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Abstract

Human tuberculosis disease (TB) is caused by bacteria within the Mycobacterium tuberculosis
complex, including M. tuberculosis (Mtb). Genetic variation within the pathogen can lead to
drug resistance, affect virulence and transmissibility. | have analysed Mtb whole genome
sequence data to improve the understanding of global genetic variation, and the resulting

insights could ultimately assist the development of TB control measures.

Whole genome sequencing platforms are being used to infer drug resistance profiles, and
thereby could assist clinical management. | investigated the reproducibility of sequence data
from two platforms (Illumina MiSeq, lon Torrent PGM™) and two rapid analytic pipelines
(TBProfiler, Mykrobe predictor). DNA replicates from the reference strain (H37Rv) and 10
drug-resistant strains were sequenced, and inferred drug resistance genotypes were

compared to drug susceptibility testing phenotypes.

Genome-wide association study (GWAS) can be used to detect mutations associated with Mtb
drug resistance. A first GWAS (n=127) attempted to identify mutations associated with
minimum inhibitory concentrations for first-line anti-tuberculosis drugs. A second GWAS was
applied to a large global set (n>6400) to identify mutations associated with first- and second-

line drug resistance.

M. aurum is an environmental mycobacteria that has been proposed as a model for the
development of anti-TB drugs. | have assembled and annotated its draft genome, and

identified copy number variants in known drug resistance targets.



Approximately 10% of the Mtb genome consists of two gene families (pe/ppe) that are poorly
characterised, and are hypothesised to be important virulence factors. Using a de novo
assembly approach, | characterised these genes and their diversity across a global collection
of clinical isolates with high depth short-read sequence data (n=518). A follow-up study using
along-read sequence technology (n=18, diverse stain types) confirmed the findings. This work
also generated new annotated reference genomes and characterised methylation sites,

which may affect transmissibility, pathogenicity and virulence.

A future direction of the TB genomics field is to identify genetic check points in host-pathogen
interactions using both human and Mtb genotypes. | analysed the genomes of ~720 TB case—
Mtb pairs and identified susceptibility markers, which are promising targets for future control

measures.
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1. Introduction

1.1 Global burden of tuberculosis disease

Human tuberculosis disease (TB) is a major global public health problem, with an estimated
10.4 million new cases and 1.8 million deaths in 2015 alone®. Disease control is becoming
difficult due to increasing drug resistance and in some populations HIV co-infection®. The
majority of new cases (60%) were from China, India, Indonesia, Nigeria, Pakistan and South
Africa® (Figure 1). HIV infection increases the incidence and mortality risk of the disease, and
1.2 million (11%) of new cases were HIV-positive®. One of the aims set out by the End TB
Strategy is a 35% reduction of TB deaths by 2020 compared to 2015. To achieve this, a

reduction of 4-5% needs to be sustained annually’.

Figure 1

The estimated incidence of new TB cases per annum (per 100,000). Taken from the WHO
Global Tuberculosis Report”.
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1.2 Disease etiology, risk factors and host susceptibility

Symptoms of TB include weight loss, chest pain, coughing, fever and night sweats. Droplets
containing the bacterium are inhaled, reach the alveoli and invoke an immune response
though macrophages and granulocytes. Once the bacilli have entered the lung they are
engulfed by macrophages which move into deeper tissue. Mtb then replicates within the
macrophage — eventually causing apoptosis and rupture of the host cell. More macrophages
are recruited to engulf the debris and the granuloma is formed through the recruitment of
NK-cells and T-cells (Figure 2)>. This process can either lead to replication of the bacilli in
macrophages and progression to active disease or the bacilli are contained and replication is
limited, resulting in latent infection. Pulmonary TB is the most common form of TB due to the
lungs being the primary point of infection but the bacilli can spread to other parts of the body
leading to extra pulmonary TB. Only 10% of individuals infected will develop active TB. In
addition to pathogen factors such as lineage and drug resistance, there are many host risk
factors involved with the outcome of infection including age, HIV status, immunosuppression
and genetics. There is some evidence of inter-population variation of resistance levels to TB>.
This variation could be attributed to differing socio-economic levels of populations, but also
host genetic factors affecting ethnic group susceptibility*. Several twin studies have suggested
that susceptibility may be heritable, with higher concordance for the development of TB
among mono- as opposed to di-zygotic twins’. Using experimental and molecular approaches,
some genetic differences between populations contributing towards the altered level of
infection have been found. Altered interferon-gamma (IFNy) expression in response to
mycobacterial antigens has been implicated in infection with atypical mycobacteria’. Studies

of patients suffering from high susceptibility to mycobacteria led to a number of variants in
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Figure 2

The initial stages of infection up to the formation of the granuloma. Adapted from Ehlers et
al’. Initial infection can lead to i) clearance, ii) latent infection or iii) active TB. This figure
demonstrates the many different cell types are involved in the generation of the
granuloma.
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receptors and ligands of the IL-12/IFNy pathway being implicated in susceptibility® 2. These
studies, while useful in demonstrating that host genetics is a factor in susceptibility to TB,
analysed rare variants which would not be expected to exist at high frequencies in human
populations. Identification of other host genetic variants affecting susceptibility is vital,
especially to improve patient management, and genome wide association studies (GWAS)
using large numbers of polymorphisms have been employed. The GWAS approach has
worked well for other infectious diseases, with associated loci detected for Leprosy, Dengue,
HIV and HBV™. The first GWAS was performed using 11,425 individuals in a combined cohort
from Ghana and The Gambia®. They found a region on 18q11.2 to be highly significant with
susceptibility to TB. However, validation studies in other cohorts have reported conflicting

1914 The largest study to date analysed 5,530 TB cases and 5,607 healthy controls in a

results
Russian population and identified 7 SNPs on chromosome 8 in the ASAP1 gene as being
associated with susceptibility to TB °. However a subsequent study in a Chinese Han
population could not replicate the strong associations reporteds. This inability to replicate
results has become a consistent theme for GWASs in the TB field. To date there have not been
any candidate regions in the human genome which have been significantly associated with
TB susceptibility across the majority of genome wide association studies. Human or pathogen

(or both) variation across regions may be an important component influencing the chances

of genetic association reproducibility.

1.3 Diagnosis

Active and latent TB have different diagnosis methods. The recommended diagnosis method
for latent TB is the tuberculin skin test or the blood interferon-gamma release assay. The

former is more cost effective and may be more suited for low-income regions while the latter
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has an improved specificity’®. Both these tests measure the response of the adaptive immune
system and therefore need to be administered greater than eight weeks’ post infection to
produce a reliable result. Symptoms and signs of TB like lesions in the lung can checked using
chest x-ray and used to diagnose TB. However, symptoms can overlap with other more
common diseases in low endemic countries and do not immediately point towards TB.
Additionally, interpretation of x-rays requires experience and is subjective. Smear microscopy
is the most widely used method of tuberculosis diagnosis for active TB. Its sensitivity is

1617 Culture is the

estimated at ~70% and can drop to as low as ~¥35% in some clinical settings
gold standard for diagnosis of tuberculosis. This can be performed using n solid (> 3-4 weeks)
or liquid culture (10-14 days)'®. Molecular diagnostic tests on sputum samples, such as the
Xpert MTB/RIF assay can detect Mtb with an increased sensitivity and can also detect
resistance to certain drugs, in this case rifampicinls. Recent efforts have concentrated on
detecting Mtb nucleic acids by sequencing direct from sputum®® or with limited culturing®.

Informatics tools have been developed to rapidly profile the Mtb for drug resistance and

strain-type from sequence data, thus potentially improving patient management?".

1.4 Treatments

Although there is no perfect treatment for TB, there are many anti-tuberculous drugs, which
are subdivided into two main categories. The first line drugs include rifampicin, isoniazid,
ethambutol, streptomycin and pyrazinamide. Second line drugs such as fluoroquinolones and
injectables should be supplemented when treatment fails with the above (Table 1). Other
new drugs currently used in clinical trials include bedaquiline, delamanid and clofazimine,
which are important for the most serious drug resistance cases. The WHO, and the UK based

National Institute for health and Care Excellence, standard recommended regimen for active
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respiratory TB consists of a 6 month regimen of the first line drugs isoniazid and rifampicin
supplemented with ethambutol and pyrazinamide for the first two months®* and can achieve
positive outcome rates of up to 95%%. Latent infections can be treated as a preventative
measure in high prevalence areas. A regimen of isoniazid for 6-9 months is recommended®.

Table 1 Summary of the drugs used to treat various forms of tuberculosis. Adapted from
Zumla et al

Drugs Drug regimen

Standard regimen 6 months rifampicin and isoniazid supplemented by
ethambutol and pyrazinamide in the first two months

Latent infection 6-9 months isoniazid

Multi- drug resistant TB Addition of second-line drugs e.g.:

e Fluoroquinolones — ofloxacin
e Injectables —kanamycin
e Bacteriostatic — para-aminosalicylic acid

Extensively drug resistant Bedaquiline, delamanid and clofazimine
TB, use of new drugs

When treatment failure occurs with first line drugs, second line regimens must be used. Multi-
drug resistant tuberculosis (MDR-TB) is defined by resistance to at least rifampicin and
isoniazid. Additional resistance to second-line drugs, the fluoroquinolones and injectables is
denoted as extensively drug resistance (XDR-TB). M/XDR-TB regimens are complicated and
costly. In particular, the current World Health Organisation (WHO) approved MDR-TB regimen
has an overall efficacy of only 50% and the median time to culture conversion can be as long
as five months'. The current regimen is also toxic and six months of painful injections
promotes non-adherence. Drug susceptibility testing (DST) must be used to inform on which
first/second line drugs to remove and supplement. The toxicity of current second line drugs

and the development of resistance has created a need for new drugs. Several new drugs are

16



currently being evaluated for use. Bedaquiline and delamanid are two new drugs which have

undergone phase Il and Il trials***°

and have been assigned the been assigned as “add-on
agents”, to be used in complicated cased of MDR-TB?’. These drugs, along with several more

in preclinical and clinical trial stages®® will aid in the fight against MDR-TB and XDR-TB.

1.5 Drug resistance

Mtb drug resistance is conferred by the accumulation of mutations (single nucleotide
polymorphisms (SNPs), insertions and deletions (indels)) in genes coding for drug-targets or -

29,30

converting enzymes®~". To overcome a loss of fitness that arises during the accumulation of

d3?%, Ineffective

such mutations®", putative compensatory mechanisms have been describe
use of the drugs, such as defaulting from treatment, can cause the host Mtb population to go
through a partial population bottleneck and lead to the mutants to increase in frequency -
effectively causing all Mtb within a patient to become resistant. Mutations conferring
resistance to rifampicin and isoniazid are well characterised. Rifampicin binds to and inhibits
RNA polymerase®*. Resistance to rifampicin is caused by mutations in the rpoB gene coding
for RNA polymerase B subunit®. Nearly all resistance conferring mutations occur in an 81bp
region in rpoB called the rifampicin resistance-determining region (RRDR)™. Isoniazid is a
prodrug which is activated by KatG catalase-peroxidase and binds to InhA to inhibit mycolic
acid synthesis®. Mutations in the katG gene or in the inhA promoter lead to resistance®”%.
Mutations for second line drugs are less well characterised and as a result are difficult to
predict using sequencingn. MDR-TB and XDR-TB cases have been reported in 117 countries’.

Approximately 3.9% of new cases and 21.0% of previously treated cases were estimated to

have MDR-TB. Additionally, an estimated 9.5% of MDR-TB cases are XDR-TB.
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Figure 3
A map indicating the percentage of new cases with MDR-TB. High incidence is seen in Russia

and other ex-Soviet Republics. Taken from the 2016 WHO Global Tuberculosis Report’.
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The burden of MDR-TB is especially high in India, China, South Africa and Russia (Figure 3). It
was estimated that of only 20.0% new MDR-TB cases eligible for treatment were enrolled in
appropriate programsl. One of the five priority actions of the WHO to address MDR-TB is

»23 As mentioned above,

through “expansion of rapid testing and diagnosis of MDR-TB cases
some molecular diagnostic tests can confirm some of the drug resistance genetic markers,
including the use of the Xpert MTB/RIF assay. However, standard culture followed by drug
susceptibility testing is still recommended®™. While the Xpert MTB/RIF assay has the

advantage of speed, it only looks at a specific small set of mutations associated with rifampicin

resistance®. This has the potential to miss novel or rare variants that have not been included

18



in the assay and does not detect resistance to other drugs. Using whole genome sequencing

it is possible to characterise all variation in an isolate®'.

1.6 Mycobacterium tuberculosis and strain diversity

TB is caused by members of the Mycobacterium tuberculosis complex (MTBC, see Figure 4
(top) for its position within the Mycobacterium phylogeny). The first whole genome sequence
was published in 1998 by Cole et al*°. The complex is characterised by low overall genetic
diversity and a striking clonal population structure. M. tuberculosis sensu stricto consists of
seven lineages; 1 Indo-Oceanic, 2 East-Asian including Beijing, 3 East-African-Indian, 4 Euro-
American, 5 West African 1, 6 West African 2 and 7 Ethiopian®’. These strains, together with
M. bovis and other tuberculosis-causing animal strains make up the MTBC. Imperative in the
study of infectious disease is the ability to compare the genetic relatedness of clinical strains
of the pathogen of interest. This inference can be used to infer transmission dynamics and

identify recent or ongoing outbreaks using sufficiently high resolution typing methods***>.

Several methods have been used to type (or genotype) M. tuberculosis (Mtb) including
insertion sequence (1S6110) typing, spoligotyping and Mycobacterial interspersed repetitive
units-variable number tandem repeat typing (MIRU-VNTR). The Mtb genome contains many
insertion elements. The 1S6110 insertion element has proven to be a good candidate to type
as it is specific to members of the MTBC and varies in copy number**. Digestion using Pvull
restriction enzyme cuts the DNA at specific sites in IS6110 sequence and when visualised using
a southern blotting approach leads to a distinct fingerprint which differs by strain. Following
this, PCR techniques were applied designed and greatly decreased the amount of DNA and

time needed. The first PCR technique was named spoligotyping and made use of the direct
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repeat (DR) region in the Mtb genome45. The DR region contains a variable number of 36bp
repeats interspersed by unique “spacer” sequences. The presence or absence of 43 of these
spacer sequence differentiates between strain types. While having the advantage of needing
a much smaller quantity of starting DNA than with IS6110 typing, the resolution is much lower
and it should be using in conjunction with a high-resolution method. Another PCR based
approach that has gained popularity is the MIRU-VNTR method*°. This involved the analysis
of variable number of tandem repeats (VNTR) of 24 repetitive loci in the Mtb genome
including the mycobacterial interspersed repetitive units (MIRU)*. The loci are amplified and
the number of repeats at each locus is estimated leading to a unique barcode which can be
translated to a strain type. Using these methods many different strain types have been

defined and deposited into databases such as SITVIT* and SpolDB4™.

These genotyping methods use less than 1% of the Mtb genome (size: 4.4Mbp). In
silico methods have also been developed to profile spoligotypes from whole genome
sequence data®®. Using these typing methods in conjunction with analysing long sequence
polymorphisms (LSPs) or regions of difference (RDs) and whole genome sequencing
approaches the phylogeny of the MTBC was delineated. Distinct clustering of strains into the
seven lineages in a phylogenetic tree is expected (see Figure 4 (bottom)). The strains have
been designated “ancient” (lineage 1,5,6), “modern” (lineages 2,3 and 4) and intermediate
(lineage 7) according to where in the tree they diverged from the ancestral outgroup (M.
canetti). Studies on the phylogeographic spread of Mtb have shown a strong correlation
between the strain type and geographic location®". This observation has led to the hypothesis
that Mtb travelled with and co-evolved with their human hosts during the out of Africa

expansion®” . The lineages are postulated to have differential impacts on pathogenesis,
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>33® For example, modern lineages, such as Beijing

disease outcome and vaccine efficacy
(lineage 2) and Euro-American Haarlem (lineage 4) strains exhibit more virulent phenotypes
compared to ancient lineages, such as Indo-Oceanic®’. Whilst some genetic differences

between lineages have been identified*, the molecular mechanisms responsible for

differences in pathogenesis and virulence remain largely unknown.

1.7 PE/PPE protein families

Until recently, the pe/ppe genes have been difficult to sequence and have often been ignored
as repetitive and potentially redundant gene families. However, these two groups of proteins,
the pe and ppe families have recently been implicated in immune evasion and virulence®.
Members of the pe/ppe gene families are characterised by the presence of proline-glutamate
(pe) and proline-proline-glutamate (ppe) signature motifs near the N-terminus of their gene
products®®. The pe (99 loci) and ppe (69) gene families constitute ~10% of the coding potential
of M. tuberculosis and are scattered throughout the genome®. The families can be subdivided
based on similarities in their N-terminal regionssz. Many of the pe and ppe gene products are
predicted to be localised to the cell membrane or secreted including those in the pe_pgrs

6183 It has been

domain containing subgroup and the ppe_mptr domain containing subgroup
speculated that these proteins may play a role in virulence®. Pe/ppe genes are differentially
expressed during infection® and some pe/ppe proteins have been shown to elicit immune

®18% and there is evidence that the pgrs domain can inhibit antigen

responses by the host
processing66. Whilst pe_pgrs and ppe_mptr genes represent some of the most variable M.

tuberculosis regions, some members of the pe/ppe family are conserved across strains and

species, therefore implying different functional roles.
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Figure 4 (top)

The mycobacterium phylogeny built using 27 whole genome reference sequences. The M.
tuberculosis complex is located next to M. canettiin the slow growing mycobacterium clade (Phelan

etal, 2015)59; (bottom) Phylogenetic tree depicting the main lineages of the MTBC. Adapted from

Niemann et al*®
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Few of the pe/ppe protein structures (including pe25/ppe41) have been characterised®, and
in lieu of experimental and functional work, insights into their function and interaction
partners must come from in silico analysis of large-scale ‘omics data. However, due to the
repetitive nature and high GC content genetic variation in the pe/ppe genes, it has been
difficult to characterise them using traditional mapping approaches, leading to their
systematic exclusion from analysis®’. There have been conflicting studies reporting either high
or little or no sequence divergence58_7°, but these studies have been limited by the number

of genes and diversity of strains analysed.

1.8 Next generation sequencing technologies

Advances in genome sequencing technology have enabled the characterisation of the entire
DNA sequence of an organism of interest. Next generation sequencing (NGS) refers to the
high throughput sequencing technologies which superseded Sanger sequencing. Numerous
NGS platforms have been developed including lllumina, 454 and lon Torrent’"’?. These
platforms use a different set of reactions/processes however they all rely on the same
principle: the DNA/genome is cut into smaller fragments and sequenced in parallel to produce
a large number of overlapping sequences (reads). These sequences can be aligned to a
reference genome or assembled de novo to build up a picture of the DNA which was
sequenced. NGS has numerous advantages over sanger sequencing including cost,
throughput and accuracy. The human genome project cost $3 billion and took 13 years to
complete. With NGS it is now possible to sequence a human genome in three days for
$1000”3. Pathogen genomes are much smaller and multiple genomes can be sequenced
(“multiplex sequencing”) in parallel — thus driving the cost to ~£60 per isolate (based on an

[llumina HighSeq, multiplexing 24 samples, 50-fold genomic coverage). The reduction in cost
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and increase in accuracy means that it is possible to sequence hundreds of genomes to use in
projects investigating pathogen genomic diversity. To date, sequence data for ~31k isolates
have been deposited into the European nucleotide archive (ENA) short reads archive. Whilst
NGS technologies have provided significant improvements over previous technologies they
do suffer from some drawbacks. The main limitation is that the short reads they produce do
not characterise repetitive regions as well as unique regions of the genome. When the size of
a repeat is longer than the read length it is extremely difficult to determine the copy number
of a repeat using sequence information alone. Advancing on short-read sequencing
technologies, so called third-generation NGS platforms have tried to circumvent these issues.
These include Pacific Biosciences (PacBio)’* and Oxford Nanopore minlON’>. Both these
platforms have the ability to sequence much longer fragments, leading to the production of
reads greater than 10Kb. The reads are long enough to span entire repetitive elements of
Mtb. PacBio technology relies on sequencing of a template strand by a modified DNA
polymerase. This process produces an optical signal which can be translated into a nucleotide
base. Additionally, PacBio captures the speed at which a base is incorporated. DNA that has
been methylated will take longer to pass through the polymerase. This differential speed
allows for the epigenetic modifications to be detected. The minlON uses a different
technology, instead measuring the electrical current changes as a DNA molecule passes
through a small pore in a membrane to identify the nucleotide bases. The minlON is very
portable and connects to a computer via USB connection to transfer the signal data which is
then converted to base calls. Its portability and ease of use has let to its use in projects where
mobility is key’®. Although sequencing costs have dropped, the size of the genome means it
is still not cost effective to run on a large scale for human studies such as GWASs. These

studies use single nucleotide polymorphism (SNP) arrays to identify genetic differences,
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typically between TB cases and controls, whilst controlling for the confounding effects of
population structure. The SNP arrays currently consist of millions of oligonucleotide probes
(for example lllumina Omni 2.5), which hybridise selectively to DNA containing specific alleles.

Additional genotype data up to ten million SNPs are imputed’’ from reference panels’®.

1.9 Applications of whole genome sequencing

The advent of NGS has enabled the characterisation of genomic variation at an ever-faster
scale. This has allowed for numerous improvements in the classification of pathogen strains,
detection of drug resistance and the large-scale study of transmission. NGS can detect
differences between samples on a single base resolution. This fine-scale has made it an
excellent choice of tool in the field of strain typing. Previous technologies such as 1S6110,
spoligotyping and MIRU-VNTR typing suffer from low resolution and convergent evolution of
the same pattern. Whole genome sequencing on the other hand incorporates all possible
genomic variation and thus provides much better resolution®®. Multiple efforts have been

made to create SNP barcodes that infer strain type from NGS data’®™®!

. The largest of such
studies was performed by Coll et al.*' which analysed a collection of 1601 genomes resulting
in a barcode of 62 SNPs. A numerical based lineage system was proposed allowing for nested
sub-lineages. This system has allowed for the rapid classification of NGS data into strain types

8283 With the extra resolution NGS provides over

is useful in terms of epidemiological studies
other typing methods it has become possible to create transmission networks using genomic
data along or in combination with epidemiological data. Mutations are acquired over time
and the number of mutations between two isolates can be used as a proxy if a transmission
event occurred. For Mtb a SNP a maximum of 10 SNP differences has been proposed as the

83,84

cut-off for recent transmission NGS can also help to disentangle the origin of drug
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resistance in a patient; acquired or transmitted. Acquired drug resistance refers to the micro
evolution within a patient that leads to the acquisition of drug resistance mutations.
Transmitted resistance is the transmission of a strain which has already developed resistance
to a drug. Studies have found a high level of transmitted resistance in high endemic regions

88 Using NGS to create transmission networks and tracking the flow of

such as South Africa
drug resistance mutations through the network can shed insights on this topic. Another useful
application of NGS is the in silico detection of drug resistance. Molecular diagnostics such as
the GeneXpert MTB/RIF can detect specific mutations in the rpoB gene which lead to
rifampicin resistance. While reporting high sensitivity, this could miss mutations which are
not included in the assay. Using NGS it is possible to perform in silico resistance prediction
from the resulting data, by detecting all variations and cross referencing these to a mutation
database. Several computer programs providing fast and accurate prediction of drug
resistance have been developed including TBProfiler, Mykrobe-predictor, PhyResSE21'87'88.
One limitation with these tools is the underlying database. As sequencing becomes more
common, new drug resistance variants will be detected or characterised, which have not been
included in current databases. Recent consortial efforts are attempting to establish new
databases based on whole genome sequence data and well characterised resistance
phenotypes (ReSeqTB)89. Sequencing projects aiming to detect novel drug resistant variants
are of great importance and will improve the diagnostic sensitivity of these tools. NGS can be
envisioned running along standard diagnostics, helping to perform rapid in-silico drug
resistance profiling to inform drug choices and identifying transmission events. Examples of
its use in a clinical setting have already been demonstrated®®! and it will become more

achievable with improvements in databases, software and the introduction of portable

sequencing machines such as the minION.
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1.10 NGS analysis

Raw sequence data and its associated quality from next generation sequencing machines
typically is stored in text files called fastq files. The quality for each base is stored in the form
of a phred quality score. The phred quality score represents the probability that the called
base is incorrect. The raw sequence data can either be aligned to a reference genome
(mapping) or assembled de novo. Mapping is used when fast accurate characterisation of non-
repetitive regions is required. A multitude of programs are available to perform mapping

92,93

including BWA and bowtie™”". The mapping process consists of finding the optimum
alignment position for each read in the dataset. The information is then stored in the
SAM/BAM format®. SAMtools/BCFtools software can then be used to process the alignment
files and extract SNPs and small indels. De novo assembly is used when a reference genome
is not available or if there are hypervariable or repetitive regions in the genome. Programs
such as Velvet™ and SPAdes™ can be used to perform assembly and output a fasta formatted
sequence. This can then be aligned to a reference sequence or compared with other draft
assemblies to extract variants. Variants and their associated qualities are stored in variant call
files (VCF). A filtering step is required to take only high quality variants to downstream
analyses. Variants with high quality score (Q>23), minimum depth of 10 and greater than 70%
of reads supporting the variant are used in the final dataset. Variants for all isolates in a
dataset can be collated together in a large matrix where the rows are variants and the
columns are samples. This dataset can then be used in further population-level analyses.
While NGS approaches works well with unique regions of the genome, a number of issues

associated with the different steps during the data processing can lead to spurious variants.

Firstly, the quality of the data has a large impact on the downstream results. Inclusion of low
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guality sequence can lead to the calling of false variants or aligning of a read to the wrong
location. To reduce these errors, the raw data can be “trimmed” to remove bases with low
quality phred scores. Secondly the non-unique regions of the genome, such as those coding
for a domain which is present in many proteins, can lead to mapping of sequence to the wrong
location which may lead to false variants. Either removing these regions or using de novo

assembly can be used to counter these effects.

1.11 Host-pathogen interactions

TB can be viewed as a hierarchical model of two phenotypes interacting, that of the human
and pathogen. These phenotypes are the result of a vast number of proteins, lipids and
carbohydrates interacting together. In turn these proteins are coded for by the DNA and any
variation in this sequence will have a knock-on effect on the phenotype. Though this
representation is over simplified and disregards environmental and other stochastic
processes, there is no doubt that variation in the genome influences the phenotype
presented. For example, at an individual pathogen resolution there is evolution of drug
resistance, and at a population scale, transmission dynamics of a strain and clonal outbreaks.
The main theme of this work is to analyse variation in the host and pathogen to provide
insights into phenotypes. Whilst this is mainly genomic variation with regards to drug
resistance, it gets more complicated when analysing phenotypes such as clinical outcome
when contact with the host is involved. The variability of the host could affect the variation
of the bacterium and vice versa. The bacterium must be able to resist a wide range of
environmental conditions, from airborne dehydration, macrophage uptake, endosome pH
and immune attack. One possible route is to modulate the human host response to reduce

the Mtb resistance to these environments. A recent study found differential expression of
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several genes in the dosR regulon between HIV positive and negative patients”’. The function
of the dosR regulon has not been fully characterised but it has been proposed to be involved
with survival in granulomas®’. The pe/ppe gene families have also been reported to elicit
immune response from T and B cells and have been proposed to contribute towards host-

evasion through antigenic variation®®°.

1.12 The project structure

The overarching theme of this thesis is to use genetic information to improve our
understanding of the impact of genetic variation on phenotypic traits such as drug

resistance and host susceptibility to infection. Figure 5 shows the

The thesis is divided it into 7 chapters, each consisting of one manuscript (4 published, 1

accepted, 1 under revision, and 1 in preparation), which address the following topics:

1. An evaluation of two sequencing platforms —the Illumina MiSeq and lon torrent
PGM — for sequencing in Mtb;

2. Validation of genome wide association studies to detect drug resistance mutations in
Mtb;

3. Application of genome wide association study approach to a large global dataset of
MDR and XDR strains;

4. Assembly of the first draft genome for Mycobacterium aurum — a surrogate model
for anti-tuberculous drug screening;

5. Characterisation of the pe/ppe gene families using genome assembly in a set of ultra
high-depth sequenced isolates;

6. Analysis of the Mtb methylome using PacBio sequencing;

7. Investigation into host-pathogen genome interactions using a GWAS approach.
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Figure 5

This thesis analyses genomic data genomic, methylomic, protein structural and

phenotypic data shown in (a). A simplified overview of the genomic data bioinformatics

protocol is shown in (b).
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Research papers included in this thesis in order of presentation include:

Research
paper Authors Title Status, journal and
number year
(chapter)
2 Phelan et al (including | The variability and reproducibility of | Published. Genome
Clark TG) whole genome sequencing Medicine (2016)
technology for detecting resistance
to anti-tuberculous drugs
3 Phelan et al (including | Mycobacterium tuberculosis whole Published. BMC
Clark TG) genome sequencing and protein Medicine (2016)
structure modelling provides
insights into anti-tuberculosis drug
resistance
4 Phelan et al (including | The Mycobacterium tuberculosis In press. Nature
Hibberd ML and Clark | resistome from a genome-wide Genetics
TG) analysis of multi- and extensively
drug-resistant tuberculosis
5 Phelan et al (including | The draft genome of Mycobacterium | Published.
Bhakta S and Clark TG) | aurum, a potential model organism International journal
for investigating drugs against of Mycobacteriology
Mycobacterium tuberculosis and (2015)
Mycobacterium leprae.
6 Phelan et al (including | Recombination in pe/ppe genes Published. BMC
Clark TG) contributes to genetic variation in Genomics (2016)
Mycobacterium tuberculosis
lineages
7 Coll and Phelan et al Methylation in Mycobacterium In press. Scientific
(including Hibberd ML | tuberculosis is lineage specific with reports
and Clark TG) associated mutations present
globally
8 Coll and Phelan et al Genome-wide host-pathogen To be submitted.
(including Hibberd ML | analyses reveals genetic interaction Scientific reports
and Clark TG) points in tuberculosis disease

The use of NGS to predict drug resistance relies on accurate characterisation of all sequence

variants within an isolate. If the error rate is high or the sequence coverage is too low

variants will be incorrectly called which will negatively impact on clinical decisions. Similarly,

when inferring transmission, a high level of accuracy is required. Transmission is often

inferred through measuring the number of SNP differences between isolates. A single error




in variant calling could lead to a wrongly inferred transmission event. For large genome wide
association studies, it is paramount to have a high-quality sequence dataset to boost true
association signals. Chapter 2 addresses the issue of variability and reproducibility of
sequencing for use in a clinical and experimental setting. To this effect, we sequenced 10
M/XDR isolates and the reference strain (H37Rv) performing a number of technical and

biological replicates in order to characterise the reproducibility of NGS for Mtb.

After establishing the high fidelity of sequencing and bioinformatic pipelines to
process raw data to a set of high quality variant calls we proceeded to develop a robust
genome wide association study pipeline. Chapter 3 looks at the development of GWAS
methods for drug resistance (DR) variant discovery. GWAS have been used in the human
setting for over a decade but only recently have been applied in the prokaryotic field. |
applied this methodology to a set of 127 drug resistant and sensitive clinical isolates from
the TDR strain bank. In addition, we modelled the effect of mutations on protein structure
and stability using crystallographic structures and homology models to identify key

characteristics of DR mutations.

After validating the effectiveness of GWAS to detect drug resistant mutations we
looked to apply the methodology to a larger dataset with potentially previously
uncharacterised drug resistance mutations. Chapter 4 describes the application of the
GWAS methods detailed in Chapter 3 to a large global collection of susceptible, MDR-TB and
XDR-TB strains. We attempt to identify novel genetic variants to inform and improve in silico

prediction of drug resistance.

Chapter 4 highlights the worrying amount of resistance to second line treatments.

Whilst new drugs such as bedaquiline, linezolid and delamanid are being rolled out for use,
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resistance to these drugs has already been reported*®. A steady flow of new or repurposed
drugs are needed to combat the rise of XDR-TB. The high throughput profiling of therapeutic
compounds in Mtb is hampered by its slow growth rate and high level of safety required.
Several surrogate models have been proposed such as M. smegmatis and M. fortuitum. M.
aurum is a fast-growing environmental mycobacterium which has proven to be useful as a
model due to its similar cell wall composition and antibiotic susceptibility profiles. Whereas
these phenotypic characteristics are comparable, their genomic similarities were not known
due to the lack of reference genome for M. aurum. Chapter 5 looks at assembling the draft

genome and the genomic differences between M. aurum and Mtb.

In Chapter 2, | observed good coverage and high quality variant calling across loci
involved in drug resistance. However, not all the regions of the genome are as easy to
characterise. Chapter 6 Looks at improving the characterisation of the pe and pe gene
families, thought to play a role in host-pathogen interactions. These gene families are highly
repetitive and are frequently omitted from population level analyses. By performing
genome assembly using the previously developed pipeline (chapter 5) on a set of 518 high
depth-of-coverage isolates | attempted to gain insights into the diversity within these

families.

While Chapters 1 to 6 focused on solely on genotype, there are additional
modulating factors involved in the genotype to phenotype cascade, including transcription
levels and methylation. Methylation has been studied in depth in human populations, giving
rise to the field of epigenetics. Methylation can greatly influence a phenotype by altering
gene expression whilst keeping the genetic code intact. Methylation also occurs in bacteria

and whilst it mainly serves to protect its own DNA against restriction enzymes it has also
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been reported to play a role in transcription. In Chapter 7, | sought to characterise the
extent that methylation occurs in Mtb by using PacBio sequencing. Additionally, long reads
from PacBio enables a near-perfect characterisation of the repetitive regions in the genome

including the pe/ppe genes, thus allowing confirmation of previous results.

When analysing aspects such as clinical outcome, host susceptibility and
transmission, genomes from either the host or pathogen are analysed. In Chapter 8, | aim to
consolidate both data sources into a single analysis. This approach allows us to look for co-
occurrence of specific mutations in both genomes which may shed light on host-pathogen
interactions. Previous attempts to detect susceptibility markers to tuberculosis have not
been replicated across different human populations. We hypothesised that the differential
endemic strains circulating could contribute toward this phenomenon. To test this
hypothesis, | analysed samples from 720 tuberculosis positive patients for which we have

human chip data and pathogen sequencing data, and revealed HLA — lineage interactions.
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Abstract

Background: The emergence of resistance to anti-tuberculosis drugs is a serious and growing threat to public
health. Next-generation sequencing is rapidly gaining traction as a diagnostic tool for investigating drug resistance
in Mycobacterium tuberculosis to aid treatment decisions. However, there are few little data regarding the precision
of such sequencing for assigning resistance profiles.

Methods: We investigated two sequencing platforms (lllumina MiSeq, lon Torrent PGM™) and two rapid analytic
pipelines (TBProfiler, Mykrobe predictor) using a well characterised reference strain (H37Rv) and clinical isolates from
patients with tuberculosis resistant to up to 13 drugs. Results were compared to phenotypic drug susceptibility
testing. To assess analytical robustness individual DNA samples were subjected to repeated sequencing.

Results: The MiSeq and lon PGM systems accurately predicted drug-resistance profiles and there was high
reproducibility between biological and technical sample replicates. Estimated variant error rates were low (MiSeq 1
per 77 kbp, lon PGM 1 per 41 kbp) and genomic coverage high (MiSeq 51-fold, lon PGM 53-fold). MiSeq provided
superior coverage in GC-rich regions, which translated into incremental detection of putative genotypic drug-specific
resistance, including for resistance to para-aminosalicylic acid and pyrazinamide. The TBProfiler bioinformatics pipeline

acid, with an overall concordance of 95.3%. When using the Mykrobe predictor concordance with phenotypic testing
was 73.6%.

Conclusions: We have demonstrated high comparative reproducibility of two sequencing platforms, and
high predictive ability of the TBProfiler mutation library and analytical pipeline, when profiling resistance to first- and
second-line anti-tuberculosis drugs. However, platform-specific variability in coverage of some genome regions may
have implications for predicting resistance to specific drugs. These findings may have implications for future clinical
practice and thus deserve further scrutiny, set within larger studies and using updated mutation libraries.

was concordant with reported phenotypic susceptibility for all drugs tested except pyrazinamide and para-aminosalicylic
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Background

Mycobacterium tuberculosis, the bacterium that causes
tuberculosis disease (TB), has overtaken HIV as the
world’s major cause of death from an infectious agent
[1]. In recent years, control of the disease has been made
more difficult by the emergence of multidrug-resistant
tuberculosis (MDR-TB), which is resistant to at least ri-
fampicin and isoniazid, and extensively drug-resistant
(XDR-TB), which refers to additional resistance to the
fluoroquinolones and second-line injectable drugs
(amikacin, kanamycin and capreomycin) used to treat
MDR-TB [2]. Programmatically incurable TB with resist-
ance to up to 14 drugs has been reported in several parts
of the world, including countries with a high TB burden
such as India and South Africa [3, 4]. Phenotypic
methods of determining susceptibility to anti-TB drugs
take weeks or months, they are additively costly, and re-
quire culture and manipulation of large numbers of
highly infectious bacilli. Drug resistance in M. tubercu-
losis is almost exclusively due to mutations in the circu-
lar genome and so molecular determination of resistance
offers a rapid, potentially cost effective, and safer alter-
native. Commercially available molecular-based tests and
line probe assays cover a limited number of drugs but,
with the exception of rifampicin, they have relatively low
sensitivity for detecting all possible molecular targets for
resistance [5]. Due to the multiplicity of drugs used in
the treatment of TB, determining the full resistance pro-
file for a patient suspected of having drug-resistant dis-
ease requires the examination of many loci.

Next-generation whole genome sequencing offers an
attractive option as it simultaneously examines all loci
and provides information regarding both small and large
changes in the genome [5]. This option has been widely
reported as a means of identifying putative resistance-
causing mutations and more recently has been used in
the management of patients with drug-resistant TB to
guide selection of appropriate drug regimens [6-11].
This approach is significant because the current treat-
ment outcomes for MDR-TB are poor, largely due to
current molecular tests being unable to guide effective
individualised therapy. It also has public health implica-
tions because of prolonged patient infectiousness due to
suboptimal treatment.

The M. tuberculosis genome is challenging to sequence
due to its high GC content and repetitive nature. Sur-
prisingly, despite the serious consequences of misdiag-
nosis, there is a paucity of data regarding the reliability
of next-generation sequencing platforms or the analyt-
ical methodology used for assigning resistance [5]. To
address this issue we investigated the utility of two com-
mercial sequencing platforms for predicting resistance to
13 anti-TB drugs. We also examined analytical algo-
rithms and two rapid bioinformatics tools (TBProfiler,
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Mykrobe predictor) for predicting resistance from raw se-
quence data. Testing was performed with a fully suscep-
tible reference strain (H37Rv) and ten clinical isolates
from patients with drug-resistant TB.

Methods

Samples

M. tuberculosis clinical isolates were sourced from ten
patients with known drug-resistant TB admitted to four
different hospitals in Lisbon between 2007 and 2013.
These samples were not part of a transmission chain
and there is no epidemiological link between the pa-
tients. All clinical samples and the reference strain
H37Rv (ATCC 25618D-9, Lot # 60986340) were pre-
pared by inoculating a single colony into Middlebrook
7H9 broth supplemented with 10% OADC (Becton
Dickinson) (see Table 1 for list). Susceptibility testing for
the first-line anti-TB drugs rifampicin (RIF), isoniazid
(INH), ethambutol (ETB), pyrazinamide (PZA) and
streptomycin (STR) and the second-line drugs rifabutin
(RFB), amikacin (AMK), capreomycin (CAP), ofloxacin
(OFX), moxifloxacin (MOX), ethionamide (ETH), para-
aminosalicylic acid (PAS) and linezolid (LZ) was per-
formed on all strains with the MGIT960 system (Becton
Dickinson), according to the manufacturer’s instructions.
Quantitative drug susceptibility testing (qDST) for both
first- and second-line drugs was conducted using a com-
bination of the MGIT960 system and the Epicenter
V5.80A software equipped with the TB eXIST module
(Becton Dickinson) [12, 13].

DNA was extracted and purified from the liquid cul-
tures using a cetyltrimethylammonium bromide (CTAB)
method [14]. The quality was assessed by fluorometric
quantification, Qubit™ 3.0 Fluorometer with a dsDNA
Broad Range Assay Kit (Thermo Fisher Scientific) and
agarose gel electrophoresis. Triplicate DNA samples
from each clinical isolate were prepared (biological repli-
cates) and individual DNA extracts were subjected to re-
peated sequencing (technical replicates).

Library preparation and sequencing

For MiSeq sequencing, ~200 ng of genomic DNA was
sheared to an average size of 500 bp by ultrasonication
(Covaris $220). Sheared DNA was purified/concentrated
on MinElute Spin Columns (Qiagen). DNA concentra-
tions were measured on a Nanodrop UV spectrophotom-
eter and the sheared samples diluted to 5-12.5 ng/ul.
Library constructions were performed using the
Ovation Rapid DR Multiplex System (NuGen) accord-
ing to the manufacturer’s instructions. Purified libraries
were amplified in emulsion PCR, size selected (500-
700 bp) by preparative electrophoresis on composite
gels (1.2% LMP-Agarose/0.8% Synergel) and then puri-
fied on MinElute Columns. Libraries were sequenced
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Table 1 Study samples (DNA extracted from culture isolates) and their susceptibility to anti-tuberculosis drugs

INH RIF STR ETB PZA RFB ETH AMK CAP OFX MOX PAS LZ KAN®

Resistance phenotype

Sample Year® Lineage Spoligo.  Drug susceptibility test phenotype
family
POR1 2007 4342 LAM4 R R R R R R
POR2 2007 4110 X2 R R S S S R
POR3 2007 4342 LAMI R R R R R R
POR4 2007 4342 LAM1 R R R R R R
PORS 2007 4342 LAM4 R R R R R R
POR6 2008 4.34.2 LAM4 R R R R R R
POR7 2009 4342 LAM4 R R R R R R
POR8 2012 4342 LAM4 R R R R R R
POR9 2011 4342 LAM4 R R R R R R
POR10 2013 421 Ural H3/4 R R R R R R
H37Rv - 49 H37RV S S S S S S

R

D W W WV DWW DV WV W D

S

R R R R R S R XDR-TB
- MDR-TB
XDR-TB
XDR-TB
- MDR-TB
XDR-TB
XDR-TB
XDR-TB
XDR-TB
MDR-TB

v

»w W B DWW DWW LV W BW WV
»w W W W W LN L W/ WL
VW VW W W VW LV W W W
Vil B L v n un uv

w w w w w w w w w

»w u»n VW VW PV VW UV VW W U
D WV PV WV D

S S S S S - Pan-susceptible

MDR-TB multidrug-resistant TB, XDR-TB extensively drug-resistant TB, INH isoniazid, RIF rifampicin, STR streptomycin, ETB ethambutol, PZA pyrazinamide, RFB rifabutin,
ETH ethionamide, AMK amikacin, CAP capreomycin, OFX ofloxacin, MOX moxifloxacin, PAS para-aminosalicylic acid, LZ linezolid, KAN kanamycin, S “susceptible”,

R "resistant”

Bold indicates discrepant calls by Mykrobe Predictor, underlining indicates discrepant calls by TBProfiler

?Year of collection

Drug susceptibility test not performed, with status inferred by the TBProfiler library

with an Illumina MiSeq V3 and 300-bp paired-end
reads with samples randomised across two runs
(each ~24 h in duration).

Ion Torrent library preparation and sequencing was
performed at Thermo Fisher Scientific, UK. Sequencing
was carried out with the Ion Torrent PGM™ system (Ion
PGM). Libraries were constructed with the Ion Xpress™
Plus Fragment Library Kit as per the manufacturer’s in-
structions (MANO0009847 Revision C.0), using 100 ng of
genomic DNA which was sheared with the provided Ion
Shear™ Plus Reagents to an average size of 350 bp, size
selection using an E-Gel® SizeSelect™ 2% Agarose Gel, and
purification with Agencourt” AMPure® XP Reagent. Fi-
nally, the libraries were quantified on the StepOnePlus™
System using the Ion Library Quantitation Kit, then
diluted to 100 pM and pooled in equal volume. Purified
libraries were sequenced with an Ion 318™ v2 chip (400-bp
kit) and the Ion PGM™ HiQ™ Chef Kit as stated in the
manual (MANO0010919, revision A.0). The runtime
was ~3 h per sample. The software used on both Ion
PGM™ and the Ion Chef™ System was Torrent Suite™
Software version 4.6.

Bioinformatic pipeline

For the bioinformatic analysis we used a previously re-
ported pipeline [10, 15, 16]. Unless stated otherwise,
software was run at default settings. Reads were trimmed
by Trimmomatic using a PHRED quality of 20 as the
cutoff. Trimmed reads were then mapped against H37Rv
(GCA_000195955.2) with BWA-mem v0.7.12 [17]. SNP
and insertion and deletion (indel) variants were called
with Samtools 0.1.19 [18] and GATK v3.6 [19]. We

compared the variants called by both algorithms, but
also report results of the conservative and typical ap-
proach of retaining the consensus polymorphisms across
both methods. The genotypes of SNPs were called when
an alternative allele was found in 20% of the mapped
reads at a particular position. A default minimum depth
of ten reads was required to call SNP genotypes, other-
wise genotypes were denoted as missing data. This cutoff
has been applied widely [15, 16, 20]. The robustness of
the genotype calls was assessed across a range of depths
of coverage of the reference and alternative alleles (depth
5-20, major allelic frequency >0.5 and >0.7). The refer-
ence genome was partitioned into overlapping 300-bp
sequences allowing the uniqueness of genomic regions
to be determined using gem-mappability [21]. Only 1.5%
of the genome was estimated to be non-unique, and
variants within these regions were discarded, leaving a
set of high quality SNPs and indels. All 36 candidate
drug-resistance genes [5] were found to be unique, thus
removing the risk of false calling of SNPs due to inappro-
priate mapping to an analogous region. A summary of the
pipeline is presented in Additional file 1: Figure S1.

In silico profiling of M. tuberculosis resistance phenotypes
We compared two informatics tools for assigning resist-
ance from sequence data. Drug-resistance status across 14
drugs was called in silico from raw sequence data using
the web-based TBProfiler tool (http://tbdr.lshtm.ac.uk/)
[5]). This tool also generates lists of mutations in candi-
date loci, and these formed the basis of identifying any
additional putative novel polymorphisms. All mutations
were checked by analysis of alignments and de novo
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assembly, as well as confirmed by alternative sequencing
methods (see the next section, “Confirmation of muta-
tions detected by whole genome sequencing”). Resistance
profiles were also generated with the Mykrobe predictor
tool (version July 2016) [22].

Confirmation of mutations detected by whole genome
sequencing

Genomic DNA was extracted as described above and
used for PCR amplification prior to examination by line
probe assay and/or DNA sequencing. The Genotype
MTBDRplus (Hain Lifescience) investigates the rpoB
and katG genes and inhA regulatory region and Geno-
type MTBDRs! (version 1, Hain Lifescience) investigates
rrs, gyrA and embB. Both kits were used according to
the manufacturer’s instructions. As the line probe assays
encompass a limited number of loci, we also performed
Sanger sequencing for inhA, katG, tlyA, eis, gidB, pncA,
gyrA, ethA, embB, embC-embA, rpsL, folC and thyX
genes (see Additional file 2: Table S1 for the primers
used). PCR products were purified and both strands se-
quenced at StabVida (Portugal). All sequences were edi-
ted and analysed with ChromasPro 2.0.0 (Technelysium,
Australia), compared to the sequences of M. tuberculosis
H37Rv reference strain (GenBank AL123456.2) and
aligned with Clustal Omega [23].

Results

Coverage

Triplicate “extraction” DNA samples from ten clinical
isolates and a single H37Rv sample were sequenced on
the MiSeq platform. Four DNA samples (from POR5, 6
and 7 and H37Rv) were each sequenced six times (“tech-
nical” replicates). Duplicate DNA samples from three
clinical isolates (POR1, 2 and 6) were also sequenced on
the Ion PGM. Summaries of the sequence data obtained
for each platform are presented in Additional file 3:
Table S2. With MiSeq sequencing the number of paired
reads varied across samples (median 1.2 million, range
0.4 to 3.2 million), and on average 99% of reads mapped
to the H37Rv reference, giving a median depth of cover-
age of 51-fold (across sample range 18- to 79-fold). The
majority of the genome (>96%) was covered to at least
tenfold depth.

In contrast, for the Ion PGM platform the median
number of reads was 990,854 (range 928,006-1,124,215)
translating into a median of 53-fold (range 48- to 59-
fold) genomic coverage. A large proportion of the
genome (~25%) had low coverage and was attributed to
regions with high GC content (Fig. 1). Whilst high
coverage (100- to 200-fold) was attained for regions with
GC content up to 69%, above this level coverage drops
below tenfold, which was the cutoff used for calling vari-
ants. For MiSeq sequence data, this drop only occurs
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when the GC content reaches 75% or above. Many re-
gions in the M. tuberculosis genome, especially the pe/
ppe genes [24], are high in GC content (median 69%,
range 47-87%) and therefore potentially difficult to
characterise. The coverage across the 36 drug-resistance
candidate genes was high for MiSeq (mean ~90-fold)
and exceeded the tenfold cutoff, except in the thyA gene
in the three PORI1 replicates (Fig. 2). These XDR-TB
replicates contained double dfrA-thyA deletions, thought
to be responsible for para-aminosalicylic acid (PAS) re-
sistance [25]. A direct comparison of the POR1, 2 and 6
sample coverage across platforms highlighted greater
variability in candidate genes in Ion PGM due to differ-
ential GC content. Whilst there was platform-wide de-
tection of the deletion-driven lower coverage in thyA in
POR1 (Fig. 3; Additional file 4: Figure S2), the variable
coverage in the neighbouring regions for Ion PGM could
lead to less certainty in detection.

SNP variants and error rates

We estimated the variant error rates (measured as the
number of sites which were discordant among repli-
cates) to be low for both platforms (MiSeq 1 per 77 kbp,
Ion PGM 1 per 41 kbp). Across comparable samples, the
number of high quality SNPs detected using MiSeq data
was higher than from Ion PGM, mostly due to low
coverage in the alignments generated from the Ion PGM
(Additional file 3: Table S2). We sought to investigate
the effects of variant calling algorithms on the numbers
of SNPs detected in unique genomic regions. From the
MiSeq H37Rv data, similar numbers of SNPs were de-
tected across replicates (Samtools 64—69 SNPs and
GATK 69-79 SNPs, overlap 69 SNPs), supporting the
existence of those variants and high sequence reproduci-
bility (Additional file 5: Table S3). Across clinical isolate
replicates the number of SNPs identified was similar and
the overlap between variant calling algorithms was high
(>90%; Additional file 5: Table S3). This observation was
supported by the Ion PGM data but, due to uneven
coverage, at least 120 SNPs fewer were identified when
compared to matching MiSeq samples. Within platforms
and calling algorithms there was variation between repli-
cates in the indels detected, but there was high overlap
between algorithms (>90%; Additional file 5: Table S3).
Compared to SNPs the breakpoints for these variants
are more difficult to characterise from alignments.

For the MiSeq platform data we assessed the num-
ber of SNP genotypes called across a range of cover-
age depths of the reference and alternative alleles
(total depth 5- to 20-fold; major allelic frequency >0.5
and >0.7). The number of SNPs decreased pseudo-
linearly with decreasing minimum read depth for H37Rv
(87 to 67 SNPs; Additional file 6: Figure S3) and the ten
clinical isolates (2290 to 2097 SNPs; Additional file 7:
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Figure S4). In general, differences in the number of SNPs
between the Samtools and GATK algorithms decreased as
the depth of coverage and allelic frequency thresholds in-
creased. For H37Ryv, read depths in excess of 20-fold had
no impact on variants detected. Across clinical isolates,
the highest possible stringency tested consisted of
using a minimum coverage of 20 and an allelic fre-
quency of 0.7 and led to near identical numbers of
total SNPs called by the two variant calling algorithms
(Samtools 1943, GATK 1990, either 2097, both 1840
SNPs; Additional file 7: Figure S4). Much of the dis-
cordance in the number of SNPs within replicate
groups is due to differences in coverage leading to
some polymorphisms not passing quality control fil-
ters. Using SNPs for which all replicates have non-
missing genotypes, all replicates had identical numbers
of SNPs except POR3C, which differed by two SNPs
between POR3A and POR3B. Overall, the analyses in-
dicated no major differences in SNPs detected between
the two calling algorithms, and this supported the use
of consensus variants for downstream analysis. For ex-
ample, the set of common SNP variants were used to clus-
ter all samples within a phylogenetic tree using FastTree
v2.1.7 [26] (Additional file 8: Figure S5). Perfect clustering

was observed amongst isolates and their replicates. At a
finer resolution, we analysed the SNP differences between
the replicates, and none were identified.

