Modelling of infection by enteropathogenic Escherichia coli strains in lineages 2 and 4 ex vivo and in vivo by using Citrobacter rodentium expressing TccP.
Girard, Francis;
Crepin, Valérie F;
Frankel, Gad;
(2009)
Modelling of infection by enteropathogenic Escherichia coli strains in lineages 2 and 4 ex vivo and in vivo by using Citrobacter rodentium expressing TccP.
Infection and immunity, 77 (4).
pp. 1304-1314.
ISSN 0019-9567
DOI: https://doi.org/10.1128/IAI.01351-08
Permanent Identifier
Use this Digital Object Identifier when citing or linking to this resource.
Enteropathogenic Escherichia coli (EPEC) strains colonize the human gut mucosa via attaching-and-effacing (A/E) lesion formation, while in vitro they employ diverse strategies to trigger actin polymerization. Strains belonging to the EPEC-1 lineage trigger strong actin polymerization via tyrosine phosphorylation of the type III secretion system (T3SS) effector Tir, recruitment of Nck, and activation of N-WASP. Strains belonging to EPEC-2 and EPEC-4 can trigger strong actin polymerization by dual mechanisms, since while employing the Tir-Nck pathway they can additionally activate N-WASP via the T3SS effectors TccP2 and TccP, respectively. It is currently not known if the ability to trigger actin polymerization by twin mechanisms increases in vivo virulence or fitness. Since mice are resistant to EPEC infection, in vivo studies are frequently done using the murine model pathogen Citrobacter rodentium, which shares with EPEC-1 strains the ability to induce A/E lesions and trigger strong actin polymerization via the Tir:Nck pathway. In order to model infections with EPEC-2 and EPEC-4, we constructed C. rodentium strains expressing TccP. Using a mouse intestinal in vitro organ culture model and oral gavage into C57BL/6 mice, we have shown that TccP can cooperate with Tir of C. rodentium. The recombinant strains induced typical A/E lesions ex vivo and in vivo. Expression of TccP did not alter C. rodentium colonization dynamics or pathology. In competition with the wild-type strain, expression of TccP in C. rodentium did not confer a competitive advantage.