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Abstract	

Human	tuberculosis	disease	(TB)	is	caused	by	bacteria	within	the	Mycobacterium	tuberculosis	

complex,	including	M.	tuberculosis	(Mtb).	Genetic	variation	within	the	pathogen	can	lead	to	

drug	 resistance,	 affect	 virulence	 and	 transmissibility.	 I	 have	 analysed	Mtb	whole	 genome	

sequence	data	to	 improve	the	understanding	of	global	genetic	variation,	and	the	resulting	

insights	could	ultimately	assist	the	development	of	TB	control	measures.	

	

Whole	genome	sequencing	platforms	are	being	used	to	 infer	drug	resistance	profiles,	and	

thereby	could	assist	clinical	management.	I	investigated	the	reproducibility	of	sequence	data	

from	 two	platforms	 (Illumina	MiSeq,	 Ion	 Torrent	 PGM™)	 and	 two	 rapid	 analytic	 pipelines	

(TBProfiler,	Mykrobe	predictor).	DNA	 replicates	 from	 the	 reference	 strain	 (H37Rv)	 and	10	

drug-resistant	 strains	 were	 sequenced,	 and	 inferred	 drug	 resistance	 genotypes	 were	

compared	to	drug	susceptibility	testing	phenotypes.	

	

Genome-wide	association	study	(GWAS)	can	be	used	to	detect	mutations	associated	with	Mtb	

drug	 resistance.	 A	 first	 GWAS	 (n=127)	 attempted	 to	 identify	 mutations	 associated	 with	

minimum	inhibitory	concentrations	for	first-line	anti-tuberculosis	drugs.	A	second	GWAS	was	

applied	to	a	large	global	set	(n>6400)	to	identify	mutations	associated	with	first-	and	second-

line	drug	resistance.	

	

M.	 aurum	 is	 an	 environmental	mycobacteria	 that	 has	 been	 proposed	 as	 a	model	 for	 the	

development	 of	 anti-TB	 drugs.	 I	 have	 assembled	 and	 annotated	 its	 draft	 genome,	 and	

identified	copy	number	variants	in	known	drug	resistance	targets.	
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Approximately	10%	of	the	Mtb	genome	consists	of	two	gene	families	(pe/ppe)	that	are	poorly	

characterised,	 and	 are	 hypothesised	 to	 be	 important	 virulence	 factors.	 Using	 a	 de	 novo	

assembly	approach,	I	characterised	these	genes	and	their	diversity	across	a	global	collection	

of	clinical	isolates	with	high	depth	short-read	sequence	data	(n=518).	A	follow-up	study	using	

a	long-read	sequence	technology	(n=18,	diverse	stain	types)	confirmed	the	findings.	This	work	

also	 generated	 new	 annotated	 reference	 genomes	 and	 characterised	 methylation	 sites,	

which	may	affect	transmissibility,	pathogenicity	and	virulence.	

	

A	future	direction	of	the	TB	genomics	field	is	to	identify	genetic	check	points	in	host-pathogen	

interactions	using	both	human	and	Mtb	genotypes.	I	analysed	the	genomes	of	~720	TB	case–

Mtb	pairs	and	identified	susceptibility	markers,	which	are	promising	targets	for	future	control	

measures.	
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1.	Introduction	

1.1	Global	burden	of	tuberculosis	disease	

Human	tuberculosis	disease	(TB)	is	a	major	global	public	health	problem,	with	an	estimated	

10.4	million	new	cases	and	1.8	million	deaths	 in	2015	alone1.	Disease	control	 is	becoming	

difficult	 due	 to	 increasing	drug	 resistance	 and	 in	 some	populations	HIV	 co-infection1.	 The	

majority	of	new	cases	(60%)	were	from	China,	India,	Indonesia,	Nigeria,	Pakistan	and	South	

Africa1	(Figure	1).	HIV	infection	increases	the	incidence	and	mortality	risk	of	the	disease,	and	

1.2	million	 (11%)	of	new	cases	were	HIV-positive1.	One	of	 the	aims	set	out	by	 the	End	TB	

Strategy	 is	 a	 35%	 reduction	 of	 TB	 deaths	 by	 2020	 compared	 to	 2015.	 To	 achieve	 this,	 a	

reduction	of	4-5%	needs	to	be	sustained	annually1.	

Figure	1	

The	estimated	incidence	of	new	TB	cases	per	annum	(per	100,000).	Taken	from	the	WHO	

Global	Tuberculosis	Report
1
.		
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1.2	Disease	etiology,	risk	factors	and	host	susceptibility	

Symptoms	of	TB	include	weight	loss,	chest	pain,	coughing,	fever	and	night	sweats.	Droplets	

containing	 the	 bacterium	 are	 inhaled,	 reach	 the	 alveoli	 and	 invoke	 an	 immune	 response	

though	 macrophages	 and	 granulocytes.	 Once	 the	 bacilli	 have	 entered	 the	 lung	 they	 are	

engulfed	by	macrophages	which	move	 into	 deeper	 tissue.	Mtb	 then	 replicates	within	 the	

macrophage	–	eventually	causing	apoptosis	and	rupture	of	the	host	cell.	More	macrophages	

are	recruited	to	engulf	the	debris	and	the	granuloma	is	formed	through	the	recruitment	of	

NK-cells	 and	T-cells	 (Figure	2)2.	 This	process	 can	either	 lead	 to	 replication	of	 the	bacilli	 in	

macrophages	and	progression	to	active	disease	or	the	bacilli	are	contained	and	replication	is	

limited,	resulting	in	latent	infection.	Pulmonary	TB	is	the	most	common	form	of	TB	due	to	the	

lungs	being	the	primary	point	of	infection	but	the	bacilli	can	spread	to	other	parts	of	the	body	

leading	 to	extra	pulmonary	TB.	Only	10%	of	 individuals	 infected	will	develop	active	TB.	 In	

addition	to	pathogen	factors	such	as	lineage	and	drug	resistance,	there	are	many	host	risk	

factors	involved	with	the	outcome	of	infection	including	age,	HIV	status,	immunosuppression	

and	genetics.	There	is	some	evidence	of	inter-population	variation	of	resistance	levels	to	TB3.	

This	variation	could	be	attributed	to	differing	socio-economic	levels	of	populations,	but	also	

host	genetic	factors	affecting	ethnic	group	susceptibility4.	Several	twin	studies	have	suggested	

that	 susceptibility	may	 be	 heritable,	with	 higher	 concordance	 for	 the	 development	 of	 TB	

among	mono-	as	opposed	to	di-zygotic	twins5.	Using	experimental	and	molecular	approaches,	

some	 genetic	 differences	 between	 populations	 contributing	 towards	 the	 altered	 level	 of	

infection	 have	 been	 found.	 Altered	 interferon-gamma	 (IFNγ)	 expression	 in	 response	 to	

mycobacterial	antigens	has	been	implicated	in	infection	with	atypical	mycobacteria7.	Studies	

of	patients	suffering	from	high	susceptibility	to	mycobacteria	led	to	a	number	of	variants	in	
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Figure	2	

The	initial	stages	of	infection	up	to	the	formation	of	the	granuloma.	Adapted	from	Ehlers	et	
al6.	Initial	infection	can	lead	to	i)	clearance,	ii)	latent	infection	or	iii)	active	TB.	This	figure	
demonstrates	 the	 many	 different	 cell	 types	 are	 involved	 in	 the	 generation	 of	 the	

granuloma.	
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receptors	and	ligands	of	the	IL-12/IFNγ	pathway	being	implicated	in	susceptibility8–12.	These	

studies,	while	useful	 in	demonstrating	that	host	genetics	 is	a	 factor	 in	susceptibility	to	TB,	

analysed	rare	variants	which	would	not	be	expected	to	exist	at	high	frequencies	 in	human	

populations.	 Identification	 of	 other	 host	 genetic	 variants	 affecting	 susceptibility	 is	 vital,	

especially	 to	 improve	patient	management,	and	genome	wide	association	 studies	 (GWAS)	

using	 large	 numbers	 of	 polymorphisms	 have	 been	 employed.	 The	 GWAS	 approach	 has	

worked	well	for	other	infectious	diseases,	with	associated	loci	detected	for	Leprosy,	Dengue,	

HIV	and	HBV13.	The	first	GWAS	was	performed	using	11,425	individuals	in	a	combined	cohort	

from	Ghana	and	The	Gambia12.	They	found	a	region	on	18q11.2	to	be	highly	significant	with	

susceptibility	to	TB.	However,	validation	studies	 in	other	cohorts	have	reported	conflicting	

results10,14.	The	largest	study	to	date	analysed	5,530	TB	cases	and	5,607	healthy	controls	in	a	

Russian	population	 and	 	 identified	 7	 SNPs	on	 chromosome	8	 in	 the	ASAP1	 gene	 as	 being	

associated	 with	 susceptibility	 to	 TB	 9.	 However	 a	 subsequent	 study	 in	 a	 Chinese	 Han	

population	could	not	 replicate	 the	strong	associations	reported8.	This	 inability	 to	replicate	

results	has	become	a	consistent	theme	for	GWASs	in	the	TB	field.	To	date	there	have	not	been	

any	candidate	regions	in	the	human	genome	which	have	been	significantly	associated	with	

TB	susceptibility	across	the	majority	of	genome	wide	association	studies.	Human	or	pathogen	

(or	both)	variation	across	regions	may	be	an	important	component	influencing	the	chances	

of	genetic	association	reproducibility.	

1.3	Diagnosis	

Active	and	latent	TB	have	different	diagnosis	methods.	The	recommended	diagnosis	method	

for	 latent	TB	 is	 the	 tuberculin	 skin	 test	or	 the	blood	 interferon-gamma	release	assay.	The	

former	is	more	cost	effective	and	may	be	more	suited	for	low-income	regions	while	the	latter	
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has	an	improved	specificity15.	Both	these	tests	measure	the	response	of	the	adaptive	immune	

system	and	therefore	need	to	be	administered	greater	than	eight	weeks’	post	 infection	to	

produce	a	reliable	result.	Symptoms	and	signs	of	TB	like	lesions	in	the	lung	can	checked	using	

chest	 x-ray	 and	 used	 to	 diagnose	 TB.	 However,	 symptoms	 can	 overlap	 with	 other	 more	

common	 diseases	 in	 low	 endemic	 countries	 and	 do	 not	 immediately	 point	 towards	 TB.	

Additionally,	interpretation	of	x-rays	requires	experience	and	is	subjective.	Smear	microscopy	

is	 the	 most	 widely	 used	 method	 of	 tuberculosis	 diagnosis	 for	 active	 TB.	 Its	 sensitivity	 is	

estimated	at	~70%	and	can	drop	to	as	low	as	~35%	in	some	clinical	settings16,17.	Culture	is	the	

gold	standard	for	diagnosis	of	tuberculosis.	This	can	be	performed	using	n	solid	(>	3-4	weeks)	

or	liquid	culture	(10-14	days)18.	Molecular	diagnostic	tests	on	sputum	samples,	such	as	the	

Xpert	 MTB/RIF	 assay	 can	 detect	Mtb	 with	 an	 increased	 sensitivity	 and	 can	 also	 detect	

resistance	 to	 certain	drugs,	 in	 this	 case	 rifampicin15.	 Recent	 efforts	 have	 concentrated	on	

detecting	Mtb	nucleic	acids	by	sequencing	direct	from	sputum19	or	with	limited	culturing20.	

Informatics	 tools	 have	been	developed	 to	 rapidly	 profile	 the	Mtb	 for	 drug	 resistance	 and	

strain-type	from	sequence	data,	thus	potentially	improving	patient	management21.		

1.4	Treatments	

Although	there	is	no	perfect	treatment	for	TB,	there	are	many	anti-tuberculous	drugs,	which	

are	 subdivided	 into	 two	main	 categories.	 The	 first	 line	drugs	 include	 rifampicin,	 isoniazid,	

ethambutol,	streptomycin	and	pyrazinamide.	Second	line	drugs	such	as	fluoroquinolones	and	

injectables	should	be	supplemented	when	treatment	 fails	with	the	above	(Table	1).	Other	

new	drugs	currently	used	 in	 clinical	 trials	 include	bedaquiline,	delamanid	and	clofazimine,	

which	are	important	for	the	most	serious	drug	resistance	cases.	The	WHO,	and	the	UK	based	

National	Institute	for	health	and	Care	Excellence,	standard	recommended	regimen	for	active	
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respiratory	TB	consists	of	a	6	month	regimen	of	the	first	line	drugs	isoniazid	and	rifampicin	

supplemented	with	ethambutol	and	pyrazinamide	for	the	first	two	months22	and	can	achieve	

positive	outcome	 rates	of	up	 to	95%23.	 Latent	 infections	can	be	 treated	as	a	preventative	

measure	in	high	prevalence	areas.	A	regimen	of	isoniazid	for	6-9	months	is	recommended15.		

Table	1	Summary	of	the	drugs	used	to	treat	various	forms	of	tuberculosis.	Adapted	from	

Zumla	et	al15	
	
Drugs	 Drug	regimen	

Standard	regimen	 6	 months	 rifampicin	 and	 isoniazid	 supplemented	 by	
ethambutol	and	pyrazinamide	in	the	first	two	months	

Latent	infection	 6-9	months	isoniazid	
Multi-	drug	resistant	TB	 Addition	of	second-line	drugs	e.g.:	

• Fluoroquinolones	–	ofloxacin	
• Injectables	–	kanamycin	
• Bacteriostatic	–	para-aminosalicylic	acid	

	
Extensively	 drug	 resistant	
TB,	use	of	new	drugs	

Bedaquiline,	delamanid	and	clofazimine	

	

When	treatment	failure	occurs	with	first	line	drugs,	second	line	regimens	must	be	used.	Multi-

drug	 resistant	 tuberculosis	 (MDR-TB)	 is	 defined	 by	 resistance	 to	 at	 least	 rifampicin	 and	

isoniazid.	Additional	resistance	to	second-line	drugs,	the	fluoroquinolones	and	injectables	is	

denoted	as	extensively	drug	resistance	(XDR-TB).	M/XDR-TB	regimens	are	complicated	and	

costly.	In	particular,	the	current	World	Health	Organisation	(WHO)	approved	MDR-TB	regimen	

has	an	overall	efficacy	of	only	50%	and	the	median	time	to	culture	conversion	can	be	as	long	

as	 five	months15.	 	 	 The	 current	 regimen	 is	 also	 toxic	 and	 six	months	 of	 painful	 injections	

promotes	non-adherence.		Drug	susceptibility	testing	(DST)	must	be	used	to	inform	on	which	

first/second	line	drugs	to	remove	and	supplement.	The	toxicity	of	current	second	line	drugs	

and	the	development	of	resistance	has	created	a	need	for	new	drugs.	Several	new	drugs	are	
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currently	being	evaluated	for	use.	Bedaquiline	and	delamanid	are	two	new	drugs	which	have	

undergone	phase	II	and	III	trials24–26	and	have	been	assigned	the	been	assigned	as	“add-on	

agents”,	to	be	used	in	complicated	cased	of	MDR-TB27.	These	drugs,	along	with	several	more	

in	preclinical	and	clinical	trial	stages28	will	aid	in	the	fight	against	MDR-TB	and	XDR-TB.	

1.5	Drug	resistance	

Mtb	 drug	 resistance	 is	 conferred	 by	 the	 accumulation	 of	 mutations	 (single	 nucleotide	

polymorphisms	(SNPs),	insertions	and	deletions	(indels))	in	genes	coding	for	drug-targets	or	-

converting	enzymes29,30.	To	overcome	a	loss	of	fitness	that	arises	during	the	accumulation	of	

such	mutations31,	putative	compensatory	mechanisms	have	been	described32,33.	Ineffective	

use	of	the	drugs,	such	as	defaulting	from	treatment,	can	cause	the	host	Mtb	population	to	go	

through	a	partial	population	bottleneck	and	lead	to	the	mutants	to	increase	in	frequency	-	

effectively	 causing	 all	 Mtb	 within	 a	 patient	 to	 become	 resistant.	 Mutations	 conferring	

resistance	to	rifampicin	and	isoniazid	are	well	characterised.	Rifampicin	binds	to	and	inhibits	

RNA	polymerase34.	Resistance	to	rifampicin	is	caused	by	mutations	in	the	rpoB	gene	coding	

for	RNA	polymerase	β	subunit35.	Nearly	all	resistance	conferring	mutations	occur	in	an	81bp	

region	 in	 rpoB	 called	 the	 rifampicin	 resistance-determining	 region	 (RRDR)35.	 Isoniazid	 is	 a	

prodrug	which	is	activated	by	KatG	catalase-peroxidase	and	binds	to	InhA	to	inhibit	mycolic	

acid	synthesis36.	Mutations	in	the	katG	gene	or	in	the	inhA	promoter	lead	to	resistance37,38.	

Mutations	 for	 second	 line	drugs	are	 less	well	 characterised	and	as	a	 result	are	difficult	 to	

predict	using	sequencing21.	MDR-TB	and	XDR-TB	cases	have	been	reported	in	117	countries1.	

Approximately	3.9%	of	new	cases	and	21.0%	of	previously	treated	cases	were	estimated	to	

have	MDR-TB.	Additionally,	an	estimated	9.5%	of	MDR-TB	cases	are	XDR-TB1.	
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Figure	3	

A	map	indicating	the	percentage	of	new	cases	with	MDR-TB.	High	incidence	is	seen	in	Russia	

and	other	ex-Soviet	Republics.	Taken	from	the	2016	WHO	Global	Tuberculosis	Report
1
.	

	

	

The	burden	of	MDR-TB	is	especially	high	in	India,	China,	South	Africa	and	Russia	(Figure	3).	It	

was	estimated	that	of	only	20.0%	new	MDR-TB	cases	eligible	for	treatment	were	enrolled	in	

appropriate	programs1.	One	of	 the	 five	priority	actions	of	 the	WHO	to	address	MDR-TB	 is	

through	“expansion	of	rapid	testing	and	diagnosis	of	MDR-TB	cases”23.	As	mentioned	above,	

some	molecular	diagnostic	tests	can	confirm	some	of	the	drug	resistance	genetic	markers,	

including	the	use	of	the	Xpert	MTB/RIF	assay.	However,	standard	culture	followed	by	drug	

susceptibility	 testing	 is	 still	 recommended15.	 While	 the	 Xpert	 MTB/RIF	 assay	 has	 the	

advantage	of	speed,	it	only	looks	at	a	specific	small	set	of	mutations	associated	with	rifampicin	

resistance39.	This	has	the	potential	to	miss	novel	or	rare	variants	that	have	not	been	included	



 19 

in	the	assay	and	does	not	detect	resistance	to	other	drugs.	Using	whole	genome	sequencing	

it	is	possible	to	characterise	all	variation	in	an	isolate21.		

1.6	Mycobacterium	tuberculosis	and	strain	diversity	

TB	is	caused	by	members	of	the	Mycobacterium	tuberculosis	complex	(MTBC,	see	Figure	4	

(top)	for	its	position	within	the	Mycobacterium	phylogeny).	The	first	whole	genome	sequence	

was	published	 in	1998	by	Cole	et	al40.	The	complex	 is	characterised	by	 low	overall	genetic	

diversity	and	a	striking	clonal	population	structure.	M.	tuberculosis	sensu	stricto	consists	of	

seven	lineages;	1	Indo-Oceanic,	2	East-Asian	including	Beijing,	3	East-African-Indian,	4	Euro-

American,	5	West	African	1,	6	West	African	2	and	7	Ethiopian41.	These	strains,	together	with	

M.	bovis	and	other	tuberculosis-causing	animal	strains	make	up	the	MTBC.	Imperative	in	the	

study	of	infectious	disease	is	the	ability	to	compare	the	genetic	relatedness	of	clinical	strains	

of	the	pathogen	of	interest.	This	inference	can	be	used	to	infer	transmission	dynamics	and	

identify	recent	or	ongoing	outbreaks	using	sufficiently	high	resolution	typing	methods42,43.		

Several	methods	have	been	used	to	type	(or	genotype)	M.	tuberculosis	(Mtb)	including	

insertion	sequence	(IS6110)	typing,	spoligotyping	and	Mycobacterial	interspersed	repetitive	

units-variable	number	tandem	repeat	typing	(MIRU-VNTR).	The	Mtb	genome	contains	many	

insertion	elements.	The	IS6110	insertion	element	has	proven	to	be	a	good	candidate	to	type	

as	it	is	specific	to	members	of	the	MTBC	and	varies	in	copy	number44.	Digestion	using	PvuII	

restriction	enzyme	cuts	the	DNA	at	specific	sites	in	IS6110	sequence	and	when	visualised	using	

a	southern	blotting	approach	leads	to	a	distinct	fingerprint	which	differs	by	strain.	Following	

this,	PCR	techniques	were	applied	designed	and	greatly	decreased	the	amount	of	DNA	and	

time	needed.	The	first	PCR	technique	was	named	spoligotyping	and	made	use	of	the	direct	



 20 

repeat	(DR)	region	in	the	Mtb	genome45.	The	DR	region	contains	a	variable	number	of	36bp	

repeats	interspersed	by	unique	“spacer”	sequences.	The	presence	or	absence	of	43	of	these	

spacer	sequence	differentiates	between	strain	types.	While	having	the	advantage	of	needing	

a	much	smaller	quantity	of	starting	DNA	than	with	IS6110	typing,	the	resolution	is	much	lower	

and	 it	 should	 be	 using	 in	 conjunction	with	 a	 high-resolution	method.	 Another	 PCR	 based	

approach	that	has	gained	popularity	is	the	MIRU-VNTR	method46.	This	involved	the	analysis	

of	 variable	 number	 of	 tandem	 repeats	 (VNTR)	 of	 24	 repetitive	 loci	 in	 the	Mtb	 genome	

including	the	mycobacterial	interspersed	repetitive	units	(MIRU)47.	The	loci	are	amplified	and	

the	number	of	repeats	at	each	locus	is	estimated	leading	to	a	unique	barcode	which	can	be	

translated	 to	 a	 strain	 type.	 Using	 these	 methods	 many	 different	 strain	 types	 have	 been	

defined	and	deposited	into	databases	such	as	SITVIT48	and	SpolDB449.		

These	genotyping	methods	use	 less	 than	1%	of	 the	Mtb	genome	(size:	4.4Mbp).	 In	

silico	 methods	 have	 also	 been	 developed	 to	 profile	 spoligotypes	 from	 whole	 genome	

sequence	data50.	Using	these	typing	methods	 in	conjunction	with	analysing	 long	sequence	

polymorphisms	 (LSPs)	 or	 regions	 of	 difference	 (RDs)	 and	 whole	 genome	 sequencing	

approaches	the	phylogeny	of	the	MTBC	was	delineated.	Distinct	clustering	of	strains	into	the	

seven	lineages	in	a	phylogenetic	tree	is	expected	(see	Figure	4	(bottom)).	The	strains	have	

been	designated	“ancient”	(lineage	1,5,6),	“modern”	(lineages	2,3	and	4)	and	intermediate	

(lineage	7)	according	 to	where	 in	 the	 tree	 they	diverged	 from	 the	ancestral	outgroup	 (M.	

canetti).	 Studies	 on	 the	 phylogeographic	 spread	 of	Mtb	 have	 shown	 a	 strong	 correlation	

between	the	strain	type	and	geographic	location51.	This	observation	has	led	to	the	hypothesis	

that	Mtb	 travelled	 with	 and	 co-evolved	 with	 their	 human	 hosts	 during	 the	 out	 of	 Africa	

expansion52	 .	 The	 lineages	 are	 postulated	 to	 have	 differential	 impacts	 on	 pathogenesis,	
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disease	 outcome	 and	 vaccine	 efficacy53–56.	 For	 example,	modern	 lineages,	 such	 as	 Beijing	

(lineage	2)	and	Euro-American	Haarlem	(lineage	4)	strains	exhibit	more	virulent	phenotypes	

compared	 to	 ancient	 lineages,	 such	 as	 Indo-Oceanic57.	 Whilst	 some	 genetic	 differences	

between	 lineages	 have	 been	 identified41,	 the	 molecular	 mechanisms	 responsible	 for	

differences	in	pathogenesis	and	virulence	remain	largely	unknown58.		

1.7	PE/PPE	protein	families	

Until	recently,	the	pe/ppe	genes	have	been	difficult	to	sequence	and	have	often	been	ignored	

as	repetitive	and	potentially	redundant	gene	families.	However,	these	two	groups	of	proteins,	

the	pe	and	ppe	families	have	recently	been	implicated	in	immune	evasion	and	virulence60.	

Members	of	the	pe/ppe	gene	families	are	characterised	by	the	presence	of	proline-glutamate	

(pe)	and	proline-proline-glutamate	(ppe)	signature	motifs	near	the	N-terminus	of	their	gene	

products61.	The	pe	(99	loci)	and	ppe	(69)	gene	families	constitute	~10%	of	the	coding	potential	

of	M.	tuberculosis	and	are	scattered	throughout	the	genome60.	The	families	can	be	subdivided	

based	on	similarities	in	their	N-terminal	regions62.	Many	of	the	pe	and	ppe	gene	products	are	

predicted	to	be	 localised	to	the	cell	membrane	or	secreted	 including	those	 in	the	pe_pgrs	

domain	containing	subgroup	and	the	ppe_mptr	domain	containing	subgroup61,63.	It	has	been	

speculated	that	these	proteins	may	play	a	role	in	virulence61.	Pe/ppe	genes	are	differentially	

expressed	during	infection64	and	some	pe/ppe	proteins	have	been	shown	to	elicit	 immune	

responses	by	 the	host61,65	 and	 there	 is	 evidence	 that	 the	pgrs	domain	 can	 inhibit	 antigen	

processing66.	Whilst	pe_pgrs	and	ppe_mptr	genes	represent	some	of	the	most	variable	M.	

tuberculosis	regions,	some	members	of	the	pe/ppe	family	are	conserved	across	strains	and	

species,	therefore	implying	different	functional	roles.	
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Figure	4	(top)		

The	 mycobacterium	 phylogeny	 built	 using	 27	 whole	 genome	 reference	 sequences.	 The	 M.	

tuberculosis	complex	is	located	next	to	M.	canetti	in	the	slow	growing	mycobacterium	clade	(Phelan	

et	al,	2015)59;	(bottom)	Phylogenetic	tree	depicting	the	main	lineages	of	the	MTBC.	Adapted	from	

Niemann	et	al58	
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Few	of	the	pe/ppe	protein	structures	(including	pe25/ppe41)	have	been	characterised67,	and	

in	 lieu	 of	 experimental	 and	 functional	 work,	 insights	 into	 their	 function	 and	 interaction	

partners	must	come	from	 in	silico	analysis	of	 large-scale	 ‘omics	data.	However,	due	to	the	

repetitive	 nature	 and	 high	GC	 content	 genetic	 variation	 in	 the	pe/ppe	genes,	 it	 has	 been	

difficult	 to	 characterise	 them	 using	 traditional	 mapping	 approaches,	 leading	 to	 their	

systematic	exclusion	from	analysis67.	There	have	been	conflicting	studies	reporting	either	high	

or	little	or	no	sequence	divergence68–70,	but	these	studies	have	been	limited	by	the	number	

of	genes	and	diversity	of	strains	analysed.		

1.8	Next	generation	sequencing	technologies	

Advances	in	genome	sequencing	technology	have	enabled	the	characterisation	of	the	entire	

DNA	sequence	of	an	organism	of	 interest.	Next	generation	sequencing	(NGS)	refers	to	the	

high	throughput	sequencing	technologies	which	superseded	Sanger	sequencing.	Numerous	

NGS	 platforms	 have	 been	 developed	 including	 Illumina,	 454	 and	 Ion	 Torrent71,72.	 These	

platforms	 use	 a	 different	 set	 of	 reactions/processes	 however	 they	 all	 rely	 on	 the	 same	

principle:	the	DNA/genome	is	cut	into	smaller	fragments	and	sequenced	in	parallel	to	produce	

a	 large	 number	 of	 overlapping	 sequences	 (reads).	 These	 sequences	 can	 be	 aligned	 to	 a	

reference	 genome	 or	 assembled	 de	 novo	 to	 build	 up	 a	 picture	 of	 the	 DNA	 which	 was	

sequenced.	 NGS	 has	 numerous	 advantages	 over	 sanger	 sequencing	 including	 cost,	

throughput	and	accuracy.	The	human	genome	project	cost	$3	billion	and	took	13	years	to	

complete.	 With	 NGS	 it	 is	 now	 possible	 to	 sequence	 a	 human	 genome	 in	 three	 days	 for	

$100073.	 Pathogen	 genomes	 are	 much	 smaller	 and	 multiple	 genomes	 can	 be	 sequenced	

(“multiplex	sequencing”)	in	parallel	–	thus	driving	the	cost	to	~£60	per	isolate	(based	on	an	

Illumina	HighSeq,	multiplexing	24	samples,	50-fold	genomic	coverage).	The	reduction	in	cost	
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and	increase	in	accuracy	means	that	it	is	possible	to	sequence	hundreds	of	genomes	to	use	in	

projects	investigating	pathogen	genomic	diversity.	To	date,	sequence	data	for	~31k	isolates	

have	been	deposited	into	the	European	nucleotide	archive	(ENA)	short	reads	archive.	Whilst	

NGS	technologies	have	provided	significant	improvements	over	previous	technologies	they	

do	suffer	from	some	drawbacks.	The	main	limitation	is	that	the	short	reads	they	produce	do	

not	characterise	repetitive	regions	as	well	as	unique	regions	of	the	genome.	When	the	size	of	

a	repeat	is	longer	than	the	read	length	it	is	extremely	difficult	to	determine	the	copy	number	

of	 a	 repeat	 using	 sequence	 information	 alone.	 	 Advancing	 on	 short-read	 sequencing	

technologies,	so	called	third-generation	NGS	platforms	have	tried	to	circumvent	these	issues.	

These	 include	 Pacific	 Biosciences	 (PacBio)74	 and	 Oxford	 Nanopore	 minION75.	 Both	 these	

platforms	have	the	ability	to	sequence	much	longer	fragments,	leading	to	the	production	of	

reads	greater	than	10Kb.	The	reads	are	 long	enough	to	span	entire	repetitive	elements	of	

Mtb.	 PacBio	 technology	 relies	 on	 sequencing	 of	 a	 template	 strand	 by	 a	 modified	 DNA	

polymerase.	This	process	produces	an	optical	signal	which	can	be	translated	into	a	nucleotide	

base.	Additionally,	PacBio	captures	the	speed	at	which	a	base	is	incorporated.	DNA	that	has	

been	methylated	will	 take	 longer	 to	 pass	 through	 the	polymerase.	 This	 differential	 speed	

allows	 for	 the	 epigenetic	 modifications	 to	 be	 detected.	 The	 minION	 uses	 a	 different	

technology,	 instead	 measuring	 the	 electrical	 current	 changes	 as	 a	 DNA	 molecule	 passes	

through	a	small	pore	 in	a	membrane	to	 identify	 the	nucleotide	bases.	The	minION	 is	very	

portable	and	connects	to	a	computer	via	USB	connection	to	transfer	the	signal	data	which	is	

then	converted	to	base	calls.	Its	portability	and	ease	of	use	has	let	to	its	use	in	projects	where	

mobility	is	key76.	Although	sequencing	costs	have	dropped,	the	size	of	the	genome	means	it	

is	 still	 not	 cost	effective	 to	 run	on	a	 large	 scale	 for	human	 studies	 such	as	GWASs.	 These	

studies	 use	 single	 nucleotide	 polymorphism	 (SNP)	 arrays	 to	 identify	 genetic	 differences,	
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typically	 between	 TB	 cases	 and	 controls,	whilst	 controlling	 for	 the	 confounding	 effects	 of	

population	structure.	The	SNP	arrays	currently	consist	of	millions	of	oligonucleotide	probes	

(for	example	Illumina	Omni	2.5),	which	hybridise	selectively	to	DNA	containing	specific	alleles.		

Additional	genotype	data	up	to	ten	million	SNPs	are	imputed77	from	reference	panels78.	

1.9	Applications	of	whole	genome	sequencing	

The	advent	of	NGS	has	enabled	the	characterisation	of	genomic	variation	at	an	ever-faster	

scale.	This	has	allowed	for	numerous	improvements	in	the	classification	of	pathogen	strains,	

detection	 of	 drug	 resistance	 and	 the	 large-scale	 study	 of	 transmission.	 NGS	 can	 detect	

differences	 between	 samples	 on	 a	 single	 base	 resolution.	 This	 fine-scale	 has	 made	 it	 an	

excellent	choice	of	 tool	 in	 the	 field	of	 strain	 typing.	Previous	 technologies	such	as	 IS6110,	

spoligotyping	and	MIRU-VNTR	typing	suffer	from	low	resolution	and	convergent	evolution	of	

the	 same	pattern.	Whole	genome	sequencing	on	 the	other	hand	 incorporates	all	possible	

genomic	variation	and	 thus	provides	much	better	 resolution58.	Multiple	efforts	have	been	

made	to	create	SNP	barcodes	that	infer	strain	type	from	NGS	data79–81.	The	largest	of	such	

studies	was	performed	by	Coll	et	al.41	which	analysed	a	collection	of	1601	genomes	resulting	

in	a	barcode	of	62	SNPs.	A	numerical	based	lineage	system	was	proposed	allowing	for	nested	

sub-lineages.	This	system	has	allowed	for	the	rapid	classification	of	NGS	data	into	strain	types	

is	useful	in	terms	of	epidemiological	studies82,83.	With	the	extra	resolution	NGS	provides	over	

other	typing	methods	it	has	become	possible	to	create	transmission	networks	using	genomic	

data	along	or	 in	combination	with	epidemiological	data.	Mutations	are	acquired	over	time	

and	the	number	of	mutations	between	two	isolates	can	be	used	as	a	proxy	if	a	transmission	

event	occurred.	For	Mtb	a	SNP	a	maximum	of	10	SNP	differences	has	been	proposed	as	the	

cut-off	 for	 recent	 transmission83,84.	 	 	 NGS	 can	 also	 help	 to	 disentangle	 the	 origin	 of	 drug	
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resistance	in	a	patient;	acquired	or	transmitted.	Acquired	drug	resistance	refers	to	the	micro	

evolution	 within	 a	 patient	 that	 leads	 to	 the	 acquisition	 of	 drug	 resistance	 mutations.	

Transmitted	resistance	is	the	transmission	of	a	strain	which	has	already	developed	resistance	

to	a	drug.	Studies	have	found	a	high	level	of	transmitted	resistance	in	high	endemic	regions	

such	as	South	Africa85,86.	Using	NGS	to	create	transmission	networks	and	tracking	the	flow	of	

drug	resistance	mutations	through	the	network	can	shed	insights	on	this	topic.	Another	useful	

application	of	NGS	is	the	in	silico	detection	of	drug	resistance.	Molecular	diagnostics	such	as	

the	 GeneXpert	 MTB/RIF	 can	 detect	 specific	 mutations	 in	 the	 rpoB	 gene	 which	 lead	 to	

rifampicin	resistance.	While	reporting	high	sensitivity,	this	could	miss	mutations	which	are	

not	included	in	the	assay.	Using	NGS	it	is	possible	to	perform	in	silico	resistance	prediction	

from	the	resulting	data,	by	detecting	all	variations	and	cross	referencing	these	to	a	mutation	

database.	 Several	 computer	 programs	 providing	 fast	 and	 accurate	 prediction	 of	 drug	

resistance	 have	 been	 developed	 including	 TBProfiler,	Mykrobe-predictor,	 PhyResSE21,87,88.	

One	 limitation	with	 these	 tools	 is	 the	underlying	database.	As	 sequencing	becomes	more	

common,	new	drug	resistance	variants	will	be	detected	or	characterised,	which	have	not	been	

included	 in	 current	 databases.	 Recent	 consortial	 efforts	 are	 attempting	 to	 establish	 new	

databases	 based	 on	 whole	 genome	 sequence	 data	 and	 well	 characterised	 resistance	

phenotypes	(ReSeqTB)89.	Sequencing	projects	aiming	to	detect	novel	drug	resistant	variants	

are	of	great	importance	and	will	improve	the	diagnostic	sensitivity	of	these	tools.	NGS	can	be	

envisioned	 running	 along	 standard	 diagnostics,	 helping	 to	 perform	 rapid	 in-silico	 drug	

resistance	profiling	to	inform	drug	choices	and	identifying	transmission	events.	Examples	of	

its	 use	 in	 a	 clinical	 setting	 have	 already	 been	 demonstrated90,91	 and	 it	will	 become	more	

achievable	 with	 improvements	 in	 databases,	 software	 and	 the	 introduction	 of	 portable	

sequencing	machines	such	as	the	minION.	
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1.10	NGS	analysis	

Raw	 sequence	data	 and	 its	 associated	quality	 from	next	 generation	 sequencing	machines	

typically	is	stored	in	text	files	called	fastq	files.	The	quality	for	each	base	is	stored	in	the	form	

of	a	phred	quality	score.	The	phred	quality	score	represents	the	probability	that	the	called	

base	 is	 incorrect.	 The	 raw	 sequence	 data	 can	 either	 be	 aligned	 to	 a	 reference	 genome	

(mapping)	or	assembled	de	novo.	Mapping	is	used	when	fast	accurate	characterisation	of	non-

repetitive	 regions	 is	 required.	A	multitude	of	 programs	 are	 available	 to	 perform	mapping	

including	 BWA	 and	 bowtie92,93.	 The	 mapping	 process	 consists	 of	 finding	 the	 optimum	

alignment	 position	 for	 each	 read	 in	 the	 dataset.	 The	 information	 is	 then	 stored	 in	 the	

SAM/BAM	format94.	SAMtools/BCFtools	software	can	then	be	used	to	process	the	alignment	

files	and	extract	SNPs	and	small	indels.	De	novo	assembly	is	used	when	a	reference	genome	

is	not	available	or	if	there	are	hypervariable	or	repetitive	regions	in	the	genome.	Programs	

such	as	Velvet95	and	SPAdes96	can	be	used	to	perform	assembly	and	output	a	fasta	formatted	

sequence.	This	can	then	be	aligned	to	a	reference	sequence	or	compared	with	other	draft	

assemblies	to	extract	variants.	Variants	and	their	associated	qualities	are	stored	in	variant	call	

files	 (VCF).	 A	 filtering	 step	 is	 required	 to	 take	 only	 high	 quality	 variants	 to	 downstream	

analyses.	Variants	with	high	quality	score	(Q>23),	minimum	depth	of	10	and	greater	than	70%	

of	 reads	 supporting	 the	 variant	 are	 used	 in	 the	 final	 dataset.	 Variants	 for	 all	 isolates	 in	 a	

dataset	 can	 be	 collated	 together	 in	 a	 large	 matrix	 where	 the	 rows	 are	 variants	 and	 the	

columns	 are	 samples.	 This	 dataset	 can	 then	 be	 used	 in	 further	 population-level	 analyses.	

While	NGS	approaches	works	well	with	unique	regions	of	the	genome,	a	number	of	 issues	

associated	with	the	different	steps	during	the	data	processing	can	lead	to	spurious	variants.	

Firstly,	the	quality	of	the	data	has	a	large	impact	on	the	downstream	results.	Inclusion	of	low	
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quality	sequence	can	lead	to	the	calling	of	false	variants	or	aligning	of	a	read	to	the	wrong	

location.	To	reduce	these	errors,	the	raw	data	can	be	“trimmed”	to	remove	bases	with	low	

quality	phred	scores.	Secondly	the	non-unique	regions	of	the	genome,	such	as	those	coding	

for	a	domain	which	is	present	in	many	proteins,	can	lead	to	mapping	of	sequence	to	the	wrong	

location	which	may	 lead	 to	 false	variants.	Either	 removing	 these	 regions	or	using	de	novo	

assembly	can	be	used	to	counter	these	effects.		

1.11	Host-pathogen	interactions	

TB	can	be	viewed	as	a	hierarchical	model	of	two	phenotypes	interacting,	that	of	the	human	

and	 pathogen.	 These	 phenotypes	 are	 the	 result	 of	 a	 vast	 number	 of	 proteins,	 lipids	 and	

carbohydrates	interacting	together.	In	turn	these	proteins	are	coded	for	by	the	DNA	and	any	

variation	 in	 this	 sequence	 will	 have	 a	 knock-on	 effect	 on	 the	 phenotype.	 Though	 this	

representation	 is	 over	 simplified	 and	 disregards	 environmental	 and	 other	 stochastic	

processes,	 there	 is	 no	 doubt	 that	 variation	 in	 the	 genome	 influences	 the	 phenotype	

presented.	 For	 example,	 at	 an	 individual	 pathogen	 resolution	 there	 is	 evolution	 of	 drug	

resistance,	and	at	a	population	scale,	transmission	dynamics	of	a	strain	and	clonal	outbreaks.	

The	main	 theme	of	 this	work	 is	 to	 analyse	 variation	 in	 the	host	 and	pathogen	 to	provide	

insights	 into	 phenotypes.	 Whilst	 this	 is	 mainly	 genomic	 variation	 with	 regards	 to	 drug	

resistance,	 it	 gets	more	 complicated	when	analysing	phenotypes	 such	as	 clinical	outcome	

when	contact	with	the	host	is	involved.	The	variability	of	the	host	could	affect	the	variation	

of	 the	 bacterium	 and	 vice	 versa.	 The	 bacterium	 must	 be	 able	 to	 resist	 a	 wide	 range	 of	

environmental	 conditions,	 from	airborne	dehydration,	macrophage	uptake,	 endosome	pH	

and	immune	attack.	One	possible	route	is	to	modulate	the	human	host	response	to	reduce	

the	Mtb	 resistance	to	these	environments.	A	recent	study	found	differential	expression	of	
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several	genes	in	the	dosR	regulon	between	HIV	positive	and	negative	patients97.	The	function	

of	the	dosR	regulon	has	not	been	fully	characterised	but	it	has	been	proposed	to	be	involved	

with	 survival	 in	 granulomas97.	 The	pe/ppe	 gene	 families	 have	 also	 been	 reported	 to	 elicit	

immune	response	from	T	and	B	cells	and	have	been	proposed	to	contribute	towards	host-

evasion	through	antigenic	variation98,99.	

1.12	The	project	structure	

The	overarching	theme	of	this	thesis	is	to	use	genetic	information	to	improve	our	

understanding	of	the	impact	of	genetic	variation	on	phenotypic	traits	such	as	drug	

resistance	and	host	susceptibility	to	infection.	Figure	5	shows	the		

The	thesis	is	divided	it	into	7	chapters,	each	consisting	of	one	manuscript	(4	published,	1	

accepted,	1	under	revision,	and	1	in	preparation),	which	address	the	following	topics:	

1. An	evaluation	of	two	sequencing	platforms	–	the	Illumina	MiSeq	and	Ion	torrent	

PGM	–	for	sequencing	in	Mtb;	

2. Validation	of	genome	wide	association	studies	to	detect	drug	resistance	mutations	in	

Mtb;	

3. Application	of	genome	wide	association	study	approach	to	a	large	global	dataset	of	

MDR	and	XDR	strains;	

4. Assembly	of	the	first	draft	genome	for	Mycobacterium	aurum	–	a	surrogate	model	

for	anti-tuberculous	drug	screening;	

5. Characterisation	of	the	pe/ppe	gene	families	using	genome	assembly	in	a	set	of	ultra	

high-depth	sequenced	isolates;	

6. Analysis	of	the	Mtb	methylome	using	PacBio	sequencing;	

7. Investigation	into	host-pathogen	genome	interactions	using	a	GWAS	approach.	
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Figure	5	

This	thesis	analyses	genomic	data	genomic,	methylomic,	protein	structural	and	

phenotypic	data	shown	in	(a).	A	simplified	overview	of	the	genomic	data	bioinformatics	

protocol	is	shown	in	(b).		
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Research	papers	included	in	this	thesis	in	order	of	presentation	include:	

Research	
paper	
number	
(chapter)	

Authors	 Title	 Status,	journal	and	
year	

2	

	

Phelan	et	al	(including	
Clark	TG)	

The	variability	and	reproducibility	of	
whole	genome	sequencing	
technology	for	detecting	resistance	
to	anti-tuberculous	drugs	

Published.	Genome	
Medicine	(2016)	

3	

	

Phelan	et	al	(including	
Clark	TG)	

Mycobacterium	tuberculosis	whole	
genome	sequencing	and	protein	
structure	modelling	provides	
insights	into	anti-tuberculosis	drug	
resistance	

Published.	BMC	
Medicine	(2016)	

4	

	

Phelan	et	al	(including	
Hibberd	ML	and	Clark	
TG)	

	

The	Mycobacterium	tuberculosis	
resistome	from	a	genome-wide	
analysis	of	multi-	and	extensively	
drug-resistant	tuberculosis	

In	press.	Nature	
Genetics	

5	

		

Phelan	et	al	(including	
Bhakta	S	and	Clark	TG)	

The	draft	genome	of	Mycobacterium	
aurum,	a	potential	model	organism	
for	investigating	drugs	against	
Mycobacterium	tuberculosis	and	
Mycobacterium	leprae.	

Published.	
International	journal	
of	Mycobacteriology	
(2015)	

6	

	

Phelan	et	al	(including	
Clark	TG)	

Recombination	in	pe/ppe	genes	
contributes	to	genetic	variation	in	
Mycobacterium	tuberculosis	
lineages	

Published.	BMC	
Genomics	(2016)	

7	

	

Coll	and	Phelan	et	al	
(including	Hibberd	ML	
and	Clark	TG)	

Methylation	in	Mycobacterium	
tuberculosis	is	lineage	specific	with	
associated	mutations	present	
globally	

In	press.	Scientific	
reports	

8	

	

Coll	and	Phelan	et	al	
(including	Hibberd	ML	
and	Clark	TG)	

Genome-wide	host-pathogen	
analyses	reveals	genetic	interaction	
points	in	tuberculosis	disease	

To	be	submitted.	
Scientific	reports	

	

The	use	of	NGS	to	predict	drug	resistance	relies	on	accurate	characterisation	of	all	sequence	

variants	within	an	isolate.	If	the	error	rate	is	high	or	the	sequence	coverage	is	too	low	

variants	will	be	incorrectly	called	which	will	negatively	impact	on	clinical	decisions.	Similarly,	

when	inferring	transmission,	a	high	level	of	accuracy	is	required.	Transmission	is	often	

inferred	through	measuring	the	number	of	SNP	differences	between	isolates.	A	single	error	
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in	variant	calling	could	lead	to	a	wrongly	inferred	transmission	event.	For	large	genome	wide	

association	studies,	it	is	paramount	to	have	a	high-quality	sequence	dataset	to	boost	true	

association	signals.	Chapter	2	addresses	the	issue	of	variability	and	reproducibility	of	

sequencing	for	use	in	a	clinical	and	experimental	setting.	To	this	effect,	we	sequenced	10	

M/XDR	isolates	and	the	reference	strain	(H37Rv)	performing	a	number	of	technical	and	

biological	replicates	in	order	to	characterise	the	reproducibility	of	NGS	for	Mtb.		

	 After	establishing	the	high	fidelity	of	sequencing	and	bioinformatic	pipelines	to	

process	raw	data	to	a	set	of	high	quality	variant	calls	we	proceeded	to	develop	a	robust	

genome	wide	association	study	pipeline.	Chapter	3	looks	at	the	development	of	GWAS	

methods	for	drug	resistance	(DR)	variant	discovery.		GWAS	have	been	used	in	the	human	

setting	for	over	a	decade	but	only	recently	have	been	applied	in	the	prokaryotic	field.	I	

applied	this	methodology	to	a	set	of	127	drug	resistant	and	sensitive	clinical	isolates	from	

the	TDR	strain	bank.	In	addition,	we	modelled	the	effect	of	mutations	on	protein	structure	

and	stability	using	crystallographic	structures	and	homology	models	to	identify	key	

characteristics	of	DR	mutations.		

After	validating	the	effectiveness	of	GWAS	to	detect	drug	resistant	mutations	we	

looked	to	apply	the	methodology	to	a	larger	dataset	with	potentially	previously	

uncharacterised	drug	resistance	mutations.	Chapter	4	describes	the	application	of	the	

GWAS	methods	detailed	in	Chapter	3	to	a	large	global	collection	of	susceptible,	MDR-TB	and	

XDR-TB	strains.	We	attempt	to	identify	novel	genetic	variants	to	inform	and	improve	in	silico	

prediction	of	drug	resistance.		

Chapter	4	highlights	the	worrying	amount	of	resistance	to	second	line	treatments.	

Whilst	new	drugs	such	as	bedaquiline,	linezolid	and	delamanid	are	being	rolled	out	for	use,	
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resistance	to	these	drugs	has	already	been	reported100.	A	steady	flow	of	new	or	repurposed	

drugs	are	needed	to	combat	the	rise	of	XDR-TB.	The	high	throughput	profiling	of	therapeutic	

compounds	in	Mtb	is	hampered	by	its	slow	growth	rate	and	high	level	of	safety	required.	