Calling in silico resistance phenotypes

When the MiSeq raw sequence data were subjected to
analysis using TBProfiler, agreement with phenotypic
susceptibility testing was high (95.3%, 82/86; Table 1).
Discrepant results were recorded for PZA (x2) and PAS
(x2) where phenotypically resistant isolates not identi-
fied by TBProfiler were found to have novel mutations
in known candidate genes (Additional file 9: Table S4).
The novel polymorphisms included a deletion in pncA
of 20 bp (nucleotides 437-449) and a nucleotide inser-
tion (GG) between codons 130 and 131. PAS-resistant
isolates had a folC S98G mutation and a thyX G-4A,
thyX 1161T, dfrA-thyA deletion. Phenotypic testing of
kanamycin drug susceptibility was not performed, but
mutations associated with its resistance were detected in
all eight isolates (Table 1; Additional file 9: Table S4). All
mutations were confirmed using independent Sanger
capillary sequencing and/or the line probe assays
Genotype MTBDRplus and Genotype MTBDRs/ (Hain).
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Phenotypic resistance profiles were confirmed and
quantified by the gDST method for the MGIT960
system [12, 13].

The Mykrobe predictor tool was also applied to in
silico call resistance. This approach looks for mutations
associated with resistance to first-line drugs (rifampicin,
isoniazid, ethambutol) and second-line drugs (strepto-
mycin, ciprofloxacin, ofloxacin, moxifloxacin, amikacin,
kanamycin, capreomycin). Of the 72 resistance calls
made, 19 (26.4%) were incorrectly called “susceptible”.

False negative calls were made for isoniazid (x1), etham-
butol (x2), streptomycin (x4), amikacin (x4), and
capreomycin (x3). Additionally there was a disagreement
between TBprofiler and Mykrobe predictor with four
samples for kanamycin, the latter program calling them
as “susceptible” (Table 1).

For Ion PGM, when predicting individual drug-
resistance profiles in the three isolates, in one isolate the
gyrA D94A mutation associated with fluoroquinolone re-
sistance could not be detected due to lack of coverage
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(Additional file 5: Table S3). However, the mutation was
recovered if the coverage threshold was relaxed from
ten- to fourfold.

Discussion

Advances in next-generation sequencing technology
have expanded opportunities for genome analysis in the
clinical laboratory. Determining resistance to anti-TB
drugs by whole genome sequencing has been demon-
strated as feasible and is being implemented in some
specialist centres [6]. For acceptance as a diagnostic tool
to guide treatment of drug-resistant TB the sequencing
platforms and analytical tools employed must be robust
and reliable. Here we have investigated the performance
of two commercial ‘bench-top’ next generation sequen-
cing platforms and attempted to assess the robustness of
a bioinformatics analysis pipeline with respect to variant
calling, across sequencing replicates.

The MiSeq and Ion PGM both proved satisfactory for
determining drug-resistance profiles. Compared to Ion
PGM, MiSeq sequence coverage was more uniform and
was better represented in regions with high GC con-
tent. However, we did not investigate the impact of the
different library preparation methods used (mechanical
(MiSeq) and enzymatic (Ion PGM) processing). Sample
quality and the mode or preparation have been shown
to influence the depth of coverage in high GC regions
[27], and further work is required to investigate this.
The Ion PGM platform has previously been used to

characterise mutations in XDR-TB strains [6], but the
minimum read depth used to call alleles (fourfold) were
less stringent than the tenfold coverage threshold
adopted here.

Samtools and GATK when used to process the raw se-
quence data produced diverse outputs but filtering based
on coverage and allelic frequency led to almost complete
agreement on resistance causing SNPs. There was, how-
ever, lower concordance between the final sets of indels.
As previously reported, the false discovery rate for
Samtools is higher than for GATK and rises as coverage
increases [28]. A common strategy is to undertake dual
analysis and consider the intersection of the Samtools
and GATK derived SNPs but select only the GATK
indels [16]. The high reproducibility of sequence data
from replicate samples is reassuring as it affirms the
validity of next-generation sequencing as a tool for in-
vestigating transmission events.

Of the two rapid tools examined, the TBProfiler gave
100% concordance with phenotypic DST results for
INH, RIF, STR, ETB, ETH and the fluoroquinolones. Of
the nine PZA-resistant isolates, known resistance SNPs
were reported for seven isolates with an insertion and
deletion observed for the remaining two. Possible novel
resistance mutations were also observed for both the
PAS-resistant isolates. The Mykrobe predictor detected
resistance for nine drugs, of which eight had DST re-
sults. Concordance was 100% for RIF, OFX and MOX,
but resistance was missed for one or more isolates for
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the remaining five drugs. Misclassification of resistance
of amikacin and capreomycin as susceptible has signifi-
cant clinical implications as patients may be assigned
treatment that is not effective for XDR-TB.

The identification of a PAS resistance-related dfrA-
thyA double deletion in an XDR-TB sample highlights
the need to look at non-SNP variants. Significantly, the
laboratory platform being used may impact the detection
of putative drug resistance. This is critical in XDR-TB
and resistance beyond XDR-TB where use of drugs like
PAS may make the difference in providing a life-saving
effective regimen of at least five drugs [29]. Large dele-
tions and other structural variants may be detected by
applying a combination of complementary approaches
(pair-end, split-read and depth of coverage) followed by
a validation process involving de novo assembly of bor-
dering reads and re-alignment to the reference genome
[10, 16, 24]. However, high genome-wide sequence
coverage is necessary to perform such analyses.

As expected the genotypic profiling was concordant
with the phenotypic determination of drug-resistance
levels confirming the reliability and robustness of the se-
lected genes and mutations as predictors of resistance
for almost all drugs tested; with discrepancies still being
noticed for PZA and PAS due to lack of enough infor-
mation on their mechanism of action [12, 30]. Surpris-
ingly, no discrepancies were found for EMB, a drug
known to have low correlation between the emb genes
and phenotypic resistance [12].

Conclusions

Sequencing platforms are becoming more accessible and
economical. Our work suggests that they are capable of de-
livering high quality data regarding resistance to anti-TB
drugs but do not all perform to the same standard and
quality monitoring is advisable. Further studies are needed
to evaluate these analytical tools, which as yet do not have
regulatory approval for clinical use. It is expected that drug-
resistance profiling using next-generation sequencing will
gain accuracy and reliability with the gathering of improved
knowledge of the drug-target genes and resistance-causing
mutations, including for the new drugs recently approved
for the treatment of MDR- and XDR-TB [29, 31]. Ultim-
ately, drug resistance profiling using next-generation se-
quencing offers rapid assessment of resistance-associated
mutations, thus accelerating access to effective treatment.
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Additional File 1: Figure S1
Bioinformatics pipeline

Data Activity Software Study comparisons
Raw sequence data lon PGM, Illumina
MiSeq,

Trimming and removal of trimmomatic
reads, identification of any

contaminants

High quality raw reads*

Mapping to H37Rv BWA-mem Genomic Coverage
De novo assembly velvet
Alighments, contigs and
coverage®*
Variant calling Samtools, Variants detectedandin
GATK common
Consensus Variants*
Genomic uniqueness and gem-
mappability mappability
High quality variants* Known DR & strain-type
markers detected
Population genetic, Identification of novel
phylogenetic and GWAS markers
analyses

* Drug resistance (DR) mutations and strain-types rapidly identified from these data
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Additional File 2: Table S1
Sanger sequencing primers for genomic variant confirmation

. . )~ Annealing | Length
Gene Primer Primer sequence (5’-3’) °c) (bp) Ref.
inhA inhA-1 CCT CGCTGC CCA GAAAGG GA 64 248
inhA-2 ATCCCCCGG TTT CCT CCG GT A
inhA-3 AGG TCG CCG GGG TGG TCA GC 517
inhA-4 AGC GCCTTG GCCATC GAAGCA 60
inhA-3F CCACATCTCGGCGTATTCG 501 B
inhA-5R TTC CGG TCC GCC GAA CGA CAG
katG P4 _Fw CGG ACCATAACGGCTTCCTG 563
P4_Rv TTGTCCAAG CTGGCGTTGTC
P5 Fw CGACAACGCCAGCITGGAC 518
P5 Rv CGG TTC CGG TGC CAT ACG
P6 Fw AGCTCG TAT GGC ACC GGA AC 62 619 C
P6_Rv TGA CCT CCCACCCGACTT GT
P7 Fw ACA AGT CGG GTG GGAGGTC 574
P7 _Rv CTGCCG GTCCACTTCACCTT
P8 Fw GGG ACCTACCAG GGCAAGGA 629
P8 Rv CCG GGA GTCAGCAAGTCACC
tlyA tlyAs GCATCG CACGTCGTCTTT 55 947 D
tlyAas GGT CTC GGT GGCTTC GTC
eis eisF1 GCCATG GGA CCG GTACTT GC 56 601 £
eisR1 GTA GAT GCC GCC CTC GCT AG
] gidB_Fw CGA GAG CGGAGAATGTTTCA
gidB gidB_Rv CTG GCC CGA CCT TAC GAG 62 793 F
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pncA_promP1 | GCT GGT CAT GTT CGC GAT CG s 214

pca pncA_promP2 | TCG GCC AGG TAG TCG CTG AT
pncA_Fw AGT CGC CCG AACGTATGGTG | c1c
pncA_Rv CAA CAG TTC ATC CCG GTT CG

oy gyrA_Fw ATC GCC GGG TGC TCT ATG . 121
gyrA_Rv GGC CGT CGT AGT TAG GGA TG
ethAl ATC ATC GTCGTCTGACTATGG | ccr
ethA5 ACT ACA ACC CCT GGG ACC
ethA4 CCT CGA CCT TCC CGT GA

ethA ethA9 CCT CGA GTA CGT CAA GAG CAC | 692
ethA8 GGT GGAACCGGATATGCCTG | o 1o
ethA10 CGT TGA CGG CCT CGA CAT TAC
embB-F2 AAC CTG CGC CCG CAG ATT GTC

embB embB-R2 GGT CTG GCA GGC GCA TCC 62 >26
embBR2_Fw CTG GCG CTG ATG ACC CAT 62 583
embBR2_Rv GGT GGG CAG GAT GAG GTA G

embC- embC-embA_Fw | GGT TGA CGC CTT ACT ACC C 62 535

embA IRG
embC-embA_Rv | CCA CGA CGA CCG TGT CC

rpsL rosL_Fw GGC CGA CAA ACA GAA CGT 64 504
rosL_Rv GTT CAC CAA CTG GGT GAC

folC FolCPI-Fw CGCTGC AAT GAATTC GACGA | 62 668
FolCP1-Rv TGA TGA TGC CCG CCT TCT C

thyX thyXprom_Fw | TGG ATG GAA AAC CTT GCG G 62 558
thyXprom_Rv | TCG GTC TTG GCG ATC AGT T
thyX-F2 CTA CTC GCA GCT CTC CCA G 62 510
thyX-R2 TAC CTG GCG CTT TAT CCC G
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Additional File 3: Table S2

Summary of the sequencing data, coverage and SNPs for each sample

Sequencing No. Median  Proportion Median Total
platform Sample reads read coverage coverage SNPs
length > 10-fold

MiSeq POR1A 874721 222 0.95 40 766
MiSeq POR1B 1280618 221 0.96 55 766
MiSeq POR1C 1068336 221 0.96 48 766
lon PGM POR1A 1015193 335 0.73 48 512
lon PGM POR1B 1124215 339 0.67 52 512
MiSeq POR2A 1167341 224 0.97 53 854
MiSeq POR2B 871084 223 0.97 38 854
MiSeq POR2C 817606 224 0.97 36 854
lon PGM POR2A 929733 213 0.73 28 594
lon PGM POR2C 966514 326 0.74 46 594
MiSeq POR3A 1217694 224 0.96 55 771
MiSeq POR3B 1100251 222 0.96 50 771
MiSeq POR3C 413660 215 0.93 18 773
MiSeq POR4A 1055194 218 0.96 47 795
MiSeq POR4B 1100448 224 0.96 50 795
MiSeq PORA4C 1071269 225 0.96 49 795
MiSeq POR5A* 988848 224 0.96 45 758
MiSeq POR5B 1111052 224 0.96 51 758
MiSeq POR5C 1113854 223 0.96 50 758
MiSeq POR6A* 2269310 180 0.97 70 767
MiSeq POR6B 1201932 222 0.96 53 767
MiSeq POR6C 774063 222 0.96 34 767
lon PGM POR6B 1049314 338 0.72 44 510
lon PGM POR6C 904304 325 0.73 42 510
MiSeq POR7A* 2423026 179 0.97 70 801
MiSeq POR7B 1129806 222 0.96 51 801
MiSeq POR7C 2638858 155 0.97 65 801
MiSeq POR8A 2851160 172 0.97 79 770
MiSeq POR8B 1028634 225 0.96 49 770
MiSeq POR8C 801687 222 0.96 36 770
MiSeq POR9A 2091394 180 0.97 61 796
MiSeq POR9B 1145983 225 0.96 53 796
MiSeq POR9C 1128251 223 0.96 51 796
MiSeq POR10A 1074170 217 0.97 48 902
MiSeq POR10B 1224053 223 0.97 54 902
MiSeq POR10C 894289 223 0.97 39 902
MiSeq H37Rv* 2652971 156 0.99 56 62

* 6 technical replicates for each, and average statistics presented; A-C refers to
extraction replicates of the same samples
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Figure S2

Deletion of dfrA-thyA is evident by the zero coverage outliers in POR1

(a) Mean coverage for all samples for each drug resistance gene
(b) Mean coverage across drug resistance genes

Additional File 4

o r--{1]-4 | [ 06HO0d
- 6 o . [ vewod
. O k- -eq -
— M%u or-{Ih o - 08-HOd
- g I o r--[I}--4 - 898-H0d
- gque @r--{]}4+ ©0 - V&-H0d
- yqusa 0 ok-==[J1--4 - OL-HOd
- Qque e B B i} 8ruod
- Jeu oor----{ J}-4 ~ 9V.L-H0d
- Quu 0  beeeeeas LI F--+ i | sviHOd
- guew -] — 13-+ : - V- HOd
- y23Pey L B R - ©V4-H0d
L 202 L€AY O O Ob----- {LI)----+ : - 2-V4-HOd
-~ 6%3dd boeee] _Jjeee-d o - WNN.Moa
L |yeow v - 09-HOd
L v w3+ i |- 8sH0d
- <>£ O b= EBA ] - 9V¥9-HOd
B Ok~ © - SVe-HOd
B OQM‘M—“G r-{LF--4 - #V9-40d
L ysey o I} - ©V9-HOd
[ Oqe o--{I}--+ - 2-¥8-HOd
L 2veery el [ tod”
ud a0 -[} 10 : - 05-HOd
[ i I - 85-60d
- iy or-{I}++ i | ovsHOd
- m_vmﬂx mmvab i | svs-Hod
- » 4 H - #VS-H0d
L 2LLIAY a--[J-40 i | evsHod
L vAR or-{[}-10 i | ZvsHod
- 0265 IAH oT._..—Uﬁm. - 1-¥S-HOd
- Yyul o - -4 : - O¥H0d
- 1Oqey 0..@@‘ - 9+-H0d
- SU === 1 - V#-60d
- Hqws o i+ - O8-HOd
- Jsdu Tmmui - 86-H0d
. godu e W 1 - VEH0d
L D WD} -4 - O2-HOd
L yiul HI-+ o - 82'50d
L giui o r-[I}-4 i | veuod
L 0¥E0AY tAD- | ©[ oruod
5 I ! o |- 81rH0d
B w& {14 © - Vi-HOd
QA oo #-[]]-4 : - 001-HOd
= ..;Hmw ° . | 801-HOd
r-{I3-+ - Y0I-HOd
L L e L e e e e “ 1
() 288s88z8ssR8898Re"

68



Additional File 5: Table S3
Replicate variation across extraction and calling algorithms, and phenotypic profiles

Sequencin Comparison GATK Samtool Overla GATKIndels Samtools Overlap Inferred Inferred drug
g platform  (no. rep, SNPs* s p Min. / total Indels Indels %** MDR/XDR resistance***
M/XDR-TB) SNPs* SNPs % (overlap) Min. / total -TB INH, RIF, ETH +
(overlap)
Technical
MiSeq PORSA 85/98 (0.87) 66/104 (0.63) MDR-TB ETB, PZA, STR
(6,M) 783 753 96.2 94.2
MiSeq PORGA (6.X) 87/103 (0.84) 65/127 (0.51) XDR-TB ETB, PZA, STR, FLQ,
’ 846 815 92.2 81.1 AMK, CAP, KAN
MiSeq POR7A (6.X) 90/102 (0.88) 72/133(0.54) XDR-TB ETB, PZA, STR, FLQ,
’ 858 839 97.1 76.7 AMK, CAP, KAN
MiSeq H37Rv (6,S) 81 70 84.1 22/27 (0.81) 16/40 (0.40) 67.5 Susc.
Extraction
MiSeq POR1 (3,X) 86/91 (0.95) 72/99 (0.73) XDR-TB ETB, PZA, STR, FLQ,
788 753 95.6 91.9 AMK, CAP, KAN
lon PGM POR1 (2,X) 48/98(0.49) 53/81 (0.65) XDR-TB ETB, PZA, STR, FLQ,
618 611 95.7 34.1 AMK, CAP, KAN
MiSeq POR2 (3,M) 875 846 96.7 99/114 (0.87) 88/115(0.77) 99.1 MDR-TB
lon PGM POR2 (2,M) 710 706 96.3 23/52(0.44) 39/67 (0.58) 22.2 MDR-TB
MiSeq POR3 (3,X) 87/98 (0.89)  70/100 (0.70) XDR-TB ETB, STR, FLQ, AMK,
804 788 97.8 98.0 CAP, KAN
MiSeq POR4 (3,X) 86/91 (0.95) 69/92 (0.75) XDR-TB ETB, PZA, STR, FLQ,
805 789 98.0 98.9 AMK, KAN

MiSeq PORS5 (3,M) 784 754 96.2 90/92 (0.98)  74/94 (0.79) 97.9 MDR-TB ETB, PZA, STR



MiSeq
lon PGM
MiSeq
MiSeq
MiSeq

MiSeq

PORS (3,X)
PORS (2,X)
POR7 (3,X)
PORS (3,X)
POR9 (3,X)

POR10
(3,M)

849

617

875

820

820

922

827

612

868

791

807

885

90.9

95.7

93.5

94.1

97.2

95.8

87/98 (0.89)
33/76(0.43)
87/102 (0.85)
84/96 (0.88)
90/98 (0.92)

98/108 (0.91)

70/97 (0.72)
46/82 (0.56)
73/104 (0.70)
74/95 (0.78)
77/104 (0.57)

78/107 (0.73)

99.0

23.8

98.1

99.0

94.2

99.1

XDR-TB

MDR-TB

XDR-TB

XDR-TB

XDR-TB

MDR-TB

ETB, PZA, STR, FLQ,
AMK, CAP, KAN

ETB, PZA, STR, AMK,
CAP, KAN

ETB, PZA, STR, FLQ,
AMK, CAP, KAN

ETB, PZA, STR, FLQ,
AMK, CAP, KAN

ETB, PZA, STR, FLQ,
AMK, CAP, KAN

ETB, STR

* Differences between replicates were only due to low coverage missing genotypes i.e. no differing base calls; ** based on comparing all indels

detected by each method; *** based on TBProfiler; INH Isoniazid, RIF Rifampicin, STR Streptomycin, ETB Ethambutol, PZA Pyrazinamide, RFB

Rifabutin, ETH Ethionamide, AMK Amikacin, CAP Capreomycin, OFX Ofloxacin, MOX Moxifloxacin, PAS Para-aminosalicylic acid, LZ Linezolid, KAN

Kanamycin; bold - Fluoroquinolone (FLQ) resistance mutation gyrA D94A was not found
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Additional File 6: Figure S3
The changes in the number of SNPs characterised across algorithms for H37Rv
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The total number of SNPs for H37Rv isolates called using different algorithms and
depths (=5, 210, 214, >20) and allelic frequency cut-offs (0.5, 20.7). With read depth

210, the allelic frequency cut-offs had no impact on variants detected
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Additional file 7: Figure S4

The changes in the number of SNPs characterised across algorithms for the ten

clinical isolates

2300
|

2200

2100
1

,,,,,,,

Number of Vairants

2000
1

1800
1

Samtools - 0.7

- Samtools - 0.5

GATK -f0.7
GATK -f0.5
Union -f0.7
Union -10.5
Intersection -f0.7
Intersection - 0.5

Depth of Coverage Cutoff

20

Figure showing the total number of SNPs called using different algorithms and

different depth (=5, 210, 214, >20) and allelic frequency cut-offs (0.5, >0.7).
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Additional File 8: Figure S5
Phylogenetic tree of all the MiSeq sequenced samples

. e e

Perfect clustering can be observed across conditions. Each sample is represented by a

different colour; replicates of the same patient are shown as the same colour.
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Additional File 9: Table S4
Mutations that potentially explain drug resistance in the samples

Sample -
M/XDR-TB
POR1 —X

POR2-M

POR3- X

POR4 —X

PORS5 -M

POR6 —X

INH*

fabG1_pro
C-15T,
inhA 1194T

inhA 121V,
katG
S460N
fabG1_pro
C-15T,
inhA S94A

fabG1_pro
C-15T,
inhA S94A
fabG1_pro
C-15T,
inhA 1194T
fabG1_pro
C-15T,
inhA 1194T

RIF*
rpoB
S450L
rpoB

S450L

rpoB
S450L

rpoB
S450L

rpoB
S450L,

rpoB
S450L

STR"

gidB
A80P

rpsL K43R

rpsL K43R
gidB
A80P

gidB
A80P

ETB™®

embA_pro

C-16T,

embB

M306V/M423T

embA_pro

C-12/11AA,

embB P397T

embB M306V

embB

M306V/M423T

embA_pro
C-16T,
M306V

embB

PZA’

pncA V125G

Frameshift
mutation

pncA deletion
of nucleotides

437-449
pncA L120P

pncA V125G

pncA V125G

ETH*’**
fabG1_pro
C-15T, inhA
1194T
inhA 121V
fabG1_pro
C-15T, inhA
S94A
fabG1_pro
C-15T, inhA
S94A
fabG1_pro
C-15T, inhA
1194T
fabG1_pro
C-15T, inhA
1194T

FLQ*

gyrA D94A

gyrA S91P

gyrA D94G

gyrA D94A

AMINO £

rrs A1401G

tlyA
Ins251TG,
eis_pro
G-10A

eis_pro
G-10A

rrs A1401G

PAS

thyX G-4A,
thyX 1161T,
dfrA-thyA
deletion
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POR7 - X fabG1 pro
C-15T,
inhA S94A
POR8 — X fabG1 pro
C-15T,
inhA 1194T
fabG1_pro
C-15T,
inhA S94A

POR9 - X

POR10-M fabG1 pro
C-15T,
katG

S315T

rpoB
S450L,

rpoB
S450L
rpoB

S450L

rpoB
S450L

rpsL K43R

gidB
A80P

rpsL K43R

rpsL K88R

embA_pro
C-12/11AA,
embB P397T

embA_pro
C-16T, embB
M306V/M423T
embA_pro
C-12/11AA,
embB P397T

embB
S297A/M306l

pncA M1T fabG1_pro gyrA S91P
C-15T, inhA
S94A

pncA V125G fabG1_pro gyrA D94A
C-15T, inhA
1194T

pncA M1T fabG1_pro gyrA S91P
C-15T, inhA
S94A

GG insertion fabG1_pro -

codons 130 C-15T,

and 131 on ethAH281P

pncA

tlyA
Ins251TG,
eis_pro G-
10A

rrs A1401G

tlyA
Ins251TG,
eis_pro G-
10A
eis_pro C-
127

folC 598G

All mutations on the positive strand; Confirmed using * Sanger sequencing; ** Genotype MTBDRplus; EGenotype MTBDRsl/, -- gyrA S95T, G668A

and gidB L16R present, but not resistant related; rpoB mutations assigned according to M. tuberculosis numbering; potentially novel mutations

bolded; INH isoniazid, RIF rifampicin, STR Streptomycin, ETB Ethambutol, PZA Pyrazinamide, ETH Ethionamide, FLQ fluoroquinolones (Ofloxacin,

Moxifloxacin), AMINO Aminoglycosides (Amikacin, Capreomycin, Kanamycin); PAS Para-aminosalicylic acid

75



RESEARCH PAPER COVER SHEET

PLEASE NOTE THAT A COVER SHEET MUST BE COMPLETED FOR EACH RESEARCH PAPER INCLUDED IN A
THESIS.

SECTION A — Student Details

Student Jody Phelan

Principal Supervisor Taane Clark

- A Bioinformatic analysis of M. tuberculosis and host genomic
Thesis Title

data
If the Research Paper has previously been published please complete Section B, if not please move to
Section C

SECTION B — Paper already published

Where was the work published? BMC Medicine
When was the work published? March 2016

If the work was published prior to
registration for your research degree, give
a brief rationale for its inclusion

Have you retained the copyright for the Was the work subject to
Yes . . Yes
work?* academic peer review?
*If yes, please attach evidence of retention. If no, or if the work is being included in its published format,
please attach evidence of permission from the copyright holder (publisher or other author) to include this
work.

SECTION C — Prepared for publication, but not yet published

Where is the work intended to be
published?

Please list the paper’s authors in the
intended authorship order:

Stage of publication Choose an item.

SECTION D — Multi-authored work

| received the raw sequencing data and phenotypic data from our

collaborators. | then designed and wrote all scripts to perform the basic
For multi-authored work, data QC, mapping, and variant calling. | optimised the parameters for the
give full details of your role  GWAS and tabulated the final results in excel. Additionally, | loaded the
in the research included in results in R and produced the figures. After receiving guidance from co-

the paper and in the authors and receiving analysis scripts for the protein modelling work, |
preparation of the paper. performed all the protein model QC and ligand docking. | then used scripts
(Attach a further sheet if provided to me by Davis Ascher to profile the protein stability changes. |
necessary) wrote the first draft of the manuscript and circulated to co-authors. Upon

receiving feedback | revised the manuscript together with Taane Clark and
submitted to the journal. | also dealt with subsequent revisions.

76



Student Signature:

Supervisor Signature:

Date:

Date:

77



Chapter 3

Mycobacterium tuberculosis whole
genome sequencing and protein
structure modelling provides insights
into anti-tuberculous drug resistance
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Abstract

Background: Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome
association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs.
Protein structure and interaction modelling are used to understand the functional effects of putative mutations
and provide insight into the molecular mechanisms leading to resistance.

Methods: To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium
tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR)
collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to
identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs.
In addition, the effect of identified candidate mutations on protein stability and interactions was assessed
quantitatively with well-established computational methods.

Results: The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid),
rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the
mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was
observed between the minimum inhibitory concentration values and the distance of the mutated residues in the
three-dimensional structures of rpoB and katG to their respective drugs binding sites.

Conclusions: Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent
evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further,
protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy
in the absence of phenotypic data. These approaches could ultimately lead to novel resistance mutations to
improve the design of tuberculosis control measures, such as diagnostics, and inform patient management.

Keywords: Tuberculosis, Drug resistance, Genomics, Protein structural modelling, Association study, Convergent
evolution
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Background

Tuberculosis, caused by Mycobacterium tuberculosis (Mtb),
is an important global public health issue (>8.7 million new
cases, 1.4 million deaths each year [1]). The M. tuberculosis
phylogeny consists of four major lineages (L1 - Indo-
Oceanic, L2 - East-Asian, L3 - East-African-Indian, L4 -
Euro-American), which may vary in their propensity to
transmit and cause disease [2]. The Mtb genome (size
4.4 Mb, GC content 65.5 %) is relatively clonal compared
to most other bacteria, with no horizontal transfer, and low
mutation and recombination rates [3]. Mtb drug resistance
is a serious challenge to effective control [1]. Standard first-
line anti-TB therapy involves four drugs (rifampicin [RMP],
isoniazid [isonicotinic acid hydrazide] [INH], ethambutol
[EM]), pyrazinamide [PZA]), with streptomycin (SM) more
commonly used when treatment fails. Resistance to at
least RMP and INH is denoted as multi drug-resistance
(MDR-TB). It has been estimated that ~4 % of new
cases are MDR-TB [1], and without effective treatment
can remain a source of transmission [4]. Additional resist-
ance to any fluoroquinolone and second-line injectable
drug (e.g. amikacin, kanamycin, capreomycin), is denoted
as extensively drug resistance (XDR-TB), and such cases
have been reported in 100 countries [1].

In routine diagnostic practice susceptibility to anti-
tuberculosis drugs is assessed phenotypically by deter-
mining the proportion of bacteria that will grow at critical
concentrations of the drug [5]. For most anti-tuberculosis
drugs, a single concentration is used, but for some drugs
two concentrations are used to indicate high and low
levels of resistance, where increasing the patient dose may
be of clinical benefit. Tests may be performed on solid or
liquid media and drug concentrations used may vary ac-
cording to type of the media and method used. The use of
binary reporting (sensitive/resistant) of drug susceptibility,
whilst useful for programmic treatment does not inform
about the degree of resistance. Minimum inhibitory
concentrations (MICs) are determined in some research
laboratories where the bacilli are cultured over a range of
drug concentrations [6]. Variation in methods and the crit-
ical concentrations used creates some disparity between
laboratories, particularly for strains where the level of re-
sistance is close to the critical concentration for the drug.

Mtb drug resistance is predominantly conferred by the
accumulation of mutations (single nucleotide polymor-
phisms [SNPs], insertions and deletions [indels]) in genes
coding for drug-targets or -converting enzymes [7]. To
overcome a loss of fitness that arises during the accumula-
tion of such mutations, putative compensatory mechanisms
have been described [8-10]. Many mutations conferring
drug resistance have been characterized, especially to first-
line treatments [11], and their detection offers a means of
rapidly assessing susceptibility to anti tuberculosis drugs to
improve patient management [11, 12]. However, with the
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exception of RMP and INH, current molecular tests for
resistance lack sensitivity [7]. RMP is a semisynthetic
antibiotic that binds to the RNA polymerase  subunit
encoded by rpoB, inhibiting transcription. Mutations in
rpoB can cause resistance to RMP [13]. Mutations occur
more frequently in an 81 bp region of the gene termed the
RMP resistance determining region [14, 15], and contrib-
ute to 96 % of resistance phenotypes (predominantly high
level), with S450L (M. tuberculosis nomenclature) being
the most prevalent mutation [16, 17]. It should be noted
however that not all mutations result in the same degree
of resistance. For example, substitution of histidine with
non-polar leucine (H445L) has a much reduced impact
compared to the negatively charged aspartate (H445D)
(MIC ~2 pg/ml vs. >150 pg/ml) [17]. While cross resist-
ance between RMP and other rifamycins, such as rifabutin
and rifapentine, has been recorded [18], the compound
structure of the drugs is different. This leads to subtle
interaction differences between the binding site and the
drugs, and could explain differential mutations causing
resistance [19]. Further investigation using similar pro-
tein modelling approaches could shed light onto the
mechanism of resistance to these drugs and highlight
the key residues required for resistance.

INH is a compound that inhibits mycolic acid biosyn-
thesis by binding to an enoyl-acyl carrier protein reduc-
tase encoded by the inhA gene. It is a pro-drug, which is
activated by a catalase-peroxidase enzyme encoded by
katG. Mutations in katG are more tolerated than those
in inhA, and more frequent in drug sensitive isolates.
The katG 315 mutations S315N/T account for the ma-
jority (60-80 %) of the INH resistance in clinical isolates
[20]. Mutations affecting inhA usually appear in the
promoter region of its operon (denoted inhA-promoter),
leading to increased transcription. Whilst mutations in
katG lead to moderate to high levels of resistance
(always >1 mg/L), those affecting inhA confer a lower
level of resistance [20] (<1 mg/L), and therefore if de-
tected could allow INH to play a further role in treat-
ment [21]. Computational initiatives involving protein
structure modelling have been applied to understand
better the molecular mechanisms of drug resistance,
especially where multiple mutations are present. It has
been established that the binding affinity of RMP-rpoB
is most altered by common S450L and H445Y mu-
tants, leading to less effective binding and resistance
[22]. Similarly, the S94A mutant leads to decreased af-
finity of the drug on INH-inkhA binding, and increased
resistance [23].

SM is an aminocyclitol glycoside that binds to 16S
rRNA and inhibits protein synthesis. Mutations in the
S12 ribosomal protein encoded by rpsL have been linked
to resistance. These mutations change the tertiary struc-
ture of the 16S rRNA leading to decreased affinity to
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SM and high-level resistance. The majority (54 %) of SM
resistance in clinical isolates has been attributed to the
K43R mutation in rpsL [24]. Whilst mutations in rpsL
confer a high level of resistance [25], those in rrs (encoding
16S rRNA) are thought to contribute to moderate levels of
resistance [24, 26], and those in gidB confer low levels of
resistance [27, 28]. EMB is a first line drug targeting arabi-
nan synthesis, which affects the mycobacterial cell wall. It
targets members of the embCAB operon, which code for
arabinofuranosyl transferases involved in synthesising com-
ponents of the cell wall. Mutations in embB, especially at
codons 306, 406 and 497, are frequently observed and give
rise to a low level of resistance [29]. The observed range of
low to moderate resistance is mutation-specific [30] and
thought to differ from other drugs in that it is more a
step-wise process, with each mutation increasing the
level of resistance [29]. Mutations in embCAB, ubiA,
and aftA are thought to accumulate and can cause high
levels of resistance observed in some clinical isolates [29].

To improve knowledge of genetic determinants of drug
resistance, the use of whole genome association methods
has been suggested [31]. Here we undertook whole genome
analysis of 144 clinical isolates in the collection of the
Special Programme for Research and Training in Tropical
Diseases (TDR) [32], for which live material is available
to the research community (http://bccm.belspo.be).
The isolates were sourced from the TDR strain bank
and were selected to encompass diverse geographical set-
tings representing the four major M. tuberculosis lineages
[33], as well as include susceptible and resistance strains
within lineage. Drug susceptibility testing was performed
using RMP, INH, EMB, SM, kanamycin (KAN), capreomy-
cin (CAP), ethionamide (ETH), ofloxacin (OFL), and para-
aminosalisylic acid (PAS). No testing was performed for
pyrazinamide (PZA). The completeness of phenotypic
MICs was highest in first-line drugs. A genome-wide
association approach was used on 127 isolates to detect
genetic variants associated with drug resistance. Typically,
failing to account for population structure, in particular
the phylogenetic- or lineage-related clustering, potentially
involving outbreaks, may lead to false positive associations.
Adjusting for principal components and removing
lineage-informative mutations in regression analyses
have been used to control for these confounding effects.
The use of mixed regression models, which include a
SNP-based estimate of between sample kinship as a ran-
dom effect, is considered a more robust approach for iso-
lates that are highly related or with familial relationships
[34]. Application of these approaches identified established
resistance loci [35]. Many of the loci were supported by
evidence of evolutionary convergence, that is, the repeated
and independent emergence of mutations in phenotypic-
ally resistant strains, identified as homoplastic SNPs in a
phylogenetic tree [36].
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Mutations in coding regions can have many different
effects on a protein structure and function [37-40].
Structural bioinformatics approaches for modelling and
mutation analysis were applied to the polymorphisms
identified in the rpoB and katG genes. The effect of
mutations on protein stability and interactions was
assessed quantitatively with well-established computa-
tional methods, shedding light on molecular mechanisms
giving rise to observed drug resistance. Whilst second-line
drug resistance was tested for only 40 isolates - not suffi-
cient to perform a genome-wide analysis - a number of
novel mutations in candidate genes were identified.

Methods

Isolates and phenotypic methods

Susceptibility testing was performed in the Antwerp
laboratory where the samples were stored as part of
the Special Programme for Research and Training in
Tropical Diseases (TDR) strain bank [32]. Isolated
Mtb strains were previously collected from various
geographical sites to create a diverse collection of well
characterised drug resistant strains to provide a resource
for the TB research community [32]. Single colonies were
selected and kept on Lowenstein-Jensen (L]) culture for
drug susceptibility testing. Resistance patterns for the first
line drugs were determined using the proportion method,
with the critical concentrations 0.2 pug/ml INH, 40 pg/ml
RMP, 4 ug/ml SM, and 2 ug/ml EMB. MIC were also
investigated on LJ for RMP (10, 20, 30, 40, 80, and
120 pg/ml), INH (0.05, 0.2, 0.8, 1.6, and 3.2 pg/ml), SM
(1, 2, 4, 8, and 16 pg/ml), and EMB (1, 2, 4, and 8 pg/ml).
The critical thresholds of MIC for calling resistance were
0.2, 2, 4, and 40 pg/ml for INH, EMB, SM, and RMP, re-
spectively [32]. The MIC values were discretised into three
groups (susceptible, intermediate, and fully resistant) using
natural cut-offs in their empirical distributions.

For the second line drugs PAS was tested on LJ at
0.5 ug/ml. The other drugs were tested on Middlebrook
7H11 agar at the following concentrations: OFL 2 pg/ml,
KAN 6 pg/ml, CAP 10 pg/ml, and ETH 10 pg/ml. The
proportion method was used for all second line drugs
with a critical proportion of 1 %. Lyophilised isolates were
sent to the London laboratory where they were grown on
LJ prior to DNA extraction using the Bilthoven RFLP
methodology [41].

Sequence data and variant calling

All DNA samples underwent Illumina sequencing on
the HiSeq 2000 platform at the KAUST genomic facility,
generating paired-end reads of 150 bp (Additional file 1:
Table S1, pathogenseq.Ishtm.ac.uk/tdr, Additional file 1:
Table S2). All raw sequence data can be downloaded
from the ENA short read archive (accession number
PRJEB11653). For the raw sequence data, trimmomatic
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(v0.33) software [42] (parameters: LEADING:3 TRAIL-
ING:3 SLIDINGWINDOW:4:20 MINLEN:36) was used
to remove or truncate reads of low quality. High quality
reads were then mapped to the H37Rv reference genome
(Genbank accession: AL123456.3) using the BWA-mem
(v0.7.12) algorithm [43] (parameters: -c 100 -M -T 50).
From the resulting alignments, SAMtools (v1.3) [44] and
GATK (v3.5) [45] software (default parameter settings)
were used to call SNPs and small indels, and the inter-
action of variants between the methods retained. Mapp-
ability values were calculated along the reference genome
using GEM-Mappability software with a k-mer length of
50 bp and a 0.04 % substitution threshold [46]. Non-
unique SNP sites (mappability values greater than one)
were removed. Sample genotypes were called using the
majority allele (minimum frequency 75 %) in positions
supported by at least 20-fold total genome coverage,
otherwise they were classified as missing. Isolates or SNPs
with in excess of 10 % missing genotype calls were ex-
cluded. The final dataset included 144 isolates and 17,952
genome-wide SNPs.

Population structure and association analysis

The best-scoring maximum likelihood phylogenetic tree
rooted on Mpycobacterium canetti was constructed by
RAxML (v8.2) software [47] (parameters: -T 10 -f a -x
12345 -m GTRGAMMA -p 12345 -N 100) using the
17,952 high quality SNP sites. M. canetti is a predecessor
of M. tuberculosis and therefore provides a convenient
root to map for both ancient and modern strains. Spoli-
gotypes were inferred in silico using SpolPred [48] and
matched perfectly with available experimental results.
Strain-types were determined using lineage-specific SNPs
[33]. Further population structure assessment was per-
formed using principal components analysis [49], leading to
covariates for adjustment in association analyses. Logistic
regression models were employed to estimate the strength
of association between the binary drug resistance outcome
(resistance vs. susceptible) and the aggregate number of
mutations by coding region, RNA loci, and intergenic
regions, as well as operons. Similarly, proportional odds
models were applied to a trichotomous phenotype
based on MIC values (susceptible, intermediate and full
resistance). As expected a number of genes would be
reported as significant due to a large amount of cross-
resistance between drugs, and we adjusted for the presence
of other resistance in the regression models. The main as-
sociation analysis using mixed models with a SNP inferred
kinship matrix as a random effect was implemented in
EMMA (v.1.1.2) [34]. The operons or functional units
containing clusters of genes under the control of the
same promoter were determined from TBDB [50]. Gene
function was extracted from Tuberculist [51]. Permutation
tests based on resampling MIC values were performed to
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establish a statistical significance cut-off for each drug to
account for false positives arising from multiple locus
tests. The established cut-offs were RMP 1.58 x 10>, INH
1.67 x 10° SM 2.73 x 10°, and EMB 1.77 x 10°. All statis-
tical analyses were performed using R (v3.2) software. To
identify SNPs enriched by convergent evolution, the phyC
approach [36] was employed using an available implemen-
tation [52].

Protein mutation modelling

An apo crystal structure for katG (1SJ2 [53]) was available
and downloaded from the Protein Data Bank (PDBe [54]).
A protein homology model for rpoB was obtained from the
Chopin database (http://mordred.bioc.cam.ac.uk/chopin).
Reliable models could not be found or generated for embB,
rpsL or other loci identified in our work. Structures of the
drug compounds INH and RMP where obtained from the
chemical components section of PDBe and used in Auto-
dock vina [55] to perform in silico drug docking. The
mCSM (http://structure.bioc.cam.ac.uk/mesm) and DUET
(http://structure.bioc.cam.ac.uk/duet) web servers were
used to assess changes in protein stability and mCSM-PPI
(http://bleoberis.bioc.cam.ac.uk/mcsm/protein_protein)  to
quantify effects on protein-protein interactions [56, 57].

Results

Genetic polymorphisms

The 144 isolates represented a broad global distribution,
sourced from 24 countries in four continents (Additional
file 2: Figure S1, Additional file 1: Table S1). All the African
isolates were lineage 4 strains, and only Asia contributed
lineage 1 strains. Across the isolates, 19,248 SNP sites were
identified, including 17,092 (89 %) in coding regions of the
genome (11,003 [(57 %] non-synonymous mutations). The
SNP allele frequency spectrum revealed, as expected, the
majority of variants were rare (12,244 [63.5 %] SNPs
present in only one isolate; Additional file 3: Figure S2).
Both a phylogenetic tree and a principal component ana-
lysis based on the ~19 k SNPs showed congruent clustering
by lineage (Additional file 4: Figure S3). The tree revealed a
cluster of nine Rwandan strains, which were separated
by low numbers of SNP differences (range 1-17 SNPs),
implying potential transmission. It also revealed one
sample reported as susceptible to EMB was likely to be
resistant due to its location on the tree within a cluster
of isolates with resistance.

Drug resistance

The drug susceptibility test MIC values for the four first
line drugs were available for 144 isolates, and 17 strains
were removed due to poor sequence coverage and qual-
ity. For the remaining 127 isolates, similar numbers of
sensitive and resistant strains were present (Fig. 1). For
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the trichotomised MIC values, the intermediate resistance
group comprised less than 20 % of isolates across drugs
(see Fig. 1 for breakpoints). There was a high correlation
between INH and other drug MIC values (Spearman’s
rho >0.31, p <0.006), and in total there were 14 distinct
drug resistance combinations across the four first-line
drugs, in keeping with the step-wise and combination
nature of therapies. Twelve (9.4 %) isolates were pan-
resistant, 38 (29.9 %) pan-susceptible, and 42 (33.1 %)
multi-drug resistant (using dichotomised values, Additional
file 1: Table S3). The TB profiler [11] was used to infer drug
resistance profiles in silico from known drug resistance
mutations. Assuming the drug susceptibility tests as the
reference standard, the computationally inferred resist-
ance profiles were highly accurate for RMP (sensitivity/
specificity: 0.962/1.000) and INH (0.908/0.935), sug-
gesting the sequencing result would be of clinical value
for detecting MDR-TB. The performance for SM (sensi-
tivity/specificity: 0.511/0.960) and EMB (0.971/0.839)
was less accurate. High predictive values will be needed
to guide the use of SM and EMB in patients with MDR
and XDR-TB. It would appear that the repertories of
mutations and loci for these drugs still need to be eluci-
dated and that intermediate resistance with MIC values
close to the resistance cut-offs could pose problems using

binary outcome values when correlating genotype and
phenotype. Mutations in the gid gene are not included
in TB Profiler as they cause only intermediate levels of
SM resistance. We observed twenty gid markers and
their incorporation increased the SM sensitivity to
82 %. Further, it was predicted that 14 (11 %) isolates
were likely to be PZA resistance. In particular, each of
the 14 isolates had at least one known drug resistance
conferring mutation in the pncA gene (Alal71Pro,
Argl21Pro, Asp8Ala, GInl0OPro, His57Pro, His82Asp,
Ile31Ser, Ser66Pro, Thr76Pro [n = 2], Trp68Ser, Tyr103His,
and Val125Gly [n = 2]).

In an attempt to search for new mutations involved in
drug resistance a genome wide association analysis was
performed on both trichotomous MIC and binary resist-
ance phenotypes. Both single SNP and locus-wide asso-
ciation testing were considered. Similar to a rare variant
analysis, the number of (non-synonymous) mutations
per sample, per gene and operon was calculated, and
correlated with the phenotype. In addition to association
analysis, the complementary phyC approach was applied.
This approach aims to identify loci under convergent
evolution in resistance branches of the tree. A summary
of all statistically significant results is presented (Table 1),
and we focus on each drug separately.

83



Phelan et al. BMC Medicine (2016) 14:31

Page 6 of 13

Table 1 First-line drug related SNPs identified in association and convergent evolution analysis

Drug Gene SNP mutations (% in resistant isolates)

Rifampicin rpoB T400A (3.8), D435V (94), H445D/Y (11.3),
H445R (5.7), S450W/L (60.4), 1491V/F (3.8)

Isoniazid katG S315N (69.2)

Isoniazid Rv1482c-fabG1 (inhA-promoter) C-15T (24.6)

Streptomycin rpsL K43R (24.4)

Ethambutol embB C12T (59), M306I (14.7%), M306V (17.7%), D354A (11.8), G406S/C (11.8),
G406D/A (11.8*%), Q497P/R (17.7**¥), D1024N (8.8)

Ethambutol cadl C-39T (88

The genes were identified using aggregated mutation mixed models. The SNPs were identified using the phyC method and those also found using the GWAS

mixed model approach are highlighted in bold
SNP single nucleotide polymorphism, GWAS genome-wide association study

*observed in “sensitive” strains at frequency 3.2 %; **4.3 %; ***1.1 %; all P< 1 x 107 from association analysis

Rifampicin

Genome-wide analysis using both binary trait or MIC
values revealed, as expected, that the rpoB gene (p <1 x
102% and its operon (p <1 x 1071%) were associated with
RMP resistance. One tri-allelic SNP in rpoB at position
761,155 (codon 450: S450L 30/127, S450W 2/127) was
associated with the majority of RMP drug resistance
(60 %). There were six significant SNPs under conver-
gent evolution (p <0.05) in rpoB (codons 450, 445 (x2),
435, 400, and 491), one in rpoC (N416S mutation, two
isolates, a known compensatory mechanism) and one in
lldD2 (codon 2 synonymous, 16 isolates). Fifty isolates
(93 % of RMP resistant strains) had at least one muta-
tion in the rpoB gene in the RMP resistance determining
region (codon range 400-491) (Fig. 2a). Three isolates
had two mutations in this region. Two isolates had muta-
tions in codons 400 and 450 and one strain had mutations
in codons 450 and 491. All except four isolates with a mu-
tation in rpoB had MIC values of at least 120 pg/ml and
the remaining four had values of 80 pug/ml.

Isoniazid

The association analysis revealed the Rvi907c-furA
operon (p <1x 1073, which contains the katG gene
(p <1 x10®) as the most significant association (Fig. 2b).
Other loci identified included the fabGI-hemZ operon
(contains the inhA gene and promoter). Using MIC values,
the RvI907c-furA (p <2x10) operon and katG and
Rv1979c genes were found to be associated with INH
resistance. A SNP-based GWAS revealed a single poly-
morphism association in katG (position 2,155,168,
S315T/N, P <4.33 x 107®). This SNP was supported by
phyC analysis, which also revealed another site under
convergent evolution in inhA promoter. Overall, 47
(75 % of INH resistant) strains have a SNP in position
2,155,168 (S315T 41 isolates, S315N four strains), of
which 43 have an MIC value of at least 3.2 pg/ml, while
the remaining two had values of 0.8 and 1.6 pg/ml.
Twenty-one isolates have a SNP in the fabGIl-hemZ

operon, with MIC values ranging from 0.8 to 23.2 pg/ml.
Of the 16 isolates that only have one SNP in the fabGI-
hemZ operon, half had MIC values in excess of 0.8 pg/ml.
The three isolates with mutations at both the fabGI pro-
moter and inhA had an MIC value in excess of 1.6 pg/ml.
Three (of six) isolates with a mutation in the promoter
and an MIC of at least 3.2 pg/ml also have the katG
S315T mutation. One mutation in the katG promoter
region was found in a drug sensitive sample.

Streptomycin

The association analysis identified the rpsL-rpsG operon
and the rpsL gene as being associated with SM resistance
(Fig. 2c). The rpsL locus was also found by analysing MIC
values, and a SNP-based approach identified one mutation
(position 781,687, K43R, 11 isolates, 26 % of resistant
strains) within the gene. The phyC method identified two
SNPs in the rRNA gene rrs (514 A- > C, four isolates; 517
C- > T, three strains). All isolates, except one, had an MIC
of greater than 16 pug/ml. One sample with the 1,472,362
C-> T mutation had an MIC of 8 pug/ml

Ethambutol

A binary phenotype analysis identified the embA-embB
operon (p <1 x 107 and the embB gene (p <1 x 1073)
(Fig. 2d). This result was confirmed in an analysis of the
MIC phenotype (operon p <1 x 107 gene p <1 x 10°®).
A SNP-based association analysis revealed one in the
embB gene (position 4,248,003) and one in the promoter
of cadl, where the latter was also found using the phyC
method (four isolates) (Fig. 2e) The phyC approach iden-
tified seven SNPs in embB (codons 306 [x2, 22 isolates],
354 [four resistant isolates], 406 [x2, 12 isolates], 497
[seven isolates], and 1024 [two isolates]). Three isolates
had mutations in two of these positions and all others
had only one mutation. There was a great range of MIC
values in isolates containing these mutations with some
codons having both sensitive and resistant strains. For
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example, 6/22 isolates with mutations in codon 306 had
MIC values of at most 2 pg/ml. Mutations in the embA
promoter were also present, but not found to have a
consistent effect on the MIC values when combined with
mutations in embB. The additive effect of mutations in
the candidate genes embB, embA, embA promoter, embC,
embR, and ubiA correlated modestly with MIC values
(rho = 0.24, Additional file 5: Figure S4). The aggregated
mutation approach revealed that the pncA gene may be
associated with EMB resistance, but this was most likely

due to cross-resistance from the predicted PZA resistant
cases (n = 14).

Use of MIC values

The correlation between association p-values using bin-
ary resistance (susceptible, resistant) and trichotomous
MIC was modest (RMP 0.386, INH 0.311, EMB 0.309,
and SM 0.360), but led to near identical strongest hits.
However, there were some discrepancies in the findings
for EMB and SM. The majority of isolates (11/15) that
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were EMB phenotypically susceptible, but with known
drug resistance mutations, had an MIC value of 2 pug/ml.
This value is on the upper bound of the sensitive range,
but low-level resistance may be predicted as they had
known EMB drug resistance mutations. The majority of
SM false negative (15/22) isolates had an MIC value of
8 pg/ml, which is on the lower limit of the resistance
cut-off. Mutations in gid are known to cause low levels
of resistance, and the majority (19/22) of false negative
strains contained mutations in that gene. The additive ef-
fect of mutations in both EMB and SM candidate genes
correlated with increasing MIC value (EMB: rho = 0.24,
slope =0.29, p=0.003; SM: rho=0.48, slope=3.59, p=
1.65 x 10°% Additional file 6: Figure S5), and may provide
some evidence of accumulating low resistance mutations.

