = 8; (since I increases monotonically) and with the changes of 

variable 

and 

we can write (E.7) as 

( = (z - ao)[f{I/(ao)]1/2 

A3(aO) = f{1II(ao}/[f{I/(aoW/2 

A4(aO) = f{(iv)(ao)/[f{I/(ao}]2 

(E.8) 

(E.g) 

as the first term on the RHS of (E.7) vanishes at the saddlepoint. Expression (E.g) 
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can be inverted to express (, as a series of <5 as 

(E.I0) 

Therefore, inside a circle of radius c around the saddlepoint Qo and on the new 

path (of steepest descent), since from (E.8) follows dz = d(,/[K"(ao)p/2, our 

integral can be written as 

2
1. r exp{n[K(z) - zt/n]} dz = 
7r~ Jpo 

=~exp{nK(ao) - aot} r e-n-y dz 
2n Jpo 
1 exp{nK(ao) - aot} rB -no2 /2 dC, d<5 

27ri [K"(ao)]1/2 JA e d<5 
(E.ll) 

where the limits of integration A, B correspond to the values of <5 where the circle 

intersects the path. From (E.I0) we can write 

(E.12) 

which, substituted in (E.ll), gives 

Now, applying Watson's Lemma 

(n/27r) 1/2 1B e-n82 / 2'l/J(<5) d8 "-' 'l/J(O) + ~'l/J"(O) + ... + _1_'l/J
2r

(O) + ... 
-A 2n (2nY r! 
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to (E.13) finally gives 

where the leading term 

[ 
1 ] 1/2 

21fnKI/(ao) exp{nK{ao) - aot} (E.14) 

is the saddlepoint approximation. 

E.3 Saddlepoint approximation of tail areas 

From (E.4), the density function of the sum S of n i.i.d. random variables can 

be written as 

fn(x) = -f-1°O enK(ir)-irx dr. 
1f -00 

Thus, a tail area corresponding to a value s is given by 

P(S? s) = - enK(tr)-trx drdx 100 1 100 
.. 

8 21f -00 

= ~ 100 

enK(ir)-irs dr fir 
21f -00 
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1 l ioo 

= -. enK(z)-zs dz/z. 
27rz -ioo 

(E.15) 

Denote with a the saddlepoint that solves nI<'(z) = s and make a change of 

variable from z to t as follows 

t2 

nI«z) - zs = - - "It 
2 

such that t = "I implies z = a. It follows that 

-"12 = 2(nI«a) - as). 

The tail area (E.15) can therefore be written as 

P(S? s) = -. e(t2 /2-,t)Go(t) dt/t 1 l ioo 

27rz -ioo 

with Go(t) = t/ z~:. Next, we approximate Go(t) linearly as 

(E.l6) 

(E.17) 

with ao = Go(O) and al = (Go(O) - Goh))/,. Go(O) and Goh) can be readily 

evaluated and are equal 1 and l/h + a(Kllta))l/2) respectively. Therefore we can 

write (E.17) as 

1 l ioo 
1 P(S? s) ~ -. - et2

/ 2-,t dt 
27rZ -ioo t 

1 (1 1) 1iOO 
t2 /2-,t dt +- --+ e 

27ri 'Y a(I<"(a))1/2 -ioo 

~ 1 - iP(A) - ¢(A) (~ - !) (E.lS) 
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where the latter expression follows from the inversion formula for distributions 

(page 483, Feller, 1966 Vol 2) and 

A = sgn(a){2[as - nK(a)]} 1/2 

B = a[nK"(aW/2. 

In the case of lattice distributions (when approximating sums of discrete random 

variables), throughout the expressions above, the saddlepoint a now solves 

and 

nK'(a) = s -! 
2 

B = 2sinh(aj2)[nK"(a)F/2 

is used in (E.18) (Skovgaard, 1987). 
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