Several	surrogate	models	have	been	proposed	such	as	M.	smegmatis	and	M.	fortuitum.	M.	

aurum	is	a	fast-growing	environmental	mycobacterium	which	has	proven	to	be	useful	as	a	

model	due	to	its	similar	cell	wall	composition	and	antibiotic	susceptibility	profiles.	Whereas	

these	phenotypic	characteristics	are	comparable,	their	genomic	similarities	were	not	known	

due	to	the	lack	of	reference	genome	for	M.	aurum.	Chapter	5	looks	at	assembling	the	draft	

genome	and	the	genomic	differences	between	M.	aurum	and	Mtb.		

In	Chapter	2,	I	observed	good	coverage	and	high	quality	variant	calling	across	loci	

involved	in	drug	resistance.	However,	not	all	the	regions	of	the	genome	are	as	easy	to	

characterise.	Chapter	6	Looks	at	improving	the	characterisation	of	the	pe	and	pe	gene	

families,	thought	to	play	a	role	in	host-pathogen	interactions.	These	gene	families	are	highly	

repetitive	and	are	frequently	omitted	from	population	level	analyses.	By	performing	

genome	assembly	using	the	previously	developed	pipeline	(chapter	5)	on	a	set	of	518	high	

depth-of-coverage	isolates	I	attempted	to	gain	insights	into	the	diversity	within	these	

families.			

While	Chapters	1	to	6	focused	on	solely	on	genotype,	there	are	additional	

modulating	factors	involved	in	the	genotype	to	phenotype	cascade,	including	transcription	

levels	and	methylation.	Methylation	has	been	studied	in	depth	in	human	populations,	giving	

rise	to	the	field	of	epigenetics.	Methylation	can	greatly	influence	a	phenotype	by	altering	

gene	expression	whilst	keeping	the	genetic	code	intact.	Methylation	also	occurs	in	bacteria	

and	whilst	it	mainly	serves	to	protect	its	own	DNA	against	restriction	enzymes	it	has	also	
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been	reported	to	play	a	role	in	transcription.	In	Chapter	7,	I	sought	to	characterise	the	

extent	that	methylation	occurs	in	Mtb	by	using	PacBio	sequencing.	Additionally,	long	reads	

from	PacBio	enables	a	near-perfect	characterisation	of	the	repetitive	regions	in	the	genome	

including	the	pe/ppe	genes,	thus	allowing	confirmation	of	previous	results.		

When	analysing	aspects	such	as	clinical	outcome,	host	susceptibility	and	

transmission,	genomes	from	either	the	host	or	pathogen	are	analysed.	In	Chapter	8,	I	aim	to	

consolidate	both	data	sources	into	a	single	analysis.	This	approach	allows	us	to	look	for	co-

occurrence	of	specific	mutations	in	both	genomes	which	may	shed	light	on	host-pathogen	

interactions.	Previous	attempts	to	detect	susceptibility	markers	to	tuberculosis	have	not	

been	replicated	across	different	human	populations.	We	hypothesised	that	the	differential	

endemic	strains	circulating	could	contribute	toward	this	phenomenon.	To	test	this	

hypothesis,	I	analysed	samples	from	720	tuberculosis	positive	patients	for	which	we	have	

human	chip	data	and	pathogen	sequencing	data,	and	revealed	HLA	–	lineage	interactions.	
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Additional	File	1:	Figure	S1	

Bioinformatics	pipeline	

	

	
	
	
*	Drug	resistance	(DR)	mutations	and	strain-types	rapidly	identified	from	these	data
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Additional	File	2:		Table	S1	
Sanger	sequencing	primers	for	genomic	variant	confirmation	
	

Gene	 Primer	 Primer	sequence		(5’-3’)	 Annealing	
(0C)	

Length	
(bp)	 Ref.	

inhA	 inhA-1	 CCT	CGC	TGC	CCA	GAA	AGG	GA	 64	 248	
A	inhA-2	 ATC	CCC	CGG	TTT	CCT	CCG	GT	

inhA-3	 AGG	TCG	CCG	GGG	TGG	TCA	GC	

60	
517	inhA-4	 AGC	GCC	TTG	GCC	ATC	GAA	GCA	

inhA-3F	 CCA	CAT	CTC	GGC	GTA	TTC	G	 501	 B	inhA-5R	 TTC	CGG	TCC	GCC	GAA	CGA	CAG	

katG	 P4_Fw	 CGG	ACC	ATA	ACG	GCT	TCC	TG	

62	

563	

C	

P4_Rv	 TTG	TCC	AAG	CTG	GCG	TTG	TC	
P5_Fw	 CGA	CAA	CGC	CAG	CTT	GGA	C	 518	P5_Rv	 CGG	TTC	CGG	TGC	CAT	ACG	
P6_Fw	 AGC	TCG	TAT	GGC	ACC	GGA	AC	 619	P6_Rv	 TGA	CCT	CCC	ACC	CGA	CTT	GT	
P7_Fw	 ACA	AGT	CGG	GTG	GGA	GGT	C	 574	P7_Rv	 CTG	CCG	GTC	CAC	TTC	ACC	TT	
P8_Fw	 GGG	ACC	TAC	CAG	GGC	AAG	GA	 629	P8_Rv	 CCG	GGA	GTC	AGC	AAG	TCA	CC	

tlyA	 tlyAs	 GCA	TCG	CAC	GTC	GTC	TTT	 55	 947	 D	tlyAas	 GGT	CTC	GGT	GGC	TTC	GTC	
eis	 eisF1		 GCC	ATG	GGA	CCG	GTA	CTT	GC		 56	 601	 E	eisR1		 GTA	GAT	GCC	GCC	CTC	GCT	AG	

gidB	 gidB_Fw	 CGA	GAG	CGG	AGA	ATG	TTT	CA	 62	 793	 F	gidB_Rv	 CTG	GCC	CGA	CCT	TAC	GAG	
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	pncA	

pncA_promP1	 GCT	GGT	CAT	GTT	CGC	GAT	CG	 55	 214	 G	pncA_promP2	 TCG	GCC	AGG	TAG	TCG	CTG	AT	
pncA_Fw	 AGT	CGC	CCG	AAC	GTA	TGG	TG	 62	 615	 H	pncA_Rv	 CAA	CAG	TTC	ATC	CCG	GTT	CG	

gyrA	 gyrA_Fw	 ATC	GCC	GGG	TGC	TCT	ATG	 62	 321	 F	gyrA_Rv	 GGC	CGT	CGT	AGT	TAG	GGA	TG	

ethA	

ethA1	 ATC	ATC	GTC	GTC	TGA	CTA	TGG	 55	 667	

A	

ethA5	 ACT	ACA	ACC	CCT	GGG	ACC	
ethA4	 CCT	CGA	CCT	TCC	CGT	GA	 64	 692	ethA9	 CCT	CGA	GTA	CGT	CAA	GAG	CAC	
ethA8	 GGT	GGA	ACC	GGA	TAT	GCC	TG	 68	 342	ethA10	 CGT	TGA	CGG	CCT	CGA	CAT	TAC	

embB	 embB-F2	 AAC	CTG	CGC	CCG	CAG	ATT	GTC	 62	 526	 I	embB-R2	 GGT	CTG	GCA	GGC	GCA	TCC	
	 embBR2_Fw	 CTG	GCG	CTG	ATG	ACC	CAT	 62		 588	 *		 embBR2_Rv		 GGT	GGG	CAG	GAT	GAG	GTA	G	 	 	
embC-
embA	IRG	

embC-embA_Fw	 GGT	TGA	CGC	CTT	ACT	ACC	C	 62	 535	 J	

	 embC-embA_Rv	 CCA	CGA	CGA	CCG	TGT	CC	 	 	
rpsL	 rpsL_Fw	 GGC	CGA	CAA	ACA	GAA	CGT	 64	 504	 K	

rpsL_Rv	 GTT	CAC	CAA	CTG	GGT	GAC	
folC	 folCP1-Fw	 CGC	TGC	AAT	GAA	TTC	GAC	GA	 62	 668	 *	
	 folCP1-Rv	 TGA	TGA	TGC	CCG	CCT	TCT	C	 	 	
thyX	 thyXprom_Fw	 TGG	ATG	GAA	AAC	CTT	GCG	G	 62	 558	 *	
	 thyXprom_Rv		 TCG	GTC	TTG	GCG	ATC	AGT	T	 	 	
	 thyX-F2		 CTA	CTC	GCA	GCT	CTC	CCA	G	 62	 510	 *	
	 thyX-R2		 TAC	CTG	GCG	CTT	TAT	CCC	G	 	 	



 66 

[A]	Morlock	G,	Metchock	B,	Sikes	D,	Crawford	J,	Cooksey	R.	ethA,	inhA,	and	katG	loci	of	
ethionamide-resistant	clinical	Mycobacterium	tuberculosis	isolates.	Antimicrob	Agents	
Chemother	2003;	47:	3799-805.	
	
[B]	 Leung	 E,	 Ho	 P,	 Yuen	 K,	 Woo	 W,	 Lam	 T,	 Kao	 R,	 Seto	 W,	 Yam	 W.	 Molecular	
characterization	of	isoniazid	resistance	in	Mycobacterium	tuberculosis:	identification	of	
a	novel	mutation	in	inhA.	Antimicrob	Agents	Chemother	2006;	50:	1075-8.	
	
[C]	Machado	D,	Perdigão	J,	Ramos	J,	Couto	I,	Portugal	I,	Ritter	C,	Boettger	E,	Viveiros	M.	
High-level	 resistance	 to	 isoniazid	 and	 ethionamide	 in	 multidrug-resistant	
Mycobacterium	 tuberculosis	 of	 the	 Lisboa	 family	 is	 associated	 with	 inhA	 double	
mutations.	J	Antimicrob	Chemother.	2013;	68:	1728-32.		
	
[D]	Feuerriegel	S,	Cox	H,	Zarkua	N,	Karimovich	H,	Braker	K,	Rüsch-Gerdes	S,	Niemann	S.	
Sequence	 analyses	 of	 just	 four	 genes	 to	 detect	 extensively	 drug-resistant	
Mycobacterium	 tuberculosis	 strains	 in	 multidrug-resistant	 tuberculosis	 patients	
undergoing	treatment.	Antimicrob	Agents	Chemother.	2009;	53:	3353-6.	
	
[E]	Perdigão	J,	Macedo	R,	Silva	C,	Machado	D,	Couto	I,	Viveiros	M,	Jordão	L,	Portugal	I.	
From	multidrug-resistant	to	extensively	drug-resistant	tuberculosis	in	Lisbon,	Portugal:	
the	stepwise	mode	of	resistance	acquisition.	J	Antimicrob	Chemother.	2013;	68:	27-33	
	
[F]	Machado,	D.	(2014).	The	dynamics	of	drug	resistance	in	Mycobacterium	tuberculosis:	
exploring	 the	 biological	 basis	 of	 multi-	 and	 extensively	 drug	 resistant	 tuberculosis	
(MDR/XDRTB)	as	a	route	for	alternative	therapeutic	strategies.	PhD	thesis.	Instituto	de	
Higiene	e	Medicina	Tropical,	Universidade	Nova	de	Lisboa.	Lisboa,	Portugal.		
	
[G]	Scorpio	A,	Lindholm-Levy	P,	Heifets	L,	Gilman	R,	Siddiqi	S,	Cynamom	M,	Zhang	Y.	
Characterization	 of	 pncA	 mutations	 in	 pirazinamide-resistant	 Mycobacterium	
tuberculosis.	Antimicrob	Agents	Chemother.	1997;	41:	540-3.	
	
[H]	Louw	G,	Warren	R,	Donald	P,	Murray	M,	Bosman	M,	Van	Helden	P,	Young	D,	Victor	
T.	 Frequency	 and	 implications	 of	 pyrazinamide	 resistance	 in	 managing	 previously	
treated	tuberculosis	patients.	Int	J	Tuberc	Lung	Dis.	2006;	10:	802-7.	
	
[I]	Starks	A,	Gumusboga	A.	Plikaytis	B,	Shinnick	T,	Posey	J.	Mutations	at	embB306	are	an	
important	molecular	indicator	of	ethambutol	resistance	in	Mycobacterium	tuberculosis.	
Antimicrob	Agents	Chemother.	2009;	53:	1061-66.	
	
[J]	Cui	Z,	Li	Y,	Cheng	S,	Yang	H,	Lu	Junmei,	Hu	Z,	Ge	B.	Mutations	 in	the	embC-embA	
intergenic	region	contribute	to	Mycobacterium	tuberculosis	resistance	to	ethambutol.	
Antimicrob	Agents	Chemother.	2014;	58:	6837-43.	
[K]	 Sreevatsan	 S,	 Pan	 X,	 Stockbauer	 K,	 Williams	 D,	 Kreiswirth	 B,	 Musser	 J.	
Characterization	 of	 rpsL	 and	 rrs	mutations	 in	 streptomycin-resistant	Mycobacterium	
tuberculosis	isolates	from	diverse	geographic	localities.	Antimicrob	Agents	Chemother.	
1996;	40:	1024-6.	
*	This	work	



 67 

Additional	File	3:	Table	S2		
Summary	of	the	sequencing	data,	coverage	and	SNPs	for	each	sample		
	

Sequencing	
platform	 Sample	 No.	

reads	

Median	
read	
length	

Proportion		
coverage	 Median	

coverage	
Total	
SNPs	>	10-fold	

MiSeq	 POR1A	 874721	 222	 0.95	 40	 766	
MiSeq	 POR1B	 1280618	 221	 0.96	 55	 766	
MiSeq	 POR1C	 1068336	 221	 0.96	 48	 766	
Ion	PGM	 POR1A	 1015193	 335	 0.73	 48	 512	
Ion	PGM	 POR1B	 1124215	 339	 0.67	 52	 512	
MiSeq	 POR2A	 1167341	 224	 0.97	 53	 854	
MiSeq	 POR2B	 871084	 223	 0.97	 38	 854	
MiSeq	 POR2C	 817606	 224	 0.97	 36	 854	
Ion	PGM	 POR2A	 929733	 213	 0.73	 28	 594	
Ion	PGM	 POR2C	 966514	 326	 0.74	 46	 594	
MiSeq	 POR3A	 1217694	 224	 0.96	 55	 771	
MiSeq	 POR3B	 1100251	 222	 0.96	 50	 771	
MiSeq	 POR3C	 413660	 215	 0.93	 18	 773	
MiSeq	 POR4A	 1055194	 218	 0.96	 47	 795	
MiSeq	 POR4B	 1100448	 224	 0.96	 50	 795	
MiSeq	 POR4C	 1071269	 225	 0.96	 49	 795	
MiSeq	 POR5A*	 988848	 224	 0.96	 45	 758	
MiSeq	 POR5B	 1111052	 224	 0.96	 51	 758	
MiSeq	 POR5C	 1113854	 223	 0.96	 50	 758	
MiSeq	 POR6A*	 2269310	 180	 0.97	 70	 767	
MiSeq	 POR6B	 1201932	 222	 0.96	 53	 767	
MiSeq	 POR6C	 774063	 222	 0.96	 34	 767	
Ion	PGM	 POR6B	 1049314	 338	 0.72	 44	 510	
Ion	PGM	 POR6C	 904304	 325	 0.73	 42	 510	
MiSeq	 POR7A*	 2423026	 179	 0.97	 70	 801	
MiSeq	 POR7B	 1129806	 222	 0.96	 51	 801	
MiSeq	 POR7C	 2638858	 155	 0.97	 65	 801	
MiSeq	 POR8A	 2851160	 172	 0.97	 79	 770	
MiSeq	 POR8B	 1028634	 225	 0.96	 49	 770	
MiSeq	 POR8C	 801687	 222	 0.96	 36	 770	
MiSeq	 POR9A	 2091394	 180	 0.97	 61	 796	
MiSeq	 POR9B	 1145983	 225	 0.96	 53	 796	
MiSeq	 POR9C	 1128251	 223	 0.96	 51	 796	
MiSeq	 POR10A	 1074170	 217	 0.97	 48	 902	
MiSeq	 POR10B	 1224053	 223	 0.97	 54	 902	
MiSeq	 POR10C	 894289	 223	 0.97	 39	 902	
MiSeq	 H37Rv*	 2652971	 156	 0.99	 56	 62	

*	 6	 technical	 replicates	 for	 each,	 and	 average	 statistics	 presented;	 A-C	 refers	 to	
extraction	replicates	of	the	same	samples		
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Additional	File	4:	Figure	S2	
(a)	Mean	coverage	for	all	samples	for	each	drug	resistance	gene	
Deletion	of	dfrA-thyA	is	evident	by	the	zero	coverage	outliers	in	POR1	
(b)	Mean	coverage	across	drug	resistance	genes	
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Additional	File	5:	Table	S3	

Replicate	variation	across	extraction	and	calling	algorithms,	and	phenotypic	profiles		

	

Sequencin

g	platform	

Comparison	

(no.	 rep,	

M/XDR-TB)	

GATK	

SNPs*		

	

Samtool
s	
SNPs*	

Overla
p	
SNPs	%	

GATK	Indels	
Min.	 /	 total		

(overlap)	

Samtools	
Indels	

Min.	 /	 total		

(overlap)	

Overlap	
Indels	%**	

Inferred	

MDR/XDR

-TB	

Inferred	 drug	

resistance***	

INH,	RIF,	ETH	+		

	 Technical	 	 	 	 	 	 	 	 	

MiSeq	 POR5A	
(6,M)	 783	 753	 96.2	

85/98	(0.87)	 66/104	(0.63)	
94.2	

MDR-TB		 ETB,	PZA,	STR	

MiSeq	
POR6A		(6,X)	

846	 815	 92.2	
87/103	(0.84)	 65/127	(0.51)	

81.1	
XDR-TB	 ETB,	 PZA,	 STR,	 FLQ,	

AMK,	CAP,	KAN	
MiSeq	

POR7A	(6,X)	
858	 839	 97.1	

90/102	(0.88)	 72/133	(0.54)	
76.7	

XDR-TB	 ETB,	 PZA,	 STR,	 FLQ,	
AMK,	CAP,	KAN	

MiSeq	 H37Rv	(6,S)	 81	 70	 84.1	 22/27	(0.81)	 16/40	(0.40)	 67.5	 Susc.	 	
	 Extraction	 	 	 	 	 	 	 	 	
MiSeq	 POR1	(3,X)	

788	 753	 95.6	
86/91	(0.95)	 72/99	(0.73)	

91.9	
XDR-TB	 ETB,	 PZA,	 STR,	 FLQ,	

AMK,	CAP,		KAN	
Ion	PGM	 POR1	(2,X)	

618	 611	 95.7	
48/98(0.49)	 53/81	(0.65)	

34.1	
XDR-TB	 ETB,	 PZA,	 STR,	 FLQ,	

AMK,	CAP,	KAN	
MiSeq	 POR2	(3,M)	 875	 846	 96.7	 99/114	(0.87)	 88/115	(0.77)	 99.1	 MDR-TB	 	
Ion	PGM	 POR2	(2,M)	 710	 706	 96.3	 23/52(0.44)	 39/67	(0.58)	 22.2	 MDR-TB	 	
MiSeq	 POR3	(3,X)	

804	 788	 97.8	
87/98	(0.89)	 70/100	(0.70)	

98.0	
XDR-TB	 ETB,	STR,	FLQ,	AMK,	

CAP,	KAN	
MiSeq	 POR4	(3,X)	

805	 789	 98.0	
86/91	(0.95)	 69/92	(0.75)	

98.9	
XDR-TB	 ETB,	 PZA,	 STR,	 FLQ,	

AMK,	KAN	
MiSeq	 POR5	(3,M)	 784	 754	 96.2	 90/92	(0.98)	 74/94	(0.79)	 97.9	 MDR-TB	 ETB,	PZA,	STR	
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MiSeq	 POR6	(3,X)	
849	 827	 90.9	

87/98	(0.89)	 70/97	(0.72)	
99.0	

XDR-TB	 ETB,	 PZA,	 STR,	 FLQ,	
AMK,	CAP,	KAN	

Ion	PGM	 POR6	(2,X)	
617	 612	 95.7	

33/76(0.43)	 46/82	(0.56)	
23.8	

MDR-TB	 ETB,	PZA,	STR,	AMK,	
CAP,	KAN	

MiSeq	 POR7	(3,X)	
875	 868	 93.5	

87/102	(0.85)	 73/104	(0.70)	
98.1	

XDR-TB	 ETB,	 PZA,	 STR,	 FLQ,	
AMK,	CAP,	KAN	

MiSeq	 POR8	(3,X)	
820	 791	 94.1	

84/96	(0.88)	 74/95	(0.78)	
99.0	

XDR-TB	 ETB,	 PZA,	 STR,	 FLQ,	
AMK,	CAP,	KAN	

MiSeq	 POR9	(3,X)	
820	 807	 97.2	

90/98	(0.92)	 77/104	(0.57)	
94.2	

XDR-TB	 ETB,	 PZA,	 STR,	 FLQ,	
AMK,	CAP,	KAN	

MiSeq	 POR10	
(3,M)	 922	 885	 95.8	

98/108	(0.91)	 78/107	(0.73)	
99.1	

MDR-TB	 ETB,	STR	

	
*	Differences	between	replicates	were	only	due	to	low	coverage	missing	genotypes	i.e.	no	differing	base	calls;	**	based	on	comparing	all	indels	

detected	by	each	method;	***	based	on	TBProfiler;	INH	Isoniazid,	RIF	Rifampicin,	STR	Streptomycin,	ETB	Ethambutol,	PZA	Pyrazinamide,	RFB	

Rifabutin,	ETH	Ethionamide,	AMK	Amikacin,	CAP	Capreomycin,	OFX	Ofloxacin,	MOX	Moxifloxacin,	PAS	Para-aminosalicylic	acid,	LZ	Linezolid,	KAN	

Kanamycin;	bold	-	Fluoroquinolone	(FLQ)	resistance	mutation	gyrA	D94A	was	not	found	
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Additional	File	6:	Figure	S3	
The	changes	in	the	number	of	SNPs	characterised	across	algorithms	for	H37Rv	
	

	

The	total	number	of	SNPs	for	H37Rv	isolates	called	using	different	algorithms	and	

depths	(≥5,	≥10,	≥14,	≥20)	and	allelic	frequency	cut-offs	(≥0.5,	≥0.7).	With	read	depth	

≥10,	the	allelic	frequency	cut-offs	had	no	impact	on	variants	detected	
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Additional	file	7:	Figure	S4	
The	changes	in	the	number	of	SNPs	characterised	across	algorithms	for	the	ten	
clinical	isolates	
	

	

Figure	showing	the	total	number	of	SNPs	called	using	different	algorithms	and	

different	depth	(≥5,	≥10,	≥14,	≥20)	and	allelic	frequency	cut-offs	(≥0.5,	≥0.7).	
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Additional	File	8:	Figure	S5	
Phylogenetic	tree	of	all	the	MiSeq	sequenced	samples	
	

	

Perfect	clustering	can	be	observed	across	conditions.		Each	sample	is	represented	by	a	

different	colour;	replicates	of	the	same	patient	are	shown	as	the	same	colour.	
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Additional	File	9:	Table	S4	
Mutations	that	potentially	explain	drug	resistance	in	the	samples	
	

Sample	 –
M/XDR-TB	

INH*	 RIF*	 STR*	 ETB*,£,	 PZA*	 ETH*,**	 FLQ*,£	 AMINO*,£	 PAS	

POR1	–X	 fabG1_pro	
C-15T,	

inhA	I194T	

rpoB	
S450L	

gidB	
A80P	

embA_pro					
C-16T,	 embB	
M306V/M423T	

pncA	V125G	 fabG1_pro		
C-15T,	 inhA	
I194T	

gyrA	D94A	 rrs	A1401G	 thyX	 G-4A,	
thyX	I161T,	
dfrA-thyA	
deletion	

POR2-M	 inhA	 I21V,	
katG		
S460N	

rpoB	
S450L	

-	 -	 -	 inhA	I21V	 -	 -	 -	

POR3-	X	 fabG1_pro	
C-15T,	

inhA	S94A	

rpoB	
S450L	

rpsL	K43R	
	

embA_pro		
C-12/11AA,	

embB	P397T	

Frameshift	
mutation	
pncA	 deletion	
of	 nucleotides	
437-449	

fabG1_pro		
C-15T,	 inhA	
S94A	

gyrA	S91P	 tlyA	
Ins251TG,	

eis_pro		
G-10A		

-	

POR4	–X	 fabG1_pro	
C-15T,	

inhA	S94A	

rpoB	
S450L		

rpsL	K43R	
	

embB	M306V	 pncA	L120P	 fabG1_pro		
C-15T,	 inhA	
S94A	

gyrA	D94G	 eis_pro		
G-10A		

-	

POR5	-M	 fabG1_pro	
C-15T,	

inhA	I194T	

rpoB	
S450L,		

gidB	
A80P	

embB	
M306V/M423T	

pncA	V125G	 fabG1_pro		
C-15T,	 inhA	
I194T	

-	 -	 -	

POR6	–X	 fabG1_pro	
C-15T,	

inhA	I194T	

rpoB	
S450L	

gidB	
A80P	

embA_pro		
C-16T,	 embB	
M306V	

pncA	V125G	 fabG1_pro		
C-15T,	 inhA	
I194T	

gyrA	D94A	 rrs	A1401G	 -	
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POR7	–	X	 fabG1_pro	
C-15T,	

inhA	S94A	

rpoB	
S450L,		

rpsL	K43R	
	

embA_pro		
C-12/11AA,	

embB	P397T	

pncA	M1T	 fabG1_pro		
C-15T,	 inhA	
S94A	

gyrA	S91P	 tlyA	
Ins251TG,	

eis_pro	 G-

10A		

-	

POR8	–	X	 fabG1_pro	
C-15T,	

inhA	I194T	

rpoB	
S450L		

gidB	
A80P	

embA_pro		
C-16T,	 embB	
M306V/M423T	

pncA	V125G	 fabG1_pro		
C-15T,	 inhA	
I194T	

gyrA	D94A	 rrs	A1401G	 -	

POR9	-	X	 fabG1_pro	
C-15T,	

inhA	S94A	

rpoB	
S450L		

rpsL	K43R	
	

embA_pro		
C-12/11AA,	

embB	P397T	

pncA	M1T	 fabG1_pro		
C-15T,	 inhA	
S94A	

gyrA	S91P	 tlyA	
Ins251TG,	

eis_pro	 G-

10A		

folC	S98G	

POR10-M	 fabG1_pro	
C-15T,	

katG	
S315T	

rpoB	
S450L		

rpsL	K88R	 embB	
S297A/M306I	

GG	 insertion	
codons	 130	
and	 131	 on	
pncA	

fabG1_pro		
C-15T,	

ethA	H281P	

-	 eis_pro	 C-

12T		

-	

	

All	mutations	on	the	positive	strand;	Confirmed	using	*	Sanger	sequencing;	**	Genotype	MTBDRplus;	£	Genotype	MTBDRsl,	--	gyrA	S95T,	G668A	

and	gidB	L16R	present,	but	not	resistant	related;	rpoB	mutations	assigned	according	to	M.	tuberculosis	numbering;	potentially	novel	mutations	

bolded;	INH	isoniazid,	RIF	rifampicin,	STR	Streptomycin,	ETB	Ethambutol,	PZA	Pyrazinamide,	ETH	Ethionamide,	FLQ		fluoroquinolones		(Ofloxacin,	

Moxifloxacin),	AMINO	Aminoglycosides	(Amikacin,	Capreomycin,	Kanamycin);	PAS	Para-aminosalicylic	acid	
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Additional	file	1:	Table	S1	
The	samples	according	to	geographic	location	and	phenotypic	drug	resistance	
	

	 	 Number	of	isolates	
belonging	to	lineage	 Number	of	isolates	showing	resistance	to	

Source	 Tot.	 L1	 L2	 L3	 L4	 SM	 INH	 RMP	 EMB	 OFL	 KAN	 CAP	 Et	 PZA	
Asia	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Bangladesh	 8	 4	 1	 1	 2	 2	 4	 1	 4	 1	 -	 -	 1	 -	
China	
(Tibet)	 1	 1	 -	 -	 -	 1	 1	 1	 -	 -	 -	 -	 -	 -	
Nepal	 4	 1	 2	 -	 1	 4	 3	 2	 1	 1	 -	 -	 -	 2	
Pakistan	 1	 -	 -	 1	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	
Philippines	 4	 4	 -	 -	 -	 1	 2	 2	 1	 -	 -	 -	 2	 -	
Sth	Korea	 39	 -	 23	 1	 15	 17	 26	 17	 15	 -	 -	 1	 1	 3	
Thailand	 1	 -	 1	 -	 -	 -	 -	 -	 -	 1	 1	 1	 -	 -	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Africa	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Cameroon	 1	 -	 -	 -	 1	 1	 -	 -	 -	 -	 -	 -	 -	 -	
CAR	 1	 -	 -	 -	 1	 -	 -	 -	 -	 1	 -	 -	 -	 -	
Guinea	 1	 -	 -	 -	 1	 -	 1	 -	 -	 -	 -	 -	 -	 -	
Guinea	Eq.	 1	 -	 -	 -	 1	 -	 1	 1	 -	 -	 -	 -	 1	 -	
Morocco	 4	 -	 -	 -	 4	 2	 3	 1	 1	 -	 -	 -	 -	 -	
Niger	 1	 -	 -	 -	 1	 -	 -	 -	 -	 -	 1	 1	 -	 -	
Nigeria	 2	 -	 -	 -	 2	 -	 1	 1	 -	 1	 -	 -	 1	 -	
RDC	 4	 -	 -	 -	 4	 -	 -	 -	 -	 -	 1	 1	 -	 -	
Rwanda	 15	 -	 -	 -	 15	 4	 15	 15	 10	 -	 -	 -	 1	 -	
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Europe	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Germany	 12	 -	 1	 1	 10	 3	 1	 1	 1	 1	 1	 1	 -	 -	
Kazakhstan	 1	 -	 -	 -	 1	 -	 -	 1	 -	 -	 -	 -	 -	 -	
Portugal	 1	 -	 -	 -	 1	 1	 1	 1	 -	 -	 -	 -	 -	 -	
Spain	 2	 -	 -	 -	 2	 1	 -	 1	 -	 -	 -	 -	 -	 -	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

South	America	 	 	 	 	 	 	 	 	 	 	 	 	 	

Brazil	 7	 -	 -	 -	 7	 2	 4	 4	 2	 1	 -	 -	 1	 1	
Colombia	 1	 -	 -	 -	 1	 -	 1	 1	 -	 -	 -	 -	 -	 -	
Peru	 31	 -	 5	 -	 26	 9	 9	 11	 6	 1	 -	 1	 1	 -	
Rep.	
Domin.	 1	 -	 -	 -	 1	 -	 -	 -	 -	 -	 -	 -	 -	 -	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Overall	 144	 10	 33	 4	 97	 48	 73	 61	 41	 8	 4	 6	 9	 6	
	

CAR	Central	African	Republic;	DRC	Democratic	Republic	of	Congo,	L1-L4	lineages	1	to	4,	(first	line	drugs)	RMP	=	Rifampicin,	INH	=	Isoniazid,	SM	

=	Streptomycin,	EMB	=	Ethambutol;	(second	line	drugs)	OFL	=	Ofloxacin	,	KAN	=	kanamycin,	CAP	=	capreomycin,	Et	=	ethionamide,		

P	=Para-aminosalisylic	acid.	

	



 94 

Additional	file	1:	Table	S2	
The	isolate	ENA	accession	numbers	and	MIC	values	
	

ENA	Accession	 TDR	Accession	 RMP	MIC	 INH	MIC	 SM	MIC	 EMB	MIC	

ERR1213824	 TB-TDR-0070	 >120	 3.2	 4	 8	

ERR1213825	 TB-TDR-0073	 >120	 0.8	 ≤1	 4	

ERR1213826	 TB-TDR-0074	 80	 3.2	 2	 ≤1	

ERR1213827	 TB-TDR-0077	 30	 0.2	 2	 ≤1	

ERR1213828	 TB-TDR-0078	 ≤10	 0.2	 ≤1	 2	

ERR1213829	 TB-TDR-0079	 80	 0.2	 4	 ≤1	

ERR1213830	 TB-TDR-0080	 ≤10	 0.2	 ≤1	 ≤1	

ERR1213831	 TB-TDR-0081	 ≤10	 0.2	 ≤1	 2	

ERR1213832	 TB-TDR-0082	 ≤10	 3.2	 ≤1	 2	

ERR1213833	 TB-TDR-0083	 ≤10	 3.2	 ≤1	 ≤1	

ERR1213834	 TB-TDR-0084	 ≤10	 3.2	 ≤1	 ≤1	

ERR1213835	 TB-TDR-0085	 ≤10	 3.2	 8	 4	

ERR1213836	 TB-TDR-0086	 >120	 0.8	 ≤1	 2	

ERR1213837	 TB-TDR-0087	 >120	 3.2	 8	 4	

ERR1213838	 TB-TDR-0088	 >120	 0.2	 ≤1	 ≤1	

ERR1213839	 TB-TDR-0089	 >120	 0.8	 ≤1	 8	

ERR1213840	 TB-TDR-0090	 >120	 0.2	 ≤1	 2	

ERR1213841	 TB-TDR-0091	 20	 0.2	 2	 2	

ERR1213842	 TB-TDR-0092	 ≤10	 0.2	 2	 4	

ERR1213843	 TB-TDR-0093	 ≤10	 >3.2	 8	 4	

ERR1213844	 TB-TDR-0094	 ≤10	 0.2	 ≤1	 8	

ERR1213845	 TB-TDR-0095	 ≤10	 0.8	 >16	 ≤1	

ERR1213846	 TB-TDR-0096	 ≤10	 ≤0.05	 >16	 ≤1	

ERR1213847	 TB-TDR-0097	 30	 0.2	 >16	 ≤1	

ERR1213848	 TB-TDR-0098	 40	 0.2	 16	 2	

ERR1213849	 TB-TDR-0099	 >120	 >3.2	 4	 >8	

ERR1213850	 TB-TDR-0101	 80	 3.2	 2	 4	

ERR1213851	 TB-TDR-0102	 >120	 3.2	 ≤1	 2	

ERR1213852	 TB-TDR-0104	 ≤10	 >3.2	 ≤1	 4	

ERR1213853	 TB-TDR-0106	 >120	 3.2	 ≤1	 2	

ERR1213854	 TB-TDR-0108	 ≤10	 0.8	 8	 ≤1	

ERR1213855	 TB-TDR-0109	 ≤10	 3.2	 >16	 2	

ERR1213856	 TB-TDR-0110	 ≤10	 >3.2	 >16	 2	

ERR1213857	 TB-TDR-0112	 >120	 0.8	 >16	 ≤1	

ERR1213858	 TB-TDR-0113	 120	 >3.2	 >16	 4	

ERR1213859	 TB-TDR-0116	 80	 >3.2	 8	 >8	

ERR1213860	 TB-TDR-0117	 >120	 >3.2	 ≤1	 2	

ERR1213861	 TB-TDR-0119	 >120	 3.2	 4	 ≤1	

ERR1213862	 TB-TDR-0120	 30	 >3.2	 16	 4	

ERR1213863	 TB-TDR-0122	 >120	 3.2	 >16	 4	

ERR1213864	 TB-TDR-0123	 20	 >3.2	 >16	 8	

ERR1213865	 TB-TDR-0124	 >120	 >3.2	 >16	 4	
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ERR1213866	 TB-TDR-0125	 >120	 0.2	 ≤1	 2	

ERR1213867	 TB-TDR-0126	 ≤10	 0.2	 2	 ≤1	

ERR1213868	 TB-TDR-0129	 >120	 1.6	 2	 ≤1	

ERR1213869	 TB-TDR-0130	 ≤10	 ≤0.05	 2	 ≤1	

ERR1213870	 TB-TDR-0131	 >120	 >3.2	 >16	 ≤1	

ERR1213871	 TB-TDR-0132	 ≤10	 >3.2	 4	 4	

ERR1213872	 TB-TDR-0133	 >120	 1.6	 8	 4	

ERR1213873	 TB-TDR-0134	 >120	 >3.2	 4	 ≤1	

ERR1213874	 TB-TDR-0135	 >120	 >3.2	 ≤1	 >8	

ERR1213875	 TB-TDR-0136	 ≤10	 ≤0.05	 2	 ≤1	

ERR1213876	 TB-TDR-0137	 ≤10	 ≤0.05	 2	 ≤1	

ERR1213877	 TB-TDR-0138	 ≤10	 ≤0.05	 2	 2	

ERR1213878	 TB-TDR-0139	 ≤10	 0.2	 2	 2	

ERR1213879	 TB-TDR-0140	 ≤10	 0.2	 ≤1	 ≤1	

ERR1213880	 TB-TDR-0141	 >120	 0.2	 >16	 ≤1	

ERR1213881	 TB-TDR-0142	 20	 0.2	 2	 2	

ERR1213882	 TB-TDR-0143	 ≤10	 0.2	 16	 2	

ERR1213883	 TB-TDR-0144	 ≤10	 >3.2	 >16	 4	

ERR1213884	 TB-TDR-0146	 40	 0.2	 8	 ≤1	

ERR1213885	 TB-TDR-0147	 20	 >3.2	 >16	 ≤1	

ERR1213886	 TB-TDR-0148	 >120	 >3.2	 >16	 2	

ERR1213887	 TB-TDR-0149	 >120	 >3.2	 >16	 4	

ERR1213888	 TB-TDR-0150	 >120	 1.6	 2	 ≤1	

ERR1213889	 TB-TDR-0152	 120	 3.2	 8	 8	

ERR1213890	 TB-TDR-0153	 80	 3.2	 4	 2	

ERR1213891	 TB-TDR-0155	 120	 >3.2	 2	 2	

ERR1213892	 TB-TDR-0156	 ≤10	 0.2	 2	 4	

ERR1213893	 TB-TDR-0157	 >120	 0.2	 >16	 2	

ERR1213894	 TB-TDR-0158	 ≤10	 ≤0.05	 2	 ≤1	

ERR1213895	 TB-TDR-0159	 ≤10	 ≤0.05	 2	 ≤1	

ERR1213896	 TB-TDR-0160	 80	 0.2	 8	 ≤1	

ERR1213897	 TB-TDR-0161	 ≤10	 ≤0.05	 ≤1	 ≤1	

ERR1213898	 TB-TDR-0163	 ≤10	 ≤0.05	 ≤1	 ≤1	

ERR1213899	 TB-TDR-0164	 ≤10	 ≤0.05	 8	 ≤1	

ERR1213900	 TB-TDR-0165	 >120	 0.2	 2	 ≤1	

ERR1213901	 TB-TDR-0166	 >120	 3.2	 >16	 2	

ERR1213902	 TB-TDR-0167	 >120	 3.2	 16	 4	

ERR1213903	 TB-TDR-0169	 ≤10	 ≤0.05	 >16	 ≤1	

ERR1213904	 TB-TDR-0170	 >120	 >3.2	 2	 4	

ERR1213905	 TB-TDR-0171	 >120	 0.2	 ≤1	 ≤1	

ERR1213906	 TB-TDR-0172	 20	 >3.2	 2	 ≤1	

ERR1213907	 TB-TDR-0173	 ≤10	 ≤0.05	 ≤1	 ≤1	

ERR1213908	 TB-TDR-0174	 ≤10	 ≤0.05	 2	 ≤1	

ERR1213909	 TB-TDR-0175	 >120	 0.8	 ≤1	 4	

ERR1213910	 TB-TDR-0176	 >120	 1.6	 >16	 2	

ERR1213911	 TB-TDR-0177	 20	 0.2	 2	 ≤1	
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ERR1213912	 TB-TDR-0178	 ≤10	 0.8	 2	 ≤1	

ERR1213913	 TB-TDR-0180	 ≤10	 0.2	 2	 ≤1	

ERR1213914	 TB-TDR-0181	 ≤10	 ≤0.05	 8	 2	

ERR1213915	 TB-TDR-0182	 20	 ≤0.05	 >16	 ≤1	

ERR1213916	 TB-TDR-0183	 >120	 0.8	 2	 ≤1	

ERR1213917	 TB-TDR-0184	 ≤10	 ≤0.05	 2	 ≤1	

ERR1213918	 TB-TDR-0185	 >120	 0.8	 2	 ≤1	

ERR1213919	 TB-TDR-0186	 >120	 >3.2	 ≤1	 ≤1	

ERR1213920	 TB-TDR-0187	 ≤10	 >3.2	 8	 2	

ERR1213921	 TB-TDR-0189	 >120	 >3.2	 8	 ≤1	

ERR1213922	 TB-TDR-0190	 >120	 ≤0.05	 >16	 ≤1	

ERR1213923	 TB-TDR-0191	 >120	 >3.2	 8	 8	

ERR1213924	 TB-TDR-0193	 >120	 >3.2	 >16	 2	

ERR1213925	 TB-TDR-0194	 20	 0.2	 2	 ≤1	

ERR1213926	 TB-TDR-0195	 20	 3.2	 2	 8	

ERR1213927	 TB-TDR-0197	 20	 0.2	 ≤1	 2	

ERR1213928	 TB-TDR-0198	 >120	 3.2	 8	 4	

ERR1213929	 TB-TDR-0199	 ≤10	 0.2	 ≤1	 2	

ERR1213930	 TB-TDR-0200	 ≤10	 ≤0.05	 ≤1	 ≤1	

ERR1213931	 TB-TDR-0201	 >120	 >3.2	 16	 ≤1	

ERR1213932	 TB-TDR-0202	 20	 ≤0.05	 4	 2	

ERR1213933	 TB-TDR-0203	 ≤10	 ≤0.05	 2	 ≤1	

ERR1213934	 TB-TDR-0204	 20	 ≤0.05	 4	 ≤1	

ERR1213935	 TB-TDR-0207	 ≤10	 ≤0.05	 2	 ≤1	

ERR1213936	 TB-TDR-0208	 20	 0.2	 ≤1	 ≤1	

ERR1213937	 TB-TDR-0209	 20	 0.2	 2	 ≤1	

ERR1213938	 TB-TDR-0210	 20	 ≤0.05	 ≤1	 ≤1	

ERR1213939	 TB-TDR-0213	 20	 0.8	 2	 ≤1	

ERR1213940	 TB-TDR-0214	 ≤10	 ≤0.05	 2	 ≤1	

ERR1213941	 TB-TDR-0016	 ≤10	 0.2	 ≤1	 2	

ERR1213942	 TB-TDR-0017	 ≤10	 0.2	 2	 ≤1	

ERR1213943	 TB-TDR-0018	 >120	 0.2	 ≤1	 ≤1	

ERR1213944	 TB-TDR-0022	 20	 ≤0.05	 2	 ≤1	

ERR1213945	 TB-TDR-0038	 ≤10	 >3.2	 >16	 ≤1	

ERR1213946	 TB-TDR-0041	 ≤10	 ≤0.05	 2	 ≤1	

ERR1213947	 TB-TDR-0042	 ≤10	 >3.2	 ≤1	 >8	

ERR1213948	 TB-TDR-0043	 20	 3.2	 ≤1	 8	

ERR1213949	 TB-TDR-0045	 ≤10	 0.2	 2	 4	

ERR1213950	 TB-TDR-0007	 >120	 >3.2	 >16	 4	

	

RMP	rifampicin,	INH	isoniazid,	SM	streptomycin,	EMB	ethambutol	
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Additional	file	1:	Table	S3	
Drug	susceptibility	profiles	for	rifampicin,	isoniazid,	streptomycin	and	ethambutol	
	

No.	samples	 Rifampicin	 Isoniazid	 Streptomycin	 Ethambutol	

12	(9.4%)	 R	 R	 R	 R	

8	(6.3%)	 R	 R	 R	 S	
8	(6.3%)	 R	 R	 S	 R	

14	(11.0%)	 R	 R	 S	 S	
4	(3.1%)	 R	 S	 R	 S	

7	(5.5%)	 R	 S	 S	 S	

5	(3.4%)	 S	 R	 R	 R	
7	(5.5%)	 S	 R	 R	 S	

5	(3.4%)	 S	 R	 S	 R	
6	(4.7%)	 S	 R	 S	 S	

9	(7.1%)	 S	 S	 R	 S	
4	(3.1%)	 S	 S	 S	 R	

38	(29.9%)	 S	 S	 S	 S	

R	=	resistance,	S	=	sensitive;	13	different	profiles	were	identified	across	127	independent	

samples;	Multi-drug	resistant	in	italics	
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Additional	file	1:	Table	S4	
Combinations	of	mutations	and	their	frequency	(N)	in	drug	resistance	candidate	genes		
	
a)	Rifampicin	

Mutation	observed	in	rpoB	codons	 rpoC	 N	 MIC	(µg/ml)	

4

5	

1

7

0	

2

5

0	

4

0

0	

4

3

5	

4

4

5	

4	

5	

0	

4

9

1	

6

9

2	 rare	 	 	 Mean	 Min	 Max	

	 	 	 	 	 	 	 	 	 	 	 70	 15.3	 10.0	 80.0	

	 	 	 	 	 	 	 	 	 *	 	 5	 68.0	 10.0	 120.0	

	 	 	 	 	 	 	 	 *	 	 	 1	 10.0	 10.0	 10.0	

	 	 	 	 	 	 	 *	 	 	 	 1	 80.0	 80.0	 80.0	

	 	 	 	 	 	 *	 	 	 	 	 21	 114.3	 80.0	 120.0	

	 	 	 	 	 	 *	 	 	 	 *	 1	 120.0	 120.0	 120.0	

	 	 	 	 	 	 *	 	 	 *	 	 2	 120.0	 120.0	 120.0	

	 	 	 	 	 	 *	 	 	 *	 *	 1	 120.0	 120.0	 120.0	

	 	 	 	 	 	 *	 *	 	 	 	 1	 120.0	 120.0	 120.0	

	 	 	 	 	 	 **	 	 	 	 	 1	 120.0	 120.0	 120.0	

	 	 	 	 	 *	 	 	 	 	 	 9	 120.0	 120.0	 120.0	

	 	 	 	 *	 	 	 	 	 	 	 4	 120.0	 120.0	 120.0	

	 	 	 	 *	 	 	 	 *	 	 	 1	 120.0	 120.0	 120.0	

	 	 	 *	 	 	 *	 	 	 	 	 2	 120.0	 120.0	 120.0	

	 	 *	 	 	 	 	 	 	 	 	 2	 10.0	 10.0	 10.0	

	 *	 	 	 	 	 	 	 	 	 	 1	 120.0	 120.0	 120.0	

	 *	 	 	 	 	 	 	 	 *	 	 1	 120.0	 120.0	 120.0	

*	 	 	 	 	 	 *	 	 	 	 	 3	 120.0	 120.0	 120.0	
	

b)	Isoniazid	

katG	codons	
inhA	
prom.	 N	

MIC	(µg/ml)	

315	 436	 rare	 	 	 Mean	 Min	 Max	

	 	 	 	 46	 0.3	 0.05	 3.2	

	 	 *	 	 2	 0.2	 0.2	 0.2	

	 	 ***	 	 1	 3.2	 3.2	 3.2	

	 	 	 *	 8	 1.7	 0.8	 3.2	

	 	 *	 *	 1	 1.6	 1.6	 1.6	

*	 	 	 	 23	 2.9	 0.2	 3.2	

*	 	 *	 	 1	 3.2	 3.2	 3.2	

*	 	 	 *	 2	 3.2	 3.2	 3.2	

	 *	 	 	 18	 0.2	 0.05	 0.8	

	 *	 	 *	 4	 1.0	 0.8	 1.6	

	 *	 *	 *	 1	 3.2	 3.2	 3.2	

*	 *	 	 	 18	 3.2	 3.2	 3.2	

*	 *	 *	 	 1	 3.2	 3.2	 3.2	

*	 *	 	 *	 1	 3.2	 3.2	 3.2	
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c)	Streptomycin	

rpsL	codons	 rrs	 N	 MIC	(µg/ml)	

43	 88	 	 	 Mean	 Min	 Max	

	 	 	 99	 3.8	 1	 16	

	 	 *	 13	 10.0.4	 1	 16	

	 *	 	 4	 16.0	 16	 16	

*	 	 	 11	 16.0	 16	 16	

	

d)	Ethambutol	

embB	codons	 	 	 	 ubiA	 embA	 N	 MIC	(µg/ml)	