An exciting prospect is the use of MIC values to infer
the additive and interaction effects of each mutation.
Unfortunately, the relatively small sample size did not
allow a rigorous statistical approach to look for interac-
tions. However, the frequencies of combinations of mu-
tations for RMP, INH, EMB, and SM, and their MIC
values are presented (Additional file 1: Table S4). Using
these data, statistical models were fitted with all mutations
included, to allow an assessment of the MIC variation ex-
plained and their independent effects in the presence of
others (Additional file 6: Figure S5). For RMP and INH, a
high proportion of MIC variation is explained by single mu-
tations (RMP: rpoB 450, 48.4 %, INH: katG 315, 73.8 %).
However, for EMB and SM, single mutations explained at
most ~30 % (SM: rpsL codon 43 — 324 %, EMB: embB
codon 306 — 30.0 %), with the largest proportion due to
unknown factors (SM: 44.0 %, EMB: 37.4 %). This ana-
lysis further supports that other variants need to be
identified for EMB and SM drugs.

We compared the association results from the mixed
models using all available data to regression-based ap-
proaches that adjusted for the principal components
(explained ~60 % of variation) and removed 414
lineage- and clade-specific markers and eight highly
related Rwandan strains (Additional file 4: Figure S3).
There was a moderate level of correlation between the
approaches for all outcomes (minimum rho - RMP:
0.66, INH: 0.54, SM: 0.20, EMB: 0.34). This correlation
translated into identical top hits for association (Table 1),
except for the cadl gene, which was identified only by the
mixed model approach at the stringent significance cut-
off. Cadl is a protein that can be induced by cadmium,
and is thought to possess similar functions to the
metallothioneins and protects the bacterium against
metal toxicity (http://tuberculist.epfl.ch).

Second-line drugs
Forty-four (35.8 %) isolates were tested for second line drug
resistance, and the polymorphism in known candidates was
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considered (Table 2). Of the six isolates that were resistant
to PAS, mutations at candidate genes (folC, ribD, thyA, and
thyX) were observed in all isolates (folC E40G, 143G,
D135G; thyA Y94C, Q97R, V135F; and thyX promoter
G-16A (n=2), T-43G). Seven isolates had ETH resistance,
of which all had mutations in drug resistance candidate
genes (ethA R469D, n = 1; ethR-fabG1 promoter region C-
15 T, n=6; and inhA gene S94, n = 1). Three isolates had
resistance to OFL, with known mutations in the gyrA gene
(D94G, n =2; N499D, n =1). Two isolates had resistance
to CAP, with unreported mutations in candidate genes (rrs
A1205G, n=1; tlyA gene G196E, n=1). No indels were
identified in these genes.

Effects on protein structure and function

The availability of structural information for katG and
rpoB genes allowed us to assess the potential functional
effects of the mutations identified and their ability to
predict drug resistance. The respective INH and RMP
drugs were computationally docked into the models,
delimiting the residues of the drug binding site. The
mCSM and DUET servers were used to quantify the in-
fluence of mutations on protein stability and protein-
protein interactions (measured by the change in Gibbs
free energy AAG between the wild-type and mutant
structures). These factors, individually or combined could
lead to drug resistance. The predictions obtained are
summarized in Additional file 1: Table S5.

Across the eleven RMP resistance codons analysed in
rpoB and ten INH resistance codons of katG, no strong
correlation of the changes in protein stability with the
proportion of drug resistant isolates with each mutation
was observed (0 < 0.05, p >0.05). There was weak evi-
dence that drug resistant isolates had mutations that were
more destabilizing (p <0.10). The mutations in katG were
not located near the homodimer interface, while further
structural information is necessary to characterise the
rpoB interactions. However, across both drugs there was a
strong association between (a shorter) distance of the mu-
tation to the ligand in the protein structure and resistance

Table 2 Second-line drug related mutations in candidate genes

Drug No. Locus (codon [no. isolates])

resistant

folC (E40G[1], 143G[1], D135G[1]);
thyA (YO4C[1], Q97R[1], V135F[1));
thyX promoter (G16A [2], T43G [1]).

Para-aminosalisylic acid 6

Ethionamide 7 ethA (R469P[1]);
ethR-fabG1 promoter (C15T[6]);
inhA (S94[11)
Ofloxacin 3 gyrA (D94G [2]; N499D [1)).
Capreomycin 2 rrs (A1205G[1)); tlyA (G196E [1])

Previously unreported in bold
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(greater MIC values) (rpoB rho =-0.79, p = 8.1 x 10°5; katG
rho =-0.72, p=0.0012) (Fig. 3). For RMDP, isolates with
MIC values of at least 80 pg/ml had mutations located
close to the drug binding site (median distance of 5.77 A,
all values less than 10 A) as depicted in Fig. 4, compared
to isolates with MIC values of <10 pg/ml (median distance
of 37.08 A). For INH, isolates with MIC resistance values
of at least 3.2 pg/ml had mutations directly interacting
with the drug (median 2.15 A) (Fig. 4), whilst isolates with
intermediate resistance (1.6 pg/ml) mutations located fur-
ther away (median 9.93 A), and mutations in susceptible
strains (MIC values less than 0.8 pg/ml) were even more
remote (median 53.97 A). Additional file 7: Figure S6
shows the molecular interactions established by mutated
residues in katG and rpoB, with most of the effects of
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Fig. 3 Boxplot showing the distributions of the distance of the
mutated codon to the drug for all the SNPs in each MIC level in (@)
RMP-rpoB and (b) INH-katG. Vertical red line is the resistance cut-off.
SNP single nucleotide polymorphism, MIC minimum inhibitory
concentration, RMP rifampicin, INH isoniazid
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mutations influencing interactions established directly
with the drug molecule, by destabilizing the surrounding
region via loss of interactions or the introduction of steric
clashes. Whether we can predict the resistance of a mu-
tation using its distance to a ligand site will have to be
verified using other protein structure models, when they
become available.

Discussion
Early characterisation of drug resistance mutations would
assist TB patient management and avoid treating individ-
uals with inefficacious toxic regimens [11]. Current testing
for resistance to most anti-tuberculosis drugs, as applied
to isolates in TDR, involves isolation and culture of the
bacteria followed by exposure to the drug, a process that
takes weeks or months [11]. However, the direct sequen-
cing of M. tuberculosis from sputum from suspected drug
resistant patients [58] and the development of rapid strain
profiling tools, suggests that culture-free approaches have
a role in the management of TB [11]. For some drugs,
such as RMP and INH, resistant mutations are well
characterised, but for others such as SM, EMB and
second-line treatments, existing databases lack specifi-
city and sensitivity [11]. We performed a genome-wide
association approach on SM and first-line treatments
and assessed its ability to confirm existing, and identify
new, variants that cause drug resistance. Whilst genome-
wide association methods have become established for
disease susceptibility studies in humans, their application in
pathogens is still in its infancy [31]. Population structure
can confound analyses and lead to false positive results. For
TB, widespread drug resistance may be over represented in
particular lineages or clades, causing lineage specific SNPs
that confound analyses. This confounding was handled by a
mixed model, but alternative approaches were considered,
in particular, removal of all lineage- and clade-specific
markers or inclusion of principal components as surrogates
for lineages within the regression model. These approaches
led to near identical top association hits, in part reflecting
the strong signal of the resistance-related mutations across
clades, the dominant clustering of discrete lineages in the
phylogeny, and the modest number of highly related or
outbreak-based isolates (e.g. Rwandan strains). Our work
suggested that the use of kinship matrices within mixed
models may avoid the removal of lineage-informative SNPs
and highly related strains, especially those involved in an
outbreak or transmission study. This observation is sup-
ported in human GWAS studies with familial relationships,
where mixed models have been found to be more robust
to false positive associations than principal components
adjustment [59].

A limitation of the study was the representation of
geographic origins and lineages, as we were restricted by
availability of strains collected for this extremely well
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carbons in dark grey) vary from 2.1 to 5.7 A. RMP rifampicin, INH isoniazid

Fig. 4 Mutations in binding site regions. a depicts the spatial distribution of mutated residues in the rpoB-RMP complex while (b) shows the
residue Ser315 in katG-INH complex (residues depicted with carbons in green). The distance between the residues and the ligands (depicted with

characterized collection. A second limitation was the
small sample size, especially for analyses of second-line
drugs, where a genome-wide approach could not be im-
plemented. However, where sample sizes were sufficient
our genome-wide analysis reported genes known to be
involved in first-line RMP, INH, SM, and EMB drug
resistance. The use of MIC values has been advocated
as a more sensitive measure, but the potential lack of
a symmetric distribution of values (as shown in our data)
could lead to invalidation of assumptions for linear
models. We took the pragmatic approach of discretising
the values into three natural groups (resistant, sensitive,
and intermediate) allowing an alternative modelling
strategy (proportional odds model) to be employed. The
correlation between association analysis p-values using
both binary and trichotomised MIC values was modest
(range: 0.31-0.39). Some isolates with intermediate SM
resistance had no known drug resistance mutations in
rpsL and rrs, and even after inclusion of gid mutations,
additional causal mutations or genes to explain phenotypic
variation remained unidentified. Larger sample sizes
would facilitate the use of raw MIC values and therefore
advance the detection of variants that confer intermediate
resistance. Many of the results were also confirmed using
convergent evolution methods, which require smaller
sample sizes than genome-wide approaches, and should
prove to be a powerful and robust method to detect drug
resistance mutations in M. tuberculosis, and possibly other
pathogens. There are a number of isolates that have very
high levels of resistance to both EMB and SM but do not
present any mutations in known candidate genes. It is
evident that there are rare SNPs occurring in unknown
genes that confer EMB resistance. Similarly, there are
many isolates with more than one mutation in candi-
date genes and high levels of susceptibility. Not all mu-
tations in these genes will have an effect on resistance
levels, and interactions between the drug and its target
should be considered.

The use of protein structures determined by X-ray
crystallography or as homology can provide extra valid-
ation and an insight into the mechanism of drug resist-
ance conferred by mutations. It has been shown that
mutations in the RMP binding site can cause resistance
due to disturbance of the active site both in Mtb and in
other bacteria [22]. An exciting finding was the strong
correlation between the MIC values and the distance in
the three-dimensional structure of the mutated residue
to the drug docking ligand. This observation seems
novel to Mtb. If it holds for other genes as their protein
structures become available, then potential drug resist-
ance mutations could be predicted in silico in a genome-
wide screen. The binding sites of the rifamycins have
been shown to be in similar locations and these observa-
tions would be expected to be similar for closely related
drugs [60]. It could also provide a future high through-
put way of integrating genomic and protein structure
data to make predictions about drug resistance muta-
tions. In particular, rare SNPs with low allele frequencies
may not be detected in association analyses; however,
prediction of the distance of the mutated codon to a ligand
or its effect on overall stability or protein-protein interac-
tions can provide a complementary approach to identify
new drug resistance conferring mutations. Indeed, variants
such as the rpoB V170F mutant are present in only one iso-
late in our dataset but it was flagged up as an interesting
SNP due to its proximity to the docked RMP ligand in the
homology model. This rpoB SNP has been attributed to
drug resistance by earlier studies'?.

Conclusions

Overall, our work has demonstrated the potential of the
genome-wide association and selection approaches to
identify mutations and genes associated with resistance.
We have also shown that if protein structures are avail-
able, then the effects of mutations in genes on resistance
may be predicted in silico. This could facilitate the
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prediction of the effects of mutations on novel drugs
and potential resistance. Ultimately, such insights will
assist with patient treatment and management, and dis-
ease control.

Availability of data and materials
All raw sequence data can be downloaded from the ENA

short read archive (accession number PRJEB11653).

Additional files

Additional file 1: Table S1. The isolates according to geographic
location and phenotypic drug resistance. CAR Central African Republic; DRC
Democratic Republic of Congo, L1-L4 lineages 1 to 4, (first line drugs)
RMP = rifampicin, INH = isoniazid, SM = streptomycin, EMB = ethambutol;
(second line drugs) OFL = ofloxacin, KAN = kanamycin, CAP = capreomycin,
Et = ethionamide, P = Para-aminosalisylic acid. Table S2. The isolate
ENA accession numbers and MIC values. RMP rifampicin, INH isoniazid,
SM streptomycin, EMB ethambutol. Table $3. Drug susceptibility profiles for
rifampicin, isoniazid, streptomycin and ethambutol. R = resistance, S = sensitive;
13 different profiles were identified across 127 independent isolates;
Multi-drug resistant in italics. Table S4. Combinations of mutations and
their frequency (N) in drug resistance candidate genes. a) Rifampicin. b)
Isoniazid. ) Streptomycin. d) Ethambutol. * single mutation, ** double
mutations, *** triple mutations; SNP mutations in a single sample have
been aggregated into a “rare” column. Table S5. Predicted effects of
mutations. (DOCX 55 kb)

Additional file 2: Figure S1. The global distribution of geographic
origin and lineage of the isolates. Lineages one to four are represented
by blue, green, purple, and red, respectively. (PNG 265 kb)

Additional file 3: Figure S2. SNP allele frequency spectrum. A large
number of rare variants are observed. Peaks with higher allele frequency
reflect the presence of lineage and sub-lineage specific SNPs. (PNG 33 kb)

Additional file 4: Figure S3. Population structure analysis of the 144
isolates show clustering by lineage (Lineages one to four are represented
by blue, green, purple, and red points, respectively). (@) A phylogenetic
tree rooted with M. canetti. (b) First two principal components represent
33 % and 30.5 % of the variation explained between isolates, respectively.
(ZIP 105 kb)

Additional file 5: Figure S4. The relationship between the total
number of non-synonymous SNPs in candidate loci and the MIC values.
The size of the circle represents the number of isolates. a) Ethambutol
(embB, embA, embA promoter, embC, embR and ubiA). b) Streptomycin
(rpsL, rrs). The size of the circles is proportional to the frequency. The MIC
values tend to increase with the number of non-synonymous mutations
(ethambutol: rho = 0.24, slope = 0.29, p = 0.003; streptomycin: rho = 048,
slope =359, p= 165 x 109). The horizontal blue lines refer to the resistance
cut-offs. (ZIP 92 kb)

Additional file 6: Figure S5. Percentage of the variation in MIC values
explained by each mutated codon in candidate genes. Bars in red represent
significant independent associations with increased MIC (p < 0.05). a)
Rifampicin. b) Isoniazid. c) Streptomycin. d) Ethambutol. (ZIP 231 kb)

Additional file 7: Figure S6. Molecular interactions established by
wild-type residues in katG and rpoB residues. (A) The interactions established
by Ser315 in katG. Given the proximity of the residue to the ligands INH and
HEM, mutations to Asn and Thr, with slightly larger side chains, would
potentially cause steric clashes. (B) The interactions of Asp435 in rpoB. It
directly interacts with RMP via polar interactions that would be disrupted by
mutations to Val. (C) Thr400 in rpoB is at the end of an alpha helix establishing
intra molecular interactions. Giving its distance to RMP, it would be expected
that its mutation to Ala would be a lower impact, which would arise from
alosteric changes. (D) Ser450 establishes strong intra molecular interactions in
the RMP binding site. Mutations to larger residues (Trp and Leu) could disrupt
the packing of the region and therefore binding. (E). 1le491 performs
hydrophobic interactions with RMP and its neighbouring residues.

Page 11 of 13

Mutations to Phe or Val would compromise packing, either inducing
steric clashes or compromising packing. (F). His445 performs strong
intra molecular interactions, including a donor-pi (blue dashes) and
hydrogen bond (red dashes). Mutations to residues Asp, Tyr or Arg
would imply in the loss of the pi interaction as well as potential intro-
duction of steric clashes. (PNG 749 kb)
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Additional file 1: Table S1
The samples according to geographic location and phenotypic drug resistance

Number of isolates
belonging to lineage

Number of isolates showing resistance to

Source

Tot.

L1 L2

L3

L4

SM INH RMP EMB OFL KAN CAP Et

PZA

Asia
Bangladesh
China
(Tibet)
Nepal
Pakistan
Philippines
Sth Korea
Thailand

Africa
Cameroon
CAR
Guinea
Guinea Eq.
Morocco
Niger
Nigeria
RDC
Rwanda

A NP DR PR PR

=
(2}

A NP DR PR PR

=
(2}
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Europe

Germany 12
Kazakhstan 1
Portugal 1
Spain 2

South America

Brazil 7
Colombia 1
Peru 31
Rep.

Domin. 1
Overall 144

10

26

97

48

73

[ = S

11

61

41

CAR Central African Republic; DRC Democratic Republic of Congo, L1-L4 lineages 1 to 4, (first line drugs) RMP = Rifampicin, INH = Isoniazid, SM

= Streptomycin, EMB = Ethambutol; (second line drugs) OFL = Ofloxacin , KAN = kanamycin, CAP = capreomycin, Et = ethionamide,

P =Para-aminosalisylic acid.
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Additional file 1: Table S2
The isolate ENA accession humbers and MIC values

ENA Accession TDR Accession RMP MIC INH MIC SM MIC EMB MIC
ERR1213824 TB-TDR-0070 >120 3.2 4 8
ERR1213825 TB-TDR-0073 >120 0.8 <1 4
ERR1213826 TB-TDR-0074 80 3.2 2 <1
ERR1213827 TB-TDR-0077 30 0.2 2 <1
ERR1213828 TB-TDR-0078 <10 0.2 <1 2
ERR1213829 TB-TDR-0079 80 0.2 4 <1
ERR1213830 TB-TDR-0080 <10 0.2 <1 <1
ERR1213831 TB-TDR-0081 <10 0.2 <1 2
ERR1213832 TB-TDR-0082 <10 3.2 <1 2
ERR1213833 TB-TDR-0083 <10 3.2 <1 <1
ERR1213834 TB-TDR-0084 <10 3.2 <1 <1
ERR1213835 TB-TDR-0085 <10 3.2 8 4
ERR1213836 TB-TDR-0086 >120 0.8 <1 2
ERR1213837 TB-TDR-0087 >120 3.2 8 4
ERR1213838 TB-TDR-0088 >120 0.2 <1 <1
ERR1213839 TB-TDR-0089 >120 0.8 <1 8
ERR1213840 TB-TDR-0090 >120 0.2 <1 2
ERR1213841 TB-TDR-0091 20 0.2 2 2
ERR1213842 TB-TDR-0092 <10 0.2 2 4
ERR1213843 TB-TDR-0093 <10 >3.2 8 4
ERR1213844 TB-TDR-0094 <10 0.2 <1 8
ERR1213845 TB-TDR-0095 <10 0.8 >16 <1
ERR1213846 TB-TDR-0096 <10 <0.05 >16 <1
ERR1213847 TB-TDR-0097 30 0.2 >16 <1
ERR1213848 TB-TDR-0098 40 0.2 16 2
ERR1213849 TB-TDR-0099 >120 >3.2 4 >8
ERR1213850 TB-TDR-0101 80 3.2 2 4
ERR1213851 TB-TDR-0102 >120 3.2 <1 2
ERR1213852 TB-TDR-0104 <10 >3.2 <1 4
ERR1213853 TB-TDR-0106 >120 3.2 <1 2
ERR1213854 TB-TDR-0108 <10 0.8 8 <1
ERR1213855 TB-TDR-0109 <10 3.2 >16 2
ERR1213856 TB-TDR-0110 <10 >3.2 >16 2
ERR1213857 TB-TDR-0112 >120 0.8 >16 <1
ERR1213858 TB-TDR-0113 120 >3.2 >16 4
ERR1213859 TB-TDR-0116 80 >3.2 8 >8
ERR1213860 TB-TDR-0117 >120 >3.2 <1 2
ERR1213861 TB-TDR-0119 >120 3.2 4 <1
ERR1213862 TB-TDR-0120 30 >3.2 16 4
ERR1213863 TB-TDR-0122 >120 3.2 >16 4
ERR1213864 TB-TDR-0123 20 >3.2 >16 8
ERR1213865 TB-TDR-0124 >120 >3.2 >16 4
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ERR1213866
ERR1213867
ERR1213868
ERR1213869
ERR1213870
ERR1213871
ERR1213872
ERR1213873
ERR1213874
ERR1213875
ERR1213876
ERR1213877
ERR1213878
ERR1213879
ERR1213880
ERR1213881
ERR1213882
ERR1213883
ERR1213884
ERR1213885
ERR1213886
ERR1213887
ERR1213888
ERR1213889
ERR1213890
ERR1213891
ERR1213892
ERR1213893
ERR1213894
ERR1213895
ERR1213896
ERR1213897
ERR1213898
ERR1213899
ERR1213900
ERR1213901
ERR1213902
ERR1213903
ERR1213904
ERR1213905
ERR1213906
ERR1213907
ERR1213908
ERR1213909
ERR1213910
ERR1213911

TB-TDR-0125
TB-TDR-0126
TB-TDR-0129
TB-TDR-0130
TB-TDR-0131
TB-TDR-0132
TB-TDR-0133
TB-TDR-0134
TB-TDR-0135
TB-TDR-0136
TB-TDR-0137
TB-TDR-0138
TB-TDR-0139
TB-TDR-0140
TB-TDR-0141
TB-TDR-0142
TB-TDR-0143
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TB-TDR-0177
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1.6
<0.05
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>3.2
1.6
>3.2
>3.2
<0.05
<0.05
<0.05
0.2
0.2
0.2
0.2
0.2
>3.2
0.2
>3.2
>3.2
>3.2
1.6
3.2
3.2
>3.2
0.2
0.2
<0.05
<0.05
0.2
<0.05
<0.05
<0.05
0.2
3.2
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<0.05
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ERR1213912
ERR1213913
ERR1213914
ERR1213915
ERR1213916
ERR1213917
ERR1213918
ERR1213919
ERR1213920
ERR1213921
ERR1213922
ERR1213923
ERR1213924
ERR1213925
ERR1213926
ERR1213927
ERR1213928
ERR1213929
ERR1213930
ERR1213931
ERR1213932
ERR1213933
ERR1213934
ERR1213935
ERR1213936
ERR1213937
ERR1213938
ERR1213939
ERR1213940
ERR1213941
ERR1213942
ERR1213943
ERR1213944
ERR1213945
ERR1213946
ERR1213947
ERR1213948
ERR1213949
ERR1213950

TB-TDR-0178
TB-TDR-0180
TB-TDR-0181
TB-TDR-0182
TB-TDR-0183
TB-TDR-0184
TB-TDR-0185
TB-TDR-0186
TB-TDR-0187
TB-TDR-0189
TB-TDR-0190
TB-TDR-0191
TB-TDR-0193
TB-TDR-0194
TB-TDR-0195
TB-TDR-0197
TB-TDR-0198
TB-TDR-0199
TB-TDR-0200
TB-TDR-0201
TB-TDR-0202
TB-TDR-0203
TB-TDR-0204
TB-TDR-0207
TB-TDR-0208
TB-TDR-0209
TB-TDR-0210
TB-TDR-0213
TB-TDR-0214
TB-TDR-0016
TB-TDR-0017
TB-TDR-0018
TB-TDR-0022
TB-TDR-0038
TB-TDR-0041
TB-TDR-0042
TB-TDR-0043
TB-TDR-0045
TB-TDR-0007

>120
<10
<10
>120
20
<10
20
<10

<10
>120

0.8
0.2
<0.05
<0.05
0.8
<0.05
0.8
>3.2
>3.2
>3.2
<0.05
>3.2
>3.2
0.2
3.2
0.2
3.2
0.2
<0.05
>3.2
<0.05
<0.05
<0.05
<0.05
0.2
0.2
<0.05
0.8
<0.05
0.2
0.2
0.2
<0.05
>3.2
<0.05
>3.2
3.2
0.2
>3.2

(o)

>16

IN
0 0 4O NNN

>16

>16

IN
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RMP rifampicin, INH isoniazid, SM streptomycin, EMB ethambutol
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Additional file 1: Table S3
Drug susceptibility profiles for rifampicin, isoniazid, streptomycin and ethambutol

No. samples

Rifampicin

Isoniazid

Streptomycin

Ethambutol

12 (9.4%)
8(6.3%)
8(6.3%)

14 (11.0%)
4 (3.1%)
7 (5.5%)
5 (3.4%)
7 (5.5%)
5 (3.4%)
6 (4.7%)
9 (7.1%)
4 (3.1%)
38 (29.9%)

R

S

nw n =B PDAIIOL LIV

S

nw I VL n I I L I KL KN

S

A 0O n D VU B VL OV KK I D

S

R =resistance, S = sensitive; 13 different profiles were identified across 127 independent

samples; Multi-drug resistant in italics
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Additional file 1: Table S4

Combinations of mutations and their frequency (N) in drug resistance candidate genes

a) Rifampicin

Mutation observed in rpoB codons rpoC N MIC (pg/ml)
1 2 4 4 4 4 4 6
4 7 5 0 3 4 5 9 9
5 0 0 05 5 0 1 2 rare Mean Min Max
70 15.3 10.0 80.0
* 5 68.0 10.0 120.0
* 1 10.0 10.0 10.0
* 1 80.0 80.0 80.0
* 21 114.3 80.0 120.0
* 1 120.0 120.0 120.0
* * 2 120.0 120.0 120.0
* * 1 120.0 120.0 120.0
* * 1 120.0 120.0 120.0
* 1 120.0 120.0 120.0
* 9 120.0 120.0 120.0
* 4 120.0 120.0 120.0
* * 1 120.0 120.0 120.0
* * 2 120.0 120.0 120.0
* 2 10.0 10.0 10.0
* 1 120.0 120.0 120.0
* * 1 120.0 120.0 120.0
* * 3 120.0 120.0 120.0
b) Isoniazid
inhA MIC (ug/ml)
katG codons prom. N
315 436 rare Mean Min Max
46 0.3 0.05 3.2
* 2 0.2 0.2 0.2
*kk 1 3.2 3.2 3.2
* 8 1.7 0.8 3.2
* * 1 1.6 1.6 1.6
* 23 2.9 0.2 3.2
* * 1 3.2 3.2 3.2
* * 2 3.2 3.2 3.2
* 18 0.2 0.05 0.8
* * 4 1.0 0.8 1.6
* * * 1 3.2 3.2 3.2
* * 18 3.2 3.2 3.2
* * * 1 3.2 3.2 3.2
* * * 1 3.2 3.2 3.2
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c) Streptomycin

rpsL codons rrs N MIC (ug/ml)
43 88 Mean Min Max
99 3.8 1 16
* 13 10.0.4 1 16
* 4 16.0 16 16
* 11 16.0 16 16

d) Ethambutol

embB codons ubiA  embA N MIC (ug/ml)
1
2 3 333 440 a
9 0 157 09 2 r
7 6 9 48 6 7 4 e Mean Min Max
70 1.2 1 2
*x 1 4.0 4 4
* 2 1.5 1 2
*x 1 1.0 1 1
* 3 1.7 1 2
** 1 2.0 2 2
* 1 4.0 4 4
* 5 4.8 4 8
* * 1 40 4 4
* 6 4.5 1 8
* * 4 2.8 1 4
* * 1 4.0 4 4
* * Ok 1 4.0 4 4
* *x 3 1.0 1 1
* * * *x 1 2.0 2 2
* * 1 4.0 4 4
*o* *x 1 4.0 4 4
*o* * *x 1 4.0 4 4
* 3 4.7 2 8
* 11 4.1 1 8
* * 1 4.0 4 4
* * 1 8.0 8 8
* * 1 2.0 2 2
* * *x 2 8.0 8 8
* * 1 8.0 8 8
* 2 2.5 1 4
* * 1 8.0 8 8

* single mulation, ** double mutations, *** triple mutations; SNP mutations in a single

sample have been aggregated into a “rare” column.



Additional file 1: Table S5
Predicted effects of mutations

Gene Mutation Distance to Distanceto DUET (AAG mCSM-Stability SDM (AAG
interface ()  ligand (A) kcal/mol) (AAG kcal/mol)  kcal/mol)

rpoB  T400A 42.914 0.031 -0.326 2.480
D435V 3.094 0.336 0.356 1.860
H445D 4.015 -2.084 -1.971 -1.730
H445Y 4.015 -0.214 -0.171 -0.310
H445R 4.015 -1.958 -1.857 -1.950
S450W 5.773 -0.756 -0.840 2.330
S450L 5.773 0.102 -0.126 2.820
1491V 2.908 -1.221 -1.274 -0.830
1491F 2.908 -1.529 -1.416 -0.760
katG  S315N 14.940 2.149 -0.100 -0.184 2.149
S315T 14.940 2.149 -0.243 -0.330 2.149
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Additional file 2: Figure S1
The global distribution of geographic origin and lineage of the isolates. Lineages one to
four are represented by blue, green, purple, and red, respectively
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Additional File 3: Figure S2
SNP allele frequency spectrum. A large number of rare variants are observed. Peaks with

higher allele frequency reflect the presence of lineage and sub-lineage specific SNPs.
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Additional File 4: Figure S3

Population structure analysis of the 144 isolates show clustering by lineage (Lineages one
to four are represented by blue, green, purple, and red points, respectively). (a) A
phylogenetic tree rooted with M. canetti. (b) First two principal components represent 33 %
and 30.5 % of the variation explained between isolates, respectively.
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Additional file 6: Figure S5

Percentage of the variation in MIC values explained by each mutated codon in candidate
genes. Bars in red represent significant independent associations with increased MIC

(p < 0.05). a) Rifampicin. b) Isoniazid. c) Streptomycin. d) Ethambutol.
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Additional file 7: Figure S6

Molecular interactions established by wild-type residues in katG and rpoB residues. (A) The
interactions established by Ser315 in katG. Given the proximity of the residue to the ligands
INH and HEM, mutations to Asn and Thr, with slightly larger side chains, would potentially
cause steric clashes. (B) The interactions of Asp435 in rpoB. It directly interacts with RMP
via polar interactions that would be disrupted by mutations to Val. (C) Thr400 in rpoB is at
the end of an alpha helix establishing intra molecular interactions. Giving its distance to
RMP, it would be expected that its mutation to Ala would be a lower impact, which would
arise from alosteric changes. (D) Ser450 establishes strong intra molecular interactions in
the RMP binding site. Mutations to larger residues (Trp and Leu) could disrupt the packing
of the region and therefore binding. (E). 11e491 performs hydrophobic interactions with
RMP and its neighbouring residues. Mutations to Phe or Val would compromise packing,
either inducing steric clashes or compromising packing. (F). His445 performs strong intra
molecular interactions, including a donor-pi (blue dashes) and hydrogen bond (red dashes).
Mutations to residues Asp, Tyr or Arg would imply in the loss of the pi interaction as well
as potential introduction of steric clashes.
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ABSTRACT

To further characterize the genetic determinants of resistance to anti-tuberculosis drugs
we performed a genome-wide association study (GWAS) of 6,465 Mycobacterium
tuberculosis clinical isolates from more than 30 countries. A GWAS approach within a
mixed regression framework was followed by a phylogenetic-based test for independent
mutations. In addition to novel mutations associated with resistance to cycloserine,
ethionamide and p-aminosalicylic acid our analysis indicates a more extensive role for
small insertions and deletions and large deletions than previously recognised,
particularly for ethionamide, pyrazinamide, capreomycin, cycloserine and para-
aminosalicylic acid. Findings also suggest the involvement of efflux pumps (drrA,
Rv2688c) in the emergence of resistance. Odds ratios for mutations in candidate loci
were found to reflect levels of resistance reported from phenotypic testing. Findings
from this study, the most comprehensive yet reported, will inform the design of new
diagnostic tests and expedite the investigation of resistance and compensatory epistatic

mechanisms.

KEY WORDS: Mycobacterium tuberculosis, tuberculosis, GWAS, drug resistance, MDR-

TB, XDR-TB
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The emergence and spread of Mycobacterium tuberculosis (Mtb) resistant to multiple
anti-tuberculous drugs is of global concern. Programmatically incurable tuberculosis
(TB), where effective treatment regimens cannot be provided due to resistance to the
available drugs is a growing problem®. In high burden countries such patients may be
discharged to home care, increasing the risk of community based transmission of
incurable drug resistant disease’. Resistance to rifampicin and isoniazid is classed as
multidrug-resistant tuberculosis (MDR-TB), further resistance to the fluoroquinolones
and any of the injectable drugs (amikacin, kanamycin or capreomycin) used to treat
MDR-TB is termed extensively drug-resistant (XDR-TB). Strains resistant to the
remaining drugs, are referred to as XXDR-TB or totally drug-resistant (TDR-TB), however
formal definitions for post XDR-TB resistance have yet to be agreed by the World Health
Organisation (WHO)'. Treatment for patients with drug resistant tuberculosis is
prolonged, expensive and outcomes are poor3. The drugs used are toxic and poorly
tolerated, adverse events are common and may be severe and irreversible®. Inadequate
treatment also risks amplification of resistance to further drugs and may prolong

opportunities for transmission”.

Mtb has a clonal genome (size 4.4Mb) with a low mutation rate and no evidence of
between-strain recombination or horizontal gene transfer®. The Mtb complex comprises
seven lineages, of which four are predominant in humans: Lineage 1, Indo-Oceanic (e.g.
East-African-Indian (EAI) spoligotype families); Lineage 2, East-Asian (e.g. W/Beijing
spoligotype families); Lineage 3, East-African-Indian (e.g. Central-Asian-Strain (e.g. CAS-
DELHI) spoligotype families) and Lineage 4, Euro-American (e.g. Latin American-

Mediterranean (LAM), Haarlem and the “ill-defined” T spoligotype families)®.
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Resistance in Mtb is mainly conferred by nucleotide variations (single nucleotide
polymorphisms, insertions and deletions (indels)) in genes coding for drug-targets or -
converting enzymes. Changes in efflux pump regulation may have an impact on the
emergence of resistance’ and putative compensatory mechanisms to overcome fitness
impairment coincidental with the acquisition of resistance have been described for
some drugs®. Detection of resistance conferring mutations offers a means of rapidly
identifying resistance to anti-tuberculosis drugs’ but, with the exception of rifampicin,
current molecular tests for resistance lack high levels of sensitivityg. To improve
knowledge of genetic determinants of drug resistance we undertook whole genome
analysis of a large collection (n=6,465) of clinical isolates from more than 30 geographic
locations, representing the four major Mtb lineages (Figure 1, Supplementary table 1).

We adopted a GWAS approach to identify nucleotide variation and loci underlying drug

10-12 13,14
b

resistance as successfully applied in Mt and other bacteria™™™". A total of 14 drugs
with available phenotypic data on drug susceptibility testing were investigated
(Supplementary table 2). Phenotypic drug susceptibility data was not available for each
of the 14 drugs for every isolate and sample sizes ranged from over 6,000 for the most
commonly tested first line drugs (isoniazid and rifampicin) to 255 and 248 for p-
aminosalicylic acid and cycloserine, respectively, which are used to treat patients with
XDR-TB. Here, we present findings from the most comprehensive study yet undertaken

of the genetic determinants of resistance to anti-tuberculosis drugs or the Mtb

resistome.
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RESULTS

Genetic polymorphisms, population structure and drug resistance

High quality genome-wide SNPs (102,160), indels (11,122), and large deletions (284)
were identified across all samples (n=6,465). The majority of SNPs (93.1%) had rare
minor alleles (allele frequency <1%) (Supplementary Figure 1) and 23,216 SNPs (8.9%)
were very rare (minor allele frequency <= 0.3%). Similarly, small indels were rare (96.6%
had frequency <1%), and ranged in size from 1 to 45bp. The majority (82.7%, 7788/9421)
in protein coding genes resulted in frame-shifts, leading to premature stop signals in the
coding mRNAs. A phylogenetic tree and principal component analysis constructed using
all genome-wide SNPs and small indels revealed the expected clustering by lineage

(Figure 2, Supplementary Figure 2).

Phenotypic analysis of susceptibility to anti-tuberculosis drugs found 27.7% of isolates
were resistant to at least one drug, 12.9% were categorised as MDR-TB and 4.5% as XDR-
TB (Supplementary table 2, Figure 2). Fourteen drugs were included in the genome-
wide analysis: isoniazid (INH), rifampicin (RIF), ethionamide (ETH), pyrazinamide (PZA),
ethambutol (EMB), streptomycin (STM), amikacin (AMK), capreomycin (CAP),
kanamycin (KAN), ciprofloxacin (CIP), ofloxacin (OFL), moxifloxacin (MOX), cycloserine
(CYS) and para-aminosalicylic acid (PAS). Drug family groups including the second-line
injectable drugs (SLID: AMK, KAN, CAP) and fluoroquinolones (FLQ: CIP, OFL, MOX) were
also analysed. Insufficient phenotypic data was available for the inclusion of the new
and repurposed drugs, bedaquiline, delamanid and linezolid. To reveal loci associated
with drug resistance complementary methods were applied to mutations and

aggregated non-synonymous mutations, a tree-based “PhyC” test for convergent
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evolution to detect homoplastic variants'® and a GWAS approach within a mixed
regression framework (See Online methods). Specifically, the low frequency of variants
requires the aggregation of mutations to increase the power of detecting associated
loci®®, and a mixed model approach has been demonstrated to work well at adjusting
for the confounding effects of Mtb lineage, sub-lineage and outbreak-based population
structure’®. A SNP-based GWAS was used to identify individual variants associated with
drug resistance expected to fall within the genes found associated in the ‘main’ analysis.
The phylogenetic-based “PhyC” test was applied to provide further evolutionary
evidence. We report all findings that are below a calculated permutation threshold of
P<1x10”. Some co-resistance associations were also revealed and annotated. Such
findings may be expected to result from exposure to multiple anti-tuberculous drugs
and the step-wise accumulation of mutations. Unless stated otherwise, all analysis used
the complete dataset. First, we consider MDR-TB and XDR-TB phenotypes (Table 1) and

then individual drug GWAS and evolutionary results (Table 2).

Gene and SNP-based GWAS and convergent evolution test for MDR-TB and XDR-TB

The gene-based GWAS of MDR-TB versus susceptible identified rpoB (RIF), Rvi482c-
fabG1 operon (INH, ETH), inhA (INH, ETH) and katG (INH). The katG mutations at codon
315 (S315T, S315N, S315R) were all statistically significant, and collectively were the
most frequent mutations (81.7%) across all resistance loci identified, consistent with a
recent study™® and highlighting their pivotal role in the emergence of INH resistance and
MDR-TB. The katG S315T mutation is thought to emerge before RIF resistance
associated mutations and therefore, from an evolutionary standpoint, preclude the

16,17

emergence of MDR-TB™™"". However, our analysis highlighted that Rv1482c-fabG1 and
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inhA mutations, in the absence of katG S315T, can emerge prior to MDR-TB, as

1819 The other

previously shown in two phylogenetically-independent clades in Lisbon
frequent MDR-TB mutations in our study included rpoB-S450L (RIF, 67.0%), embB-
M306L/V/I (EMB, 57.6%), and rpsL-K43R (STM, 45.8%) (Supplementary table 3), and the
magnitude correlates with historical treatment practice and emergence of resistance.
There are corresponding signals of INH/RIF co-resistance with other first-line drugs, with
the detection of association signals for rpsL (STM), embC-embA intergenic region (EMB)
and embB (EMB). SNP-based PhyC analysis detected the above loci, but in addition folC

(PAS), pncA-Rv2044c intergenic region (PZA), and whiB6-Rv3863 intergenic (putative

STM or ETH) regions.

The gene-based GWAS of XDR-TB versus MDR-TB identified mutations in gyrA (FLQ),
rpoB (RIF), rrs (aminoglycosides) and ubiA (EMB). One ubiA mutation (T180V, EMB) has
not been previously reported and was found using the SNP-based GWAS approach. The
PhyC test additionally revealed eis-Rv2417c (KAN), gyrB (FLQ), rrs (aminoglycosides)

SNPs, and a novel mutation in the thyX-hsdS.1 intergenic region (A-9T, PAS).>%%

The gene-based GWAS comparing XDR-TB to susceptible identified rpoC (a
compensatory mechanism for RIF resistance), oxyR'-ahpC (compensatory mechanism
for INH), ethA (ETH), ethA-ethR intergenic region (ETH), eis-Rv2417c (KAN) and PPE52-
nuoA (novel intergenic region, G-314T). The PhyC test additionally detected SNPs in gyrB
(FLQ, D461N, D641H, T500N, T500! and A504V), supported the thyX-hsdS.1 intergenic
region SNP finding (PAS, A-9T), as well as endorsing the ubiA SNP associations (EMB,
V188A, A249T). The drrA Arg262Gly mutation was significantly associated with XDR-TB

119



compared to susceptible (mutation frequency 19% vs. 0%, respectively, P<2x10°). We
hypothesize that drrA may be involved in export of drugs across the membrane based
on its strong association with XDR-TB in our study and its functional annotation as a
probable transporter of antibiotics across the membrane (http://tuberculist.epfl.ch).
This hypothesis is in accordance with the findings that rpoB mutations in Mtb may
trigger compensatory transcriptional changes in secondary metabolism genes, in
particular, in the biosynthesis and export of phthiocerol dimycocerosate (PDIM),
increasing its expression and activity. As a consequence these strains became more
virulent and multidrug resistant, increasing their fitness by increased efflux activity and

lipid metabolism®*%.

Similarly, a mutation in the Rvi144-mmplL13a intergenic region (C-102A) was highly
associated with XDR-TB versus susceptible (mutation frequency 19% vs. 0%,
respectively, P<7x10®). This mutation sits in the promoter to the operon containing
mmpL13a and mmpL13b, which code for transmembrane transport proteins and could

influence expression of these proteins’.

Lineage-specific and compensatory mechanisms

We conducted a stratified GWAS per lineage to identify lineage-specific loci associated
with drug resistance. The majority of associations were present in more than one
lineage. The largest number of lineage-specific drug resistance mutations were found in
lineage 4, which was the largest collection investigated and contained more genetically
diverse clones®, implying that geographically restricted mutations are being captured

(Supplementary table 4). A previously unreported putative compensatory locus was
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identified for pyrazinamide (pncB1) through analysis of lineage 1 which reached

borderline significance for lineage 3.

We applied a systematic approach to reveal epistatic interactions between GWAS loci
(from Table 2) or explore known compensatory effects using a test of non-random
association to detect the frequent co-occurrence of mutations in pairs of loci (Fisher
exact test, P-value cut-off <10°®) (Supplementary table 5). Deep phylogenetic mutations
were removed to increase robustness. This approach proved to be successful at
identifying well-known compensatory relationships between rpoB and rpoC loci (RIF)?,
rpoB and rpoA (RIF)** and katG and oxyR'-ahpC (INH)*. We captured the frequent co-
occurrence of embB and ubiA mutations which together are known to lead to high levels
of EMB resistance®®, and they are therefore unlikely to represent a compensatory
mechanism. Novel epistatic relationships included pncA with pncB2 (PZA) and thyA with
thyX-hsdS.1 (PAS). The pncB2 effect appears to be specific to lineage 4 (Supplementary
table 6). The other nicotinamide co-factor, pncB1, had weaker evidence of an epistatic
relationship with pncA in lineage 1 (P=0.0016) (Supplementary table 6). Similarly, there
was marginal evidence for pyrG (lineage 4, P=0.00016)*" and Rv0565c (lineage 2,
P=0.00027) with ethA (ETH)*® (Supplementary table 6). Follow-up investigations will
need to determine whether mutations in these loci have an impact on the MIC or

function as compensatory mechanisms.

Overall, the GWAS approach was effective at detecting known drug resistance
determinants and epistatic (gene-gene) relationships and identified novel ones that

warrant functional validation in future studies. As resistance loci for individual drugs,
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especially second-line treatments, may be masked by an analysis of the composite MDR-
TB and XDR-TB outcomes, we repeated the GWAS, PhyC test and epistatic analysis for

the 14 individual drugs considered.

Gene and SNP-based GWAS and convergent evolution test for individual drugs
Rifampicin, isoniazid and ethionamide

The rpoB locus showed the strongest association with RIF resistance, but the
compensatory effects of rpoC and rpoA were also evident through homoplasy SNP
analysis. As previously reported non-synonymous SNPs in rpoC (272 identified) were
spread across the whole gene®. Altered or diminished activity of the catalase-
peroxidase enzyme KatG is the most frequent mechanism of isoniazid resistance®®, and
as expected, the katG gene ranked first in the GWAS for this drug. Mutations in proposed
INH drug targets, kasA and kasB previously included in some drug resistance databases,
did not reach statistical significance in our studysl, suggesting an odds ratio below our
detection level of 1.4 (with 99% confidence of detection, 90% statistical power). Both
inhA, encoding the molecular target of isoniazid®* and the Rv1482c-fabG1 intergenic
region harbouring its promoter, showed strong associations with INH and ETH, with
greater effects in the former. In addition, oxyR'-ahpC intergenic associated mutations
(20 detected) were found in the presence of katG polymorphisms (28), supporting its
role as a compensatory mechanism. For ethionamide, the ethA locus, encoding the
drug-metabolising enzyme was found to be associated with resistance as described
previously33. A total of 153 non-synonymous mutations were identified in ethA,
scattered throughout the gene and mostly affecting codons different from those already

described®.
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Ethambutol

Mutations in the embCAB operon, which encodes for enzymes involved in the
biosynthesis of arabinan components of the mycobacterial cell wall, are mostly
responsible for EMB resistance but are not fully penetrant for resistance®*. The embB
and the embC-embA intergenic region had the strongest associations. Rv3806c¢ (ubiA),
described to contribute to high levels of EMB resistance in vitro'’ was also significantly
associated in our analysis demonstrating a role in clinical samples too across all four
lineages. Two novel loci were identified: Rv2820c thought to enhance mycobacterial
virulence ex vivo and in vivo, and Rv3300c a conserved protein with unknown function
(http://tuberculist.epfl.ch).

Pyrazinamide

The pncA locus was the highest ranked association with PZA resistance in the GWAS and
was a target of independent mutation, consistent with its established role®.
Additionally, many low frequency SNPs were reported across the whole gene which
were not used in the association analysis and could potentially confer resistance
(Supplementary data 1). Other proposed PZA targets, namely rpsA*® and panD*’, did not
reach statistical significance in the GWAS and were not targets of independent mutation
among PZA resistant strains in our collection.

Streptomycin

The rpsL, rrs and gid loci, all known to be involved in STM resistance?® were identified by
GWAS. Mutations in rpsL are known to lead to high levels of STM resistance®®, and
accordingly we observed high odds ratios indicative of high penetrance in association
signals in this locus (Figure 3). In contrast, candidate rrs and gid gene polymorphisms

showed weaker signals (lower odds ratio) in the overall GWAS, which concurs with
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existing evidence that gid and rrs mutations confer low levels of resistance®. When
considering the odds ratios across all SNP-drug associations, those from rrs and gid were
much lower on average than those from pncA (PZA) and katG (INH) (Figure 3). This
analysis demonstrates a potential utility of using odds ratios and their statistical
significance to indicate the impact of a mutation and its propensity to cause low,
intermediate or high level resistance.

Fluoroquinolones and Second-line injectables

The gene- and SNP-based GWAS analysis revealed the gyrA locus, which encodes for the
molecular target of FLQ?, as the strongest association signal. In addition to homoplastic
mutations in gyrA, evidence of independent mutation was detected in gyrB*. The
Rv2688c C213R mutation was associated with MOX and FLQ resistance but did not reach
statistical significance in OFL. The antibiotic transport ATP-binding protein encoded by
Rv2688c is a known FLQ_ efflux gene®’. As expected the strongest resistance gene and
SNP-based association signals across AMK, KAN, and CAP was with the aminoglycoside
(SLID) target gene rrs*®. Association was observed with mutations in the eis promoter
known to result in low levels of KAN resistance but not in co-resistance with other
aminoglycosides*’. The median odds ratio for eis promoter mutations is lower than that
of rrs mutations (Figure 3), further supporting that rrs mutations confer higher levels of
KAN resistance.

D-Cycloserine

CYS inhibits the Alr enzyme, responsible for the conversion of L-Alanine into D-Alanine,
by competing with L-Alanine for the active site. Resistance to CYS results from mutations
in the alr coding region®. In our study alr was significantly associated with CYS resistance

(Table 2) in line with recent evidence showing that clinical strains with alr mutations
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exhibit increased resistance to CYS' and harboured multiple homoplastic mutations
including Phe4leu, Lys113Arg and Met343Thr. In a previous study, the Met343Thr
mutation was detected in an XDR-TB strain that had been exposed to CYS treatment,
predicted to alter the protein structure of Alr, and therefore it was hypothesised to be
involved in CYS resistance*. To further understand the functional impact of the
mutations found in alr we modelled the effect of these variants using the available
crystal protein structure (PDB 1XFC, Supplementary figure 3). Mutations in alr were
found to differ in their proximity to the CYS binding site and their effect on protein
stability and ligand binding (Supplementary table 7). The Met343Thr mutation (found
in 12 susceptible and 2 resistant isolates) was predicted to have more drastic effect on
protein structure compared to Lys113Arg, the most frequent mutation among CYS
resistant isolates (in 7 susceptible and 23 resistant isolates). There appears to be a
balance between the fitness cost associated with mutations and their frequency
(Supplementary table 7). The Met343Thr mutation appears independently throughout
the phylogenetic tree, but did not reach statistical significance for association to drug
resistance (XDR-TB or CYS), implying that selection may be acting on this mutation but
drug resistance may not be the driving factor.

Para-aminosalicylic acid

PAS is a pro-drug that is converted into its active form by thyA - a thymidylate synthase,
which is an essential gene for Mtb survival. The candidate drug resistance loci are those
involved in folate metabolism and biosynthesis of thymidine nucleotides (thyA, dfrA,
folC, folP1, folP2 and thyX)**. Of these, thyA and thyX-hsdS.1 (directly upstream of thyX)
and were found to be associated with PAS drug resistance in both gene- and SNP-based

GWAS. Importantly, it has been shown that G-16A SNP found in our study increased thyX
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expression by 18-fold relative to wild-type promoter although no link with PAS
resistance was made”’. Of 3 PAS resistance strains with the G-16A thyX promoter
mutation, 2 also had a thyA mutation (P145L, H207R), further supporting that up-
regulation of thyX is involved in resistance to PAS®®, or has a compensatory role. The G-

16A thyX is a homoplastic mutation, and therefore more likely to be compensatory.

The odds ratios for the novel findings were less than those for known ones (present in
the TBProfiler database), reflecting that the ability of the GWAS to discover effect sizes
of lower magnitude (Figure 3). However, novel SNPs associations for PZA and RIF were
more likely to have higher odds ratios. A pathway analysis comparing MDR-TB/XDR-TB
to susceptible strains revealed only one significant annotation cluster with 17.7-fold
enrichment for antibiotic resistance and response to antibiotics (P<2x107”), further

confirming the robustness of the GWAS approach.

Association analysis using small indels and large deletions

An analysis of genome-wide small indels revealed associations in candidate resistance
genes and operons (Supplementary table 8, Supplementary data 1). The candidate
genes differed in their abundance of small indels, reflecting their essentiality for survival:
drug targets had less density of indels whereas drug-metabolising enzymes had a greater
density. For example, the pncA gene was the most polymorphic coding region (PZA,
44.72 indels /kb) while the least polymorphic was rpoB (RIF, 2.3 indels /kb). Although,
the majority of small indels (83%) in the candidate regions were 1bp in length and
caused frame-shifts, the indels in rpoB inserted or deleted whole codons, i.e. they did

not cause a shift in the codon reading frame. Indels in rpoB, pncA and the embAB
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promoter region were associated with MDR-TB, XDR-TB and their respective
targets/activators. Indels in ethA were associated with ETH and XDR-TB resistance.

Similarly, gid indels were associated with STM as expected.

The analysis of CYS revealed indel associations with the ald gene, supporting recent
reports that loss of function in ald confers resistance®. Thus resistance to CYS appears
to be conferred by both SNPs in alr and indels in ald. Indels found in rrs were associated
with KAN and CAP resistance, however they did not reach statistical significance for STM,
which has a different drug binding site. CAP resistance was also found to be associated
with three indels in tlyA, two of which are located at the 3’ end of the gene. In general,
indels were distributed throughout the gene lengths however there was some evidence
of areas of higher density such as the pncA region between codons 130 and 132 (close

to the catalytic centre) and the rpoB 427-434 codon region.

The only large deletion association identified by GWAS was a region encompassing the
thyA and dfrA genes and PAS resistance. Five samples across 4 countries contained large
thyA-dfrA deletions of varying length (Supplementary table 9, Supplementary figure 4).
Associations in partial or whole gene deletions in katG, ethA and pncA, were close to
statistical significance (P<0.05). These genes activate pro-drugs, and none are
considered to be essential to Mtb survival. The large deletions detected occur
independently in different branches of the phylogenetic tree and are likely to offer an
alternative route to resistance compared to small genomic variants, across lineages and

populations.
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Effects on predicting drug resistance phenotypes with new SNPS and indels from GWAS
We sought to establish if any of the mutations found in association and homoplastic
analysis increased the predictability of individual drug resistance phenotypes (Table 3).
We used the reported phenotypic drug susceptibility test result as the reference
standard to calculate the sensitivity and specificity for mutation-resistance predictions.
Using a previously established library of mutations”*® (TBDR library), we found that
although the sensitivity was greater than 80% in 8/14 drugs, a substantial proportion of
resistance phenotypes were not explained by known mutations, particularly in second-
line drugs. Using the novel SNPs identified in this study we gained sensitivity for STM
(+1%), PAS (+10%), and CYS (+50%, not included in the TBDR library) (Table 3). The
additional inclusion of small indels and large deletions further improved the predictive
ability for 9 drugs while maintaining specificities of >90%, except for ETH which is 70%

(Table 3).

DISCUSSION

To provide genomic insight into Mtb drug resistance we have combined the power of
whole genome sequencing with a genome-wide association analytical approach in the
largest and most geographically widespread study to date, encompassing a total of
6,465 clinical isolates of Mtb from more than 30 countries. Large sample sizes are
required to identify complex or infrequent genetic effects, but also to negate effects due
to possible errors in phenotypic drug susceptibility testing and misclassification®. The
lack of standardization of phenotypic testing methodologies for Mtb is also a potential
source of bias which was reduced by the inclusion of samples from a number of different

countries and laboratories using a variety of quality assured testing methodologies. A
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recent large study demonstrated the usefulness of the convergent approach to detect
known mutations underlying MDR-TB*. However, the incompleteness of first- and
second-line drug resistance outcomes meant association analysis to detect novel
mutations was not possible. Whilst resistant phenotypes may be imputed from
established resistance causing mutations, inferring susceptibility to a drug cannot be
assumed in the absence of corroborating evidence'. The completeness of our
susceptibility test data meant that both GWAS and homoplasy-based methods could be
applied across 14 drugs. The predominance of Mtb genome polymorphisms of low
frequency required the adoption of a robust rare-variant approach, where mutations
were aggregated by gene and operon (a surrogate for pathways)ls. However, the large
sample size enabled us to detect mutations at low frequency. The GWAS identified well-
established resistance loci and compensatory relationships, thereby confirming the
authenticity and robustness of the approach. It also revealed several recently discovered
loci (folC, ubiA, thyX-hsdS.1, thyA, alr, ald, dfrA-thyA), new epistatic relationships (pncA
with pncB2, and thyA with thyX-hsdS.1) and efflux pumps represented by the ABC
transporters drrA and Rv2688c associated with drug resistance. The novel genetic
markers associated with resistance identified in this GWAS included SNPs in the ethA
and thyX promoters, small indels in pncA and ald, and large deletions in pro-drug
activators such as ethA and katG. These loci warrant functional follow-up and
characterization studies to fully elucidate their role in treatment failure. The
associations identified may shed light on the molecular mechanisms underlying drug

resistance and assist in the design of novel antibiotics.
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Improved knowledge of the molecular mechanisms responsible for resistance to drugs
used to treat MDR-TB and XDR-TB is important. Second-line drug susceptibility testing
is technically challenging to perform and quality assured testing is not widely available
in all TB endemic countries. Such countries also tend to have deficient directly observed
treatment, short-course (DOTS) programs and consequently are at risk of high rates of
resistance. In our study, sample sizes for second-line drugs were reduced compared to
the first-line drugs. This was due to the lower prevalence of resistance to second-line
drugs and the fact that isolates susceptible to first-line drugs are not routinely tested for
second-line drugs.

However, due to the large effect that causal mutations have on drug resistance
phenotypes, although not ideal, relatively small samples of bacterial genomes can be
sufficient to identify causal mutations ** as has been demonstrated in previous studies

10-12
b

on Mt . It should be noted that bedaquiline, delamanid and linezolid were excluded

from our analysis due to the paucity of phenotypic susceptibility data.

The analysis also highlighted the importance of indels on drug resistance, particularly
their high density in drug-metabolizing genes, in contrast to highly essential drug-target
genes where their density was low. The inclusion of small indels and large deletions
improved the predictability of resistance phenotypes. However, for drugs like CYS and
PAS mechanisms of drug resistance remain unknown and larger numbers of resistant
cases will be required to elucidate them. It is also possible that unknown mechanisms

may be explained by the role of epigenetics and gene expression®.
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Mtb strains are usually classified as drug resistant or susceptible based on their capacity
to grow in vitro when exposed to a critical concentration of the drug. Phenotypic testing
methods have a degree of uncertainty, especially close to the threshold®. Testing
against a range of drug concentrations to establish the minimum inhibitory
concentration (MIC) is a preferred approach but is not routinely undertaken®. Most
resistance is of a high level when strains can survive high drug concentrations but
intermediate and low levels of resistance are also reported for some drugs, and in such
cases, increased dosing may be beneficial for the patient*’. MIC values were not
available for every isolate presented here, but despite this limitation, loci known to be
involved in low-levels of resistance (Table 3), were identified by our analysis. Indeed,
our analysis revealed a relationship between known levels of resistance and the odds
ratios from the GWAS, which could aid the clinical interpretation of molecular diagnostic
data including measuring the sensitivity and specificity of individual mutations when

diagnosing drug resistance.

Emergence of resistance is driven by drug exposure and local TB treatment practices are
a major influence on the prevalence and pattern of resistance. A limitation of this study
was the sampling methodology since collection of the isolates was not controlled or
systematic and resistant isolates were not evenly distributed across collection sites.
However, within our study population we covered the four major Mtb lineages across 5
continents and sampled multiple geographical regions, allowing us to observe
differences in the prevalence of drug resistance mutations and mechanisms. Some of
drug resistance and compensatory/epistatic relationships were found to vary across

geographical populations and bacterial lineage, implying that regional variation should
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be considered to fully characterise genotype-phenotype relationships. The differential
lineage effects could impact on relative virulence between strain-types. Enhanced
understanding of the genetic basis of anti-tuberculous phenotypic drug resistance will
also aid in the development of more accurate molecular diagnostics for drug-resistant
TB. An important finding of this study is the significance of genomic variation other than
SNPs which has implications for the design of molecular tests for resistance. Improved
tools are needed to guide treatment of patients with multidrug-resistant disease where
personalised treatment offers improved rates of cure*. Next generation sequencing
offers a comprehensive assessment and may be used to guide treatment*. Although
such technology is currently being implemented in some low burden countries such as
the United Kingdom, it remains to be trialled in resource-poor settings that are

representative of the majority of TB patients worldwide.
Section 1.01 ONLINE METHODS

(a) Sequence data and variant calling

Sequence data for 6,465 M. tuberculosis complex clinical isolates were generated as part
of a collaborative global drug resistance project (n=2,637, pathogenseq.lshtm.ac.uk) or
downloaded from the public domain (n=3,828) (Supplementary table 1). All isolates had
undergone drug susceptibility testing by phenotypic methods. These isolates
represented multiple populations from different geographic areas, and all four main
lineages (1 to 4) (Supplementary table 1). The 2,637 samples not previously sequenced
were lllumina sequenced generating paired-end reads of at least 50 bp with at least 50-
fold genome coverage. The analytical workflow for the raw sequence data is

summarised in Supplementary figure 5. The new and archived raw sequence data were
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aligned to the H37Rv reference genome (Genbank accession number: NC_000962.3)
using the BWA mem algorithm®. The SAMtools/BCFtools>® and GATK' software was
used to call SNPs and small indels using default options. The GATK parameters used are
"-T UnifiedGenotyper -ploidy 1 -glm BOTH -allowPotentiallyMisencodedQuals 2”. The
overlapping set of variants from the two algorithms was retained for further analysis.
Alleles were additionally called across the whole genome (including SNP sites) using a

coverage-based approach®®

. A missing call was assigned if the total depth of coverage
at a site did not reach a minimum of 20 reads or none of the four nucleotides accounted
for at least 75% of the total coverage. Samples or SNP sites having an excess of 10%
missing genotype calls were removed. This quality control step was implemented to
remove samples with bad quality genotype calls due to poor depth of coverage or mixed
infections. The final dataset included 6,465 isolates and 102,160 genome-wide SNPs.
Delly2 software®* was used to find large deletions. All large deletions were confirmed

using localised de novo assembly, and those found in association analysis (dfrA/thyA,

pncA, ethA/ethR, katG) confirmed using PCR.

Phenotypic drug susceptibility testing

Drug susceptibility data was obtained from World Health Organisation recognised
testing protocols>>. The M. tuberculosis isolates that provided sequence data included
in this study are summarised in Supplementary table 1. Each sequence included in the
study was derived from an isolate from an individual patient. Some DNA samples were
from archived stocks (e.g. India, collected prior to 2009 and Malawi, collected between
1996 and 2010) and others were extracted specifically for this study. Information

regarding isolates with previously reported sequence data was derived from published
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materials. Isolates were classed as resistant or susceptible to a drug on the basis of
phenotypic testing using either the BACTEC 460 TB System (Becton Dickinson), the
BACTEC Mycobacterial Growth Indicator Tube (MGIT) 960 system (Becton Dickinson)>*,

>>°% Not all samples were tested for resistance

solid agar or Lowenstein Jensen slopes
to all drugs, most notably some isolates found susceptible to the first-line drugs were
not subjected to testing for resistance to second-line drugs. Where isolates were not
tested for resistance to a particular drug they were excluded from the analysis for that
drug. Drug susceptibility testing was mainly undertaken in local laboratories
participating in the WHO supranational laboratory network using the recognised testing
protocols®. Isolates from Malawi were shipped to the United Kingdom’s
Mycobacterium Reference Laboratory for testing. Isolates from Uganda were tested at
the Joint Clinical Research Centre (JCRC) in Kampala with quality control performed by
the US Centers for Disease Control and Prevention (CDC). The Peruvian isolates were
initially tested for resistance to rifampicin and isoniazid using the Microscopic
Observation Drug Susceptibility assay (MODS)*® at the Universidad Peruana Cayetano
Heredia (UPCH) prior to transfer to the national reference laboratory for further testing.
In Peru susceptibility to pyrazinamide (PZA) was assessed by the Wayne assay; a
colorimetric biochemical test during which PZA is hydrolysed to free pyrazinoic acid®’.
Testing using the BACTEC 960® MGIT® or BACTEC 460® (Becton-Dickinson®) was
performed according to the manufacturer's indications. Pyrazinamide sensitivity was
determined by using BACTEC 7H12 liquid medium, pH 6.0, at 100 pug/mL (BACTEC PZA
test medium, Becton Dickinson). When testing on agar critical drug concentrations used

were rifampicin 1 ug/mL, isoniazid 0.2 ug/mL, streptomycin 2 pg/mL, and ethambutol 5

ug/mL, ciprofloxacin 2 pg/mL, amikacin 5pug/mL, capreomycin 10 pg/mL, kanamycin 5
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ng/mL (Pakistan 6 ug/mL), ethionamide 5 pg/mL and para-aminosalicylic acid 2 pg/mL>>.
For Lowenstein-Jensen drug concentrations used were for streptomycin 4.0 pg/ml,
isoniazid 0.2 pg/ml, rifampicin 40.0 pug/ml, ethambutol 2.0 pg/ml, capreomycin 40.0
ug/ml, kanamycin 30.0 pg/ml (China) or 20.0 pug/ml (Vietnam), ofloxacin 2.0 pg/ml,
ethionamide 40 pg/ml, thioacetone (10 pg/ml), pyrazinamide 200 pg/ml, cycloserine 30

ng/ml and para-aminosalicylic acid (PAS) 0.5 ug/ml°’.

(b) Phylogenetic tree and association analysis

The best-scoring maximum likelihood phylogenetic tree rooted on Mycobacterium
canettii was constructed by RAXML software®® (10,000 bootstrap samples) using the
102,160 high quality SNP sites. Spoligotypes were inferred in silico using SpolPred®, and
strain-types determined using lineage-specific SNPs®. Further population structure
assessment was performed using principal components analysis (Supplementary figure
3), which clustered samples by genotype congruent with the phylogenetic tree. The
principal components were calculated from a SNP pair-wise distance matrix between
each sample, and the first five components (summarising 82.7% of genetic variation)
were used as covariates in the regression-based association models. Mixed regression
models were employed to estimate the strength of association between the binary drug
resistance outcome (resistance vs. susceptible) and the aggregate number of mutations
(SNPs, indels or large deletions) by coding region, RNA loci and intergenic regions, as
well as operons®®. The operons or functional units containing clusters of genes under
the control of the same promoter were determined from TBDB (http://www.tbdb.org).
Gene function was extracted from the Tuberculist webserver

(http://tuberculist.epfl.ch). The mixed models also included the principal components
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to account for the main Mtb lineage and sub-lineage effects, and a SNP inferred kinship
matrix as a random effect to account for highly related samples and fine-scale
population structure due to potential outbreaks®®, and were implemented in GEMMA
(v.1.1.2) software®. To minimise any co-resistance between drugs, and we adjusted for
the presence of other resistance in the regression models. Statistical significance
thresholds to account for multiple testing were established using a permutation
approach that sorted phenotypic test data without replacement and re-performed
GWAS analysis (10,000 times). The determined P-value threshold was 1x107. All
statistical analysis was performed using R software. To identify SNPs enriched by
convergent evolution, the phyC approach was employed™ using the implementation
made available in a previous study®. Any potential co-resistance effects were dissected
through consulting gene annotation and published literature to report the most
plausible role in drug resistance. Additionally, long branches in the phylogenetic tree
leading up to clades enriched with drug resistant isolates leads to spurious associations.
Truly drug resistant mutations often originate multiple times independently in the
phylogeny. Mutations which originated once in the tree (i.e. clade-specific mutations),
which are likely to lead to spurious associations, were removed from the GWAS results.
Detection of putative compensatory mechanisms

Loci were identified as putative compensatory loci if they: (i) were associated with drug
resistance, (ii) harboured homoplastic mutations, (iii) shared a similar biological function
with a known drug-target or drug-activating enzyme, and (iv) were significantly more
mutated in the presence of mutations in the drug-target or drug-activating enzyme
coding gene. In the latter, deep phylogenetic and synonymous SNPs were removed prior

to calculating the number of samples with non-synonymous SNPs at genes of interest
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(e.g. Alal075Ala at rpoB or Glu1092Asp at rpoC). The significance of differences between
studied genes was calculated using Fisher's exact test (P<10'®).

Protein mutation modelling

Apo crystal structures for alr were downloaded from the Protein Data Bank
(PDBe1XFC®®) and then subjected to modelling of missing residues, WinCOOT
regularisation, and removal of pyridoxal 5-phosphate from both chains. The mCSM
(http://structure.bioc.cam.ac.uk/mcsm) and DUET (http://structure
.bioc.cam.ac.uk/duet) web servers were used to assess changes in protein stability,
mCSM-PPI (http://structure.bioc.cam.ac.uk/mcsm_ppi) to quantify effects on protein-
protein interactions and mCSM-Lig (http://bleoberis.bioc.cam.ac.uk/mcsm_lig) to

64—-66

quantify effects on drug binding . For ligand binding, D-Cycloserine was docked in

the active site using Autodock Vina and Gold software®”®.

DATA AVAILABILITY
All raw sequencing data are available, and the study accession numbers are listed in
Supplementary table 1. The phenotypic data are available from the study website

(http://pathogenseq.Ishtm.ac.uk/#tuberculosis).

ACKNOWLEDGMENTS

The project was supported by the KAUST faculty baseline research fund (KAUST-BRF-
BAS/1/1020-01-01) to AP; The authors wish to thank members of KAUST Bioscience Core
laboratory who sequenced the samples. We thank the Wellcome Trust Sanger Institute
core and pathogen sequencing and informatics teams who were involved in the Malawi

and Uganda studies. The work was funded in part by the Wellcome Trust (Grant numbers

137



WT096249/72/11/B, WT088559MA, WT081814/Z/06/Z, and WT098051), and the
Wellcome Trust-Burroughs Wellcome Fund Infectious Diseases Initiative grant (number
063410/ABC/00/Z). FC was the recipient of a Bloomsbury College PhD Studentship and
was supported by the Wellcome Trust (201344/2/16/Z); JPe received a Fundag¢do para a
Ciéncia e a Tecnologia (Portugal) Post-doctoral fellowship fund
(SFRH/BPD/95406/2013). The Calouste Gulbenkian Foundation, the Institute
Gulbenkian in Lisbon and European Society of Clinical Microbiology and Infectious
Diseases supported the research of CP, JPe, IP and MV. JPh is funded by a BBSRC PhD
studentship. TGC is funded by the Medical Research Council UK (Grant no.
MR/K000551/1 and MR/M01360X/1, MR/N010469/1). TM is supported by the Ministry
of Health, Labor and Welfare of Japan (H21- Shinkou-lppan-008 and H24-Shinkou-Ippan-
010). We thank Nerges Mistry (Foundation for medical research, Mumbai) for
contributing M. tuberculosis archived strains and drug-sensitivity testing data. We wish
to thank Prof. Goncalo Moniz at the Laboratorio Central de Saude Publica for supporting
the collection of samples in Brazil, and the South African National Health Laboratory
Service for their contribution providing access clinical Mtb isolates. The MRC eMedLab
computing resource was used for bioinformatics and statistical analysis. The authors
declare no conflicts of interest. The work has been performed as part of the TB Global

Drug Resistance Collaboration (http://pathogenseq.Ishtm.ac.uk/#tuberculosis).

AUTHOR CONTRIBUTIONS

RM, AP and TC conceived and directed the project. KM coordinated sample collection
and undertook DNA extraction. SAl, AOA, AA, TB, MC, Ach, AC, KD, LG, JG, DH, RH, ZH,
PH, MJ, EJ, TM, AM, NM, DM, SP, IP, CP, JPe, JR, PS, NS, CS, EOS, ES, NP, MV and RW

138



undertook sample collection, DNA extraction, genotyping and phenotypic drug
resistance testing. MBN, MAS, ZR and SA prepared libraries for lllumina sequencing. JPa
led the generation of Malawian and Ugandan sequencing data. FC, JPh and GH
performed bioinformatic and statistical analyses under the supervision of AP and TC. SP
and YO performed additional confirmatory analysis under the supervision of MH, NF and
TC. FC, JPh, SP, NF, MH, RM, AP, and TC interpreted results. FC, JPh, RM and TC wrote
the first draft of the manuscript. TB, GH, MC, JG, PH, EJ, JPa, JPe, MH, NF, SP, JR, CS, ES,
MV, RW, and AP commented and edited on various versions of the draft manuscript and
all authors approved the manuscript. FC, JPh, RM, AP and TC compiled the final

manuscript.

DISCLOSURE DECLARATION

There are no conflicts of interest.

REFERENCES

1. Dheda, K. et al. Global control of tuberculosis: from extensively drug-resistant to
untreatable tuberculosis. Lancet. Respir. Med. 2, 321-38 (2014).

2. Dheda, K. et al. Outcomes, infectiousness, and transmission dynamics of patients

with extensively drug-resistant tuberculosis and home-discharged patients with
programmatically incurable tuberculosis: a prospective cohort study. Lancet
Respir. Med. (2017). doi:10.1016/S2213-2600(16)30433-7

3. Bastos, M. L. et al. Treatment outcomes of patients with multidrug-resistant and
extensively drug-resistant tuberculosis according to drug susceptibility testing to
first- and second-line drugs: an individual patient data meta-analysis. Clin. Infect.
Dis. 59, 1364-74 (2014).

4, Shean, K. et al. Drug-Associated Adverse Events and Their Relationship with
Outcomes in Patients Receiving Treatment for Extensively Drug-Resistant
Tuberculosis in South Africa. PLoS One 8, e63057 (2013).

5. Clark, T. G. et al. Elucidating emergence and transmission of multidrug-resistant
tuberculosis in treatment experienced patients by whole genome sequencing.
PLoS One 8, e83012 (2013).

6. Coll, F. et al. A robust SNP barcode for typing Mycobacterium tuberculosis

139



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

complex strains. Nat. Commun. 5, 4812 (2014).

Black, P. A. et al. Energy metabolism and drug efflux in Mycobacterium
tuberculosis. Antimicrob. Agents Chemother. 58, 2491-503 (2014).

de Vos, M. et al. Putative compensatory mutations in the rpoC gene of rifampin-
resistant Mycobacterium tuberculosis are associated with ongoing transmission.
Antimicrob. Agents Chemother. 57, 827-32 (2013).

Coll, F. et al. Rapid determination of anti-tuberculosis drug resistance from whole-
genome sequences. Genome Med. 5:51, (2015).

Farhat, M. R. et al. Genomic analysis identifies targets of convergent positive
selection in drug-resistant Mycobacterium tuberculosis. Nat. Genet. 45, 1183-9
(2013).

Zhang, H. et al. Genome sequencing of 161 Mycobacterium tuberculosis isolates
from China identifies genes and intergenic regions associated with drug
resistance. Nat. Genet. 45, 1255-1260 (2013).

Desjardins, C. A. et al. Genomic and functional analyses of Mycobacterium
tuberculosis strains implicate ald in D-cycloserine resistance. Nat. Genet. 48, 544—
551 (2016).

Earle, S. G. et al. Identifying lineage effects when controlling for population
structure improves power in bacterial association studies. Nat. Microbiol. 1,
16041 (2016).

Chewapreecha, C. et al. Comprehensive l|dentification of Single Nucleotide
Polymorphisms Associated with Beta-lactam Resistance within Pneumococcal
Mosaic Genes. PLoS Genet. 10, e1004547 (2014).

Phelan, J. et al. Mycobacterium tuberculosis whole genome sequencing and
protein structure modelling provides insights into anti-tuberculosis drug
resistance. BMC Med. 14, 31 (2016).

Manson, A. L. et al. Genomic analysis of globally diverse Mycobacterium
tuberculosis strains provides insights into the emergence and spread of multidrug
resistance. Nat. Genet. (2017). doi:10.1038/ng.3767

Cohen, K. A. et al. Evolution of Extensively Drug-Resistant Tuberculosis over Four
Decades: Whole Genome Sequencing and Dating Analysis of Mycobacterium
tuberculosis Isolates from KwaZulu-Natal. PLOS Med. 12, e1001880 (2015).
Perdigao, J. et al. Unraveling Mycobacterium tuberculosis genomic diversity and
evolution in Lisbon, Portugal, a highly drug resistant setting. BMC Genomics 15,
991 (2014).

Phelan, J. et al. The variability and reproducibility of whole genome sequencing
technology for detecting resistance to anti-tuberculous drugs. Genome Med. 8,
132 (2016).

Meier, A., Sander, P., Schaper, K. J., Scholz, M. & Boéttger, E. C. Correlation of
molecular resistance mechanisms and phenotypic resistance levels in
streptomycin-resistant Mycobacterium tuberculosis. Antimicrob. Agents
Chemother. 40, 2452—-4 (1996).

Zhang, X. et al. Genetic Determinants Involved in p -Aminosalicylic Acid Resistance
in Clinical Isolates from Tuberculosis Patients in Northern China from 2006 to
2012. Antimicrob. Agents Chemother. 59, 1320-1324 (2015).

Bisson, G. P. et al. Upregulation of the phthiocerol dimycocerosate biosynthetic
pathway by rifampin-resistant, rpoB mutant Mycobacterium tuberculosis. J.

140



23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Bacteriol. 194, 6441-52 (2012).

Chatterjee, A., Saranath, D., Bhatter, P., Mistry, N. & Thomson, A. Global
Transcriptional Profiling of Longitudinal Clinical Isolates of Mycobacterium
tuberculosis Exhibiting Rapid Accumulation of Drug Resistance. PLoS One 8,
e54717 (2013).

Comas, |. et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium
tuberculosis strains identifies compensatory mutations in RNA polymerase genes.
Nat. Genet. 44, 106—-10 (2012).

Sherman, D. R. et al. Compensatory ahpC gene expression in isoniazid-resistant
Mycobacterium tuberculosis. Science 272, 1641-3 (1996).

Safi, H. et al. Evolution of high-level ethambutol-resistant tuberculosis through
interacting mutations in decaprenylphosphoryl-B-D-arabinose biosynthetic and
utilization pathway genes. Nat. Genet. 45, 1190-7 (2013).

Mori, G. et al. Thiophenecarboxamide Derivatives Activated by EthA Kill
Mycobacterium tuberculosis by Inhibiting the CTP Synthetase PyrG. Chem. Biol.
22,917-927 (2015).

Merker, M. et al. Whole genome sequencing reveals complex evolution patterns
of multidrug-resistant Mycobacterium tuberculosis Beijing strains in patients.
PLoS One 8, €82551 (2013).

Casali, N. et al. Evolution and transmission of drug-resistant tuberculosis in a
Russian population. Nat. Genet. 46, 279-286 (2014).

Zhang, Y., Heym, B., Allen, B., Young, D. & Cole, S. The catalase—peroxidase gene
and isoniazid resistance of Mycobacterium tuberculosis. Nature 358, 591-593
(1992).

Larsen, M. H. et al. Overexpression of inhA, but not kasA, confers resistance to
isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M.
tuberculosis. Mol. Microbiol. 46, 453—66 (2002).

Banerjee, A. et al. inhA, a gene encoding a target for isoniazid and ethionamide
in Mycobacterium tuberculosis. Science 263, 227-30 (1994).

DeBarber, A. E., Mdluli, K., Bosman, M., Bekker, L. G. & Barry, C. E. Ethionamide
activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis.
Proc. Natl. Acad. Sci. U. S. A. 97, 9677-82 (2000).

Telenti, A. et al. The emb operon, a gene cluster of Mycobacterium tuberculosis
involved in resistance to ethambutol. Nat. Med. 3, 567-570 (1997).

Scorpio, A. & Zhang, Y. Mutations in pncA, a gene encoding
pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug
pyrazinamide in tubercle bacillus. Nat. Med. 2, 662—-667 (1996).

Shi, W. et al. Pyrazinamide inhibits trans-translation in Mycobacterium
tuberculosis. Science 333, 1630-2 (2011).

Shi, W. et al. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in
Mycobacterium tuberculosis. Emerg. Microbes Infect. 3, e58 (2014).

Perdigao, J. et al. GidB mutation as a phylogenetic marker for Q1 cluster
Mycobacterium tuberculosis isolates and intermediate-level streptomycin
resistance determinant in Lisbon, Portugal. Clin. Microbiol. Infect. 20, 0278-0284
(2014).

Takiff, H. E. et al. Cloning and nucleotide sequence of Mycobacterium
tuberculosis gyrA and gyrB genes and detection of quinolone resistance

141



40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

mutations. Antimicrob. Agents Chemother. 38, 773—80 (1994).

Kocagdz, T. et al. Gyrase mutations in laboratory-selected, fluoroquinolone-
resistant mutants of Mycobacterium tuberculosis H37Ra. Antimicrob. Agents
Chemother. 40, 1768-74 (1996).

Pasca, M. R. et al. Rv2686¢c-Rv2687c-Rv2688c, an ABC Fluoroquinolone Efflux
Pump in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 48, 3175—
3178 (2004).

Zaunbrecher, M. A,, Sikes, R. D., Metchock, B., Shinnick, T. M. & Posey, J. E.
Overexpression of the chromosomally encoded aminoglycoside acetyltransferase
eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc. Natl.
Acad. Sci. 106, 20004—-20009 (2009).

Awasthy, D., Bharath, S., Subbulakshmi, V. & Sharma, U. Alanine racemase
mutants of Mycobacterium tuberculosis require D-alanine for growth and are
defective for survival in macrophages and mice. Microbiology 158, 319-327
(2012).

Koser, C. U. et al. Whole-Genome Sequencing for Rapid Susceptibility Testing of
M. tuberculosis. N. Engl. J. Med. 369, 290-292 (2013).

Schon, T. et al. Mycobacterium tuberculosis drug-resistance testing: challenges,
recent developments and perspectives. Clin. Microbiol. Infect. (2016).
doi:10.1016/j.cmi.2016.10.022

Smith, T., Wolff, K. A. & Nguyen, L. Molecular biology of drug resistance in
Mycobacterium tuberculosis. Curr. Top. Microbiol. Inmunol. 374, 53—80 (2013).
Cambau, E. et al. Revisiting susceptibility testing in MDR-TB by a standardized
quantitative phenotypic assessment in a European multicentre study. J.
Antimicrob. Chemother. 70, 686—96 (2015).

McNerney, R. et al. Removing the bottleneck in whole genome sequencing of
Mycobacterium tuberculosis for rapid drug resistance analysis: a call to action.
Int. J. Infect. Dis. (2016). doi:10.1016/j.ijid.2016.11.422

Li, H. Toward better understanding of artifacts in variant calling from high-
coverage samples. Bioinformatics 30, 2843-2851 (2014).

Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics
25, 2078-9 (2009).

DePristo, M. A. et al. A framework for variation discovery and genotyping using
next-generation DNA sequencing data. Nat. Genet. 43, 491-8 (2011).

Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and
split-read analysis. Bioinformatics 28, i333—-i339 (2012).

World Health Organization. WHO | Guidelines for surveillance of drug resistance
in tuberculosis. (2009).

Kent, P. T. Public health mycobacteriology: a guide for the level Ill laboratory. (U.S.
Dept. of Health and Human Services, Public Health Service, Centers for Disease
Control, 1985).

CANETTI, G. et al. MYCOBACTERIA: LABORATORY METHODS FOR TESTING DRUG
SENSITIVITY AND RESISTANCE. Bull. World Health Organ. 29, 565-78 (1963).
Minion, J., Leung, E., Menzies, D. & Pai, M. Microscopic-observation drug
susceptibility and thin layer agar assays for the detection of drug resistant
tuberculosis: a systematic review and meta-analysis. Lancet Infect. Dis. 10, 688—
698 (2010).

142



57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Wayne, L. G. Simple pyrazinamidase and urease tests for routine identification of
mycobacteria. Am. Rev. Respir. Dis. 109, 147-51 (1974).

Palicova, F., Jahn, E. I. M. & Pfyffer, G. E. Susceptibility Testing of Mycobacterium
tuberculosis to Anti-Tuberculosis Drugs: BACTEC ™ MGIT ™ 960 vs BACTEC ™
460TB System.

Stamatakis, A., Hoover, P. & Rougemont, J. A Rapid Bootstrap Algorithm for the
RAXML Web Servers. Syst. Biol. 57, 758—771 (2008).

Coll, F. et al. SpolPred: rapid and accurate prediction of Mycobacterium
tuberculosis spoligotypes from short genomic sequences. Bioinformatics 28,
2991-3 (2012).

Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for
association studies. Nat. Genet. 44, 821-824 (2012).

Alam, M. T. et al. Dissecting vancomycin-intermediate resistance in
staphylococcus aureus using genome-wide association. Genome Biol. Evol. 6,
1174-85 (2014).

Velankar, S. et al. PDBe: improved accessibility of macromolecular structure data
from PDB and EMDB. Nucleic Acids Res. (2015). doi:10.1093/nar/gkv1047

Pires, D. E. V, Ascher, D. B. & Blundell, T. L. mCSM: predicting the effects of
mutations in proteins using graph-based signatures. Bioinformatics 30, 33542
(2014).

Pires, D. E. V., Blundell, T. L. & Ascher, D. B. mCSM-lig: quantifying the effects of
mutations on protein-small molecule affinity in genetic disease and emergence
of drug resistance. Sci. Rep. 6, 29575 (2016).

Pires, D. E. V, Ascher, D. B. & Blundell, T. L. DUET: a server for predicting effects
of mutations on protein stability using an integrated computational approach.
Nucleic Acids Res. 42, W314-9 (2014).

Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of
docking with a new scoring function, efficient optimization, and multithreading.
J. Comput. Chem. 31, 455-61 (2010).

Verdonk, M. L. et al. Modeling Water Molecules in Protein-Ligand Docking Using
GOLD. J. Med. Chem. 48, 6504—6515 (2005).

Wong, S. Y. et al. Mutations in gidB confer low-level streptomycin resistance in
Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 55, 2515-22
(2011).

Rueda, J. et al. Genotypic Analysis of Genes Associated with Independent
Resistance and Cross-Resistance to Isoniazid and Ethionamide in Mycobacterium
tuberculosis Clinical Isolates. Antimicrob. Agents Chemother. 59, 7805-7810
(2015).

Kambli, P. et al. Correlating rrs and eis promoter mutations in clinical isolates of
Mycobacterium tuberculosis with phenotypic susceptibility levels to the second-
line injectables. Int. J. Mycobacteriology 5, 1-6 (2016).

143



Figure 1. Geographical distribution of the 6,465 M. tuberculosis isolates analysed in the study

This world map shows the main geographical origins of the M. tuberculosis isolates included in this study. The study comprises strains from more
than 30 countries, of which the 18 major contributors are showed in this map. See Supplementary table 1 for a detailed description of each
dataset. Inner pie charts show the proportion of each of the main four lineages, and the outer charts the drug resistance phenotypes. ‘Drug-
resistant’ refers to non-MDR-TB/XDR-TB resistance.
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Figure 2. Population structure of 6,465 M. tuberculosis isolates based on 102,160 SNPs and 11,122
insertions and deletions spanning the whole genome

Maximum likelihood phylogenetic tree constructed rooted on M. canetti (not displayed),
colour-coded by lineage (inner circle) and drug resistance status (outer circle). ‘Susceptible’

refers to isolates being susceptible to all drugs tested. ‘Drug-resistant’ refers to strains being
resistant to multiple drugs but not classified as multidrug-resistant (MDR-TB) or extensively
drug-resistant XDR-TB.
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Figure 3. Odds ratios from SNP-drug resistance associations are a potential surrogate for
resistance level

Within each drug, boxplots for the log odds ratios (P-values < 10”) for each gene are arranged
by increasing median values (as indicated by the horizontal line in the boxes) to show their
relative effect on resistance. Boxplots are colour-coded in blue or red to show whether genes
are known to confer ‘low’ or ‘high’ levels of resistance, respectivelyzo’sg_”.
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Table 1
MDR-TB and XDR-TB gene-based associations

Comparison Rv Gene Gene-based NS SNPs Indels Assoc. PhyC SNPs
(frame.) SNPs
P-value
MDR-TB vs. Susc.  Rv0667 rpoB 1.98E-139 159 7 (0) 6 8
MDR-TB vs. Susc.  Rv1908c katG 2.72E-110 177 12 (9) 1 1
MDR-TB vs. Susc.  Rv1482c-Rv1483 Rv1482c-fabG1 1.18E-25 8 0 1 1
MDR-TB vs. Susc.  Rv3795 embB 1.23E-18 168 2 (0) 1 9
MDR-TB vs. Susc.  Rv1484 inhA 3.13E-18 9 0 2 0
MDR-TB vs. Susc.  Rv3793-Rv3794 embC-embA 1.85E-13 6 6 1 3
MDR-TB vs. Susc.  Rv0682 rpsL 2.96E-13 6 0 0 2
MDR-TB vs. Susc.  Rv3919c gid 5.22E-11 137 26 (26) 0 1
MDR-TB vs. Susc.  Rv2427A-Rv2428 oxyR'-ahpC 2.51E-10 17 3 0 3
MDR-TB vs. Susc.  Rv0721 rpse 8.10E-08 24 0 0 0
MDR-TB vs. Susc.  Rv2043c pncA 1.32E-06 117 25 (22) 0 1
XDR-vs. MDR-TB  Rv0006 gyrA 5.10E-30 147 0 2 4
XDR-vs. MDR-TB  rrs rrs 5.30E-06 91 4 1 2
XDR-TB vs. Susc. Rv0667 rpoB 3.04E-203 159 7 (0) 7 5
XDR-TB vs. Susc. Rv2043c pncA 4.52E-143 117 25 (22) 2 0
XDR-TB vs. Susc. Rv3795 embB 6.17E-85 168 2 (0) 4 4
XDR-TB vs. Susc. Rv1908c katG 7.38E-83 177 12 (9) 1 1
XDR-TB vs. Susc. Rv1482c-Rv1483 Rv1482c-fabG1 3.75E-52 8 0 2 2
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Table 1 - continued

Comparison Rv Gene Gene-based NS SNPs Indels Assoc. PhyC SNPs
(frame.) SNPs
P-value
XDR-TB vs. Susc. Rv3793-Rv3794 embC-embA 2.85E-49 6 6 2 2
XDR-TB vs. Susc. Rv0682 rpsL 1.05E-40 6 0 1 2
XDR-TB vs. Susc. rrs rrs 4.66E-29 91 4 2 3
XDR-TB vs. Susc. Rv1144-Rv1145 Rv1144- 6.70E-08 33 4 1 0
mmpl13a
XDR-TB vs. Susc. Rv1484 inhA 6.10E-29 9 0 2 0
XDR-TB vs. Susc. Rv0006 gyrA 1.27E-25 147 0 4 4
XDR-TB vs. Susc. Rv0668 rpoC 9.57E-19 153 1(0) 2 0
XDR-TB vs. Susc. Rv2427A-Rv2428 oxyR'-ahpC 7.20E-15 17 3 0 0
XDR-TB vs. Susc. Rv2936 drrA 1.46E-09 19 0 1 0
XDR-TB vs. Susc. Rv3854c ethA 2.04E-11 163 38 (35) 0 0
XDR-TB vs. Susc. Rv3854c-Rv3855 ethA-ethR 5.87E-06 12 0 1 0
XDR-TB vs. Susc. Rv2416¢c-Rv2417c eis-Rv2417c 5.88E-06 12 1 0 1
XDR-TB vs. Susc. Rv3144c-Rv3145 PPE52-nuoA 8.54E-06 24 1 0 0

This table shows loci (protein and RNA coding regions, intergenic regions) associated with MDR- and XDR-TB resistance (P-value < 1x10°). The
column labelled as ‘NS SNPs’ shows the number of non-synonymous SNPs in the genes; the column ‘Indels (frame.)’ refers to the number of

small indels resulting in frameshifts in the genes; ‘Assoc. SNPs’ refers to the number of SNPs identified by GWAS and ‘PhyC SNPs’ is the number
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of homoplastic SNPs identified using the PhyC test. The PhyC test additionally detected folC, pncA-Rv2044c and whiB6-Rv3863 loci when
comparing MDR-TB against the susceptible group; and gyrB and thyX-hsdS.1 loci when comparing XDR-TB against susceptible). Similarly, the

GWAS using SNPs additionally identified the ubiA gene for XDR-TB vs. MDR-TB (2 SNPs) and XDR-TB vs. susceptible.
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Table 2

Individual drug gene-based associations in the complete dataset

Gene-based Indels Assoc. PhyC
Drug* Rv Gene P-value NS SNPs (frame.) SNPs SNY’S
Isoniazid Rv1908c katG 6.40E-114 177 12 (9) 1 3
Isoniazid Rv1482c-Rv1483 Rv1482c-fabG1 8.01E-62 8 0 2 2
Isoniazid Rv2427A-Rv2428 oxyR'-ahpC 3.48E-28 17 3 0 3
Isoniazid Rv1484 inhA 1.44E-07 9 0 1 1
Rifampicin Rv0667 rpoB 2.87E-245 159 7 (0) 6 9
Rifampicin Rv0668 rpoC 2.65E-08 153 1(0) 0 9
Ethambutol Rv3795 embB 4.67E-115 168 2 (0) 4 10
Ethambutol Rv3793-Rv3794 embC-embA 1.62E-44 6 6 2 5
Ethambutol Rv2820c . 1.30E-10 16 0 1 0
Ethambutol Rv3806¢ ubiA 1.36E-10 47 0 0 2
Ethambutol Rv3300c . 8.02E-08 39 5(3) 0 0
Ethionamide Rv1482c-Rv1483 Rv1482c-fabG1 4.78E-11 8 0 1 2
Ethionamide Rv1484 inhA 7.60E-07 9 0 1 0
Pyrazinamide Rv2043c pncA 3.18E-110 117 25 (22) 2 1
Pyrazinamide gzgﬁ? pncA-Rv2044c 7.74E-29 4 1 1 1
Streptomycin Rv0682 rpsL 1.57E-82 6 0 2 2
Streptomycin Rv3919c gid 1.51E-26 137 26 (26) 0 1
Streptomycin rrs rrs 4.40E-11 91 4 1 3
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Table 2 - continued

Drug* Rv Gene Gene-based NS SNPs (fl:ladr:::‘) A;s;c;: ::IY)E
P-value
Amikacin rrs rrs 2.68E-46 91 4 1 1
Kanamycin rrs rrs 7.42E-38 91 4 2 2
Kanamycin Rv2416¢c-Rv2417¢ eis-Rv2417c 3.53E-18 12 1 1 1
Capreomycin rrs rrs 2.12E-37 91 4 1 1
Capreomycin Rv2172c-Rv2173 Rv2172c-idsA2 2.93E-06 18 0 2 0
Ciprofloxacin Rv0006 gyrA 9.30E-43 147 0 2 2
Moxifloxacin Rv0006 gyrA 3.51E-22 147 0 2 5
Ofloxacin Rv0006 gyrA 3.88E-49 147 0 3 6
D-Cycloserine Rv3423c alr 1.26E-13 57 0 1 0
D-Cycloserine Rv0342 iniA 3.37E-08 76 13 (12) 1 0
PAS Rv2764c thyA 3.74E-10 36 4 (4) 0 0
PAS Rv2754c-Rv2755¢ thyX-hsdS.1 4.27E-07 21 0 1 1

This table shows loci (protein and RNA coding and intergenic regions) associated with resistance to individual drugs (P-value < 1x10”). The
column labelled as ‘NS SNPs’ show the number of non-synonymous SNPs in the genes; the column ‘Indels (frame.)’ refers to the number of
small indels resulting in frameshifts in the genes; ‘Assoc. SNPs’ is the number of SNPs identified by GWAS, and ‘PhyC SNPs’ refers to the number
of homoplastic SNPs identified using the PhyC test. * The PhyC test additionally detected other associated loci for Amikacin (eis-Rv2417c),

Capreomycin and D-Cycloserine (/hr), Kanamycin (thyX-hsdS.1), Rifampicin (rpoA); PAS, Para-aminosalicylic acid.
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Table 3
Impact on drug resistance prediction (%) from GWAS findings

+ big deletions + small indels +

TBDR panel + SNPs + small indels + SNPs SNPs

Drug Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.
Isoniazid 88 97 88 97 89 97 89 97
Rifampicin 91 98 91 98 92 98 92 98
Ethambutol 88 92 88 92 88 92 88 92
Ethionamide 75 75 75 73 82 70 86 70
Pyrazinamide 56 98 56 98 59 98 62 98
Streptomycin 75 93 76 93 79 91 79 91
Amikacin 83 96 83 96 85 93 85 93
Kanamycin 86 98 86 98 86 98 86 98
Capreomycin 73 96 73 96 80 95 80 95
Ciprofloxacin 88 98 88 98 88 98 88 98
Moxifloxacin 84 90 84 90 84 90 84 90
Ofloxacin 83 93 83 93 83 93 83 93
D-Cycloserine - - 55 92 61 90 61 90
PAS 10 100 20 99 40 94 65 94
MDR-TB 88 99 88 99 88 99 89 99
XDR-TB 74 96 74 96 74 96 76 96
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This table shows the sensitivity and specificity achieved by known drug resistance SNPs and indels (TBDR, tbdr.Ishtm.ac.uk)® 3

when predicting
phenotypic drug resistance (“TBDR panel" columns). The SNPs in the TBDR contribute 100% to the stated sensitivity, except rifampicin (99.8%)

and ethionamide (99.3%). The other columns show the improvements achieved when including the SNPs, small indels and large deletions found

associated with drug resistance in this study. The improvements in sensitivity are highlighted in grey.

Abbreviations: MDR-TB, multidrug-resistant; PAS Para-aminosalicylic acid; Sens., sensitivity; Spec., specificity; SNPs, single nucleotide

polymorphisms; XDR-TB, extensively drug-resistant.
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Supplementary table 1
Populations contributing to the analysis

. . . . . ENA
Population N lineage 1 lineage2 lineage3 lineage4d Susc. DR MDR-TB XDR-TB Accession
Canada 11 0 0 0 11 11 0 0 0 SRA020129
Brazil 108 0 0 0 108 4 9 72 23 PRJEB10385
Colombia 15 0 0 0 15 0 0 14 1 PRJEB10385
Peru 78 0 6 0 72 25 32 17 4 PRJEB10385
Bulgaria 2 0 0 0 2 0 0 2 0 PRJEB10385
Germany 20 0 0 0 20 20 0 0 0 ERP006619
Portugal 183 0 20 1 162 19 71 60 33 ERP002611
Russia 2 0 2 0 0 1 1 0 0 ERP00192
China 161 0 122 2 37 44 0 71 46 SRP018402
Vietnam 43 16 19 0 8 22 6 8 7 PRJEB10385
India 3 0 0 2 1 1 0 2 0 PRJEB10385
Pakistan 42 5 0 33 0 0 37 ERP008770
Saudi Arabia 74 10 11 18 35 57 6 11 0 PRJEB10385
Malawi 1646 264 71 195 1116 1526 112 8 0 ERP000436
South Africa 594 8 231 15 340 308 93 83 110 PRJEB10385
Uganda 45 1 1 13 30 3 2 39 1 ERP000520
WHO* 138 14 34 4 86 35 51 52 0 ERP013054
Mixed** 96 4 38 4 50 96 0 0 0 ERP001037
UK 3204 295 466 706 1737 2500 343 351 10 ERX511672

154



ENA

Population N lineage 1 lineage2 lineage3 lineaged Susc. DR MDR-TB  XDR-TB .
Accession

Total 6465 617 1021 993 3834 4677 726 790 272
% 100 9.5 15.8 154 59.3 72.3 11.2 12.2 4.2

Susc. = susceptible; DR = resistant to at least one drug but not MDR-TB/XDR-TB ; *Bangladesh (8), China (1), Nepal (4), Pakistan (1), Philippines
(4), South Korea (39), Thailand (1), Cameroon (1), Central African Republic (1), Equatorial Guinea (1), Guinea (1), Morocco (4), Niger (1), Nigeria
(1), Democratic Republic of Congo (4), Rwanda (15), Gemany (12), Kazakstan (1), Portugal (1), Spain (2), Brazil (7), Columbia (1), Domican Republic
(1), Peru (31); ** Malaysia, South Africa, and Thailand (96); *** PRINA183624, PRINA 235615, PRIEB10385; bolded ENA accession numbers

include sequencing performed as part of the TB Global Drug Resistance Collaboration (http://pathogenseq.lshtm.ac.uk/#tuberculosis).
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Supplementary table 2
Drugs susceptibility test data (resistant/tested) and the phenotypes considered.