2

9

7	

3

0

6	

3

1

9	

3

5

4	

3

7

8	

4

0

6	

4

9

7	

1

0

2

4	

r	

a	

r	

e	 	 	 	 Mean	 Min	 Max	

	 	 	 	 	 	 	 	 	 	 	 70	 1.2	 1	 2	

	 	 	 	 	 	 	 	 	 	 **	 1	 4.0	 4	 4	

	 	 	 	 	 	 	 	 	 *	 	 2	 1.5	 1	 2	

	 	 	 	 	 	 	 	 	 **	 	 1	 1.0	 1	 1	

	 	 	 	 	 	 	 	 *	 	 	 3	 1.7	 1	 2	

	 	 	 	 	 	 	 	 **	 	 	 1	 2.0	 2	 2	

	 	 	 	 	 	 	 *	 	 	 	 1	 4.0	 4	 4	

	 	 	 	 	 	 *	 	 	 	 	 5	 4.8	 4	 8	

	 	 	 	 	 	 *	 	 	 *	 	 1	 4.0	 4	 4	

	 	 	 	 	 *	 	 	 	 	 	 6	 4.5	 1	 8	

	 	 	 	 	 *	 	 	 	 *	 	 4	 2.8	 1	 4	

	 	 	 	 	 *	 	 *	 	 	 	 1	 4.0	 4	 4	

	 	 	 	 	 *	 	 *	 *	 	 	 1	 4.0	 4	 4	

	 	 	 	 *	 	 	 	 	 **	 	 3	 1.0	 1	 1	

	 	 	 	 *	 	 *	 	 *	 **	 	 1	 2.0	 2	 2	

	 	 	 *	 	 	 	 	 	 	 *	 1	 4.0	 4	 4	

	 	 	 *	 *	 	 	 	 	 **	 	 1	 4.0	 4	 4	

	 	 	 *	 *	 	 	 	 *	 **	 	 1	 4.0	 4	 4	

	 	 *	 	 	 	 	 	 	 	 	 3	 4.7	 2	 8	

	 *	 	 	 	 	 	 	 	 	 	 11	 4.1	 1	 8	

	 *	 	 	 	 	 	 	 	 	 *	 1	 4.0	 4	 4	

	 *	 	 	 	 	 	 	 	 *	 	 1	 8.0	 8	 8	

	 *	 	 	 	 	 	 	 *	 	 	 1	 2.0	 2	 2	

	 *	 	 	 *	 	 	 	 	 **	 	 2	 8.0	 8	 8	

	 *	 	 *	 	 	 	 	 	 	 	 1	 8.0	 8	 8	

*	 	 	 	 	 	 	 	 	 	 	 2	 2.5	 1	 4	

*	 	 	 	 	 	 	 	 	 	 *	 1	 8.0	 8	 8	

*	single	mulation,	**	double	mutations,	***	triple	mutations;	SNP	mutations	in	a	single	

sample	have	been	aggregated	into	a	“rare”	column.	
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Additional	file	1:	Table	S5	
Predicted	effects	of	mutations	
	
Gene	 Mutation	 Distance	to	

interface	(Å)	

Distance	to	

ligand	(Å)	

DUET	(ΔΔG	

kcal/mol)	

mCSM-Stability	

(ΔΔG	kcal/mol)	

SDM	(ΔΔG	

kcal/mol)	

rpoB	
	

T400A	 	 42.914	 0.031	 -0.326	 2.480	

D435V	 	 3.094	 0.336	 0.356	 1.860	

H445D	 	 4.015	 -2.084	 -1.971	 -1.730	

H445Y	 	 4.015	 -0.214	 -0.171	 -0.310	

H445R	 	 4.015	 -1.958	 -1.857	 -1.950	

S450W	 	 5.773	 -0.756	 -0.840	 2.330	

S450L	 	 5.773	 0.102	 -0.126	 2.820	

I491V	 	 2.908	 -1.221	 -1.274	 -0.830	

I491F	 	 2.908	 -1.529	 -1.416	 -0.760	

katG	
	

S315N	 14.940	 2.149	 -0.100	 -0.184	 2.149	

S315T	 14.940	 2.149	 -0.243	 -0.330	 2.149	
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Additional	file	2:	Figure	S1	
The	global	distribution	of	geographic	origin	and	lineage	of	the	isolates.	Lineages	one	to	
four	are	represented	by	blue,	green,	purple,	and	red,	respectively	
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Additional	File	3:	Figure	S2	
SNP	allele	frequency	spectrum.	A	large	number	of	rare	variants	are	observed.	Peaks	with	
higher	allele	frequency	reflect	the	presence	of	lineage	and	sub-lineage	specific	SNPs.		
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Additional	File	4:	Figure	S3	
Population	structure	analysis	of	the	144	isolates	show	clustering	by	lineage	(Lineages	one	
to	 four	 are	 represented	 by	 blue,	 green,	 purple,	 and	 red	 points,	 respectively).	 (a)	 A	
phylogenetic	tree	rooted	with	M.	canetti.	(b)	First	two	principal	components	represent	33	%	
and	30.5	%	of	the	variation	explained	between	isolates,	respectively.		
	
a)	
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b)	
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Additional	file	6:	Figure	S5	
Percentage	of	the	variation	in	MIC	values	explained	by	each	mutated	codon	in	candidate	
genes.	 Bars	 in	 red	 represent	 significant	 independent	 associations	 with	 increased	 MIC	
(p < 0.05).	a)	Rifampicin.	b)	Isoniazid.	c)	Streptomycin.	d)	Ethambutol.	
	
a)	

	

b)	
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c)	

	

d)	
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Additional	file	7:	Figure	S6	
Molecular	interactions	established	by	wild-type	residues	in	katG	and	rpoB	residues.	(A)	The	
interactions	established	by	Ser315	in	katG.	Given	the	proximity	of	the	residue	to	the	ligands	
INH	and	HEM,	mutations	to	Asn	and	Thr,	with	slightly	larger	side	chains,	would	potentially	
cause	steric	clashes.	(B)	The	interactions	of	Asp435	in	rpoB.	It	directly	interacts	with	RMP	
via	polar	interactions	that	would	be	disrupted	by	mutations	to	Val.	(C)	Thr400	in	rpoB	is	at	
the	end	of	an	alpha	helix	establishing	 intra	molecular	 interactions.	Giving	 its	distance	to	
RMP,	it	would	be	expected	that	its	mutation	to	Ala	would	be	a	lower	impact,	which	would	
arise	from	alosteric	changes.	(D)	Ser450	establishes	strong	intra	molecular	interactions	in	
the	RMP	binding	site.	Mutations	to	larger	residues	(Trp	and	Leu)	could	disrupt	the	packing	
of	 the	 region	 and	 therefore	 binding.	 (E).	 Ile491	 performs	hydrophobic	 interactions	with	
RMP	and	its	neighbouring	residues.	Mutations	to	Phe	or	Val	would	compromise	packing,	
either	 inducing	steric	clashes	or	compromising	packing.	(F).	His445	performs	strong	intra	
molecular	interactions,	including	a	donor-pi	(blue	dashes)	and	hydrogen	bond	(red	dashes).	
Mutations	to	residues	Asp,	Tyr	or	Arg	would	imply	in	the	loss	of	the	pi	interaction	as	well	
as	potential	introduction	of	steric	clashes.	
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ABSTRACT	

To	further	characterize	the	genetic	determinants	of	resistance	to	anti-tuberculosis	drugs	

we	 performed	 a	 genome-wide	 association	 study	 (GWAS)	 of	 6,465	 Mycobacterium	

tuberculosis	clinical	isolates	from	more	than	30	countries.		A	GWAS	approach	within	a	

mixed	regression	framework	was	followed	by	a	phylogenetic-based	test	for	independent	

mutations.	 In	 addition	 to	 novel	mutations	 associated	with	 resistance	 to	 cycloserine,	

ethionamide	and	p-aminosalicylic	acid	our	analysis	indicates	a	more	extensive	role	for	

small	 insertions	 and	 deletions	 and	 large	 deletions	 than	 previously	 recognised,	

particularly	 for	 ethionamide,	 pyrazinamide,	 capreomycin,	 cycloserine	 and	 para-

aminosalicylic	 acid.	 Findings	 also	 suggest	 the	 involvement	 of	 efflux	 pumps	 (drrA,	

Rv2688c)	 in	 the	emergence	of	 resistance.	Odds	ratios	 for	mutations	 in	candidate	 loci	

were	 found	 to	 reflect	 levels	of	 resistance	 reported	 from	phenotypic	 testing.	Findings	

from	this	study,	the	most	comprehensive	yet	reported,	will	 inform	the	design	of	new	

diagnostic	tests	and	expedite	the	investigation	of	resistance	and	compensatory	epistatic	

mechanisms.	

	

KEY	WORDS:	 Mycobacterium	tuberculosis,	tuberculosis,	GWAS,	drug	resistance,	MDR-

TB,	XDR-TB	
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The	emergence	and	spread	of	Mycobacterium	tuberculosis	(Mtb)	resistant	to	multiple	

anti-tuberculous	 drugs	 is	 of	 global	 concern.	 Programmatically	 incurable	 tuberculosis	

(TB),	where	effective	treatment	regimens	cannot	be	provided	due	to	resistance	to	the	

available	drugs	is	a	growing	problem
1.	 In	high	burden	countries	such	patients	may	be	

discharged	 to	 home	 care,	 increasing	 the	 risk	 of	 community	 based	 transmission	 of	

incurable	drug	 resistant	disease
2
.	 Resistance	 to	 rifampicin	 and	 isoniazid	 is	 classed	 as	

multidrug-resistant	tuberculosis	 (MDR-TB),	 further	resistance	to	the	fluoroquinolones	

and	 any	of	 the	 injectable	 drugs	 (amikacin,	 kanamycin	or	 capreomycin)	 used	 to	 treat	

MDR-TB	 is	 termed	 extensively	 drug-resistant	 (XDR-TB).	 Strains	 resistant	 to	 the	

remaining	drugs,	are	referred	to	as	XXDR-TB	or	totally	drug-resistant	(TDR-TB),	however	

formal	definitions	for	post	XDR-TB	resistance	have	yet	to	be	agreed	by	the	World	Health	

Organisation	 (WHO)
1
.	 Treatment	 for	 patients	 with	 drug	 resistant	 tuberculosis	 is	

prolonged,	 expensive	 and	 outcomes	 are	 poor
3
.	 The	 drugs	 used	 are	 toxic	 and	 poorly	

tolerated,	adverse	events	are	common	and	may	be	severe	and	irreversible
4
.	Inadequate	

treatment	 also	 risks	 amplification	 of	 resistance	 to	 further	 drugs	 and	 may	 prolong	

opportunities	for	transmission
5.		

	

Mtb	 has	a	 clonal	 genome	 (size	4.4Mb)	with	a	 low	mutation	 rate	and	no	evidence	of	

between-strain	recombination	or	horizontal	gene	transfer
6
.	The	Mtb	complex	comprises	

seven	lineages,	of	which	four	are	predominant	in	humans:	Lineage	1,	Indo-Oceanic	(e.g.	

East-African-Indian	 (EAI)	 spoligotype	 families);	 Lineage	 2,	 East-Asian	 (e.g.	 W/Beijing	

spoligotype	families);	Lineage	3,	East-African-Indian	(e.g.	Central-Asian-Strain	(e.g.	CAS-

DELHI)	 spoligotype	 families)	 and	 Lineage	 4,	 Euro-American	 (e.g.	 Latin	 American-

Mediterranean	(LAM),	Haarlem	and	the	“ill-defined”	T	spoligotype	families)
6.	
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Resistance	 in	 Mtb	 is	 mainly	 conferred	 by	 nucleotide	 variations	 (single	 nucleotide	

polymorphisms,	insertions	and	deletions	(indels))	in	genes	coding	for	drug-targets	or	-

converting	 enzymes.	 Changes	 in	 efflux	 pump	 regulation	may	 have	 an	 impact	 on	 the	

emergence	of	resistance
7
	and	putative	compensatory	mechanisms	to	overcome	fitness	

impairment	 coincidental	 with	 the	 acquisition	 of	 resistance	 have	 been	 described	 for	

some	drugs
8.	 	Detection	of	 resistance	conferring	mutations	offers	a	means	of	 rapidly	

identifying	resistance	to	anti-tuberculosis	drugs
9
	but,	with	the	exception	of	rifampicin,	

current	 molecular	 tests	 for	 resistance	 lack	 high	 levels	 of	 sensitivity
9.	 To	 improve	

knowledge	of	 genetic	 determinants	 of	 drug	 resistance	we	undertook	whole	 genome	

analysis	of	a	large	collection	(n=6,465)	of	clinical	isolates	from	more	than	30	geographic	

locations,	representing	the	four	major	Mtb	lineages	(Figure	1,	Supplementary	table	1).	

We	adopted	a	GWAS	approach	to	identify	nucleotide	variation	and	loci	underlying	drug	

resistance	as	successfully	applied	in	Mtb10–12	and	other	bacteria13,14.	A	total	of	14	drugs	

with	 available	 phenotypic	 data	 on	 drug	 susceptibility	 testing	 were	 investigated	

(Supplementary	table	2).	Phenotypic	drug	susceptibility	data	was	not	available	for	each	

of	the	14	drugs	for	every	isolate	and	sample	sizes	ranged	from	over	6,000	for	the	most	

commonly	 tested	 first	 line	 drugs	 (isoniazid	 and	 rifampicin)	 to	 255	 and	 248	 for	 p-

aminosalicylic	acid	and	cycloserine,	respectively,	which	are	used	to	treat	patients	with	

XDR-TB.	Here,	we	present	findings	from	the	most	comprehensive	study	yet	undertaken	

of	 the	 genetic	 determinants	 of	 resistance	 to	 anti-tuberculosis	 drugs	 or	 the	 Mtb	

resistome.		
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RESULTS	

Genetic	polymorphisms,	population	structure	and	drug	resistance	

High	quality	 genome-wide	 SNPs	 (102,160),	 indels	 (11,122),	 and	 large	deletions	 (284)	

were	 identified	 across	 all	 samples	 (n=6,465).	 The	majority	 of	 SNPs	 (93.1%)	 had	 rare	

minor	alleles	(allele	frequency	<1%)	(Supplementary	Figure	1)	and	23,216	SNPs	(8.9%)	

were	very	rare	(minor	allele	frequency	<=	0.3%).	Similarly,	small	indels	were	rare	(96.6%	

had	frequency	<1%),	and	ranged	in	size	from	1	to	45bp.	The	majority	(82.7%,	7788/9421)	

in	protein	coding	genes	resulted	in	frame-shifts,	leading	to	premature	stop	signals	in	the	

coding	mRNAs.	A	phylogenetic	tree	and	principal	component	analysis	constructed	using	

all	 genome-wide	 SNPs	 and	 small	 indels	 revealed	 the	 expected	 clustering	 by	 lineage	

(Figure	2,	Supplementary	Figure	2).	

	

Phenotypic	analysis	of	susceptibility	to	anti-tuberculosis	drugs	found	27.7%	of	isolates	

were	resistant	to	at	least	one	drug,	12.9%	were	categorised	as	MDR-TB	and	4.5%	as	XDR-

TB	 (Supplementary	 table	2,	Figure	2).	Fourteen	drugs	were	 included	 in	 the	genome-

wide	analysis:	isoniazid	(INH),	rifampicin	(RIF),	ethionamide	(ETH),	pyrazinamide	(PZA),	

ethambutol	 (EMB),	 streptomycin	 (STM),	 amikacin	 (AMK),	 capreomycin	 (CAP),	

kanamycin	(KAN),	ciprofloxacin	(CIP),	ofloxacin	(OFL),	moxifloxacin	(MOX),	cycloserine	

(CYS)	and	para-aminosalicylic	acid	(PAS).	Drug	family	groups	including	the	second-line	

injectable	drugs	(SLID:	AMK,	KAN,	CAP)	and	fluoroquinolones	(FLQ:	CIP,	OFL,	MOX)	were	

also	analysed.	 Insufficient	phenotypic	data	was	available	for	the	 inclusion	of	the	new	

and	repurposed	drugs,	bedaquiline,	delamanid	and	linezolid.	To	reveal	loci	associated	

with	 drug	 resistance	 complementary	 methods	 were	 applied	 to	 mutations	 and	

aggregated	 non-synonymous	 mutations,	 a	 tree-based	 “PhyC”	 test	 for	 convergent	
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evolution	 to	 detect	 homoplastic	 variants
10
	 and	 a	 GWAS	 approach	 within	 a	 mixed	

regression	framework	(See	Online	methods).	Specifically,	the	low	frequency	of	variants	

requires	 the	aggregation	of	mutations	 to	 increase	 the	power	of	detecting	associated	

loci
15,	and	a	mixed	model	approach	has	been	demonstrated	to	work	well	at	adjusting	

for	the	confounding	effects	of	Mtb	lineage,	sub-lineage	and	outbreak-based	population	

structure
15.	A	SNP-based	GWAS	was	used	to	identify	individual	variants	associated	with	

drug	resistance	expected	to	fall	within	the	genes	found	associated	in	the	‘main’	analysis.	

The	 phylogenetic-based	 “PhyC”	 test	 was	 applied	 to	 provide	 further	 evolutionary	

evidence.	We	report	all	findings	that	are	below	a	calculated	permutation	threshold	of	

P<1x10
-5
.	 Some	 co-resistance	 associations	 were	 also	 revealed	 and	 annotated.	 Such	

findings	may	be	expected	to	result	 from	exposure	to	multiple	anti-tuberculous	drugs	

and	the	step-wise	accumulation	of	mutations.	Unless	stated	otherwise,	all	analysis	used	

the	complete	dataset.	First,	we	consider	MDR-TB	and	XDR-TB	phenotypes	(Table	1)	and	

then	individual	drug	GWAS	and	evolutionary	results	(Table	2).	

	

Gene	and	SNP-based	GWAS	and	convergent	evolution	test	for	MDR-TB	and	XDR-TB	

The	 gene-based	GWAS	of	MDR-TB	 versus	 susceptible	 identified	 rpoB	 (RIF),	Rv1482c-

fabG1	operon	(INH,	ETH),	inhA	(INH,	ETH)	and	katG	(INH).	The	katG	mutations	at	codon	

315	 (S315T,	 S315N,	 S315R)	were	all	 statistically	 significant,	 and	collectively	were	 the	

most	frequent	mutations	(81.7%)	across	all	resistance	loci	identified,	consistent	with	a	

recent	study
16
	and	highlighting	their	pivotal	role	in	the	emergence	of	INH	resistance	and	

MDR-TB.	 The	 katG	 S315T	 mutation	 is	 thought	 to	 emerge	 before	 RIF	 resistance	

associated	 mutations	 and	 therefore,	 from	 an	 evolutionary	 standpoint,	 preclude	 the	

emergence	of	MDR-TB
16,17

.	However,	our	analysis	highlighted	that	Rv1482c-fabG1	and	
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inhA	 mutations,	 in	 the	 absence	 of	 katG	 S315T,	 can	 emerge	 prior	 to	 MDR-TB,	 as	

previously	shown	in	two	phylogenetically-independent	clades	in	Lisbon
18,19

.	The	other	

frequent	 MDR-TB	 mutations	 in	 our	 study	 included	 rpoB-S450L	 (RIF,	 67.0%),	 embB-

M306L/V/I	(EMB,	57.6%),	and	rpsL-K43R	(STM,	45.8%)	(Supplementary	table	3),	and	the	

magnitude	correlates	with	historical	treatment	practice	and	emergence	of	resistance.	

There	are	corresponding	signals	of	INH/RIF	co-resistance	with	other	first-line	drugs,	with	

the	detection	of	association	signals	for	rpsL	(STM),	embC-embA	intergenic	region	(EMB)	

and	embB	(EMB).	SNP-based	PhyC	analysis	detected	the	above	loci,	but	in	addition	folC	

(PAS),	pncA-Rv2044c	 intergenic	 region	 (PZA),	 and	whiB6-Rv3863	 intergenic	 (putative	

STM	or	ETH)	regions.		

	

The	gene-based	GWAS	of	XDR-TB	versus	MDR-TB	 identified	mutations	 in	gyrA	 (FLQ),	

rpoB	(RIF),	rrs	(aminoglycosides)	and	ubiA	(EMB).	One	ubiA	mutation	(T180V,	EMB)	has	

not	been	previously	reported	and	was	found	using	the	SNP-based	GWAS	approach.	The	

PhyC	 test	 additionally	 revealed	 eis-Rv2417c	 (KAN),	 gyrB	 (FLQ),	 rrs	 (aminoglycosides)	

SNPs,	and	a	novel	mutation	in	the	thyX-hsdS.1	intergenic	region	(A-9T,	PAS).20,21	

	

The	 gene-based	 GWAS	 comparing	 XDR-TB	 to	 susceptible	 identified	 rpoC	 (a	

compensatory	mechanism	 for	RIF	 resistance),	oxyR'-ahpC	 (compensatory	mechanism	

for	INH),	ethA	(ETH),	ethA-ethR	intergenic	region	(ETH),	eis-Rv2417c	(KAN)	and	PPE52-

nuoA	(novel	intergenic	region,	G-314T).	The	PhyC	test	additionally	detected	SNPs	in	gyrB	

(FLQ,	D461N,	D641H,	T500N,	T500I	and	A504V),	supported	the	thyX-hsdS.1	 intergenic	

region	SNP	finding	 (PAS,	A-9T),	as	well	as	endorsing	the	ubiA	SNP	associations	 (EMB,	

V188A,	A249T).	The	drrA	Arg262Gly	mutation	was	significantly	associated	with	XDR-TB	



 120 

compared	to	susceptible	(mutation	frequency	19%	vs.	0%,	respectively,	P<2x10
-9
).	We	

hypothesize	that	drrA	may	be	involved	in	export	of	drugs	across	the	membrane	based	

on	 its	 strong	association	with	XDR-TB	 in	our	study	and	 its	 functional	annotation	as	a	

probable	 transporter	 of	 antibiotics	 across	 the	membrane	 (http://tuberculist.epfl.ch).	

This	 hypothesis	 is	 in	 accordance	 with	 the	 findings	 that	 rpoB	 mutations	 in	Mtb	 may	

trigger	 compensatory	 transcriptional	 changes	 in	 secondary	 metabolism	 genes,	 in	

particular,	 in	 the	 biosynthesis	 and	 export	 of	 phthiocerol	 dimycocerosate	 (PDIM),	

increasing	 its	 expression	 and	 activity.	 As	 a	 consequence	 these	 strains	 became	more	

virulent	and	multidrug	resistant,	increasing	their	fitness	by	increased	efflux	activity	and	

lipid	metabolism
22,23

.	

	

Similarly,	 a	mutation	 in	 the	Rv1144-mmpL13a	 intergenic	 region	 (C-102A)	was	 highly	

associated	 with	 XDR-TB	 versus	 susceptible	 (mutation	 frequency	 19%	 vs.	 0%,	

respectively,	 P<7x10
-8
).	 This	mutation	 sits	 in	 the	 promoter	 to	 the	 operon	 containing	

mmpL13a	and	mmpL13b,	which	code	for	transmembrane	transport	proteins	and	could	

influence	expression	of	these	proteins
7
.	

	

Lineage-specific	and	compensatory	mechanisms	

We	conducted	a	stratified	GWAS	per	lineage	to	identify	lineage-specific	loci	associated	

with	 drug	 resistance.	 The	 majority	 of	 associations	 were	 present	 in	 more	 than	 one	

lineage.	The	largest	number	of	lineage-specific	drug	resistance	mutations	were	found	in	

lineage	4,	which	was	the	largest	collection	investigated	and	contained	more	genetically	

diverse	clones
6
,	 implying	 that	geographically	 restricted	mutations	are	being	captured	

(Supplementary	 table	 4).	 A	 previously	 unreported	 putative	 compensatory	 locus	was	
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identified	 for	 pyrazinamide	 (pncB1)	 through	 analysis	 of	 lineage	 1	 which	 reached	

borderline	significance	for	lineage	3.		

	

We	applied	a	systematic	approach	to	reveal	epistatic	interactions	between	GWAS	loci	

(from	 Table	 2)	 or	 explore	 known	 compensatory	 effects	 using	 a	 test	 of	 non-random	

association	 to	detect	 the	 frequent	co-occurrence	of	mutations	 in	pairs	of	 loci	 (Fisher	

exact	test,	P-value	cut-off	<10
-8
)	(Supplementary	table	5).	Deep	phylogenetic	mutations	

were	 removed	 to	 increase	 robustness.	 This	 approach	 proved	 to	 be	 successful	 at	

identifying	well-known	compensatory	relationships	between	rpoB	and	rpoC	loci	(RIF)8,	

rpoB	and	rpoA	(RIF)24	and	katG	and	oxyR'-ahpC	(INH)25.	We	captured	the	frequent	co-

occurrence	of	embB	and	ubiA	mutations	which	together	are	known	to	lead	to	high	levels	

of	 EMB	 resistance
26
,	 and	 they	 are	 therefore	 unlikely	 to	 represent	 a	 compensatory	

mechanism.	Novel	epistatic	relationships	included	pncA	with	pncB2	(PZA)	and	thyA	with	

thyX-hsdS.1	(PAS).	The	pncB2	effect	appears	to	be	specific	to	lineage	4	(Supplementary	

table	6).	The	other	nicotinamide	co-factor,	pncB1,	had	weaker	evidence	of	an	epistatic	

relationship	with	pncA	in	lineage	1	(P=0.0016)	(Supplementary	table	6).	Similarly,	there	

was	 marginal	 evidence	 for	 pyrG	 (lineage	 4,	 P=0.00016)27	 and	 Rv0565c	 (lineage	 2,	

P=0.00027)	with	ethA	 (ETH)28	 (Supplementary	 table	 6).	 Follow-up	 investigations	will	

need	 to	 determine	 whether	 mutations	 in	 these	 loci	 have	 an	 impact	 on	 the	MIC	 or	

function	as	compensatory	mechanisms.	

	

Overall,	 the	 GWAS	 approach	 was	 effective	 at	 detecting	 known	 drug	 resistance	

determinants	 and	 epistatic	 (gene-gene)	 relationships	 and	 identified	 novel	 ones	 that	

warrant	functional	validation	 in	future	studies.	As	resistance	 loci	 for	 individual	drugs,	
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especially	second-line	treatments,	may	be	masked	by	an	analysis	of	the	composite	MDR-

TB	and	XDR-TB	outcomes,	we	repeated	the	GWAS,	PhyC	test	and	epistatic	analysis	for	

the	14	individual	drugs	considered.		

	

Gene	and	SNP-based	GWAS	and	convergent	evolution	test	for	individual	drugs		

Rifampicin,	isoniazid	and	ethionamide	

The	 rpoB	 locus	 showed	 the	 strongest	 association	 with	 RIF	 resistance,	 but	 the	

compensatory	 effects	 of	 rpoC	 and	 rpoA	were	 also	 evident	 through	 homoplasy	 SNP	

analysis.	As	previously	 reported	non-synonymous	 SNPs	 in	 rpoC	 (272	 identified)	were	

spread	 across	 the	 whole	 gene
29
.	 Altered	 or	 diminished	 activity	 of	 the	 catalase-

peroxidase	enzyme	KatG	is	the	most	frequent	mechanism	of	isoniazid	resistance
30,	and	

as	expected,	the	katG	gene	ranked	first	in	the	GWAS	for	this	drug.	Mutations	in	proposed	

INH	drug	targets,	kasA	and	kasB	previously	included	in	some	drug	resistance	databases,	

did	not	reach	statistical	significance	in	our	study
31
,	suggesting	an	odds	ratio	below	our	

detection	level	of	1.4	(with	99%	confidence	of	detection,	90%	statistical	power).	Both	

inhA,	 encoding	 the	molecular	 target	of	 isoniazid
32
	 and	 the	Rv1482c-fabG1	 intergenic	

region	 harbouring	 its	promoter,	 showed	 strong	 associations	with	 INH	 and	 ETH,	with	

greater	effects	in	the	former.	In	addition,	oxyR'-ahpC	 intergenic	associated	mutations	

(20	detected)	were	found	in	the	presence	of	katG	polymorphisms	(28),	supporting	its	

role	 as	 a	 compensatory	mechanism.	 	 For	 ethionamide,	 the	ethA	 locus,	 encoding	 the	

drug-metabolising	 enzyme	was	 found	 to	 be	 associated	 with	 resistance	 as	 described	

previously
33
.	 A	 total	 of	 153	 non-synonymous	 mutations	 were	 identified	 in	 ethA,	

scattered	throughout	the	gene	and	mostly	affecting	codons	different	from	those	already	

described
9.		
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Ethambutol	

Mutations	 in	 the	 embCAB	 operon,	 which	 encodes	 for	 enzymes	 involved	 in	 the	

biosynthesis	 of	 arabinan	 components	 of	 the	 mycobacterial	 cell	 wall,	 are	 mostly	

responsible	for	EMB	resistance	but	are	not	fully	penetrant	for	resistance
34.	The	embB	

and	the	embC-embA	intergenic	region	had	the	strongest	associations.	Rv3806c	(ubiA),	

described	to	contribute	to	high	levels	of	EMB	resistance	in	vitro17	was	also	significantly	

associated	 in	our	analysis	demonstrating	a	 role	 in	clinical	 samples	 too	across	all	 four	

lineages.	 Two	novel	 loci	were	 identified:	Rv2820c	 thought	 to	enhance	mycobacterial	

virulence	ex	vivo	and	in	vivo,	and	Rv3300c	a	conserved	protein	with	unknown	function	

(http://tuberculist.epfl.ch).	

Pyrazinamide	

The	pncA	locus	was	the	highest	ranked	association	with	PZA	resistance	in	the	GWAS	and	

was	 a	 target	 of	 independent	 mutation,	 consistent	 with	 its	 established	 role
35.	

Additionally,	many	 low	 frequency	 SNPs	were	 reported	 across	 the	whole	 gene	which	

were	 not	 used	 in	 the	 association	 analysis	 and	 could	 potentially	 confer	 resistance	

(Supplementary	data	1).	Other	proposed	PZA	targets,	namely	rpsA36
	and	panD37

,	did	not	

reach	statistical	significance	in	the	GWAS	and	were	not	targets	of	independent	mutation	

among	PZA	resistant	strains	in	our	collection.		

Streptomycin	

The	rpsL,	rrs	and	gid	loci,	all	known	to	be	involved	in	STM	resistance
20	were	identified	by	

GWAS.	Mutations	 in	 rpsL	 are	 known	 to	 lead	 to	 high	 levels	 of	 STM	 resistance
38
,	 and	

accordingly	we	observed	high	odds	ratios	indicative	of	high	penetrance	in	association	

signals	in	this	locus	(Figure	3).	In	contrast,	candidate	rrs	and	gid	gene	polymorphisms	

showed	weaker	 signals	 (lower	 odds	 ratio)	 in	 the	 overall	 GWAS,	 which	 concurs	 with	



 124 

existing	 evidence	 that	gid	 and	 rrs	mutations	 confer	 low	 levels	 of	 resistance
38
.	When	

considering	the	odds	ratios	across	all	SNP-drug	associations,	those	from	rrs	and	gid	were	

much	 lower	 on	 average	 than	 those	 from	 pncA	 (PZA)	 and	 katG	 (INH)	 (Figure	 3).	This	

analysis	 demonstrates	 a	 potential	 utility	 of	 using	 odds	 ratios	 and	 their	 statistical	

significance	 to	 indicate	 the	 impact	 of	 a	 mutation	 and	 its	 propensity	 to	 cause	 low,	

intermediate	or	high	level	resistance.		

Fluoroquinolones	and	Second-line	injectables	

The	gene-	and	SNP-based	GWAS	analysis	revealed	the	gyrA	locus,	which	encodes	for	the	

molecular	target	of	FLQ
39
,	as	the	strongest	association	signal.	In	addition	to	homoplastic	

mutations	 in	 gyrA,	 evidence	 of	 independent	 mutation	 was	 detected	 in	 gyrB40.	 The	

Rv2688c	C213R	mutation	was	associated	with	MOX	and	FLQ	resistance	but	did	not	reach	

statistical	significance	in	OFL.	The	antibiotic	transport	ATP-binding	protein	encoded	by	

Rv2688c	 is	a	known	FLQ	efflux	gene41.	As	expected	the	strongest	resistance	gene	and	

SNP-based	association	signals	across	AMK,	KAN,	and	CAP	was	with	the	aminoglycoside	

(SLID)	target	gene	rrs20.	Association	was	observed	with	mutations	in	the	eis	promoter	

known	 to	 result	 in	 low	 levels	 of	 KAN	 resistance	 but	 not	 in	 co-resistance	with	 other	

aminoglycosides
42.	The	median	odds	ratio	for	eis	promoter	mutations	is	lower	than	that	

of	rrs	mutations	(Figure	3),	further	supporting	that	rrs	mutations	confer	higher	levels	of	

KAN	resistance.	

D-Cycloserine	

CYS	inhibits	the	Alr	enzyme,	responsible	for	the	conversion	of	L-Alanine	into	D-Alanine,	

by	competing	with	L-Alanine	for	the	active	site.	Resistance	to	CYS	results	from	mutations	

in	the	alr	coding	region43.	In	our	study	alr	was	significantly	associated	with	CYS	resistance	

(Table	2)	 in	 line	with	recent	evidence	showing	that	clinical	strains	with	alr	mutations	
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exhibit	 increased	 resistance	 to	 CYS
12
	 and	 harboured	multiple	 homoplastic	mutations	

including	 Phe4Leu,	 Lys113Arg	 and	 Met343Thr.	 In	 a	 previous	 study,	 the	 Met343Thr	

mutation	was	detected	in	an	XDR-TB	strain	that	had	been	exposed	to	CYS	treatment,	

predicted	to	alter	the	protein	structure	of	Alr,	and	therefore	it	was	hypothesised	to	be	

involved	 in	 CYS	 resistance
44
.	 To	 further	 understand	 the	 functional	 impact	 of	 the	

mutations	 found	 in	alr	we	modelled	 the	 effect	 of	 these	 variants	 using	 the	 available	

crystal	 protein	 structure	 (PDB	1XFC,	Supplementary	 figure	3).	Mutations	 in	alr	were	

found	 to	differ	 in	 their	 proximity	 to	 the	CYS	binding	 site	 and	 their	 effect	 on	protein	

stability	and	ligand	binding	(Supplementary	table	7).	The	Met343Thr	mutation	(found	

in	12	susceptible	and	2	resistant	isolates)	was	predicted	to	have	more	drastic	effect	on	

protein	 structure	 compared	 to	 Lys113Arg,	 the	 most	 frequent	 mutation	 among	 CYS	

resistant	 isolates	 (in	 7	 susceptible	 and	 23	 resistant	 isolates).	 There	 appears	 to	 be	 a	

balance	 between	 the	 fitness	 cost	 associated	 with	 mutations	 and	 their	 frequency	

(Supplementary	table	7).	The	Met343Thr	mutation	appears	independently	throughout	

the	phylogenetic	tree,	but	did	not	reach	statistical	significance	for	association	to	drug	

resistance	(XDR-TB	or	CYS),	implying	that	selection	may	be	acting	on	this	mutation	but	

drug	resistance	may	not	be	the	driving	factor.		

Para-aminosalicylic	acid	

PAS	is	a	pro-drug	that	is	converted	into	its	active	form	by	thyA	-	a	thymidylate	synthase,	

which	is	an	essential	gene	for	Mtb	survival.	The	candidate	drug	resistance	loci	are	those	

involved	 in	 folate	metabolism	and	biosynthesis	of	 thymidine	nucleotides	 (thyA,	dfrA,	

folC,	folP1,	folP2	and	thyX)21.	Of	these,	thyA	and	thyX-hsdS.1	(directly	upstream	of	thyX)	

and	were	found	to	be	associated	with	PAS	drug	resistance	in	both	gene-	and	SNP-based	

GWAS.	Importantly,	it	has	been	shown	that	G-16A	SNP	found	in	our	study	increased	thyX	



 126 

expression	 by	 18-fold	 relative	 to	 wild-type	 promoter	 although	 no	 link	 with	 PAS	

resistance	 was	 made
20.	 Of	 3	 PAS	 resistance	 strains	 with	 the	 G-16A	 thyX	 promoter	

mutation,	 2	 also	 had	 a	 thyA	 mutation	 (P145L,	 H207R),	 further	 supporting	 that	 up-

regulation	of	thyX	is	involved	in	resistance	to	PAS28,	or	has	a	compensatory	role.	The	G-

16A	thyX	is	a	homoplastic	mutation,	and	therefore	more	likely	to	be	compensatory.		

	

The	odds	ratios	for	the	novel	findings	were	less	than	those	for	known	ones	(present	in	

the	TBProfiler	database),	reflecting	that	the	ability	of	the	GWAS	to	discover	effect	sizes	

of	lower	magnitude	(Figure	3).	However,	novel	SNPs	associations	for	PZA	and	RIF	were	

more	likely	to	have	higher	odds	ratios.	A	pathway	analysis	comparing	MDR-TB/XDR-TB	

to	 susceptible	 strains	 revealed	 only	 one	 significant	 annotation	 cluster	with	 17.7-fold	

enrichment	 for	 antibiotic	 resistance	 and	 response	 to	 antibiotics	 (P<2x10
-7
),	 further	

confirming	the	robustness	of	the	GWAS	approach.	

	

Association	analysis	using	small	indels	and	large	deletions		

An	analysis	of	genome-wide	small	indels	revealed	associations	in	candidate	resistance	

genes	 and	 operons	 (Supplementary	 table	 8,	 Supplementary	 data	 1).	 The	 candidate	

genes	differed	in	their	abundance	of	small	indels,	reflecting	their	essentiality	for	survival:	

drug	targets	had	less	density	of	indels	whereas	drug-metabolising	enzymes	had	a	greater	

density.	 For	 example,	 the	pncA	 gene	was	 the	most	 polymorphic	 coding	 region	 (PZA,	

44.72	indels	/kb)	while	the	least	polymorphic	was	rpoB	(RIF,	2.3	indels	/kb).	Although,	

the	majority	 of	 small	 indels	 (83%)	 in	 the	 candidate	 regions	were	 1bp	 in	 length	 and	

caused	frame-shifts,	the	indels	in	rpoB	inserted	or	deleted	whole	codons,	i.e.	they	did	

not	 cause	 a	 shift	 in	 the	 codon	 reading	 frame.	 Indels	 in	 rpoB,	 pncA	 and	 the	 embAB	
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promoter	 region	 were	 associated	 with	 MDR-TB,	 XDR-TB	 and	 their	 respective	

targets/activators.	 Indels	 in	 ethA	 were	 associated	 with	 ETH	 and	 XDR-TB	 resistance.	

Similarly,	gid	indels	were	associated	with	STM	as	expected.	

	

The	 analysis	 of	 CYS	 revealed	 indel	 associations	with	 the	ald	gene,	 supporting	 recent	

reports	that	loss	of	function	in	ald	confers	resistance12.	Thus	resistance	to	CYS	appears	

to	be	conferred	by	both	SNPs	in	alr	and	indels	in	ald.		Indels	found	in	rrs	were	associated	

with	KAN	and	CAP	resistance,	however	they	did	not	reach	statistical	significance	for	STM,	

which	has	a	different	drug	binding	site.	CAP	resistance	was	also	found	to	be	associated	

with	three	indels	in	tlyA,	two	of	which	are	located	at	the	3’	end	of	the	gene.	In	general,	

indels	were	distributed	throughout	the	gene	lengths	however	there	was	some	evidence	

of	areas	of	higher	density	such	as	the	pncA	region	between	codons	130	and	132	(close	

to	the	catalytic	centre)	and	the	rpoB	427-434	codon	region.		

	

The	only	large	deletion	association	identified	by	GWAS	was	a	region	encompassing	the	

thyA	and	dfrA	genes	and	PAS	resistance.	Five	samples	across	4	countries	contained	large	

thyA-dfrA	deletions	of	varying	length	(Supplementary	table	9,	Supplementary	figure	4).	

Associations	in	partial	or	whole	gene	deletions	in	katG,	ethA	and	pncA,	were	close	to	

statistical	 significance	 (P<0.05).	 These	 genes	 activate	 pro-drugs,	 and	 none	 are	

considered	 to	 be	 essential	 to	 Mtb	 survival.	 The	 large	 deletions	 detected	 occur	

independently	in	different	branches	of	the	phylogenetic	tree	and	are	likely	to	offer	an	

alternative	route	to	resistance	compared	to	small	genomic	variants,	across	lineages	and	

populations.		
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Effects	on	predicting	drug	resistance	phenotypes	with	new	SNPS	and	indels	from	GWAS	

We	sought	 to	establish	 if	any	of	 the	mutations	 found	 in	association	and	homoplastic	

analysis	increased	the	predictability	of	individual	drug	resistance	phenotypes	(Table	3).	

We	 used	 the	 reported	 phenotypic	 drug	 susceptibility	 test	 result	 as	 the	 reference	

standard	to	calculate	the	sensitivity	and	specificity	for	mutation-resistance	predictions.	

Using	 a	 previously	 established	 library	 of	mutations
9,19

	 (TBDR	 library),	 we	 found	 that	

although	the	sensitivity	was	greater	than	80%	in	8/14	drugs,	a	substantial	proportion	of	

resistance	phenotypes	were	not	explained	by	known	mutations,	particularly	in	second-

line	drugs.	Using	the	novel	SNPs	identified	in	this	study	we	gained	sensitivity	for	STM	

(+1%),	 PAS	 (+10%),	 and	 CYS	 (+50%,	 not	 included	 in	 the	 TBDR	 library)	 (Table	 3).	 The	

additional	inclusion	of	small	indels	and	large	deletions	further	improved	the	predictive	

ability	for	9	drugs	while	maintaining	specificities	of	>90%,	except	for	ETH	which	is	70%	

(Table	3).		

	

DISCUSSION	

To	provide	genomic	insight	into	Mtb	drug	resistance	we	have	combined	the	power	of	

whole	genome	sequencing	with	a	genome-wide	association	analytical	approach	in	the	

largest	 and	most	 geographically	 widespread	 study	 to	 date,	 encompassing	 a	 total	 of	

6,465	 clinical	 isolates	 of	Mtb	 from	more	 than	 30	 countries.	 Large	 sample	 sizes	 are	

required	to	identify	complex	or	infrequent	genetic	effects,	but	also	to	negate	effects	due	

to	possible	errors	in	phenotypic	drug	susceptibility	testing	and	misclassification
45.	The	

lack	of	standardization	of	phenotypic	testing	methodologies	for	Mtb	is	also	a	potential	

source	of	bias	which	was	reduced	by	the	inclusion	of	samples	from	a	number	of	different	

countries	and	laboratories	using	a	variety	of	quality	assured	testing	methodologies.	A	
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recent	large	study	demonstrated	the	usefulness	of	the	convergent	approach	to	detect	

known	 mutations	 underlying	 MDR-TB
16
.	 However,	 the	 incompleteness	 of	 first-	 and	

second-line	 drug	 resistance	 outcomes	 meant	 association	 analysis	 to	 detect	 novel	

mutations	 was	 not	 possible.	 Whilst	 resistant	 phenotypes	 may	 be	 imputed	 from	

established	 resistance	causing	mutations,	 inferring	 susceptibility	 to	a	drug	cannot	be	

assumed	 in	 the	 absence	 of	 corroborating	 evidence
19
.	 The	 completeness	 of	 our	

susceptibility	test	data	meant	that	both	GWAS	and	homoplasy-based	methods	could	be	

applied	 across	 14	 drugs.	 The	 predominance	 of	Mtb	 genome	 polymorphisms	 of	 low	

frequency	required	the	adoption	of	a	robust	rare-variant	approach,	where	mutations	

were	aggregated	by	gene	and	operon	(a	surrogate	for	pathways)
15
.	However,	the	large	

sample	size	enabled	us	to	detect	mutations	at	low	frequency.	The	GWAS	identified	well-

established	 resistance	 loci	 and	 compensatory	 relationships,	 thereby	 confirming	 the	

authenticity	and	robustness	of	the	approach.	It	also	revealed	several	recently	discovered	

loci	(folC,	ubiA,	thyX-hsdS.1,	thyA,	alr,	ald,	dfrA-thyA),	new	epistatic	relationships	(pncA	

with	 pncB2,	 and	 thyA	 with	 thyX-hsdS.1)	 and	 efflux	 pumps	 represented	 by	 the	 ABC	

transporters	 drrA	 and	 Rv2688c	 associated	 with	 drug	 resistance.	 The	 novel	 genetic	

markers	associated	with	resistance	identified	in	this	GWAS	included	SNPs	in	the	ethA	

and	 thyX	 promoters,	 small	 indels	 in	 pncA	 and	 ald,	 and	 large	 deletions	 in	 pro-drug	

activators	 such	 as	 ethA	 and	 katG.	 These	 loci	 warrant	 functional	 follow-up	 and	

characterization	 studies	 to	 fully	 elucidate	 their	 role	 in	 treatment	 failure.	 	 The	

associations	 identified	may	 shed	 light	on	 the	molecular	mechanisms	underlying	drug	

resistance	and	assist	in	the	design	of	novel	antibiotics.	
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Improved	knowledge	of	the	molecular	mechanisms	responsible	for	resistance	to	drugs	

used	to	treat	MDR-TB	and	XDR-TB	is	important.	Second-line	drug	susceptibility	testing	

is	technically	challenging	to	perform	and	quality	assured	testing	is	not	widely	available	

in	all	TB	endemic	countries.		Such	countries	also	tend	to	have	deficient	directly	observed	

treatment,	short-course	(DOTS)	programs	and	consequently	are	at	risk	of	high	rates	of	

resistance.	In	our	study,	sample	sizes	for	second-line	drugs	were	reduced	compared	to	

the	first-line	drugs.	This	was	due	to	the	lower	prevalence	of	resistance	to	second-line	

drugs	and	the	fact	that	isolates	susceptible	to	first-line	drugs	are	not	routinely	tested	for	

second-line	drugs.		

However,	 due	 to	 the	 large	 effect	 that	 causal	 mutations	 have	 on	 drug	 resistance	

phenotypes,	although	not	 ideal,	relatively	small	samples	of	bacterial	genomes	can	be	

sufficient	to	identify	causal	mutations	
43
	as	has	been	demonstrated	in	previous	studies	

on	Mtb	10-12.	It	should	be	noted	that	bedaquiline,	delamanid	and	linezolid	were	excluded	

from	our	analysis	due	to	the	paucity	of	phenotypic	susceptibility	data.	

	

The	analysis	also	highlighted	the	importance	of	 indels	on	drug	resistance,	particularly	

their	high	density	in	drug-metabolizing	genes,	in	contrast	to	highly	essential	drug-target	

genes	where	 their	density	was	 low.	The	 inclusion	of	 small	 indels	 and	 large	deletions	

improved	the	predictability	of	resistance	phenotypes.	However,	for	drugs	like	CYS	and	

PAS	mechanisms	of	drug	resistance	remain	unknown	and	larger	numbers	of	resistant	

cases	will	be	required	to	elucidate	them.	It	is	also	possible	that	unknown	mechanisms	

may	be	explained	by	the	role	of	epigenetics	and	gene	expression
46
.		
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Mtb	strains	are	usually	classified	as	drug	resistant	or	susceptible	based	on	their	capacity	

to	grow	in	vitro	when	exposed	to	a	critical	concentration	of	the	drug.	Phenotypic	testing	

methods	 have	 a	 degree	 of	 uncertainty,	 especially	 close	 to	 the	 threshold
45.	 Testing	

against	 a	 range	 of	 drug	 concentrations	 to	 establish	 the	 minimum	 inhibitory	

concentration	 (MIC)	 is	 a	preferred	approach	but	 is	 not	 routinely	undertaken
42
.	Most	

resistance	 is	 of	 a	 high	 level	 when	 strains	 can	 survive	 high	 drug	 concentrations	 but	

intermediate	and	low	levels	of	resistance	are	also	reported	for	some	drugs,	and	in	such	

cases,	 increased	 dosing	 may	 be	 beneficial	 for	 the	 patient
47.	 MIC	 values	 were	 not	

available	for	every	isolate	presented	here,	but	despite	this	limitation,	loci	known	to	be	

involved	in	 low-levels	of	resistance	(Table	3),	were	identified	by	our	analysis.	 Indeed,	

our	analysis	revealed	a	relationship	between	known	levels	of	resistance	and	the	odds	

ratios	from	the	GWAS,	which	could	aid	the	clinical	interpretation	of	molecular	diagnostic	

data	 including	measuring	 the	 sensitivity	 and	 specificity	of	 individual	mutations	when	

diagnosing	drug	resistance.	

	

Emergence	of	resistance	is	driven	by	drug	exposure	and	local	TB	treatment	practices	are	

a	major	influence	on	the	prevalence	and	pattern	of	resistance.		A	limitation	of	this	study	

was	 the	 sampling	methodology	 since	 collection	of	 the	 isolates	was	not	 controlled	or	

systematic	 and	 resistant	 isolates	were	 not	 evenly	 distributed	 across	 collection	 sites.		

However,	within	our	study	population	we	covered	the	four	major	Mtb	lineages	across	5	

continents	 and	 sampled	 multiple	 geographical	 regions,	 allowing	 us	 to	 observe	

differences	in	the	prevalence	of	drug	resistance	mutations	and	mechanisms.	Some	of	

drug	 resistance	 and	 compensatory/epistatic	 relationships	were	 found	 to	 vary	 across	

geographical	populations	and	bacterial	lineage,	implying	that	regional	variation	should	
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be	considered	to	fully	characterise	genotype-phenotype	relationships.	The	differential	

lineage	 effects	 could	 impact	 on	 relative	 virulence	 between	 strain-types.	 Enhanced	

understanding	of	the	genetic	basis	of	anti-tuberculous	phenotypic	drug	resistance	will	

also	aid	in	the	development	of	more	accurate	molecular	diagnostics	for	drug-resistant	

TB.	An	important	finding	of	this	study	is	the	significance	of	genomic	variation	other	than	

SNPs	which	has	implications	for	the	design	of	molecular	tests	for	resistance.	Improved	

tools	are	needed	to	guide	treatment	of	patients	with	multidrug-resistant	disease	where	

personalised	 treatment	 offers	 improved	 rates	 of	 cure
48.	 Next	 generation	 sequencing	

offers	a	comprehensive	assessment	and	may	be	used	to	guide	treatment
48
.	Although	

such	technology	is	currently	being	implemented	in	some	low	burden	countries	such	as	

the	 United	 Kingdom,	 it	 remains	 to	 be	 trialled	 in	 resource-poor	 settings	 that	 are	

representative	of	the	majority	of	TB	patients	worldwide.		

Section	1.01 ONLINE	METHODS	

(a) Sequence	data	and	variant	calling	

Sequence	data	for	6,465	M.	tuberculosis	complex	clinical	isolates	were	generated	as	part	

of	a	collaborative	global	drug	resistance	project	(n=2,637,	pathogenseq.lshtm.ac.uk)	or	

downloaded	from	the	public	domain	(n=3,828)	(Supplementary	table	1).	All	isolates	had	

undergone	 drug	 susceptibility	 testing	 by	 phenotypic	 methods.	 These	 isolates	

represented	multiple	 populations	 from	different	 geographic	 areas,	 and	 all	 four	main	

lineages	(1	to	4)	(Supplementary	table	1).	The	2,637	samples	not	previously	sequenced	

were	Illumina	sequenced	generating	paired-end	reads	of	at	least	50	bp	with	at	least	50-

fold	 genome	 coverage.	 The	 analytical	 workflow	 for	 the	 raw	 sequence	 data	 is	

summarised	in	Supplementary	figure	5.	The	new	and	archived	raw	sequence	data	were	
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aligned	 to	 the	H37Rv	 reference	 genome	 (Genbank	 accession	 number:	NC_000962.3)	

using	 the	BWA	mem	algorithm49.	 The	SAMtools/BCFtools50	 and	GATK51	 software	was	

used	to	call	SNPs	and	small	indels	using	default	options.	The	GATK	parameters	used	are	

"-T	UnifiedGenotyper	 -ploidy	1	 -glm	BOTH	 -allowPotentiallyMisencodedQuals	2”.	The	

overlapping	set	of	variants	from	the	two	algorithms	was	retained	for	further	analysis.	

Alleles	were	additionally	called	across	the	whole	genome	(including	SNP	sites)	using	a	

coverage-based	approach
6,15.	A	missing	call	was	assigned	if	the	total	depth	of	coverage	

at	a	site	did	not	reach	a	minimum	of	20	reads	or	none	of	the	four	nucleotides	accounted	

for	at	 least	75%	of	the	total	coverage.	Samples	or	SNP	sites	having	an	excess	of	10%	

missing	 genotype	 calls	were	 removed.	 This	 quality	 control	 step	was	 implemented	 to	

remove	samples	with	bad	quality	genotype	calls	due	to	poor	depth	of	coverage	or	mixed	

infections.	The	 final	dataset	 included	6,465	 isolates	and	102,160	genome-wide	SNPs.	

Delly2	software52	was	used	to	find	large	deletions.	All	large	deletions	were	confirmed	

using	 localised	de	novo	assembly,	and	those	found	 in	association	analysis	 (dfrA/thyA,	

pncA,	ethA/ethR,	katG)	confirmed	using	PCR.		

Phenotypic	drug	susceptibility	testing	

Drug	 susceptibility	 data	 was	 obtained	 from	 World	 Health	 Organisation	 recognised	

testing	protocols
53.	The	M.	tuberculosis	isolates	that	provided	sequence	data	included	

in	this	study	are	summarised	in	Supplementary	table	1.	Each	sequence	included	in	the	

study	was	derived	from	an	isolate	from	an	individual	patient.	Some	DNA	samples	were	

from	archived	stocks	(e.g.	India,	collected	prior	to	2009	and	Malawi,	collected	between	

1996	 and	 2010)	 and	 others	 were	 extracted	 specifically	 for	 this	 study.	 Information	

regarding	isolates	with	previously	reported	sequence	data	was	derived	from	published	
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materials.	 Isolates	were	 classed	 as	 resistant	 or	 susceptible	 to	 a	 drug	on	 the	basis	 of	

phenotypic	 testing	 using	 either	 the	 BACTEC	 460	 TB	 System	 (Becton	 Dickinson),	 the	

BACTEC	Mycobacterial	Growth	Indicator	Tube	(MGIT)	960	system	(Becton	Dickinson)
54
,	

solid	agar	or	Lowenstein	Jensen	slopes
55,56.	Not	all	samples	were	tested	for	resistance	

to	all	drugs,	most	notably	some	isolates	found	susceptible	to	the	first-line	drugs	were	

not	subjected	to	testing	for	resistance	to	second-line	drugs.	Where	 isolates	were	not	

tested	for	resistance	to	a	particular	drug	they	were	excluded	from	the	analysis	for	that	

drug.	 Drug	 susceptibility	 testing	 was	 mainly	 undertaken	 in	 local	 laboratories	

participating	in	the	WHO	supranational	laboratory	network	using	the	recognised	testing	

protocols
53.	 Isolates	 from	 Malawi	 were	 shipped	 to	 the	 United	 Kingdom’s	

Mycobacterium	Reference	Laboratory	for	testing.	Isolates	from	Uganda	were	tested	at	

the	Joint	Clinical	Research	Centre	(JCRC)	in	Kampala	with	quality	control	performed	by	

the	US	Centers	for	Disease	Control	and	Prevention	(CDC).	The	Peruvian	 isolates	were	

initially	 tested	 for	 resistance	 to	 rifampicin	 and	 isoniazid	 using	 the	 Microscopic	

Observation	Drug	Susceptibility	assay	(MODS)
56
	at	the	Universidad	Peruana	Cayetano	

Heredia	(UPCH)	prior	to	transfer	to	the	national	reference	laboratory	for	further	testing.	

In	 Peru	 susceptibility	 to	 pyrazinamide	 (PZA)	 was	 assessed	 by	 the	 Wayne	 assay;	 a	

colorimetric	biochemical	test	during	which	PZA	is	hydrolysed	to	free	pyrazinoic	acid
57
.	

Testing	 using	 the	 BACTEC	 960®	 MGIT®	 or	 BACTEC	 460®	 (Becton-Dickinson®)	 was	

performed	according	to	the	manufacturer's	indications
58.	Pyrazinamide	sensitivity	was	

determined	by	using	BACTEC	7H12	liquid	medium,	pH	6.0,	at	100	μg/mL	(BACTEC	PZA	

test	medium,	Becton	Dickinson).		When	testing	on	agar	critical	drug	concentrations	used	

were	rifampicin	1	μg/mL,	isoniazid	0.2	μg/mL,	streptomycin	2	μg/mL,	and	ethambutol	5	

μg/mL,	ciprofloxacin	2	μg/mL,	amikacin	5μg/mL,	capreomycin	10	μg/mL,	kanamycin	5	
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μg/mL	(Pakistan	6	μg/mL),	ethionamide	5	μg/mL	and	para-aminosalicylic	acid	2	μg/mL
55.	

For	 Lowenstein-Jensen	 drug	 concentrations	 used	 were	 for	 streptomycin	 4.0	 μg/ml,	

isoniazid	 0.2	 μg/ml,	 rifampicin	 40.0	 μg/ml,	 ethambutol	 2.0	 μg/ml,	 capreomycin	 40.0	

μg/ml,	 kanamycin	 30.0	 μg/ml	 (China)	 or	 20.0	 μg/ml	 (Vietnam),	 ofloxacin	 2.0	 μg/ml,	

ethionamide	40	μg/ml,	thioacetone	(10	μg/ml),	pyrazinamide	200	μg/ml,	cycloserine	30	

μg/ml	and	para-aminosalicylic	acid	(PAS)	0.5	μg/ml
57
.		

(b) Phylogenetic	tree	and	association	analysis	

The	 best-scoring	 maximum	 likelihood	 phylogenetic	 tree	 rooted	 on	Mycobacterium	

canettii	was	 constructed	 by	RAxML	 software59	 (10,000	 bootstrap	 samples)	 using	 the	

102,160	high	quality	SNP	sites.	Spoligotypes	were	inferred	in	silico	using	SpolPred60,	and	

strain-types	 determined	 using	 lineage-specific	 SNPs
6.	 Further	 population	 structure	

assessment	was	performed	using	principal	components	analysis	(Supplementary	figure	

3),	which	 clustered	 samples	 by	 genotype	 congruent	with	 the	 phylogenetic	 tree.	 The	

principal	components	were	calculated	from	a	SNP	pair-wise	distance	matrix	between	

each	sample,	and	the	 first	 five	components	 (summarising	82.7%	of	genetic	variation)	

were	used	as	covariates	in	the	regression-based	association	models.	Mixed	regression	

models	were	employed	to	estimate	the	strength	of	association	between	the	binary	drug	

resistance	outcome	(resistance	vs.	susceptible)	and	the	aggregate	number	of	mutations	

(SNPs,	 indels	or	 large	deletions)	by	coding	region,	RNA	loci	and	intergenic	regions,	as	

well	as	operons
15.	The	operons	or	functional	units	containing	clusters	of	genes	under	

the	control	of	the	same	promoter	were	determined	from	TBDB	(http://www.tbdb.org).	

Gene	 function	 was	 extracted	 from	 the	 Tuberculist	 webserver	

(http://tuberculist.epfl.ch).	The	mixed	models	also	included	the	principal	components	
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to	account	for	the	main	Mtb	lineage	and	sub-lineage	effects,	and	a	SNP	inferred	kinship	

matrix	 as	 a	 random	 effect	 to	 account	 for	 highly	 related	 samples	 and	 fine-scale	

population	structure	due	to	potential	outbreaks
15,	and	were	implemented	in	GEMMA	

(v.1.1.2)	software
61.	To	minimise	any	co-resistance	between	drugs,	and	we	adjusted	for	

the	 presence	 of	 other	 resistance	 in	 the	 regression	 models.	 Statistical	 significance	

thresholds	 to	 account	 for	 multiple	 testing	 were	 established	 using	 a	 permutation	

approach	 that	 sorted	 phenotypic	 test	 data	 without	 replacement	 and	 re-performed	

GWAS	 analysis	 (10,000	 times).	 The	 determined	 P-value	 threshold	 was	 1x10
-5
.	 All	

statistical	 analysis	 was	 performed	 using	 R	 software.	 To	 identify	 SNPs	 enriched	 by	

convergent	 evolution,	 the	phyC	 approach	was	 employed
10
	 using	 the	 implementation	

made	available	in	a	previous	study
62
.	Any	potential	co-resistance	effects	were	dissected	

through	 consulting	 gene	 annotation	 and	 published	 literature	 to	 report	 the	 most	

plausible	role	 in	drug	resistance.	Additionally,	 long	branches	 in	 the	phylogenetic	 tree	

leading	up	to	clades	enriched	with	drug	resistant	isolates	leads	to	spurious	associations.	

Truly	 drug	 resistant	 mutations	 often	 originate	 multiple	 times	 independently	 in	 the	

phylogeny.	Mutations	which	originated	once	in	the	tree	(i.e.	clade-specific	mutations),	

which	are	likely	to	lead	to	spurious	associations,	were	removed	from	the	GWAS	results.		

Detection	of	putative	compensatory	mechanisms		

Loci	were	identified	as	putative	compensatory	loci	if	they:	(i)	were	associated	with	drug	

resistance,	(ii)	harboured	homoplastic	mutations,	(iii)	shared	a	similar	biological	function	

with	a	known	drug-target	or	drug-activating	enzyme,	and	(iv)	were	significantly	more	

mutated	 in	 the	 presence	 of	mutations	 in	 the	 drug-target	 or	 drug-activating	 enzyme	

coding	gene.	In	the	latter,	deep	phylogenetic	and	synonymous	SNPs	were	removed	prior	

to	calculating	the	number	of	samples	with	non-synonymous	SNPs	at	genes	of	interest	
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(e.g.	Ala1075Ala	at	rpoB	or	Glu1092Asp	at	rpoC).	The	significance	of	differences	between	

studied	genes	was	calculated	using	Fisher's	exact	test	(P<10
-8
).	

Protein	mutation	modelling	

Apo	 crystal	 structures	 for	 alr	 were	 downloaded	 from	 the	 Protein	 Data	 Bank	

(PDBe1XFC
63
)	 and	 then	 subjected	 to	 modelling	 of	 missing	 residues,	 WinCOOT	

regularisation,	 and	 removal	 of	 pyridoxal	 5ʹ-phosphate	 from	 both	 chains.	 The	mCSM	

(http://structure.bioc.cam.ac.uk/mcsm)	 and	 DUET	 (http://structure	

.bioc.cam.ac.uk/duet)	 web	 servers	 were	 used	 to	 assess	 changes	 in	 protein	 stability,	

mCSM-PPI	(http://structure.bioc.cam.ac.uk/mcsm_ppi)	to	quantify	effects	on	protein-

protein	 interactions	 and	 mCSM-Lig	 (http://bleoberis.bioc.cam.ac.uk/mcsm_lig)	 to	

quantify	effects	on	drug	binding
64–66.	For	 ligand	binding,	D-Cycloserine	was	docked	in	

the	active	site	using	Autodock	Vina	and	Gold	software
67,68

.	
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Figure	1.	Geographical	distribution	of	the	6,465	M.	tuberculosis	isolates	analysed	in	the	study	
This	world	map	shows	the	main	geographical	origins	of	the	M.	tuberculosis	isolates	included	in	this	study.	The	study	comprises	strains	from	more	
than	30	countries,	of	which	the	18	major	contributors	are	showed	in	this	map.	See	Supplementary	table	1	for	a	detailed	description	of	each	
dataset.	Inner	pie	charts	show	the	proportion	of	each	of	the	main	four	lineages,	and	the	outer	charts	the	drug	resistance	phenotypes.	‘Drug-
resistant’	refers	to	non-MDR-TB/XDR-TB	resistance.	
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Figure	2.	Population	structure	of	6,465	M.	tuberculosis	isolates	based	on	102,160	SNPs	and	11,122	
insertions	and	deletions	spanning	the	whole	genome	
Maximum	 likelihood	 phylogenetic	 tree	 constructed	 rooted	 on	M.	 canetti	 (not	 displayed),	
colour-coded	by	lineage	(inner	circle)	and	drug	resistance	status	(outer	circle).	‘Susceptible’	
refers	to	isolates	being	susceptible	to	all	drugs	tested.	‘Drug-resistant’	refers	to	strains	being	
resistant	to	multiple	drugs	but	not	classified	as	multidrug-resistant	(MDR-TB)	or	extensively	
drug-resistant	XDR-TB.	
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Figure	3.	Odds	ratios	from	SNP-drug	resistance	associations	are	a	potential	surrogate	for	
resistance	level		
Within	each	drug,	boxplots	for	the	log	odds	ratios	(P-values	<	10-5)	for	each	gene	are	arranged	
by	increasing	median	values	(as	indicated	by	the	horizontal	line	in	the	boxes)	to	show	their	
relative	effect	on	resistance.	Boxplots	are	colour-coded	in	blue	or	red	to	show	whether	genes	
are	known	to	confer	‘low’	or	‘high’	levels	of	resistance,	respectively20,69–71.	
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Table	1	
MDR-TB	and	XDR-TB	gene-based	associations	
	

Comparison	 Rv	 Gene	
Gene-based	

NS	SNPs	 Indels	
(frame.)	

Assoc.	
SNPs	 PhyC	SNPs	

P-value	
MDR-TB	vs.	Susc.	 Rv0667	 rpoB	 1.98E-139	 159	 7	(0)	 6	 8	
MDR-TB	vs.	Susc.	 Rv1908c	 katG	 2.72E-110	 177	 12	(9)	 1	 1	
MDR-TB	vs.	Susc.	 Rv1482c-Rv1483	 Rv1482c-fabG1	 1.18E-25	 8	 0	 1	 1	
MDR-TB	vs.	Susc.	 Rv3795	 embB	 1.23E-18	 168	 2	(0)	 1	 9	
MDR-TB	vs.	Susc.	 Rv1484	 inhA	 3.13E-18	 9	 0	 2	 0	
MDR-TB	vs.	Susc.	 Rv3793-Rv3794	 embC-embA	 1.85E-13	 6	 6	 1	 3	
MDR-TB	vs.	Susc.	 Rv0682	 rpsL	 2.96E-13	 6	 0	 0	 2	
MDR-TB	vs.	Susc.	 Rv3919c	 gid	 5.22E-11	 137	 26	(26)	 0	 1	
MDR-TB	vs.	Susc.	 Rv2427A-Rv2428	 oxyR'-ahpC	 2.51E-10	 17	 3	 0	 3	
MDR-TB	vs.	Susc.	 Rv0721	 rpsE	 8.10E-08	 24	 0	 0	 0	
MDR-TB	vs.	Susc.	 Rv2043c	 pncA	 1.32E-06	 117	 25	(22)	 0	 1	
XDR-	vs.	MDR-TB	 Rv0006	 gyrA	 5.10E-30	 147	 0	 2	 4	
XDR-	vs.	MDR-TB	 rrs	 rrs	 5.30E-06	 91	 4	 1	 2	
XDR-TB	vs.	Susc.	 Rv0667	 rpoB	 3.04E-203	 159	 7	(0)	 7	 5	
XDR-TB	vs.	Susc.	 Rv2043c	 pncA	 4.52E-143	 117	 25	(22)	 2	 0	
XDR-TB	vs.	Susc.	 Rv3795	 embB	 6.17E-85	 168	 2	(0)	 4	 4	
XDR-TB	vs.	Susc.	 Rv1908c	 katG	 7.38E-83	 177	 12	(9)	 1	 1	
XDR-TB	vs.	Susc.	 Rv1482c-Rv1483	 Rv1482c-fabG1	 3.75E-52	 8	 0	 2	 2	
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Table	1	-	continued	
	

Comparison	 Rv	 Gene	
Gene-based	

NS	SNPs	 Indels	
(frame.)	

Assoc.	
SNPs	 PhyC	SNPs	

P-value	
XDR-TB	vs.	Susc.	 Rv3793-Rv3794	 embC-embA	 2.85E-49	 6	 6	 2	 2	
XDR-TB	vs.	Susc.	 Rv0682	 rpsL	 1.05E-40	 6	 0	 1	 2	
XDR-TB	vs.	Susc.	 rrs	 rrs	 4.66E-29	 91	 4	 2	 3	

XDR-TB	vs.	Susc.	 Rv1144-Rv1145	
Rv1144-

mmpL13a	
6.70E-08	 33	 4	 1	 0	

XDR-TB	vs.	Susc.	 Rv1484	 inhA	 6.10E-29	 9	 0	 2	 0	
XDR-TB	vs.	Susc.	 Rv0006	 gyrA	 1.27E-25	 147	 0	 4	 4	
XDR-TB	vs.	Susc.	 Rv0668	 rpoC	 9.57E-19	 153	 1	(0)	 2	 0	
XDR-TB	vs.	Susc.	 Rv2427A-Rv2428	 oxyR'-ahpC	 7.20E-15	 17	 3	 0	 0	
XDR-TB	vs.	Susc.	 Rv2936		 drrA	 1.46E-09	 19	 0	 1	 0	
XDR-TB	vs.	Susc.	 Rv3854c	 ethA	 2.04E-11	 163	 38	(35)	 0	 0	
XDR-TB	vs.	Susc.	 Rv3854c-Rv3855	 ethA-ethR	 5.87E-06	 12	 0	 1	 0	
XDR-TB	vs.	Susc.	 Rv2416c-Rv2417c	 eis-Rv2417c	 5.88E-06	 12	 1	 0	 1	
XDR-TB	vs.	Susc.	 Rv3144c-Rv3145	 PPE52-nuoA	 8.54E-06	 24	 1	 0	 0	

	

This	table	shows	loci	(protein	and	RNA	coding	regions,	intergenic	regions)	associated	with	MDR-	and	XDR-TB	resistance	(P-value	<	1x10-5).	The	

column	labelled	as	‘NS	SNPs’	shows	the	number	of	non-synonymous	SNPs	in	the	genes;	the	column	‘Indels	(frame.)’		refers	to	the	number	of	

small	indels	resulting	in	frameshifts	in	the	genes;	‘Assoc.	SNPs’	refers	to	the	number	of	SNPs	identified	by	GWAS	and	‘PhyC	SNPs’	is	the	number	
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of	 homoplastic	 SNPs	 identified	 using	 the	 PhyC	 test.	 The	 PhyC	 test	 additionally	 detected	 folC,	 pncA-Rv2044c	 and	 whiB6-Rv3863	 loci	 when	

comparing	MDR-TB	against	the	susceptible	group;	and	gyrB	and	thyX-hsdS.1	 loci	when	comparing	XDR-TB	against	susceptible).	Similarly,	the	

GWAS	using	SNPs	additionally	identified	the	ubiA	gene	for	XDR-TB	vs.	MDR-TB	(2	SNPs)	and	XDR-TB	vs.	susceptible.		
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Table	2	
Individual	drug	gene-based	associations	in	the	complete	dataset	
	

Drug*	 Rv	 Gene	 Gene-based	
P-value	 NS	SNPs	 Indels	

(frame.)	
Assoc.	
SNPs	

PhyC	
SNPs	

Isoniazid	 Rv1908c	 katG	 6.40E-114	 177	 12	(9)	 1	 3	
Isoniazid	 Rv1482c-Rv1483	 Rv1482c-fabG1	 8.01E-62	 8	 0	 2	 2	
Isoniazid	 Rv2427A-Rv2428	 oxyR'-ahpC	 3.48E-28	 17	 3	 0	 3	
Isoniazid	 Rv1484	 inhA	 1.44E-07	 9	 0	 1	 1	
Rifampicin	 Rv0667	 rpoB	 2.87E-245	 159	 7	(0)	 6	 9	
Rifampicin	 Rv0668	 rpoC	 2.65E-08	 153	 1	(0)	 0	 9	
Ethambutol	 Rv3795	 embB	 4.67E-115	 168	 2	(0)	 4	 10	
Ethambutol	 Rv3793-Rv3794	 embC-embA	 1.62E-44	 6	 6	 2	 5	
Ethambutol	 Rv2820c	 .	 1.30E-10	 16	 0	 1	 0	
Ethambutol	 Rv3806c	 ubiA	 1.36E-10	 47	 0	 0	 2	
Ethambutol	 Rv3300c	 .	 8.02E-08	 39	 5	(3)	 0	 0	
Ethionamide	 Rv1482c-Rv1483	 Rv1482c-fabG1	 4.78E-11	 8	 0	 1	 2	
Ethionamide	 Rv1484	 inhA	 7.60E-07	 9	 0	 1	 0	
Pyrazinamide	 Rv2043c	 pncA	 3.18E-110	 117	 25	(22)	 2	 1	

Pyrazinamide	
Rv2043c-

Rv2044c	
pncA-Rv2044c	 7.74E-29	 4	 1	 1	 1	

Streptomycin	 Rv0682	 rpsL	 1.57E-82	 6	 0	 2	 2	
Streptomycin	 Rv3919c	 gid	 1.51E-26	 137	 26	(26)	 0	 1	
Streptomycin	 rrs	 rrs	 4.40E-11	 91	 4	 1	 3	
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Table	2	-	continued	
	

Drug*	 Rv	 Gene	
Gene-based	

NS	SNPs	 Indels	
(frame.)	

Assoc.	
SNPs	

PhyC	
SNPs	

P-value	
Amikacin	 rrs	 rrs	 2.68E-46	 91	 4	 1	 1	
Kanamycin	 rrs	 rrs	 7.42E-38	 91	 4	 2	 2	
Kanamycin	 Rv2416c-Rv2417c	 eis-Rv2417c	 3.53E-18	 12	 1	 1	 1	
Capreomycin	 rrs	 rrs	 2.12E-37	 91	 4	 1	 1	
Capreomycin	 Rv2172c-Rv2173	 Rv2172c-idsA2	 2.93E-06	 18	 0	 2	 0	
Ciprofloxacin	 Rv0006	 gyrA	 9.30E-43	 147	 0	 2	 2	
Moxifloxacin	 Rv0006	 gyrA	 3.51E-22	 147	 0	 2	 5	
Ofloxacin	 Rv0006	 gyrA	 3.88E-49	 147	 0	 3	 6	
D-Cycloserine	 Rv3423c	 alr	 1.26E-13	 57	 0	 1	 0	
D-Cycloserine	 Rv0342	 iniA	 3.37E-08	 76	 13	(12)	 1	 0	
PAS	 Rv2764c	 thyA	 3.74E-10	 36	 4	(4)	 0	 0	
PAS	 Rv2754c-Rv2755c	 thyX-hsdS.1	 4.27E-07	 21	 0	 1	 1	

This	 table	shows	 loci	 (protein	and	RNA	coding	and	 intergenic	 regions)	associated	with	 resistance	 to	 individual	drugs	 (P-value	<	1x10-5).	The	

column	labelled	as	‘NS	SNPs’	show	the	number	of	non-synonymous	SNPs	in	the	genes;	the	column	‘Indels	(frame.)’		refers	to	the	number	of	

small	indels	resulting	in	frameshifts	in	the	genes;	‘Assoc.	SNPs’	is	the	number	of	SNPs	identified	by	GWAS,	and	‘PhyC	SNPs’	refers	to	the	number	

of	homoplastic	 SNPs	 identified	using	 the	PhyC	 test.	 *	The	PhyC	 test	additionally	detected	other	associated	 loci	 for	Amikacin	 (eis-Rv2417c),	

Capreomycin	and	D-Cycloserine	(lhr),	Kanamycin	(thyX-hsdS.1),	Rifampicin	(rpoA);	PAS,	Para-aminosalicylic	acid.
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Table	3	
Impact	on	drug	resistance	prediction	(%)	from	GWAS	findings		
	

	
TBDR	panel	 +	SNPs	 +	small	indels	+	SNPs	

+	big	deletions	+	small	indels	+	
SNPs	

Drug	 Sens.	 Spec.	 Sens.	 Spec.	 Sens.	 Spec.	 Sens.	 Spec.	

Isoniazid	 88	 97	 88	 97	 89	 97	 89	 97	
Rifampicin	 91	 98	 91	 98	 92	 98	 92	 98	
Ethambutol	 88	 92	 88	 92	 88	 92	 88	 92	
Ethionamide	 75	 75	 75	 73	 82	 70	 86	 70	
Pyrazinamide	 56	 98	 56	 98	 59	 98	 62	 98	
Streptomycin	 75	 93	 76	 93	 79	 91	 79	 91	
Amikacin	 83	 96	 83	 96	 85	 93	 85	 93	
Kanamycin	 86	 98	 86	 98	 86	 98	 86	 98	
Capreomycin	 73	 96	 73	 96	 80	 95	 80	 95	
Ciprofloxacin	 88	 98	 88	 98	 88	 98	 88	 98	
Moxifloxacin	 84	 90	 84	 90	 84	 90	 84	 90	
Ofloxacin	 83	 93	 83	 93	 83	 93	 83	 93	

D-Cycloserine	 -	 -	 55	 92	 61	 90	 61	 90	
PAS	 10	 100	 20	 99	 40	 94	 65	 94	
	 	 	 	 	 	 	 	 	

MDR-TB	 88	 99	 88	 99	 88	 99	 89	 99	
XDR-TB	 74	 96	 74	 96	 74	 96	 76	 96	
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This	table	shows	the	sensitivity	and	specificity	achieved	by	known	drug	resistance	SNPs	and	indels	(TBDR,	tbdr.lshtm.ac.uk)9,	31	when	predicting	

phenotypic	drug	resistance	(“TBDR	panel"	columns).	The	SNPs	in	the	TBDR	contribute	100%	to	the	stated	sensitivity,	except	rifampicin	(99.8%)	

and	ethionamide	(99.3%).	The	other	columns	show	the	improvements	achieved	when	including	the	SNPs,	small	indels	and	large	deletions	found	

associated	with	drug	resistance	in	this	study.	The	improvements	in	sensitivity	are	highlighted	in	grey.	

	

Abbreviations:	 MDR-TB,	 multidrug-resistant;	 PAS	 Para-aminosalicylic	 acid;	 Sens.,	 sensitivity;	 Spec.,	 specificity;	 SNPs,	 single	 nucleotide	

polymorphisms;	XDR-TB,	extensively	drug-resistant.	
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Supplementary	table	1	
Populations	contributing	to	the	analysis	
	

Population	 N	 lineage	1	 lineage2	 lineage3	 lineage4	 Susc.	 DR	 MDR-TB	 XDR-TB	 ENA	
Accession	

Canada	 11	 0	 0	 0	 11	 11	 0	 0	 0	 SRA020129	
Brazil	 108	 0	 0	 0	 108	 4	 9	 72	 23	 PRJEB10385	
Colombia	 15	 0	 0	 0	 15	 0	 0	 14	 1	 PRJEB10385	
Peru	 78	 0	 6	 0	 72	 25	 32	 17	 4	 PRJEB10385	
Bulgaria	 2	 0	 0	 0	 2	 0	 0	 2	 0	 PRJEB10385	
Germany	 20	 0	 0	 0	 20	 20	 0	 0	 0	 ERP006619	
Portugal	 183	 0	 20	 1	 162	 19	 71	 60	 33	 ERP002611	
Russia	 2	 0	 2	 0	 0	 1	 1	 0	 0	 ERP00192	
China	 161	 0	 122	 2	 37	 44	 0	 71	 46	 SRP018402	
Vietnam	 43	 16	 19	 0	 8	 22	 6	 8	 7	 PRJEB10385	
India	 3	 0	 0	 2	 1	 1	 0	 2	 0	 PRJEB10385	
Pakistan	 42	 5	 0	 33	 4	 5	 0	 0	 37	 ERP008770	
Saudi	Arabia	 74	 10	 11	 18	 35	 57	 6	 11	 0	 PRJEB10385	
Malawi	 1646	 264	 71	 195	 1116	 1526	 112	 8	 0	 ERP000436	
South	Africa	 594	 8	 231	 15	 340	 308	 93	 83	 110	 PRJEB10385	
Uganda	 45	 1	 1	 13	 30	 3	 2	 39	 1	 ERP000520	
WHO*	 138	 14	 34	 4	 86	 35	 51	 52	 0	 ERP013054	
Mixed**	 96	 4	 38	 4	 50	 96	 0	 0	 0	 	ERP001037	

UK	 3204	 295	 466	 706	 1737	 2500	 343	 351	 10	
	ERX511672	
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Population	 N	 lineage	1	 lineage2	 lineage3	 lineage4	 Susc.	 DR	 MDR-TB	 XDR-TB	 ENA	
Accession	

Total	 6465	 617	 1021	 993	 3834	 4677	 726	 790	 272	 	
%	 100	 9.5	 15.8	 15.4	 59.3	 72.3	 11.2	 12.2	 4.2	 	

	

Susc.	=	susceptible;	DR	=	resistant	to	at	least	one	drug	but	not	MDR-TB/XDR-TB	;	*Bangladesh	(8),	China	(1),	Nepal	(4),	Pakistan	(1),	Philippines	

(4),	South	Korea	(39),	Thailand	(1),	Cameroon	(1),	Central	African	Republic	(1),	Equatorial	Guinea	(1),	Guinea	(1),	Morocco	(4),	Niger	(1),	Nigeria	

(1),	Democratic	Republic	of	Congo	(4),	Rwanda	(15),	Gemany	(12),	Kazakstan	(1),	Portugal	(1),	Spain	(2),	Brazil	(7),	Columbia	(1),	Domican	Republic	

(1),	Peru	(31);	**	Malaysia,	South	Africa,	and	Thailand	(96);	***	PRJNA183624,	PRJNA	235615,	PRJEB10385;	bolded	ENA	accession	numbers	

include	sequencing	performed	as	part	of	the	TB	Global	Drug	Resistance	Collaboration	(http://pathogenseq.lshtm.ac.uk/#tuberculosis).	

	

	

	

	

	

	
	



 156 

Supplementary	table	2	
Drugs	susceptibility	test	data	(resistant/tested)	and	the	phenotypes	considered.			
	
Drug	 Lineage	1	 Lineage	2	 Lineage	3	 Lineage	4	 Total	Resistant	 (%)	
Rifampicin	(RIF)	 26/609	 549/928	 78/985	 488/3529	 1141	 -18.9	
Isoniazid	(INH)	 87/608	 569/938	 157/985	 723/3546	 1536	 -25.3	
Ethambutol	(EMB)	 16/403	 357/858	 36/839	 236/2707	 645	 -13.4	
Pyrazinamide	(PZA)	 20/393	 261/638	 39/796	 164/2259	 484	 -11.9	
Streptomycin	(STR)	 23/227	 450/718	 44/293	 369/1957	 886	 -27.7	
Capreomycin	(CAP)	 Jan-15	 125/347	 Oct-63	 91/579	 227	 -22.6	
Amikacin	(AMK)	 May-16	 128/254	 28/70	 66/546	 227	 -25.6	
Kanamycin	(KAN)	 May-17	 128/320	 28/63	 88/506	 249	 -27.5	
Moxifloxacin	
(MOX)	

0/15	 66/232	 Feb-38	 20/351	 88	 -13.8	

Ofloxacin	(OFL)	 01-Feb	 150/281	 Jan-22	 135/388	 287	 -41.4	
Ethionamide	(ETH)	 01-Jun	 102/273	 Feb-34	 117/284	 222	 -37.2	
Ciprofloxacin	(CIP)	 May-41	 Feb-24	 32/101	 20/160	 59	 -18.1	
PAS		 0/0	 7/119	 0/0	 13/136	 20	 -7.8	
D-Cycloserine	(CYS)	 0/0	 39/117	 0/0	 17/131	 56	 -22.6	
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Supplementary	Table	2	-	continued	
	

Phenotype	
Lineage	1	 Lineage	2	 Lineage	3	 Lineage	4	

Total	 (%)	
N	(%)	 N	(%)	 N	(%)	 N	(%)	

Susceptible	 516	(83.6)	 408	(40.0)	 819	(82.5)		 2935	(76.6)	 4678	 -72.4	
Drug	resistant	 77	(12.5)	 78	(7.6)	 102	(10.3)	 407	(10.6)	 664	 -10.3	
MDR-TB	 18	(2.9)	 393	(38.5)	 43	(4.3)	 380	(9.9)	 834	 -12.9	
XDR-TB	 6	(1.0)	 142	(13.9)	 29	(2.9)	 112	(2.9)	 289	 -4.5	

Total	 617	 1021	 993	 3834	 6465	 	
(%)	 -9.5	 -15.8	 -15.4	 -59.3	 -100	 		

	

Drug	resistant	=	Resistant	to	at	least	1	drug	but	not	MDR-TB/XDR-TB;	MDR-TB,	multidrug-resistant;	XDR-TB,	extensive	drug-resistant;	MOX	and	

OFL	are	Fluoroquinolones	(FLQ);	CAP,	KAN	and	AMK	are	second-line	injectables;	PAS	Para-aminosalicylic	acid	
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Supplementary	table	3	
Allele	frequency	of	resistance	mutations	
	

Gene	 Mutation	 Susceptible	%	
DR		 MDR-TB	allele	

frequency	%	
XDR-TB	allele	
frequency	%	%	

katG	 S315T	 0.4	 40.5	 79.8	 78	
rpoB	 S450L	 0.1	 25.6	 67	 52	
rpsL	 K43R	 0.5	 16	 45.8	 25.6	
embB	 M306V	 0	 10.5	 34.9	 39.4	
rrs	 A1401G	 0	 7.4	 11.7	 63.4	

Rv1482c-fabG1	 C-15T	 0.3	 25	 11.5	 31.9	
embB	 M306I	 0.3	 7.2	 22.1	 37.4	
gyrA	 A90V	 0	 2.5	 3.1	 32.7	
rrs	 A514C	 0.2	 3.2	 5.7	 27.2	
gyrA	 D94G	 0.3	 5.6	 2	 27.6	
gid	 L79S	 0	 1.2	 2.6	 22	
rpoB	 L452P	 0	 1.4	 4.5	 19.7	

ethA-ethR	 T-65C	 0	 0.7	 5.4	 18.9	
Rv1482c-fabG1	 T-8A	 0	 1.2	 3.7	 19.3	

rpoB	 D435V	 0	 2.5	 6.3	 13.8	
rpoB	 D435G	 0	 0.3	 0.3	 19.3	
ubiA	 V188A	 0	 0.1	 0.3	 18.5	
rpoB	 I1106T	 0	 0.2	 0	 18.5	
inhA	 S94A	 0	 7.6	 1.2	 7.5	

Rv1482c-fabG1	 G-17T	 0	 0.8	 1.3	 11.4	
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Supplementary	table	3	-	continued	

Gene	 Mutation	 Susceptible	%	 DR		 MDR-TB	allele	
frequency	%	

XDR-TB	allele	
frequency	%	

inhA	 I194T	 0	 4	 1.9	 7.5	
ubiA	 A249T	 0	 0.6	 0.9	 10.6	

PPE52-nuoA	 G-314T	 0	 0.7	 1.2	 10.2	
eis-Rv2417c	 C-10T	 0	 2.5	 3.9	 5.5	

rpsL	 K88R	 0.1	 3.8	 5.4	 2.4	
iniA	 H42R	 0	 0.6	 0.7	 10.2	
gyrA	 D94A	 0	 1.9	 1.3	 8.3	
alr	 L113R	 0	 0.7	 0.7	 9.8	
pncA	 Q10*	 0	 1.1	 7.3	 2.8	
embB	 Q497R	 0	 1.7	 6.1	 2.4	
rpoB	 D435Y	 0	 1.5	 3.2	 4.7	
rpoB	 H445Y	 0	 2.7	 3.7	 2	
gyrA	 S91P	 0.1	 1.8	 1.3	 5.1	

embC-embA	 C-12T	 0	 0.4	 3.7	 3.9	
embB	 G406A	 0	 0.8	 3.4	 3.5	
pncA	 Q10P	 0	 0.3	 5.8	 1.6	

eis-Rv2417c	 G-12A	 0	 0.3	 6	 0.8	
embC-embA	 C-16T	 0	 1.8	 2	 3.1	
embC-embA	 C-16G	 0	 0.6	 1.6	 4.3	

rpoB	 H445D	 0	 2.6	 2.9	 0.8	
gyrA	 D94Y	 0	 0.6	 0.6	 5.1	
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Supplementary	table	3	-	continued	

Gene	 Mutation	 Susceptible	%	 DR		 MDR-TB	allele	
frequency	%	

XDR-TB	allele	
frequency	%	

thyX-hsdS.1	 G-16A	 0	 1.4	 1.8	 2.8	
rpoB	 L731P	 0	 2.1	 1	 2.8	
embB	 G406D	 0	 1.7	 3.2	 0.8	
pncA	 V125G	 0	 2	 1.3	 2.4	

embC-embA	 C-11A	 0	 1.3	 0.7	 3.5	
katG	 S315R	 0	 1.7	 0.6	 3.1	

pncA-Rv2044c	 T-11C	 0	 0.7	 3.4	 1.2	
katG	 S315N	 0	 1.7	 1.9	 1.6	
gyrA	 D94N	 0.1	 0.8	 0.3	 3.9	
embB	 M423T	 0	 2	 0.7	 2.4	
gid	 A80P	 0	 2	 0.7	 2.4	

embC-embA	 G-43C	 0	 0.3	 2	 2.4	
embB	 D354A	 0	 0.7	 2.3	 1.6	

Rv2172c-idsA2	 A-65G	 0	 1.3	 0.6	 2.8	
embC-embA	 C-12A	 0	 1.3	 0.6	 2.8	

embB	 P397T	 0	 1.3	 0.6	 2.8	
rrs	 C517T	 0	 0.8	 1.9	 1.6	

eis-Rv2417c	 G-14A	 0	 0.3	 1.2	 2.8	
embB	 G406S	 0	 0.7	 2.2	 1.2	
rpoB	 H445R	 0.1	 0.5	 1.9	 1.6	
embB	 D1024N	 0	 0.7	 1.5	 1.6	
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Supplementary	table	3	-	continued	

Gene	 Mutation	 Susceptible	%	 DR		 MDR-TB	allele	
frequency	%	

XDR-TB	allele	
frequency	%	

oxyR’-ahpC	 G-48A	 0	 0.7	 0.7	 2.4	
alr	 M343T	 0	 0.9	 0.4	 2.4	
rpoB	 S450W	 0	 0.8	 1.9	 0.4	

oxyR’-ahpC	 C-52T	 0.1	 0.6	 1.6	 0.8	
rpoB	 H445L	 0	 0.7	 1.2	 1.2	
pncA	 V139M	 0	 0.4	 0.1	 2.4	
rpoB	 H445N	 0.1	 2.1	 0.4	 0	
rpoB	 L430P	 0.1	 1.1	 1.3	 0	

embC-embA	 C-8T	 0	 0.2	 0.7	 1.6	
rpoB	 I491F	 0.2	 2.2	 0	 0	
pncA	 W68*	 0	 0.2	 1.5	 0.8	

Rv1482c-fabG1	 T-8C	 0.4	 0.4	 0.9	 0.8	
pncA	 Q141P	 0	 0.7	 0.9	 0.8	
gyrA	 D94H	 0	 0.2	 0.7	 1.2	
rrs	 A514T	 0	 1.3	 0.3	 0.4	
rpoB	 M434I	 0	 0.1	 0.3	 1.6	

	

DR	=	Resistant	to	at	least	1	drug	but	not	MDR-TB/XDR-TB;	multidrug-resistant;	XDR-TB,	extensively	drug-resistant	
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Supplementary	table	4	
SNP-based	GWAS	results	in	each	lineage	
	

Lineage	 Gene	 Position	 Drug	 Min	P-value	 Susc.	 DR	 MDR-TB	 XDR-TB	
4	 gyrA	 7570	 X	v	M	or	SUS	 1.51E-15	 0.001	 0.024	 0.032	 0.329	
4	 gyrA	 7572	 X	v	SUS	 8.92E-21	 0.001	 0.018	 0.013	 0.051	
3,4	 gyrA	 7581	 X	v	SUS	 1.17E-21	 0.001	 0.016	 0.016	 0.103	
4	 gyrA	 7582	 KAN	 4.40E-09	 0.004	 0.076	 0.034	 0.359	
2	 gyrA	 7582	 X	v	M	 1.70E-08	 0.004	 0.076	 0.034	 0.359	
4	 gyrA	 7582	 X	v	M	or	SUS	 8.52E-07	 0.004	 0.076	 0.034	 0.359	
2	 rpoB	 760314	 M	v	SUS	 4.92E-22	 0	 0.004	 0.006	 0.004	
3	 rpoB	 761108	 X	v	SUS	 3.44E-14	 0	 0.001	 0.003	 0.016	
2-4	 rpoB	 761109	 M	or	X	v	SUS,	RMP	 3.34E-28	 0	 0.015	 0.032	 0.048	
3,4	 rpoB	 761110	 X	v	M,	X	or	M	v	SUS,	

RMP	
3.35E-85	 0	 0.029	 0.066	 0.337	

1,2,4	 rpoB	 761139	 X	or	M	v	SUS	 3.46E-16	 0.001	 0.076	 0.071	 0.028	
1-4	 rpoB	 761139	 RMP	 1.61E-97	 0.001	 0.076	 0.071	 0.028	
1,2,4	 rpoB	 761140	 M	or	X	v	SUS,	RMP	 2.66E-17	 0.001	 0.01	 0.034	 0.028	
1-4	 rpoB	 761155	 M	or	X	v	SUS,	RMP	 1.17E-219	 0.001	 0.267	 0.695	 0.524	
2,4	 rpoB	 761161	 M	or	X	v	SUS	 9.67E-18	 0	 0.013	 0.044	 0.197	
4	 rpoB	 763123	 X	v	M	or	SUS	 1.13E-17	 0	 0.002	 0	 0.185	
3	 rpoC	 764666	 X	or	M	v	SUS,	RMP	 3.74E-29	 0	 0.003	 0.004	 0.016	
2	 rpoC	 764819	 M	v	SUS	 3.33E-18	 0	 0.002	 0.013	 0	
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Supplementary	table	4	-	continued	

Lineage	 Gene	 Position	 Drug	 Min	P-value	 Susc.	 DR	 MDR-TB	 XDR-TB	

4	 rpoC	 766823	 X	v	SUS	 1.64E-06	 0	 0.013	 0.006	 0.028	

1	 rpoC	 767123	
MDR	or	XDR	v	SUS,	

RMP	 3.91E-24	 0	 0.003	 0.015	 0.016	

2-4	 rpsL	 781687	
MDR	or	XDR	v	SUS,	

STM	 1.65E-45	 0.005	 0.159	 0.458	 0.257	
2-4	 rpsL	 781822	 STM	 4.16E-10	 0.002	 0.041	 0.061	 0.024	
1	 rrs	 1472358	 STM	 5.12E-06	 0	 0.010	 0.001	 0	
4	 rrs	 1472359	 STM	 2.66E-13	 0.002	 0.047	 0.061	 0.276	
3,1	 rrs	 1472359	 M	or	X	v	SUS	 5.71E-18	 0.002	 0.047	 0.061	 0.276	
1	 rrs	 1472362	 M	or	X	v	SUS,	STM	 3.52E-71	 0	 0.009	 0.019	 0.016	
3	 rrs	 1472751	 X	v	SUS	 2.28E-10	 0	 0.004	 0.006	 0.004	
2,4	 rrs	 1473246	 AMK,	CAP,	KAN	 6.68E-42	 0	 0.075	 0.120	 0.651	
3	 rrs	 1473246	 STM	 3.05E-09	 0	 0.075	 0.120	 0.651	
2-4	 rrs	 1473246	 X	v	SUS	or	M	 7.73E-246	 0	 0.075	 0.120	 0.651	
1	 pncB1	 1499617	 PZA	 3.20E-06	 0	 0.003	 0.003	 0.004	
1	 echA12	 1660232	 X	v	SUS	 3.91E-24	 0	 0.003	 0.003	 0.004	

2	
Rv1482c-
fabG1	 1673425	 ETH	 1.91E-04	 0.003	 0.251	 0.115	 0.319	

1-4	
Rv1482c-
fabG1	 1673425	 M	or	X	v	SUS,	INH	 4.07E-56	 0.003	 0.251	 0.115	 0.319	

4	
Rv1482c-
fabG1	 1673432	 X	v	SUS	 2.63E-15	 0.004	 0.016	 0.050	 0.205	
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Supplementary	table	4	-	continued	

Lineage	 Gene	 Position	 Drug	 Min	P-value	 Susc.	 DR	 MDR-TB	 XDR-TB	

4	 inhA	 1674481	 X	v	SUS	 8.54E-46	 0	 0.076	 0.010	 0.075	
1,4	 inhA	 1674782	 M	or	X	v	SUS	 3.91E-24	 0	 0.040	 0.019	 0.075	
1-4	 katG	 2155168	 M	or	X	v	SUS,	INH	 3.26E-286	 0.004	 0.424	 0.820	 0.795	
4	 pncA	 2288868	 X	v	SUS,	PZA	 1.60E-14	 0	 0.02	 0.018	 0.024	
1	 pncA	 2288952	 M	or	X	v	SUS,	PZA	 3.91E-24	 0	 0.009	 0.003	 0.004	

2	
pncA-

Rv2044c	 2289252	 PZA	 1.12E-08	 0	 0.008	 0.036	 0.016	
4	 eis-Rv2417c	 2715342	 KAN	 1.93E-08	 0	 0.025	 0.043	 0.056	
2	 oxyR'-ahpC	 2726141	 X	v	SUS	 4.53E-08	 0.001	 0.008	 0.022	 0.008	
2	 alr	 3841083	 Cycloserine	 1.67E-08	 0	 0.007	 0.008	 0.100	
2,4	 embC-embA	 4243217	 X	or	M	v	SUS,	EMB	 2.09E-14	 0	 0.026	 0.043	 0.079	
3,4	 embC-embA	 4243221	 X	v	SUS,	EMB	 1.70E-32	 0	 0.017	 0.043	 0.067	
4	 embC-embA	 4243222	 X	v	SUS,	EMB	 2.62E-10	 0	 0.013	 0.01	 0.036	
1-4	 embB	 4247429	 M	or	X	v	SUS,	EMB	 1.28E-47	 0.001	 0.109	 0.358	 0.399	
1-4	 embB	 4247431	 M	or	X	v	SUS,	EMB	 1.58E-51	 0.003	 0.071	 0.221	 0.375	
1	 embB	 4247574	 X	or	M	v	SUS,	EMB	 3.63E-07	 0	 0.007	 0.023	 0.016	
4	 embB	 4247702	 X	v	SUS,	EMB	 2.62E-08	 0	 0.013	 0.006	 0.028	
4	 embB	 4247729	 X	or	M	v	SUS,	EMB	 8.81E-13	 0	 0.008	 0.023	 0.012	
2,4	 embB	 4247730	 X	v	SUS,	EMB	 3.31E-12	 0	 0.025	 0.066	 0.043	
4	 embB	 4247781	 X	v	SUS	 9.20E-10	 0	 0.02	 0.007	 0.024	

1,3,4	 embB	 4248003	 M	or	X	v	SUS,	EMB	 1.33E-26	 0	 0.021	 0.065	 0.031	
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Supplementary	table	4	-	continued	

Lineage	 Gene	 Position	 Drug	 Min	P-value	 Susc.	 DR	 MDR-TB	 XDR-TB	

3	 embB	 4249583	 X	v	SUS,	EMB	 5.84E-23	 0	 0.007	 0.015	 0.016	
4	 ubiA	 4269271	 X	v	M	or	SUS	 1.01E-16	 0	 0.001	 0.003	 0.185	
3	 ethA	 4326435	 X	v	SUS	 3.44E-14	 0	 0.001	 0	 0.016	
4	 ethA-ethR	 4327484	 X	v	SUS	 9.24E-44	 0	 0.007	 0.054	 0.192	
4	 ethR	 4328127	 X	v	SUS	 9.30E-10	 0	 0.020	 0.007	 0.024	
4	 gid	 4407965	 X	v	SUS	 6.27E-10	 0	 0.020	 0.008	 0.029	

	

X	=	XDR-TB,	M	=	MDR-TB,	SUS	=	Pan	susceptible,	DR	=	Resistant	to	at	least	one	drug	but	not	MDR-TB/XDR-TB,	RIF	=	rifampicin,	INH	=	isoniazid,	

ETH	=	ethionamide,	EMB	=	ethambutol,	KAN	-	kanamycin	
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Supplementary	table	5	
Detected	co-occurrence	of	mutations	at	drug	resistance	associated	loci	(Fisher	exact	
test	P<10-8)		
	
Drug	 Resistance	

gene	
Co-occurring	

gene	
Fisher	exact	
test	p-value	

Rifampicin	 rpoB	 rpoC*	 <	2.2e-16	
Rifampicin	 rpoB	 rpoA*	 6.0e-09	
Isoniazid	 katG	 ahpC*	 <	2.2e-16	
Pyrazinamide	 pncA	 pncB2	 1.4e-13	
Ethambutol	 embB	 ubiA	 <	2.2e-16	
PAS	 thyA	 thyX-hsdS.1	 <	2.2e-16	

PAS	=	Para-aminosalicylic	acid;	underlying	overall	and	lineage	data	are	presented	in	
Supplementary	table	6;	*	known	compensatory	mechanisms	
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Supplementary	table	6	
Co-occurrence	of	mutations	at	drug	resistance	associated	loci	with	a	breakdown	by	
lineage	
	

	 		 rpoB	(81-bp	rifampin	resistance-determining	region)	

	 		 Overall	 Lineage	1	 Lineage	2	 Lineage	3	 Lineage	4	

		 		 WT	 Mut.	 WT	 Mut.	 WT	 Mut.	 WT	 Mut.	 WT	 Mut.	

rpoC	
WT	 4964	 873	 557	 30	 417	 322	 888	 49	 3102	 472	

Mut.	 138	 477	 15	 15	 25	 251	 28	 28	 70	 183	

rpoA	
WT	 5060	 1308	 564	 45	 439	 553	 915	 76	 3142	 634	

Mut.	 43	 42	 8	 0	 3	 20	 1	 1	 31	 21	

	
	 		 katG	

	 		 Overall	 Lineage	1	 Lineage	2	 Lineage	3	 Lineage	4	

		 		 WT	 Mut.	 WT	 Mut.	 WT	 Mut.	 WT	 Mut.	 WT	 Mut.	

ahpC	
promoter	

WT	 4959	 1390	 554	 58	 472	 525	 826	 156	 3107	 651	

Mut.	 35	 62	 4	 0	 5	 16	 5	 5	 21	 41	

	
	

	 		 pncA	

	 		 Overall	 Lineage	1	 Lineage	2	 Lineage	3	 Lineage	4	

		 		 WT	 Mut.	 WT	 Mut.	 WT	 Mut.	 WT	 Mut.	 WT	 Mut.	

pncB2	
WT	 5608	 599	 560	 23	 704	 280	 953	 18	 3391	 278	

Mut.	 116	 59	 24	 0	 9	 0	 13	 0	 70	 59	

pncB1	
WT	 5576	 647	 528	 15	 701	 280	 927	 17	 3420	 335	

Mut.	 147	 11	 58	 8	 12	 0	 37	 1	 40	 2	

	

	 		 ethA	

	 		 Overall	 Lineage	1	 Lineage	2	 Lineage	3	 Lineage	4	

		 		 WT	 Mut.	 WT	 Mut.	 WT	 Mut.	 WT	 Mut.	 WT	 Mut.	

pyrG	
WT	 5922	 285	 541	 33	 914	 59	 933	 43	 3534	 150	

Mut.	 143	 15	 38	 1	 7	 2	 14	 0	 84	 12	

Rv0565c	
WT	 5969	 292	 562	 34	 914	 56	 915	 42	 3578	 160	

Mut.	 90	 8	 17	 0	 6	 5	 30	 1	 37	 2	
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Supplementary	table	6	-	continued	
	

	 		 embB	

	 		 Overall	 Lineage	1	 Lineage	2	 Lineage	3	 Lineage	4	

		 		 WT	 Mut.	 WT	 Mut.	 WT	 Mut.	 WT	 Mut.	 WT	 Mut.	

ubiA	
WT	 5033	 1281	 502	 91	 489	 475	 886	 97	 3156	 618	

Mut.	 45	 104	 21	 3	 3	 54	 9	 1	 12	 46	

	
	 		 thyA	

	 		 Overall	 Lineage	1	 Lineage	2	 Lineage	3	 Lineage	4	

		 		 WT	 Mut.	 WT	 Mut.	 WT	 Mut.	 WT	 Mut.	 WT	 Mut.	

thyX-
hsdS1	

WT	 6332	 36	 600	 4	 982	 10	 973	 14	 3777	 8	

Mut.	 67	 21	 13	 0	 14	 14	 6	 0	 34	 7	

	

Each	table	contains	the	number	of	isolates	with	and	without	mutations	(‘mutant’	(Mut)	

&	‘wild	type’	(WT)	respectively)	at	each	pair	of	drug	resistance	associated	loci	effects	

identified	or	known	compensatory	effects.	‘Mutant’	refers	to	isolates	with	SNP	and	indel	

non-synonymous	 amino	 acid	 changes.	 Synonymous	 amino	 acid	 changes	 and	 deep	

phylogenetic	mutations	were	discarded.	Cells	with	grey	background	show	statistically	

significant	correlations	(Fisher	exact	test	P<0.02),	i.e.	pairs	of	genes	frequently	mutated	

in	the	same	isolates,	whereas	white	background	indicates	lack	of	statistical	significance.	