Drug Lineage 1 Lineage 2 Lineage 3 Lineage 4 Total Resistant (%)

Rifampicin (RIF) 26/609 549/928 78/985 488/3529 1141 -18.9
Isoniazid (INH) 87/608 569/938 157/985 723/3546 1536 253
Ethambutol (EMB) 16/403 357/858 36/839 236/2707 645 13.4
Pyrazinamide (PZA) 20/393 261/638 39/796 164/2259 484 11.9
Streptomycin (STR) 23/227 450/718 44/293 369/1957 886 27.7
Capreomycin (CAP) Jan-15 125/347 Oct-63 91/579 227 22.6
Amikacin (AMK) May-16 128/254 28/70 66/546 227 25.6
Kanamycin (KAN) May-17 128/320 28/63 88/506 249 27.5
xﬂoc’)‘;?fxac'” 0/15 66/232 Feb-38 20/351 88 13.8
Ofloxacin (OFL) 01-Feb 150/281 Jan-22 135/388 287 41.4
Ethionamide (ETH) 01-Jun 102/273 Feb-34 117/284 222 37.2
Ciprofloxacin (CIP) May-41 Feb-24 32/101 20/160 59 -18.1
PAS 0/0 7/119 0/0 13/136 20 7.8

D-Cycloserine (CYS) 0/0 39/117 0/0 17/131 56 22.6
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Supplementary Table 2 - continued

Lineage 1 Lineage 2 Lineage 3 Lineage 4
Phenotype Total (%)
N (%) N (%) N (%) N (%)
Susceptible 516 (83.6) 408 (40.0) 819 (82.5) 2935 (76.6) 4678 -72.4
Drug resistant 77 (12.5) 78 (7.6) 102 (10.3) 407 (10.6) 664 -10.3
MDR-TB 18 (2.9) 393 (38.5) 43 (4.3) 380(9.9) 834 -12.9
XDR-TB 6 (1.0) 142 (13.9) 29 (2.9) 112 (2.9) 289 -4.5
Total 617 1021 993 3834 6465
(%) -9.5 -15.8 -15.4 -59.3 -100

Drug resistant = Resistant to at least 1 drug but not MDR-TB/XDR-TB; MDR-TB, multidrug-resistant; XDR-TB, extensive drug-resistant; MOX and

OFL are Fluoroquinolones (FLQ); CAP, KAN and AMK are second-line injectables; PAS Para-aminosalicylic acid
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Supplementary table 3
Allele frequency of resistance mutations

Gene Mutation Susceptible % PR MDR-TB allele XDR-TB allele
% frequency % frequency %

katG S$315T 0.4 40.5 79.8 78
rpoB S450L 0.1 25.6 67 52
rpsL K43R 0.5 16 45.8 25.6
embB M306V 0 10.5 34.9 39.4
rrs A1401G 0 7.4 11.7 63.4
Rv1482c-fabG1 C-15T 0.3 25 11.5 31.9
embB M306I 0.3 7.2 22.1 37.4
gyrA A90V 0 2.5 3.1 32.7
rrs A514C 0.2 3.2 5.7 27.2
gyrA D94G 0.3 5.6 2 27.6

gid L79S 0 1.2 2.6 22
rpoB L452P 0 1.4 4.5 19.7
ethA-ethR T-65C 0 0.7 54 18.9
Rv1482c-fabG1 T-8A 0 1.2 3.7 19.3
rpoB D435V 0 2.5 6.3 13.8
rpoB D435G 0 0.3 0.3 19.3
ubiA V188A 0 0.1 0.3 18.5
rpoB 11106T 0 0.2 0 18.5

inhA S94A 0 7.6 1.2 7.5
Rv1482c-fabG1 G-17T 0 0.8 1.3 114
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Supplementary table 3 - continued

Gene Mutation Susceptible % DR MDR-TB allele XDR-TB allele
frequency % frequency %
inhA 1194T 0 4 1.9 7.5
ubiA A249T 0 0.6 0.9 10.6
PPE52-nuoA G-314T 0 0.7 1.2 10.2
eis-Rv2417c C-10T 0 2.5 3.9 5.5
rpsL K88R 0.1 3.8 54 2.4
iniA H42R 0 0.6 0.7 10.2
gyrA D94A 0 1.9 1.3 8.3
alr L113R 0 0.7 0.7 9.8
pncA Q10* 0 1.1 7.3 2.8
embB Q497R 0 1.7 6.1 2.4
rpoB D435Y 0 1.5 3.2 4.7
rpoB H445Y 0 2.7 3.7 2
gyrA S91P 0.1 1.8 1.3 5.1
embC-embA C-12T 0 0.4 3.7 3.9
embB G406A 0 0.8 34 3.5
pncA Qiop 0 0.3 5.8 1.6
eis-Rv2417c G-12A 0 0.3 6 0.8
embC-embA C-16T 0 1.8 2 3.1
embC-embA C-16G 0 0.6 1.6 4.3
rpoB H445D 0 2.6 2.9 0.8
gyrA D94Y 0 0.6 0.6 5.1
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Supplementary table 3 - continued

Gene Mutation Susceptible % DR MDR-TB allele XDR-TB allele

frequency % frequency %
thyX-hsdS. 1 G-16A 0 1.4 1.8 2.8
rpoB L731P 0 2.1 1 2.8
embB G406D 0 1.7 3.2 0.8
pncA V125G 0 2 1.3 2.4
embC-embA C-11A 0 1.3 0.7 3.5
katG S315R 0 1.7 0.6 3.1
pncA-Rv2044c T-11C 0 0.7 34 1.2
katG S315N 0 1.7 1.9 1.6
gyrA D94N 0.1 0.8 0.3 3.9
embB M423T 0 2 0.7 2.4
gid A80P 0 2 0.7 2.4
embC-embA G-43C 0 0.3 2 2.4
embB D354A 0 0.7 2.3 1.6
Rv2172c-idsA2 A-65G 0 1.3 0.6 2.8
embC-embA C-12A 0 1.3 0.6 2.8
embB P397T 0 1.3 0.6 2.8
rrs C517T 0 0.8 1.9 1.6
eis-Rv2417c G-14A 0 0.3 1.2 2.8
embB G406S 0 0.7 2.2 1.2
rpoB H445R 0.1 0.5 1.9 1.6
embB D1024N 0 0.7 1.5 1.6
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Supplementary table 3 - continued

Gene Mutation Susceptible % DR MDR-TB allele XDR-TB allele
frequency % frequency %
oxyR’-ahpC G-48A 0 0.7 0.7 2.4
alr M343T 0 0.9 0.4 2.4
rpoB S450W 0 0.8 1.9 0.4
oxyR’-ahpC C-52T 0.1 0.6 1.6 0.8
rpoB H445L 0 0.7 1.2 1.2
pncA V139M 0 0.4 0.1 2.4
rpoB H445N 0.1 2.1 0.4 0
rpoB L430P 0.1 1.1 1.3 0
embC-embA C-8T 0 0.2 0.7 1.6
rpoB 1491F 0.2 2.2 0 0
pncA W68* 0 0.2 1.5 0.8
Rv1482c-fabG1 T-8C 0.4 0.4 0.9 0.8
pncA Qi41pP 0 0.7 0.9 0.8
gyrA D94H 0 0.2 0.7 1.2
rrs AS514T 0 1.3 0.3 0.4
rpoB M434| 0 0.1 0.3 1.6

DR = Resistant to at least 1 drug but not MDR-TB/XDR-TB; multidrug-resistant; XDR-TB, extensively drug-resistant



Supplementary table 4
SNP-based GWAS results in each lineage

Lineage Gene Position Drug Min P-value Susc. DR MDR-TB XDR-TB
4 gyrA 7570 Xv M or SUS 1.51E-15 0.001 0.024 0.032 0.329
4 gyrA 7572 X v SUS 8.92E-21 0.001 0.018 0.013 0.051

3,4 gyrA 7581 X v SUS 1.17E-21 0.001 0.016 0.016 0.103
4 gyrA 7582 KAN 4.40E-09 0.004 0.076 0.034 0.359
2 gyrA 7582 XvM 1.70E-08 0.004 0.076 0.034 0.359
4 gyrA 7582 X v M or SUS 8.52E-07 0.004 0.076 0.034 0.359
2 rpoB 760314 M v SUS 4.92E-22 0 0.004 0.006 0.004
3 rpoB 761108 X v SUS 3.44E-14 0 0.001 0.003 0.016

2-4 rpoB 761109 M or X v SUS, RMP 3.34E-28 0 0.015 0.032 0.048

3,4 rpoB 761110 Xv M, XorMvSUS, 3.35E-85 0 0.029 0.066 0.337

RMP
1,2,4 rpoB 761139 Xor M v SUS 3.46E-16 0.001 0.076 0.071 0.028
1-4 rpoB 761139 RMP 1.61E-97 0.001 0.076 0.071 0.028
1,2,4 rpoB 761140 M or X v SUS, RMP 2.66E-17 0.001 0.01 0.034 0.028

1-4 rpoB 761155 M or X v SUS, RMP 1.17E-219 0.001 0.267 0.695 0.524

2,4 rpoB 761161 M or X v SUS 9.67E-18 0 0.013 0.044 0.197
4 rpoB 763123 X v M or SUS 1.13E-17 0 0.002 0 0.185
3 rpoC 764666 X or M v SUS, RMP 3.74E-29 0 0.003 0.004 0.016
2 rpoC 764819 M v SUS 3.33E-18 0 0.002 0.013 0
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Supplementary table 4 - continued

Lineage Gene Position Drug Min P-value Susc. DR MDR-TB XDR-TB
4 rpoC 766823 X v SUS 1.64E-06 0 0.013 0.006 0.028
MDR or XDR v SUS,
1 rpoC 767123 RMP 3.91E-24 0 0.003 0.015 0.016
MDR or XDR v SUS,
2-4 rpsL 781687 STM 1.65E-45 0.005 0.159 0.458 0.257
2-4 rpsL 781822 STM 4.16E-10 0.002 0.041 0.061 0.024
1 res 1472358 STM 5.12E-06 0 0.010 0.001 0
4 res 1472359 STM 2.66E-13 0.002 0.047 0.061 0.276
3,1 res 1472359 M or X v SUS 5.71E-18 0.002 0.047 0.061 0.276
1 res 1472362 M or X v SUS, STM 3.52E-71 0 0.009 0.019 0.016
3 res 1472751 X v SUS 2.28E-10 0 0.004 0.006 0.004
2,4 res 1473246 AMK, CAP, KAN 6.68E-42 0 0.075 0.120 0.651
3 res 1473246 STM 3.05E-09 0 0.075 0.120 0.651
2-4 res 1473246 XvSUSorM 7.73E-246 0 0.075 0.120 0.651
1 pncB1 1499617 PZA 3.20E-06 0 0.003 0.003 0.004
1 echA12 1660232 X v SUS 3.91E-24 0 0.003 0.003 0.004
Rv1482c-

2 fabG1 1673425 ETH 1.91E-04 0.003 0.251 0.115 0.319
Rv1482c-

1-4 fabG1 1673425 M or X v SUS, INH 4.07E-56 0.003 0.251 0.115 0.319
Rv1482c-

4 fabG1 1673432 X v SUS 2.63E-15 0.004 0.016 0.050 0.205

163



Supplementary table 4 - continued

Lineage Gene Position Drug Min P-value Susc. DR MDR-TB XDR-TB
4 inhA 1674481 X v SUS 8.54E-46 0 0.076 0.010 0.075
1,4 inhA 1674782 M or X v SUS 3.91E-24 0 0.040 0.019 0.075
1-4 katG 2155168 M or X v SUS, INH 3.26E-286 0.004 0.424 0.820 0.795
4 pncA 2288868 X v SUS, PZA 1.60E-14 0 0.02 0.018 0.024
1 pncA 2288952 M or X v SUS, PZA 3.91E-24 0 0.009 0.003 0.004
pncA-

2 Rv2044c 2289252 PZA 1.12E-08 0 0.008 0.036 0.016
4 eis-Rv2417c 2715342 KAN 1.93E-08 0 0.025 0.043 0.056
2 oxyR'-ahpC 2726141 X v SUS 4.53E-08 0.001 0.008 0.022 0.008
2 alr 3841083 Cycloserine 1.67E-08 0 0.007 0.008 0.100
2,4 embC-embA 4243217 Xor M v SUS, EMB 2.09E-14 0 0.026 0.043 0.079
3,4 embC-embA 4243221 X v SUS, EMB 1.70E-32 0 0.017 0.043 0.067
4 embC-embA 4243222 X v SUS, EMB 2.62E-10 0 0.013 0.01 0.036
1-4 embB 4247429 M or X v SUS, EMB 1.28E-47 0.001 0.109 0.358 0.399
1-4 embB 4247431 M or X v SUS, EMB 1.58E-51 0.003 0.071 0.221 0.375
1 embB 4247574 X or M v SUS, EMB 3.63E-07 0 0.007 0.023 0.016
4 embB 4247702 X v SUS, EMB 2.62E-08 0 0.013 0.006 0.028
4 embB 4247729 X or M v SUS, EMB 8.81E-13 0 0.008 0.023 0.012
2,4 embB 4247730 X v SUS, EMB 3.31E-12 0 0.025 0.066 0.043
4 embB 4247781 X v SUS 9.20E-10 0 0.02 0.007 0.024
1,3,4 embB 4248003 M or X v SUS, EMB 1.33E-26 0 0.021 0.065 0.031
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Supplementary table 4 - continued

Lineage Gene Position Drug Min P-value Susc. DR MDR-TB XDR-TB
3 embB 4249583 X v SUS, EMB 5.84E-23 0 0.007 0.015 0.016
4 ubiA 4269271 X v M or SUS 1.01E-16 0 0.001 0.003 0.185
3 ethA 4326435 X v SUS 3.44E-14 0 0.001 0 0.016
4 ethA-ethR 4327484 X v SUS 9.24E-44 0 0.007 0.054 0.192
4 ethR 4328127 X v SUS 9.30E-10 0 0.020 0.007 0.024
4 gid 4407965 X v SUS 6.27E-10 0 0.020 0.008 0.029

X = XDR-TB, M = MDR-TB, SUS = Pan susceptible, DR = Resistant to at least one drug but not MDR-TB/XDR-TB, RIF = rifampicin, INH = isoniazid,

ETH = ethionamide, EMB = ethambutol, KAN - kanamycin
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Supplementary table 5
Detected co-occurrence of mutations at drug resistance associated loci (Fisher exact

test P<10?)

Drug Resistance  Co-occurring Fisher exact
gene gene test p-value
Rifampicin rpoB rpoC* <2.2e-16
Rifampicin rpoB rpoA* 6.0e-09
Isoniazid katG ahpC* <2.2e-16
Pyrazinamide pncA pncB2 1.4e-13
Ethambutol embB ubiA <2.2e-16
PAS thyA thyX-hsdS.1 <2.2e-16

PAS = Para-aminosalicylic acid; underlying overall and lineage data are presented in
Supplementary table 6; * known compensatory mechanisms
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Supplementary table 6

Co-occurrence of mutations at drug resistance associated loci with a breakdown by
lineage

rpoB (81-bp rifampin resistance-determining region)

Overall Lineage 1 Lineage 2 Lineage 3 Lineage 4
WT [ Mut. [ WT  Mut. [ WT Mut. | WT  Mut. | WT Mut.
WT | 4964 | 873 (557 30 |417 322 | 888 49 | 3102 472
poc Mut. | 138 | 477 15 15 25 251 28 28 70 183
WT | 5060 | 1308 [ 564 45 |439 553 | 915 76 | 3142 634
poA Mut. | 43 42 8 0 3 20 1 1 31 21
katG
Overall Lineage 1 Lineage 2 Lineage 3 Lineage 4

WT | Mut. | WT | Mut. | WT | Mut. | WT | Mut. | WT | Mut.
ahpC WT | 4959 | 1390 | 554 | 58 | 472 | 525 | 826 | 156 | 3107 | 651
promoter | Mut. 35 62 4 0 5 16 5 5 21 41

pncA

Overall Lineage 1 Lineage 2 Lineage 3 Lineage 4
WT | Mut. | WT | Mut. | WT | Mut. | WT | Mut. WT Mut.
WT | 5608 | 599 [ 560 23 | 704 | 280 | 953 18 3391 ( 278

pncB2

Mut. | 116 59 24 0 9 0 13 0 70 59

81 WT | 5576 | 647 528 | 15 | 701 | 280 | 927 17 3420 ( 335
pnc

Mut. | 147 11 58 8 12 0 37 1 40 2

ethA

Overall Lineage 1 Lineage 2 Lineage 3 Lineage 4

WT | Mut. | WT | Mut. | WT | Mut. | WT | Mut. | WT | Mut.

G WT |[5922 | 285 | 541 33 [914] 59 |933| 43 |3534] 150
pyr

Mut. | 143 15 38 1 7 2 14 0 84 12

WT [ 5969 | 292 | 562 34 |914| 56 |915| 42 |3578 | 160
Rv0565c¢

Mut. | 90 8 17 0 6 5 30 1 37 2
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Supplementary table 6 - continued

embB
Overall Lineage 1 Lineage 2 Lineage 3 Lineage 4
WT | Mut. | WT | Mut. [ WT | Mut. | WT | Mut. | WT | Mut.
] WT | 5033 | 1281 ( 502 | 91 |489 | 475 | 886 | 97 | 3156 | 618
ubiA Mut. | 45 104 | 21 3 3 54 9 1 12 46
thyA
Overall Lineage 1 | Lineage2 | Lineage3 Lineage 4
WT | Mut. | WT  Mut. | WT Mut. [ WT Mut. [ WT Mut.
thyx- | WT [6332| 36 | 600 4 [982 10 |973 14 (3777 8
hsdS1|mut. | 67 | 22 | 13 0 | 14 14 6 0 3 7

Each table contains the number of isolates with and without mutations (‘mutant’ (Mut)

& ‘wild type’ (WT) respectively) at each pair of drug resistance associated loci effects

identified or known compensatory effects. ‘Mutant’ refers to isolates with SNP and indel

non-synonymous amino acid changes. Synonymous amino acid changes and deep

phylogenetic mutations were discarded. Cells with grey background show statistically

significant correlations (Fisher exact test P<0.02), i.e. pairs of genes frequently mutated

in the same isolates, whereas white background indicates lack of statistical significance.

This analysis points to putative epistatic and compensatory relationships.
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Supplementary table 7
Protein structural modelling of alr reveals low frequency mutations conferring higher instability

Overall Resist. Distance

ii:z T Mutation  Mutation freq mCSM*  DUET* T?;S*'\f_ from r:;i'l/l*
Frequency ' CYS**
3840250 Y388D  0.0009 0 -3.369 -3.384 3.737 2.682 -2.819
3840258 Y388C  0.0002 0 -1.889 -1.704 -1.938 2.682 -2.489
3840393  M343T_B 00031 00358  -2.118 -2.085 0.368 3.636 -0.195
3840708 $238L 0.0002 0 0.611 1.192 0.69 4.246 -0.551
3840952 K1S7E 0.0003 0 -1.483 -1.455 -1.841 4.474 -0.075
3840636 P262Q.  0.0012 0 -2.015 -2.069 0.279 4.987 -0.863
3840717 S235W  0.0002 0 -0.807 -1.46 0.706 5.212 -0.588
3840402 R340L_B  0.0003 0 057 0.616 0.16 5.389 -0.629
3840643 1260V 0.0002 0 -1.244 -1.554 -2.467 6.992 -0.419
3840639 S261N 0.0002 0 -1.443 -1.606 -0.482 7.116 -0.248
3841083  L113R  0.0057  0.4461  -0.961 -0.956 -1.721 8.477 -0.423

CYS = D-cycloscerine; * protein stability; ** drug binding, *** protein-protein interactions; bolded the mutation that was statistically

significant; grey — less stability

We applied four measures to quantify the enthalpic effects (the change in Gibbs free energy - AAG) of point mutations on overall protein
structure stability (mCSM and DUET), protein-protein interactions (mCSM-PPI) and interaction with substrate/drug (mCSM-Lig). Negative values

indicate a destabilising effect, with the most destabilising highlighted in grey, and positive values indicating an increase in stability. The
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geometrical distance from the mutation to the drug binding position is also provided. The mutation that was statistically significant with the
largest resistance frequency (L113R) has a relatively large destabilising effect both on the overall protein structure and in drug binding, yet it is

the furthest from the site of drug interaction.
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Supplementary table 8

Gene-based small insertion and deletion (indel) associations

Total No. LengthMedian Length Assoc.

Drug Gene indels/Kb  positions (bp) Range (bp) P-value
MDR-TB vs. Susc.  pncA 44.72 25 1 1-15 3.83E-10
MDR-TB vs. Susc.  rpoB 2.27 7 6 3-9 3.49E-06
MDR-TB vs. Susc. embCAB promoter  72.29 6 1 1-2 1.71E-04
XDR-TB vs. Susc. ethA 25.89 38 1 1-10 4.25E-54
XDR-TB vs. Susc.  pncA 44.72 25 1 1-15 5.51E-38
XDR-TB vs. Susc. rpoB 2.27 7 6 3-9 1.31E-12
XDR-TB vs. Susc. embCAB promoter  72.29 6 1 1-2 1.29E-29
XDR-vs. MDR-TB  pncA 44.72 25 1 1-15 1.50E-04
XDR-vs. MDR-TB  katG 5.40 12 1.5 1-12 2.33E-02
Isoniazid katG 5.40 12 1.5 1-12 2.82E-05
Rifampicin rpoB 2.27 7 6 3-9 1.25E-10
Ethionamide ethA 25.89 38 1 1-10 7.22E-09
Capreomycin tlyA 3.73 3 2 2-10 1.21E-12
Capreomycin rrs 2.61 4 1 1-1 2.37E-10
Streptomycin gid 35.66 24 1 1-14 1.45E-09
Pyrazinamide pncA 44.72 25 1 1-15 5.27E-38
Cycloserine ald 10.77 12 1 1-5 5.35E-03
Kanamycin rrs 2.61 4 1 1-1 9.29E-05

Susc. = susceptible; MDR-TB = multi-drug resistance; XDR-TB = extensive drug resistance
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Supplementary table 9
Large deletions in candidate drug resistance regions

No. Drug No. mean Size range
Gene samples No.DR  XDR-TB size (bp) (bp)
dfrA/thyA 5 PAS 1 3 6,396 2,825-7,912
pncA 12 PZA 1 3 1,402 446-4,670
ethA/ethR 7 ETH 3 3 3,667 1,513-5,271
katG 3 INH 3 0 5,729 4,789-7,608

DR = Resistant to at least one drug but not MDR/XDR-TB; XDR-TB = extensive drug
resistance; PAS Para-aminosalicylic acid, ETH Ethionamide, PZA Pyrazinamide, INH

Isoniazid
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Supplementary figure 1
Allele frequency spectra for SNPs (left) and small insertions and deletions (indels,
right)
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Supplementary figure 2
Principal component (PC) analysis confirms lineage and sub-lineage based population
structure (total variation explained across five components is 79%)
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Supplementary figure 3
Protein structure for alr

Alanine racemase mutational map showing position and effect of mutations based on
measure of protein stability by DUET. Unfavourable mutations are depicted in blue and
favourable mutations in red, where colour intensity reflects extent of effect. The PLP co-
factor shown as a stick representation in green. (A) shows the protomer structure of
alanine racemase depicted as a cartoon with the PLP co-factor shown as sticks. Insert
(B) shows the active site with residues that have been identified in the GWAS depicted

as sticks and their hydrogen bonding propensity shown as dashed black lines.

175



Supplementary figure 4
Polymorphisms in regions surrounding ethA (top left), thyA (top right), pncA (bottom
left), and katG (bottom right) using the complete dataset (n=6,465)

o
[as] m S 4
o g _WMW 2 8
12 12
o W’\/‘ﬂ o g
z z
%) »
o © 1] ©
8 5 —
3 3
@ [
[a} a R
o o
2 =4
© ©
S S
®» vapBatapB42  Ry2762c  thyA Rv2766c PPE43 » Rv3848  Rv3850 hns ethA Rv3856¢c gltb
o o
< ¢ & - G G G— £ — e P Gr— @ G— Gu—
o vapC2MapC42  hsdS dfrA Rv2765 Rv2767c PE27 O Rv3847 espR  Rv3851 rraA ethR Rv3857c
e ¢~ —p & D — - > > - - @
T T T T T T T T T T
3070000 3072000 3074000 3076000 3078000 4322000 4324000 4326000 4328000 4330000
Genome position (Mb) Genome position (Mb)
[=]
’ N MM
m © o 1]
X 4
=< <
@ B G o
% o \4/\(/_\/_/\_/\\/\ % © m/\m\
n ° 7]
12] o 2] o
2 —_— 2
S i
k] — k]
o] _ o]
o —_— o
@ I o
2 e 4
] @
— —
@ Rv2039%c Rv2041c pncA lipT @ Rv1903 aa0  Rv1907c furA  lppC Rv1913
g — < — < g > — & - - —
o Rv2038c Rv2040c Rv2042c Rv2044c Ippl O nanT  Rv1904 Rv1906c katG Rvig10c  fadB5 Rv1914c|
e G -— & — G— P = G— e G G
T T T T T T T T T T T
2284000 2286000 2288000 2290000 2292000 2150000 2152000 2154000 2156000 2158000 2160000
Genome position (Mb) Genome position (Mb)

The top panel in the figures shows the density of SNPs per Kb (green —non-synonymous,
black — all). The red crosses show the location of the small indels. The middle panel
shows the location of the large deletions found in samples used in this study. The lower

panel shows the location of the candidate regions and flanking genes.
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Supplementary figure 5
The analytical workflow, including procedures adopted for raw sequence data
processing and the genome-wide association study (GWAS) approach
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Supplementary data 1
All genes and operons identified as being significant in analyses, with their mutations and indels; Minor allele frequency (<10 samples) and
major allele frequency (>=10 samples) mutations are presented separately, and association SNP hits are bolded.

* stop codon

Locus

Low frequency mutations (<10 samples)

High freq. (>= 10 samples)

gyrB

E21K, R40P, N66H, L70F, A78D, 184V, T88N, D97E, A130S, E145K, Q148E, K159R,
A162S, K165N, F180V, T183M, L204M, D210Y, D225E, A242P, K247N, H252Y,
H263N, T267S, K268R, 1271M, V276A, S279C, G280D, G282D, E299Q, A323G,
D334G, D340G, D342E, T346S, A355T, A355S, K361T, T393S, P400R, A416V, R421H,
V427M, K430Q, A432V, T4331, D434G, D434E, A443T, C445S, R446H, S447Y, S447F,
P450S, R451H, L455V, V4571, D461N, D461H, G464S, A467V, KA98N, N499D,
N499T, N499S, N499K, T500P, TS00N, T5001, A504T, A504V, 1505V, 1506S, G512R,
1519V, G520A, K521E, K526Q, H560Y, H560R, V561A, R575H, S576G, D584H,
A593V, K596N, G606A, M616V, E623D, D627A, P628A, V630I, 1919A-3CGC, A644D,
S649C, G653A, E654A, S661T, D669

P94L, M2911, V301L, H302R, A423V, V457L
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gyrA T21, T5A, P7L, S11A, 115V, 120V, E21G, Q22R, R45G, F64L, D67G, A71V, A71G, A74S,  P8A, E21Q, T80A, A90V, S91P, D94N,
A74V, N83K, G88C, G88A, D89N, D89G, A90G, D94V, S95G, L105R, D111N, T135I, D94H, D94Y, D94A, D94G, S95T, G239S,
M141T, F152L, 1153M, P154A, P154R, P163A, S168I, L174V, N193S, E206Q, D211E,  G247S, S250A, R252L, L296P, A384V,
E214D, M220R, G221W, R222W, V223, G239R, G239D, G249C, R254C, V259, R442H, A463S, P472S, Q613E, G668D
T2671, Q277R, N282K, F283L, S286L, A288D, V291L, R292Q, D293N, A322E, V323L,
V3271, A343T, M345V, M3451, L346V, A347S, G351A, L356M, L358M, H368Q,
R376S, R382L, E386V, H389Q, A406T, S411A, R418Q, Q431E, M438I, R448H, Q449E,
A456V, A456G, 1462V, E466Q, 1468V, G477E, DA88A, DA88E, HA90R, D493H, R495C,
R495H, A500E, V505I, T5191, A547T, L568V, R578Q, A579V, D583E, E586V, R592S,
Q594H, P604R, E605K, R607H, P621L, A626V, K633R, T638I, D639E, D641A, D641E,
V651l, L653V, V663A, A676V, S684L, P692S, S698L, F705L, N706S, L711M, N715S,
G729R, A736V, E739Q, V742L, Y755C, A765T, K793N, A814T, G823A, N826D,
A827T, A827D, D829E, G832V, Q835*, T836K, T836M

iniA K19N, D22N, V33G, 146V, N50D, V71A, V74L, S84l, S84R, L87R, L91R, A96P, V98I, Q26*, H42R, 281C-5CGCGG, V106A, 516G-
D100G, V105M, 321C-1A, V110I, V110L, 403A-6TTCCCG, D138E, D143N, E154A, 1T, F286C, L372P, Q394E, H481Q, S501W,
P163R, S164R, L166M, 519T+1A, G180R, L191M, D198A, 623A-1G, V218M, A221T, R522Q
V227A,V230l,V231M, R242W, A249V, M259T, 1261V, L267M, H271D, E279K, 840C-
1A, 848A-2GT, L293V, S294G, R300C, R306P, G308R, S323F, R339Q, 1041C-1A,
Q357*, Q363R, R381Q, R385C, G408A, W425*, S430Y, D435N, A444T, S448P,
1460T-3GCG, Y491C, G505R, G507R, 1538C-4GGTG, 1541T-1G, 1563C-
17CGGATGGCATATAAAGA, Y525C, 1597T-9TGCTGCGGG, V544A, V548F, D549N,
1655C+1A, S559A, 17582, 1762T+1C, A591T, V598A, R608W, Q611R, G615R

rpoB D3G, S21F, N24D, G28R, P30S, P30A, S34A, R39S, P45S, P45A, P45L, PA5R, D53N, L430P, D435Y, D435G, D435V, H445N,
E66K, A69P, V77M, E86K, P89L, D92G, FI93V, M97L, 289A+6TGTCGT, V113I, M121V, H445D, H445Y, H445R, H445L, S450W,
M1211, E132D, M153T, V168A, V170L, V170F, Q172R, V179A, H194Y, S195R, F208L, S450L, L452P, 1491F, A692T, L731P, R827C,
R219C, Q226R, E244K, E250G, S254L, D259N, D265A, D270E, K274N, P280L, A286V, V970A, Q975H, I11106T
R299C, Y308C, N311D, L314V, A334D, H343Q, G345C, P358L, V359A, D362H,
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L378R, M390T, E391G, T399I, T400A, T400I, Q409R, F424L, F424V, T427P, 1281C-
9AGCCAGCTG, S428G, S428R, Q429P, Q429H, L430R, S431G, Q432K, 1294C-
9AATTCATGG, Q432P, Q432L, 1296A+3TTC, 1301T-6GGACCA, M434l, 1302G-3GAC,
DA435A, 5441T, S441L, 1326G-6TTGACC, L443W, L443F, 1333C-3ACA, H445P,
H445Q, K446Q, K446R, L449M, S450%*, A451V, A451G, P454L, E460G, V469L, 1480V,
1480T, E4A81A, T482N, 1491L, 1491V, 1491T, S493T, V496M, V496A, R511L, D515Y,
V534M, V534L, V534A, V534G, A538V, S540A, A544V, D545A, D545E,
1648G+3AGC, R552S, R552H, R552L, L554P, V562A, E563D, V581M, M587T, H593Y,
D634G, E639Q, E639G, R661Q, M666T, S672Y, H674Y, H674P, H674Q, G675D,
T676P, T676A, P682T, V695L, T7021, H723Y, H723D, L741F, E761D, P802L, E812G,
R824L, E825G, R827H, R827L, P834T, P834L, H835P, H835R, G836S, A857T, R871H,
I1873F, S874Y, S874F, G890D, L893R, P899A, 1910T, M920V, 1925V, K944E, R952G,
P954H, E956D, V970M, V970L, G981D, A998V, H1028R, A1037S, Q1056H, Y1073S,
Q1080R, V1096M, V1117L, S1124A, V1129A, E1169A, A1172P

rpoC

G13R, L14R, Q22R, D44E, E49Q, E49A, 151V, D57N, M92T, T137A, E142G, H145Y,
Q165R, Q165H, A172G, R173Q, E185Q, G188A, R203C, R211H, T225N, T227I,
A230V, K232T, R247H, Q262R, D279G, V299A, V313A, A316T, Q329K, G332S,
G332R, G332C, L402F, L402H, S403A, V431M, G433S, G433C, P434T, P434A,
P434Q, P434L, P4A34R, Q435P, Q435H, G442C, K445R, A448V, L449V, FA52S, F452C,
FA52L, R459W, A466V, W484C, D485N, D485Y, 1491T, A492P, R506Q, L507V,
L516V, V517L, E518A, E518D, G519S, G519R, G519D, A521D, A521V, Q523K,
Q523E, H525N, M5411, M559L, S561P, L566V, G597D, P601Q, V611F, D623G,
D623E, V629M, R641W, A648D, M663I, T667M, L679P, L679R, P682L, N698K,
A701V, 1707V, V709L, K715T, Y722C, A734G, P739L, R741S, R741C, D747H, D747G,
E750G, E750D, R752H, K758Q, N766S, D768Y, L774V, L789V, L789S, T812I, T825A,
N826T, N826K, E830A, A856T, 1885V, 2665C+3ACG, T893I, E894G, ESO3A, P906A,
D907G, E917D, E932K, T958I, G980E, M1012L, E1033A, E1033V, V1039A, V1039G,
P1040T, P1040A, P1040L, F1061L, G1072D, E1106K, Q1110H, S1115L, Q1125H,

Al172V, D271G, N416S, P481T, V483A,
V483G, W484G, 1491V, L516P, G594E,
P601L, A621T, N698S, P1040S, P1040R,
A1044V, E1092D, K1152Q, V1252L
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V1135A, E1140G, R1163C, V1206G, D1218A, S1242N, E1250A, V1252M, 11264T,
V1272A, T1284A, S1287P, S1287*, 512871, E1289A, A1303V, G1311S, Y1312H

rpsL P2R, S17R, K18E, E70K, K88T, K88M K43R, K88R

rpsE Q4H, R18W, R33C, R33H, F64S, N74S, G80C, K85T, L107V, H114Y, Q117R, A141G, K39T, V105A
A142V, A144S, T171A, P181L, P191Q, S207N, *221W

rrs G5T, T17G, C22T, G38A, G102A, 115A+1T, T140G, 159C+1T, C171T, C181G, C182G, (C282T, G284C, G292A, T305A, T327C,
C196T, T200A, A208T, G261A, C270T, C332T, A335C, G349A, G361T, C380A, G395A, (C492T, C513T, A514C, A514T, C517T,
G395C, C397T, G406T, T454C, C462T, A484T, T529G, A554T, G583T, 642C+1T, C710T, A753C, G771A, G878A, A899G,
C662G, G685A, C699A, C699G, C699T, A703G, G704A, C708T, G725A, G737T, C936T, A948T, T958A, C1050T, 1075G+1T,
A740C, A753T, G754A, G754T, G762A, C774A, A8B07C, T822C, T829C, C845A, C845T, T1208A, C1257T, C1357T, A1401G, C1507T
C850T, G851T, G883A, G887T, G888A, G888C, C897T, C897G, C905A, A906G,
A908C, A908G, A908T, G909T, G922A, C924T, G935A, T953C, A970C, A1012G,
G1016C, G1016T, C1021T, T1025C, T1025G, G1026A, G1068A, C1105G, G1108T,
C1125T, A1128T, 1144G+1T, T1151C, A1161G, G1167A, G1176A, A1205G, T1206C,
T1208G, T1216C, C1220G, G1234A, G1237A, T1239A, T1239C, C1241T, A1244G,
A1278C, A1278G, A1278T, G1285A, C1300T, G1302A, G1302C, C1319A, C1319G,
G1321A, C1346T, G1353T, G1366T, G1379A, C1382G, C1402A, C1402T, T1444C,
A1449G, G1450A, G1460A, A1461G, A1462C, A1469G, G1484T, C1489T

Rv1482c T-8G, G-9A, C-34T, G-77A, C-118G, C-120T T-8C, T-8A, C-15T, G-17T, G-47C

-fabG1

inhA 121V, 1951, G141R, T162S, G183R, E219A 121T, S94A, T162A, 1194T, 1228V

tlyA L26W, G28S, V32L, D35G, G36R, A45T, D48N, T561, W62L, 198A+2GC, H68R, A80T, 751T+2TG
R84G, L87V, GI5E, L100V, T134l, D154A, S156A, V163A, L164S, P179S, E186G,
G188E, P194L, G196R, G196E, R206Q, H221R, P231R, N236K, 732C-
10ACGCAGACCG, T2471, A253P, R262C, V1M

katG V1A, 8T-2CG, Q4*, Q4H, T12A, A16T, A16V, S17N, 55C-1G, V23L, 89A-3CGG, G34A,  P6S, S315T, S315N, S315R, R463L, V473L

Q36P, V471, D63G, A66T, V68G, T77R, R78G, V83G, M84T, Q88E, WI0R, 269C+1A,
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W90*, G99R, F102S, R104Q, 317G+1C, A109T, A109V, G120S, G121S, G123R,
G124D, G124A, 374C-2CG, Q127P, P131A, P131S, W135*, N138H, N138D, S140N,
L141S, L141F, D142G, W149R, W149*, Y155S, Y155C, L159F, L159P, A162E, A162V,
D163N, G169S, T180K, D189A, D189G, W191R, W191G, E192A, D194N, E195K,
W198%*, L205R, R209C, S211N, D215E, P232A, P232S, M242V, A244G, T251K,
R254H, R254L, M2571, D259Y, V260I, T275A, G279D, D282G, G285V, 867C-
6TCGGGT, A290V, Q295E, Q295P, G299S, S302R, T308A, S315G, $315I, 1317T,
957G-1A, V320L, N323S, T324P, T324l, T326M, 1335V, Y339S, E340D, E342G, T354l,
L378P, A379T, T380P, T380I, S383A, L384R, D387H, T394A, L398R, D406G, F408L,
W412*,Y413H, Y413C, D419H, D419Y, D419G, P422H, L427F, P432T, V445I, S446N,
D448A, V450I, 1351C-12GACGAGGTCGTG, E452Q, 1366C-1A, Q471R, VA73F, TA75l,
A480S, S481L, R484H, K488E, G495C, D509N, P510A, D511N, R519H, E522K, E523K,
E523D, Q525K, Q525*, Q525P, S527L, A532P, A532V, G534R, K537E, 1612C+1T,
D542E, C549S, A551S, 1671C-1T, K557N, N562H, G570C, G570V, L587R, A591T,
L598R, 1811A-7ACGGGTT, A606T, M609T, D612G, T625A, G630V, V633A,
1901A+1G, Y638H, A649T, L653Q, T667I1, K681T, S692R, D695A, L696Q, S700P,
R705G, D729G, V739M

pncA

M1T, L4S, 15T, 15G-3ATC, 16T+1G, 16M, V71, V7L, V7F, V7G, D8N, D8G, DSE, V9A,
Q10%*, 29T-1G, Q10R, 35T+1C, D12A, D12G, F13I, F13C, F13L, C14G, G17S, G17D,
S18P, V211, V21A, V21G, G24V, 72G-1C, 79G-11CGCGGCGCCAC, L27P, A28T, 1315,
L35P, 105C-1A, E37*, E37V, 117C+1G, Y41*, H43P, V44A, V44G, A46P, A46E, Ad6V,
T47P, T47A, T471, K48T, D49N, D49A, D49G, D49SE, H51D, H51Y, H51P, H51R, H51Q,
D53E, P54A, P54S, P54Q, P54L, 165A-3CCC, H57D, H57Y, H57P, H57R, H57Q, F58S,
F58L, S59P, T61P, P62S, P62L, D63H, D63A, D63G, Y64D, 193A+1T, S65P, 194G+1T,
S66P, S66L, 201C-12GACGAGGAATAG, W68R, W68G, W68*, W68L, W63C, P69T,
P69S, P6SR, P69L, 210C+3GGT, 210C+1G, H71Y, H71Q, C72R, C72Y, T76l, P77L,
G78S, 232C-1G, G78C, G78A, A79T, F81V, H82D, 250T+1G, L85P, L85R, T87M, 277C-
5CGCCT, F94L, F94C, Y95*, K96T, K96R, G97S, G97R, G97C, Y99*, A102P, Y103H,

Q10P, C14R, Y34D, L35R, T76P, G97D,
A102V, Y103*, L120P, V125G, G132A,
1133T, V139M, Q141P, L151S, 457T+1G,
518T+1C
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310T-4GTAC, S104G, S104R, G105D, 315G+1C, F106L, T114M, 347A-9GTGGCGTGC,
347A+1G, L116R, R121P, R121Q, R123G, V125D, E127%*, V128F, D129N, V130M,
389A-3CAT, 389A-9CATCGACCT, 390C-15ACATCGACCTCATCG, 390C-1A, 392A+1C,
392A+2CC, V131G, 395C-9CGACCACAT, 396A-1C, 1133S, A134D, A134G, A134V,
T135P, D136N, D136G, H137R, C138R, 415C-3ACA, V139L, V139A, V139G, 417C-1A,
Q141%*, 423C-1T, T142A, A143V, A146T, R154G, 464A+1C, V155A, V155G, 467A-
8GCACCCTG, 471C+1T, L159P, L159R, T160P, T160A, G162S, G162D, S164*, 496C-
1G, T168P, T168N, T168S, T168I, A171P, A171E, A171V, L172P, L172R, E173G,
521T+1A, M175K, M175T, M175I, A178P, V180L, V180F, L182S, L182W, V183L

pncA- C-33T, G-30T, G-19A, A-12G, T-11G, -2C+1G T-11C
Rv2044c
Rv2172c G-12A, A-55C, G-76T, G-97A, G-136T, T-149G, G-160A, A-173C, C-186T, A-205C, G-  A-65G, C-98T
-idsA2 208A, T-234C, G-244A, G-259A, C-260T, G-265A, T-284C, T-284A
eis- G-109A, A-106G, A-106C, C-104T, A-67T, G-63C, G-21A, G-15C, C-10G, -7C-1G, C-6A  G-100A, G-14A, G-12A, C-10T
Rv2417c
oxyR'- -3G+1T, -35C-1A, T-42C, -47G+1T, C-52A, C-54T, C-57T, T-71G, G-74A, T-76A, T-77G, G-48A, C-52T, C-72T, C-81T, G-88A
ahpC C-79T, C-79A, A-80G, A-83G, A-98C
thyX- -239T+4CTAC, C-225T, A-206G, G-200T, C-176T, G-170A, C-167A, G-166T, G-152A, - G-23C, G-16A
hsdS.1 127A-1G, T-117G, G-116A, A-108G, T-98C, G-58A, T-43G, G-42A, T-41G, A-31G, C-
21T, C-9T, G-4T, G-4A
thyA P3S, Y4*, T22P, T22A, 69G-5CCGGT, Q32H, V50A, A56V, L60M, H75N, G76*, I79T, T202A, P253A
W80*, D81A, D81G, 264G-1C, P92L, Y94C, Q97R, D117G, R120C, 1128S, W133*,
V135F, P145L, G157S, R158W, L159R, P175Q, 531G-1T, H207R, 1208M, H254D,
A259V, P260T, V263L
alr FAY, N12H, G19R, G19S, S22L, L23M, T26l, S29F, A38V, G71S, H72Y, T75A, T75M, FAL, L113R, M343T

P122S, D139H, D139G, E140D, T155A, V156A, K157E, T160A, D186G, A187S,
D205G, A212D, F215V, A217V, S235W, S238L, T247M, L260V, S261N, P262Q,
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D268G, G270E, M275I, V284L, 1287V, A308G, P311L, D316E, V318M, R325P, R340L,
L350P, A363T, 1364V, E373G, Y388D, Y388C, R397G, R397L, T401l, EA06V

embC-
embA

C-8A, C-11T, C-15G, C-16A, G-17A, -27T-1A, T-27C, -29C-1T, -30C-2CT, G-32C, -33C-  C-8T, C-11A, C-12T, C-12A, C-16G, C-16T,
1G, -35A-1C, -38C-1T, G-48C, C-59A G-43C

embB

R7T, R14Q, 116L, G37S, V50A, 177A-3CAG, G62R, V67L, I72L, 172S, L74P, D78G, L74R, Q139H, G156C, S203L, T205A,
D78E, P93L, G100S, P103T, K107R, S119N, V131M, V135M, R147C, E149A, F161L, M306L, M306V, M3061, D354A, E378A,
K165N, R182C, V186A, V188A, P195H, A196T, T208I, A221T, A228V, V230A, V231l,  P397T, G406S, G406D, G406A, M423T,
A232P, L239V, G246R, L2531, A259V, G263R, W273L, V283M, F285L, N296H, S297A, Q497K, Q497R, V668I, D1024N, S1054P,
D300G, G305C, M306L, M306T, D311A, S317F, Y319D, Y319S, Y319C, F323L, T1082A

D328H, D328Y, F330V, W332R, M340I, T341A, T341N, T341l, H342N, S344R, L348P,

M350T, D354N, C361Y, C361S, L370R, P375S, A386E, A388T, A388V, N399T, N400S,

L402V, EA05D, G406C, A409P, S412P, S422P, P430L, A438T, G443S, Q445R, A451T,

M462L, M462T, R468H, 1489T, 1489S, Q497P, Q497H, T498N, A505T, A510T, S538P,

T546A, T5461, A547S, M5571, L558F, K561R, 1563L, V566M, G569A, V6021, G603R,

R620C, F628S, L632F, L638F, W640S, T642A, W646L, P655Q, N657D, S658N, S658R,

G665R, V668A, F676S, A679T, A680T, A693T, G694S, A701T, A716P, P731L, G748E,

P776L, V783l, T797A, T797M, K820T, S823R, G836R, A840P, Q853P, S856R, D869H,

D870N, P907S, G908R, A913V, Q925H, R930H, A943V, A950V, ES51Q, L971M,

2942C-3GCA, M1000R, H1002R, 11006M, A1007V, K1011T, F1012L, D1017N,

A1020S, L10371, H1047P, V1048I, M1049Il, D1056E, R1059P, T1069P, A1083T,

W1089R, G1097S

ubiA

A15V, V18F, P23A, L31P, A35S, A38T, A38S, A38V, V44L, V55L, V55G, V61A, V78], E149D, V188A, L224F, A249T, G268D
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Introduction

Mycobacterium aurum (M. aurum) is an acid-fast, gram-positive
environmental bacteria typically found in damp conditions
[1,2]. It is a fast-growing mycobacterium with an in vitro dou-
bling time of 2-3 h that rarely causes infections in humans [2—
6]. The M. aurum cell wall contains mycolic acids which are
analogous to those found in Mycobacterium tuberculosis [7],
and there are similarities between the antibiotic susceptibility
profiles of the two organisms [8,9]. The fast growth rate and
low pathogenicity of M. aurum have encouraged its use as a
surrogate for the highly pathogenic M. tuberculosis in studies
of anti-microbial activity of anti-tubercular drugs [6,10,11].
Unlike other fast-growing mycobacteria, such as
Mycobacterium smegmatis, M. aurum has the ability to survive
within macrophages [12,13] and has been used for high
throughput intracellular drug screening, allowing assessment
of the ability of compounds to permeate the cell membrane
and their stability within the cell [14,15]. The emergence of
strains of M. tuberculosis resistant to multiple first- and
second-line drugs threatens efforts to control tuberculosis
(TB) and has renewed interest in the search for new anti-
tubercular agents [16]. Rapid-growing models for screening
putative anti-tubercular compounds are needed to accelerate
drug discovery studies. Similarly, surrogate bacteria are
needed to enable studies on drugs that may improve treat-
ment for infection with non-culturable Mycobacterium leprae.
Knowledge of the bacterial genome could enhance under-
standing of the molecular basis for drug resistance, and to
this end, the genome of M. aurum has been sequenced and
annotated. The genome was placed in a mycobacterium phy-
logeny, and comparisons with M. tuberculosis, M. leprae and M.
smegmatis genomes were made in relation to susceptibility
towards anti-tubercular drugs.

Materials and methods
M. aurum sample and DNA extraction

The M. aurum (NCTC 10437) was grown in 7H9 Middlebrook
broth (Becton Dickinson, USA) supplemented with 10% albu
min-dextrose—catalase (ADC) at 35°C. DNA was extracted
using the Bilthoven RFLP protocol [17]. In brief, log phase
growth bacteria were treated with lysozyme, sodium dodecyl
sulphate, proteinase K, N-cetyl-N,N,N-trimethyl ammonium
bromide (CTAB) and chloroform-isoamyl alcohol prior to pre-
cipitation with isopropanol. Minimum inhibitory concentra-
tion (MIC) values for ethambutol, isoniazid, pyrazinamide
and rifampicin drugs for the same M. aurum strain are avail-
able [18]. Duplications in M. aurum of embB and katG loci were
confirmed by Sanger sequencing. For details of primers used,
see Supplementary Table 1.

DNA sequencing and genome assembly

The M. aurum genomic DNA was sequenced using a 101 bp
paired-end library on the Illumina HiSeq2000 platform. The

raw sequence data (size 0.55Gb, ~5.5 million paired reads,
available from ENA ERP009288, minimum base call accuracy
greater than 99%) underwent de novo assembly using SPAdes
software [19]. The SSPACE software [20] was applied to scaf-
fold the assembly, and a combination of IMAGE [21] and
GapFiller [22] routines were used to further close or reduce
the length of remaining gaps. An alternative approach using
Velvet assembly software [23] led to a near identical assembly.
Genomic annotation was transferred to the draft genome
using the Prokka pipeline [24]. The pipeline searches for genes
present in contigs and compares them with protein and DNA
databases to annotate them. The cd-hit software [25,26] was
used to integrate the annotation from 8 mycobacterial species
to create a non-redundant blast “primary” database used by
the Prokka pipeline. To validate the draft assembly and anno-
tation pipeline, the transferred annotation was compared
against the kas operon sequence (GenBank: DQ268649.2). All
5 genes from the GenBank entry (fabD, acpM, kasA, kasB,
accD6) were annotated in the correct order and orientation
in the assembly.

Comparative genomics

Genomes from 27 species used in whole genome compar-
isons were downloaded from ensembl (bacteria.ensembl.org),
and the Uniprot taxon identification numbers are listed in
Table 1. Gene multiple alignments were constructed using
clustalw2 [27] for 16S rRNA and MACSE software [28] for
rpoB sequences. Raxml software [29] was used to construct
the best scoring maximum likelihood tree, which was rooted
using the Corynebacterium glutamicum (strain: ATCC 13032)
reference sequence, an organism closely related to the
mycobacterium genus [30]. Pairwise gene alignments were
constructed using MACSE software, which uses the trans-
lated amino acid sequence and accounts for frame shifts
and premature stop codons. Sequence identities were calcu-
lated using the SIAS webserver. Gaps were not used in the
calculation of the percent identity. Whole genome align-
ments were constructed using mercator and mavid programs
[31], and the resulting homology map was inspected and
drawn using CIRCOS [32]. Orthologue clusters were created
using OrthoMCL [33]. To identify any protein coding genes
under selective pressure across M. aurum, M. tuberculosis,
Mycobacterium bovis — BCG, M. smegmatis, and M. leprae, the
Ka/Ks ratio was calculated, where Ka is the number of non-
synonymous substitutions per non-synonymous site, and
Ks is the number of synonymous substitutions per synony-
mous site. Ratio values less than one imply stabilizing or
purifying selection, whilst values greater than one imply
positive selection. To measure the degree of polymorphism
across the genes, the nucleotide diversity (r) was also calcu-
lated using the same mycobacterial sample alignments. The
Ka/Ks and n metrics were calculated using variscan (http://
www.ub.edu/softevol/variscan) and PAML (http://abacus.
gene.ucl.ac.uk/software/paml.html) software, respectively.
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Table 1 - Genomic characteristics of M. aurum in the context of related species.

Organism Chromosome Uniprot Strain Assembled G + C content No. genes Relative in vitro ACDP risk class®
accession number taxon id genome (bp) growth rate
M. leprae AL450380.1 272631 3268203 57.80 1605 Unculturable 3
C. glutamicum HE802067.1 1204414 3309401 53.81 3099 Rapid 1
M. bovis BX248333 233413 4345492 65.63 3952 Slow 3
M. tuberculosis AL123456.3 83332 4411532 65.61 4047 Slow 3
M. xenopi AJFI01000000 1150591 4434836 66.11 4281 Slow 2
M. canetti HE572590.1 1048245 4482059 65.62 3981 Slow 3
M. thermoresistibile AGVEO01000000 1078020 4870742 69.02 4614 Rapid 1
M. hassiacum AMRA01000000 1122247 5000164 69.46 4959 Rapid 1
M. abscessus CU458896.1 36809 5067172 64.15 4942 Rapid 1
M. inracellulare CP003322.1 487521 5402402 68.10 5144 Slow 2
M. neoaurum CP006936.1 700508 5438192 66.88 4217 Rapid 1
M. avium CP000479.1 243243 5475491 68.99 5120 Slow 2
M. gilvum CP002385.1 278137 5547747 67.86 5349 Rapid 1
M. colombiense AFVW02000000 1041522 5579559 68.09 5197 Slow 1
M. indicus pranii CP002275.1 1232724 5589007 68.03 5254 Rapid 1
M. ulcerans CP000325.1 362242 5631606 65.47 4160 Slow 3
M. yongonense CP003347.1 1138871 5662088 67.90 5390 Slow 1
M. phlei AJFj01000000 1150599 5681954 69.21 5435 Rapid 1
M. aurum TBA" TBA 6019822 67.52 5684 Rapid 1
M. vaccae ALQA01000000 1194972 6245372 68.60 5949 Rapid 1
M. chubuense CP003053.1 710421 6342624 68.29 5843 Rapid 1
M. fortuitum ALQB01000000 1214102 6349738 66.21 6241 Rapid 2
M. vanbaalenii CP000511.1 350058 6491865 67.79 5979 Rapid 1
M. parascrofulaceum ADNV01000000 525368 6564171 68.45 6456 Slow 1
M. kansasii CP006835.1 557599 6577228 66.23 5866 Slow 2
M. marinum CP000854.1 216594 6636827 65.73 5452 Slow 2
M. smegmatis CP000480.1 246196 6988209 67.40 6938 Rapid 1
M. rhodesiae AGIQ01000000 931627 7281599 66.07 7024 Rapid 1

a UK Advisory Committee on Dangerous Pathogens (ACDP) http//www.hse.gov.uk/pubns/misc208.pdf.

b ENA number ERP009288.
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Results
The M. aurum genome

A total of ~5.5 million high quality paired end (101 bp) reads
were used to assemble the M. aurum genome. The final M.
aurum assembly consisted of 46 contigs, 43 of which were
over 500 bp in length. The median contig length (N50) was
265Kb (minimum 315bp, maximum 742,983 bp). The total
genome length (~6.02Mb, G+C content 67.52%) is longer
than M. tuberculosis (4.4 Mbp) and Mycobacterium canetti
(4.5 Mbp), but shorter than Mycobacterium marinum (6.6 Mbp)
and M. smegmatis (7.0 Mbp) (Table 1). A total of 5684 coding
sequences, 1 tmRNA, 4 rRNA and 51 tRNA features were anno-
tated, and of these 4306 (75%) were assigned a function
(Fig. 1). The final contigs and annotation are available for
download (pathogenseq.lshtm.ac.uk/m_aurum).

M. aurum and the mycobacteria phylogeny

A phylogenetic analysis using 27 mycobacterial whole gen-
ome sequences revealed that M. aurum clustered with
Mycobacterium vaccae and Mycobacterium vanbaalenii within a
clade related to fast-growing mycobacteria (Fig. 2). Slow-
growing bacteria, including M. tuberculosis, clustered within

a distinct clade. However, Mycobacterium indicus pranii, a
fast-growing mycobacterium and immunotherapy and vac-
cine candidate for leprosy and tuberculosis [34], clustered
within the slow-growing clade. The very high bootstrap sup-
port values for the phylogenetic tree (median 100%, range
77-100%) indicates the high precision afforded when using
whole genome data. Previously, hsp65, sodA, recA, rpoB and
16S rRNA gene sequence data were used to barcode bacteria,
with the latter approach being adopted widely [35]. The
assembled 16S rRNA sequence for M. aurum had the highest
identity with M. vanbaalenii (99%), Mycobacterium rhodesiae
(99%), and Mycobacterium austroafricanum (99%), in concor-
dance with previous reports [36,37]. The phylogenetic tree
constructed using 16S rRNA sequences was broadly similar
to that from whole genome data (Supplementary Fig. 1).
However, M. aurum and M. vanbaalenii clustered closer to
Mycobacterium abscessus rather than Mycobacterium gilvum,
and the topology was less robust with lower bootstrap sup-
port values.

Comparison to the M. tuberculosis and M. leprae genomes
The M. aurum assembled contigs were ordered according to

the M. tuberculosis H37Rv reference genome (AL123456.3),
leading to 10 gapped scaffolds. Most of the M. tuberculosis

6000000

At

N ATV
T A l"v
A“.“

bgjml‘,o@}ll. A '-j-leﬁ“‘

3000000

Fig. 1 - An annotated circular view of the M. aurum genome (length ~6.02 Mb). Innermost track: G + C% content; middle track:
the 46 contigs, alternating between brown and orange with green and grey lines representing tRNA and rRNA, respectively;

outer track: the 5684 forward and reverse genes.
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Fig. 2 - M. aurum and the mycobacterium phylogeny” constructed using 27 whole genome reference sequences. ‘Constructed
using RaXML and statistic support for lineages was based on 100 bootstrap samples. 27 reference sequences used are

described in Table 1.

genome (86%) had regions with synteny in M. aurum. The map
of homology between the 10 M. aurum scaffolds and the M.
tuberculosis genome consisted of 67 regions of synteny
(Supplementary Table 2 and Fig. 3a). Although there was high
similarity between M. aurum and M. tuberculosis, there was
evidence for large-scale rearrangements (Fig. 3a). Twenty-
eight genes required for survival within macrophages were
observed, but a further two (IpqY and eccA;) could not be
found [38] (Supplementary Table 3). The putative proteome
for M. aurum suggests it lacks 1002 proteins present in M.
tuberculosis, but has an additional 2090 proteins not seen in
M. tuberculosis (see Table 2).