This	analysis	points	to	putative	epistatic	and	compensatory	relationships.	
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Supplementary	table	7	
Protein	structural	modelling	of	alr	reveals	low	frequency	mutations	conferring	higher	instability		
	

Genomic	
position	 Mutation	

Overall	
Mutation	
Frequency	

Resist.	
mCSM*	 DUET*	 mCSM-

Lig**	

Distance		
from	
CYS**	

mCSM-
PPI***	Freq.	

3840259	 Y388D	 0.0009	 0	 -3.369	 -3.384	 -3.737	 2.682	 -2.819	
3840258	 Y388C	 0.0002	 0	 -1.889	 -1.704	 -1.938	 2.682	 -2.489	
3840393	 M343T_B	 0.0031	 0.0358	 -2.118	 -2.085	 0.368	 3.636	 -0.195	
3840708	 S238L	 0.0002	 0	 0.611	 1.192	 0.69	 4.246	 -0.551	
3840952	 K157E	 0.0003	 0	 -1.483	 -1.455	 -1.841	 4.474	 -0.075	
3840636	 P262Q	 0.0012	 0	 -2.015	 -2.069	 0.279	 4.987	 -0.863	
3840717	 S235W	 0.0002	 0	 -0.807	 -1.46	 0.706	 5.212	 -0.588	
3840402	 R340L_B	 0.0003	 0	 -0.57	 0.616	 0.16	 5.389	 -0.629	
3840643	 L260V	 0.0002	 0	 -1.244	 -1.554	 -2.467	 6.992	 -0.419	
3840639	 S261N	 0.0002	 0	 -1.443	 -1.606	 -0.482	 7.116	 -0.248	
3841083	 L113R	 0.0057	 0.4461	 -0.961	 -0.956	 -1.721	 8.477	 -0.423	

CYS	=	D-cycloscerine;	*	protein	stability;	**	drug	binding,	***	protein-protein	interactions;	bolded	the	mutation	that	was	statistically	

significant;	grey	–	less	stability		

We	applied	 four	measures	 to	quantify	 the	enthalpic	effects	 (the	 change	 in	Gibbs	 free	energy	 -	∆∆G)	of	point	mutations	on	overall	 protein	

structure	stability	(mCSM	and	DUET),	protein-protein	interactions	(mCSM-PPI)	and	interaction	with	substrate/drug	(mCSM-Lig).	Negative	values	

indicate	 a	 destabilising	 effect,	 with	 the	 most	 destabilising	 highlighted	 in	 grey,	 and	 positive	 values	 indicating	 an	 increase	 in	 stability.	 The	
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geometrical	distance	from	the	mutation	to	the	drug	binding	position	is	also	provided.	The	mutation	that	was	statistically	significant	with	the	

largest	resistance	frequency	(L113R)	has	a	relatively	large	destabilising	effect	both	on	the	overall	protein	structure	and	in	drug	binding,	yet	it	is	

the	furthest	from	the	site	of	drug	interaction.		
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Supplementary	table	8	
Gene-based	small	insertion	and	deletion	(indel)	associations	
	

Drug	 Gene	 indels/Kb	
Total		No.	
positions	

LengthMedian	
(bp)	

Length	
Range	(bp)	

Assoc.		
P-value	

MDR-TB	vs.	Susc.	 pncA	 44.72	 25	 1	 1-15	 3.83E-10	
MDR-TB	vs.	Susc.	 rpoB	 2.27	 7	 6	 3-9	 3.49E-06	
MDR-TB	vs.	Susc.	 embCAB	promoter	 72.29	 6	 1	 1-2	 1.71E-04	
XDR-TB	vs.	Susc.	 ethA	 25.89	 38	 1	 1-10	 4.25E-54	
XDR-TB	vs.	Susc.	 pncA	 44.72	 25	 1	 1-15	 5.51E-38	
XDR-TB	vs.	Susc.	 rpoB	 2.27	 7	 6	 3-9	 1.31E-12	
XDR-TB	vs.	Susc.	 embCAB	promoter	 72.29	 6	 1	 1-2	 1.29E-29	
XDR-	vs.	MDR-TB	 pncA	 44.72	 25	 1	 1-15	 1.50E-04	
XDR-	vs.	MDR-TB	 katG	 5.40	 12	 1.5	 1-12	 2.33E-02	
Isoniazid	 katG	 5.40	 12	 1.5	 1-12	 2.82E-05	
Rifampicin	 rpoB	 2.27	 7	 6	 3-9	 1.25E-10	
Ethionamide	 ethA	 25.89	 38	 1	 1-10	 7.22E-09	
Capreomycin	 tlyA	 3.73	 3	 2	 2-10	 1.21E-12	
Capreomycin	 rrs	 2.61	 4	 1	 1-1	 2.37E-10	
Streptomycin	 gid	 35.66	 24	 1	 1-14	 1.45E-09	
Pyrazinamide	 pncA	 44.72	 25	 1	 1-15	 5.27E-38	
Cycloserine	 ald	 10.77	 12	 1	 1-5	 5.35E-03	
Kanamycin	 rrs	 2.61	 4	 1	 1-1	 9.29E-05	

Susc.	=	susceptible;	MDR-TB	=	multi-drug	resistance;	XDR-TB	=	extensive	drug	resistance	
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Supplementary	table	9	
Large	deletions	in	candidate	drug	resistance	regions	
	

Gene	
No.	

samples	
Drug	

No.	DR	
No.	

XDR-TB	
mean	

size	(bp)	
Size	range	

(bp)	
dfrA/thyA	 5	 PAS	 1	 3	 6,396	 2,825-7,912	
pncA	 12	 PZA	 1	 3	 1,402	 446-4,670	
ethA/ethR	 7	 ETH	 3	 3	 3,667	 1,513-5,271	
katG	 3	 INH	 3	 0	 5,729	 4,789-7,608	

	

DR	=	Resistant	to	at	least	one	drug	but	not	MDR/XDR-TB;	XDR-TB	=	extensive	drug	

resistance;	PAS	Para-aminosalicylic	acid,	ETH	Ethionamide,	PZA	Pyrazinamide,	INH	

Isoniazid	
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Supplementary	figure	1	
Allele	 frequency	 spectra	 for	 SNPs	 (left)	 and	 small	 insertions	 and	 deletions	 (indels,	
right)	
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Supplementary	figure	2	
Principal	component	(PC)	analysis	confirms	lineage	and	sub-lineage	based	population	
structure	(total	variation	explained	across	five	components	is	79%)	
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Supplementary	figure	3	
Protein	structure	for	alr	
	

	
Alanine	racemase	mutational	map	showing	position	and	effect	of	mutations	based	on	

measure	of	protein	stability	by	DUET.	Unfavourable	mutations	are	depicted	in	blue	and	

favourable	mutations	in	red,	where	colour	intensity	reflects	extent	of	effect.	The	PLP	co-

factor	shown	as	a	stick	representation	 in	green.	 (A)	shows	the	protomer	structure	of	

alanine	racemase	depicted	as	a	cartoon	with	the	PLP	co-factor	shown	as	sticks.	Insert	

(B)	shows	the	active	site	with	residues	that	have	been	identified	in	the	GWAS	depicted	

as	sticks	and	their	hydrogen	bonding	propensity	shown	as	dashed	black	lines.		
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Supplementary	figure	4	
Polymorphisms	in	regions	surrounding	ethA	(top	left),	thyA	(top	right),	pncA	(bottom	
left),	and	katG	(bottom	right)	using	the	complete	dataset	(n=6,465)	
	

	
The	top	panel	in	the	figures	shows	the	density	of	SNPs	per	Kb	(green	–	non-synonymous,	

black	–	all).	 The	 red	crosses	 show	 the	 location	of	 the	 small	 indels.	 The	middle	panel	

shows	the	location	of	the	large	deletions	found	in	samples	used	in	this	study.	The	lower	

panel	shows	the	location	of	the	candidate	regions	and	flanking	genes.	
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Supplementary	figure	5	
The	analytical	workflow,	including	procedures	adopted	for	raw	sequence	data	
processing	and	the	genome-wide	association	study	(GWAS)	approach	
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Supplementary	data	1	
All	genes	and	operons	identified	as	being	significant	in	analyses,	with	their	mutations	and	indels;	Minor	allele	frequency	(<10	samples)	and	
major	allele	frequency	(>=10	samples)	mutations	are	presented	separately,	and	association	SNP	hits	are	bolded.		
	
*	stop	codon	

Locus	 Low	frequency	mutations	(<10	samples)	 High	freq.	(>=	10	samples)	
gyrB	 E21K,	R40P,	N66H,	L70F,	A78D,	I84V,	T88N,	D97E,	A130S,	E145K,	Q148E,	K159R,	

A162S,	K165N,	F180V,	T183M,	L204M,	D210Y,	D225E,	A242P,	K247N,	H252Y,	

H263N,	T267S,	K268R,	I271M,	V276A,	S279C,	G280D,	G282D,	E299Q,	A323G,	

D334G,	D340G,	D342E,	T346S,	A355T,	A355S,	K361T,	T393S,	P400R,	A416V,	R421H,	

V427M,	K430Q,	A432V,	T433I,	D434G,	D434E,	A443T,	C445S,	R446H,	S447Y,	S447F,	

P450S,	R451H,	L455V,	V457I,	D461N,	D461H,	G464S,	A467V,	K498N,	N499D,	
N499T,	N499S,	N499K,	T500P,	T500N,	T500I,	A504T,	A504V,	I505V,	I506S,	G512R,	
I519V,	G520A,	K521E,	K526Q,	H560Y,	H560R,	V561A,	R575H,	S576G,	D584H,	

A593V,	K596N,	G606A,	M616V,	E623D,	D627A,	P628A,	V630I,	1919A-3CGC,	A644D,	

S649C,	G653A,	E654A,	S661T,	D669	

P94L,	M291I,	V301L,	H302R,	A423V,	V457L	
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gyrA	 T2I,	T5A,	P7L,	S11A,	I15V,	I20V,	E21G,	Q22R,	R45G,	F64L,	D67G,	A71V,	A71G,	A74S,	

A74V,	N83K,	G88C,	G88A,	D89N,	D89G,	A90G,	D94V,	S95G,	L105R,	D111N,	T135I,	
M141T,	F152L,	I153M,	P154A,	P154R,	P163A,	S168I,	L174V,	N193S,	E206Q,	D211E,	
E214D,	M220R,	G221W,	R222W,	V223I,	G239R,	G239D,	G249C,	R254C,	V259I,	

T267I,	Q277R,	N282K,	F283L,	S286L,	A288D,	V291L,	R292Q,	D293N,	A322E,	V323L,	

V327L,	A343T,	M345V,	M345I,	L346V,	A347S,	G351A,	L356M,	L358M,	H368Q,	

R376S,	R382L,	E386V,	H389Q,	A406T,	S411A,	R418Q,	Q431E,	M438I,	R448H,	Q449E,	

A456V,	A456G,	I462V,	E466Q,	I468V,	G477E,	D488A,	D488E,	H490R,	D493H,	R495C,	

R495H,	A500E,	V505I,	T519I,	A547T,	L568V,	R578Q,	A579V,	D583E,	E586V,	R592S,	

Q594H,	P604R,	E605K,	R607H,	P621L,	A626V,	K633R,	T638I,	D639E,	D641A,	D641E,	

V651I,	L653V,	V663A,	A676V,	S684L,	P692S,	S698L,	F705L,	N706S,	L711M,	N715S,	

G729R,	A736V,	E739Q,	V742L,	Y755C,	A765T,	K793N,	A814T,	G823A,	N826D,	

A827T,	A827D,	D829E,	G832V,	Q835*,	T836K,	T836M	

P8A,	E21Q,	T80A,	A90V,	S91P,	D94N,	
D94H,	D94Y,	D94A,	D94G,	S95T,	G239S,	
G247S,	S250A,	R252L,	L296P,	A384V,	

R442H,	A463S,	P472S,	Q613E,	G668D	

iniA	 K19N,	D22N,	V33G,	I46V,	N50D,	V71A,	V74L,	S84I,	S84R,	L87R,	L91R,	A96P,	V98I,	

D100G,	V105M,	321C-1A,	V110I,	V110L,	403A-6TTCCCG,	D138E,	D143N,	E154A,	

P163R,	S164R,	L166M,	519T+1A,	G180R,	L191M,	D198A,	623A-1G,	V218M,	A221T,	

V227A,	V230I,	V231M,	R242W,	A249V,	M259T,	I261V,	L267M,	H271D,	E279K,	840C-

1A,	848A-2GT,	L293V,	S294G,	R300C,	R306P,	G308R,	S323F,	R339Q,	1041C-1A,	

Q357*,	Q363R,	R381Q,	R385C,	G408A,	W425*,	S430Y,	D435N,	A444T,	S448P,	

1460T-3GCG,	Y491C,	G505R,	G507R,	1538C-4GGTG,	1541T-1G,	1563C-

17CGGATGGCATATAAAGA,	Y525C,	1597T-9TGCTGCGGG,	V544A,	V548F,	D549N,	

1655C+1A,	S559A,	T582I,	1762T+1C,	A591T,	V598A,	R608W,	Q611R,	G615R	

Q26*,	H42R,	281C-5CGCGG,	V106A,	516G-
1T,	F286C,	L372P,	Q394E,	H481Q,	S501W,	

R522Q	

rpoB	 D3G,	S21F,	N24D,	G28R,	P30S,	P30A,	S34A,	R39S,	P45S,	P45A,	P45L,	P45R,	D53N,	
E66K,	A69P,	V77M,	E86K,	P89L,	D92G,	F93V,	M97L,	289A+6TGTCGT,	V113I,	M121V,	

M121I,	E132D,	M153T,	V168A,	V170L,	V170F,	Q172R,	V179A,	H194Y,	S195R,	F208L,	
R219C,	Q226R,	E244K,	E250G,	S254L,	D259N,	D265A,	D270E,	K274N,	P280L,	A286V,	

R299C,	Y308C,	N311D,	L314V,	A334D,	H343Q,	G345C,	P358L,	V359A,	D362H,	

L430P,	D435Y,	D435G,	D435V,	H445N,	
H445D,	H445Y,	H445R,	H445L,	S450W,	

S450L,	L452P,	I491F,	A692T,	L731P,	R827C,	
V970A,	Q975H,	I1106T	
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L378R,	M390T,	E391G,	T399I,	T400A,	T400I,	Q409R,	F424L,	F424V,	T427P,	1281C-
9AGCCAGCTG,	S428G,	S428R,	Q429P,	Q429H,	L430R,	S431G,	Q432K,	1294C-
9AATTCATGG,	Q432P,	Q432L,	1296A+3TTC,	1301T-6GGACCA,	M434I,	1302G-3GAC,	
D435A,	S441T,	S441L,	1326G-6TTGACC,	L443W,	L443F,	1333C-3ACA,	H445P,	
H445Q,	K446Q,	K446R,	L449M,	S450*,	A451V,	A451G,	P454L,	E460G,	V469L,	I480V,	
I480T,	E481A,	T482N,	I491L,	I491V,	I491T,	S493T,	V496M,	V496A,	R511L,	D515Y,	

V534M,	V534L,	V534A,	V534G,	A538V,	S540A,	A544V,	D545A,	D545E,	

1648G+3AGC,	R552S,	R552H,	R552L,	L554P,	V562A,	E563D,	V581M,	M587T,	H593Y,	

D634G,	E639Q,	E639G,	R661Q,	M666T,	S672Y,	H674Y,	H674P,	H674Q,	G675D,	

T676P,	T676A,	P682T,	V695L,	T702I,	H723Y,	H723D,	L741F,	E761D,	P802L,	E812G,	
R824L,	E825G,	R827H,	R827L,	P834T,	P834L,	H835P,	H835R,	G836S,	A857T,	R871H,	

I873F,	S874Y,	S874F,	G890D,	L893R,	P899A,	I910T,	M920V,	I925V,	K944E,	R952G,	

P954H,	E956D,	V970M,	V970L,	G981D,	A998V,	H1028R,	A1037S,	Q1056H,	Y1073S,	

Q1080R,	V1096M,	V1117L,	S1124A,	V1129A,	E1169A,	A1172P	

rpoC	 G13R,	L14R,	Q22R,	D44E,	E49Q,	E49A,	I51V,	D57N,	M92T,	T137A,	E142G,	H145Y,	

Q165R,	Q165H,	A172G,	R173Q,	E185Q,	G188A,	R203C,	R211H,	T225N,	T227I,	

A230V,	K232T,	R247H,	Q262R,	D279G,	V299A,	V313A,	A316T,	Q329K,	G332S,	
G332R,	G332C,	L402F,	L402H,	S403A,	V431M,	G433S,	G433C,	P434T,	P434A,	
P434Q,	P434L,	P434R,	Q435P,	Q435H,	G442C,	K445R,	A448V,	L449V,	F452S,	F452C,	
F452L,	R459W,	A466V,	W484C,	D485N,	D485Y,	I491T,	A492P,	R506Q,	L507V,	

L516V,	V517L,	E518A,	E518D,	G519S,	G519R,	G519D,	A521D,	A521V,	Q523K,	
Q523E,	H525N,	M541I,	M559L,	S561P,	L566V,	G597D,	P601Q,	V611F,	D623G,	

D623E,	V629M,	R641W,	A648D,	M663I,	T667M,	L679P,	L679R,	P682L,	N698K,	

A701V,	I707V,	V709L,	K715T,	Y722C,	A734G,	P739L,	R741S,	R741C,	D747H,	D747G,	

E750G,	E750D,	R752H,	K758Q,	N766S,	D768Y,	L774V,	L789V,	L789S,	T812I,	T825A,	
N826T,	N826K,	E830A,	A856T,	I885V,	2665C+3ACG,	T893I,	E894G,	E903A,	P906A,	
D907G,	E917D,	E932K,	T958I,	G980E,	M1012L,	E1033A,	E1033V,	V1039A,	V1039G,	
P1040T,	P1040A,	P1040L,	F1061L,	G1072D,	E1106K,	Q1110H,	S1115L,	Q1125H,	

A172V,	D271G,	N416S,	P481T,	V483A,	
V483G,	W484G,	I491V,	L516P,	G594E,	
P601L,	A621T,	N698S,	P1040S,	P1040R,	
A1044V,	E1092D,	K1152Q,	V1252L	
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V1135A,	E1140G,	R1163C,	V1206G,	D1218A,	S1242N,	E1250A,	V1252M,	I1264T,	

V1272A,	T1284A,	S1287P,	S1287*,	S1287L,	E1289A,	A1303V,	G1311S,	Y1312H	

rpsL	 P2R,	S17R,	K18E,	E70K,	K88T,	K88M	 K43R,	K88R	
rpsE	 Q4H,	R18W,	R33C,	R33H,	F64S,	N74S,	G80C,	K85T,	L107V,	H114Y,	Q117R,	A141G,	

A142V,	A144S,	T171A,	P181L,	P191Q,	S207N,	*221W	

K39T,	V105A	

rrs	 G5T,	T17G,	C22T,	G38A,	G102A,	115A+1T,	T140G,	159C+1T,	C171T,	C181G,	C182G,	

C196T,	T200A,	A208T,	G261A,	C270T,	C332T,	A335C,	G349A,	G361T,	C380A,	G395A,	

G395C,	C397T,	G406T,	T454C,	C462T,	A484T,	T529G,	A554T,	G583T,	642C+1T,	

C662G,	G685A,	C699A,	C699G,	C699T,	A703G,	G704A,	C708T,	G725A,	G737T,	

A740C,	A753T,	G754A,	G754T,	G762A,	C774A,	A807C,	T822C,	T829C,	C845A,	C845T,	

C850T,	G851T,	G883A,	G887T,	G888A,	G888C,	C897T,	C897G,	C905A,	A906G,	
A908C,	A908G,	A908T,	G909T,	G922A,	C924T,	G935A,	T953C,	A970C,	A1012G,	

G1016C,	G1016T,	C1021T,	T1025C,	T1025G,	G1026A,	G1068A,	C1105G,	G1108T,	

C1125T,	A1128T,	1144G+1T,	T1151C,	A1161G,	G1167A,	G1176A,	A1205G,	T1206C,	

T1208G,	T1216C,	C1220G,	G1234A,	G1237A,	T1239A,	T1239C,	C1241T,	A1244G,	

A1278C,	A1278G,	A1278T,	G1285A,	C1300T,	G1302A,	G1302C,	C1319A,	C1319G,	

G1321A,	C1346T,	G1353T,	G1366T,	G1379A,	C1382G,	C1402A,	C1402T,	T1444C,	
A1449G,	G1450A,	G1460A,	A1461G,	A1462C,	A1469G,	G1484T,	C1489T	

C282T,	G284C,	G292A,	T305A,	T327C,	

C492T,	C513T,	A514C,	A514T,	C517T,	
C710T,	A753C,	G771A,	G878A,	A899G,	

C936T,	A948T,	T958A,	C1050T,	1075G+1T,	

T1208A,	C1257T,	C1357T,	A1401G,	C1507T	

Rv1482c
-fabG1	

T-8G,	G-9A,	C-34T,	G-77A,	C-118G,	C-120T	 T-8C,	T-8A,	C-15T,	G-17T,	G-47C	

inhA	 I21V,	I95L,	G141R,	T162S,	G183R,	E219A	 I21T,	S94A,	T162A,	I194T,	I228V	
tlyA	 L26W,	G28S,	V32L,	D35G,	G36R,	A45T,	D48N,	T56I,	W62L,	198A+2GC,	H68R,	A80T,	

R84G,	L87V,	G95E,	L100V,	T134I,	D154A,	S156A,	V163A,	L164S,	P179S,	E186G,	

G188E,	P194L,	G196R,	G196E,	R206Q,	H221R,	P231R,	N236K,	732C-

10ACGCAGACCG,	T247I,	A253P,	R262C,	V1M	

751T+2TG	

katG	 V1A,	8T-2CG,	Q4*,	Q4H,	T12A,	A16T,	A16V,	S17N,	55C-1G,	V23L,	89A-3CGG,	G34A,	

Q36P,	V47I,	D63G,	A66T,	V68G,	T77R,	R78G,	V83G,	M84T,	Q88E,	W90R,	269C+1A,	

P6S,	S315T,	S315N,	S315R,	R463L,	V473L	
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W90*,	G99R,	F102S,	R104Q,	317G+1C,	A109T,	A109V,	G120S,	G121S,	G123R,	

G124D,	G124A,	374C-2CG,	Q127P,	P131A,	P131S,	W135*,	N138H,	N138D,	S140N,	

L141S,	L141F,	D142G,	W149R,	W149*,	Y155S,	Y155C,	L159F,	L159P,	A162E,	A162V,	

D163N,	G169S,	T180K,	D189A,	D189G,	W191R,	W191G,	E192A,	D194N,	E195K,	
W198*,	L205R,	R209C,	S211N,	D215E,	P232A,	P232S,	M242V,	A244G,	T251K,	

R254H,	R254L,	M257I,	D259Y,	V260I,	T275A,	G279D,	D282G,	G285V,	867C-

6TCGGGT,	A290V,	Q295E,	Q295P,	G299S,	S302R,	T308A,	S315G,	S315I,	I317T,	
957G-1A,	V320L,	N323S,	T324P,	T324I,	T326M,	I335V,	Y339S,	E340D,	E342G,	T354I,	

L378P,	A379T,	T380P,	T380I,	S383A,	L384R,	D387H,	T394A,	L398R,	D406G,	F408L,	
W412*,	Y413H,	Y413C,	D419H,	D419Y,	D419G,	P422H,	L427F,	P432T,	V445I,	S446N,	

D448A,	V450I,	1351C-12GACGAGGTCGTG,	E452Q,	1366C-1A,	Q471R,	V473F,	T475I,	

A480S,	S481L,	R484H,	K488E,	G495C,	D509N,	P510A,	D511N,	R519H,	E522K,	E523K,	

E523D,	Q525K,	Q525*,	Q525P,	S527L,	A532P,	A532V,	G534R,	K537E,	1612C+1T,	

D542E,	C549S,	A551S,	1671C-1T,	K557N,	N562H,	G570C,	G570V,	L587R,	A591T,	

L598R,	1811A-7ACGGGTT,	A606T,	M609T,	D612G,	T625A,	G630V,	V633A,	

1901A+1G,	Y638H,	A649T,	L653Q,	T667I,	K681T,	S692R,	D695A,	L696Q,	S700P,	

R705G,	D729G,	V739M	

pncA	 M1T,	L4S,	I5T,	15G-3ATC,	16T+1G,	I6M,	V7I,	V7L,	V7F,	V7G,	D8N,	D8G,	D8E,	V9A,	
Q10*,	29T-1G,	Q10R,	35T+1C,	D12A,	D12G,	F13I,	F13C,	F13L,	C14G,	G17S,	G17D,	
S18P,	V21I,	V21A,	V21G,	G24V,	72G-1C,	79G-11CGCGGCGCCAC,	L27P,	A28T,	I31S,	
L35P,	105C-1A,	E37*,	E37V,	117C+1G,	Y41*,	H43P,	V44A,	V44G,	A46P,	A46E,	A46V,	
T47P,	T47A,	T47I,	K48T,	D49N,	D49A,	D49G,	D49E,	H51D,	H51Y,	H51P,	H51R,	H51Q,	
D53E,	P54A,	P54S,	P54Q,	P54L,	165A-3CCC,	H57D,	H57Y,	H57P,	H57R,	H57Q,	F58S,	
F58L,	S59P,	T61P,	P62S,	P62L,	D63H,	D63A,	D63G,	Y64D,	193A+1T,	S65P,	194G+1T,	
S66P,	S66L,	201C-12GACGAGGAATAG,	W68R,	W68G,	W68*,	W68L,	W68C,	P69T,	

P69S,	P69R,	P69L,	210C+3GGT,	210C+1G,	H71Y,	H71Q,	C72R,	C72Y,	T76I,	P77L,	
G78S,	232C-1G,	G78C,	G78A,	A79T,	F81V,	H82D,	250T+1G,	L85P,	L85R,	T87M,	277C-

5CGCCT,	F94L,	F94C,	Y95*,	K96T,	K96R,	G97S,	G97R,	G97C,	Y99*,	A102P,	Y103H,	

Q10P,	C14R,	Y34D,	L35R,	T76P,	G97D,	
A102V,	Y103*,	L120P,	V125G,	G132A,	
I133T,	V139M,	Q141P,	L151S,	457T+1G,	
518T+1C	
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310T-4GTAC,	S104G,	S104R,	G105D,	315G+1C,	F106L,	T114M,	347A-9GTGGCGTGC,	

347A+1G,	L116R,	R121P,	R121Q,	R123G,	V125D,	E127*,	V128F,	D129N,	V130M,	

389A-3CAT,	389A-9CATCGACCT,	390C-15ACATCGACCTCATCG,	390C-1A,	392A+1C,	

392A+2CC,	V131G,	395C-9CGACCACAT,	396A-1C,	I133S,	A134D,	A134G,	A134V,	

T135P,	D136N,	D136G,	H137R,	C138R,	415C-3ACA,	V139L,	V139A,	V139G,	417C-1A,	
Q141*,	423C-1T,	T142A,	A143V,	A146T,	R154G,	464A+1C,	V155A,	V155G,	467A-
8GCACCCTG,	471C+1T,	L159P,	L159R,	T160P,	T160A,	G162S,	G162D,	S164*,	496C-

1G,	T168P,	T168N,	T168S,	T168I,	A171P,	A171E,	A171V,	L172P,	L172R,	E173G,	

521T+1A,	M175K,	M175T,	M175I,	A178P,	V180L,	V180F,	L182S,	L182W,	V183L	

pncA-
Rv2044c	

C-33T,	G-30T,	G-19A,	A-12G,	T-11G,	-2C+1G	 T-11C	

Rv2172c
-idsA2	

G-12A,	A-55C,	G-76T,	G-97A,	G-136T,	T-149G,	G-160A,	A-173C,	C-186T,	A-205C,	G-

208A,	T-234C,	G-244A,	G-259A,	C-260T,	G-265A,	T-284C,	T-284A	

A-65G,	C-98T	

eis-
Rv2417c	

G-109A,	A-106G,	A-106C,	C-104T,	A-67T,	G-63C,	G-21A,	G-15C,	C-10G,	-7C-1G,	C-6A	 G-100A,	G-14A,	G-12A,	C-10T	

oxyR'-
ahpC	

-3G+1T,	-35C-1A,	T-42C,	-47G+1T,	C-52A,	C-54T,	C-57T,	T-71G,	G-74A,	T-76A,	T-77G,	
C-79T,	C-79A,	A-80G,	A-83G,	A-98C	

G-48A,	C-52T,	C-72T,	C-81T,	G-88A	

thyX-
hsdS.1	

-239T+4CTAC,	C-225T,	A-206G,	G-200T,	C-176T,	G-170A,	C-167A,	G-166T,	G-152A,	-

127A-1G,	T-117G,	G-116A,	A-108G,	T-98C,	G-58A,	T-43G,	G-42A,	T-41G,	A-31G,	C-

21T,	C-9T,	G-4T,	G-4A	

G-23C,	G-16A	

thyA	 P3S,	Y4*,	T22P,	T22A,	69G-5CCGGT,	Q32H,	V50A,	A56V,	L60M,	H75N,	G76*,	I79T,	

W80*,	D81A,	D81G,	264G-1C,	P92L,	Y94C,	Q97R,	D117G,	R120C,	I128S,	W133*,	

V135F,	P145L,	G157S,	R158W,	L159R,	P175Q,	531G-1T,	H207R,	I208M,	H254D,	

A259V,	P260T,	V263L	

T202A,	P253A	

alr	 F4Y,	N12H,	G19R,	G19S,	S22L,	L23M,	T26I,	S29F,	A38V,	G71S,	H72Y,	T75A,	T75M,	

P122S,	D139H,	D139G,	E140D,	T155A,	V156A,	K157E,	T160A,	D186G,	A187S,	

D205G,	A212D,	F215V,	A217V,	S235W,	S238L,	T247M,	L260V,	S261N,	P262Q,	

F4L,	L113R,	M343T	
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D268G,	G270E,	M275I,	V284L,	I287V,	A308G,	P311L,	D316E,	V318M,	R325P,	R340L,	

L350P,	A363T,	I364V,	E373G,	Y388D,	Y388C,	R397G,	R397L,	T401I,	E406V	

embC-
embA	

C-8A,	C-11T,	C-15G,	C-16A,	G-17A,	-27T-1A,	T-27C,	-29C-1T,	-30C-2CT,	G-32C,	-33C-
1G,	-35A-1C,	-38C-1T,	G-48C,	C-59A	

C-8T,	C-11A,	C-12T,	C-12A,	C-16G,	C-16T,	
G-43C	

embB	 R7T,	R14Q,	I16L,	G37S,	V50A,	177A-3CAG,	G62R,	V67L,	I72L,	I72S,	L74P,	D78G,	

D78E,	P93L,	G100S,	P103T,	K107R,	S119N,	V131M,	V135M,	R147C,	E149A,	F161L,	

K165N,	R182C,	V186A,	V188A,	P195H,	A196T,	T208I,	A221T,	A228V,	V230A,	V231I,	

A232P,	L239V,	G246R,	L253I,	A259V,	G263R,	W273L,	V283M,	F285L,	N296H,	S297A,	

D300G,	G305C,	M306L,	M306T,	D311A,	S317F,	Y319D,	Y319S,	Y319C,	F323L,	
D328H,	D328Y,	F330V,	W332R,	M340I,	T341A,	T341N,	T341I,	H342N,	S344R,	L348P,	

M350T,	D354N,	C361Y,	C361S,	L370R,	P375S,	A386E,	A388T,	A388V,	N399T,	N400S,	

L402V,	E405D,	G406C,	A409P,	S412P,	S422P,	P430L,	A438T,	G443S,	Q445R,	A451T,	
M462L,	M462T,	R468H,	I489T,	I489S,	Q497P,	Q497H,	T498N,	A505T,	A510T,	S538P,	
T546A,	T546I,	A547S,	M557I,	L558F,	K561R,	I563L,	V566M,	G569A,	V602I,	G603R,	

R620C,	F628S,	L632F,	L638F,	W640S,	T642A,	W646L,	P655Q,	N657D,	S658N,	S658R,	

G665R,	V668A,	F676S,	A679T,	A680T,	A693T,	G694S,	A701T,	A716P,	P731L,	G748E,	

P776L,	V783I,	T797A,	T797M,	K820T,	S823R,	G836R,	A840P,	Q853P,	S856R,	D869H,	

D870N,	P907S,	G908R,	A913V,	Q925H,	R930H,	A943V,	A950V,	E951Q,	L971M,	

2942C-3GCA,	M1000R,	H1002R,	I1006M,	A1007V,	K1011T,	F1012L,	D1017N,	

A1020S,	L1037I,	H1047P,	V1048I,	M1049I,	D1056E,	R1059P,	T1069P,	A1083T,	

W1089R,	G1097S	

L74R,	Q139H,	G156C,	S203L,	T205A,	

M306L,	M306V,	M306I,	D354A,	E378A,	
P397T,	G406S,	G406D,	G406A,	M423T,	
Q497K,	Q497R,	V668I,	D1024N,	S1054P,	
T1082A	

ubiA	 A15V,	V18F,	P23A,	L31P,	A35S,	A38T,	A38S,	A38V,	V44L,	V55L,	V55G,	V61A,	V78I,	
V105M,	A106S,	P122Q,	M128L,	G141S,	L158S,	I170V,	L172P,	S173A,	K174T,	K174R,	
W175C,	F176S,	F176L,	M180V,	M180I,	A181T,	A181V,	T227I,	A228S,	V229A,	G234V,	
A237T,	A237V,	R240C,	R240P,	D265Y,	A278V,	V283L,	A300V	

E149D,	V188A,	L224F,	A249T,	G268D	

ethA	 M1R,	M1I,	L5F,	I9S,	V10G,	G13E,	G16A,	H22P,	L23R,	Q24*,	C27Y,	Y32*,	A33G,	I34T,	
102G-1A,	111C-1T,	119G+1T,	G42S,	G42D,	G42V,	G43V,	T44A,	131G-1T,	W45G,	

H101R,	R261W,	S266R,	T314I,	N345K,	

A381P,	E433A	
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L47M,	141C-1A,	F48S,	149T-1A,	Y50C,	151G-1A,	P51S,	P51H,	P51L,	S55A,	D56A,	

D56G,	S57Y,	Y60*,	181T-1G,	T61K,	192G-1A,	F66S,	W69R,	T70S,	230T-1C,	G78D,	

P80T,	L82P,	A90V,	I94S,	R99W,	309C-1T,	I105L,	W109*,	A112G,	N114T,	V118G,	

H119D,	L129V,	C131*,	L136R,	C137R,	Y143*,	Y147C,	Y147*,	P149S,	G153S,	P160T,	

P160L,	H163Y,	492C+2GG,	Q165*,	H166P,	D174G,	N177S,	V179F,	S183R,	T186R,	

V188I,	T189K,	P192T,	P192S,	L194P,	S197*,	598T-1G,	K200*,	K200M,	V202F,	T203P,	

L205P,	Q206*,	621G+1C,	S208L,	Y211S,	Y211C,	I212N,	641G-2AC,	D219E,	I221V,	

I221M,	A222V,	K224*,	673G+1C,	674A+2GC,	L225P,	W228R,	P230L,	701G+2CC,	

R239G,	A248T,	753G+1C,	S251R,	756G+2GC,	757A+1G,	Q254P,	771T+1G,	775G-1C,	

R259H,	788A-3TCT,	F264L,	E274K,	826A-1C,	Y276H,	Y276S,	Y276*,	H281P,	H281R,	

P284L,	852C+1G,	H285P,	Y286D,	Y286S,	861G-1T,	P288R,	870G+1T,	D290E,	885C-

1A,	897G-1C,	L301P,	I305T,	955G-1T,	R319W,	F320S,	P334A,	I339N,	A341V,	

1023T+2GC,	T342K,	T342M,	Q347*,	L348F,	1048C-1A,	G351V,	1055G-1C,	T353M,	

1060C-3CGT,	T355A,	T355I,	I356T,	1081C-1T,	D362N,	A368V,	1105A-1G,	K370M,	

M373T,	L374F,	G376C,	G376D,	P378L,	N379D,	N379S,	1137G-1T,	N379K,	1164A+1T,	

A389D,	A389V,	S390F,	W391*,	L397P,	1194C+1A,	1195A+3CAC,	S399P,	S399*,	

E400D,	V402I,	C403R,	C403W,	Y408D,	1225T-10GTAATTCAAC,	G413D,	F414C,	

1243C-1A,	G423R,	F431V,	1304G+1T,	P447A,	K448E,	G450D,	T453I,	P454S,	P454L,	

W455R,	R456P,	Q459*,	1406C+1G,	R469P,	G471R,	1466A-1C	

ethA-
ethR	

A-3G,	G-6A,	G-21T,	C-26T,	A-29G,	T-52A,	A-60G,	A-61G,	A-69G,	C-70G	 T-65C	

gid	 P6A,	P6R,	A8V,	A10V,	I11N,	R15P,	L16P,	L18H,	A19P,	A19G,	A19V,	58G+1A,	R20P,	
R20Q,	R21W,	R21P,	A23D,	L26S,	L26F,	A27P,	G28E,	84T-1C,	G30R,	G30D,	G30V,	

E32D,	R33P,	G34W,	G34E,	G34V,	L35M,	103G+1C,	104A+1G,	L35R,	108C-1A,	G37A,	

G37E,	E40*,	V41L,	V41I,	V41G,	L44R,	W45R,	W45*,	137T-1C,	R47W,	R47Q,	H48N,	

H48D,	H48Y,	H48P,	H48R,	H48Q,	L49P,	L50P,	L50R,	C52R,	C52Y,	C52F,	158G-1C,	

L58F,	L58P,	L59V,	L59F,	E60*,	R61P,	R64W,	R64P,	R64Q,	V65A,	V65G,	V66G,	D67A,	
D67G,	D67E,	G69S,	G69D,	S70R,	S70N,	S70I,	G71R,	G71*,	G71E,	A72S,	G73R,	G73A,	

A10P,	L16R,	103G-1C,	G37R,	116C-1G,	

S70R,	G71V,	P75S,	L79S,	A80P,	Q87E,	
L90V,	E92D,	352G-1C,	A119T,	387G-1C,	

A138E,	S149R,	A167P,	S181L,	Y195H	
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L74S,	L74F,	223G-1C,	P75A,	P75R,	P75L,	225C+1A,	G76C,	G76V,	V77A,	V77G,	P78Q,	
P78R,	P78L,	L79W,	L79F,	A82P,	R83G,	R83W,	R83P,	R83Q,	P84S,	P84L,	D85H,	D85Y,	

D85A,	L86V,	L86F,	L86P,	Q87*,	V88A,	L90P,	L91V,	L91P,	E92Q,	E92K,	E92G,	P93S,	

R96H,	R96L,	R97H,	R97L,	294G+2GT,	297C+1T,	L101F,	R102G,	R102*,	E103Q,	

E103*,	E103A,	T106I,	L108P,	L108R,	327G-1C,	V110A,	V112G,	E113*,	I114T,	V115G,	

G117R,	G117V,	352G+1C,	R118S,	353C-1G,	R118L,	A119D,	A119V,	E120K,	358C-1G,	

E120*,	S122A,	368C-2AG,	V124G,	Q125*,	Q125P,	Q127*,	G130A,	391T-1G,	S131R,	

A133P,	A133G,	400C+1A,	A134E,	A134G,	A134V,	V135A,	V135G,	405C-1A,	S136P,	

S136*,	R137W,	R137P,	R137Q,	A138V,	V139L,	A140V,	A141E,	L142W,	T146K,	

W148*,	446C+1T,	S149R,	451G-1C,	453C-1G,	L152V,	L152S,	456C-1A,	R154W,	

R154P,	R154Q,	G157R,	472G-1C,	L160V,	L160P,	L160H,	K163*,	K163N,	G164S,	

G164A,	G164D,	A167D,	E170K,	E173*,	E173A,	519C+1T,	R176C,	A180G,	S181*,	

G182R,	V184F,	554T+1C,	V186F,	R187G,	C191Y,	C191F,	573A-14CATGTCACCACCCT,	

G192R,	Y195F,	Y195*,	R197C,	P199A,	P199H,	A200E,	602G-1T,	V202A,	V203L,	

V203G,	F204L,	A205P,	A205T,	A205E,	R206G,	R207H,	R213P,	R217G,	R217W,	

M218V,	M218I,	A219V,	A224G	

PPE52-
nuoA	

C-16T,	G-27A,	C-41T,	C-55T,	C-63T,	G-80A,	G-100A,	G-122C,	G-131C,	G-154A,	A-

157C,	C-217T,	-231C-1G,	A-249T,	G-259A,	G-261C,	G-293T,	G-300C,	C-321T,	G-329T,	

C-345G,	T-346G,	G-363C	

G-314T	

ald	 M1T,	M1I,	N12D,	E13K,	R15Q,	A17T,	128C+1G,	132T-1A,	133A+2TC,	F50C,	G54S,	

A55V,	L57P,	D62A,	A68T,	D69E,	A98V,	S100L,	317C+1T,	T112I,	T122I,	L130P,	

433G+2GC,	M150T,	Q153*,	459A-1G,	A183V,	A187T,	M190T,	569T+1G,	D198N,	

R214P,	G227R,	G237W,	L240P,	L249V,	G261S,	G261R,	G261V,	D266G,	G277S,	

837A+5CCGAC,	P280L,	877A+2CG,	L294Q,	896C+2GA,	T308R,	T317M,	966C+2GA,	

G328S,	991G+1C,	A338E,	P362L,	S368G,	S368N,	1106T+1G	

A55P,	Q56H	
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Chapter	5	
	

The	draft	genome	of	Mycobacterium	
aurum,	a	potential	model	organism	

for	investigating	drugs	against	
Mycobacterium	tuberculosis	and	

Mycobacterium	leprae	
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Supplementary	Figure	1	
M.	aurum	 and	 the	mycobacterium	phylogeny�	 constructed	using	16S	 rRNA	 sequences,	
which	 is	 less	precise	and	with	 lower	bootstrap	 support	 than	 that	attained	with	whole	
genome	sequence	data	(c.f.	Fig.	2	in	the	main	manuscript).	*Constructed	using	RaXML	and	
statistic	support	for	lineages	was	based	on	1000	bootstrap	samples.	
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Supplementary	Figure	2	
Comparative	sequence	of	putative	katG	genes	in	M.	aurum	and	M.	tuberculosis.	
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Supplementary	Table	1	
List	of	intergenic	primers	used	for	PCR	amplification	and	Sanger	sequencing	serving	to	
confirm	the	presence	of	duplicate/homologous	katG	and	embB	genes	in	M.	aurum	
	
Gene	 Primer	orientation	 Primer	sequence	
katG1	 Forward	 GGAGATTTCCCGATCACAACCGTGATCACAG	

Reverse	 CCGCTGATCAGTTCGAGACTGCACCCGTTC	
katG2	 Forward	 CGACGAGGCCGAGGTCATCTACTGGGGC	

Reverse	 CCCTACCGAATGTCGACGACAGCGCCGC	
embB1	 Forward	 GCGCCCGACGCCGCCATCGAGGAAGG	

Reverse	 CGGGGGTCTGGTCGAACAACGCGGTC	
embB2	 Forward	 CCGACCATTGTGGAGCATCCCGACCCC	

Reverse	 CGCCACCGACGTCTTCGAGATTCGTGAC	
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Supplementary	Table	2	
Number	of	orthologues	between	M.	aurum	and	M.	tuberculosis	/	M.	leprae	
	
Comparison	with	M.	aurum	 M.	tuberculosis	 M.	leprae	
No.	of	scaffolds	with	homology	 10	 13	
No.	of	syntenous	segments	 67	 73	
No.	of	unique	proteins	 1,002		 222		
No.	of	unique	M.	aurum	proteins	 2,090		 2,047		
No.	of	orthologue	clusters	*	 2,431	 1,349	
No.	of	1-to-1	orthologues**	 2,305	(94.8%)	 1,299	(96.3%)	
*Clusters	of	proteins	with	at	least	one	representative	of	M.	aurum	and	the	other	

mycobacteria;	**	orthologue	clusters	in	which	there	is	only	one	representative	of	each	

proteome.	
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Supplementary	Table	3		
Genes	deemed	essential	for	the	survival	of	M.	tuberculosis	within	a	macrophage	and	
their	homologues	in	the	surrogate	species	[1]	
	
	
M.	tuberculosis	

M.	smegmatis	 M.	aurum	

mce1A	(Rv0169)							 MSMEG_0134	 Present	
mce1B	(Rv0170)	 MSMEG_0135	 Present	
mce1C	(Rv0171)	 MSMEG_0136	 Present	
mce1D	(Rv0172)	 MSMEG_0137	 Present	
lprK	(Rv0173)	 MSMEG_0138	 Present	
mceF	(Rv0174)	 MSMEG_0139	 Present	
Rv0175	 MSMEG_0140	 Present	
Rv0176	 MSMEG_0141	 Present	
Rv0177	 MSMEG_0142	 Present	
Rv0178	 MSMEG_0143	 Present	
sugC	(Rv1238)	 MSMEG_5058	 Present	
sugB	(Rv1237)	 MSMEG_5059	 Present	
sugA(Rv1236)	 MSMEG_5060	 Present	
lpqY(Rv1235)	 MSMEG_5061	 -	
pstA1(Rv0930)	 MSMEG_5780	 Present	
pstC2(Rv0929)	 MSMEG_5781	 Present	
pstS3(Rv0928)	 MSMEG_5782	 Present	
espE	(Rv3864)	 -	 -	
eccA1	(Rv3868)	 MSMEG_0059	 Present	
eccCa1	(Rv3870)	 MSMEG_0061	 Present	
eccCb1	(Rv3871)	 MSMEG_0062	 Present	
eccD1	(Rv3877)	 MSMEG_0068	 Present	
hsaD	(Rv3569c)	 MSMEG_6037	 Present	
hsaA		(Rv3570c)	 MSMEG_6038	 Present	
Rv3552	 MSMEG_6003	 Present	
Rv3551	 MSMEG_6002	 Present	
echA20	(Rv3550)	 MSMEG_6001	 Present	
fadE28	(Rv3544c)	 MSMEG_5994	 Present	
Rv3542c	 MSMEG_5992	 Present	
Rv3541c	 MSMEG_5991	 Present	
	

[1]	Rengarajan	J,	Bloom	BR,	Rubin	EJ.	Genome-wide	requirements	for	Mycobacterium	

tuberculosis	adaptation	and	survival	in	macrophages.	Proc	Natl	Acad	Sci	U	S	A	

2005,102:8327-8332.	
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Supplementary	Table	4	
Results	from	Sanger	sequencing	of	putative	katG	and	embB	genes	in	M.	aurum	
	
Gene	 Start	

codon	
identified	

Stop	codon	
identified	

BamHI	site	located	

katG1	(2277bp)	 Yes	 Yes	 Yes	
737bp	from	start	codon	
729	bp	from	stop	codon	

katG2	(2235bp)	 Yes	 Yes	 Yes	
821bp	from	start	codon	

embB1	(3276bp)	 Yes	 Yes	 No		
embB2	(2985bp)	 Yes	 Yes	 Yes		

517bp	from	stop	codon	
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Chapter	6	
	

Recombination	in	pe/ppe	genes	
contributes	to	genetic	variation	in	

Mycobacterium	tuberculosis	lineages	
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Supplementary	File	1:	S1	Table	
a)	The	samples	used	for	the	assembly	(*Malawi	[55,	56],	Netherlands	[57],	Pakistan	[58],	
Portugal	[59])	and	b)	the	21	reference	strains.	
a)	

Study		
location*	

No.		
samples	

Lineage	1	
Indo-Oceanic	

Lineage	2	
East-Asian		

Lineage	3	
East-African-

Indian	

Lineage	4	
Euro-

American	
Brazil	 42	 -	 -	 -	 42	
Bulgaria	 2	 -	 -	 -	 2	
China	 6	 -	 -	 5	 1	
Malawi	 257	 38	 8	 28	 183	
Netherlands	 10	 -	 -	 -	 10	
Pakistan	 31	 4	 4	 19	 4	
Peru	 65	 -	 5	 -	 60	
Portugal	 78	 -	 5	 -	 73	
South	Africa	 27	 -	 16	 1	 10	
Total	 518	 42	 38	 53	 385	

*Malawi	[56,	57],	Netherlands	[58],	Pakistan	[59],	Portugal	[60]	

b)	

Strain	 Assembly	Accession	 Lineage	
CDC1551	 GCA_000008585.1	 Lineage4	
CTRI_2	 GCA_000224435.1	 Lineage4	
F11	 GCA_000016925.1	 Lineage4	
7199_99	 GCA_000331445.1	 Lineage4	
H37Ra	 GCA_000016145.1	 Lineage4	
KZN_1435	 GCA_000023625.1	 Lineage4	
KZN_4207	 GCA_000154585.2	 Lineage4	
KZN_605	 GCA_000154605.2	 Lineage4	
RGTB327	 GCA_000277085.1	 Lineage4	
RGTB423	 GCA_000277105.1	 Lineage1	
Beijing_NITR203	 GCA_000364825.1	 Lineage2	
Erdman_ATCC_35801	 GCA_000350205.1	 Lineage4	
Haarlem	 GCA_000153685.2	 Lineage4	
UT205	 GCA_000304555.1	 Lineage4	
W_148	 GCA_000193185.1	 Lineage2	
CAS_NITR204	 GCA_000389925.1	 Lineage3	
CCDC5079	 GCA_000270345.1	 Lineage2	
CCDC5180	 GCA_000270365.1	 Lineage2	
M.bovis_Pasteur_1173p2	 GCA_000009445.1	 Bovis	
M323	 Genbank	CP010873.1	 Lineage	2	
18b	 Genbank	CP007299.1	 Lineage	2	
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Supplementary	file	1:	S2	Table		
Lineage,	sequence	coverage	and	polymorphism.	π	nucleotide	diversity;	Lineage	1	Indo-
Oceanic;	Lineage	2	East-Asian	(Beijing);	Lineage	3	East-African-Indian;	Lineage	4	Euro-
American.	
	
Lineage	 n	

(%)	

Median	

Coverage	

across	

genome	

Median	

Coverage	

across	

pe/ppe	

genes	

Median		

π	

across	

genome	

Median		

π	

across	

pe/ppe	

genes	

No.	

Lineage	

specific	

pe/ppe	

SNPs	

1	 42	(8.1)	 187.7	 127.7	 0.00009	 0.00017	 36	

2	 38	(7.3)	 319.7	 151.1	 0.00002	 0.00007	 15	

3	 53	(10.2)	 329.5	 174.0	 0.00004	 0.00007	 28	

4	 385	(74.3)	 268.3	 150.9	 0.00007	 0.00016	 8	

Overall	 518	 283.5	 155.4	 0.00014	 0.00027	 87	
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Supplementary	file	1:	S3	Table	
Completeness	of	pe/ppe	gene	assemblies.	
	

Locus	 Gene	 Length	

Total	length	
of	gaps	
(prop.	of	

gene	length)		

Proportion	
of	samples	

fully	
assembled	

No.	
SNPs	

Non-
synonymous	

SNPs	

Rv0109	 pe_pgrs1	 1490	 0	(0)	 0.99	 23	 13	
Rv0124	 pe_pgrs2	 1463	 0	(0)	 0.93	 27	 18	
Rv0151c	 pe1	 1766	 0	(0)	 0.99	 32	 20	
Rv0152c	 pe2	 1577	 0	(0)	 1	 21	 15	
Rv0159c	 pe3	 1406	 0	(0)	 1	 18	 13	
Rv0160c	 pe4	 1508	 0	(0)	 1	 16	 10	
Rv0278c	 pe_pgrs3	 2873	 0	(0)	 0.78	 281	 135	
Rv0279c	 pe_pgrs4	 2513	 241	(0.1)	 0.25	 110	 52	
Rv0285	 pe5	 308	 0	(0)	 1	 4	 2	
Rv0297	 pe_pgrs5	 1775	 0	(0)	 0.98	 23	 16	
Rv0335c	 pe6	 515	 0	(0)	 1	 28	 17	
Rv0532	 pe_pgrs6	 1784	 0	(0)	 0.95	 69	 46	
Rv0578c	 pe_pgrs7	 3920	 0	(0)	 0.75	 120	 55	
Rv0742	 pe_pgrs8	 527	 0	(0)	 0.99	 3	 2	
Rv0746	 pe_pgrs9	 2351	 23	(0.01)	 0.44	 68	 41	
Rv0747	 pe_pgrs10	 2405	 0	(0)	 0.56	 188	 100	
Rv0754	 pe_pgrs11	 1754	 0	(0)	 1	 13	 8	
Rv0832	 pe_pgrs12	 413	 0	(0)	 1	 2	 2	
Rv0833	 pe_pgrs13	 2249	 0	(0)	 0.77	 63	 42	
Rv0834c	 pe_pgrs14	 2648	 0	(0)	 0.92	 62	 26	
Rv0872c	 pe_pgrs15	 1820	 0	(0)	 1	 16	 9	
Rv0916c	 pe7	 299	 0	(0)	 1	 3	 3	
Rv0977	 pe_pgrs16	 2771	 0	(0)	 0.82	 136	 103	
Rv0978c	 pe_pgrs17	 995	 0	(0)	 0.51	 33	 19	
Rv0980c	 pe_pgrs18	 1373	 318	(0.23)	 0.14	 48	 26	
Rv1040c	 pe8	 827	 0	(0)	 1	 4	 3	
Rv1067c	 pe_pgrs19	 2003	 305.5	(0.15)	 0.12	 81	 40	
Rv1068c	 pe_pgrs20	 1391	 207	(0.15)	 0.2	 5	 5	
Rv1087	 pe_pgrs21	 2303	 0	(0)	 0.58	 77	 48	
Rv1088	 pe9	 434	 0	(0)	 1	 3	 2	
Rv1089	 pe10	 362	 0	(0)	 1	 5	 4	
Rv1091	 pe_pgrs22	 2561	 197	(0.08)	 0.13	 55	 28	
Rv1172c	 pe12	 926	 0	(0)	 1	 6	 3	
Rv1195	 pe13	 299	 0	(0)	 1	 12	 9	
Rv1214c	 pe14	 332	 0	(0)	 1	 4	 2	
Rv1243c	 pe_pgrs23	 1688	 0	(0)	 0.91	 11	 8	
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Rv1325c	 pe_pgrs24	 1811	 0	(0)	 0.88	 54	 23	
Rv1386	 pe15	 308	 0	(0)	 1	 3	 2	
Rv1396c	 pe_pgrs25	 1730	 0	(0)	 0.96	 36	 20	
Rv1430	 pe16	 1586	 0	(0)	 1	 12	 10	
Rv1441c	 pe_pgrs26	 1475	 0	(0)	 0.85	 14	 10	
Rv1450c	 pe_pgrs27	 3989	 418	(0.1)	 0.3	 55	 29	
Rv1452c	 pe_pgrs28	 2225	 22	(0.01)	 0.49	 51	 19	
Rv1468c	 pe_pgrs29	 1112	 0	(0)	 1	 16	 7	
Rv1646	 pe17	 932	 0	(0)	 1	 2	 2	
Rv1651c	 pe_pgrs30	 3035	 0	(0)	 0.98	 40	 20	
Rv1768	 pe_pgrs31	 1856	 0	(0)	 0.97	 22	 17	
Rv1788	 pe18	 299	 0	(0)	 0.95	 15	 14	
Rv1791	 pe19	 299	 0	(0)	 0.99	 17	 13	
Rv1803c	 pe_pgrs32	 1919	 0	(0)	 1	 27	 17	
Rv1806	 pe20	 299	 0	(0)	 1	 3	 2	
Rv1818c	 pe_pgrs33	 1496	 0	(0)	 0.98	 36	 14	
Rv1840c	 pe_pgrs34	 1547	 0	(0)	 0.99	 22	 13	
Rv1983	 pe_pgrs35	 1676	 0	(0)	 1	 14	 9	
Rv2098c	 pe_pgrs36	 1304	 0	(0)	 0.99	 7	 5	
Rv2099c	 pe21	 173	 0	(0)	 1	 3	 2	
Rv2107	 pe22	 296	 0	(0)	 1	 2	 1	
Rv2126c	 pe_pgrs37	 770	 0	(0)	 0.99	 21	 12	
Rv2162c	 pe_pgrs38	 1598	 0	(0)	 0.79	 45	 16	
Rv2328	 pe23	 1148	 0	(0)	 1	 9	 7	
Rv2340c	 pe_pgrs39	 1241	 0	(0)	 1	 16	 9	
Rv2371	 pe_pgrs40	 185	 0	(0)	 1	 1	 0	
Rv2396	 pe_pgrs41	 1085	 0	(0)	 0.91	 26	 15	
Rv2408	 pe24	 719	 0	(0)	 1	 5	 4	
Rv2431c	 pe25	 299	 0	(0)	 1	 3	 2	
Rv2487c	 pe_pgrs42	 2084	 0	(0)	 0.85	 21	 10	
Rv2490c	 pe_pgrs43	 4982	 14	(0)	 0.43	 103	 44	
Rv2519	 pe26	 1478	 0	(0)	 1	 19	 11	
Rv2591	 pe_pgrs44	 1631	 0	(0)	 0.96	 19	 12	
Rv2615c	 pe_pgrs45	 1385	 0	(0)	 0.51	 27	 11	
Rv2634c	 pe_pgrs46	 2336	 0	(0)	 0.97	 21	 10	
Rv2741	 pe_pgrs47	 1577	 0	(0)	 0.86	 56	 33	
Rv2769c	 pe27	 827	 0	(0)	 1	 13	 11	
Rv2853	 pe_pgrs48	 1847	 0	(0)	 0.98	 24	 17	
Rv3018A	 pe27A	 86	 0	(0)	 0.69	 0	 0	
Rv3022A	 pe29	 314	 0	(0)	 0.98	 0	 0	
Rv3344c	 pe_pgrs49	 1454	 0	(0)	 0.78	 47	 16	
Rv3345c	 pe_pgrs50	 4616	 125	(0.03)	 0.22	 207	 105	
Rv3367	 pe_pgrs51	 1766	 0	(0)	 1	 15	 7	
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Rv3388	 pe_pgrs52	 2195	 0	(0)	 0.76	 48	 33	
Rv3477	 pe31	 296	 0	(0)	 1	 10	 8	
Rv3507	 pe_pgrs53	 4145	 0	(0)	 0.64	 133	 97	
Rv3508	 pe_pgrs54	 5705	 2018	(0.35)	 0	 358	 200	
Rv3511	 pe_pgrs55	 2144	 233	(0.11)	 0.2	 119	 74	
Rv3512	 pe_pgrs56	 3239	 345	(0.11)	 0.04	 174	 114	
Rv3514	 pe_pgrs57	 4469	 2651	(0.59)	 0	 39	 29	
Rv3590c	 pe_pgrs58	 1754	 8	(0)	 0.48	 49	 17	
Rv3595c	 pe_pgrs59	 1319	 0	(0)	 1	 22	 8	
Rv3622c	 pe32	 299	 0	(0)	 0.99	 3	 2	
Rv3650	 pe33	 284	 0	(0)	 1	 4	 3	
Rv3652	 pe_pgrs60	 314	 0	(0)	 1	 7	 4	
Rv3653	 pe_pgrs61	 587	 0	(0)	 0.99	 10	 8	
Rv3746c	 pe34	 335	 0	(0)	 1	 8	 8	
Rv3812	 pe_pgrs62	 1514	 0	(0)	 1	 20	 14	
Rv3872	 pe35	 299	 0	(0)	 1	 3	 3	
Rv3893c	 pe36	 233	 0	(0)	 1	 1	 1	
Rv0096	 ppe1	 1391	 0	(0)	 1	 27	 19	
Rv0256c	 ppe2	 1670	 0	(0)	 1	 17	 9	
Rv0280	 ppe3	 1610	 0	(0)	 1	 18	 12	
Rv0286	 ppe4	 1541	 0	(0)	 1	 16	 11	
Rv0304c	 ppe5	 6614	 0	(0)	 0.97	 65	 37	
Rv0305c	 ppe6	 2891	 0	(0)	 1	 36	 22	
Rv0354c	 ppe7	 425	 0	(0)	 1	 4	 3	
Rv0355c	 ppe8	 9902	 12	(0)	 0.46	 329	 189	
Rv0388c	 ppe9	 542	 0	(0)	 1	 11	 2	
Rv0442c	 ppe10	 1463	 0	(0)	 0.98	 14	 9	
Rv0453	 ppe11	 1556	 0	(0)	 1	 18	 12	
Rv0755c	 ppe12	 1937	 0	(0)	 1	 20	 11	
Rv0878c	 ppe13	 1331	 0	(0)	 1	 13	 8	
Rv0915c	 ppe14	 1271	 0	(0)	 1	 12	 8	
Rv1039c	 ppe15	 1175	 0	(0)	 1	 9	 7	
Rv1135c	 ppe16	 1856	 0	(0)	 1	 22	 18	
Rv1168c	 ppe17	 1040	 0	(0)	 1	 9	 7	
Rv1196	 ppe18	 1175	 0	(0)	 0.56	 6	 2	
Rv1361c	 ppe19	 1190	 0	(0)	 0.7	 53	 31	
Rv1387	 ppe20	 1619	 0	(0)	 1	 16	 11	
Rv1548c	 ppe21	 2036	 0	(0)	 0.99	 24	 19	
Rv1705c	 ppe22	 1157	 0	(0)	 0.99	 20	 13	
Rv1706c	 ppe23	 1184	 0	(0)	 0.99	 10	 4	
Rv1753c	 ppe24	 3161	 282	(0.09)	 0	 68	 35	
Rv1787	 ppe25	 1097	 375	(0.34)	 0.36	 6	 5	
Rv1789	 ppe26	 1181	 0	(0)	 0.94	 13	 8	
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Rv1790	 ppe27	 1052	 0	(0)	 0.53	 12	 10	
Rv1800	 ppe28	 1967	 0	(0)	 1	 33	 27	
Rv1801	 ppe29	 1271	 0	(0)	 0.99	 9	 4	
Rv1802	 ppe30	 1391	 0	(0)	 1	 25	 17	
Rv1807	 ppe31	 1199	 0	(0)	 1	 12	 6	
Rv1808	 ppe32	 1229	 0	(0)	 1	 13	 5	
Rv1809	 ppe33	 1406	 0	(0)	 1	 14	 9	
Rv1917c	 ppe34	 4379	 348	(0.08)	 0	 132	 63	
Rv1918c	 ppe35	 2963	 0	(0)	 0.98	 54	 34	
Rv2108	 ppe36	 731	 0	(0)	 1	 10	 7	
Rv2123	 ppe37	 1421	 0	(0)	 0.99	 20	 14	
Rv2352c	 ppe38	 1175	 0	(0)	 0.92	 37	 15	
Rv2353c	 ppe39	 1064	 0	(0)	 0.56	 73	 40	
Rv2356c	 ppe40	 1847	 0	(0)	 0.95	 23	 11	
Rv2430c	 ppe41	 584	 0	(0)	 0.92	 6	 3	
Rv2608	 ppe42	 1742	 0	(0)	 1	 11	 5	
Rv2768c	 ppe43	 1184	 0	(0)	 1	 17	 12	
Rv2770c	 ppe44	 1148	 0	(0)	 1	 14	 10	
Rv2892c	 ppe45	 1226	 0	(0)	 0.99	 10	 7	
Rv3018c	 ppe46	 1304	 151.5	(0.12)	 0.45	 22	 12	
Rv3021c	 ppe47	 1076	 223.5	(0.21)	 0.09	 4	 1	
Rv3022c	 ppe48	 242	 133.5	(0.55)	 0.36	 1	 0	
Rv3125c	 ppe49	 1175	 0	(0)	 0.98	 26	 17	
Rv3135	 ppe50	 398	 0	(0)	 0.68	 0	 0	
Rv3136	 ppe51	 1142	 0	(0)	 1	 17	 10	
Rv3144c	 ppe52	 1229	 0	(0)	 1	 10	 6	
Rv3159c	 ppe53	 1772	 0	(0)	 0.99	 24	 13	
Rv3343c	 ppe54	 7571	 543.5	(0.07)	 0.06	 163	 80	
Rv3347c	 ppe55	 9473	 0	(0)	 0.55	 0	 0	
Rv3350c	 ppe56	 11150	 0	(0)	 0.54	 0	 0	
Rv3425	 ppe57	 530	 2	(0)	 0.46	 37	 35	
Rv3426	 ppe58	 698	 697	(1)	 0.49	 0	 0	
Rv3429	 ppe59	 536	 0	(0)	 0.89	 86	 73	
Rv3478	 ppe60	 1181	 0	(0)	 0.92	 155	 110	
Rv3532	 ppe61	 1220	 0	(0)	 1	 11	 9	
Rv3533c	 ppe62	 1748	 0	(0)	 0.99	 16	 6	
Rv3539	 ppe63	 1439	 0	(0)	 1	 13	 9	
Rv3558	 ppe64	 1658	 0	(0)	 1	 17	 14	
Rv3621c	 ppe65	 1241	 0	(0)	 1	 19	 14	
Rv3738c	 ppe66	 947	 0	(0)	 0.9	 0	 0	
Rv3739c	 ppe67	 233	 0	(0)	 0.9	 2	 1	
Rv3873	 ppe68	 1106	 0	(0)	 1	 13	 7	
Rv3892c	 ppe69	 1199	 0	(0)	 1	 12	 6	
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Rv1169c	 pe11		 302	 0	(0)	 1	 2	 2	
Rv3020c	 pe28	 293	 0	(0)	 0.73	 0	 0	
Rv3097c	 pe_pgrs63	 1313	 0	(0)	 1	 12	 6	
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Supplementary	file	1:	S4	Table	
List	of	87	pe/ppe	lineage	specific-markers.	S	synonymous,	NS	non-synonymous,	*	genes	
bolded	if	there	are	sites	under	selection	using	the	Bayes	Empirical	Bayes	method;	Lineage	
1	 Indo-Oceanic;	Lineage	2	East-Asian	 (Beijing);	Lineage	3	East-African-Indian;	Lineage	4	
Euro-American.	
	
Position	 Mutation	 Locus	Tag	 Gene	 NS/S	 Lineage	
132646	 G/T	 Rv0109	 pe_pgrs1	 NS	 1	
189948	 C/G	 Rv0160c	 pe4	 S	 1	
308312	 G/A	 Rv0256c	 ppe2	 S	 1	
339508	 C/T	 Rv0280	 ppe3	 S	 1	
362007	 G/A	 Rv0297	 pe_pgrs5	 NS	 1	
368948	 T/C	 Rv0304c	 ppe5	 NS	 1	
372149	 G/A	 Rv0304c	 ppe5	 NS	 1	
426768	 C/T	 Rv0355c	 ppe8	 NS	 1	
434327	 A/G	 Rv0355c	 ppe8	 NS	 1	
673066	 C/G	 Rv0578c	 pe_	pgrs7	 S	 1	
673344	 A/T	 Rv0578c	 pe_	pgrs7	 S	 1	
846996	 G/A	 Rv0754	 pe_	pgrs11	 NS	 1	
928483	 C/T	 Rv0834c	 pe_pgrs14	 NS	 1	
977196	 G/A	 Rv0878c	 ppe13	 S	 1	
1188917	 G/A	 Rv1067c	 pe_pgrs19	 NS	 1	
1656178	 C/T	 Rv1468c	 pe_pgrs29	 NS	 1	
1863660	 C/T	 Rv1651c	 pe_pgrs30	 NS	 1	
2045849	 C/T	 Rv1803c	 pe_pgrs32	 NS	 1	
2165256	 T/G	 Rv1917c	 ppe34	 NS	 1	
2423785	 C/T	 Rv2162c	 pe_pgrs38	 NS	 1	
2803867	 G/C	 Rv2490c	 pe_	pgrs43	 S	 1	
2961099	 G/A	 Rv2634c	 pe_	pgrs46	 NS	 1	
3053973	 C/T	 Rv2741	 pe_	pgrs47	 S	 1	
3080282	 C/A	 Rv2770c	 ppe44	 NS	 1	
3929996	 G/T	 Rv3507	 pe_pgrs53	 NS	 1	
3936696	 A/G	 Rv3508	 pe_pgrs54	 NS	 1	
3942239	 C/A	 Rv3512	 pe_pgrs56	 S	 1	
3944807	 T/C	 Rv3512	 pe_pgrs56	 S	 1	
3970112	 C/T	 Rv3532	 ppe61	 NS	 1	
3979151	 T/A	 Rv3539	 ppe63	 NS	 1	
3998895	 G/A	 Rv3558	 ppe64	 NS	 1	
4061113	 G/T	 Rv3621c	 ppe65	 S	 1	
4093719	 G/A	 Rv3652	 pe_pgrs60	 NS	 1	
4277032	 G/C	 Rv3812	 pe_pgrs62	 NS	 1	
4351759	 G/C	 Rv3873	 ppe68	 NS	 1	
4375318	 G/A	 Rv3892c	 ppe69	 NS	 1	



 229 

424981	 G/A	 Rv0355c	 ppe8	 S	 2	
1212432	 C/A	 Rv1087	 pe_pgrs21	 S	 2	
1217065	 C/A	 Rv1091	 pe_pgrs22	 S	 2	
1217157	 A/C	 Rv1091	 pe_pgrs22	 NS	 2	
1218658	 G/C	 Rv1091	 pe_pgrs22	 S	 2	
1299305	 G/A	 Rv1168c	 ppe17	 NS	 2	
1357308	 T/G	 Rv1214c	 pe14	 S	 2	
1606673	 G/T	 Rv1430	 pe16	 S	 2	
2601760	 G/A	 Rv2328	 pe23	 NS	 2	
2706663	 G/T	 Rv2408	 pe24	 NS	 2	
2922846	 C/T	 Rv2591	 pe_pgrs44	 S	 2	
2922848	 A/T	 Rv2591	 pe_pgrs44	 NS	 2	
3895585	 C/T	 Rv3478	 ppe60	 NS	 2	
4032218	 G/A	 Rv3590c	 pe_pgrs58	 NS	 2	
4032625	 G/T	 Rv3590c	 pe_pgrs58	 S	 2	
178205	 C/G	 Rv0151c	 pe1	 S	 3	
178453	 C/G	 Rv0151c	 pe1	 S	 3	
188317	 A/G	 Rv0159c	 pe3	 NS	 3	
189850	 A/G	 Rv0160c	 pe4	 NS	 3	
308661	 A/G	 Rv0256c	 ppe2	 NS	 3	
350088	 C/A	 Rv0286	 ppe4	 NS	 3	
367718	 G/T	 Rv0304c	 ppe5	 NS	 3	
369886	 C/G	 Rv0304c	 ppe5	 S	 3	
428921	 G/A	 Rv0355c	 ppe8	 NS	 3	
432459	 C/T	 Rv0355c	 ppe8	 NS	 3	
531775	 C/G	 Rv0442c	 ppe10	 S	 3	
623163	 C/T	 Rv0532	 pe_pgrs6	 NS	 3	
674702	 A/T	 Rv0578c	 pe_pgrs7	 S	 3	
840847	 C/T	 Rv0747	 pe_pgrs10	 S	 3	
1488428	 C/T	 Rv1325c	 pe_pgrs24	 NS	 3	
1489142	 C/T	 Rv1325c	 pe_pgrs24	 NS	 3	
1856617	 C/T	 Rv1646	 pe17	 NS	 3	
1863584	 G/T	 Rv1651c	 pe_pgrs30	 NS	 3	
2051345	 G/A	 Rv1809	 ppe33	 NS	 3	
2382289	 G/T	 Rv2123	 ppe37	 NS	 3	
2836773	 C/T	 Rv2519	 pe26	 NS	 3	
2943675	 G/A	 Rv2615c	 pe_pgrs45	 S	 3	
2960592	 C/T	 Rv2634c	 pe_pgrs46	 NS	 3	
3738364	 G/A	 Rv3344c	 ppe52	 NS	 3	
3738364	 G/A	 Rv3345c	 pe_pgrs50	 S	 3	
3740181	 T/C	 Rv3345c	 pe_pgrs50	 NS	 3	
3741240	 C/T	 Rv3345c	 pe_pgrs50	 NS	 3	
4375452	 G/A	 Rv3892c	 ppe69	 NS	 3	
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428698	 T/C	 Rv0355c	 ppe8	 S	 4	
1618978	 C/T	 Rv1441c	 pe_pgrs26	 NS	 4	
1931718	 C/G	 Rv1705c	 ppe22	 S	 4	
2050822	 C/G	 Rv1808	 ppe32	 NS	 4	
2167926	 G/A	 Rv1918c	 ppe35	 NS	 4	
3079877	 G/A	 Rv2770c	 ppe44	 NS	 4	
3466919	 G/C	 Rv3097c	 lipY	 S	 4	
3510120	 G/T	 Rv3144c	 ppe52	 NS	 4	
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Supplementary	file	1:	S5	Table	
Genes	with	more	than	10	sites	under	selective	pressure	(dN/dS	(ω)	>1).	
	

Name	 Locus	 Length	 Function	 No.	sites	
pe_pgrs3	 Rv0278c	 2873	 pe/ppe	 49	
pe_pgrs54	 Rv3508	 5705	 pe/ppe	 39	
Rv0668	 Rv0668	 3950	 information	pathways	 34	

pe_pgrs57	 Rv3514	 4469	 pe/ppe	 33	
ppe54	 Rv3343c	 7571	 pe/ppe	 32	

pe_pgrs56	 Rv3512	 3239	 pe/ppe	 29	
ppe55	 Rv3347c	 9473	 pe/ppe	 29	
ppe56	 Rv3350c	 11150	 pe/ppe	 26	
pks12	 Rv2048c	 12455	 lipid	metabolism	 25	

pe_pgrs28	 Rv1452c	 2225	 pe/ppe	 23	
Rv2850c	 Rv2850c	 1889	 metabolism	&	respiration	 21	
Rv0075	 Rv0075	 1172	 metabolism	&	respiration	 20	
lppA	 Rv2543	 659	 cell	wall	&	cell	processes	 20	
lppB	 Rv2544	 662	 cell	wall	&	cell	processes	 19	

pe_pgrs50	 Rv3345c	 4616	 pe/ppe	 18	
ppe57	 Rv3425	 530	 pe/ppe	 18	
Rv1453	 Rv1453	 1265	 regulatory	proteins	 18	
ppsA	 Rv2931	 5630	 lipid	metabolism	 18	

Rv1722	 Rv1722	 1484	 lipid	metabolism	 17	
ctpJ	 Rv3743c	 1982	 cell	wall	&	cell	processes	 17	

pe_pgrs17	 Rv0978c	 995	 pe/ppe	 16	
pe_pgrs18	 Rv0980c	 1373	 pe/ppe	 16	
fadE1	 Rv0131c	 1343	 lipid	metabolism	 16	

Rv1729c	 Rv1729c	 938	 lipid	metabolism	 16	
pe_pgrs19	 Rv1067c	 2003	 pe/ppe	 15	
pe_pgrs4	 Rv0279c	 2513	 pe/ppe	 15	
pe_pgrs16	 Rv0977	 2771	 pe/ppe	 14	
Rv2978c	 Rv2978c	 1379	 insertion	sequences	&	phages	 14	
pe_pgrs21	 Rv1087	 2303	 pe/ppe	 13	
pe_pgrs9	 Rv0746	 2351	 pe/ppe	 13	
ppe8	 Rv0355c	 9902	 pe/ppe	 13	
Rv0080	 Rv0080	 458	 NA	 13	
treY	 Rv1563c	 2297	 virulence,	detoxification	&	adaptation	 13	

Rv2827c	 Rv2827c	 887	 NA	 13	
Rv2082	 Rv2082	 2165	 NA	 12	

pe_pgrs10	 Rv0747	 2405	 pe/ppe	 11	
ppe10	 Rv0442c	 1463	 pe/ppe	 11	
Rv0893c	 Rv0893c	 977	 lipid	metabolism	 11	
Rv1254	 Rv1254	 1151	 metabolism	&	respiration	 11	
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Rv1776c	 Rv1776c	 560	 regulatory	proteins	 11	
acrA1	 Rv3391	 1952	 lipid	metabolism	 11	
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Supplementary	file	1:	S6	Table	
Epitopes.	 *	 identified	 using	 netMHCpan,	 **	 epitopes	 that	 had	 sites	 under	 positive	
selection	according	to	the	Bayes	Empirical	Bayes	(BEB)	method.	
	

Gene	
No.	epitopes	

found*	
No.	(%)	sites	
disturbed**	

pe_pgrs49	 2	 2	(100)	
ppe59	 55	 45	(81.8)	
ppe60	 95	 61	(64.2)	
pe_pgrs60	 15	 5	(33.3)	
pe18	 16	 5	(31.3)	
pe_pgrs26	 43	 12	(27.9)	
ppe57	 38	 10	(26.3)	
pe6	 40	 9	(22.5)	
ppe65	 85	 19	(22.4)	
ppe27	 105	 22	(21)	
pe_pgrs12	 35	 7	(20)	
pe25	 17	 3	(17.6)	
pe_pgrs7	 26	 4	(15.4)	
pe_pgrs20	 29	 4	(13.8)	
ppe54	 373	 44	(11.8)	
ppe46	 125	 14	(11.2)	
ppe19	 101	 11	(10.9)	
ppe47	 83	 9	(10.8)	
ppe22	 95	 10	(10.5)	
pe_pgrs10	 40	 4	(10)	
ppe52	 61	 6	(9.8)	
pe_pgrs13	 11	 1	(9.1)	
pe_pgrs3	 67	 6	(9)	
ppe13	 84	 7	(8.3)	
pe3	 123	 10	(8.1)	
ppe28	 144	 10	(6.9)	
pe_pgrs38	 30	 2	(6.7)	
ppe38	 93	 6	(6.5)	
pe_pgrs16	 79	 5	(6.3)	
ppe25	 111	 7	(6.3)	
pe_pgrs36	 16	 1	(6.3)	
ppe30	 100	 6	(6)	
pe19	 18	 1	(5.6)	
pe_pgrs18	 39	 2	(5.1)	
pe_pgrs31	 42	 2	(4.8)	
Ppe34	 194	 9	(4.6)	
Ppe24	 182	 8	(4.4)	
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pe1	 145	 6	(4.1)	
pe_pgrs63	 106	 4	(3.8)	
ppe3	 117	 4	(3.4)	
ppe18	 92	 3	(3.3)	
pe_pgrs29	 32	 1	(3.1)	
pe_pgrs45	 32	 1	(3.1)	
pe_pgrs50	 98	 3	(3.1)	
pe17	 73	 2	(2.7)	
ppe53	 75	 2	(2.7)	
pe_pgrs41	 38	 1	(2.6)	
ppe68	 79	 2	(2.5)	
pe8	 46	 1	(2.2)	
ppe8	 316	 6	(1.9)	
ppe43	 107	 2	(1.9)	
ppe5	 174	 3	(1.7)	
ppe1	 117	 2	(1.7)	
ppe26	 103	 1	(1)	
ppe11	 105	 1	(1)	
ppe45	 111	 1	(0.9)	
pe16	 127	 1	(0.8)	
pe10	 17	 0	(0)	
pe11	 21	 0	(0)	
pe12	 59	 0	(0)	
pe13	 20	 0	(0)	
pe14	 25	 0	(0)	
pe15	 10	 0	(0)	
pe20	 25	 0	(0)	
pe2	 106	 0	(0)	
pe21	 6	 0	(0)	
pe22	 28	 0	(0)	
pe23	 70	 0	(0)	
pe24	 40	 0	(0)	
pe26	 85	 0	(0)	
pe27	 49	 0	(0)	
pe27A	 2	 0	(0)	
pe28	 25	 0	(0)	
pe29	 10	 0	(0)	
pe31	 13	 0	(0)	
pe32	 16	 0	(0)	
pe33	 13	 0	(0)	
pe34	 22	 0	(0)	
pe35	 9	 0	(0)	
pe36	 7	 0	(0)	
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pe4	 122	 0	(0)	
pe5	 8	 0	(0)	
pe7	 13	 0	(0)	
pe9	 25	 0	(0)	
pe_pgrs11	 113	 0	(0)	
pe_pgrs1	 34	 0	(0)	
pe_pgrs14	 48	 0	(0)	
pe_pgrs15	 23	 0	(0)	
pe_pgrs17	 31	 0	(0)	
pe_pgrs19	 36	 0	(0)	
pe_pgrs21	 35	 0	(0)	
pe_pgrs22	 37	 0	(0)	
pe_pgrs2	 31	 0	(0)	
pe_pgrs23	 36	 0	(0)	
pe_pgrs24	 36	 0	(0)	
pe_pgrs25	 23	 0	(0)	
pe_pgrs27	 26	 0	(0)	
pe_pgrs28	 25	 0	(0)	
pe_pgrs30	 111	 0	(0)	
pe_pgrs32	 37	 0	(0)	
pe_pgrs33	 33	 0	(0)	
pe_pgrs34	 32	 0	(0)	
pe_pgrs35	 98	 0	(0)	
pe_pgrs37	 3	 0	(0)	
pe_pgrs39	 48	 0	(0)	
pe_pgrs40	 12	 0	(0)	
pe_pgrs42	 30	 0	(0)	
pe_pgrs43	 42	 0	(0)	
pe_pgrs4	 38	 0	(0)	
pe_pgrs44	 33	 0	(0)	
pe_pgrs46	 30	 0	(0)	
pe_pgrs47	 38	 0	(0)	
pe_pgrs48	 17	 0	(0)	
pe_pgrs51	 30	 0	(0)	
pe_pgrs52	 25	 0	(0)	
pe_pgrs5	 25	 0	(0)	
pe_pgrs53	 27	 0	(0)	
pe_pgrs54	 28	 0	(0)	
pe_pgrs55	 32	 0	(0)	
pe_pgrs56	 0	 NA	
pe_pgrs57	 30	 0	(0)	
pe_pgrs58	 28	 0	(0)	
pe_pgrs59	 31	 0	(0)	
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pe_pgrs61	 5	 0	(0)	
pe_pgrs62	 137	 0	(0)	
pe_pgrs6	 41	 0	(0)	
pe_pgrs8	 30	 0	(0)	
pe_pgrs9	 41	 0	(0)	
ppe10	 85	 0	(0)	
ppe12	 71	 0	(0)	
ppe14	 100	 0	(0)	
ppe15	 115	 0	(0)	
ppe16	 76	 0	(0)	
ppe17	 93	 0	(0)	
ppe20	 140	 0	(0)	
ppe2	 131	 0	(0)	
ppe21	 71	 0	(0)	
ppe23	 96	 0	(0)	
ppe29	 91	 0	(0)	
ppe31	 98	 0	(0)	
ppe32	 94	 0	(0)	
ppe33	 83	 0	(0)	
ppe35	 161	 0	(0)	
ppe36	 49	 0	(0)	
ppe37	 137	 0	(0)	
ppe39	 22	 0	(0)	
ppe40	 66	 0	(0)	
ppe41	 49	 0	(0)	
ppe4	 153	 0	(0)	
ppe42	 116	 0	(0)	
ppe44	 96	 0	(0)	
ppe48	 29	 0	(0)	
ppe49	 105	 0	(0)	
ppe50	 45	 0	(0)	
ppe51	 80	 0	(0)	
ppe55	 374	 0	(0)	
ppe56	 455	 0	(0)	
ppe58	 46	 0	(0)	
ppe6	 161	 0	(0)	
ppe61	 93	 0	(0)	
ppe62	 60	 0	(0)	
ppe63	 134	 0	(0)	
ppe64	 63	 0	(0)	
ppe66	 79	 0	(0)	
ppe67	 18	 0	(0)	
ppe69	 63	 0	(0)	
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ppe7	 18	 0	(0)	
ppe9	 45	 0	(0)	
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Supplementary	File	2:	Figure	S1	
Allele	 frequency	 spectra	 for	 each	 lineage	 by	 synonymous	 (blue)	 and	 non-synonymous	
(red)	mutations.	The	peaks	at	intermediate	allele	frequencies	include	sub-lineage	defining	
SNPs	 (Lineage	 1	 Indo-Oceanic;	 Lineage	 2	 East-Asian	 (Beijing);	 Lineage	 3	 East-African-
Indian;	Lineage	4	Euro-American).	
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Supplementary	file	3:	Figure	S2	
Gene-based	nucleotide	diversity	 (π)	 for	the	21	reference	genomes.	All	genes	with	high	
nucleotide	diversity	(π > 0.0075)	are	labelled.	
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Supplementary	file	4:	Figure	S3	
Phylogenetic	tree	constructed	using	50,540	genome-wide	SNPs.	Clear	clustering	according	
to	lineage	can	be	seen	(Lineage	1	(Indo-Oceanic,	green),	 lineage	2	(East-Asian	(Beijing),	
blue),	lineage	3	(East-African-Indian,	purple),	lineage	4	(Euro-American,	red)).	Reference	
genomes	are	labelled.	M.	canetti	is	annotated	in	cyan.	
	

	

	

	

	

	

	

	

	



 241 

Supplementary	file	5:	Figure	S4	
Identifying	sites	 leading	to	differences	 in	tree	topologies	based	on	all	SNPs	(Additional	
file	4:	Figure	S3a)	and	only	those	from	pe/ppe	genes	(Additional	file	4:	Figure	S3b).	The	Δ	
Site	 wise	 log	 likelihood	 score	 (Δ	 SSLS)	 is	 calculated	 for	 each	 SNP	 in	 the	 pe/ppe	 gene	
alignments.	Negative	differences	indicate	SNP	positions	favouring	the	pe/ppe	tree.	SNPs	
in	 pe_pgrs3,	 ppe57	 and	 ppe60	 produce	 strong	 phylogenetic	 signals	 supporting	
the	pe/ppe	tree.	
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Supplementary	file	6:	Figure	S5	
Phylogenetic	tree	created	using	only	SNPs	from	pe_pgrs3.	No	clear	clustering	by	lineage	
is	observed.	However	there	are	two	major	clades,	one	consistent	with	H37Rv	(bottom-
left).	
	
	

	

	

	

	

	

	

	

	



 243 

Supplementary	file	7:	Figure	S6	
Lineage-specific	recombination	hotspots.	Manhattan	plots	showing	genes	that	are	likely	
to	be	recombination	hotspots	 in	each	 lineage	 (Lineage	1	 Indo-Oceanic;	Lineage	2	East-
Asian	(Beijing);	Lineage	3	East-African-Indian;	Lineage	4	Euro-American).	The	(−log10)	p-
value	 for	 the	 phi	 statistic	 is	 plotted	 against	 genome	 position.	 All	 genes	 with	 p-
values < 0.05	are	labelled.		
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Supplementary	file	8:	Figure	S7	
Evidence	of	recombination	at	a	gene	level	in	the	21	reference	genomes.	A	Manhattan	
plot	showing	genes	that	are	likely	to	be	recombination	hotspots.	The	(−log10)	p-value	
for	the	phi	statistic	is	plotted	against	genome	position.	Genes	with	p-values	less	than	
0.05	are	shown.	
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Supplementary	file	9:	Figure	S8	
Selection	 dN/dS	 values	 for	 each	 gene	 within	 Clusters	 of	 Orthologous	 Groups	 (COG*)	
categories.	 *ppe/N = pe/ppe	 genes	 annotated	 as	 COG	 category	 N,	 *	 COG	
categories:	 A	 RNA	 processing	 and	 modification,	 B	 Chromatin	 Structure	 and	
dynamics,	C	Energy	production	and	conversion,	D	Cell	cycle	control	and	mitosis,	E	Amino	
Acid	metabolism	and	transport,	F	Nucleotide	metabolism	and	transport,	G	Carbohydrate	
metabolism	 and	 transport,	 H	 Coenzyme	 metabolism,	 ILipid	
metabolism,	 J	 Translation,	 K	 Transcription,	 L	 Replication	 and	 repair,	 M	 Cell	
wall/membrane/envelope	biogenesis,	N	Cell	motility,	O	Post-translational	modification,	
protein	 turnover,	 chaperone	 functions,	 P	 Inorganic	 ion	 transport	 and	
metabolism,	Q	Secondary	Structure,	T	Signal	Transduction,	U	Intracellular	trafficking	and	
secretion,	 Y	 Nuclear	 structure,	 Z	 Cytoskeleton,	 RGeneral	 Functional	 Prediction	
only,	S	Function	Unknown.	
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Supplementary	file	10:	Figure	S9	
Non-neutral	 evolution	 for	 genes	 within	 Clusters	 of	 Orthologous	 Groups	 (COG*)	
categories.	Boxplots	are	constructed	using	(-log10)	p-values	of	non-neutral	evolution	for	
each	 gene.	 *ppe/N = pe/ppe	 genes	 annotated	 as	 COG	 category	 N,	 *	 COG	
categories:	 A	 RNA	 processing	 and	 modification,	 B	 Chromatin	 Structure	 and	
dynamics,	C	Energy	production	and	conversion,	D	Cell	cycle	control	and	mitosis,	E	Amino	
Acid	metabolism	and	transport,	F	Nucleotide	metabolism	and	transport,	G	Carbohydrate	
metabolism	 and	 transport,	 H	 Coenzyme	 metabolism,	 I	 Lipid	
metabolism,	 J	 Translation,	 KTranscription,	 L	 Replication	 and	 repair,	 M	 Cell	
wall/membrane/envelope	biogenesis,	N	Cell	motility,	O	Post-translational	modification,	
protein	 turnover,	 chaperone	 functions,	 P	 Inorganic	 ion	 transport	 and	
metabolism,	Q	Secondary	Structure,	TSignal	Transduction,	U	Intracellular	trafficking	and	
secretion,	 Y	 Nuclear	 structure,	 Z	 Cytoskeleton,	 R	 General	 Functional	 Prediction	
only,	S	Function	Unknown.	
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Abstract	

DNA	methylation	is	an	epigenetic	modification	of	the	genome	involved	in	regulating	crucial	

cellular	processes,	 including	 transcription	and	chromosome	stability.	Advances	 in	PacBio	

sequencing	technologies	can	be	used	to	robustly	reveal	methylation	sites.	The	methylome	

of	the	Mycobacterium	tuberculosis	complex	is	poorly	understood	but	may	be	involved	in	

virulence,	hypoxic	 survival	and	 the	emergence	of	drug	 resistance.	 In	 the	most	extensive	

study	to	date,	we	characterise	the	methylome	across	the	4	major	lineages	of	M.	tuberculosis	

and	2	lineages	of	M.	africanum,	the	leading	causes	of	tuberculosis	disease	in	humans.	We	

reveal	lineage-specific	methylated	motifs	and	strain-specific	mutations	that	are	abundant	

globally	and	likely	to	explain	loss	of	function	in	the	respective	methyltransferases.	Our	work	

provides	 a	 set	 of	 sixteen	 new	 complete	 reference	 genomes	 for	 the	 Mycobacterium	

tuberculosis	complex,	including	complete	lineage	5	genomes.	Insights	into	lineage-specific	

methylomes	will	further	elucidate	underlying	biological	mechanisms	and	other	important	

phenotypes	of	the	epi-genome.	
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Introduction	

Tuberculosis	disease	(TB)	caused	by	pathogens	of	the	Mycobacterium	tuberculosis	complex	

are	an	important	global	public	health	issue	worldwide,	with	>9	million	new	cases	and	1.7	

million	deaths	each	year1.	A	combination	of	the	increasing	prevalence	of	anti-tuberculosis	

drug	resistance,	HIV/AIDS	infection	interaction,	and	an	under-equipped	arsenal	-	requiring	

new	 effective	 treatments	 and	 vaccines,	 are	 a	 major	 barrier	 to	 disease	 control.	 The	M.	

tuberculosis	 genome	 (size	 4.4Mb,	 GC-content	 60%)	 is	 characterised	 by	 low	 sequence	

diversity2,		with	known	variation	between	stain-types,	including	between	three	‘ancient’	(1,	

5,	 6),	 three	 ‘modern’	 (2,	 3,	 4),	 and	 one	 intermediate	 lineage	 (7)3.	 The	 lineages	 vary	 in	

propensity	to	transmit	and	cause	disease4;	with	modern	strain	lineages,	 including	Beijing	

strains,	 being	more	 successful	 in	 terms	of	 their	 geographical	 spread	and	have	a	 shorter	

latency	in	humans5.	However,	results	are	inconsistent	and	there	is	considerable	inter-strain	

variation	within	 lineages,	which	 is	difficult	to	explain	 in	the	context	of	the	 low	sequence	

diversity6.		