The map of homology between the 10 M. aurum scaffolds
and the M. leprae genome consisted of 73 segments of synteny
(Supplementary Table 2 and Fig. 3b). For M. aurum and M.
leprae there were 2047 and 222 unique proteins, respectively,
which had no orthologue in the other mycobacteria (see
Supplementary Table 2). M. smegmatis is often used as a
fast-growing model of M. tuberculosis. A similar analysis car-
ried out between M. tuberculosis and M. smegmatis revealed
979 and 2314 unique proteins for each, respectively, which
had no orthologue in the other mycobacteria. When com-
pared with the M. aurum-M. tuberculosis analysis, the number
of apparently unique proteins in M. smegmatis was higher by
224 proteins.

Drug resistance candidate genes

Pairwise alignments were constructed for the known drug tar-
get genes to establish the degree of homology between M.
aurum and M. tuberculosis (Table 2). The sequence identity at
the DNA level varied from 68.6% for pncA (pyrazinamide
drug-related) to 96.2% for rrs (streptomycin, capreomycin).
The percentage of amino acid identity was higher than the
sequence identity, being high among all drug resistance can-
didate genes analysed (range 90.6-99.2%). Interestingly, two
genes at different locations were annotated as katG in the
M. aurum genome, and denoted as katG1 and katG2. The per-
cent identity between the two genes and their M. tuberculosis
homologue at the DNA level are 73.6% and 68.8%
(Supplementary Fig. 2) The putative M. aurum katGl found
in contig 20 (aurum03417) demonstrated the highest homol-
ogy to the M. tuberculosis katG gene (Rv1908c) and M. smegma-
tis MSMEG_6384. The second M. aurum katG2 (aurum 02416)
located in contig 2 (katG2) was most homologous with M.
smegmatis MSMEG_3461. A third M. smegmatis gene,
MSMEG_3729, showed weak homology to each of the katG
genes in M. aurum and M. tuberculosis. Two copies of embB, a
gene associated with ethambutol in M. tuberculosis, were also
found in different locations in M. aurum (72.3% and 47.7%
identity). The semi-identical duplications for each of katG
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Fig. 3 - Homology between M. aurum and M. tuberculosis and M. leprae. (a) M. aurum (green) and M. tuberculosis H37Rv (blue).
The ten contigs provide 67 segments of synteny with M. tuberculosis H37Rv. The segments range from 2,266 bp to 391,674 bp
in length. (b) M. aurum (green) and M. leprae (blue). The ten contigs provide 73 segments of synteny with M. leprae. The

segments range from 2,495 bp to 193,922 bp in length.

and embB were confirmed by PCR and Sanger sequencing
(Supplementary Table 4).

Across a range of therapeutic agents, potential differences
in minimum inhibitory concentration (MIC) levels between M.
tuberculosis (H37Rv) and M. aurum for isoniazid, ethambutol
and ofloxacin (Table 2) are available [8,18], with the biggest
difference for isoniazid. The MIC values for isoniazid were
greatest in M. smegmatis (2 mg/L), followed by M. aurum (0.4)
and M. tuberculosis (0.02-0.2). No known M. tuberculosis muta-
tions were identified in the katG, inhA (isoniazid), ethA, ethR
(ethambutol), and gyrA/B (ofloxacin) orthologues in M. aurum.

Homologues of ahpC and embR genes, associated with isoni-
azid and ethambutol drug resistance respectively, were not
observed in the M. aurum genome.

The alignments were compared across M. aurum, M. tuber-
culosis, M. bovis — BCG, M. smegmatis, and M. leprae at the loci
considered drug targets or those loci considered to have
important functional roles (Table 3). All loci had a high per-
centage (~90%) of their nucleotides analyzable across the
mycobacteria, except fas and gyrA where there were large
insertions in M. aurum and M. leprae, respectively. Only three
loci did not have alignment gaps: inhA (isoniazid drug-
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Fig 3. (continued)

related); rpsL (streptomycin); and kasA (thiolactomycin). The
ddn (delamanid), fpoll (para-aminosalicylic acid), murC/D/E/F
family (isoquinolines), and nat (cholesterol metabolism) loci
were the most polymorphic (>40% sites segregating, nucleo-
tide diversity = > 0.2). In contrast, the rrs gene associated with
streptomycin drug resistance was the most conserved (2.9%
segregating sites, pairwise diversity n=0.029). In general,
there was a modest degree of conservation in most genes
(all with >50% of sequence conserved), which would be
expected given the known synergistic drug effects across
mycobacteria. All candidate genes reported Ka/Ks values
much lower than 1, consistent with the selective removal of
alleles that are deleterious (purifying selection). The highest
Ka/Ks value was observed for nat (Ru3566c), a gene encoding

arylamine acetylase that is associated with resistance to iso-
niazid [39].

Discussion

The draft genome sequence of M. aurum (length ~6.02 Mb,
G+ C content 67.52%) has been assembled. The genome
assembly consists of 46 contigs and provides the first insight
into the genetic code of M. aurum. Lack of alternative
sequence data for this bacterium, particularly from technolo-
gies with longer reads, prevents closure of the gaps at this
time. Using whole genome alignments, the placement of M.
aurum within the mycobacterial phylogeny, close to M. vaccae
and M. vanbaalenii, was confirmed. The analysis of loci
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‘able 2 - Drug minimum inhibitory concentrations (MICs) and candidate resistance gene identity between M. aurum and M.

tuberculosis at drug resistance loci.

Drug MIC® M. aurum ~ MIC® H37Rv M. tbloci Gene homology Protein similarity =~ M. aurum
mg/L (uM) mg/L (uM) with M. aurum (%)  score (%) feature
Isoniazid katG* 72.06 93.23 2 loci
0.40 0.02-0.2 inhA*® 87.40 98.14
(3.65) (0.15-1.46) ahpC - - Absent
kasA 86.33 99.04
Rifampicin 0.10 0.10 rpoB* 90.74 97.62
(0.12) (0.12) rpoC 90.20 98.10
Ethambutol embB 69.87 91.46 2 loci
0.5 0.47 embA 68.87 94.28
(2.45) (2.30) embC 73.83 93.78
embR - - Absent
Streptomycin, 0.2 (0.34) 0.1-0.5 (0.17-0.86) s - -
aminoglycosides, - - rpsL 96.00 99.20
capreomycin - - tlyA 73.58 92.98
Pyrazinamide >100, >100 pncA 64.17 90.62
(812.26) (812.26) TpsA 93.56 98.55
Ethionamide 5 0.6-2.5 ethA 65.71 94.30
(30.08) (3.6-15.04) ethR 69.15 93.11
Ofloxacin 0.2 1-2 gyrA 90.34 97.75
(0.55) (2.77-5.53) gyrB 86.39 92.30

Homology as calculated using protein alignment. Protein similarity is quite high for most proteins analysed.
a Selected alignments can be found in http://pathogenseq.Ishtm.ac.uk/m_aurum/.
b MIC value Ref. [18].

able 3 - A comparison across M. aurum, M. tuberculosis, M. bovis — BCG, M. smegmatis, and M. leprae alignments at drug

argets or other important loci.

Drug resistance or function Gene name Alignment % Sites  Gaps % Segregating % Conserved n° Ka/Ks®
length® analysed” sites sites
Bedaquiline (TMC207) atpE 261 94.25 15 28.0 72.0 0.150 0.089
BTZ043, DNB1, VI-9376, 377790, TCA1 dprE1 1410 98.09 27 34.6 65.4 0.210 0.128
Cholesterol metabolism hsaA 1191 99.50 6 27.6 72.4 0.166 0.150
hsaB 570 98.95 6 26.2 73.8 0.157 0.182
hsaC 903 99.67 3 30.1 69.9 0.182 0.104
hsaD 921 93.81 57 30.9 69.1 0.189 0.129
nat 861 95.82 36 438 56.2 0.268 0.287
Fluoro-quinolones gyrA 3807 65.33 1320 32.2 67.8 0.171 0.070
gyrB 2157 93.88 132 36.2 63.8 0.193 0.077
Isoniazid/pyridomycin inhA 810 100 0 28.1 71.9 0.152 0.101
Isoquinolines murC 1512 94.64 81 431 56.9 0.235 0.170
murD 1509 96.02 60 46.1 53.9 0.254 0.240
murE 1653 91.83 135 48.1 51.9 0.267 0.228
murF 1617 91.65 135 427 57.3 0.230 0.167
Isoxyl (thiocarlide) fas 10701 85.79 1521 37.0 63.0 0.195 0.163
PA-824, delamanid (OPC67683) ddn 513 88.30 60 44.6 55.4 0.280 0.331
para-aminosalicylic acid folP1 882 92.18 69 429 57.1 0.241 0.144
folP2 957 88.71 108 35.8 64.2 0.198 0.129
Q203, IP3 qcrB 1695 96.46 60 31.5 68.5 0.174 0.126
Rifampicin TpoB 3537 98.47 54 237 76.3 0.128 0.084
Streptomycin TpsL 375 100 0 23.2 76.8 0.122 0.028
s 1563 95.84 65 29 97.1 0.029 0.029
Thiolactomycin kasA 1251 100 0 29.1 70.9 0.159 0.100
kasB 1326 91.63 111 364 63.6 0.195 0.117

Selected alignments can be found at pathogenseq.Ishtm.ac.uk/m_aurum/.

a The total number of columns in the alignment including gaps.

b A function of the number of sites used in determining the number of segregating and conserved sites.

c = nucleotide diversity.

d The Ka/Ks is the ratio of the number of non-synonymous substitutions per non-synonymous site (Ka) to the number of synonymous
substitutions per synonymous site (Ks).
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involved in drug resistance demonstrated homology with M.
tuberculosis and M. leprae. This insight corroborates earlier
investigations of inhA gene mutants of M. aurum that showed
similarity in drug resistance mechanisms against isoniazid
and ethionamide between M. aurum and M. tuberculosis
[6,40]. The draft M. aurum genome is larger than that of M.
tuberculosis with an additional 2090 genes not observed in M.
tuberculosis; it is also lacking 1002 of the genes found in M.
tuberculosis. Multiple copies of some homologous genes were
observed. Of particular interest are two putative copies of
embB, a gene involved in the biosynthesis of the mycobacte-
rial cell wall component arabinan and that is associated with
resistance to ethambutol in M. tuberculosis. Similarly, two
annotated catalase-peroxidase (katG) genes that may be
involved in the activation of the anti-tuberculosis pro-drug
isoniazid were identified and confirmed. Multiple katG genes
have been reported in other mycobacteria, for example in
Mycobacterium fortuitum [41]. It could be hypothesized that
the duplications of katG in M. aurum and M. smegmatis could
have an effect on the MIC values. Further laboratory work is
underway to elucidate the endogenous function of the
observed duplications.

In summary, these genomic analyses support the use of M.
aurum as a potential model organism for providing insights
into M. tuberculosis biology, particularly for new drug develop-
ment, with the possibility of leading to new control measures
for tuberculosis disease. Further insight may be gained from
the genome sequence of additional strains and related
mycobacteria.
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Supplementary Figure 1
M. aurum and the mycobacterium phylogeny* constructed using 16S rRNA sequences,
which is less precise and with lower bootstrap support than that attained with whole

genome sequence data (c.f. Fig. 2 in the main manuscript). "Constructed using RaXML and
statistic support for lineages was based on 1000 bootstrap samples.
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Supplementary Figure 2

Comparative sequence of putative katG genes in M. aurum and M. tuberculosis.
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Supplementary Table 1
List of intergenic primers used for PCR amplification and Sanger sequencing serving to
confirm the presence of duplicate/homologous katG and embB genes in M. aurum

Gene Primer orientation | Primer sequence

katG1 | Forward GGAGATTTCCCGATCACAACCGTGATCACAG
Reverse CCGCTGATCAGTTCGAGACTGCACCCGTTC

katG2 | Forward CGACGAGGCCGAGGTCATCTACTGGGGC
Reverse CCCTACCGAATGTCGACGACAGCGCCGC

embB1 | Forward GCGCCCGACGCCGCCATCGAGGAAGG
Reverse CGGGGGTCTGGTCGAACAACGCGGTC

embB2 | Forward CCGACCATTGTGGAGCATCCCGACCCC
Reverse CGCCACCGACGTCTTCGAGATTCGTGAC
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Supplementary Table 2
Number of orthologues between M. aurum and M. tuberculosis / M. leprae

Comparison with M. aurum M. tuberculosis | M. leprae
No. of scaffolds with homology 10 13

No. of syntenous segments 67 73

No. of unique proteins 1,002 222

No. of unique M. aurum proteins 2,090 2,047

No. of orthologue clusters * 2,431 1,349

No.

of 1-to-1 orthologues**

2,305 (94.8%)

1,299 (96.3%)

*Clusters of proteins with at least one representative of M. aurum and the other

mycobacteria; ** orthologue clusters in which there is only one representative of each

proteome.
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Supplementary Table 3

Genes deemed essential for the survival of M. tuberculosis within a macrophage and
their homologues in the surrogate species [1]

M. smegmatis M. aurum

M. tuberculosis

mcelA (Rv0169) MSMEG_0134 Present
mcelB (Rv0170) MSMEG_0135 Present
mcelC (Rv0171) MSMEG_0136 Present
mcelD (Rv0172) MSMEG_0137 Present
IprK (Rv0173) MSMEG_0138 Present
mceF (Rv0174) MSMEG_0139 Present
Rv0175 MSMEG_0140 Present
Rv0176 MSMEG_0141 Present
Rv0177 MSMEG_0142 Present
Rv0178 MSMEG_0143 Present
sugC (Rv1238) MSMEG_5058 Present
sugB (Rv1237) MSMEG_5059 Present
sugA(Rv1236) MSMEG_5060 Present
IpqY(Rv1235) MSMEG_5061 -
pstA1(Rv0930) MSMEG_5780 Present
pstC2(Rv0929) MSMEG_5781 Present
pstS3(Rv0928) MSMEG_5782 Present
espE (Rv3864) - -

eccAl (Rv3868) MSMEG_0059 Present
eccCal (Rv3870) MSMEG_0061 Present
eccCb1 (Rv3871) MSMEG_0062 Present
eccD1 (Rv3877) MSMEG_0068 Present
hsaD (Rv3569c) MSMEG_6037 Present
hsaA (Rv3570c) MSMEG_6038 Present
Rv3552 MSMEG_6003 Present
Rv3551 MSMEG_6002 Present
echA20 (Rv3550) MSMEG_6001 Present
fadE28 (Rv3544c) MSMEG_5994 Present
Rv3542c MSMEG_5992 Present
Rv3541c MSMEG_5991 Present

[1] Rengarajan J, Bloom BR, Rubin EJ. Genome-wide requirements for Mycobacterium

tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A

2005,102:8327-8332.
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Supplementary Table 4

Results from Sanger sequencing of putative katG and embB genes in M. aurum

Gene Start Stop codon BamHl site located
codon identified
identified
katG1 (2277bp) Yes Yes Yes
737bp from start codon
729 bp from stop codon
katG2 (2235bp) Yes Yes Yes
821bp from start codon
embB1 (3276bp) Yes Yes No
embB2 (2985bp) Yes Yes Yes

517bp from stop codon
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Recombination in pe/ppe genes
contributes to genetic variation in
Mycobacterium tuberculosis lineages

208



Phelan et al. BMC Genomics (2016) 17:151
DOI 10.1186/512864-016-2467-y

BMC Genomics

Recombination in pe/ppe genes contributes &~
to genetic variation in Mycobacterium

tuberculosis lineages

Jody E. Phelan’, Francesc Coll', Indra Bergval®, Richard M. Anthony?, Rob Warren®, Samantha L. Sampson®,
Nicolaas C. Gey van Pittius®, Judith R. Glynn®, Amelia C. Crampin®®, Adriana Alves®, Theolis Barbosa Bessa’,

Susana Campino', Keertan Dheda®’, Louis Grandjean'®, Rumina Hasan'', Zahra Hasan'', Anabela Miranda®,
David Moore', Stefan Panaiotov'?, Joao Perdigao'?, Isabel Portugal'®, Patricia Sheen'®, Erivelton de Oliveira Sousa’,
Elizabeth M. Streicher®, Paul D. van Helden? Miguel Viveiros', Martin L. Hibberd', Amnab Pain'®,

Ruth McNerney' and Taane G. Clark'**

Abstract

Background: Approximately 10 % of the Mycobacterium tuberculosis genome is made up of two families of genes that
are poorly characterized due to their high GC content and highly repetitive nature. The PE and PPE families are typified
by their highly conserved N-terminal domains that incorporate proline-glutamate (PE) and proline-proline-glutamate (PPE)
signature motifs. They are hypothesised to be important virulence factors involved with host-pathogen interactions, but
their high genetic variability and complexity of analysis means they are typically disregarded in genome studies.

Results: To elucidate the structure of these genes, 518 genomes from a diverse international collection of clinical isolates
were de novo assembled. A further 21 reference M. tuberculosis complex genomes and long read sequence data were
used to validate the approach. SNP analysis revealed that variation in the majority of the 168 pe/ppe genes studied was
consistent with lineage. Several recombination hotspots were identified, notably pe_pgrs3 and pe_pgrs17. Evidence of
positive selection was revealed in 65 pe/ppe genes, including epitopes potentially binding to major histocompatibility

complex molecules.

Conclusions: This, the first comprehensive study of the pe and ppe genes, provides important insight into M. tuberculosis
diversity and has significant implications for vaccine development.

Background

Tuberculosis disease (TB) is a major global public health
problem, with control becoming difficult due to increasing
drug resistance and in some populations HIV co-infection
[1]. The available vaccine, Bacillus Calmette—Guérin
(BCQ), has limited efficacy and recent attempts to develop
more effective protective vaccines have not been success-
ful [2]. TB is caused by bacteria of the Mycobacterium
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tuberculosis complex, which have low overall genetic di-
versity and a striking clonal population structure. M. tuber-
culosis sensu stricto consists of seven lineages, including
four that are predominant; 1 Indo-Oceanic, 2 East-Asian
including Beijing, 3 East-African-Indian, 4 Euro-American
[3]. These lineages are postulated to have differential im-
pacts on pathogenesis, disease outcome and vaccine efficacy
[4-7]. For example, modern lineages, such as Beijing and
Euro-American Haarlem strains exhibit more virulent phe-
notypes compared to ancient lineages, such as East African
Indian®. Whilst some genetic differences between lineages
have been identified®, the molecular mechanisms respon-
sible for differences in pathogenesis and virulence remain
largely unknown [8].

© 2016 Phelan et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http//creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated
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Two groups of proteins, the PE and PPE families have
been implicated in immune evasion and virulence [9].
Members of the pe/ppe gene families are characterized
by the presence of proline-glutamate (PE) and proline-
proline-glutamate (PPE) signature motifs near the N-
terminus of their gene products [10]. The pe (99 loci)
and ppe (69) gene families constitute ~7-10 % of the
coding potential of M. tuberculosis and are scattered
throughout the genome [9]. The families can be subdi-
vided based on similarities in their N-terminal regions
[11]. Many of the pe and ppe gene products are pre-
dicted to be localised to the cell membrane or secreted
including those in the PE_PGRS domain containing sub-
group and the PPE_MPTR domain containing subgroup
[12, 13]. It has been speculated that these proteins may
play a role in virulence [14]. Pe/ppe genes are differen-
tially expressed during infection [15] and some PE/PPE
proteins have been shown to elicit immune responses by
the host [14, 16] and there is evidence that the PGRS
domain can inhibit antigen processing [16, 17].

Whilst pe_pgrs and ppe_mptr genes represent some of
the most variable M. tuberculosis regions, some mem-
bers of the pe/ppe family are conserved across strains
and species, therefore implying different functional roles.
Only the protein structures of PE25 and PPE41 have
been characterised [18], and in lieu of experimental
and functional work, insights into their function and
interaction partners must come from in silico analysis
of large-scale ‘omics data. However, due to the repeti-
tive nature and high GC content genetic variation in
the pe/ppe genes, it has been difficult to characterize
them using traditional mapping approaches, leading to
their systematic exclusion from analysis [18]. There
have been conflicting studies reporting either high or
little or no sequence divergence [19-21], but studies
have been limited by the number of genes and diver-
sity of strains analysed.

There is a need to fully characterize pe/ppe family se-
quence diversity across strain-types to provide better un-
derstanding of these genes and their possible role in
virulence and immune evasion. The availability of high
throughput short sequencing technologies has revolu-
tionized the study of M. tuberculosis genetic diversity. In
an attempt to characterize these elusive genes we have
performed whole genome assembly on next generation
sequence data with a high depth of coverage across the
pe/ppe gene regions from 518 clinical and experimental
isolates. These isolates represent the four major line-
ages, each with known informative barcoding SNPs [3].
The approach was validated by examination of 21 refer-
ence genomes from established databases (www.tbdb.org;
www.ebi.ac.uk), including 2 new strains with complete
genomes sequenced using long read Pacific Bioscience
(PacBio) technology [22, 23].

Page 2 of 12

Results

Assembly of M. tuberculosis genomes

Conventional alignment-based analysis approaches have
been of limited use in analysis of highly repetitive loci,
including the pe/ppe genes. Here, we de novo assembled
the genomes of 518 samples from 9 different countries
covering the four main lineages (1 (n=42), 2 (n=38), 3
(n=53), and 4 (n=385)), with high sequence cover-
age in pe/ppe genes (mean 233-fold, range 100-1544)
(Additional file 1: Tables S1 and S2). For each sample, at
least 120 of the 168 pe/ppe genes were fully assembled
and at least 90 % assembled for the remaining 48 genes
(Additional file 1: Table S3). This level of assembly quality
ensured low levels of assembly fragmentation and mini-
mised poor gene characterization. Subsequent analysis
involving manual inspection or re-mapping of reads to the
assemblies using REAPR software, revealed all genes
(168 pe/ppe; 3,654 other genes; 2,820 with an assigned
function) to be of high quality (median REAPR score of
1 across all bases, reflecting high levels of accuracy in gen-
ome assemblies). A further 21 independent complete ref-
erence genomes representing all four lineages (Additional
file 1: Table S1), were aligned against H37Rv to call vari-
ants, and used to further validate the results found in the
assembled dataset.

Variant detection and population genetic analysis
A total of 50,539 genome-wide SNPs were identified by
comparing the 518 assembled genomes to the H37Rv
(lineage 4, Euro-American T) reference strain. Of
these, 5,853 (11.6 %) SNPs were located within pe/ppe
regions, with greater density than the rest of the
genome (median SNPs per kb: ppe/pe =12.9, non-ppe/
pe=9.1, Wilcoxon P<22x107'). In the 257 Malawi
samples, our assembly procedure revealed 3,467 add-
itional SNP variants genome-wide (1,438 (41.5 %)
SNPs in 72 pe/ppe genes) compared to the standard
approach of aligning short reads to the H3Rv refer-
ence. Of the 50,539 SNPs inferred from the assemblies,
the majority (45,681, 90.3 %) were located in coding
regions from all genes and consisted of 28,235 (61.8 %)
non-synonymous SNPs and 17,446 (38.2 %) synonym-
ous SNPs. This observation is in agreement with the
higher abundance of non-synonymous mutations re-
ported in the literature [19]. A large number of rare
variants (i.e. present in only one isolate) were observed
in all lineages, indicative of purifying selection and popula-
tion expansion described by others [24]. The peaks in the
spectrum represent a number of SNPs that are fixed in all
isolates from sub-lineages (Additional file 2: Figure S1).
The ratio of non-synonymous to synonymous muta-
tions was similar in pe/ppe and other genes (median:
pe/ppe genes = 1.65, other genes =1.75, Wilcoxon P=
0.68). The density of non-synonymous mutations was
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2.98 times greater in pe/ppe genes compared to others
(pe/ppe genes: 1 every 3933 bp, other genes: 1 every
11,706 bp, Wilcoxon P <0.0001), consistent with an-
other report [25]. When analysed by sub-family we ob-
served the greatest ratio of densities in the pe pgrs
genes (pe_pgrs 3.89) compared to the other types (ppe
1.75, pe (non-pe_pgrs) 1.80), similar to that reported previ-
ously [25]. The nucleotide diversity (i) was ~2-fold greater
in the pe/ppe genes (median: pe/ppe genes 2.7 x 107%,
other genes 1.4 x 107, Wilcoxon P<1.4x 10’10). Al-
though estimates of genetic diversity may be influ-
enced by sampling bias, nucleotide diversity varied by
lineage, being greater in lineage 1 (Indo-Oceanic me-
dian: pe/ppe 1.7 x 107, other 9.0 x 10°) and lower in
lineage 2 (East-Asian median: pe/ppe 7.3 x 107>, other 0)
(Additional file 1: Table S2), all consistent with previous
work [3]. Loci identified as being highly diverse (i > 0.003,
top 0.2 %, Table 1, Fig. 1), included 5 pe/ppe genes
(pe_pgrs3, pe_pgrsd, ppe57, ppe59 and ppe60), and 3
others (Rv0030, Rv0095c and IppB). The diversity per gene
was compared to those from 21 complete reference
genomes, and peaks were observed at Rv0095c, pe pgrs3,
pe_pgrsd, ppeS7 and ppe60, independently supporting five
out of the eight loci identified in the 518 global samples
(Additional file 3: Figure S2).
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Phylogenetics

To examine the link between genetic variation and
lineage, a phylogenetic tree was constructed using the
50,539 SNPs. It revealed clustering by lineage, thereby
further validating the quality of the assembled genomes
(Additional file 4: Figure S3). However, a similar analysis
using 5,853 pe/ppe specific SNP positions led to a tree
with lineage 2 being split into two distinct clades, sur-
rounded by lineage 4 strains (Fig. 2a). Subsequent ana-
lysis using SNP-based population differentiation Fgr and
site-specific log likelihood scores approaches (Additional
file 5: Figure S4) revealed that the pe_pgrs3 gene (gen-
omic position 333 kb, lineage 2 — 104 SNPs differentiat-
ing) was predominantly responsible for the ambiguity.
Removal of the 281 SNPs in the pe_pgrs3 gene led to a
pe/ppe-based tree that clustered by lineage (Fig. 2b), very
similar in topology to that based on the genome-wide
SNPs (Additional file 4: Figure S3). This demonstrated
that a core set of pe/ppe SNPs appears to be lineage spe-
cific, and further analysis revealed a set of 87 (1.4 %) SNPs
(66 non-synonymous) that were lineage specific, poten-
tially forming the basis of a lineage-specific molecular bar-
code (Additional file 1: Table S4). None of these 87
mutations were present in M. bovis (GCA_000195835) or
M. africanum (NC_015758.1) sequences, and therefore

Table 1 Lodci that are highly diverse, with recombination, or under selective pressure

Gene Locus No. SNPs Diversity 7 phi p-value phi p-value® dan/ds (w) No. sites” Lineage specific phi
Rv0030 Rv0030 3 0.0033 1.000 1.000 - 0 -
Rv0095¢ Rv0095¢ 10 0.0059 0.005 0.021 10.13 3 -
Rv0182¢ 5igG 3 0.0003 0.046 0.046 - 0 -
Rv0278c pe_pgrs3 130 0.0193 <0.001 <0.001 10.5 49 134
Rv0279c pe_pgrs4 49 0.0035 0.001 0419 10.5 20 -
Rv0282 eccA3 5 0.0005 0.007 0210 9.697 6 -
Rv0850 Rv0850 2 0.0031 1.000 1.000 9.264 4 -
Rv0978¢ pe_pgrs17 9 0.0005 0.003 1.000 10.495 9 -
Rv1148¢ Rv1148¢ 18 0.0022 <0.001 0015 10492 5 4
Rv1793 esxN 6 0.0023 0.034 0.159 9.694 2 4
Rv1945 Rv1945 18 0.0010 <0.001 0.026 10433 5 -
Rv2048¢ pks12 80 0.0008 <0.001 0.012 10.5 79 4
Rv2543 IppA 8 0.0015 0.006 0.002 10.036 5 4
Rv2544 IppB 60 0.0123 <0.001 <0.001 5336 33 124
Rv3425 ppe57 31 0.0154 0431 1.000 10.5 21 -
Rv3429 ppe59 19 0.0041 <0.001 0.084 10419 29 4
Rv3466 Rv3466 6 0.0010 0.004 0373 7.757 3 -
Rv3478 ppe60 105 0.0061 <0.001 0.004 7.502 54 4
Rv3619c esxV 3 0.0022 0.025 1.000 10.391 2 -

7 nucleotide diversity, phi recombination, NS not significant

“after removing sites under selection

Pnumber of sites under selection using the Bayes Empirical Bayes method
Bolded refers to > 0.003 or phi p-value < 0.05
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Fig. 1 Nucleotide diversity (1) across the genome by lineage; genes with high diversity (77> 0.003) are highlighted. The pe_pgrs3 gene appears to
have high nucleotide diversity in all lineages. Some lineage-specific hotspots are seen in lineage 1 (ppe59 and Rv3901¢), lineage 3 (Rv2081c¢) and
lineage 4 (ppe57 and ppe60)

robust as M. tuberculosis lineage-specific markers. Using
only the pe_pgrs3 SNPs led to a tree with two large clades
(Additional file 6: Figure S5), one containing H37Rv and
strains with similar sequence, and the other consistent
with isolates similar to M323 and 18b strains (Additional
file 1: Table S1b), both undergoing recent sequencing
using PacBio long read technology. The M323, 18b and
similarly clustered assembled samples have a pe pgrs3
gene with conserved regions at both 3" and 5" ends, sur-
rounding a highly similar hypervariable core. A different
hypervariable core is present in H37Rv and similarly clus-
tered assemblies, which interestingly is also present in the
pe_pgrs4 gene of 18b, and recombination is a potential
explanation.

Recombination detection
Although it has been thought that M. tuberculosis under-
goes little or no homologous recombination, PE_PGRS

and PPE_MPTR families contain long domains comprised
of series of tandem repeats, giving them a higher propen-
sity to undergo recombination. There is published evi-
dence of intra-chromosomal cross-over ahead of a few
loci [9], including pe_pgrs3, pe_pgrs4, and ppel [26]. We
hypothesized that recombination may be the reason for
the observed high genetic diversity and distortion in the
pe/ppe tree. We applied the pairwise homoplasy index
(phi) method [27] genome-wide to establish if there was
any evidence of recombination in pe_pgrs3 and other loci
(Fig. 3). The method calculates a p-value (phi P) of observ-
ing the sequence data under the null hypothesis of no
recombination. The analysis revealed 16 genes with poten-
tial recombination events (phi P <0.05) present across
all lineages: 5 in pe/ppe genes (pe_pgrs3, pe_pgrs4,
pe_pgrsl7, ppeS59 and ppe60), and 11 others (Rv0095,
sigG, eccA3, Rv1148, esxN, Rv1945, pks12, IppA, lppB,
Rv3466 and esxV).
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It could be expected that the vast majority of any gen-
omic recombination events are intra-lineage and that
these events will pass unnoticed by other analyses, espe-
cially in studies of small sample size. Lineage-specific
hotspots were also present (Additional file 7: Figure S6),
including possible pathogenicity factors IppA/lppB in
lineage 2 (Beijing) and pe_pgrs3 in lineage 4. An analysis
of the 21 complete reference genomes revealed an over-
all high degree of concordance of the homoplasy phi
statistic with the assembled data, with six recombination
peaks in common (Rv0095c¢, pe_pgrs3, pe_pgrsd, pe_pgrs17,
Rv1148c and Rvi945) (Additional file 8: Figure S7). To-
gether, these results provide evidence for recombination.

Detecting selection pressure
It is possible that recombination and population expan-
sion [24] could have introduced not only the observed
increased diversity in the pe/ppe genes, but contributed
to an excess of non-synonymous mutation diversity in
general; especially in genes expected to be under positive
or diversifying selection such as the cell wall component
genes [24]. Proteins in contact with the host proteome
could be under pressure to change their amino acid se-
quence in order to avoid detection or unfavourable
interaction with the host immune system. We decided
to investigate the role of selection in the pe/ppe genes
compared to other categories of genes. The distribution
of dN/dS values (denoted @, = 1 neutral evolution, >1
positive selection, <1 purifying selection), calculated for
each gene across all sites and branches of the phylogenetic
tree, was similar between pe/ppe and other genes (median
w: pe/ppe genes 0.81, other genes 0.73; Wilcoxon P = 0.16).
These values are broadly similar to those previously
reported on much lower numbers of samples and pe/ppe
genes [25]. The genes were further divided into functional
Clusters of Orthologous Groups (COG) categories [28].
Higher median w values were observed in genes associated
with signal transduction mechanisms (median = 0.95), per-
haps due to their contact with the host, and the lowest
values found in genes associated with RNA processing and
modification (median = 0.38) (Additional file 9: Figure S8).
In most genes it would be expected that only a small sub-
set of sites would undergo positive selection and so calcula-
tion of a single w value over all sites in the gene may dilute
an effect. For example, this is possible in pe/ppe genes
where there is less variation in the N- compared to the C-
terminus [21]. We therefore used a likelihood ratio based
approach that accounts for the variability of w between
sites. After implementation, we detected a greater propor-
tion of pe/ppe loci under positive selection compared to
other genes (w > 1 and P < 0.05: pe/ppe genes 65 (39 %) vs.
other genes 590 (15 %)). This observation remained consist-
ent when the non-pe/ppe genes were subdivided into func-
tional categories (P-values for evidence of w >1, Wilcoxon
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P <0.001) (Fig. 4). Using the COG categories, the genes as-
sociated with cell motility and the pe/ppe genes again
showed greater evidence of significant positive selection
(Additional file 10: Figure S9). All genes annotated as pos-
sible recombination hotspots were identified as being under
positive selection, except Rv0182c. To localize the specific
polymorphisms under selection we applied the Bayes Em-
pirical Bayes (BEB) method [29], and identified a small
number of sites in each gene (median (range): pe/ppe genes
0 (0-60), other genes 0 (0-48), P=1.2x 107'). In total 99
pe/ppe genes had sites under positive selection, including
ten genes with selection at more than ten sites (Additional
file 1: Table S5). For 1,106 non-pe/ppe genes, only 37 had
ten or more sites under positive selection. The proportion
of segregating sites under positive selection (S,/S,) per gene
was higher in the pe/ppe loci compared to others (pe/ppe
genes 0.04, other genes 0.00, Wilcoxon P=2.58x 10’7).
There was a correlation between the number of positively
selected and segregating sites (Pearson’s r, pe/ppe 0.81, and
other genes 0.32).

We considered the 3,686 sites in the 1,106 non-pe/ppe
genes with some evidence of positive selection (w>1).
These sites were compared to a list of drug resistance-
conferring mutations (www.tbdb.org), which because of a
survival advantage may be expected to be under positive
selection. Eighteen drug resistance markers were found,
including in inhA (121T, S94A, 1194T, P251A; associated
with the drug isoniazid), katG (S315T; isoniazid), gyrA
(A90V; fluoroquinolones), rpoB (P45L, rifampicin), rpoL
(K43R; rifampicin), and ponAl (P631S; rifampicin). Other
regions of interest included rodA (T336S) involved in cell
wall processes and required for survival in primary murine
macrophages, and pks6 (V504L) involved in lipid metabol-
ism and in vitro growth. Repeating the recombination de-
tection analysis after removing the sites under positive
selection identified by the BEB method, revealed six genes
that lost their statistical significance (phi P> 0.05, eccA3,
pe_pgrsd, pe_pgrsl7, ppe59, Rv3466 and esxV), leaving 10
as crossover hotspots (Fig. 3). Given that variation in these
genes is not caused by positive selection it is highly likely
that recombination hotspots are indeed present at these
ten loci. The proportion of sites under selection was high
for IppA (7 %) and IppB (43 %) loci. The BEB method
identified 38 codons in [ppA/B at which o > 1, with almost
all the related mutations present in lineage 2 (East-Asian)
samples. None of these codons were in previously de-
scribed conserved positions [30], implying that the core
function of the protein was not disturbed, and the muta-
tions may contribute to antigenic variation.

Selection on epitopes

Epitopes potentially binding to major histocompatibility
complex molecules were predicted in all PE/PPE pro-
teins using the netMHCpan software (Additional file 1:
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Table S6). The number of epitopes varied by pe/ppe gene
(median 45, range 0 — 455). Some pe/ppe sites identified
as being under selection using the BEB approach did
overlap with regions predicted to be epitopes. In particu-
lar, for 10 genes (pe6, pe pgrs26, pel8, pe pgrs49,
pe_pgrs60, ppe27, ppeS7, ppeS9, ppe60 and ppe6S), more
than 20 % of predicted epitopes had sites under positive
selection (Additional file 1: Table S6).

Discussion

Members of the PE/PPE family of proteins have been
found to trigger innate immune responses, are targets of
the adaptive immune system, and potentially a rich
source of diagnostic and vaccine antigens. As large ‘omic
studies in M. tuberculosis have often excluded pe/ppe
genes from analysis (e.g. [3]), the understanding of their
function and diversity is poor compared to other loci.
Assessing diversity across M. tuberculosis strain types is
critical, as lineages may vary in propensity to transmit and
cause disease. By applying a de novo assembly approach,
we were able to characterize accurately nearly all 168
pe/ppe genes in 518 isolates with high genomic coverage,
representing lineages 1 (Indo-Oceanic), 2 (East-Asian), 3

(East-African-Indian) and 4 (Euro-American). After identi-
fying ~50 k genome-wide SNPs from whole genome align-
ments, we confirmed that pe/ppe genes, especially the
pe_pgrs family, have a high density of non-synonymous
mutations compared to other M. tuberculosis loci. This ob-
servation is consistent with their involvement in antigenic
variation and immune evasion, where proteins that are dir-
ectly exposed to host immune surveillance tend to show
higher levels of polymorphism. A lower degree of poly-
morphism in the ppe genes (compared to pe_pgrs) is likely
to reflect a strong functional constraint of the PPE
proteins.

Using all SNPs in a phylogenetic analysis, we observed
clustering by M. tuberculosis lineage and therefore
consistency with other published topologies [3, 31]. There
was evidence of lineage specific pe/ppe repertories, with a
very similar phylogeny being attained by restricting ana-
lysis to all polymorphisms in 167 PE/PPE genes (excluding
pe_pgrs3), as well as a derived subset of 87 informative
SNPs. The pe_pgrs3 gene had high nucleotide diversity
across all lineages, was not lineage informative, and is
likely to be have been subject to recombination in lineages
1, 3 and 4. Both M. bovis and M. canetti contain two genes
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annotated as orthologues of pe pgrs3, providing further
evidence towards the propensity of this region to undergo
genomic rearrangements. Interestingly the positioning of
the M. tuberculosis reference strains in the pe/ppe gene
phylogenetic tree was altered; some strains clustering near
the M. canetti and ancestral strains while some of the
known virulent reference strains were positioned at a fur-
ther distance. Further study is needed to elucidate this ef-
fect. Other recombination and diversity hotspots included
IppB (lineages 1, 2, and 4) and ppe60 (lineage 4) genes,
both known to have undergone homologous recombin-
ation. LppB (and lppA) are non-essential exported lipopro-
teins that are unique to pathogenic mycobacteria and may
encode antigens [32, 33]. The lppA/B SNPs driving this ef-
fect were found mostly in lineage 2 (Beijing) strains, and
seemed to be conferring a selective advantage. The role of
IppA/B proteins on virulence should be investigated fur-
ther. Although, pe pgrsi7, whose protein is in contact
with the host immune system [34], was identified as a re-
combination hotspot, this observation may be confounded
by positive selection. However, recombination has been
described in pe_pgrs17, with large numbers of SNPs and
indels in the pe_pgrs17 and pe_pgrs18 pair observed across
the different lineages, potentially arising from gene con-
version events [35]. We can rule out the results being con-
founded due to a sampling frame that included different
geographical regions, as there was strongest clustering by
lineage and not geographical source.

Across all M. tuberculosis genomes there was evidence
that most genes were undergoing purifying selection
pressures (dN/dS <1). However, the pe/ppe genes were
most likely to be under positive selection (dN/dS > 1),
consistent with some PE/PPE proteins providing anti-
genic variation. It is possible the dN/dS ratios may be
underestimated, as the methodology is more appropriate
to divergent species and not for comparisons within a
population [25]. Further, the signatures from very local-
ised regions of selection within a gene may be diluted by
surrounding genetic variation. A site-specific analysis con-
firmed the results from the gene-based dN/dS. Whilst the
majority of the sixty-five genes identified as being under
positive selection had only a single positively selected site,
a disproportionate number of pe_pgrs genes had multiple
positively selected sites. A potential limitation of this ana-
lysis is the time dependence of dN/dS for closely related
bacterial genomes. This leads to possible over-estimation
of the dN/dS and difficulties in interpretation when com-
paring the strength of selection between genes, genomes
or populations over very short time-scales [36]. The power
of the dN/dS statistic to detect positive selection is
reduced when samples come from a single population
[25]. In addition to the site under selection, multiple
neighbouring and linked sites may show evidence of selec-
tion due to hitchhiking effects.
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Our findings provide potential insights into the use of
PE/PPE proteins as vaccine components. The high levels
of polymorphism observed and the lineage-specific na-
ture in certain members of these protein families could
limit their effectiveness. A PE/PPE protein that displays
higher sequence conservation across many strains may
be a more effective vaccine candidate. For example, the
highly immunogenic PE_PGRS62 protein has been con-
sidered as a vaccine target [37], and as only one of the
14 non-synonymous mutations observed was lineage
specific, it may have broad strain coverage. However,
one roadblock is the limited immunogenicity data avail-
able at the pe/ppe epitope level. It has been found that
human T-cell epitopes are highly conserved in the M.
tuberculosis complex [38], and like others [25] we found
many epitopes predicted in PE/PPE proteins. Our ana-
lysis revealed a number of pe/ppe genes with a high pro-
portion of epitopes potentially subjected to diversifying
or positive selection. As these epitopes may be used by
M. tuberculosis to evade the host immune system they
would be relevant for TB vaccination strategies.

A cohesive understanding of the function of the 168
PE/PPE family of proteins remains elusive. By analysing
SNP variation in 518 samples across the four main M.
tuberculosis lineages we identified pe/ppe genes that are
highly diverse, recombination hotspots and under positive
selection. Such analyses can assist with prioritising candi-
dates for functional studies, potentially leading to TB con-
trol measures, such as vaccines, diagnostics and drugs.

Conclusions

Human tuberculosis poses a major burden on health ser-
vices worldwide. There is a need to understand the com-
plex interactions between the human host and bacterial
pathogen so that new control measures, such as vaccines
and drugs, can be developed. Recent technological ad-
vances have allowed large-scale studies to determine the
genetic signatures of strain-types or ancestral lineages
and drug resistance outcomes. Despite this advance,
some highly variable regions of the genome are often ex-
cluded [39, 40]. This includes the pe/ppe gene family,
whose members are thought to interact with the human
immune system, but little is still known of their diversity
and function. Here we present the first comprehensive
study of the genetic diversity of the 168 pe/ppe genes.
We find most genes vary in a lineage specific manner,
consistent with strain-specific repertories. However, there
were exceptions to this pattern, with evidence of some
genes undergoing genetic cross-over events. Further, by
looking for the genes under selective pressure genome-
wide, we found enrichment in the number of pe/ppe genes
undergoing positive selection. Overall, our work highlights
the importance of pe/ppe genes, describes their suitability
as vaccine candidates, and provides the basis for further
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exploration of the proteins involved in the host immune
system and pathogen interactions.

Methods

The raw sequencing fastq files for 518 M. tuberculosis sam-
ples with more than 100-fold genomic coverage were
sourced from the PolyTB [41], rapid TB [42] and global
drug resistance (Coll F, McNerney R, Hill-Cawthorn G et
al. Whole genome association analysis of a global collection
of Mycobacterium tuberculosis clinical isolates gives new
insight into drug resistance, Submitted) projects (Additional
file 1: Table S1a). A list of ENA accession numbers is avail-
able for download (http://pathogenseq.lshtm.ac.uk/ppe).
Lineages were inferred using robust barcoding SNPs [3].
Lineages 1, 2, 3 and 4 were represented with 42, 38, 53 and
385 samples from each respectively (Additional file 1: Table
S2). A separate set of twenty-one samples representing line-
ages 1 to 4 with complete or near complete genomes were
used for validation (Additional file 1: Table S1b). In particu-
lar, all analyses performed on the main 518 samples were
also applied to the validation dataset in an attempt to con-
firm signals and potentially rule out spurious findings. As-
sembly of all short reads was performed using MaSuRCA,
SGA, Velvet and SPAdes [43-46] software, run in paired
end mode with default and recommended parameters,
across multiple k-mer values ranging from 31 to 91.
The final Velvet run was implemented with a k-mer
value of 63. Quast [47] software was used to extract
assembly quality metrics using the H37Rv strain
(Gene bank: AL123456) as the reference. The Samtools
rmdup utility [48] was used to remove duplicates from each
sample’s BAM file, and picard SamToFastq (http://broadin-
stitute.github.io/picard/) was used to convert the BAM files
to fastq format. IMAGE software [49] was used to close
gaps from the contigs produced by Velvet. After running
IMAGE for 3 iterations using a k-mer size of 55, the num-
ber of pe/ppe genes assembled increased for all samples,
especially in high coverage samples. The majority (range:
78-98 %) of gaps were closed within 3 iterations, which
provided a threshold to justify the compromise between
runtime and gaps closed in new contigs (fasta format).
REAPR software was used to assess the quality of the as-
semblies, and calculates a quality score per base (http://
www.sanger.ac.uk/science/tools/reapr reapr). The final as-
semblies are available for download (http://pathogen-
seq.lshtm.ac.uk/ppe). The pe/ppe and other genes were
called by aligning the assemblies to the well annotated
H37Rv genome. The 50,539 SNPs genome-wide were
identified using nucmer [50] with H37Rv as the reference
genome. To assess the robustness of the aligned sequences
and resulting SNPs and analyses, we also mapped samples
to a Mycobacterium africanum lineage reference (GCA_
000253355.1), but observed no major differences from
those using H37Rv (lineage 4). Phylogenetic data
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(alignments, phylogenetic trees) are deposited in Dryad
(http://datadryad.org/).

The alignments of the genotypes for the 50,539 SNPs
formed the basis of the majority of population genetic
analyses, except where stated otherwise. SNP locations
at which more than 10 % of the genotypes were missing
were excluded from analyses. Other missing data was
kept in the multiple alignments and was processed ac-
cording to the default settings of the analysis software
applied. Indels were identified by nucmer but were not
analysed in this study. Regions where multiple contigs
overlapped or where no contigs mapped to were anno-
tated as missing data. FastTree [51] software employing
the generalised time-reversible model was used to pro-
duce the final phylogenetic trees. The trees included
the ancient M. canettii strain (NC_019950.1). The Fsr
measure was calculated for each SNP to identify
markers with complete between-lineage allele differen-
tiation (Fsr >0.99). Similarly, the ancestral recon-
structed sequence for the lineage-defining node in the
phylogenetic tree was compared with its closest ances-
tral node, and the SNP differences derived. Nucleotide
diversity () and the number of segregating sites were
calculated using variscan software applied to sequence
alignments [52]. To test for recombination we used the
pairwise homoplasy index (phi) statistic calculated in
sliding windows, as implemented in Phipack software
[27]. The non-synonymous to synonymous ratio was
calculated using PAML software [53]. To discover the
effect of positive selection on the pe/ppe genes compared
to all other genes, codeml was used to fit a number of
models to the data using a maximum likelihood approach.
This is generally thought to be more robust than counting
methods. A dN/dS (w) value was calculated per gene across
all positions and all branches of the phylogenetic tree. For
each gene, we then performed a likelihood ratio test using
PAML software to assess evidence of positive selection,
which compared two models: (a) variable selective pressure
but no positive selection (0 < w < 1) (M8a) and (b) variable
selective pressure with positive selection (M8) (w > 1). The
test statistic has a 2 (1 degree of freedom) distribution,
and the resulting p-value reflects the likelihood of positive
selection acting on a gene. To localize the specific poly-
morphisms under selection we applied the Bayes Empirical
Bayes (BEB) method [29]. The proportion of segregating
sites under positive selection (S,/S;) was calculated using
the results from variscan and BEB. Epitopes were predicted
using netMHCpan [54] using HLA alleles previously sug-
gested [21].

No ethical approvals were required for this study.

Availability of supporting data
The list of raw sequence data accession numbers for the
ENA short read archive, final assemblies and links to the
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phylogenetic data (alignments, phylogenetic trees) in Dryad
can be found in http://pathogenseq.Ishtm.ac.uk/ppe.

Additional files

Additional file 1: Table S1. a) The samples used for the assembly
(*Malawi [55, 56], Netherlands [57], Pakistan [58], Portugal [59]) and b)
the 21 reference strains. Table S2. Lineage, sequence coverage and
polymorphism. 7 nucleotide diversity; Lineage 1 Indo-Oceanic; Lineage 2
East-Asian (Beijing); Lineage 3 East-African-Indian; Lineage 4 Euro-
American. Table $3. Completeness of pe/ppe gene assemblies. Table S4.
List of 87 pe/ppe lineage specific-markers. S synonymous, NS non-
synonymous, * genes bolded if there are sites under selection using the
Bayes Empirical Bayes method; Lineage 1 Indo-Oceanic; Lineage 2 East-
Asian (Beijing); Lineage 3 East-African-Indian; Lineage 4 Euro-American.
Table S5. Genes with more than 10 sites under selective pressure (dN/dS
(w) >1). Table S6. Epitopes. * identified using netMHCpan, ** epitopes
that had sites under positive selection according to the Bayes Empirical
Bayes (BEB) method. (DOCX 70 kb)

Additional file 2: Figure S1. Allele frequency spectra for each lineage
by synonymous (blue) and non-synonymous (red) mutations. The peaks
at intermediate allele frequencies include sub-lineage defining SNPs

(Lineage 1 Indo-Oceanic; Lineage 2 East-Asian (Beijing); Lineage 3 East-
African-Indian; Lineage 4 Euro-American). (TIF 207 kb)

Additional file 3: Figure S2. Gene-based nucleotide diversity () for
the 21 reference genomes. All genes with high nucleotide diversity
(71> 0.0075) are labelled. (TIF 148 kb)

Additional file 4: Figure S3. Phylogenetic tree constructed using
50,540 genome-wide SNPs. Clear clustering according to lineage can be
seen (Lineage 1 (Indo-Oceanic, green), lineage 2 (East-Asian (Beijing), blue),
lineage 3 (East-African-Indian, purple), lineage 4 (Euro-American, red)).
Reference genomes are labelled. M. canetti is annotated in cyan. (TIF 69 kb)

Additional file 5: Figure S4. |dentifying sites leading to differences in
tree topologies based on all SNPs (Additional file 4: Figure S3a) and only
those from pe/ppe genes (Additional file 4: Figure S3b). The A Site wise
log likelihood score (A SSLS) is calculated for each SNP in the pe/ppe
gene alignments. Negative differences indicate SNP positions favouring
the pe/ppe tree. SNPs in pe_pgrs3, ppe57 and ppe60 produce strong
phylogenetic signals supporting the pe/ppe tree. (TIF 113 kb)

Additional file 6: Figure S5. Phylogenetic tree created using only
SNPs from pe_pgrs3. No clear clustering by lineage is observed. However
there are two major clades, one consistent with H37Rv (bottom-left).
(TIF 126 kb)

Additional file 7: Figure S6. Lineage-specific recombination hotspots.
Manhattan plots showing genes that are likely to be recombination
hotspots in each lineage (Lineage 1 Indo-Oceanic; Lineage 2 East-Asian
(Beijing); Lineage 3 East-African-Indian; Lineage 4 Euro-American). The
(~log10) p-value for the phi statistic is plotted against genome position.
All genes with p-values < 0.05 are labelled. (TIF 147 kb)

Additional file 8: Figure S7. Evidence of recombination at a gene level
in the 21 reference genomes. A Manhattan plot showing genes that are
likely to be recombination hotspots. The (~log10) p-value for the phi
statistic is plotted against genome position. Genes with p-values less than
0.05 are shown. (TIF 120 kb)

Additional file 9: Figure S8. Selection dN/dS values for each gene
within Clusters of Orthologous Groups (COG*) categories. *ppe/N = pe/ppe
genes annotated as COG category N, * COG categories: A RNA processing
and modification, B Chromatin Structure and dynamics, C Energy
production and conversion, D Cell cycle control and mitosis, E Amino
Acid metabolism and transport, F Nucleotide metabolism and transport, G
Carbohydrate metabolism and transport, H Coenzyme metabolism, I Lipid
metabolism, J Translation, K Transcription, L Replication and repair, M Cell
wall/membrane/envelope biogenesis, N Cell motility, O Post-translational
modification, protein turnover, chaperone functions, P Inorganic ion
transport and metabolism, Q Secondary Structure, T Signal Transduction,
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U Intracellular trafficking and secretion, Y Nuclear structure, Z Cytoskeleton,
R General Functional Prediction only, S Function Unknown. (TIF 124 kb)

Additional file 10: Figure S9. Non-neutral evolution for genes within
Clusters of Orthologous Groups (COG*) categories. Boxplots are
constructed using (-log10) p-values of non-neutral evolution for each
gene. *ppe/N = pe/ppe genes annotated as COG category N, * COG
categories: A RNA processing and modification, B Chromatin Structure
and dynamics, C Energy production and conversion, D Cell cycle control
and mitosis, E Amino Acid metabolism and transport, F Nucleotide
metabolism and transport, G Carbohydrate metabolism and transport,

H Coenzyme metabolism, I Lipid metabolism, J Translation, K Transcription,
L Replication and repair, M Cell wall/membrane/envelope biogenesis, N Cell
motility, O Post-translational modification, protein turnover, chaperone
functions, P Inorganic ion transport and metabolism, Q Secondary Structure,
T Signal Transduction, U Intracellular trafficking and secretion, Y Nuclear
structure, Z Cytoskeleton, R General Functional Prediction only, S Function
Unknown. (TIF 127 kb)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

JEP, FC, RM, and TGC conceived the project. IB, RMA, RW, SLS, NCGVP, JRG,
ACC, AA, TBB, SC, KD, LG, RH, ZH, AM, DM, SP, JP, IP, PS, EJOS, EMS, PDvH,
MV, and AP contributed isolates, sequencing resources and/or reagents. JEP,
FC, SC, MLH and TGC contributed towards data analysis. JEP, RM and TGC
wrote the first version of the manuscript, with all other authors contributing
to the final version. All authors have read and approve of the final version of
the manuscript.