	

Several	lines	of	evidence	have	revealed	N6-methyladenine	(m6A)	and	5-methylcytosine	(m5C)	

methylation	 mechanisms	 within	 M.	 tuberculosis	 genomes.	 Motifs	 within	 three	 DNA	

methyltransferases	 (MTases),	mamA,	mamB,	hdsS.1,	hsdM,	and	hsdS	are	responsible	 for	

m6A	modification7,8.	MamA	also	influences	gene	expression	in	M.	tuberculosis	and	plays	an	

important	but	strain-specific	role	in	fitness	during	hypoxia,	promoting	survival	in	discrete	

host	 microenvironments7.	 Genetic	 and	 potentially	 transcriptomic	 differences,	 may	 play	

important	roles	 in	determining	the	clinical	outcome	differences	observed	between	these	
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strains.	 Genetic	 differences	 may	 be	 further	 modified	 by	 epigenetic	 mechanisms,	 as	

observed	in	other	bacterial	species9,	however	methylome	data	has	been	rarely	considered	

for	the	M.	tuberculosis	complex.	Here	we	present	to	our	knowledge	the	largest	and	most	

diverse	study	of	methylation	in	M.	tuberculosis	using	PacBio	technology,	and	identify	key	

mutations	in	associated	genes,	which	appear	to	be	present	across	a	phylogeny	based	on	a	

global	set	of	isolates.				

	

RESULTS	

New	reference	genomes	

Sixteen	samples	representing	the	lineages	1,	2,	4,	5	and	6	were	sequenced	on	the	PacBio	

platform	(Supplementary	table	1,	n=16),	and	supplemented	by	raw	sequence	data	for	a	

lineage	 3	 strain	 and	 a	 H37Rv	 strain	 (CHIN_F1)	 from	 earlier	 work	 (n=2)8.	 High	 quality	

assemblies	 (no.	 contigs	 <10)	 were	 generated	 for	 the	 18	 isolates,	 with	 most	 isolates	

assembled	into	one	contig	(median	n50	=	4.38Mb,	median	genome	length	=	4.42Mb).	After	

aligning	to	the	H37Rv	reference,	we	found	10,353	unique	small	variant	sites,	with	50.7%	of	

positions	 having	 alternate	 alleles	 in	 only	 one	 sample.	 A	 maximum	 likelihood	 tree	 was	

constructed	 using	 the	 variants	 (Figure	 1)	 and	 demonstrated	 the	 expected	 clustering	 by	

lineage,	 with	 two	 lineage	 1	 strains	 (WBB1008_SL1975,	 WBB1007_LQ1975)	 being	 near	

identical.	

	

The	 error	 rate	 in	 the	 PacBio	 consensus	 sequences	 was	 assessed	 in	 three	 isolates	

(Supplementary	table	1;	WBB446_ARS7884	(LAM	strain,	 lineage	4),	WBB448_HPV115_08	(LAM	
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strain,	lineage	4),	WBB445_ARS7496	(Beijing	strain,	lineage	2))	that	also	had	Illumina	short	

read	data	with	high	coverage	genome-wide	(>50-fold).	Alignment	of	the	short	reads	to	the	

consensus	sequences	revealed	 low	numbers	of	discordant	SNPs	 (range:	0-6),	but	slightly	

higher	 numbers	 of	 discordant	 insertions	 and	 deletions	 (indels)	 (range:	 2	 to	 26)	 due	 to	

incorrect	assembly	at	homopolymeric	sites	in	the	genome.	More	generally,	further	analysis	

of	these	isolates	revealed	the	advantages	of	using	lineage-specific	reference	genomes.	First,	

using	sets	of	100	independent	strains	in	each	lineage2,	there	was	a	marginal	improvement	

in	the	number	of	reads	mapped	compared	to	using	an	alignment	to	H37Rv	(mean	increase:	

lineage	 1	 0.47%,	 lineage	 2	 0.33%,	 lineage	 3	 0.25%).	 As	M.	 tuberculosis	 has	 very	 clonal	

genome,	most	of	the	genome	shares	near	100%	identity	across	lineages,	and	therefore	large	

improvements	in	overall	mappability	would	not	be	expected.	Second,	we	considered	strain-

specific	regions	in	the	highly	variable	PE_PGRS3/4	and	PE_PGRS17/18	genes,	which	were	

hypothesised	 from	 de	 novo	 assembly	 analysis	 to	 have	 undergone	 a	 large	 genomic	

rearrangement	in	Beijing	strains10.	The	PacBio	consensus	sequence	confirmed	the	large	re-

arrangements	in	WBB445_ARS7496	(Beijing).	These	re-arrangements	could	be	identified	in	

coverage	 profiles	 through	 mapping	 WBB445_ARS7496	 short	 reads	 to	 its	 own	 PacBio	

consensus	sequence,	but	not	to	the	H37Rv	reference	or	other	non-Beijing	study	consensus	

sequences	(Supplementary	Figure	1).		

	

Annotation	 of	 the	 new	 reference	 genomes	 using	 prokka	 software11,	 guided	 by	 H37Rv	

protein	sequences,	revealed	differences	in	the	number	of	genes	(range:	4028	to	4217).	The	

CHIN_F1	 strain	 (H37Rv)	 had	 a	 greater	 number	of	 inferred	 genes	 (4217)	 than	 the	H37Rv	
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reference	(ASM19595v2,	4093	genes),	which	may	indicate	that	the	automatic	annotation	

software	could	be	over-estimating	numbers	of	genes.	However,	overall,	there	was	a	high	

degree	of	 conservation	 among	 isolates	 across	orthologous	 groups	of	 genes	 (3666/4250,	

86%).	Hierarchical	clustering	of	isolates	using	the	number	of	shared	orthogroups	as	a	metric	

of	genetic	distance,	revealed	expected	lineage-specific	clustering,	except	for	the	CHIN_F1	

strain	which	clustered	outside	lineage	4	and	closer	to	lineage	3	(Supplementary	figure	2).		

	

Methylation	motif	analysis	

Using	 the	 Modification	 and	 Motif	 Analysis	 pipeline	 in	 the	 SMRT	 portal	

(https://github.com/PacificBiosciences/SMRT-Analysis),	Pacbio	sequence	data	can	be	used	

to	robustly	reveal	methylation	sites.	A	variable	number	of	motifs	(range:	3-13)	were	found	

per	isolate,	with	45	unique	motifs	discovered	across	the	entire	dataset	of	18	isolates.	Three	

high	quality	methylated	motifs	(quality	value	score	>100)	were	detected	across	almost	all	

isolates:	CACGCAG	 (17/18	 isolates),	GATN4RTAC	 (14/18),	and	CTCCAG	 (15/18)	 (Table	1).	

Partner	motifs	for	GATN4RTAC	and	CTCCAG	were	also	found	indicating	methylation	on	both	

the	 forward	 and	 reverse	 strand,	while	CACGCAG	 is	 only	hemi-methylated	 as	no	partner	

motif	 was	 found.	 These	 motifs	 have	 previously	 been	 reported8,12.	 The	 number	 of	

occurrences	of	each	motif	was	 found	to	vary	slightly	across	 isolates	 (range:	GATN4RTAC	

349-366,	CACGCAG	811-828,	CTCCAG	1928-1957).		

	

By	considering	the	motifs	across	all	isolate	genome	assemblies	and	inspection	of	the	raw	

inter-pulse	duration	 (IPD)	 ratios	at	each	nucleotide	position	 in	 the	motif,	we	 found	 that	
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isolates	 where	 the	 motif	 was	 present	 but	 had	 no	 evidence	 of	 modification	 across	

nucleotides	(Supplementary	figure	3).	There	was	some	variability	across	and	within	strain	

types	in	the	percent	of	motifs	methylated.	In	particular,	although	motifs	were	mostly	close	

to	 100%	 (or	 alternatively	 0%)	 methylated,	 three	 isolates	 had	 a	 substantially	 different	

percentage	 for	 the	 CACGCAG	 motif	 (median	 (range)	 %:	 60.0	 (52.5-63.7))	 (Table	 2).	

Methylation	 of	 the	 other	 two	motifs	 (GATN4RTAC,	 CACGCAG)	 did	 not	 seem	 affected	 in	

these	isolates	(range	93.9	-	99.3%).		

	

To	 explain	 the	 differences	 in	 methylation	 pattern	 we	 identified	 mutations	 in	

methyltransferase	genes	that	have	been	associated	with	each	motif	(GATN4RTAC:	hsdS.1,	

hsdM	and	hsdS;	CTCCAG:	mamA;	CACGCAG:	mamB)8	(Table	2).	In	particular,	we	scanned	for	

mutations	that	were	present	in	methylation-deficient	isolates,	as	identified	through	analysis	

of	 PacBio	 data,	 which	 could	 putatively	 explain	 loss	 of	 function	 in	 the	 respective	

methyltransferase.	 For	 the	GATN4RTAC	motif	we	 found	 three	 unique	mutations	 in	 four	

isolates	with	an	absence	of	methylation,	confirming	those	identified	in	previous	reports8.	

Three	 methylation-absent	 isolates	 had	 the	 presence	 of	 the	 hsdM	 P306L	 mutation.	

Additionally,	one	sample	had	two	mutations	which	were	not	present	in	any	other	isolates:	

hsdM	G173D	and	hsdS	L119R.	Three	samples	did	not	exhibit	any	methylation	at	the	CTCCAG	

motif,	and	we	identified	three	unique	mutations	in	mamA,	one	of	which	was	present	in	two	

samples.	 One	 isolate	 had	 an	 E270A	mutation	 and	 frameshift	 deletion	 at	 position	 1257,	

however	 through	 phylogenetic	 ancestral	 reconstruction	 we	 deduced	 that	 the	 E270A	

mutation	occurred	before	the	deletion	(Figure	1).	The	two	other	 isolates	had	E270A	and	
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previously	 uncharacterised	 A460T	mutations,	 respectively.	 For	 the	 CACGCAG	motif,	 the	

CHIN_F1	 strain	 has	 a	 truncated	mamB	 gene	 which	 has	 been	 reported	 elsewhere8,	 and	

verified	here.	Additionally,	we	found	all	three	lineage	1	strains,	which	exhibited	~50-60%	

methylation,	to	have	a	novel	S253L	mutation	in	mamB.	

	

Pathway	analysis	

To	 look	 for	 the	 non-random	 association	 of	 methylation	 sites	 and	 protein	 families	 or	

biological	pathways	we	performed	a	pathway	analysis	using	DAVID	software13.	Each	of	the	

three	 motifs	 was	 considered	 individually.	 Motifs	 were	 associated	 with	 genes	 based	 on	

overlap	with	an	annotated	coding	region	or	the	closest	promoter.	Most	motifs	were	found	

in	 the	 coding	 regions,	with	 few	 found	within	 promoters	 (defined	 as	 the	 50	 nucleotides	

before	a	start	codon)	(Supplementary	Figure	4).	For	GATN4RTAC,	we	found	an	enrichment	

of	cell	membrane	associated	genes	(Bonferroni	corrected	P-value	(P*)	=	0.021)	and	plasma	

associated	genes	 (P*	=	0.023)	 in	motif-containing	genes	compared	to	genes	without	 the	

motifs.	 	For	CTCCAG,	motif-containing	genes	were	enriched	 for	nucleotide	binding	 (P*	=	

9.99e-13)	 and	 cell	 wall	 (P*	 =	 1.63e-5)	 among	 others	 (Supplementary	 table	 2).	 For	 the	

CACGCAG	motif	we	found	several	enriched	pathways	involved	in	fatty	acid	and	polykeytide	

synthesis	(P*	=	9.26E-05)	among	others.	DAVID	software	was	used	to	test	whether	there	

was	targeted	absence	of	methylation	of	genes	in	a	specific	pathway.	Genes	with	an	absence	

of	methylation	in	excess	of	60%	of	the	isolates	were	compared	against	all	M.	tuberculosis	

genes	 to	 look	 for	 enrichment	 of	 specific	 pathways.	 This	 analysis	 was	 performed	 on	 an	

overall	 and	per-lineage	basis.	No	pathways	 reported	 significant	 results	 (P*>0.05).	When	
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comparing	 motif-containing	 unmethylated	 to	 motif-containing	 methylated	 genes	 on	 a	

lineage	 basis	 we	 did	 not	 find	 any	 significantly	 enriched	 pathways,	 although	 the	 small	

number	of	isolates	is	likely	to	lead	to	reduced	power	to	detect	true	enriched	pathways.	

	

Motifs	in	a	global	context	

To	describe	the	six	mutations	we	identified	as	affecting	methylation	in	a	global	context,	we	

analysed	a	large	collection	(n	=	6465)	of	isolates	representing	lineages	1	(9.5%),	2	(15.8%),	

3	 (15.4%)	 and	 4	 (59.3%).	We	 also	 analysed	 lineage	 5	 (n=4)	 strains	 and	 lineage	 6	 (n=26)	

strains,	a	combination	of	our	own	data	and	those	described	elsewhere14.	We	found	five	of	

the	six	mutations	identified	above	in	the	global	dataset,	occurring	predominantly	in	single	

lineages	with	low	frequencies	in	other	lineages	(Table	2),	and	originating	at	unique	positions	

in	the	phylogeny	(Figure	2).	None	of	the	six	mutations	were	found	in	the	lineage	5/6	dataset,	

except	for	the	isolate	in	which	we	originally	found	the	mamA	460T	mutation.	The	mamA	

A460T	 is	 likely	 to	 be	 specific	 to	 a	 subclade	 of	 lineage	 6.	 Three	mutations	 affecting	 the	

GATN4RTAC	motif	were	found	at	high	allele	frequency	(hsdM	G173D:	0.15,	hsdM	P306L:	

0.42,	hsdS	L119R:	0.15)	and	affected	~57%	of	the	isolates.	The	hsdM	P306L	mutation	is	a	

phylogenetically	deep	mutation	which	occurs	in	a	sub-clade	of	lineages	4.3	to	4.9	(H3,	H4,	

LAM,	LAM1,	LAM10-CAM,	LAM11-ZWE,	LAM3,	LAM4,	LAM9,	S,	T1,	T2,	T2-Uganda,	T3,	T4,	

T5).	The	hsdM	G173D	and	hsdS	L119R	mutations	are	present	in	all	lineage	3	isolates.	The	

mamB	S253L	mutation	affecting	the	CACGCAG	motif	is	present	only	in	a	subclade	of	lineage	

1	(EAI6).	The	mamA	E270A	mutation	affecting	the	CTCCAG	motif	is	present	in	all	lineage	2	

strains.	Assuming	that	these	mutations	do	indeed	cause	the	absence	of	methylation	on	the	
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genome	 there	 is	 a	 stark	 difference	 between	 the	motifs	 in	 the	 lineages	 and	 number	 of	

samples	which	have	active	methylation.		

	

DISCUSSION	

We	have	presented	16	new	 reference	genomes	and	methylomes	of	 strains	with	diverse	

genetic	 backgrounds.	 The	 ability	 of	 PacBio	 technology	 to	 produce	 long	 reads	 leads	 to	

complete	 genome	assemblies	 that	 capture	both	 small	 and	 large	 genomic	 variations	 and	

have	 a	 very	 high	 accuracy	 at	 repetitive	 regions	 such	 as	 the	 pe/ppe	 genes.	Most	 whole	

genome	sequencing	projects	have	focused	on	lineages	1	to	4	because	of	their	prevalence	

and	 global	 distribution,	 however	 recent	 studies	 have	 shown	 a	 large	 amount	 of	 genetic	

diversity	 to	 be	 present	 within	 lineages	 5	 and	 614.	 Additionally,	 an	 intriguing	 question	

remains	why	lineages	5	and	6	are	localised	to	West	Africa	and	have	not	spread	globally.	The	

lineage	 specific	 variants	 and	 differences	 in	 gene	 content	 (including	 the	 pe/ppe	 genes)	

reported	 here,	 building	 on	 previous	work3,	 could	 potentially	 play	 a	 role	 in	 specific	 host	

population	 adaptation.	 We	 present,	 to	 our	 knowledge,	 the	 first	 complete	 lineage	 5	

reference	genomes,	and	increase	substantially	the	number	of	lineage	6	reference	genomes	

available.	These	references	will	be	useful	in	future	whole	genome	sequencing	projects	that	

investigate	the	genetic	diversity	of	 lineage	5	and	6	strains,	as	well	as	strain-host	genetic	

interactions.	By	aligning	Illumina	reads	to	our	references	we	find	there	to	be	a	small	increase	

in	 the	 number	 of	 reads	 mapping	 (0.25-0.47%),	 particularly	 in	 genomic	 regions	 where	

sequences	are	either	not	present	or	highly	variable	in	the	H37Rv	reference.	By	performing	

automatic	annotation	and	clustering	of	protein	sequence	into	clusters	of	orthologues,	we	
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report	 a	 significant	 difference	 in	 the	 gene	 content	 between	 strains.	 Overall,	 these	 new	

reference	sequences	could	serve	to	improve	the	accuracy	of	resequencing	experiments	by	

facilitating	 lineage-specific	 mapping	 at	 highly	 variable	 regions	 and	 to	 improve	 our	

understanding	 of	 large	 structural	 variations	 such	 as	 novel	 insertions,	 as	 well	 as	

rearrangements	between	lineages.		

	

The	 PacBio	 technology	 allowed	 us	 to	 characterise	 the	 methylation	 at	 sites	 along	 the	

genome.	Across	the	18	isolates,	three	motifs	are	methylated	to	varying	degrees.	While	most	

isolates	had	close	to	100%	methylation	with	an	active	MTase,	the	three	lineage	1	isolates	

had	53-64%	methylation	at	the	CACGCAG	motif	while	maintaining	near	100%	methylation	

on	 both	 other	 motifs.	 We	 identified	 a	 number	 of	 mutations	 which	 associate	 with	 the	

absence	 of	 methylation,	 some	 of	 which	 have	 been	 reported	 before7,8.	 Five	 of	 these	

mutations	were	present	in	a	large	global	phylogeny	consisting	of	M.	tuberculosis	lineages	

(1-4)	strains.	The	frequency	of	the	potential	loss	of	function	mutations	is	reasonably	high.	

For	example,	the	three	mutations	(hsdM	G173D,	hsdM	P306L	and	hsdS	L119R)	affecting	the	

GATN4RTAC	motif	methylation	were	 present	 in	 all	 available	 lineage	 3	 (all	 sub-lineages)	

strains,	as	well	as	across	a	larger	number	of	lineage	4	sub-lineages	(including	H3,	H4,	LAM,	

LAM1,	LAM10-CAM,	LAM11-ZWE,	LAM3,	LAM4,	LAM9,	S,	T1,	T2,	T2-Uganda,	T3,	T4,	T5),	but	

absent	in	other	lineages.	Similarly,	the	other	motifs	(CTCCAG	and	CACGCAG)	have	a	lower	

frequency	of	loss	of	function	mutations,	but	are	also	strain	specific.	Follow-up	investigation	

is	required	to	provide	an	insight	into	the	essential	and	functional	nature	of	methylation,	and	

its	association	with	the	different	motifs.	Interestingly	the	lineage	2	strains,	which	have	been	
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reported	 to	be	highly	 virulent15,	 lack	methylation	 in	 the	most	abundant	motif	 (CTCCAG)	

putatively	 due	 to	 the	mamA	 E270A	 mutation.	 Differential	 methylation	 patterns	 could	

provide	a	possible	explanation	for	the	increased	virulence	in	this	clade,	as	genetic	distance	

is	 relatively	 small.	 Similarly,	 the	mamB	 S253L	 	mutation	 related	 to	 the	 CACGCAG	motif	

seems	only	present	in	EAI6	strains,	and	whilst	little	is	known	whether	these	strains	are	more	

virulent	than	other	 lineage	1	“ancient”	strains,	 they	have	spread	globally	and	have	been	

associated	with	recent	outbreaks16,	unlike	other	lineage	1	strains.		

	

It	has	been	hypothesised	that	DNA	methylation	influences	transcription9	and	therefore	it	

would	be	expected	to	see	a	differences	in	transcriptional	profiles	of	genes	where	there	is	

differential	 methylation.	 Additionally,	 although	 no	 correlation	 was	 found	 with	 drug	

resistance	 (data	 not	 shown),	 transcriptional	 regulation	 by	 DNA	 methylation	 could	

potentially	 contribute	 towards	 observed	 strain-specific	 differences	 in	 the	 acquisition	 of	

mutations	 involved	 in	 drug	 resistance17.	 Whilst,	 our	 work	 has	 shed	 new	 light	 on	 M.	

tuberculosis	methylation,	future	work	should	consider	more	diverse	strains	and	integrate	

transcriptomic	data	to	further	elucidate	underlying	biological	mechanisms	and	associating	

them	 with	 virulence	 and	 other	 important	 phenotypic	 outcomes	 including	 antibiotic	

resistance.	
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MATERIALS	AND	METHODS	

Samples	and	SMRT	sequencing	

DNA	 was	 extracted	 from	M.	 tuberculosis	 cultures	 of	 clinical	 samples,	 processed	 using	

methods	 described	 elsewhere2,3,18.	 Samples	 were	 sequenced	 using	 Pacific	 Biosciences	

(PacBio)	RSII	long	read	technology.		Additionally,	raw	data	for	two	isolates	was	downloaded	

from	the	SRA	project	SRP064893	to	be	included	in	the	current	study.	All	raw	sequencing	

data	are	available,	and	the	study	accession	numbers	are	listed	in	Supplementary	table	1.	

	

Bioinformatic	analysis	

Sequencing	 reads	were	 assembled	 using	Hierarchical	Genome	Assembly	 Process	HGAP2	

implemented	in	the	SMRT	Portal	software	suite.	Short	low	confidence	contigs	(length<1000	

or	identity	<	90%)	were	removed	from	subsequent	analyses.	Overlap	between	the	start	and	

end	 of	 large	 contigs	 were	 found	 by	 self-aligning	 using	 Mummer	 software	

(mummer.sourceforge.net)	 and	 removed	 using	 in-house	 scripts.	 Contigs	 were	 aligned,	

scaffolds	 inferred,	 reordered	 and,	 if	 needed,	 reverse-complemented	 according	 to	 the	

H37Rv	reference	using	the	mummer	tool	and	in-house	scripts.	Following	this	the	reads	were	

realigned	 to	 the	 scaffolds	 to	 improve	 the	 consensus	 concordance.	 The	 final	 consensus	

genome	for	each	sample	was	annotated	using	prokka	automatic	annotation	tool11	using	the	

H37Rv	protein	sequences	to	annotate	the	genes	found.	Mummer	software	was	used	to	align	

the	 consensus	 against	 H37Rv	 to	 identify	 small	 variants	 (SNPs	 and	 indels).	 Methylation	

analysis	was	performed	using	the	Modification	and	Motif	Analysis	pipeline	in	SMRT	portal,	
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and	outputted	motifs	of	interest.	All	high-quality	motifs	were	used	in	further	downstream	

analysis.	 A	 maximum	 likelihood	 phylogenetic	 tree	 was	 built	 using	 RAxML	 with	 all	

polymorphic	SNP	sites	found.	Pathway	analysis	was	performed	by	assigning	a	gene	to	each	

motif	 found	 in	a	genome.	Genes	were	assigned	using	overlap	with	 the	coding	 region	or	

promoter	of	a	gene.	Statistical	enrichment	analysis	was	performed	using	DAVID	software14	

and	 compared:	 (i)	 all	 motif-containing	 genes	 to	 all	M.	 tuberculosis	 genes;	 (ii)	 all	 un-

methylated	genes	to	all	motif-containing	genes.	To	identify	mutations	within	lineages	5	and	

6,	 genome	 assemblies	 were	 downloaded	 from	 genbank14	 and	 aligned	 to	 the	 H37Rv	

reference	using	the	mummer	tool	with	default	parameters.	Variants	were	then	called	using	

the	 snp-snps	 algorithm,	 with	 the	 “-C”	 parameter	 invoked,	 leading	 to	 the	 reporting	 of	

variants	from	unambiguous	alignments.	
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Figure	1	
Phylogeny	 of	 the	 Mycobacterium	 tuberculosis	 complex	 isolate	 consensus	 sequences	
(n=18)	annotated	with	loss	of	function	mutations	in	MTase	genes	
	

	

A	maximum	likelihood	phylogenetic	 tree,	with	the	%	of	methylated	motifs	and	potential	

loss	 of	 function	 mutations	 in	 MTase	 genes	 annotated.	 Allele	 frequencies	 of	 putative	

methylation	related	mutations	across	a	global	collection	of	M.	tuberculosis	isolates;	*	EAI6	

stains,	**	lineages	4.3	to	4.9,	-	indicates	absence	
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Figure	2	
Five	methylation-affecting	mutations	in	a	global	collection	of	isolates	(n	=	6465;	lineage	1	
617	(9.5%),	lineage	2	1021	(15.8%),	lineage	3	993	(15.4%),	lineage	4	3834	(59.3%)18)	
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Table	1	

Methylation	of	motifs	and	their	proportion	in	the	genome	sequence	assemblies	of	each	isolate.			

	

Isolate	[lineage]	 CACGCAG	 GATNNNNRTAC	 GTAYNNNNATC	 CTCCAG	 CTGGAG	

WBB1457_IB_036-1	[6]		 793/811	(0.98)	 332/351	(0.95)	 332/351	(0.95)	 1885/1934	(0.97)	 1828/1934	(0.95)	

WBB1460_E13-13014-2	[6]	 799/813	(0.98)	 328/350	(0.94)	 327/350	(0.93)	 1892/1937	(0.98)	 1825/1937	(0.94)	

WBB1458_05-01296-1	[6]	 799/813	(0.98)	 294/349	(0.84)	 290/349	(0.83)	 0/1932	(0.00)	 0/1932	(0.00)	

WBB447_G67	[6]	 814/814	(1.00)	 338/352	(0.96)	 336/352	(0.95)	 1923/1933	(0.99)	 1922/1933	(0.99)	

WBB1451_04-00887-2	[6]	 802/812	(0.99)	 328/349	(0.94)	 325/349	(0.93)	 1842/1933	(0.95)	 1801/1933	(0.93)	

WBB1459_E14_22547-1	[6]	 802/811	(0.99)	 328/349	(0.94)	 329/349	(0.94)	 1891/1934	(0.98)	 1833/1934	(0.95)	

WBB1453_11-00429-1	[5]	 814/828	(0.98)	 357/362	(0.99)	 355/362	(0.98)	 1889/1942	(0.97)	 1825/1942	(0.94)	

WBB1454_IB091-1	[5]	 807/823	(0.98)	 356/358	(0.99)	 353/358	(0.99)	 1874/1929	(0.97)	 1819/1929	(0.94)	

WBB1009_SL1875	[1]	 492/826	(0.60)	 345/360	(0.96)	 341/360	(0.95)	 1942/1957	(0.99)	 1885/1957	(0.96)	

WBB1008_SL1975	[1]	 526/826	(0.64)	 344/360	(0.96)	 345/360	(0.96)	 1945/1956	(0.99)	 1906/1956	(0.97)	

WBB1007_LQ1975	[1]	 434/826	(0.53)	 345/360	(0.96)	 338/360	(0.94)	 1943/1956	(0.99)	 1893/1956	(0.97)	

CHIN_26105	[3]	 823/824	(1.00)	 0/362	(0.00)	 0/362	(0.00)	 1939/1954	(0.99)	 1942/1954	(0.99)	

WBB1456_11-00225-4	[2]	 813/826	(0.98)	 344/366	(0.94)	 349/366	(0.95)	 0/1949	(0.00)	 0/1949	(0.00)	

WBB445_ARS7496	[2]	 824/824	(1.00)	 339/363	(0.93)	 340/363	(0.94)	 0/1947	(0.00)	 0/1947	(0.00)	

WBB1452_10-01964-2	[4]	 798/817	(0.98)	 332/358	(0.93)	 321/358	(0.90)	 1828/1947	(0.94)	 1748/1947	(0.90)	

CHIN_F1	[4]	 0/820	(0.00)	 0/361	(0.00)	 0/361	(0.00)	 1937/1948	(0.99)	 1937/1948	(0.99)	

WBB446_ARS7884	[4]	 817/817	(1.00)	 0/357	(0.00)	 0/357	(0.00)	 1932/1933	(1.00)	 1927/1933	(1.00)	

WBB448_HPV115_08	[4]	 814/814	(1.00)	 0/355	(0.00)	 0/355	(0.00)	 1927/1928	(1.00)	 1924/1928	(1.00)	

The	phylogenetic	relationship	and	fraction	of	motifs	methylated	for	each	strain.	Most	values	are	close	to	either	0.95	or	0	indicating	

the	presence	or	 complete	absence	of	methylation,	however,	all	 lineage	1	 strains	had	approximately	half	of	 their	CACGCAG	motif	

methylated	
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Supplementary	table	1	

The	isolates	analysed	

	

Isolate	ID	 Country	 Source	 N50	
Num.	
Contigs	

Genome	
length	

Lineage	 Sub-lineage	
SRA	accession	

WBB1007_LQ1975	 Mozambique	 Sequenced	 4450176	 1	 4450176	 1	 1.1.3	(EAI6)	 PRJEB21888	

WBB1008_SL1975	 Mozambique	 Sequenced	 4467776	 1	 4467776	 1	 1.1.3	(EAI6)	 PRJEB21888	

WBB1009_SL1875	 Mozambique	 Sequenced	 4438486	 1	 4438486	 1	 1.1.3	(EAI6)	 PRJEB21888	

WBB1456_11-00225-4	 Gambia	 Sequenced	 4415343	 1	 4415343	 2	 2.2.1	(Beijing)*	 PRJEB21888	

WBB445_ARS7496	 Portugal	 Sequenced	 4415871	 3	 4446789	 2	 2.2.1	(Beijing)*	 PRJEB21888	

CHIN_26105	 China	 SRA	 4440106	 1	 4440106	 3	 3	(CAS)*	 SRP064893	
WBB1452_10-01964-2	 Gambia	 Sequenced	 4416076	 2	 4430073	 4	 4.1.2.1	(Haarlem)*	 PRJEB21888	

WBB446_ARS7884	 Portugal	 Sequenced	 4375931	 3	 4396369	 4	 4.3.4.2	(LAM)*	 PRJEB21888	

WBB448_HPV115_08	 Portugal	 Sequenced	 4385381	 1	 4385381	 4	 4.3.4.2	(LAM)*	 PRJEB21888	

CHIN_F1	 China	 SRA	 4125500	 5	 4438875	 4	 4.9	(T1-H37Rv)	 SRP064893	
WBB1453_11-00429-1	 Gambia	 Sequenced	 4430643	 1	 4430643	 5	 5	(Afr2/3)	 PRJEB21888	

WBB1454_IB091-1	 Nigeria	 Sequenced	 3865667	 3	 4419358	 5	 5	(Afr2/3)	 PRJEB21888	

WBB1451_04-00887-2	 Gambia	 Sequenced	 716074	 6	 4393399	 6	 6	(Afr1)	 PRJEB21888	

WBB1457_IB_036-1	 Nigeria	 Sequenced	 2521417	 4	 4387174	 6	 6	(Afr1)	 PRJEB21888	

WBB1458_05-01296-1	 Gambia	 Sequenced	 2446180	 2	 4369685	 6	 6	(Afr1)	 PRJEB21888	

WBB1459_E14_22547-1	 Gambia	 Sequenced	 4382305	 2	 4384418	 6	 6	(Afr1)	 PRJEB21888	

WBB1460_E13-13014-2	 Gambia	 Sequenced	 2963146	 4	 4413823	 6	 6	(Afr1)	 PRJEB21888	

WBB447_G67	 Guinea-Bissau	 Sequenced	 2330737	 3	 4388314	 6	 6	(Afr1)	 PRJEB21888	

Bolded	isolates	also	have	Illumina	short	read	data;	Sub-lineages	inferred	using	barcoding	SNPs3;	Afr	=	M.	africanum;	*	known	to	be	

highly	virulent5;	SRA	short	read	archive	
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Supplementary	table	2		

Pathway	analysis	of	genes	containing	motifs	

	

Motif	
Ontological	

annotation	
Count	

%	 of	

genes	 in	

pathway		

Fold	

Enrichment	

P-

value*	

CTCCAG	 ATP-binding	 178	 12.4	 1.6	 2.85E-
14	

CTCCAG	 Cell	wall	 327	 22.8	 1.2	 1.90E-
05	

CTCCAG	 Plasma	membrane	 632	 44	 1.1	 1.13E-
04	

CTCCAG	 Phosphoprotein	 52	 3.6	 1.7	 9.23E-
04	

CTCCAG	
P-loop	containing	
nucleoside	
triphosphate	hydrolase	

107	 7.5	 1.5	 0.001	

CTCCAG	 Intracellular	 45	 3.1	 1.7	 0.001	
CTCCAG	 Transferase	 237	 16.5	 1.2	 0.001	
CTCCAG	 Carbon	metabolism	 69	 4.8	 1.4	 0.005	
CTCCAG	 Cytoplasm	 151	 10.5	 1.3	 0.007	
CTCCAG	 Cytosol	 239	 16.6	 1.2	 0.008	

CTCCAG	
Glyoxylate	and	
dicarboxylate	
metabolism	

30	 2.1	 1.7	 0.015	

CTCCAG	 Fatty	acid	/	polyketide	
synthesis	 21	 1.5	 2.1	 0.017	

CTCCAG	 Ligase	 65	 4.5	 1.5	 0.024	

CACGCAG	 Fatty	acid	/	polyketide	
synthesis	 18	 2.5	 3.5	 9.26E-

05	
CACGCAG	 Nucleotide-binding	 90	 12.5	 1.4	 0.02	
CACGCAG	 Cytosol	 128	 17.7	 1.3	 0.048	

GATNNNNRTAC	 Cell	membrane	 59	 17.9	 1.6	 0.021	

GATNNNNRTAC	 Plasma	membrane	 149	 45.3	 1.2	 0.023	

	

Motifs	 were	 assigned	 to	 genes	 by	 finding	 overlap	 with	 coding	 regions.	 If	 found	 in	

intergenic	regions	the	motif	was	assigned	to	the	gene	with	the	closest	promoter.	Genes	

at	which	the	motif	was	found	in	>60%	of	the	isolates	were	used	to	look	for	enrichment	

of	pathways;	*	Bonferroni	corrected	P-value	(P*	in	main	text).	
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Supplementary	Figure	1		

Differences	in	coverage	in	the	PE_PGRS3/4	and	PE_PGRS17/18	highly	variable	regions	

when	 comparing	 mapping	 of	 the	 WBB445_ARS7496	 Illumina	 reads	 to	 the	 H37Rv	

reference	and	WBB445_ARS7496	Beijing	reference	described	in	this	publication.	The	

genes	on	the	H37Rv	reference	used	can	be	seen	on	the	bottom	track.	The	GC	content	

and	the	uniqueness	(1	=	unique,	<	1	non-unique)	of	a	region	can	influence	the	coverage	

across	the	region	and	are	plotted	on	the	middle	panels.	The	coverage	is	plotted	on	the	

top	 panel.	 The	 H37Rv	 mapping	 results	 are	 plotted	 on	 the	 left,	 while	 the	

WBB445_ARS7496	assembly	results	are	plotted	on	the	right.		

	

A) PE_PGRS3	region	

	

Higher	coverage	is	seen	across	both	the	PE_PGRS3	and	PE_PGRS4	when	mapping	to	the	

new	lineage	specific	reference.	Additionally,	two	new	open	reading	frames	have	been	

introduced	between	the	two	genes.	
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B)	PE_PGRS17/18	

	

Only	 slight	 changes	 in	 genomic	 coverage	 were	 detected,	 indicating	 that	 the	 lack	 of	

coverage	 across	 these	 genes	 is	mostly	 due	 to	 the	 high	 GC	 content	 in	 some	 regions	

coupled	with	the	fact	that	some	regions	are	non-unique.	
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Supplementary	figure	2		

Hierarchical	clustering	and	heat	map	visualisation	of	shared	number	of	orthogroups	

(groups	of	orthologous	proteins).		

	

Correct	clustering	can	be	observed	for	all	isolates	except	CHIN_F1	(H37Rv	strain)	which	

is	located	outside	lineage	4	and	closer	to	lineage	3.	
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Supplementary	figure	3	

Inter-pulse	duration	(IPD)	ratios	across	motifs	in	unmethylated	isolates	(left	column)	

and	methylated	isolates	(right	column):	A)	GATN4RTAC,	B)	CACGCAG	and	C)	CTCCAG	
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Supplementary	figure	4	

A	histogram	showing	the	location	of	the	motifs	relative	to	their	associated	genes.	This	

plot	was	drawn	for	CHIN_F1,	the	H37Rv	strain,	and	near	identical	distributions	were	

seen	 for	 the	other	 isolates.	Where	a	motif	 is	 found	 in	a	 coding	 region,	 its	position	

relative	 to	 the	 gene	 length	 is	 shown.	 Most	 of	 the	 motifs	 are	 scattered	 randomly	

throughout	the	gene	lengths	and	fewer	are	seen	in	the	promoter.	
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ABSTRACT	

Tuberculosis	(TB)	represents	a	major	global	health	issue	with	an	estimated	10.4	million	

new	cases	in	2015	alone.	Innate	susceptibility	to	tuberculosis	has	been	a	major	focus	of	

research	 in	 recent	 years.	 Genome	 wide	 association	 studies	 (GWAS)	 have	 been	

successfully	applied	to	find	loci	associated	with	many	infectious	diseases	including	HIV,	

leprosy	and	Hepatitis	C.	This	approach	has	not	been	fruitful	for	TB	however,	with	lack	of	

replication	across	 study	sites.	The	causal	agent	 for	TB,	M.	 tuberculosis	 (Mtb),	 can	be	

classified	into	seven	distinct	lineages	which	are	differentially	distributed	geographically.	

The	difference	in	locally	circulating	strains	has	been	proposed	as	a	reason	for	the	lack	of	

replication	 of	 GWAS	 hits.	 Here,	 we	 show	 that	 lineages	 and	 sub-lineages	 of	 TB	 are	

associated	with	specific	variants	 in	the	human	genome.	We	performed	a	genome-to-

genome	association	using	sequence	data	from	the	host	and	pathogen	from	720	patients	

with	pulmonary	TB	from	Thailand.	By	performing	association	tests	for	each	combination	

of	variant	found	in	both	genomes	we	report	a	number	of	highly	significant	hits,	including	

regions	of	the	MHC.	Markers	for	lineage	one	were	highly	associated	with	variants	in	the	

MHC	region	(rs2535298,	p=1.92´10-10).	Additionally,	we	found	a	number	of	sub-lineages	

and	homoplastic	variants	in	TB	associated	with	loci	in	the	human	genome.	The	top	hit	

(p=5.36´10-16)	was	 between	 the	 SNP	 rs12548085	on	 chromosome	8p22	 in	 the	 SGCZ	

gene.	In	total,	thirty	eight	loci	were	highly	associated	(threshold=1´10-10)	with	specific	

pathogen	variants.	So	far,	GWASs	have	not	considered	the	variation	of	the	pathogen	to	

be	important	for	susceptibility.	We	present	evidence	of	specific	associations	between	

human	and	could	represent	potential	host-pathogen	interactions.	
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INTRODUCTION	

	

Tuberculosis	disease	(TB),	caused	by	Mycobacterium	tuberculosis	is	an	important	global	

public	health	issue,	and	high	HIV	prevalence	and	multi-	and	extensive-drug	resistance	

are	 serious	 challenges	 to	 effective	 control1.	 There	 is	 an	 urgent	 need	 for	 better	

treatments	and	vaccines,	which	in	turn	require	a	deeper	understanding	of	the	biology	

of	TB,	which	can	be	revealed	by	looking	at	the	host-pathogen	interaction	check	points	

that	 are	 exposed	 in	 the	 genetic	 signatures	 of	 human	 and	M.	 tuberculosis	 genomes.	

Novel	 therapeutic	 approaches	 could	 be	 developed	 to	 exploit	 these	 interactions,	

including	host	immune	modulators	that	mimic	the	successful	natural	responses	seen	in	

the	majority	of	infections.	It	is	possible	to	implement	this	type	of	approach	within	clinical	

trials	 and	 thereby	 attempt	 to	 modulate	 the	 human	 immune	 response	 to	 treat	 TB.	

However,	 without	 clear	 data	 on	 which	 strategies	 are	 successful	 in	 nature,	 these	

candidate	approaches	are	unlikely	to	succeed.		

	

M.	tuberculosis	genetics	have	been	used	extensively	to	describe	its	diversity.	Sequence-

based	 studies	 have	 characterised	M.	 tuberculosis	 genomic	 variation,	 including	 single	

nucleotide	polymorphisms	(SNPs)	and	other	variations	such	as	insertions	and	deletions	

(indels),	across	thousands	of	samples2,3.	Markers	of	drug	resistance	have	been	identified	

using	 phylogenetic	 tree-based	 and	 GWAS	 approaches4.	 Libraries	 of	 informative	

resistance	 mutations	 are	 leading	 to	 the	 development	 of	 informatic	 tools	 to	 rapidly	

profile	 samples	 for	 their	 drug	 susceptibility5.	M.	 tuberculosis	 genetic	 regions	 under	

selective	pressure,	perhaps	due	to	drug	resistance	or	host	immune	responses,	can	be	

detected4,6.	M.	tuberculosis	has	seven	lineages	that	are	endemic	in	different	locations	

around	the	globe,	leading	to	the	hypothesis	that	the	strain-types	are	specifically	adapted	
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to	 people	 of	 different	 genetic	 backgrounds7.	 The	 lineages	 vary	 in	 their	 geographic	

distribution	and	spread,	with	lineage	2	being	particularly	mobile	with	evidence	of	recent	

spread	from	Asia	to	Europe	and	Africa8.	Lineage	4	is	common	in	Europe	and	southern	

Africa,	with	regions	of	high	TB	incidence	and	high	levels	of	HIV	co-infection.	The	lineages	

may	vary	in	propensity	to	transmit,	to	cause	disease,	in	the	site	and	severity	of	disease9–

11
,	 but	 results	 are	 inconsistent	 and	 there	 is	 considerable	 inter-strain	 variation	within	

lineages12,13.	 A	 set	 of	 SNPs	 has	 been	 identified	 that	 can	 be	 used	 to	 barcode	 sub-

lineages2,	 leading	to	informatic	tools	that	position	sequenced	samples	within	a	global	

phylogeny14.	Similarly,	SNPs	have	been	used	to	construct	transmission	networks,	where	

samples	from	different	individuals	that	have	near	identical	genomic	variation	are	most	

likely	to	be	due	to	a	transmission	event.	Inferred	transmission	chains	based	on	genome-

wide	SNPs	in	northern	Malawian	isolates	has	shown	striking	differences	by	lineage	in	

the	proportion	of	disease	due	to	recent	transmission	and	 in	transmissibility	 (highest-	

lineage-2	(East-Asian),	lowest-	lineage-1	(Indo-Oceanic))	that	were	not	confounded	by	

HIV	status	or	drug	resistance15–17.	

	

Host	genetics	has	the	potential	to	inform	about	TB	disease	susceptibility.	Despite	the	

GWAS	successes	in	the	infectious	disease	field18–21,	this	approach	has	proven	difficult	

for	 TB22–24,	 with	 the	 susceptibility	 loci	 identified	 not	 replicated	 across	 studies25,26.	

Reasons	 for	 non-replication	 include	 differences	 in	 human	 population	 structure	 or	

variation	in	M.	tuberculosis	strains,	but	also	in	TB	case	definitions;	and	controls	being	a	

mixture	of	unexposed,	exposed,	and	latently	infected	individuals.	Despite	the	general	

difficulties	of	TB	GWAS	approaches	to	date,	promising	recent	work	has	shown	that	the	

human	leukocyte	antigen	(HLA)	class	II	region	contributes	to	genetic	risk	of	pulmonary	
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TB,	 described	 as	 possibly	 acting	 through	 reduced	 presentation	 of	 protective	 M.	

tuberculosis	antigens	to	T	cells27.	Recent	work	in	TB	meningitis	has	revealed	a	different	

potential	 susceptibility	 pathway,	 which	 needs	 to	 be	 replicated	 (Hibberd	 et	 al,	 in	

preparation).	 However,	 the	 GWAS	 approach	 applied	 to	 another	 mycobacterial	

infection,	leprosy,	has	identified	the	innate	intracellular	signalling	pathways	involved	in	

macrophage	 killing	 of	 bacteria	 (the	 NOD	 pathway	 and	 RAB32)	 as	 critical	 to	 leprosy	

outcome28,29,	and	also	linked	to	Crohn’s	disease30,	suggesting	that	the	approach	could	

be	 successful.	 To	 date	 there	 have	 been	 no	 robust	 studies	 of	 human-M.	 tuberculosis	

interaction	genomics.	

	

Host-pathogen	 interaction	 genomics	 has	 already	 begun	 to	 be	 used	 to	 identify	

pathogenic	 mechanisms	 associated	 with	 other	 diseases,	 including	 meningococcal	

disease31	 and	 hepatitis	 C	 virus	 infection32.	 There	 is	 some	 evidence	 to	 suggest	 host-

pathogen	effects	 impact	on	M.	tuberculosis,	and	it	 is	able	to	subvert	the	human	host	

response	to	infection,	including	the	persistent	nature	of	the	infection	and	the	possibility	

of	multiple	re-infections;	although	the	mechanisms	of	this	process	remain	unclear.	The	

M.	 tuberculosis	pe/ppe	gene	 families	 (~10%	of	 genome)	are	hypothesised	 to	 include	

important	 virulence	 factors	 involved	 with	 host-pathogen	 interactions33.	 There	 is	

evidence	of	innate	and	adaptive	human	host	responses	to	M.	tuberculosis,	with	B	and	T	

cell	recognition	of	pe/ppe	proteins34.	These	proteins	may	represent	a	source	of	antigenic	

variation,	which	allow	the	organism	to	escape	antigen-specific	host	responses34.	With	

M.	 tuberculosis	 antigens	 being	 presented	 through	 HLA	molecules,	 there	 is	 a	 strong	

argument	for	assessing	the	interaction	between	M.	tuberculosis	pe/ppe	and	human	HLA	

genotypes35,36.	 However,	 because	 pe/ppe	 genes	 are	 highly	 variable	 and	 complex	 to	
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analyse,	 they	 are	 typically	 disregarded	 in	 genome	 studies.	 Recent	 SNP	 analysis	 has	

revealed	that	variation	 in	 the	majority	of	 the	168	pe/ppe	genes	studied	 is	consistent	

with	M.	tuberculosis	lineage33.	Evidence	of	positive	selection	was	revealed	in	65	pe/ppe	

genes,	 including	 epitopes	 potentially	 binding	 to	 major	 histocompatibility	 complex	

(MHC)	molecules.		

	

By	 integrating	 the	 human	 and	M.	 tuberculosis	 genetics	 data	 in	 a	 well	 characterised	

Thailand	 cohort	 (n=	 720),	 we	 sought	 to	 reveal	 insights	 into	 interaction	 points	 using	

“genome-to-genome”	analytical	methods.	Our	analyses	reveal	a	crucial	role	for	the	HLA,	

and	previously	unknown	genes	such	as	CNTN3	and	USP6NL.		

	

RESULTS	

M.	tuberculosis	genetic	diversity	in	the	Thai	cohort	

Host-M.	 tuberculosis	 genetic	 data	were	 complete	 for	 720	TB	 cases.	 In	 silico	 profiling	

using	TB	Profiler5	determined	that	isolates	were	predominantly	from	lineages	1	(35%),	

2	 (47%)	 and	 4	 (16%)	 (lineage	 3	 <2%)	 (Supplementary	 table	 1).	 The	 isolates	 were	

predicted	 to	 be	 predominantly	 pan-susceptible	 across	 14	 drugs	 (96.2%)	 with	 the	

remainder	 being	 multidrug	 resistant	 (isoniazid	 and	 rifampicin,	 3.8%),	 and	 none	

extensively-drug	 resistant.	 Raw	 reads	 were	 trimmed	 and	 mapped	 to	 the	 H37Rv	

reference	genome	(AL123456),	and	59k	high	quality	unique	variants	were	called.	The	

vast	majority	 (95.2%)	were	 rare	 variants	with	minor	 allele	 frequencies	 less	 than	5%.	

Phylogenetic	reconstruction	and	principal	component	analysis	(PCA)	revealed	a	strong	

population	stratification	with	strong	clustering	by	lineage	(Figure	1a).		
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Human	genetic	diversity	in	the	Thai	cohort	

Human	 genotypes	 were	 imputed	 using	 Asian	 populations	 from	 the	 1000	 Genomes	

Project	phase	3,	resulting	in	~6	million	high	quality	variants	with	minor	allele	frequency	

>	5%.	Using	these	SNPs	in	a	PCA	approach,	the	individuals	clustered	into	three	groups	

that	coincide	with	Thai	ethnic	diversity	(Figure	1b,	c).	The	proportion	of	each	lineage	

within	each	group	was	 calculated,	 and	 revealed	an	unequal	distribution	of	 lineage	1	

strains	between	groups	(Supplementary	table	1).	

	

Genome-to-lineage	analysis	

To	investigate	differential	susceptibility	to	M.	tuberculosis	lineages,	within	a	regression	

framework	 we	 tested	 for	 associations	 between	 human	 variants	 as	 predictors	 and	

lineages	as	the	outcome	variable.	Each	lineage	was	compared	against	all	other	lineages	

in	 a	 case-control	 type	 analysis.	We	did	not	 consider	 lineage	3	 in	 this	 analysis	 as	 the	

sample	size	is	only	eight.	At	an	established	significance	cut-off	(1	x	10-8),	we	identified	

putative	associations	for	lineage	1	(66	SNPs,	13	loci)	and	lineage	4	(7	SNPs,	4	loci),	but	

not	lineage	2	(Table	1).	For	lineage	1,	the	most	significant	association	was	found	to	be	

shared	between	three	SNPs	(two	in	C6orf15,	one	in	a	pseudogene)	located	within	the	

MHC	class	I	region	(Supplementary	Figure	1).	For	lineage	4,	the	strongest	association	

was	 the	 present	 in	 the	 USP6NL	 gene	 (variant:	 rs4750068).	 To	 follow-up	 the	 HLA-

Lineage1	 association,	 we	 imputed	 HLA	 haplotypes	 using	 SNP2HLA	 software,	 and	 re-

tested	for	association	to	lineage	1.	Though	no	haplotype	reached	the	10-8	cut-off,	the	

most	significant	association	was	present	at	the	DQA1	locus	(type:	06:01,	p-value	=	8.9e-

8)	(Supplementary	table	2).	
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Genome-to-genome	analysis	reveals	host-pathogen	interactions	

There	 is	 sequence	 diversity	 within	 lineages	 and	 the	 previous	 approach	 may	 miss	

potential	 interactions	 between	 human	 variants	 and	 sub-lineages	 or	 homoplastic	M.	

tuberculosis	variants.	To	identify	these	potential	interactions,	we	applied	a	regression-

based	approach	using	M.	 tuberculosis	 alleles	 as	phenotypes	 and	 testing	 for	 epistatic	

effects	 between	 the	 ~6M	human	 and	 2,002	M.	 tuberculosis	 SNPs	 (MAF	 >5%).	 At	 an	

established	significance	cut-off	(1	x	10-10),	this	approach	revealed	associations	involving	

199	human	SNPs	(38	loci)	(Figure	2)	(Table	1).	Associations	to	lineage,	sub-lineage,	and	

homoplastic	 SNPs	 were	 found.	 The	 strongest	 association	 signal	 was	 between	 the	

rs12548085	 SNP	 (SGCZ	 gene)	 and	 a	 subclade	 in	 lineage	 1	 (p=5.36´10-16).	 Other	

noteworthy	 genes	 found,	 include:	 HDAC4	 (p=2.06´10-12,	 lineage	 1.1)	 and	 PRKCA	

(p=4.88´10-11,	lineage	4.5)	and	TNFSF9	(p=4.86´10-11,	lineage	2.2.1).	A	homoplastic	SNP	

in	the	Rv3467	gene	(K315E)	was	associated	with	the	human	polymorphism	rs9398635	

(chr.	6,	intergenic	region)	p=5.63´10-14).	

	

DISCUSSION	

There	have	been	a	number	of	attempts	to	identify	loci	that	influence	susceptibility	to	

tuberculosis22,24.	While	statistically	significant	 loci	have	been	reported,	they	have	not	

been	validated	in	across	populations23,26.	 	 It	has	been	postulated	that	M.	tuberculosis	

has	 been	 in	 a	 state	 of	 co-evolution	 with	 its	 host37,	 and	 by	 implication	 there	 are	

differences	in	human	population	susceptibility	to	infections	from	different	lineages.	This	

observation	could	explain	the	lack	of	reproducibility	of	hits	found	in	the	different	GWAS.	

To	detect	whether	there	are	any	human	variants	influencing	the	likelihood	of	infection	

of	 a	 particular	M.	 tuberculosis	 lineage	 or	 sub-lineage,	 we	 performed	 a	 genome-to-
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genome	 analysis	 using	 a	 GWAS	 approach.	 Association	 patterns	 within	 the	 M.	

tuberculosis	 genome	 reflected	 intra-	 lineage	 or	 sub-lineage-specific,	 or	 inter-lineage	

(homoplastic)	effects.		

	

For	 intra-effects,	 a	 single	 human	 polymorphism	 will	 be	 associated	 to	 many	 M.	

tuberculosis	variants	with	equal	statistical	significance	due	to	the	clonal	nature	(lack	of	

recombination)	leading	to	high	linkage	disequilibrium,	and	long	branches	leading	up	to	

the	lineages	(Figure	1a).	The	resolution	to	which	we	can	narrow	down	the	list	of	possible	

causal	 variants	 depends	 on	 the	 sampling	 depth	 and	 the	 effect	 size	 of	 the	 allele.	

Phenotypic	bacterial	differences	are	known	to	result	from	strain-	and	lineage-	specific	

variation.	Although	efforts	have	mainly	focused	on	the	phenotypic	differences	in	drug	

resistance,	transmissibility	and	virulence16,38,39,	it	cannot	be	ruled	out	that	this	variation	

also	 contributes	 towards	 host	 susceptibility.	 For	 inter-lineage	 effects,	 homoplastic	

variants	appear	throughout	the	phylogenetic	tree	and	rarely	share	the	same	pattern	of	

variation	 with	 other	 variants,	 therefore	 it	 is	 possible	 to	 localise	 to	 a	 specific	 M.	

tuberculosis	variant	that	is	driving	the	association.		

	

To	detect	whole-lineage	signals,	we	performed	GWAS	using	the	M.	tuberculosis	lineages	

as	the	phenotype.	The	most	significant	P-value	occurred	between	markers	at	the	MHC	

locus	 and	 lineage	 1.	 This	 indicates	 that	 one	 or	 more	 variants	 acquired	 after	 the	

divergence	of	the	“ancient”	and	“modern”	lineages	have	a	significant	association	with	

variants	in	the	MHC	class	I	region.	The	Manhattan	plot	for	the	entire	MHC	region	reveals	

another	peak	at	the	MHC	class	II	region,	though	this	does	not	reach	the	significance	cut-

off.	An	analysis	of	imputed	HLA	haplotypes	points	to	the	HLA	DQA1*06:01	type	to	have	
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the	highest	significance,	and	further	supports	other	studies	implicating	variation	of	MHC	

region	 in	 tuberculosis	 susceptibility27,35,36,40,	 although	 this	 interaction	 effect	 may	 be	

strain-specific.	Consequently,	human	populations	could	differ	in	their	susceptibility	to	

different	 lineages	 of	 M.	 tuberculosis	 and	 this	 finding	 supports	 the	 host-pathogen	

coevolution	hypothesis.	Twelve	additional	loci	were	associated	with	lineage	1	including	

a	variant	in	the	CNTN3	gene	(rs34989253).	CNTN3	and	bovine	MHC	complex	have	been	

previously	implicated	in	susceptibility	to	Bovine	leukaemia	virus41.	Four	human	loci	were	

associated	with	 lineage	 4,	 but	 no	 previous	 associations	 of	 these	 genes	 to	 infectious	

disease	could	be	found.	

	

To	 uncover	 intra	 and	 inter-lineage	 or	 convergent	 evolution	 variants	 interacting	with	

human	 polymorphisms,	 we	 undertook	 a	 more	 agnostic	 approach	 and	 performed	 a	

GWAS	using	the	M.	tuberculosis	alleles	as	phenotypes.	While	we	retain	the	MHC-lineage	

1	 association,	we	 found	many	 additional	 low-frequency	 variants	within	 38	 loci.	 One	

putative	 association	 involved	 rs7251888	 in	 TNFSF9	 and	 a	 subclade	 of	 lineage	 2.2.1.	

TNFSF9	is	a	cytokine	involved	with	antigen	presentation	in	T	cells	and	has	been	proposed	

as	a	useful	marker	in	the	detection	of	M.	tuberculosis-reactive	CD4+	T	cells42.	It	has	also	

been	proposed	 to	 regulate	 innate	 and	 adaptive	 immpune	 response	 against	Mtb43,44.	

Variants	in	HDAC4	and	PRKCA,	which	are	both	involved	in	response	to	interleukins45,46,	

were	 associated	 with	 subclades	 of	 lineage	 1.1	 and	 lineage	 4.5	 respectively.	 Several	

homoplastic	 variants	were	also	 associated	with	human	variants,	 the	most	 significant	

between	 an	 intergenic	 SNP	 on	 chromosome	 6,	 close	 to	 the	GJA1	 gene	 and	 the	M.	

tuberculosis	 Rv3467	 (K315E)	 SNP.	 Other	 significant	 homoplastic	 variants	 in	 M.	
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tuberculosis	 included	 ppe18	 and	mceF,	 which	 have	 implicated	 roles	 in	 intracellular	

survival47,48	(Table	2).		

	

This	 study	 has	 highlighted	 the	 importance	 of	 the	 MHC	 region	 in	 susceptibility	 to	

tuberculosis	 and	 specific	 strain-types,	 implying	 it	 is	 a	 crucial	 interaction	 point.	

Interestingly,	many	of	the	new	hits	discovered	using	the	genome-to-genome	approach	

have	 a	 much	 more	 significant	 P-value,	 with	 the	 minimum	 reaching	 5.36´10.	 While	

performing	association	on	a	lineage	highlights	regions	of	interest,	it	may	not	be	enough.	

A	 considerable	 amount	 of	 variation	 exists	within	 lineages	 and	within	 populations	 to	

which	 they	are	endemic	 to.	By	 testing	all	possible	 combinations	of	 variants	we	have	

highlighted	 many	 significant	 associated	 variants.	 This	 suggests	 that	 susceptibility	 to	

tuberculosis	 follows	 a	 complicated	 pattern	with	many	 host	 factors	 involved	 coupled	

with	the	diversity	within	the	M.	tuberculosis	pathogen.	The	relative	importance	of	these	

interactions	must	be	investigated	through	follow	up	studies	in	different	populations.		

	

ONLINE	METHODS	

Study	population	

The	 Thailand	 cases	 (HIV	 negative	 TB	 patients	with	 no	 known	 previous	 TB	 (age	 >	 14	

years))	 were	 from	 Chiang	 Rai,	 Lampang	 and	 Bangkok	 provinces	 (TB	 incidence	

181/100,000	population).		
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Genetic	data	

Human	genotypes	for	the	Thai	TB	cases	(n=720)	were	generated	on	Illumina	Human610-

Quad	 BeadChip	 and	 Illumina	 HumanOmniExpressExome-8	 v1.2	 BeadChip,	

complemented	by	imputation	of	>8.4	million	genomic	sites	using	BEAGLE4.1	software49	

and	 a	 1000	 Genomes	 reference	 panel50.	 HLA	 protein	 alleles	 were	 imputed	 using	

SNP2HLA	software	and	a	pan-Asian	 reference51.	SNPs	were	 removed	 if	 there	was:	 (i)	

deviation	in	genotypic	frequencies	from	Hardy-Weinberg	equilibrium	(HWE)	as	assessed	

using	a	chi-square	test	(P<0.00001);	(ii)	high	genotype	call	missingness	(>10%);	(iii)	low	

minor	 allele	 frequency	 (<5%);	 or	 (iiii)	 low	 imputation	 quality	 (allelic	 R2<0.7).	 The	

population	 structure	was	 explored	 using	 principal	 component	 analysis	 inferred	 from	

pairwise	SNP	genotype	differences	between	individuals.		

	

Pathogen	sequence	data	was	generated	at	the	Sanger	institute	using	an	Illumina	HiSeq	

2000	machine.	Raw	M.	tuberculosis	sequencing	data	was	aligned	to	the	H37Rv	reference	

genome	(Genbank	accession	number:	NC_000962.3)	using	the	BWA	mem	algorithm52
.	

The	SAMtools/BCFtools53	software	was	used	to	call	SNPs	and	small	indels	using	default	

options.	Alleles	were	additionally	called	across	the	whole	genome	(including	SNP	sites)	

using	 a	 coverage-based	 approach.	 A	 missing	 call	 was	 assigned	 if	 the	 total	 depth	 of	

coverage	at	a	site	did	not	reach	a	minimum	of	20	reads	or	none	of	the	four	nucleotides	

accounted	for	at	least	75%	of	the	total	coverage.	Samples	or	SNP	sites	having	an	excess	

of	10%	missing	genotype	calls	were	removed.	This	quality	control	step	was	implemented	

to	remove	samples	with	bad	quality	genotype	calls	due	to	poor	depth	of	coverage	or	

mixed	 infections.	 The	 final	 discovery	 dataset	 included	 720	 Thai	 isolates	 and	 ~59k	
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genome-wide	SNPs.	Lineages	were	predicted	using	the	TBProfiler	tool5.	The	analytical	

pipeline	is	described	in	greater	detail	elsewhere3,4.		

	

Statistical	analysis	

To	uncover	effects	between	lineages	and	human	genotypes,	a	separate	logistic	region	

model	was	 fitted	 for	 each	 lineage	 (lineage	 X	 vs.	 lineage	 non-X)	 using	 the	 plink	 1.954	

software,	with	a	full	model	analysis	(--model)	setting.	The	minimum	p-value		across	the	

tests	for	each	variant	was	retained.	A	statistical	significance	threshold	was	established	

by	simulations	(P	<	1	x	10-8).	The	genome-to-genome	analysis	was	performed	using	the	

same	modelling	strategy,	except	we	used	the	M.	tuberculosis	alleles	(minor	vs.	major)	

as	the	outcome.	M.	tuberculosis	variants	were	included	in	the	analysis	if	(i)	they	were	

not	synonymous;	(ii)	had	a	minor	allele	frequency	>0.05	and	(iii)	were	not	solely	located	

in	transmission	clusters	(median	SNP	distance	between	isolates	with	mutation	>20).	A	

statistical	significance	threshold	was	established	by	simulation	(P	<	1	x	10-10).	Regional	

association	plots	were	generated	using	locuszoom55.	

	

DATA	AVAILABILITY	

GWAS	genotypic	data	is	shared	through	the	EBI	European	Genome-phenome	initiative.	

All	pathogen	raw	sequencing	data	is	available	from	PRJEB7056.		
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Table	1	

Genome-to-lineage	association	results	

	

Lineage	 Chr.	 SNP	ID	 P-value	 Gene	ID	 Distance*	 OR	

1	 6	 rs2535298	 1.92E-10	 C6orf15	 14538	 0.370	
1	 18	 rs359758	 3.13E-10	 RP11	 233049	 2.672	
1	 9	 rs10810134	 8.20E-10	 NFIB	 0	 0.262	
1	 20	 rs6140144	 9.52E-10	 SLC52A3	 0	 1.985	
1	 2	 rs4668246	 1.28E-09	 MYO3B	 0	 1.980	
1	 18	 rs57810761	 3.22E-09	 SERPINB8	 415380	 2.564	
1	 4	 rs10657819	 3.41E-09	 CCSER1	 159196	 0.489	
1	 14	 rs1075612	 3.58E-09	 FLRT2	 7984	 2.103	
1	 2	 rs113625848	 5.23E-09	 CNTNAP5	 947438	 1.979	
1	 10	 rs7095852	 5.70E-09	 PCBD1	 12435	 0.513	
1	 13	 rs7334180	 5.84E-09	 FLT3	 0	 2.008	
1	 11	 rs10897830	 6.17E-09	 FAM181B	 1228892	 0.398	
1	 19	 rs4024210	 7.01E-09	 PDE4A	 1437	 2.213	
1	 14	 rs58579744	 7.62E-09	 VRK1	 4500	 1.801	
1	 21	 rs73182460	 7.65E-09	 APP	 0	 2.167	
1	 3	 rs34989253	 7.98E-09	 CNTN3	 0	 0.513	
1	 11	 rs11320420	 8.76E-09	 MYRF	 0	 0.507	
4	 10	 rs4750068	 1.09E-09	 USP6NL	 0	 1.921	
4	 17	 rs138005149	 1.54E-09	 AC102948.2	 29772	 2.657	
4	 6	 rs6924775	 3.51E-09	 PRR18	 39544	 3.977	
4	 18	 rs142396797	 3.69E-09	 FHOD3	 0	 3.718	
4	 2	 rs4854538	 6.85E-09	 ANTXR1	 0	 1.570	

*	Distance	to	closest	annotated	CDS	
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Table	2	
Genome-to-genome	association	results	
	
The	minimum	p-value	per	gene	and	the	associated	odds	ratio	and	lineage	of	the	Mtb	variant	*	Distance	to	closest	annotated	CDS;	**	Lineage	associated	

with	Mtb	variant	

Chr.	 Human	SNP	 Host	Gene	 P-value	 Distance*	 OR	 Lineage**	 Mtb	SNP	

8	 rs12548085	 SGCZ	 5.36E-16	 0	 2.542	 lineage1.1.1	 	

4	 rs7670123	 CLNK	 5.07E-15	 288813	 2.722	 lineage2.2.1	 	

6	 rs9398635	 GJA1	 5.63E-14	 25506	 0.304	
lineage1,	lineage2,	lineage3,	

lineage4	
Rv3467	K315E	

17	 rs6504803	 C17orf112	 1.11E-13	 37174	 3.045	 lineage4.5	 	

7	 rs1149213	 SEMA3E	 4.55E-13	 46140	 3.792	 lineage4.5	 	

7	 rs672365	 AGR3	 4.63E-13	 178511	 2.057	 lineage1,	lineage2,	lineage4	 Rv0336	H496P	

8	 rs75969446	 SOX17	 8.80E-13	 21659	 2.859	 lineage4.5	 	

19	 rs55916171	 UQCRFS1	 1.70E-12	 1044300	 3.052	 lineage1.1.1	 	

2	 rs291333	 HDAC4	 2.06E-12	 0	 3.348	 lineage1,	lineage2	 mce3F	A170R	

5	 rs59612284	 ADAMTS16	 2.58E-12	 0	 4.667	 lineage4.5	 	

19	 rs117476816	 SULT2B1	 6.89E-12	 0	 3.048	 lineage4.5	 	

14	 rs7144346	 RP11	 8.25E-12	 4575	 2.615	 lineage1,	lineage2,	lineage4	 ppe18	S263H	

3	 rs542038782	 SLITRK3	 9.94E-12	 152879	 3.822	 lineage4.5	 	

20	 rs6140144	 SLC52A3	 1.21E-11	 0	 2.131	 lineage1	 	

13	 rs7983548	 INTS6	 1.22E-11	 0	 2.937	 lineage4.5	 	

13	 rs145372612	 SERPINE3	 1.22E-11	 0	 2.982	 lineage4.5	 	

6	 rs2535298	 C6orf15	 2.12E-11	 14538	 0.346	 lineage1	 	

4	 rs6536724	 NPY5R	 2.63E-11	 7713	 3.431	 lineage1	 	
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Table	2	-	continued	
Chr.	 Human	SNP	 Host	Gene	 P-value	 Distance*	 OR	 Lineage**	 Mtb	SNP	

5	 rs6601202	 FAM153C	 3.10E-11	 5257	 3.051	 lineage1,	lineage2	
mce3F	

A170R	

16	 rs900729	 ANKRD11	 4.11E-11	 0	 0.328	 lineage4	 	

8	 rs7013247	 SNTG1	 4.37E-11	 0	 2.8	 lineage4.5	 	

17	 rs2525103	 COPZ2	 4.37E-11	 15974	 2.625	 lineage4.5	 	

10	 rs116986894	 GATA3	 4.42E-11	 513865	 3.228	 lineage1.1.1	 	

13	 rs17075761	 WDFY2	 4.43E-11	 52822	 3.486	 lineage4.5	 	

12	 rs7133564	 MUCL1	 4.58E-11	 0	 2.399	 lineage1.1	 	

22	 rs9605254	 CECR2	 4.71E-11	 40429	 13.94	 lineage1,	lineage2,	lineage4	
PE_PGRS56	

N679A	

2	 rs17026212	 TGOLN2	 4.86E-11	 0	 2.464	 lineage1.1.1	 	

6	 rs116672827	 NEDD9	 4.86E-11	 0	 2.045	 lineage1.1.1	 	

19	 rs7251888	 TNFSF9	 4.86E-11	 8847	 2.391	 lineage2.2.1	 	

17	 rs77462363	 PRKCA	 4.88E-11	 0	 5.95	 lineage4.5	 	

6	 rs9322189	 GINM1	 5.60E-11	 0	 2.098	 lineage2.2.1	 	

18	 rs359758	 RP11	 5.62E-11	 233049	 2.789	 lineage1	 	

8	 rs10097239	 TUSC3	 6.65E-11	 140682	 3.303	 lineage4.5	 	

1	 rs6675820	 DNTTIP2	 8.26E-11	 0	 2.346	 lineage1,	lineage2,	lineage4	
ppe18	

S263H	

7	 rs74918833	 ISPD	 8.27E-11	 38372	 3.239	 lineage4.5	 	

15	 rs2467365	 C15orf41	 8.80E-11	 113668	 2.368	 lineage1.1	 	

6	 rs34607745	 HSF2	 9.26E-11	 40356	 3.917	 lineage1.1.1	 	

2	 rs34312950	 REG3G	 9.53E-11	 126939	 2.505	 lineage1,	lineage2,	lineage4	
ppe18	

S263H	
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Figure	1	
Principal	component	analysis	(PCA)	of	M.	tuberculosis	and	human	genotypes		
(a)	Phylogenetic	tree	of	the	M.	tuberculosis	in	Thailand;	(b)	PCA	of	the	human	variants	
was	performed	followed	by	k-means	clustering,	leading	to	three	main	clusters;	(c)	The	
lineages	 associated	 with	 each	 patient	 was	 then	 visualised	 with	 the	 clusters	
superimposed.	A	noticeable	difference	in	the	number	of	lineage	1	strains	was	evident	
(see	Supplementary	Table	1);	(d)	Genome-to-genome	interactions	revealed		
	
a)	

	

b)		 	 	 	 	 	 c)	
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Figure	2	
Results	from	the	genome-to-genome	comparison	of	host	and	pathogen	data.		
(A)	A	Manhattan	plot	showing	the	–log10(P-value)	for	each	human	variant.	Results	are	
plotted	by	chromosomes	with	alternating	black	and	blue	colouring.	The	MHC	locus	is	
highlighted	 in	 red.	 (B)	 A	 circus	 plot	 showing	 the	 associations	 between	 host	 and	
pathogen	 genomes.	 The	 Pathogen	 genome	 is	 coloured	 in	 blue	 and	 the	 human	
chromosomes	in	cream	(not	to	scale).	A	link	is	drawn	between	the	two	genomes	where	
a	variant	at	the	corresponding	positions	passed	the	10-10	association	cut-off	value.	
	
A)	

	
B)	
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Supplementary	figure	1	
Host	genetic	regions	identified	as	having	interactions	with	the	M.	tuberculosis	genome	
	

(a) Human	leukocyte	antigen	(HLA)	region	
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Supplementary	table	1	
The	 distribution	 of	M.	 tuberculosis	 lineages	within	 each	Human	 PCA-based	 cluster	
group	
	

M.	tuberculosis	
Lineage	

Human	

group	1	

Human	

Clus	2	

Human	

Cluster	3	 Total	

1	 232	(45.7%)	 16	(12.0%)	 6	(7.6%)	 254	(35.3%)	

2	 215	(42.3%)	 76	(57.1%)	 50	(63.3%)	 341	(47.4%)	

3	 5	(1.0%)	 2	(1.5%)	 1	(1.3%)	 8	(1.1%)	

4	 56	(11.0%)	 39	(29.3%)	 22	(27.8%)	 117	(16.3%)	

Total	 508	 133	 79	 720	
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Supplementary	table	2	
Frequency	and	significant	(p<10-6)	association	of	Human	leukocyte	antigen	(HLA)	types	
to	M.	tuberculosis	genotypes	
	

HLA	Type	 P	value	 Frequency	
HLA_DQA1_06	 1.26E-08	 0.194	

HLA_DQA1_0601	 1.26E-08	 0.194	

HLA_B_15	 1.49E-07	 0.218	

HLA_DPA1_02	 2.78E-07	 0.593	

HLA_DQB1_0301	 9.69E-07	 0.233	

HLA_DPA1_01	 2.09E-06	 0.332	

HLA_DRB1_1202	 4.40E-06	 0.220	

HLA_DRB1_12	 6.07E-06	 0.224	

HLA_A_11	 8.13E-06	 0.447	
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9	Discussion	and	Conclusion	

9.1	Discussion	

This	thesis	focuses,	for	the	most	part,	on	the	analysis	of	Next	Generation	Sequencing	

(NGS)	data	in	the	context	of	TB.	Chapter	2	worked	to	establish	the	fidelity	of	the	data	

from	two	NGS	technologies,	Illumina	MiSeq	and	Ion	PGM	platforms.	I	have	shown	the	

variability	 between	 technical	 and	 biological	 replicates	 to	 be	 negligible.	 Phylogenetic	

reconstruction	revealed	interleaved	clustering	of	biological	and	technical	replicates.	This	

high	similarity	indicates	the	lack	of	systematic	bias	in	sequencing	results	caused	by	the	

extraction	process.	A	differential	GC%-dependant	coverage	bias	was	observed	between	

the	Illumina	and	Ion	PGM	platforms.	While	both	platforms	displayed	drops	in	coverage	

across	 high-GC	 regions,	 its	 effect	 was	 more	 drastic	 with	 the	 PGM.	 This	 lower	 level	

affected	the	calling	of	large	indels,	with	more	false	positives	using	the	PGM,	however	

most	known	Mtb	drug	resistant	genes	were	well	characterised	using	both	technologies.	

The	rapid	development	of	NGS	technologies	has	led	to	a	significant	decrease	in	the	cost	

and	of	 throughput	sequencing.	As	demonstrated	here,	we	are	now	at	a	stage	where	

sequencing	is	no	longer	the	bottleneck.	Removing	or	decreasing	the	time	required	at	

the	culturing	step	should	be	a	main	focus	of	future	research.	Platforms	such	as	minION	

may	in	the	future	enable	sequencing	to	be	performed	on	site	at	clinics.	A	rigorous	study	

of	 the	 error	 rates	 and	 profiling	 capabilities	 such	 as	 described	 above	 should	 also	 be	

performed	on	other	new	technologies	as	they	become	available.		

	

The	 study	 also	 highlighted	 the	 difference	 between	 two	 popular	 resistance	 profiling	

software,	Mykrobe	TB	Profiler	and	TB	predictor.	The	differences	in	the	underlying	drug	
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resistance	mutation	database	caused	a	number	of	false	positives	using	the	Mykrobe	TB	

Profiler.	 However,	 international	 efforts,	 such	 as	 the	 ReSeqTB	 project,	 are	 aiming	 to	

consolidate	a	comprehensive	single	library	of	all	variants,	which	will	eventually	result	in	

all	such	software	converging.		However,	none	of	the	tools	evaluated	use	large	deletions	

or	insertions	for	profiling,	but	this	would	be	a	straightforward	implementation	of	looking	

for	decreases	in	coverage.	This	is	required	because	variants	such	as	a	deletion	on	the	

thyA-dfrA	 genes	 causing	 PAS	 resistance	was	 observed,	 but	would	 be	 undetected	 by	

conventional	approaches.	

	

There	is	a	need	for	a	better	understanding	of	mutations	involved	in	Mtb	drug	resistance,	

including	for	any	new	drugs.	 	To	this	effect,	 in	Chapter	3	 I	applied	GWAS	methods	to	

identify	such	resistance	mutations	and	loci.	To	develop	the	methodological	approach,	I	

used	whole	genome	sequence	data	from	127	clinical	 isolates	with	corresponding	DST	

and	MIC	data	for	the	first	line	drugs	rifampicin,	isoniazid,	ethambutol	and	streptomycin.	

Using	GWAS	and	phylogenetic	approaches	I	found	mutations	in	known	resistance	genes,	

thus	validating	their	use	for	drug	resistance	variant	discovery.	Additionally,	the	effects	

of	the	variants	on	protein	structure	stability	and	drug	binding	were	modelled	in	the	RpoB	

and	 KatG	 proteins.	 A	 high	 correlation	 was	 found	 between	 the	 level	 of	 resistance,	

measured	by	MIC,	and	the	distance	to	the	drug	binding	site.	This	information	could	be	

used	to	predict	the	effect	of	novel	variants	on	drug	resistance.	For	example,	in	theory	it	

may	be	possible	 to	perform	a	genome-wide	assessment	of	 the	effects	of	all	possible	

mutations	on	protein	structures.	Drug	resistance	can	be	conferred	by	changes	to	protein	

stability,	 protein-protein	 interactions	 and	 ligand	 binding.	 There	 are	 many	 programs	

which	can	collect	metrics	on	 the	changes	of	 these	properties	 caused	by	mutation.	A	
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potential	route	of	future	investigations	could	be	the	application	of	deep	neural	networks	

,which	could	model	the	effect	of	multiple	parameters,	to	these	metrics	to	predict	drug	

resistance	 variants.	 However,	 many	 of	 the	 protein	 structures	 for	 drug	 targets	 are	

currently	unavailable	or	do	not	characterise	the	whole	protein.		

	

After	successful	implementation	of	the	GWAS	method	(Chapter	3),	in	Chapter	4	I	applied	

the	analysis	pipeline	on	a	global	set	of	6,465	strains.	This	dataset	combined	publically	

available	 data	 and	 our	 own	 in-house	 sequencing,	 and	 represents	 one	 of	 the	 largest	

studies	of	drug	resistance	in	Mtb	to	date.	The	large	sample	size	(n>6,000)	meant	I	was	

able	to	detect	resistance	variants	at	 low	minor	allele	frequency,	as	well	as	the	genes	

involved	by	combining	the	rare	alleles	(as	applied	in	Chapter	3).	Large	sample	sizes	are	

needed	to	perform	per	variant	approaches,	and	thereby	provide	a	higher	resolution	to	

identify	 causal	 variants.	 This	may	be	difficult	 to	 achieve	 for	 new	 forms	of	 resistance	

where	samples	sizes	are	small,	but	the	effects	sizes	are	likely	to	be	large.	In	my	work,	

lineages	1,	2,	3	and	4	were	 represented,	allowing	 for	 the	detection	of	 strain-specific	

effects	along	with	increasing	the	chance	to	pick	up	mutations	appearing	convergently	

across	all	lineages	using	the	PhyC	approach.	To	look	for	novel	variants	the	results	from	

the	GWAS	and	PhyC	methods	were	compared	to	the	well-established	resistance	variant	

list	 from	 the	 TBProfiler	 database.	 A	 large	 number	 of	mutations	were	 found	 in	well-

established	resistance	 loci	such	as	rpoB	and	katG.	Additionally,	 I	 report	several	novel	

mutations	which	were	not	present	in	the	database.	These	will	need	to	be	validated	using	

allelic	exchange	experiments,	and	is	beyond	the	scope	of	my	thesis.	However,	I	looked	

at	the	effect	of	adding	the	new	mutations	on	the	sensitivity	of	the	database	and	found	

sensitivity	gains	ranging	from	1%	(isoniazid/rifampicin)	to	55%	(PAS)	para-amino	salicylic	
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acid.	Many	 small	 indels	 and	 large	 deletions	were	 found	 in	 drug	 activating	 enzymes.	

Using	 small	 indels	 increased	 the	 sensitivity	 from	 20%	 to	 40%	 for	 PAS,	 adding	 large	

deletions	 increased	 this	 65%.	 By	 including	 these	 new	 mutations,	 we	 can	 improve	

predictive	accuracy	of	mutation	libraries	and	bring	 in-silico	prediction	a	step	closer	to	

application	in	a	clinical	setting.		By	developing	large	databases	across	clinical	settings	of	

well	 characterised	Mtb	with	whole	 genome	 sequences	 and	DSTs,	 it	may	be	possible	

apply	machine	 learning	methods	to	detect	mutations	and	through	a	 learning	process	

update	mutation	libraries
1
.	Analyses	involving	large	sample	sizes	are	likely	to	be	robust	

to	errors	in	DSTs,	and	the	use	of	MIC	values	may	assist	issues	with	resistance	cut-offs.		

	

To	date,	mutation	 libraries	have	 focused	on	SNPs	and	small	 indels	 in	drug	 targets	or	

activators.	Although	relatively	rare	for	some	pro-drugs	such	as	INH,	large	indels	seem	to	

play	a	major	role	in	PAS	and	ETH	resistance	and	calls	for	the	integration	large	deletion	

calling	into	existing	profiling	tools.	Association	was	found	between	the	XDR	phenotype	

and	the	efflux	pump	drrA	which	has	been	reported	to	cause	resistance	to	anitibiotics2.	

Another	efflux	pump	(Rv2688c)	was	associated	with	fluoroquinolone	resistance3.	This	

gene	 has	 been	 reported	 to	 cause	 resistance	 to	 ciprofloxacin	 and	moxifloxacin	when	

expressed	 in	M.	 smegmatis3.	 This	 highlights	 the	 importance	 of	 the	 efflux	 pumps	 in	

conferring	antibiotic	resistance	and	could	help	to	explain	the	resistance	in	isolates	which	

do	not	have	mutations	in	the	drug	targets	or	activators.		

	

In	 Chapter	 3	 a	 correlation	 was	 found	 between	 the	 number	 of	 mutations	 in	 drug	

resistance	genes	with	the	MIC	for	that	drug.	Although	I	did	not	have	the	MIC	values	for	

the	6,545	used	in	Chapter	4,	I	looked	for	a	correlation	between	the	distribution	of	odds	
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ratio	in	a	gene	and	information	on	the	known	levels	of	resistance	conferred	by	that	gene.	

Unsurprisingly,	 I	 found	a	positive	correlation	between	the	median	odds	ratio	and	the	

level	of	resistance	conferred	by	the	gene.	Whilst	this	data	is	very	preliminary,	the	odds	

ratios	of	resistance	mutations	appears	to	be	an	epidemiological	surrogate	of	levels	of	

resistance.		

	

In	summary,	the	work	in	Chapter	4	has	identified	potentially	new	variants,	which	would	

require	validation	work	in	laboratory	experiments.	Whilst	this	is	a	slow	and	expensive	

process	using	Mtb,	a	number	of	surrogate	models	have	been	proposed
4,5
.	M.	aurum	has	

been	proposed	as	a	good	surrogate	model	for	Mtb	due	to	the	similarities	in	cell	wall	lipid	

content	and	drug	sensitivity	profile.	A	good	characterisation	of	the	genome	is	required	

for	 allelic	 exchange	 experiments;	 however,	 no	 draft	 reference	 sequence	 has	 been	

published	for	M.	aurum.	In	Chapter	5,	to	facilitate	its	use	as	a	model	organism,	I	have	

analysed	sequence	data	of	M.	aurum	 (NCTC	10437)	and	assembled	a	draft	 reference	

genome.	 Comparison	 of	 the	 Mtb	 reference	 sequence	 (H37Rv)	 with	 our	 assembly	

revealed	a	high	degree	of	similarity	between	drug	resistance	genes	of	Mtb	and	their	

homologues	in	M.	aurum.	The	genome	of	M.	aurum	is	significantly	larger	than	Mtb	and,	

as	such,	was	found	to	contain	2,090	genes	which	were	not	found	in	Mtb.	These	genes	

could	 potentially	 influence	 allelic	 exchange	 experiments	 and	 high	 throughput	 drug	

screening	 by	metabolising	 potential	 compounds	 or	 by	 providing	 alternate	 resistance	

mechanisms	 and	 should	 be	 considered	 in	 experimental	 design.	 The	 published	 draft	

reference	should	aid	the	development	of	M.	aurum	as	a	surrogate	model	for	Mtb	and	

aid	 in	 the	 development	 of	 new	drugs	 and	 elucidation	 of	 resistance	mechanisms.	 An	
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interesting	finding	was	the	presence	of	copy	number	variants	of	katG	and	embB,	which	

needs	to	be	considered	when	analysing	derivatives	of	isoniazid	and	ethambutol.	

	

Whilst	drug	resistance	can	be	explained	by	mutations	a	select	few	genes	or	pathway,	

phenotypes	 such	as	virulence	are	dictated	by	a	multitude	of	proteins	and	pathways,	

which	 interact	directly	or	 indirectly	 interact	with	 the	host.	Although	we	have	a	good	

understanding	of	the	genetic	variation	in	Mtb,	~10%	of	the	genome	corresponding	to	

the	pe	and	ppe	genes	is	routinely	ignored.	Standard	mapping	techniques	do	not	perform	

well	with	the	repetitive	sequences	present	in	these	genes	and	as	a	result	are	discarded.	

In	 Chapter	 6,	 to	 improve	 characterisation	 of	 the	 pe/ppe	 gene	 families	 I	 performed	

genome	assembly	on	a	set	of	518	isolates	with	high	depth	of	coverage.	All	isolates	had	

>70%	fully	assembled	pe/ppe	genes,	and	the	remaining	genes	were	>	90%	assembled.	

By	comparing	to	the	H37Rv	reference	strain	5,853	SNPs	were	found	in	the	pe/ppe	genes,	

equating	to	roughly	11.6%	of	the	total	number	of	SNPs.	Phylogenetic	analyses	pointed	

to	a	region	surrounding	the	pe_pgrs3	and	pe_pgrs4	genes	causing	anomalous	clustering	

of	strains.	A	large	number	of	variants	were	observed	in	this	region	across	the	dataset.	

These	 genes	 share	 a	 highly	 similar	 sequence	 and	 could	 potentially	 recombine.	 I	

hypothesised	that	recombination	between	these	genes	contributes	towards	the	large	

amount	of	sequence	diversity	seen	in	this	region.	In	Chapter	7	I	used	PacBio	sequencing	

to	confirm	the	presence	of	a	large	structural	variant	occurring	in	a	lineage	2	strain.	This	

variant	caused	the	insertion	of	a	large	amount	of	sequence	in	between	the	PE_PGRS3	

and	PE_PGRS4	 genes.	Sequence	annotation	 reported	 two	small	open	 reading	 frames	

within	this	new	region.	This	work	demonstrates	that,	in	general,	the	pe/ppe	genes	show	

a	 lineage	 specific	 pattern	 of	 variation,	 and	 intragenic	 recombination	may	 contribute	
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towards	this	variation.	This	variation	may	contribute	towards	phenotypes	which	differ	

between	 strains,	 such	 as	 transmissibility	 and	 virulence,	 especially	 since	 the	 pe/ppe	

genes	 are	 thought	 to	 be	 in	 contact	 with	 host	 cells.	 The	 pe/ppe	 genes	 have	 been	

proposed	as	 vaccine	 candidates.	 This	work	has	highlighted	 the	presence	of	 selection	

acting	 on	 a	 subset	 of	 these	 genes	 and	 needs	 to	 be	 considered	 in	 the	 development	

process.	

	

The	work	so	far	has	focused	on	the	analysis	of	DNA	sequence,	methylation	of	DNA	can	

modulate	the	effects	of	genomic	variation.	In	Chapter	7	 I	sought	to	use	PacBio	SMRT	

sequencing	to	characterise	methylation	in	Mtb	and	to	confirm	observations	described	

in	Chapter	 6.	 The	 dataset	 used	 for	 PacBio	 sequencing	 included	 strains	 from	 diverse	

genetics	 to	 capture	 as	 much	 genetic	 variation	 as	 possible.	 Sixteen	 isolates	 were	

sequenced	 and	 supplemented	 with	 two	 sequences	 from	 the	 ENA	 database.	 These	

strains	were	selected	to	represent	the	diversity	seen	 in	Mtb,	with	all	 lineages	except	

lineage	7	represented.	Future	work	should	consider	lineage	7,	as	it	is	an	intermediate	

strain.	Three	candidate	motifs	were	identified,	although	not	all	motifs	were	methylated	

in	each	sample.	The	differential	methylation	of	motifs	in	different	strains	prompted	me	

to	look	for	mutations	which	might	lead	to	the	lack	of	methylation	and	analyse	these	in	

terms	 of	 their	 distribution	 across	 the	 lineages.	 Six	 potential	 loss	 of	 function	 (LOF)	

mutations	 were	 identified	 and	 their	 distributions	 were	 characterised	 in	 the	 >6000	

strains	described	in	Chapter	4.	Surprisingly,	loss	of	function	in	methyltransferase	genes	

is	common.	All	lineage	3	isolates	and	71%	of	lineage	4	isolates	contained	a	LOF	mutation	

in	the	MTase	associated	with	the	GATN4RTAC	motif.	All	lineage	2	isolates	harboured	a	

LOF	mutation	in	the	MTase	(MamA)	associated	with	the	CTCCAG	motif.	Previous	reports		
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have	shown	that	strains	lacking	a	functional	copy	of	MamA	had	a	decreased	survival	rate	

in	hypoxic	conditions
6
.	Interestingly,	“modern”	Beijing	lineages	have	been	reported	to	

upregulate	the	DosR	regulon
7
	which	is	regulated	in	response	to	hypoxia

8
.	Whether	the	

co-occurrence	 of	 the	 LOF	 in	MTase	 and	 upregulation	 of	 the	 DosR	 regulon	 is	 simply	

chance	or	whether	they	are	linked	would	be	an	interesting	question	to	investigate.	The	

effects	of	a	MamA	LOF	in	H37Rv	strains	have	been	investigated,	where	this	strain-type	

have	normal	expression	of	the	DosR	regulon
6
.	Application	of	a	Beijing	strain	might	lead	

a	different	effect	on	the	survival	rate.	The	thesis	work	puts	methylation	in	Mtb	in	a	global	

context	and	demonstrates	 the	strain	and	 lineage	specific	methylation	patterns.	Little	

functional	work	has	been	performed	to	elucidate	the	effect	of	methylation	in	TB,	and	

this	 work	 highlights	 the	 importance	 role	 that	 methylation	 could	 play	 in	 explaining	

phenotypic	differences	between	strains.	Future	work	could	include	investigating	gene	

expression	 and	 the	 heritability	 of	 methylation.	 Strains	 could	 be	 whole	 genome	

sequenced	 using	 PacBio	 technology	 and	 whole	 transcriptome	 sequenced	 using	 an	

Illumina	platform.	This	would	allow	investigation	of	the	direct	effect	of	methylation	on	

transcription.	 Additionally,	 PacBio	 sequencing	 of	 transmission	 clusters	 could	 provide	

insights	into	the	heritability	of	methylation	in	Mtb.		

	

In	Chapter	 8,	 I	 assessed	 the	 potential	 of	 using	 host	 and	 pathogen	 genomic	 data	 to	

identify	host-pathogen	interactions.	I	hypothesised	that	the	lack	of	replication	in	GWASs	

could	be	due	to	the	differential	strains	circulating	globally.	Previous	studies	have	shown	

a	close	co-evolution	between	humans	and	Mtb9.	This	evolutionary	effect	could	lead	to	

adaptation	of	Mtb	or	resistance	of	humans	to	historically	circulating	strains.	I	performed	

an	 analysis	 of	 host	 genotyping	 and	 pathogen	 WGS	 data	 from	 Thailand	 to	 identify	
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potential	interactions,	as	measured	by	the	co-occurrence	of	mutations	on	both	genomes	

in	a	genome-to-genome	analysis.	Using	a	GWAS,	using	 the	pathogen	genotypes	as	a	

phenotype	 I	 identified	 highly	 significant	 associations	 between	 subclades	 of	Mtb	 and	

human	variants.	I	also	find,	to	a	lesser	extent,	association	between	the	HLA	region	and	

lineage	1.	 	These	putative	interactions	could	potentially	represent	selection	acting	on	

the	pathogen	to	evade	the	host	immune	system,	however	validation	is	required.	Using	

a	similar	dataset	from	another	population	with	similar	pathogen	strains	in	circulation	

(e.g.	Vietnam)	could	provide	the	support	required	before	functional	work	is	performed.	

Work	 is	 underway	 to	perform	a	 similar	 analysis	within	 a	Vietnamese	TB	 cohort,	 and	

could	lead	to	validation	of	findings.	
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9.2	Conclusions	

This	 thesis	 presents	 the	 analysis	 of	Mtb	 and	 host	 genomic	 data	 to	 characterise	 the	

variation	and	 its	downstream	effects.	Chapters	2	 to	5	 focus	on	the	evolution	of	drug	

resistance	and	the	applicability	of	NGS	to	predict	drug	resistance.	Chapters	6	and	7	focus	

on	the	less	well	characterised	variation	of	the	pe/ppe	genes	and	methylome	which	could	

correlate	to	phenotypic	differences	between	strains.	Finally,	Chapter	8	integrates	host	

data	to	look	for	specific	interactions	between	the	two	genomes.	I	hope	that	this	data	

will	enable	researchers	to	answer	questions	concerning	the	diversity	of	Mtb	and	that	

results	 from	 this	 work	 will	 contribute	 towards	 our	 understanding	 of	 this	 complex	

pathogen.		

	

9.3	The	future	of	Tb	genomic	analysis	

The	cost	of	sequencing	has	fallen	at	a	faster	rate	than	Moore’s	law	predictions
10
	and	is	

likely	to	continue	along	this	trajectory	in	the	next	couple	of	years.		This	price	drop	has	

enabled	 sequencing	 of	 thousands	 of	 isolates	 as	 demonstrated	 in	 this	 thesis.	 The	

bottleneck	 to	 scaling	 up	Mtb	 sequencing	 projects	 currently	 lies	 at	 the	 culture	 step.	

Whilst	significant	strides	have	been	made	towards	the	achievement	of	this	goal
11,12

,	a	

cost	effective	and	high	throughput	solution	is	still	 lacking	and	further	development	is	

needed.	 We	 have	 shown	 the	 value	 of	 having	 big	 datasets	 to	 discover	 novel	 drug	

resistance	variants.	As	national	TB	programs	start	to	adopt	WGS	as	a	diagnostic	tool	a	

large	amount	of	data	will	be	collected.	This	not	only	has	an	impact	at	the	patient	level,	

but	serves	to	provide	an	epidemiological	view	of	TB	at	a	national	and	international	level.	

Work	should	focus	on	building	a	platform	for	real-time	analyses	of	new	sequence	data	

to	 provide	 useful	 information,	 such	 as	 drug	 resistance,	 to	 clinicians.	 Additionally,	
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sequence	data	generated	in	clinics	could	be	sent	to	a	centralised	database	along	with	

meta	data	such	as	location	and	date	of	collection.	Here,	new	data	could	be	integrated	

with	all	other	sequences	in	real-time	to	update	epidemiological	metrics	which	could	help	

with	developing	control	measures.	Results	from	DSTs	could	be	fed	 in	and	a	real-time	

GWAS	could	be	envisioned	whereby,	p-values	are	updated	on-the-fly	 to	create	a	 live	

drug	resistance	database.	As	more	data	is	generated,	the	sensitivity	and	specificity	of	

the	database	will	increase	too,	thereby	encouraging	more	countries/regions	to	take	part	

and	generating	a	positive	feedback	loop.	Geographical	data	could	also	provide	insights	

into	routes	of	transmission	and	help	TB	programs	identify	high	risk	areas	and	where	to	

focus	efforts.	As	host-based	therapies	advance,	so	will	the	need	to	characterise	host-

pathogen	interactions
13
.	Data	from	patients	could	optionally	be	collected	at	the	same	

time	as	the	pathogen	and	used	in	a	similar	analysis	as	described	in	Chapter	8.	This	could	

potentially	delineate	the	molecular	interaction	mechanisms	and	lead	to	a	more	effective	

host-directed	therapy.	Future	advances	in	technology	and	software	will	bring	prospect	

of	sequencing	in	the	clinic	closer	to	realisation,	helping	with	patent	management	and	

decreasing	 the	 burden	 on	 public	 health	 services.	 This	 in	 turn	 will	 facilitate	 the	

epidemiological	surveillance	of	TB	on	a	national	and	international	level	and	is	likely	to	

lead	to	greater	insights	into	the	disease	and	control	measures,	leading	to	the	fulfilling	of	

WHO	targets	for	eradication.	
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