Acknowledgements

JP is supported by a Biotechnology and Biological Sciences Research Council
UK PhD studentship. FC was the recipient of a Bloomsbury Research Fund
PhD studentship. SLS receives funding from the South African Research
Chairs Initiative of the Department of Science and Technology and National
Research Foundation (UID 86539). AP is supported by the KAUST faculty
baseline research fund (KAUST-BRF). TGC receives funding from the Medical
Research Council UK (grant numbers MR/K000551/1, MR/M01360X/1, MR/
NO010469/1). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Author details

'Department of Pathogen Molecular Biology, Faculty of Infectious and
Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel
Street, WC1E 7HT London, UK. 2KIT Biomedical Research, Royal Tropical
Institute, Amsterdam, Netherlands. 3Department of Science and Technology
and National Research Foundation Centre of Excellence for Biomedical
Tuberculosis Research, and Medical Research Council Centre for Molecular
and Cellular Biology, Division of Molecular Biology and Human Genetics,
Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg,
South Africa. “Faculty of Epidemiology and Population Health, London
School of Hygiene & Tropical Medicine, WC1E 7HT London, UK. *Karonga
Prevention Study, Lilongwe, Malawi. ®National Mycobacterium Reference
Laboratory, Porto, Portugal. ‘Centro de Pesquisas Goncalo Moniz, Fundacao
Oswaldo Cruz Bahia R, Salvador, Bahia, Brazil. ®Department of Medicine, Lung
Infection and Immunity Unit, Division of Pulmonology & UCT Lung Institute,
University of Cape Town, Cape Town, Western Cape, South Africa. ‘Institute
of Infectious Diseases and Molecular Medicine, University of Cape Town,
Cape Town, Western Cape, South Africa. 1%L aboratorio de Enfermedades
Infecciosas, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y
Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru. HDepartment of
Pathology and Laboratory Medicine, The Aga Khan University, Stadium Road,
Karachi, Pakistan. '*National Center of Infectious and Parasitic Diseases, 1504
Sofia, Bulgaria. '*Universidade de Lisboa, Lisbon, Portugal. "“Grupo de
Micobactérias, Unidade de Microbiologia Médica, Global Health and Tropical
Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade
NOVA de Lisboa (IHMT/UNL), Lisbon, Portugal. '*Biological and
Environmental Sciences and Engineering Division, King Abdullah University
of Science and Technology, Thuwal, Kingdom of Saudi Arabia.

218



Phelan et al. BMC Genomics (2016) 17:151

Received: 12 November 2015 Accepted: 12 February 2016
Published online: 29 February 2016

References

1.
2.

World Health Organization. Global Tuberculosis Report 2014. 2014.

Wilkie MEM, McShane H. TB vaccine development: where are we and why is
it so difficult? Thorax. 2015;70:299-301.

Coll F, McNerney R, Guerra-Assuncgéo JA, Glynn JR, Perdigéo J, Viveiros M,
Portugal |, Pain A, Martin N, Clark TG. A robust SNP barcode for typing
Mycobacterium tuberculosis complex strains. Nat Commun. 2014;5:4812.
Gagneux S, Small PM. Global phylogeography of Mycobacterium
tuberculosis and implications for tuberculosis product development. Lancet
Infect Dis. 2007,7:328-37.

de Jong BC, Hill PC, Aiken A, Awine T, Antonio M, Adetifa IM, Jackson-Sillah DJ,
Fox A, Deriemer K, Gagneux S, Borgdorff MW, McAdam KPWJ, Corrah T, Small
PM, Adegbola RA. Progression to active tuberculosis, but not transmission,
varies by Mycobacterium tuberculosis lineage in The Gambia. J Infect Dis. 2008;
198:1037-43.

Caws M, Thwaites G, Dunstan S, Hawn TR, Lan NTN, Thuong NTT, Stepniewska
K, Huyen MNT, Bang ND, Loc TH, Gagneux S, van Soolingen D, Kremer K, van
der Sande M, Small P, Anh PTH, Chinh NT, Quy HT, Duyen NTH, Tho DQ, Hieu
NT, Torok E, Hien TT, Dung NH, Nhu NTQ, Duy PM, van Vinh Chau N, Farrar J.
The influence of host and bacterial genotype on the development of
disseminated disease with Mycobacterium tuberculosis. PLoS Pathog.
2008:4:21000034.

Ordway DJ, Shang S, Henao-Tamayo M, Obregon-Henao A, Nold L, Caraway
M, Shanley CA, Basaraba RJ, Duncan CG, Orme IM. Mycobacterium bovis
BCG-mediated protection against W-Beijing strains of Mycobacterium
tuberculosis is diminished concomitant with the emergence of regulatory T
cells. Clin Vaccine Immunol. 2011;18:1527-35.

Niemann S, Supply P. Diversity and evolution of Mycobacterium tuberculosis:
moving to whole-genome-based approaches. Cold Spring Harb Perspect Med.
2014;4:a021188.

Fishbein S, van Wyk N, Warren RM, Sampson SL. Phylogeny to function:
PE/PPE protein evolution and impact on Mycobacterium tuberculosis
pathogenicity. Mol Microbiol. 2015.

Akhter Y, Ehebauer MT, Mukhopadhyay S, Hasnain SE. The PE/PPE multigene
family codes for virulence factors and is a possible source of mycobacterial
antigenic variation: perhaps more? Biochimie. 2012,94:110-6.

van Pittius NC G, Sampson SL, Lee H, Kim Y, van Helden PD, Warren RM.
Evolution and expansion of the Mycobacterium tuberculosis PE and PPE
multigene families and their association with the duplication of the ESAT-6
(esx) gene cluster regions. BMC Evol Biol. 2006,6:95.

Bottai D, Di Luca M, Majlessi L, Frigui W, Simeone R, Sayes F, Bitter W,
Brennan MJ, Leclerc C, Batoni G, Campa M, Brosch R, Esin S. Disruption of
the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein
secretion, reduction of cell wall integrity and strong attenuation. Mol
Microbiol. 2012;83:1195-209.

Majlessi L, Prados-Rosales R, Casadevall A, Brosch R. Release of mycobacterial
antigens. Immunol Rev. 2015,264:25-45.

Delogu G, Cole ST, Brosch R. The PE and PPE Protein Families of Mycobacterium
Tuberculosis. In: Handbook of Tuberculosis: Molecular Biology and
Biochemistryitle. 2008. p. 131-50.

Mohareer K, Tundup S, Hasnain SE. Transcriptional regulation of Mycobacterium
tuberculosis PE/PPE genes: a molecular switch to virulence? J Mol Microbiol
Biotechnol. 2011,21:97-109.

Wang H, Dong D, Tang S, Chen X, Gao Q. PPE38 of Mycobacterium marinum
triggers the cross-talk of multiple pathways involved in the host response, as
revealed by subcellular quantitative proteomics. J Proteome Res. 2013;12:
2055-66.

Singh KK, Zhang X, Patibandla AS, Chien P, Laal S. Antigens of Mycobacterium
tuberculosis expressed during preclinical tuberculosis: serological
immunodominance of proteins with repetitive amino acid sequences.
Infect Immun. 2001,69:4185-91.

Galagan JE. Genomic insights into tuberculosis. Nat Rev Genet. 2014;15:
307-20.

Gutacker MM, Mathema B, Soini H, Shashkina E, Kreiswirth BN, Graviss EA,
Musser JM. Single-nucleotide polymorphism-based population genetic
analysis of Mycobacterium tuberculosis strains from 4 geographic sites.

J Infect Dis. 2006;193:121-8.

20.

22.

23.

24,

25.

26.

27.

28.

29.

30.

32.

33

34.

35

36.

37.

38.

39.

40.

Page 11 of 12

Musser JM, Amin A, Ramaswamy S. Negligible Genetic Diversity of
Mycobacterium tuberculosis Host Immune System Protein Targets:
Evidence of Limited Selective Pressure. Genetics. 2000;155:7-16.

Copin R, Coscollé M, Seiffert SN, Bothamley G, Sutherland J, Mbayo G,
Gagneux S, Emst JD. Sequence diversity in the pe_pgrs genes of
Mycobacterium tuberculosis is independent of human T cell recognition.
MBio. 2014;5:00960-13.

Mycobacterium tuberculosis 18b genome. [http://www.ncbi.nlm.nih.gov/
nuccore/CP007299.1]

Rodriguez JG, Pino C, Tauch A, Murcia MI. Complete Genome Sequence of
the Clinical Beijing-Like Strain Mycobacterium tuberculosis 323 Using the
PacBio Real-Time Sequencing Platform. Genome Announc. 2015;3.
Pepperell CS, Casto AM, Kitchen A, Granka JM, Cornejo OE, Holmes EC,
Birren B, Galagan J, Feldman MW. The role of selection in shaping diversity
of natural M. tuberculosis populations. PLoS Pathog. 2013;9:21003543.
McEvoy CRE, Cloete R, Mller B, Schiirch AC, van Helden PD, Gagneux S,
Warren RM, Gey van Pittius NC. Comparative analysis of Mycobacterium
tuberculosis pe and ppe genes reveals high sequence variation and an
apparent absence of selective constraints. PLoS One. 2012;7:¢30593.

Liu X, Gutacker MM, Musser JM, Fu Y-X. Evidence for recombination in
Mycobacterium tuberculosis. J Bacteriol. 2006;188:8169-77.

Bruen TC, Philippe H, Bryant D. A simple and robust statistical test for
detecting the presence of recombination. Genetics. 2006;172:2665-81.
Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool
for genome-scale analysis of protein functions and evolution. Nucleic Acids
Res. 2000;,28:33-6.

Yang Z, Wong WSW, Nielsen R. Bayes empirical bayes inference of amino
acid sites under positive selection. Mol Biol Evol. 2005;22:1107-18.

Grana M, Bellinzoni M, Bellalou J, Haouz A, Miras |, Buschiazzo A, Winter N,
Alzari PM. Crystal structure of Mycobacterium tuberculosis LppA, a
lipoprotein confined to pathogenic mycobacteria. Proteins. 2010,78:769-72.
Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S,
Nicol M, Niemann S, Kremer K, Gutierrez MC, Hilty M, Hopewell PC, Small
PM. Variable host-pathogen compatibility in Mycobacterium tuberculosis.
Proc Natl Acad Sci U S A. 2006;103:2869-73.

Tsolaki AG, Hirsh AE, DeRiemer K, Enciso JA, Wong MZ, Hannan M, Goguet
de la Salmoniere Y-OL, Aman K, Kato-Maeda M, Small PM. Functional and
evolutionary genomics of Mycobacterium tuberculosis: insights from
genomic deletions in 100 strains. Proc Natl Acad Sci U S A. 2004;101:
4865-70.

Malen H, Berven FS, Fladmark KE, Wiker HG. Comprehensive analysis of
exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics.
2007;7:1702-18.

Sampson SL. Mycobacterial PE/PPE proteins at the host-pathogen interface.
Clin Dev Immunol. 2011;2011:497203.

Karboul A, van Pittius NC G, Namouchi A, Vincent V, Sola C, Rastogi N, Suffys
P, Fabre M, Cataldi A, Huard RC, Kurepina N, Kreiswirth B, Ho JL, Gutierrez
MC, Mardassi H. Insights into the evolutionary history of tubercle bacilli as
disclosed by genetic rearrangements within a PE_PGRS duplicated gene
pair. BMC Evol Biol. 2006,6:107.

Rocha EPC, Smith JM, Hurst LD, Holden MTG, Cooper JE, Smith NH, Feil EJ.
Comparisons of dN/dS are time dependent for closely related bacterial
genomes. J Theor Biol. 2006;239:226-35.

Chaitra MG, Shaila MS, Nayak R. Evaluation of T-cell responses to peptides
with MHC class I-binding motifs derived from PE_PGRS 33 protein of
Mycobacterium tuberculosis. J Med Microbiol. 2007,56(Pt 4):466-74.

Comas |, Chakravartti J, Small PM, Galagan J, Niemann S, Kremer K, Ernst JD,
Gagneux S. Human T cell epitopes of Mycobacterium tuberculosis are
evolutionarily hyperconserved. Nat Genet. 2010;42:498-503.

Farhat MR, Shapiro BJ, Kieser KJ, Sultana R, Jacobson KR, Victor TC, Warren
RM, Streicher EM, Calver A, Sloutsky A, Kaur D, Posey JE, Plikaytis B,
QOggioni MR, Gardy JL, Johnston JC, Rodrigues M, Tang PKC, Kato-Maeda
M, Borowsky ML, Muddukrishna B, Kreiswirth BN, Kurepina N, Galagan J,
Gagneux S, Birren B, Rubin EJ, Lander ES, Sabeti PC, Murray M. Genomic
analysis identifies targets of convergent positive selection in drug-
resistant Mycobacterium tuberculosis. Nat Genet. 2013;45:1183-9.
Mehaffy C, Guthrie JL, Alexander DC, Stuart R, Rea E, Jamieson FB. Marked
microevolution of a unique Mycobacterium tuberculosis strain in 17 years of
ongoing transmission in a high risk population. PLoS One. 2014,9:¢112928,
Coll F, Preston M, Guerra-Assuncéo JA, Hill-Cawthorn G, Harris D, Perdigdo J,
Viveiros M, Portugal |, Drobniewski F, Gagneux S, Glynn JR, Pain A, Parkhill J,

219



Phelan et al. BMC Genomics (2016) 17:151

42.

43.

45.

47.

48.

49.

50.

52.

53.

54.

55.

56.

57.

58.

59.

McNerney R, Martin N, Clark TG. PolyTB: a genomic variation map for
Mycobacterium tuberculosis. Tuberculosis (Edinb). 2014;94:346-54.

Coll F, McNerney R, Preston M, Guerra-Assuncao JA, Warry A, Hill-Cawthorn
G, Mallard K, Nair M, Miranda A, Alves A, Perdigdo J, Viveiros M, Portugal |,
Hasan Z, Hasan R, Glynn JR, Martin N, Pain A, Clark TG. Rapid determination
of anti-tuberculosis drug resistance from whole-genome sequences.
Genome Med. 2015, In Press.

Zimin AV, Marcais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. The
MaSuRCA genome assembler. Bioinformatics. 2013,;29:2669-77.

Simpson JT, Durbin R. Efficient de novo assembly of large genomes using
compressed data structures. Genome Res. 2012;22:549-56.

Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res. 2008;18:821-9.

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin
VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin A V, Viyahhi N,
Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly
algorithm and its applications to single-cell sequencing. J Comput Biol.
2012;19:455-77.

Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool
for genome assemblies. Bioinformatics. 2013;29:1072-5.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G,
Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics.
2009;25:2078-9.

Tsai IJ, Otto TD, Berriman M. Improving draft assemblies by iterative
mapping and assembly of short reads to eliminate gaps. Genome Biol.
2010;11:R41.

Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C,
Salzberg SL. Versatile and open software for comparing large genomes.
Genome Biol. 2004;5:R12.

Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution
trees with profiles instead of a distance matrix. Mol Biol Evol. 2009,26:1641-50.
Vilella AJ, Blanco-Garcia A, Hutter S, Rozas J. VariScan: Analysis of evolutionary
patterns from large-scale DNA sequence polymorphism data. Bioinformatics.
2005;21:2791-3.

Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol
Evol. 2007,24:1586-91.

Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, Justesen S, Rader
G, Peters B, Sette A, Lund O, Buus S. NetMHCpan, a method for quantitative
predictions of peptide binding to any HLA-A and -B locus protein of known
sequence. PLoS One. 2007,2:e79.

Guerra-Assunc¢ao JA, Houben RMGJ, Crampin AC, Mzembe T, Mallard K, Coll
F, et al. Recurrence due to Relapse or Reinfection With Mycobacterium
tuberculosis: A Whole-Genome Sequencing Approach in a Large,
Population-Based Cohort With a High HIV Infection Prevalence and Active
Follow-up. J Infect Dis. 2014. doi:10.1093/infdis/jiu574.

Guerra-Assungao J, Crampin A, Houben R, Mzembe T, Mallard K, Coll F, et al.
Large-scale whole genome sequencing of M. tuberculosis provides insights into
transmission in a high prevalence area. Elife. 2015;4. doi:10.7554/eLife.05166.
Bergval |, Coll F, Schuitema A, de Ronde H, Mallard K, Pain A, et al. A
proportion of mutations fixed in the genomes of in vitro selected isogenic
drug-resistant Mycobacterium tuberculosis mutants can be detected as
minority variants in the parent culture. FEMS Microbiol Lett. 2015;362:1-7.
doi:10.1093/femsle/fnu037.

Hasan Z, Ali A, McNerney R, Mallard K, Hill-Cawthorne G, Coll F, et al. Whole
genome sequencing-based characterization of extensively drug resistant
(XDR) strains of Mycobacterium tuberculosis from Pakistan. Int J
Mycobacteriology Elsevier. 2015;4:11-2. doi:10.1016/jijmyco.2014.10.050.
Perdigao J, Silva H, Machado D, Macedo R, Maltez F, Silva C, et al.
Unraveling Mycobacterium tuberculosis genomic diversity and evolution
in Lisbon, Portugal, a highly drug resistant setting. BMC Genomics.
2014;15:991. doi:10.1186/1471-2164-15-991.

Page 12 of 12

Submit your next manuscript to BioMed Central
and we will help you at every step:

* \We accept pre-submission inquiries

¢ Our selector tool helps you to find the most relevant journal
¢ We provide round the clock customer support

¢ Convenient online submission

* Thorough peer review

¢ Inclusion in PubMed and all major indexing services

* Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central

220



Supplementary File 1: S1 Table

a) The samples used for the assembly (*Malawi [55, 56], Netherlands [57], Pakistan [58],
Portugal [59]) and b) the 21 reference strains.

a)
Lineage 3 Lineage 4
Study No. Lineage 1 Lineage 2 East-African- Euro-
location* samples Indo-Oceanic  East-Asian Indian American
Brazil 42 - - - 42
Bulgaria 2 - - - 2
China 6 - - 5 1
Malawi 257 38 8 28 183
Netherlands 10 - - - 10
Pakistan 31 4 4 19 4
Peru 65 - 5 - 60
Portugal 78 - 5 - 73
South Africa 27 - 16 1 10
Total 518 42 38 53 385
*Malawi [56, 57], Netherlands [58], Pakistan [59], Portugal [60]
b)
Strain Assembly Accession Lineage
CDC1551 GCA_000008585.1 Lineage4
CTRI_2 GCA_000224435.1 Lineage4d
F11 GCA_000016925.1 Lineage4
7199_99 GCA_000331445.1 Lineage4d
H37Ra GCA_000016145.1 Lineage4
KZN_1435 GCA_000023625.1 Lineage4
KZN_4207 GCA_000154585.2 Lineage4d
KZN_605 GCA_000154605.2 Lineage4
RGTB327 GCA_000277085.1 Lineage4d
RGTB423 GCA_000277105.1 Lineagel
Beijing_NITR203 GCA_000364825.1 Lineage2
Erdman_ATCC_35801 GCA_000350205.1 Lineage4
Haarlem GCA_000153685.2 Lineage4d
UT205 GCA_000304555.1 Lineage4
W_148 GCA_000193185.1 Lineage2
CAS_NITR204 GCA_000389925.1 Lineage3
CCDC5079 GCA_000270345.1 Lineage2
CCDC5180 GCA_000270365.1 Lineage2
M.bovis_Pasteur_1173p2 GCA_000009445.1 Bovis
M323 Genbank CP010873.1 Lineage 2
18b Genbank CP007299.1 Lineage 2
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Supplementary file 1: S2 Table

Lineage, sequence coverage and polymorphism. i nucleotide diversity; Lineage 1 Indo-
Oceanic; Lineage 2 East-Asian (Beijing); Lineage 3 East-African-Indian; Lineage 4 Euro-

American.
Lineage n Median Median Median Median No.
(%) Coverage Coverage T T Lineage
across across across across specific
genome  pe/ppe genome pe/ppe  pe/ppe
genes genes SNPs
1 42 (8.1) 187.7 127.7 0.00009 0.00017 36
2 38 (7.3) 319.7 151.1 0.00002 0.00007 15
3 53(10.2) 329.5 174.0 0.00004 0.00007 28
4 385 (74.3) 268.3 150.9 0.00007 0.00016 8
Overall 518 283.5 155.4 0.00014 0.00027 87

222



Supplementary file 1: S3 Table
Completeness of pe/ppe gene assemblies.

Total length  Proportion

of gaps of samples No. Non-
Locus Gene Length gap P synonymous
(prop. of fully SNPs SNPs
gene length) assembled

Rv0109 pe_pgrsi 1490 0 (0) 0.99 23 13
Rv0124  pe_pgrs2 1463 0 (0) 0.93 27 18
Rv0151c pel 1766 0(0) 0.99 32 20
Rv0152c pe2 1577 0(0) 1 21 15
Rv0159c pe3 1406 0(0) 1 18 13
Rv0160c ped 1508 0(0) 1 16 10
Rv0278c pe_pgrs3 2873 0 (0) 0.78 281 135
Rv0279c pe_pgrs4 2513 241 (0.1) 0.25 110 52
Rv0285 pe5 308 0 (0) 1 4 2
Rv0297  pe_pgrs5 1775 0(0) 0.98 23 16
Rv0335c¢ pe6 515 0 (0) 1 28 17
Rv0532  pe_pgrs6 1784 0(0) 0.95 69 46
Rv0578c  pe_pgrs7 3920 0 (0) 0.75 120 55
Rv0742  pe_pgrs8 527 0(0) 0.99 3 2
Rv0746  pe_pgrs9 2351 23(0.01) 0.44 68 41
Rv0747 pe_pgrsi0 2405 0(0) 0.56 188 100
Rv0754 pe_pgrsil 1754 0(0) 1 13 8
Rv0832 pe_pgrsi2 413 0(0) 1 2 2
Rv0833 pe_pgrsi3 2249 0(0) 0.77 63 42
Rv0834c pe _pgrsi4 2648 0(0) 0.92 62 26
Rv0872c pe_pgrsl5 1820 0(0) 1 16 9
Rv0916c pe7 299 0(0) 1 3 3
Rv0977 pe_pgrsi6é 2771 0(0) 0.82 136 103
Rv0978c pe_pgrs17 995 0(0) 0.51 33 19
Rv0980c pe_pgrs18 1373 318 (0.23) 0.14 48 26
Rv1040c pe8 827 0(0) 1 4 3
Rv1067c pe_pgrs19 2003 305.5 (0.15) 0.12 81 40
Rv1068c pe_pgrs20 1391 207 (0.15) 0.2 5 5
Rv1087 pe_pgrs21 2303 0(0) 0.58 77 48
Rv1088 pe9 434 0(0) 1 3 2
Rv1089 pel0 362 0(0) 1 5
Rv1091 pe pgrs22 2561 197 (0.08) 0.13 55 28
Rv1172c pel2 926 0(0) 1 6 3
Rv1195 pel3 299 0(0) 1 12 9
Rvi214c peld 332 0(0) 1 4 2
Rvi243c pe_pgrs23 1688 0(0) 0.91 11 8
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Rv1325c
Rv1386
Rvi396¢
Rv1430
Rv1441c
Rv1450c
Rvi452c
Rvi468c
Rv1646
Rvié51c
Rv1768
Rv1788
Rv1791
Rv1803c
Rv1806
Rvi818c
Rv1840c
Rv1983
Rv2098c
Rv2099c
Rv2107
Rv2126¢
Rv2162c
Rv2328
Rv2340c
Rv2371
Rv2396
Rv2408
Rv2431c
Rv2487c
Rv2490c
Rv2519
Rv2591
Rv2615c
Rv2634c
Rv2741
Rv2769c
Rv2853
Rv3018A
Rv3022A
Rv3344c
Rv3345c
Rv3367

pe_pgrs24
pel5
pe_pgrs25
pel6
pe_pgrs26
pe_pgrs27
pe_pgrs28
pe_pgrs29
pel7
pe_pgrs30
pe_pgrs31
pel8
pel9
pe_pgrs32
pe20
pe_pgrs33
pe_pgrs34
pe_pgrs35
pe_pgrs36
pe2?l
pe22
pe_pgrs37
pe_pgrs38
pe23
pe_pgrs39
pe_pgrs40
pe_pgrs41
pe24
pe25
pe_pgrs42
pe_pgrs43
pe26
pe_pgrs44
pe_pgrs45
pe_pgrs46
pe_pgrs47
pe27
pe_pgrs48
pe27A
pe29
pe_pgrs49
pe_pgrs50
pe_pgrs51

1811
308
1730
1586
1475
3989
2225
1112
932
3035
1856
299
299
1919
299
1496
1547
1676
1304
173
296
770
1598
1148
1241
185
1085
719
299
2084
4982
1478
1631
1385
2336
1577
827
1847
86
314
1454
4616
1766

0(0)
0(0)
0(0)
0(0)
0(0)
418 (0.1)
22 (0.01)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
14 (0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
125 (0.03)
0(0)

54

36
12
14
55
51
16

40
22
15
17
27

36
22
14

w

21
45

16

26

21
103
19
19
27
21
56
13
24

47
207
15

23

20
10
10
29
19

20
17
14
13
17

14
13

105
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Rv3388
Rv3477
Rv3507
Rv3508
Rv3511
Rv3512
Rv3514
Rv3590c
Rv3595c
Rv3622c
Rv3650
Rv3652
Rv3653
Rv3746¢
Rv3812
Rv3872
Rv3893c
Rv0096
Rv0256¢
Rv0280
Rv0286
Rv0304c
Rv0305c
Rv0354c
Rv0355c
Rv0388c
Rv0442c
Rv0453
Rv0755c
Rv0878c
Rv0915c
Rv1039c
Rv1135c
Rvii68c
Rv1196
Rvi361c
Rv1387
Rv1548c
Rv1705c
Rv1706¢
Rv1753c
Rv1787
Rv1789

pe_pgrs52
pe31
pe_pgrs53
pe_pgrs54
pe_pgrs55
pe_pgrs56
pe_pgrs57
pe_pgrs58
pe_pgrs59
pe32
pe33
pe_pgrs60
pe_pgrsé61
pe34
pe_pgrs62
pe35
pe36
ppel
ppe2
ppe3
ppe4
ppe5
ppe6
ppe7
ppe8
ppes
ppel0
ppell
ppel2
ppel3
ppeld
ppel5
ppelé
ppel7
ppel8
ppel9
ppe20
ppe2l
ppe22
ppe23
ppe24
ppe25
ppe26

2195
296
4145
5705
2144
3239
4469
1754
1319
299
284
314
587
335
1514
299
233
1391
1670
1610
1541
6614
2891
425
9902
542
1463
1556
1937
1331
1271
1175
1856
1040
1175
1190
1619
2036
1157
1184
3161
1097
1181

0(0)
0(0)
0(0)
2018 (0.35)
233 (0.11)
345 (0.11)
2651 (0.59)
8(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
12 (0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
282 (0.09)
375 (0.34)
0(0)

0.76

0.64

0.2
0.04

0.48

0.99

0.99

=

o

(o)}

o
P RPRPPRPRPRPPROPFRPPMNPPRPROFRPPPRPPPPREPR

[o%e]

=

0.56
0.7

0.99
0.99
0.99

0.36
0.94

48
10
133
358
119
174
39
49
22

w

10

20

27
17
18
16
65
36

329
11
14
18
20
13
12

22

53
16
24
20
10
68

13

189
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Rv1790
Rv1800
Rv1801
Rv1802
Rv1807
Rv1808
Rv1809
Rvi917c
Rvi1918c
Rv2108
Rv2123
Rv2352c
Rv2353c
Rv2356¢
Rv2430c
Rv2608
Rv2768c
Rv2770c
Rv2892c
Rv3018c
Rv3021c
Rv3022c
Rv3125c
Rv3135
Rv3136
Rv3144c
Rv3159c
Rv3343c
Rv3347c
Rv3350c
Rv3425
Rv3426
Rv3429
Rv3478
Rv3532
Rv3533c
Rv3539
Rv3558
Rv3621c
Rv3738c
Rv3739c
Rv3873
Rv3892c

ppe27
ppe28
ppe29
ppe30
ppe31
ppe32
ppe33
ppe34
ppe35
ppe36
ppe37
ppe38
ppe39
ppe40
ppedl
pped2
ppe43
pped4
ppeds5
ppedé6
pped7
pped8
pped9
ppe50
ppe51
ppe52
ppe53
ppe54
ppe55
ppe56
ppe57
ppe58
ppe59
ppe60
ppebl
ppeb2
ppe63
ppeb4
ppeb5
ppe66
ppeb7
ppeb8
ppeb69

1052
1967
1271
1391
1199
1229
1406
4379
2963
731
1421
1175
1064
1847
584
1742
1184
1148
1226
1304
1076
242
1175
398
1142
1229
1772
7571
9473
11150
530
698
536
1181
1220
1748
1439
1658
1241
947
233
1106
1199

0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
348 (0.08)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
151.5 (0.12)
223.5(0.21)
133.5 (0.55)
0(0)
0(0)
0(0)
0(0)
0(0)
543.5 (0.07)
0(0)
0(0)

2 (0)
697 (1)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)

12
33

25
12
13
14
132
54
10
20
37
73
23

11
17
14
10
22

26

17

10

24
163

37

86
155
11
16
13
17
19

13
12

10
27

17

63
34

14
15

40
11

12

10

12

17

10

13

80

35
0
73

110
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Rv1169c pell 302 0(0) 1 2 2
Rv3020c pe28 293 0 (0) 0.73 0 0
Rv3097c pe_pgrs63 1313 0(0) 1 12 6
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Supplementary file 1: S4 Table
List of 87 pe/ppe lineage specific-markers. S synonymous, NS non-synonymous, * genes
bolded if there are sites under selection using the Bayes Empirical Bayes method; Lineage
1 Indo-Oceanic; Lineage 2 East-Asian (Beijing); Lineage 3 East-African-Indian; Lineage 4
Euro-American.

Position Mutation Locus Tag Gene NS/S Lineage
132646 G/T Rv0109 pe_pgrsl NS 1
189948 C/G Rv0160c ped S 1
308312 G/A Rv0256¢ ppe2 S 1
339508 C/T Rv0280 ppe3 S 1
362007 G/A Rv0297 pe_pgrs5 NS 1
368948 T/C Rv0304c ppe5 NS 1
372149 G/A Rv0304c ppe5 NS 1
426768 C/T Rv0355¢ ppe8 NS 1
434327 A/G Rv0355¢ ppe8 NS 1
673066 C/G Rv0578c  pe_ pgrs7 S 1
673344 A/T Rv0578c  pe_ pgrs7 S 1
846996 G/A Rv0754  pe_pgrsil NS 1
928483 C/T Rv0834c  pe_pgrsi4 NS 1
977196 G/A Rv0878c ppel3 S 1
1188917 G/A Rv1067c  pe_pgrsi9 NS 1
1656178 C/T Rv1468c  pe_pgrs29 NS 1
1863660 C/T Rv1651c  pe_pgrs30 NS 1
2045849 C/T Rv1803c pe_pgrs32 NS 1
2165256 T/G Rv1917c¢ ppe34 NS 1
2423785 C/T Rv2162c  pe_pgrs38 NS 1
2803867 G/C Rv2490c  pe_ pgrs43 S 1
2961099 G/A Rv2634c  pe_ pgrs46 NS 1
3053973 C/T Rv2741  pe_pgrs47 S 1
3080282 C/A Rv2770c pped4 NS 1
3929996 G/T Rv3507  pe_pgrs53 NS 1
3936696 A/G Rv3508  pe_pgrs54 NS 1
3942239 C/A Rv3512  pe_pgrs56 S 1
3944807 T/C Rv3512  pe_pgrs56 S 1
3970112 C/T Rv3532 ppe61 NS 1
3979151 T/A Rv3539 ppe63 NS 1
3998895 G/A Rv3558 ppe64 NS 1
4061113 G/T Rv3621c ppe65 S 1
4093719 G/A Rv3652  pe_pgrs60 NS 1
4277032 G/C Rv3812  pe_pgrs62 NS 1
4351759 G/C Rv3873 ppe68 NS 1
4375318 G/A Rv3892c ppe69 NS 1
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424981
1212432
1217065
1217157
1218658
1299305
1357308
1606673
2601760
2706663
2922846
2922848
3895585
4032218
4032625

178205

178453

188317

189850

308661

350088

367718

369886

428921

432459

531775

623163

674702

840847
1488428
1489142
1856617
1863584
2051345
2382289
2836773
2943675
2960592
3738364
3738364
3740181
3741240
4375452

G/A
C/A
C/A
A/C
G/C
G/A
T/G
G/T
G/A
G/T
C/T
A/T
C/T
G/A
G/T
C/G
C/G
A/G
A/G
A/G
C/A
G/T
C/G
G/A
C/T
C/G
C/T
A/T
C/T
C/T
C/T
C/T
G/T
G/A
G/T
C/T
G/A
C/T
G/A
G/A
T/C
C/T
G/A

Rv0355c
Rv1087
Rv1091
Rv1091
Rv1091

Rviié8c

Rv1214c
Rv1430
Rv2328
Rv2408
Rv2591
Rv2591
Rv3478

Rv3590c

Rv3590c

Rv0151c

Rv0151c

Rv0159c

Rv0160c

Rv0256¢
Rv0286

Rv0304c

Rv0304c

Rv0355c

Rv0355c

Rv0442c
Rv0532

Rv0578c
Rv0747

Rv1325c

Rv1325c
Rv1646

Rvié51c
Rv1809
Rv2123
Rv2519

Rv2615c

Rv2634c

Rv3344c

Rv3345c

Rv3345c

Rv3345c

Rv3892c

ppes8
pe_pgrs21
pe_pgrs22
pe_pgrs22
pe_pgrs22
ppel7
peld
pel6
pe23
pe24
pe_pgrs44
pe_pgrsd4
ppe60
pe_pgrs58
pe_pgrs58
pel
pel
pe3
pe4
ppe2
ppe4
ppe5
ppe5
ppe8
ppe8
ppell
pe_pgrsé6

pe_pgrs7
pe_pgrsi0

pe_pgrs24
pe_pgrs24
pel7
pe_pgrs30
ppe33
ppe37
pe26
pe_pgrs45
pe_pgrs46
ppe52
pe_pgrs50
pe_pgrs50
pe_pgrs50
ppeb9

W W W W W WwWWWWWWWWWWWWWWWWWWWWWWNNDNNDNDNNDNDNDNDNDNDNDNNDN
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428698
1618978
1931718
2050822
2167926
3079877
3466919
3510120

T/C
C/T
C/G
C/G
G/A
G/A
G/C
G/T

Rv0355c
Rv1441c
Rv1705c
Rv1808
Rvi1918c
Rv2770c
Rv3097c
Rv3144c

ppes8
pe_pgrs26
ppe22
ppe32
ppe35
pped4
lipY
ppe52

B I S S
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Supplementary file 1: S5 Table
Genes with more than 10 sites under selective pressure (dN/dS (w) >1).

Name Locus Length Function No. sites
pe_pgrs3  Rv0278c 2873 pe/ppe 49
pe_pgrs54 Rv3508 5705 pe/ppe 39
Rv0668 Rv0668 3950 information pathways 34
pe_pgrs57 Rv3514 4469 pe/ppe 33
ppe54 Rv3343c 7571 pe/ppe 32
pe_pgrs56  Rv3512 3239 pe/ppe 29
ppe55 Rv3347c 9473 pe/ppe 29
ppe56 Rv3350c 11150 pe/ppe 26
pks12 Rv2048c 12455 lipid metabolism 25
pe_pgrs28 Rv1i452c 2225 pe/ppe 23
Rv2850c  Rv2850c 1889 metabolism & respiration 21
Rv0075 Rv0075 1172 metabolism & respiration 20
IppA Rv2543 659 cell wall & cell processes 20
IppB Rv2544 662 cell wall & cell processes 19
pe_pgrs50 Rv3345c 4616 pe/ppe 18
ppe57 Rv3425 530 pe/ppe 18
Rv1453 Rv1453 1265 regulatory proteins 18
ppsSA Rv2931 5630 lipid metabolism 18
Rv1722 Rv1722 1484 lipid metabolism 17
ctp) Rv3743c 1982 cell wall & cell processes 17
pe_pgrs17 Rv0978c 995 pe/ppe 16
pe_pgrs18 Rv0980c 1373 pe/ppe 16
fadE1 Rv0131c 1343 lipid metabolism 16
Rv1729¢  Rv1729¢ 938 lipid metabolism 16
pe_pgrs19 Rv1067c 2003 pe/ppe 15
pe_pgrs4  Rv0279c 2513 pe/ppe 15
pe_pgrslé  Rv0977 2771 pe/ppe 14
Rv2978c  Rv2978c 1379 insertion sequences & phages 14
pe_pgrs21 Rvi087 2303 pe/ppe 13
pe_pgrs9  Rv0746 2351 pe/ppe 13
ppe8 Rv0355¢ 9902 pe/ppe 13
Rv0080 Rv0080 458 NA 13
treY Rv1563c 2297  virulence, detoxification & adaptation 13
Rv2827c¢  Rv2827c¢ 887 NA 13
Rv2082 Rv2082 2165 NA 12
pe_pgrs10 Rv0747 2405 pe/ppe 11
ppell Rv0442c 1463 pe/ppe 11
Rv0893c  Rv0893¢ 977 lipid metabolism 11
Rv1254 Rv1254 1151 metabolism & respiration 11
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Rv1776¢c  Rv1776¢c 560 regulatory proteins 11
acrAl Rv3391 1952 lipid metabolism 11
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Supplementary file 1: S6 Table
Epitopes. * identified using netMHCpan, ** epitopes that had sites under positive
selection according to the Bayes Empirical Bayes (BEB) method.

No. epitopes No. (%) sites
Gene found* disturbed**
pe_pgrs49 2 2 (100)
ppe59 55 45 (81.8)
ppe60 95 61 (64.2)
pe_pgrs60 15 5(33.3)
pel8 16 5(31.3)
pe_pgrs26 43 12 (27.9)
ppe57 38 10 (26.3)
pe6 40 9 (22.5)
ppeb5 85 19 (22.4)
ppe27 105 22 (21)
pe_pgrsi2 35 7 (20)
pe25 17 3(17.6)
pe_pgrs7 26 4 (15.4)
pe_pgrs20 29 4 (13.8)
ppe54 373 44 (11.8)
pped6 125 14 (11.2)
ppel9 101 11 (10.9)
pped7 83 9 (10.8)
ppe22 95 10 (10.5)
pe_pgrs10 40 4 (10)
ppe52 61 6 (9.8)
pe_pgrs13 11 1(9.1)
pe_pgrs3 67 6 (9)
ppel3 84 7 (8.3)
pe3 123 10 (8.1)
ppe28 144 10 (6.9)
pe_pgrs38 30 2(6.7)
ppe38 93 6 (6.5)
pe_pgrsl6 79 5(6.3)
ppe25 111 7 (6.3)
pe_pgrs36 16 1(6.3)
ppe30 100 6 (6)
pel9 18 1(5.6)
pe_pgrs18 39 2 (5.1)
pe_pgrs31 42 2(4.8)
Ppe34 194 9 (4.6)
Ppe24 182 8 (4.4)
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pel
pe_pgrsé63
ppe3
ppel8
pe_pgrs29
pe_pgrs45
pe_pgrs50
pel7
ppe53
pe_pgrs4l
ppeb8
pes8

ppe8
pped3
ppe5

ppel
ppe26

ppell
ppeds
pelé
pel0
pell
pel2
pel3
peld
pels
pe20
pe2
pe2l
pe22
pe23
pe24
pe26
pe27
pe27A
pe28
pe29
pe31
pe32
pe33
pe34
pe35
pe36

145
106
117
92
32
32
98
73
75
38
79
46
316
107
174
117
103
105
111
127
17
21
59
20
25
10
25
106

28
70
40
85
49

25
10
13
16
13
22

6(4.1)
4 (3.8)
4 (3.4)
3(3.3)
1(3.1)
1(3.1)
3(3.1)
2(2.7)
2(2.7)
1(2.6)
2(2.5)
1(2.2)
6(1.9)
2(1.9)
3(1.7)
2(1.7)
1(1)
1(1)
1(0.9)
1(0.8)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
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pe4

pe5

pe7

pe9g
pe_pgrs1l
pe_pgrsl
pe_pgrs14
pe_pgrs15
pe_pgrs17
pe_pgrs19
pe_pgrs21
pe_pgrs22
pe_pgrs2
pe_pgrs23
pe_pgrs24
pe_pgrs25
pe_pgrs27
pe_pgrs28
pe_pgrs30
pe_pgrs32
pe_pgrs33
pe_pgrs34
pe_pgrs35
pe_pgrs37
pe_pgrs39
pe_pgrs40
pe_pgrs42
pe_pgrs43
pe_pgrs4
pe_pgrs44
pe_pgrs4é6
pe_pgrs47
pe_pgrs48
pe_pgrs51
pe_pgrs52
pe_pgrs5
pe_pgrs53
pe_pgrs54
pe_pgrs55
pe_pgrs56
pe_pgrs57
pe_pgrs58
pe_pgrs59

122

13
25
113
34
48
23
31
36
35
37
31
36
36
23
26
25
111
37
33
32
98

48
12
30
42
38
33
30
38
17
30
25
25
27
28
32

30
28
31

0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)

NA
0(0)
0(0)
0(0)
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pe_pgrsé61
pe_pgrsé62
pe_pgrsé
pe_pgrs8
pe_pgrs9
ppel0
ppel2
ppeld
ppels
ppelé
ppel7
ppe20
ppe2
ppe2l
ppe23
ppe29
ppe31
ppe32
ppe33
ppe35
ppe36
ppe37
ppe39
pped0
ppedl
ppe4
pped2
pped4
pped8
pped9
ppe50
ppe51
ppe55
ppe56
ppe58
ppeb
ppeb1
ppe62
ppeb3
ppebd
ppeb6
ppe67
ppe69

137
41
30
41
85
71

100

115
76
93

140

131
71
96
91
98
94
83

161
49

137
22
66
49

153

116
96
29

105
45
80

374

455
46

161
93
60

134
63
79
18
63

0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
0(0)
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ppe7 18 0 (0)
ppe9 45 0(0)
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Supplementary File 2: Figure S1

Allele frequency spectra for each lineage by synonymous (blue) and non-synonymous
(red) mutations. The peaks at intermediate allele frequencies include sub-lineage defining
SNPs (Lineage 1 Indo-Oceanic; Lineage 2 East-Asian (Beijing); Lineage 3 East-African-
Indian; Lineage 4 Euro-American).
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Supplementary file 3: Figure S2
Gene-based nucleotide diversity (rr) for the 21 reference genomes. All genes with high
nucleotide diversity (it > 0.0075) are labelled.
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Supplementary file 4: Figure S3

Phylogenetic tree constructed using 50,540 genome-wide SNPs. Clear clustering according
to lineage can be seen (Lineage 1 (Indo-Oceanic, green), lineage 2 (East-Asian (Beijing),
blue), lineage 3 (East-African-Indian, purple), lineage 4 (Euro-American, red)). Reference
genomes are labelled. M. canetti is annotated in cyan.

CAS NITR204
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Supplementary file 5: Figure S4

Identifying sites leading to differences in tree topologies based on all SNPs (Additional
file 4: Figure S3a) and only those from pe/ppe genes (Additional file 4: Figure S3b). The A
Site wise log likelihood score (A SSLS) is calculated for each SNP in the pe/ppe gene
alignments. Negative differences indicate SNP positions favouring the pe/ppe tree. SNPs
in pe_pgrs3, ppe57 and ppe60 produce strong phylogenetic signals supporting
the pe/ppe tree.
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Supplementary file 6: Figure S5

Phylogenetic tree created using only SNPs from pe_pgrs3. No clear clustering by lineage
is observed. However there are two major clades, one consistent with H37Rv (bottom-
left).
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Supplementary file 7: Figure S6

Lineage-specific recombination hotspots. Manhattan plots showing genes that are likely
to be recombination hotspots in each lineage (Lineage 1 Indo-Oceanic; Lineage 2 East-
Asian (Beijing); Lineage 3 East-African-Indian; Lineage 4 Euro-American). The (-log10) p-
value for the phi statistic is plotted against genome position. All genes with p-

values < 0.05 are labelled.
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Supplementary file 8: Figure S7
Evidence of recombination at a gene level in the 21 reference genomes. A Manhattan
plot showing genes that are likely to be recombination hotspots. The (-log10) p-value
for the phi statistic is plotted against genome position. Genes with p-values less than

0.05 are shown.

PE_PGRS28

8 -
T
3
©
3
3
2 o |
g
g
8
5
2 PE_PGRS3
5 o
MR
8 PE_PGRS18
- PE_PGRS4
5 |
>
kS RV0095¢
8
€ PE_PGRS27

PPE9 PE_PGRS17
Rv1945
RV1148 Rv3115 Rv3555¢
°
T T T T
0 1 2 3 4

Genome Position(Mb)

244



Supplementary file 9: Figure S8

Selection dN/dS values for each gene within Clusters of Orthologous Groups (COG*)
categories. *ppe/N=pe/ppe genes annotated as COG category N, * COG
categories: A RNA processing and modification, B Chromatin Structure and
dynamics, C Energy production and conversion, D Cell cycle control and mitosis, E Amino
Acid metabolism and transport, F Nucleotide metabolism and transport, G Carbohydrate
metabolism and transport, H Coenzyme metabolism, ILipid
metabolism, J Translation, K Transcription, L Replication and repair, M Cell
wall/membrane/envelope biogenesis, N Cell motility, O Post-translational modification,
protein turnover, chaperone functions, P Inorganic ion transport and
metabolism, Q Secondary Structure, T Signal Transduction, U Intracellular trafficking and
secretion, Y Nuclear structure, Z Cytoskeleton, RGeneral Functional Prediction
only, S Function Unknown.
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Supplementary file 10: Figure S9

Non-neutral evolution for genes within Clusters of Orthologous Groups (COG¥*)
categories. Boxplots are constructed using (-log10) p-values of non-neutral evolution for
each gene. *ppe/N=pe/ppe genes annotated as COG category N, * COG
categories: A RNA processing and modification, B Chromatin Structure and
dynamics, C Energy production and conversion, D Cell cycle control and mitosis, E Amino
Acid metabolism and transport, F Nucleotide metabolism and transport, G Carbohydrate
metabolism and transport, H Coenzyme metabolism, | Lipid
metabolism, J Translation, KTranscription, L Replication and repair, M Cell
wall/membrane/envelope biogenesis, N Cell motility, O Post-translational modification,
protein turnover, chaperone functions, P Inorganic ion transport and
metabolism, Q Secondary Structure, TSignal Transduction, U Intracellular trafficking and
secretion, Y Nuclear structure, Z Cytoskeleton, R General Functional Prediction
only, S Function Unknown.
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Abstract

DNA methylation is an epigenetic modification of the genome involved in regulating crucial
cellular processes, including transcription and chromosome stability. Advances in PacBio
sequencing technologies can be used to robustly reveal methylation sites. The methylome
of the Mycobacterium tuberculosis complex is poorly understood but may be involved in
virulence, hypoxic survival and the emergence of drug resistance. In the most extensive
study to date, we characterise the methylome across the 4 major lineages of M. tuberculosis
and 2 lineages of M. africanum, the leading causes of tuberculosis disease in humans. We
reveal lineage-specific methylated motifs and strain-specific mutations that are abundant
globally and likely to explain loss of function in the respective methyltransferases. Our work
provides a set of sixteen new complete reference genomes for the Mycobacterium
tuberculosis complex, including complete lineage 5 genomes. Insights into lineage-specific
methylomes will further elucidate underlying biological mechanisms and other important

phenotypes of the epi-genome.
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Introduction

Tuberculosis disease (TB) caused by pathogens of the Mycobacterium tuberculosis complex
are an important global public health issue worldwide, with >9 million new cases and 1.7
million deaths each yearl. A combination of the increasing prevalence of anti-tuberculosis
drug resistance, HIV/AIDS infection interaction, and an under-equipped arsenal - requiring
new effective treatments and vaccines, are a major barrier to disease control. The M.
tuberculosis genome (size 4.4Mb, GC-content 60%) is characterised by low sequence
diversity?, with known variation between stain-types, including between three ‘ancient’ (1,
5, 6), three ‘modern’ (2, 3, 4), and one intermediate lineage (7)3. The lineages vary in
propensity to transmit and cause disease®; with modern strain lineages, including Beijing
strains, being more successful in terms of their geographical spread and have a shorter
latency in humans”. However, results are inconsistent and there is considerable inter-strain
variation within lineages, which is difficult to explain in the context of the low sequence

diversity®.

Several lines of evidence have revealed N6-methyladenine (™°A) and 5-methylcytosine (™C)
methylation mechanisms within M. tuberculosis genomes. Motifs within three DNA
methyltransferases (MTases), mamA, mamB, hdsS.1, hsdM, and hsdS are responsible for
m6A modification”®. MamA also influences gene expression in M. tuberculosis and plays an
important but strain-specific role in fitness during hypoxia, promoting survival in discrete
host microenvironments’. Genetic and potentially transcriptomic differences, may play

important roles in determining the clinical outcome differences observed between these
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strains. Genetic differences may be further modified by epigenetic mechanisms, as
observed in other bacterial species’, however methylome data has been rarely considered
for the M. tuberculosis complex. Here we present to our knowledge the largest and most
diverse study of methylation in M. tuberculosis using PacBio technology, and identify key
mutations in associated genes, which appear to be present across a phylogeny based on a

global set of isolates.

RESULTS

New reference genomes

Sixteen samples representing the lineages 1, 2, 4, 5 and 6 were sequenced on the PacBio
platform (Supplementary table 1, n=16), and supplemented by raw sequence data for a
lineage 3 strain and a H37Rv strain (CHIN_F1) from earlier work (n=2)%. High quality
assemblies (no. contigs <10) were generated for the 18 isolates, with most isolates
assembled into one contig (median n50 = 4.38Mb, median genome length = 4.42Mb). After
aligning to the H37Rv reference, we found 10,353 unique small variant sites, with 50.7% of
positions having alternate alleles in only one sample. A maximum likelihood tree was
constructed using the variants (Figure 1) and demonstrated the expected clustering by
lineage, with two lineage 1 strains (WBB1008_SL1975, WBB1007_LQ1975) being near

identical.

The error rate in the PacBio consensus sequences was assessed in three isolates

(Supplementary table 1; wWBB446_ARS7884 (LAM strain, lineage 4), WBB448_HPV115_08 (LAM
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strain, lineage 4), WBB445_ARS7496 (Beijing strain, lineage 2)) that also had Illlumina short
read data with high coverage genome-wide (>50-fold). Alignment of the short reads to the
consensus sequences revealed low numbers of discordant SNPs (range: 0-6), but slightly
higher numbers of discordant insertions and deletions (indels) (range: 2 to 26) due to
incorrect assembly at homopolymeric sites in the genome. More generally, further analysis
of these isolates revealed the advantages of using lineage-specific reference genomes. First,
using sets of 100 independent strains in each lineage®, there was a marginal improvement
in the number of reads mapped compared to using an alignment to H37Rv (mean increase:
lineage 1 0.47%, lineage 2 0.33%, lineage 3 0.25%). As M. tuberculosis has very clonal
genome, most of the genome shares near 100% identity across lineages, and therefore large
improvements in overall mappability would not be expected. Second, we considered strain-
specific regions in the highly variable PE_PGRS3/4 and PE_PGRS17/18 genes, which were
hypothesised from de novo assembly analysis to have undergone a large genomic
rearrangement in Beijing strains'’. The PacBio consensus sequence confirmed the large re-
arrangements in WBB445_ARS7496 (Beijing). These re-arrangements could be identified in
coverage profiles through mapping WBB445_ARS7496 short reads to its own PacBio
consensus sequence, but not to the H37Rv reference or other non-Beijing study consensus

sequences (Supplementary Figure 1).

Annotation of the new reference genomes using prokka software'’, guided by H37Rv
protein sequences, revealed differences in the number of genes (range: 4028 to 4217). The

CHIN_F1 strain (H37Rv) had a greater number of inferred genes (4217) than the H37Rv
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reference (ASM19595v2, 4093 genes), which may indicate that the automatic annotation
software could be over-estimating numbers of genes. However, overall, there was a high
degree of conservation among isolates across orthologous groups of genes (3666/4250,
86%). Hierarchical clustering of isolates using the number of shared orthogroups as a metric
of genetic distance, revealed expected lineage-specific clustering, except for the CHIN_F1

strain which clustered outside lineage 4 and closer to lineage 3 (Supplementary figure 2).

Methylation motif analysis

Using the Modification and Motif Analysis pipeline in the SMRT portal
(https://github.com/PacificBiosciences/SMRT-Analysis), Pacbio sequence data can be used
to robustly reveal methylation sites. A variable number of motifs (range: 3-13) were found
per isolate, with 45 unique motifs discovered across the entire dataset of 18 isolates. Three
high quality methylated motifs (quality value score >100) were detected across almost all
isolates: CACGCAG (17/18 isolates), GATN4RTAC (14/18), and CTCCAG (15/18) (Table 1).
Partner motifs for GATN4RTAC and CTCCAG were also found indicating methylation on both
the forward and reverse strand, while CACGCAG is only hemi-methylated as no partner

d®'?. The number of

motif was found. These motifs have previously been reporte
occurrences of each motif was found to vary slightly across isolates (range: GATN4RTAC

349-366, CACGCAG 811-828, CTCCAG 1928-1957).

By considering the motifs across all isolate genome assemblies and inspection of the raw

inter-pulse duration (IPD) ratios at each nucleotide position in the motif, we found that
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isolates where the motif was present but had no evidence of modification across
nucleotides (Supplementary figure 3). There was some variability across and within strain
types in the percent of motifs methylated. In particular, although motifs were mostly close
to 100% (or alternatively 0%) methylated, three isolates had a substantially different
percentage for the CACGCAG motif (median (range) %: 60.0 (52.5-63.7)) (Table 2).
Methylation of the other two motifs (GATN4RTAC, CACGCAG) did not seem affected in

these isolates (range 93.9 - 99.3%).

To explain the differences in methylation pattern we identified mutations in
methyltransferase genes that have been associated with each motif (GATN4RTAC: hsdS.1,
hsdM and hsdS; CTCCAG: mamA; CACGCAG: mamB)® (Table 2). In particular, we scanned for
mutations that were present in methylation-deficient isolates, as identified through analysis
of PacBio data, which could putatively explain loss of function in the respective
methyltransferase. For the GATN4RTAC motif we found three unique mutations in four
isolates with an absence of methylation, confirming those identified in previous reports®.
Three methylation-absent isolates had the presence of the hsdM P306L mutation.
Additionally, one sample had two mutations which were not present in any other isolates:
hsdM G173D and hsdS L119R. Three samples did not exhibit any methylation at the CTCCAG
motif, and we identified three unique mutations in mamA, one of which was present in two
samples. One isolate had an E270A mutation and frameshift deletion at position 1257,
however through phylogenetic ancestral reconstruction we deduced that the E270A

mutation occurred before the deletion (Figure 1). The two other isolates had E270A and

257



previously uncharacterised A460T mutations, respectively. For the CACGCAG motif, the
CHIN_F1 strain has a truncated mamB gene which has been reported elsewhere®, and
verified here. Additionally, we found all three lineage 1 strains, which exhibited ~50-60%

methylation, to have a novel S253L mutation in mamaB.

Pathway analysis

To look for the non-random association of methylation sites and protein families or
biological pathways we performed a pathway analysis using DAVID software®®. Each of the
three motifs was considered individually. Motifs were associated with genes based on
overlap with an annotated coding region or the closest promoter. Most motifs were found
in the coding regions, with few found within promoters (defined as the 50 nucleotides
before a start codon) (Supplementary Figure 4). For GATN4RTAC, we found an enrichment
of cell membrane associated genes (Bonferroni corrected P-value (P*) = 0.021) and plasma
associated genes (P* = 0.023) in motif-containing genes compared to genes without the
motifs. For CTCCAG, motif-containing genes were enriched for nucleotide binding (P* =
9.99e-13) and cell wall (P* = 1.63e-5) among others (Supplementary table 2). For the
CACGCAG motif we found several enriched pathways involved in fatty acid and polykeytide
synthesis (P* = 9.26E-05) among others. DAVID software was used to test whether there
was targeted absence of methylation of genes in a specific pathway. Genes with an absence
of methylation in excess of 60% of the isolates were compared against all M. tuberculosis
genes to look for enrichment of specific pathways. This analysis was performed on an

overall and per-lineage basis. No pathways reported significant results (P*>0.05). When
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comparing motif-containing unmethylated to motif-containing methylated genes on a
lineage basis we did not find any significantly enriched pathways, although the small

number of isolates is likely to lead to reduced power to detect true enriched pathways.

Motifs in a global context

To describe the six mutations we identified as affecting methylation in a global context, we
analysed a large collection (n = 6465) of isolates representing lineages 1 (9.5%), 2 (15.8%),
3 (15.4%) and 4 (59.3%). We also analysed lineage 5 (n=4) strains and lineage 6 (n=26)
strains, a combination of our own data and those described elsewhere'®. We found five of
the six mutations identified above in the global dataset, occurring predominantly in single
lineages with low frequencies in other lineages (Table 2), and originating at unique positions
in the phylogeny (Figure 2). None of the six mutations were found in the lineage 5/6 dataset,
except for the isolate in which we originally found the mamA 460T mutation. The mamA
A460T is likely to be specific to a subclade of lineage 6. Three mutations affecting the
GATN4RTAC motif were found at high allele frequency (hsdM G173D: 0.15, hsdM P306L:
0.42, hsdS L119R: 0.15) and affected ~57% of the isolates. The hsdM P306L mutation is a
phylogenetically deep mutation which occurs in a sub-clade of lineages 4.3 to 4.9 (H3, H4,
LAM, LAM1, LAM10-CAM, LAM11-ZWE, LAM3, LAM4, LAMS, S, T1, T2, T2-Uganda, T3, T4,
T5). The hsdM G173D and hsdS L119R mutations are present in all lineage 3 isolates. The
mamB S253L mutation affecting the CACGCAG motif is present only in a subclade of lineage
1 (EAI6). The mamA E270A mutation affecting the CTCCAG motif is present in all lineage 2

strains. Assuming that these mutations do indeed cause the absence of methylation on the
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genome there is a stark difference between the motifs in the lineages and number of

samples which have active methylation.

DISCUSSION

We have presented 16 new reference genomes and methylomes of strains with diverse
genetic backgrounds. The ability of PacBio technology to produce long reads leads to
complete genome assemblies that capture both small and large genomic variations and
have a very high accuracy at repetitive regions such as the pe/ppe genes. Most whole
genome sequencing projects have focused on lineages 1 to 4 because of their prevalence
and global distribution, however recent studies have shown a large amount of genetic
diversity to be present within lineages 5 and 6. Additionally, an intriguing question
remains why lineages 5 and 6 are localised to West Africa and have not spread globally. The
lineage specific variants and differences in gene content (including the pe/ppe genes)
reported here, building on previous work?, could potentially play a role in specific host
population adaptation. We present, to our knowledge, the first complete lineage 5
reference genomes, and increase substantially the number of lineage 6 reference genomes
available. These references will be useful in future whole genome sequencing projects that
investigate the genetic diversity of lineage 5 and 6 strains, as well as strain-host genetic
interactions. By aligning Illumina reads to our references we find there to be a small increase
in the number of reads mapping (0.25-0.47%), particularly in genomic regions where
sequences are either not present or highly variable in the H37Rv reference. By performing

automatic annotation and clustering of protein sequence into clusters of orthologues, we
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report a significant difference in the gene content between strains. Overall, these new
reference sequences could serve to improve the accuracy of resequencing experiments by
facilitating lineage-specific mapping at highly variable regions and to improve our
understanding of large structural variations such as novel insertions, as well as

rearrangements between lineages.

The PacBio technology allowed us to characterise the methylation at sites along the
genome. Across the 18 isolates, three motifs are methylated to varying degrees. While most
isolates had close to 100% methylation with an active MTase, the three lineage 1 isolates
had 53-64% methylation at the CACGCAG motif while maintaining near 100% methylation
on both other motifs. We identified a number of mutations which associate with the
absence of methylation, some of which have been reported before’®. Five of these
mutations were present in a large global phylogeny consisting of M. tuberculosis lineages
(1-4) strains. The frequency of the potential loss of function mutations is reasonably high.
For example, the three mutations (hsdM G173D, hsdM P306L and hsdS L119R) affecting the
GATN4RTAC motif methylation were present in all available lineage 3 (all sub-lineages)
strains, as well as across a larger number of lineage 4 sub-lineages (including H3, H4, LAM,
LAM1, LAM10-CAM, LAM11-ZWE, LAM3, LAM4, LAMY, S, T1, T2, T2-Uganda, T3, T4, T5), but
absent in other lineages. Similarly, the other motifs (CTCCAG and CACGCAG) have a lower
frequency of loss of function mutations, but are also strain specific. Follow-up investigation
is required to provide an insight into the essential and functional nature of methylation, and

its association with the different motifs. Interestingly the lineage 2 strains, which have been
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reported to be highly virulent®®, lack methylation in the most abundant motif (CTCCAG)
putatively due to the mamA E270A mutation. Differential methylation patterns could
provide a possible explanation for the increased virulence in this clade, as genetic distance
is relatively small. Similarly, the mamB S253L mutation related to the CACGCAG motif
seems only present in EAI6 strains, and whilst little is known whether these strains are more
virulent than other lineage 1 “ancient” strains, they have spread globally and have been

associated with recent outbreaks®®, unlike other lineage 1 strains.

It has been hypothesised that DNA methylation influences transcription® and therefore it
would be expected to see a differences in transcriptional profiles of genes where there is
differential methylation. Additionally, although no correlation was found with drug
resistance (data not shown), transcriptional regulation by DNA methylation could
potentially contribute towards observed strain-specific differences in the acquisition of
mutations involved in drug resistance'’. Whilst, our work has shed new light on M.
tuberculosis methylation, future work should consider more diverse strains and integrate
transcriptomic data to further elucidate underlying biological mechanisms and associating
them with virulence and other important phenotypic outcomes including antibiotic

resistance.
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MATERIALS AND METHODS

Samples and SMRT sequencing

DNA was extracted from M. tuberculosis cultures of clinical samples, processed using

2318 samples were sequenced using Pacific Biosciences

methods described elsewhere
(PacBio) RSIl long read technology. Additionally, raw data for two isolates was downloaded

from the SRA project SRP064893 to be included in the current study. All raw sequencing

data are available, and the study accession numbers are listed in Supplementary table 1.

Bioinformatic analysis

Sequencing reads were assembled using Hierarchical Genome Assembly Process HGAP2
implemented in the SMRT Portal software suite. Short low confidence contigs (length<1000
or identity < 90%) were removed from subsequent analyses. Overlap between the start and
end of large contigs were found by self-aligning using Mummer software
(mummer.sourceforge.net) and removed using in-house scripts. Contigs were aligned,
scaffolds inferred, reordered and, if needed, reverse-complemented according to the
H37Rv reference using the mummer tool and in-house scripts. Following this the reads were
realigned to the scaffolds to improve the consensus concordance. The final consensus
genome for each sample was annotated using prokka automatic annotation tool* using the
H37Rv protein sequences to annotate the genes found. Mummer software was used to align
the consensus against H37Rv to identify small variants (SNPs and indels). Methylation

analysis was performed using the Modification and Motif Analysis pipeline in SMRT portal,
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and outputted motifs of interest. All high-quality motifs were used in further downstream
analysis. A maximum likelihood phylogenetic tree was built using RAxML with all
polymorphic SNP sites found. Pathway analysis was performed by assigning a gene to each
motif found in a genome. Genes were assigned using overlap with the coding region or
promoter of a gene. Statistical enrichment analysis was performed using DAVID software™
and compared: (i) all motif-containing genes to all M. tuberculosis genes; (ii) all un-
methylated genes to all motif-containing genes. To identify mutations within lineages 5 and
6, genome assemblies were downloaded from genbank* and aligned to the H37Rv
reference using the mummer tool with default parameters. Variants were then called using
the snp-snps algorithm, with the “-C” parameter invoked, leading to the reporting of

variants from unambiguous alignments.
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Figure 1

Phylogeny of the Mycobacterium tuberculosis complex isolate consensus sequences

(n=18) annotated with loss of function mutations in MTase genes
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Motif Mutation Lineage 1 | Lineage 2 | Lineage 3 | Lineage 4 | Lineage5 | Lineage 6
(n=617) | (n=1021) | (n=993) (n=3834) (n=4) (n=26)
GATN4RTAC | hsdM P306L - - - 0.71%* - -
GATN4RTAC | hsdM G173D - - 1 - - -
GATN4RTAC | hsdS L119R - - 1 - - -
CACGCAG mamB S253L 0.23* - - - - -
CTCCAG mamA E270A - 1 - - - -
CTCCAG mamA A460T - - - - - 0.04

A maximum likelihood phylogenetic tree, with the % of methylated motifs and potential

loss of function mutations in MTase genes annotated. Allele frequencies of putative

methylation related mutations across a global collection of M. tuberculosis isolates; * EAI6

stains, ** lineages 4.3 to 4.9, - indicates absence
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Figure 2
Five methylation-affecting mutations in a global collection of isolates (n = 6465; lineage 1
617 (9.5%), lineage 2 1021 (15.8%), lineage 3 993 (15.4%), lineage 4 3834 (59.3%)"%)
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Table 1
Methylation of motifs and their proportion in the genome sequence assemblies of each isolate.

Isolate [lineage] CACGCAG  GATNNNNRTAC GTAYNNNNATC CTCCAG CTGGAG
WBB1457_IB_036-1 [6] 793/811(0.98) 332/351(0.95)  332/351(0.95) 1885/1934(0.97) 1828/1934 (0.95)
WBB1460_E13-13014-2 [6] | 799/813 (0.98) 328/350(0.94)  327/350(0.93) 1892/1937 (0.98)  1825/1937 (0.94)
WBB1458_05-01296-1 [6] | 799/813 (0.98) 294/349 (0.84)  290/349 (0.83) 0/1932 (0.00) 0/1932 (0.00)
WBB447_G67 [6] 814/814 (1.00) 338/352(0.96) 336/352(0.95)  1923/1933 (0.99)  1922/1933 (0.99)
WBB1451_04-00887-2 [6] | 802/812 (0.99) 328/349 (0.94)  325/349(0.93) 1842/1933(0.95) 1801/1933 (0.93)
- WBB1459 E14 22547-1[6] | 802/811(0.99) 328/349(0.94) 329/349(0.94) 1891/1934 (0.98)  1833/1934 (0.95)
WBB1453_11-00429-1 [5] | 814/828 (0.98) 357/362(0.99) 355/362 (0.98) 1889/1942 (0.97)  1825/1942 (0.94)
WBB1454_1B091-1 [5] 807/823 (0.98) 356/358(0.99) 353/358 (0.99)  1874/1929 (0.97)  1819/1929 (0.94)
___ WBB1009_SL1875 [1] 492/826 (0.60)  345/360 (0.96)  341/360 (0.95)  1942/1957 (0.99)  1885/1957 (0.96)
- WBB1008_SL1975 [1] 526/826 (0.64) 344/360(0.96)  345/360 (0.96)  1945/1956 (0.99)  1906/1956 (0.97)
WBB1007_LQ1975 [1] 434/826 (0.53) 345/360(0.96)  338/360 (0.94)  1943/1956 (0.99)  1893/1956 (0.97)
|| ____ CHIN_26105 [3] 823/824 (1.00)  0/362 (0.00) 0/362(0.00)  1939/1954 (0.99)  1942/1954 (0.99)
WBB1456_11-00225-4 [2] | 813/826 (0.98) 344/366 (0.94)  349/366 (0.95) 0/1949 (0.00) 0/1949 (0.00)
WBB445_ARS7496 [2] 824/824 (1.00) 339/363(0.93)  340/363 (0.94) 0/1947 (0.00) 0/1947 (0.00)
WBB1452_10-01964-2 [4] | 798/817 (0.98) 332/358(0.93)  321/358 (0.90)  1828/1947 (0.94)  1748/1947 (0.90)
CHIN_F1 [4] 0/820 (0.00) 0/361 (0.00) 0/361(0.00)  1937/1948 (0.99)  1937/1948 (0.99)
WBB446_ARS7884 [4] 817/817 (1.00)  0/357 (0.00) 0/357 (0.00)  1932/1933(1.00)  1927/1933 (1.00)
WBB448_HPV115_08 [4] 814/814 (1.00)  0/355 (0.00) 0/355(0.00)  1927/1928 (1.00)  1924/1928 (1.00)

The phylogenetic relationship and fraction of motifs methylated for each strain. Most values are close to either 0.95 or 0 indicating
the presence or complete absence of methylation, however, all lineage 1 strains had approximately half of their CACGCAG motif

methylated
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Supplementary table 1
The isolates analysed

Num.

Genome

SRA accession

Isolate ID Country Source N50 Contigs length Lineage  Sub-lineage

WBB1007_LQ1975 Mozambique  Sequenced 4450176 1 4450176 1 1.1.3 (EAl6) PRJEB21888
WBB1008_SL1975 Mozambique  Sequenced 4467776 1 4467776 1 1.1.3 (EAI6) PRJEB21888
WBB1009_SL1875 Mozambique  Sequenced 4438486 1 4438486 1 1.1.3 (EAI6) PRJEB21888
WBB1456_11-00225-4 Gambia Sequenced 4415343 1 4415343 2 2.2.1 (Beijing)* PRIEB21888
WBB445_ARS7496 Portugal Sequenced 4415871 3 4446789 2 2.2.1 (Beijing)* PRIEB21888
CHIN_26105 China SRA 4440106 1 4440106 3 3 (CAS)* SRP064893
WBB1452_10-01964-2 Gambia Sequenced 4416076 2 4430073 4 4.1.2.1 (Haarlem)*  PRJEB21888
WBB446_ARS7884 Portugal Sequenced 4375931 3 4396369 4 4.3.4.2 (LAM)* PRJIEB21888
WBB448_HPV115_08 Portugal Sequenced 4385381 1 4385381 4 4.3.4.2 (LAM)* PRJEB21888
CHIN_F1 China SRA 4125500 5 4438875 4 4.9 (T1-H37Rv) SRP064893
WBB1453_11-00429-1 Gambia Sequenced 4430643 1 4430643 5 5 (Afr2/3) PRIEB21888
WBB1454_1B091-1 Nigeria Sequenced 3865667 3 4419358 5 5 (Afr2/3) PRJIEB21888
WBB1451_04-00887-2 Gambia Sequenced 716074 6 4393399 6 6 (Afrl) PRJIEB21888
WBB1457_IB_036-1 Nigeria Sequenced 2521417 4 4387174 6 6 (Afrl) PRIEB21888
WBB1458_05-01296-1 Gambia Sequenced 2446180 2 4369685 6 6 (Afr1) PRJIEB21888
WBB1459_E14 22547-1 Gambia Sequenced 4382305 2 4384418 6 6 (Afr1) PRIEB21888
WBB1460_E13-13014-2 Gambia Sequenced 2963146 4 4413823 6 6 (Afr1) PRIEB21888
WBB447_G67 Guinea-Bissau Sequenced 2330737 3 4388314 6 6 (Afrl) PRJEB21888

Bolded isolates also have Illumina short read data; Sub-lineages inferred using barcoding SNPs®; Afr = M. africanum; * known to be

highly virulent®; SRA short read archive
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Supplementary table 2
Pathway analysis of genes containing motifs

9 f
. Ontological % (.) Fold P-
Motif : Count genes in .
annotation Enrichment value*
pathway
2.85E-
CTCCAG ATP-binding 178 12.4 1.6 1485
CTCCAG Cell wall 327 22.8 1.2 (1)'590E_
CTCCAG Plasma membrane 632 44 1.1 3'413E_
.23E-
CTCCAG Phosphoprotein 52 3.6 1.7 34 3
P-loop containing
CTCCAG nucleoside 107 7.5 1.5 0.001
triphosphate hydrolase
CTCCAG Intracellular 45 3.1 1.7 0.001
CTCCAG Transferase 237 16.5 1.2 0.001
CTCCAG Carbon metabolism 69 4.8 1.4 0.005
CTCCAG Cytoplasm 151 10.5 1.3 0.007
CTCCAG Cytosol 239 16.6 1.2 0.008
Glyoxylate and
CTCCAG dicarboxylate 30 2.1 1.7 0.015
metabolism
CTCCAG Fatty acid / polyketide 15 2.1 0.017
synthesis
CTCCAG Ligase 65 4.5 1.5 0.024
i i .26E-
CACGCAG Fatty ac_ld / polyketide 18 55 35 9
synthesis 05
CACGCAG Nucleotide-binding 90 12.5 1.4 0.02
CACGCAG Cytosol 128 17.7 1.3 0.048
GATNNNNRTAC Cell membrane 59 17.9 1.6 0.021
GATNNNNRTAC Plasma membrane 149 45.3 1.2 0.023

Motifs were assigned to genes by finding overlap with coding regions. If found in

intergenic regions the motif was assigned to the gene with the closest promoter. Genes

at which the motif was found in >60% of the isolates were used to look for enrichment

of pathways; * Bonferroni corrected P-value (P* in main text).
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Supplementary Figure 1
Differences in coverage in the PE_PGRS3/4 and PE_PGRS17/18 highly variable regions
when comparing mapping of the WBB445_ARS7496 lllumina reads to the H37Rv
reference and WBB445_ARS7496 Beijing reference described in this publication. The
genes on the H37Rv reference used can be seen on the bottom track. The GC content
and the uniqueness (1 = unique, < 1 non-unique) of a region can influence the coverage
across the region and are plotted on the middle panels. The coverage is plotted on the
top panel. The H37Rv mapping results are plotted on the left, while the
WBB445_ARS7496 assembly results are plotted on the right.
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Higher coverage is seen across both the PE_PGRS3 and PE_PGRS4 when mapping to the

new lineage specific reference. Additionally, two new open reading frames have been

introduced between the two genes.
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B) PE_PGRS17/18
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Only slight changes in genomic coverage were detected, indicating that the lack of

coverage across these genes is mostly due to the high GC content in some regions

coupled with the fact that some regions are non-unique.
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Supplementary figure 2
Hierarchical clustering and heat map visualisation of shared number of orthogroups
(groups of orthologous proteins).

Correct clustering can be observed for all isolates except CHIN_F1 (H37Rv strain) which

is located outside lineage 4 and closer to lineage 3.

b= Trm e ol
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Supplementary figure 3
Inter-pulse duration (IPD) ratios across motifs in unmethylated isolates (left column)
and methylated isolates (right column): A) GATN4RTAC, B) CACGCAG and C) CTCCAG

A) wBB448_HPV115_08 WBB447_G67
@ - @ -
© - © —
[e] [e]
® ®
<+ - <~ —
g . g #
S . ) P [ o : )
TYLLILITTL f-0skalanee
R e o B e e e e R e o S S B S e e e
GATNNNNARBTAC GATNNNNRTATC
Motif position Motif position
B) CHIN_F1 WBB445_ARS7496
Y+ Y+
i i "
o _| o _|
o o
“E o - “E © -
2 - 2 o -
<+ - . <+ A
o — < o v
‘"HeBB0a8 " easeas o
T T T T T T T T T T T T T T
C A C G C A G C A C G C A G
Motif position Motif position
C) WBB1456_11-00225-4 WBB447_G67
° - ° -
o o —f o ® -
© ©
o © o © 7
o o
s <+
- o — ’ _‘z."
o_...‘.' NN BN
T T T | T T

T T T T T T
C T C C A G C T C C A G

Motif position Motif position

275



Supplementary figure 4

A histogram showing the location of the motifs relative to their associated genes. This
plot was drawn for CHIN_F1, the H37Rv strain, and near identical distributions were
seen for the other isolates. Where a motif is found in a coding region, its position
relative to the gene length is shown. Most of the motifs are scattered randomly
throughout the gene lengths and fewer are seen in the promoter.
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ABSTRACT

Tuberculosis (TB) represents a major global health issue with an estimated 10.4 million
new cases in 2015 alone. Innate susceptibility to tuberculosis has been a major focus of
research in recent years. Genome wide association studies (GWAS) have been
successfully applied to find loci associated with many infectious diseases including HIV,
leprosy and Hepatitis C. This approach has not been fruitful for TB however, with lack of
replication across study sites. The causal agent for TB, M. tuberculosis (Mtb), can be
classified into seven distinct lineages which are differentially distributed geographically.
The difference in locally circulating strains has been proposed as a reason for the lack of
replication of GWAS hits. Here, we show that lineages and sub-lineages of TB are
associated with specific variants in the human genome. We performed a genome-to-
genome association using sequence data from the host and pathogen from 720 patients
with pulmonary TB from Thailand. By performing association tests for each combination
of variant found in both genomes we report a number of highly significant hits, including
regions of the MHC. Markers for lineage one were highly associated with variants in the
MHC region (rs2535298, p=1.92x10"°). Additionally, we found a number of sub-lineages
and homoplastic variants in TB associated with loci in the human genome. The top hit
(p=5.36><10'16) was between the SNP rs12548085 on chromosome 8p22 in the SGCZ
gene. In total, thirty eight loci were highly associated (threshold=1x10"°) with specific
pathogen variants. So far, GWASs have not considered the variation of the pathogen to
be important for susceptibility. We present evidence of specific associations between

human and could represent potential host-pathogen interactions.
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INTRODUCTION

Tuberculosis disease (TB), caused by Mycobacterium tuberculosis is an important global
public health issue, and high HIV prevalence and multi- and extensive-drug resistance
are serious challenges to effective control’. There is an urgent need for better
treatments and vaccines, which in turn require a deeper understanding of the biology
of TB, which can be revealed by looking at the host-pathogen interaction check points
that are exposed in the genetic signatures of human and M. tuberculosis genomes.
Novel therapeutic approaches could be developed to exploit these interactions,
including host immune modulators that mimic the successful natural responses seen in
the majority of infections. It is possible to implement this type of approach within clinical
trials and thereby attempt to modulate the human immune response to treat TB.
However, without clear data on which strategies are successful in nature, these

candidate approaches are unlikely to succeed.

M. tuberculosis genetics have been used extensively to describe its diversity. Sequence-
based studies have characterised M. tuberculosis genomic variation, including single
nucleotide polymorphisms (SNPs) and other variations such as insertions and deletions
(indels), across thousands of samples®®. Markers of drug resistance have been identified
using phylogenetic tree-based and GWAS approaches’. Libraries of informative
resistance mutations are leading to the development of informatic tools to rapidly
profile samples for their drug susceptibilitys. M. tuberculosis genetic regions under
selective pressure, perhaps due to drug resistance or host immune responses, can be
detected®®. M. tuberculosis has seven lineages that are endemic in different locations

around the globe, leading to the hypothesis that the strain-types are specifically adapted
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to people of different genetic backgrounds’. The lineages vary in their geographic
distribution and spread, with lineage 2 being particularly mobile with evidence of recent
spread from Asia to Europe and Africa®. Lineage 4 is common in Europe and southern
Africa, with regions of high TB incidence and high levels of HIV co-infection. The lineages
may vary in propensity to transmit, to cause disease, in the site and severity of disease’”
11, but results are inconsistent and there is considerable inter-strain variation within

1213 " A set of SNPs has been identified that can be used to barcode sub-

lineages
lineages®, leading to informatic tools that position sequenced samples within a global
phylogeny™*. Similarly, SNPs have been used to construct transmission networks, where
samples from different individuals that have near identical genomic variation are most
likely to be due to a transmission event. Inferred transmission chains based on genome-
wide SNPs in northern Malawian isolates has shown striking differences by lineage in
the proportion of disease due to recent transmission and in transmissibility (highest-
lineage-2 (East-Asian), lowest- lineage-1 (Indo-Oceanic)) that were not confounded by

HIV status or drug resistance™ .

Host genetics has the potential to inform about TB disease susceptibility. Despite the
GWAS successes in the infectious disease field'®!, this approach has proven difficult
for TB**™*, with the susceptibility loci identified not replicated across studies™?.
Reasons for non-replication include differences in human population structure or
variation in M. tuberculosis strains, but also in TB case definitions; and controls being a
mixture of unexposed, exposed, and latently infected individuals. Despite the general

difficulties of TB GWAS approaches to date, promising recent work has shown that the

human leukocyte antigen (HLA) class Il region contributes to genetic risk of pulmonary
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TB, described as possibly acting through reduced presentation of protective M.
tuberculosis antigens to T cells®’. Recent work in TB meningitis has revealed a different
potential susceptibility pathway, which needs to be replicated (Hibberd et al, in
preparation). However, the GWAS approach applied to another mycobacterial
infection, leprosy, has identified the innate intracellular signalling pathways involved in
macrophage killing of bacteria (the NOD pathway and RAB32) as critical to leprosy

2829 "and also linked to Crohn’s disease®®, suggesting that the approach could

outcome
be successful. To date there have been no robust studies of human-M. tuberculosis

interaction genomics.

Host-pathogen interaction genomics has already begun to be used to identify
pathogenic mechanisms associated with other diseases, including meningococcal
disease®! and hepatitis C virus infection®’. There is some evidence to suggest host-
pathogen effects impact on M. tuberculosis, and it is able to subvert the human host
response to infection, including the persistent nature of the infection and the possibility
of multiple re-infections; although the mechanisms of this process remain unclear. The
M. tuberculosis pe/ppe gene families (~10% of genome) are hypothesised to include
important virulence factors involved with host-pathogen interactions®>. There is
evidence of innate and adaptive human host responses to M. tuberculosis, with Band T
cell recognition of pe/ppe protein534. These proteins may represent a source of antigenic
variation, which allow the organism to escape antigen-specific host responses®*. With
M. tuberculosis antigens being presented through HLA molecules, there is a strong
argument for assessing the interaction between M. tuberculosis pe/ppe and human HLA

35,36

genotypes™™>”. However, because pe/ppe genes are highly variable and complex to
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analyse, they are typically disregarded in genome studies. Recent SNP analysis has
revealed that variation in the majority of the 168 pe/ppe genes studied is consistent
with M. tuberculosis Iineage33. Evidence of positive selection was revealed in 65 pe/ppe
genes, including epitopes potentially binding to major histocompatibility complex

(MHC) molecules.

By integrating the human and M. tuberculosis genetics data in a well characterised
Thailand cohort (n= 720), we sought to reveal insights into interaction points using
“genome-to-genome” analytical methods. Our analyses reveal a crucial role for the HLA,

and previously unknown genes such as CNTN3 and USP6NL.

RESULTS

M. tuberculosis genetic diversity in the Thai cohort

Host-M. tuberculosis genetic data were complete for 720 TB cases. In silico profiling
using TB Profiler® determined that isolates were predominantly from lineages 1 (35%),
2 (47%) and 4 (16%) (lineage 3 <2%) (Supplementary table 1). The isolates were
predicted to be predominantly pan-susceptible across 14 drugs (96.2%) with the
remainder being multidrug resistant (isoniazid and rifampicin, 3.8%), and none
extensively-drug resistant. Raw reads were trimmed and mapped to the H37Rv
reference genome (AL123456), and 59k high quality unique variants were called. The
vast majority (95.2%) were rare variants with minor allele frequencies less than 5%.
Phylogenetic reconstruction and principal component analysis (PCA) revealed a strong

population stratification with strong clustering by lineage (Figure 1a).
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Human genetic diversity in the Thai cohort

Human genotypes were imputed using Asian populations from the 1000 Genomes
Project phase 3, resulting in ~6 million high quality variants with minor allele frequency
> 5%. Using these SNPs in a PCA approach, the individuals clustered into three groups
that coincide with Thai ethnic diversity (Figure 1b, c). The proportion of each lineage
within each group was calculated, and revealed an unequal distribution of lineage 1

strains between groups (Supplementary table 1).

Genome-to-lineage analysis

To investigate differential susceptibility to M. tuberculosis lineages, within a regression
framework we tested for associations between human variants as predictors and
lineages as the outcome variable. Each lineage was compared against all other lineages
in a case-control type analysis. We did not consider lineage 3 in this analysis as the
sample size is only eight. At an established significance cut-off (1 x 10®), we identified
putative associations for lineage 1 (66 SNPs, 13 loci) and lineage 4 (7 SNPs, 4 loci), but
not lineage 2 (Table 1). For lineage 1, the most significant association was found to be
shared between three SNPs (two in C6orf15, one in a pseudogene) located within the
MHC class | region (Supplementary Figure 1). For lineage 4, the strongest association
was the present in the USP6NL gene (variant: rs4750068). To follow-up the HLA-
Lineagel association, we imputed HLA haplotypes using SNP2HLA software, and re-
tested for association to lineage 1. Though no haplotype reached the 10 cut-off, the
most significant association was present at the DQA1 locus (type: 06:01, p-value = 8.9e-

8) (Supplementary table 2).

286



Genome-to-genome analysis reveals host-pathogen interactions

There is sequence diversity within lineages and the previous approach may miss
potential interactions between human variants and sub-lineages or homoplastic M.
tuberculosis variants. To identify these potential interactions, we applied a regression-
based approach using M. tuberculosis alleles as phenotypes and testing for epistatic
effects between the ~6M human and 2,002 M. tuberculosis SNPs (MAF >5%). At an
established significance cut-off (1 x 10™°), this approach revealed associations involving
199 human SNPs (38 loci) (Figure 2) (Table 1). Associations to lineage, sub-lineage, and
homoplastic SNPs were found. The strongest association signal was between the
rs12548085 SNP (SGCZ gene) and a subclade in lineage 1 (p=5.36x10"%). Other
noteworthy genes found, include: HDAC4 (p=2.06x10""%, lineage 1.1) and PRKCA
(p=4.88x10"", lineage 4.5) and TNFSF9 (p=4.86x10™", lineage 2.2.1). A homoplastic SNP
in the Rv3467 gene (K315E) was associated with the human polymorphism rs9398635

(chr. 6, intergenic region) p=5.63x10™").

DISCUSSION

There have been a number of attempts to identify loci that influence susceptibility to

22,24

tuberculosis™“". While statistically significant loci have been reported, they have not

2325 |t has been postulated that M. tuberculosis

been validated in across populations
has been in a state of co-evolution with its host’’, and by implication there are
differences in human population susceptibility to infections from different lineages. This
observation could explain the lack of reproducibility of hits found in the different GWAS.

To detect whether there are any human variants influencing the likelihood of infection

of a particular M. tuberculosis lineage or sub-lineage, we performed a genome-to-
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genome analysis using a GWAS approach. Association patterns within the M.
tuberculosis genome reflected intra- lineage or sub-lineage-specific, or inter-lineage

(homoplastic) effects.

For intra-effects, a single human polymorphism will be associated to many M.
tuberculosis variants with equal statistical significance due to the clonal nature (lack of
recombination) leading to high linkage disequilibrium, and long branches leading up to
the lineages (Figure 1a). The resolution to which we can narrow down the list of possible
causal variants depends on the sampling depth and the effect size of the allele.
Phenotypic bacterial differences are known to result from strain- and lineage- specific
variation. Although efforts have mainly focused on the phenotypic differences in drug

163839 it cannot be ruled out that this variation

resistance, transmissibility and virulence
also contributes towards host susceptibility. For inter-lineage effects, homoplastic
variants appear throughout the phylogenetic tree and rarely share the same pattern of

variation with other variants, therefore it is possible to localise to a specific M.

tuberculosis variant that is driving the association.

To detect whole-lineage signals, we performed GWAS using the M. tuberculosis lineages
as the phenotype. The most significant P-value occurred between markers at the MHC
locus and lineage 1. This indicates that one or more variants acquired after the
divergence of the “ancient” and “modern” lineages have a significant association with
variants in the MHC class | region. The Manhattan plot for the entire MHC region reveals
another peak at the MHC class Il region, though this does not reach the significance cut-

off. An analysis of imputed HLA haplotypes points to the HLA DQA1*06:01 type to have
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the highest significance, and further supports other studies implicating variation of MHC

region in tuberculosis susceptibility®’>>>%

, although this interaction effect may be
strain-specific. Consequently, human populations could differ in their susceptibility to
different lineages of M. tuberculosis and this finding supports the host-pathogen
coevolution hypothesis. Twelve additional loci were associated with lineage 1 including
a variant in the CNTN3 gene (rs34989253). CNTN3 and bovine MHC complex have been
previously implicated in susceptibility to Bovine leukaemia virus*'. Four human loci were

associated with lineage 4, but no previous associations of these genes to infectious

disease could be found.

To uncover intra and inter-lineage or convergent evolution variants interacting with
human polymorphisms, we undertook a more agnostic approach and performed a
GWAS using the M. tuberculosis alleles as phenotypes. While we retain the MHC-lineage
1 association, we found many additional low-frequency variants within 38 loci. One
putative association involved rs7251888 in TNFSF9 and a subclade of lineage 2.2.1.
TNFSF9is a cytokine involved with antigen presentation in T cells and has been proposed
as a useful marker in the detection of M. tuberculosis-reactive CD4" T cells*. It has also
been proposed to regulate innate and adaptive immpune response against Mth*>*.
Variants in HDAC4 and PRKCA, which are both involved in response to interleukins®"*®,
were associated with subclades of lineage 1.1 and lineage 4.5 respectively. Several
homoplastic variants were also associated with human variants, the most significant

between an intergenic SNP on chromosome 6, close to the GJA1 gene and the M.

tuberculosis Rv3467 (K315E) SNP. Other significant homoplastic variants in M.
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tuberculosis included ppel8 and mceF, which have implicated roles in intracellular

survival*’*® (Table 2).

This study has highlighted the importance of the MHC region in susceptibility to
tuberculosis and specific strain-types, implying it is a crucial interaction point.
Interestingly, many of the new hits discovered using the genome-to-genome approach
have a much more significant P-value, with the minimum reaching 5.36x10. While
performing association on a lineage highlights regions of interest, it may not be enough.
A considerable amount of variation exists within lineages and within populations to
which they are endemic to. By testing all possible combinations of variants we have
highlighted many significant associated variants. This suggests that susceptibility to
tuberculosis follows a complicated pattern with many host factors involved coupled
with the diversity within the M. tuberculosis pathogen. The relative importance of these

interactions must be investigated through follow up studies in different populations.

ONLINE METHODS

Study population

The Thailand cases (HIV negative TB patients with no known previous TB (age > 14
years)) were from Chiang Rai, Lampang and Bangkok provinces (TB incidence

181/100,000 population).
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Genetic data

Human genotypes for the Thai TB cases (n=720) were generated on lllumina Human610-
Quad BeadChip and Illlumina HumanOmniExpressExome-8 v1.2 BeadChip,
complemented by imputation of >8.4 million genomic sites using BEAGLE4.1 software™

and a 1000 Genomes reference panel50

. HLA protein alleles were imputed using
SNP2HLA software and a pan-Asian reference®’. SNPs were removed if there was: (i)
deviation in genotypic frequencies from Hardy-Weinberg equilibrium (HWE) as assessed
using a chi-square test (P<0.00001); (ii) high genotype call missingness (>10%); (iii) low
minor allele frequency (<5%); or (iiii) low imputation quality (allelic R?<0.7). The

population structure was explored using principal component analysis inferred from

pairwise SNP genotype differences between individuals.

Pathogen sequence data was generated at the Sanger institute using an lllumina HiSeq
2000 machine. Raw M. tuberculosis sequencing data was aligned to the H37Rv reference
genome (Genbank accession number: NC_000962.3) using the BWA mem algorithm?”.
The SAMtools/BCFtools>> software was used to call SNPs and small indels using default
options. Alleles were additionally called across the whole genome (including SNP sites)
using a coverage-based approach. A missing call was assigned if the total depth of
coverage at a site did not reach a minimum of 20 reads or none of the four nucleotides
accounted for at least 75% of the total coverage. Samples or SNP sites having an excess
of 10% missing genotype calls were removed. This quality control step was implemented
to remove samples with bad quality genotype calls due to poor depth of coverage or

mixed infections. The final discovery dataset included 720 Thai isolates and ~59k
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genome-wide SNPs. Lineages were predicted using the TBProfiler tool’. The analytical

pipeline is described in greater detail elsewhere”.

Statistical analysis

To uncover effects between lineages and human genotypes, a separate logistic region
model was fitted for each lineage (lineage X vs. lineage non-X) using the plink 1.9>*
software, with a full model analysis (--model) setting. The minimum p-value across the
tests for each variant was retained. A statistical significance threshold was established
by simulations (P < 1 x 10°®). The genome-to-genome analysis was performed using the
same modelling strategy, except we used the M. tuberculosis alleles (minor vs. major)
as the outcome. M. tuberculosis variants were included in the analysis if (i) they were
not synonymous; (ii) had a minor allele frequency >0.05 and (iii) were not solely located
in transmission clusters (median SNP distance between isolates with mutation >20). A
statistical significance threshold was established by simulation (P < 1 x 1019). Regional

association plots were generated using locuszoom™.
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Table 1

Genome-to-lineage association results

Lineage Chr. SNP ID P-value Gene ID Distance* OR
1 6 rs2535298 1.92E-10 Céorf1s 14538 0.370
1 18 rs359758 3.13E-10 RP11 233049 2.672
1 9 rs10810134 8.20E-10 NFIB 0 0.262
1 20 rs6140144  9.52E-10 SLC52A3 0 1.985
1 2 rs4668246 1.28E-09 MYO3B 0 1.980
1 18 rs57810761 3.22E-09  SERPINB8 415380 2.564
1 4 rs10657819 3.41E-09 CCSER1 159196 0.489
1 14 rs1075612 3.58E-09 FLRT2 7984 2.103
1 2 rs113625848 5.23E-09 CNTNAPS 947438 1.979
1 10 rs7095852 5.70E-09 PCBD1 12435 0.513
1 13 rs7334180 5.84E-09 FLT3 0 2.008
1 11 rs10897830 6.17E-09 FAMI181B 1228892 0.398
1 19 rs4024210 7.01E-09 PDE4A 1437 2.213
1 14 rs58579744  7.62E-09 VRK1 4500 1.801
1 21 rs73182460 7.65E-09 APP 0 2.167
1 3 rs34989253 7.98E-09 CNTN3 0 0.513
1 11 rs11320420 8.76E-09 MYRF 0 0.507
4 10 rs4750068 1.09E-09 USP6NL 0 1.921
4 17 rs138005149 1.54E-09 AC102948.2 29772 2.657
4 6 rs6924775 3.51E-09 PRR18 39544 3.977
4 18 rs142396797 3.69E-09 FHOD3 0 3.718
4 2 rs4854538 6.85E-09 ANTXR1 0 1.570

* Distance to closest annotated CDS
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Table 2

Genome-to-genome association results

The minimum p-value per gene and the associated odds ratio and lineage of the Mtb variant * Distance to closest annotated CDS; ** Lineage associated

with Mtb variant

Chr. Human SNP  Host Gene P-value Distance* OR Lineage** Mtb SNP
8 rs12548085 SGCZ 5.36E-16 0 2.542 lineagel.1.1
4 rs7670123 CLNK 5.07E-15 288813 2.722 lineage2.2.1
6 rs9398635 GJAI 5.63E-14 25506 0.304 lineagel, lineage?, lineages3, Rv3467 K315E
lineage4
17 rs6504803 Cl7o0rf112 1.11E-13 37174 3.045 lineage4.5
rs1149213 SEMA3E 4.55E-13 46140 3.792 lineage4.5
rs672365 AGR3 4.63E-13 178511 2.057 lineagel, lineage2, lineage4 Rv0336 H496P
rs75969446 SOX17 8.80E-13 21659 2.859 lineage4.5
19 rs55916171 UQCRFS1 1.70E-12 1044300 3.052 lineagel.1.1
2 rs291333 HDAC4 2.06E-12 0 3.348 lineagel, lineage2 mce3F A170R
rs59612284 ADAMTS16 2.58E-12 0 4.667 lineage4.5
19 rs117476816 SULT2B1 6.89E-12 0 3.048 lineage4.5
14 rs7144346 RP11 8.25E-12 4575 2.615 lineagel, lineage2, lineage4 ppel8 S263H
3 rs542038782 SLITRK3 9.94E-12 152879 3.822 lineage4.5
20 rs6140144 SLC52A3 1.21E-11 0 2.131 lineagel
13 rs7983548 INTS6 1.22E-11 0 2.937 lineage4.5
13 rs145372612 SERPINE3 1.22E-11 0 2.982 lineage4.5
6 rs2535298 Cé6orf1s 2.12E-11 14538 0.346 lineagel
rs6536724 NPY5R 2.63E-11 7713 3.431 lineagel
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Table 2 - continued

Chr. Human SNP  Host Gene P-value Distance* OR Lineage** Mtb SNP
. . mce3F
5 rs6601202 FAM153C 3.10E-11 5257 3.051 lineagel, lineage2 A170R
16 rs900729 ANKRD11 4.11E-11 0 0.328 lineage4d
8 rs7013247 SNTG1 4.37E-11 0 2.8 lineage4.5
17 rs2525103 coprz2 4.37E-11 15974 2.625 lineage4.5
10 rs116986894 GATA3 4.42E-11 513865 3.228 lineagel.1.1
13 rs17075761 WDFY2 4.43E-11 52822 3.486 lineage4.5
12 rs7133564 MUCL1 4.58E-11 0 2.399 lineagel.1l
. . . PE_PGRS56
22 rs9605254 CECR2 4.71E-11 40429 13.94 lineagel, lineage2, lineage4 NE679A
2 rs17026212 TGOLN2 4.86E-11 0 2.464 lineagel.1.1
6 rs116672827 NEDD9 4.86E-11 0 2.045 lineagel.1.1
19 rs7251888 TNFSF9 4.86E-11 8847 2.391 lineage2.2.1
17 rs77462363 PRKCA 4.88E-11 0 5.95 lineage4.5
6 rs9322189 GINM1 5.60E-11 0 2.098 lineage2.2.1
18 rs359758 RP11 5.62E-11 233049 2.789 lineagel
8 rs10097239 TUSC3 6.65E-11 140682 3.303 lineage4.5
el8
1 rs6675820 DNTTIP2 8.26E-11 0 2.346 lineagel, lineage2, lineage4 5563H
7 rs74918833 ISPD 8.27E-11 38372 3.239 lineage4.5
15 rs2467365 Cl50rf41 8.80E-11 113668 2.368 lineagel.1l
6 rs34607745 HSF2 9.26E-11 40356 3.917 lineagel.1.1
el8
2 rs34312950 REG3G 9.53E-11 126939 2.505 lineagel, lineage2, lineage4 5563H
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Figure 1

Principal component analysis (PCA) of M. tuberculosis and human genotypes

(a) Phylogenetic tree of the M. tuberculosis in Thailand; (b) PCA of the human variants
was performed followed by k-means clustering, leading to three main clusters; (c) The
lineages associated with each patient was then visualised with the clusters
superimposed. A noticeable difference in the number of lineage 1 strains was evident
(see Supplementary Table 1); (d) Genome-to-genome interactions revealed
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Figure 2

Results from the genome-to-genome comparison of host and pathogen data.

(A) A Manhattan plot showing the —log10(P-value) for each human variant. Results are
plotted by chromosomes with alternating black and blue colouring. The MHC locus is
highlighted in red. (B) A circus plot showing the associations between host and
pathogen genomes. The Pathogen genome is coloured in blue and the human
chromosomes in cream (not to scale). A link is drawn between the two genomes where
a variant at the corresponding positions passed the 10 association cut-off value.
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Supplementary figure 1
Host genetic regions identified as having interactions with the M. tuberculosis genome

(a) Human leukocyte antigen (HLA) region
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Supplementary table 1
The distribution of M. tuberculosis lineages within each Human PCA-based cluster

group
M. tuberculosis Human Human Human
Lineage group 1 Clus 2 Cluster 3 Total
1 232 (45.7%) 16 (12.0%) 6 (7.6%) 254 (35.3%)
2 215 (42.3%) 76 (57.1%) 50 (63.3%) 341 (47.4%)
3 5(1.0%) 2 (1.5%) 1(1.3%) 8 (1.1%)
4 56 (11.0%) 39 (29.3%) 22 (27.8%) 117 (16.3%)
Total 508 133 79 720

303



Supplementary table 2
Frequency and significant (p<10°®) association of Human leukocyte antigen (HLA) types
to M. tuberculosis genotypes

HLA Type P value Frequency
HLA_DQA1_06 1.26E-08 0.194
HLA_DQA1_0601 1.26E-08 0.194
HLA_B_15 1.49E-07 0.218
HLA_DPA1_02 2.78E-07 0.593
HLA_DQB1_0301 9.69E-07 0.233
HLA_DPA1 01 2.09E-06 0.332
HLA_DRB1_1202  4.40E-06 0.220
HLA_DRB1_12 6.07E-06 0.224
HLA_A_11 8.13E-06 0.447
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9 Discussion and Conclusion

9.1 Discussion

This thesis focuses, for the most part, on the analysis of Next Generation Sequencing
(NGS) data in the context of TB. Chapter 2 worked to establish the fidelity of the data
from two NGS technologies, Illumina MiSeq and lon PGM platforms. | have shown the
variability between technical and biological replicates to be negligible. Phylogenetic
reconstruction revealed interleaved clustering of biological and technical replicates. This
high similarity indicates the lack of systematic bias in sequencing results caused by the
extraction process. A differential GC%-dependant coverage bias was observed between
the lllumina and lon PGM platforms. While both platforms displayed drops in coverage
across high-GC regions, its effect was more drastic with the PGM. This lower level
affected the calling of large indels, with more false positives using the PGM, however
most known Mtb drug resistant genes were well characterised using both technologies.
The rapid development of NGS technologies has led to a significant decrease in the cost
and of throughput sequencing. As demonstrated here, we are now at a stage where
sequencing is no longer the bottleneck. Removing or decreasing the time required at
the culturing step should be a main focus of future research. Platforms such as minlON
may in the future enable sequencing to be performed on site at clinics. A rigorous study
of the error rates and profiling capabilities such as described above should also be

performed on other new technologies as they become available.

The study also highlighted the difference between two popular resistance profiling

software, Mykrobe TB Profiler and TB predictor. The differences in the underlying drug
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resistance mutation database caused a number of false positives using the Mykrobe TB
Profiler. However, international efforts, such as the ReSeqTB project, are aiming to
consolidate a comprehensive single library of all variants, which will eventually result in
all such software converging. However, none of the tools evaluated use large deletions
orinsertions for profiling, but this would be a straightforward implementation of looking
for decreases in coverage. This is required because variants such as a deletion on the
thyA-dfrA genes causing PAS resistance was observed, but would be undetected by

conventional approaches.

There is a need for a better understanding of mutations involved in Mtb drug resistance,
including for any new drugs. To this effect, in Chapter 3 | applied GWAS methods to
identify such resistance mutations and loci. To develop the methodological approach, |
used whole genome sequence data from 127 clinical isolates with corresponding DST
and MIC data for the first line drugs rifampicin, isoniazid, ethambutol and streptomycin.
Using GWAS and phylogenetic approaches | found mutations in known resistance genes,
thus validating their use for drug resistance variant discovery. Additionally, the effects
of the variants on protein structure stability and drug binding were modelled in the RpoB
and KatG proteins. A high correlation was found between the level of resistance,
measured by MIC, and the distance to the drug binding site. This information could be
used to predict the effect of novel variants on drug resistance. For example, in theory it
may be possible to perform a genome-wide assessment of the effects of all possible
mutations on protein structures. Drug resistance can be conferred by changes to protein
stability, protein-protein interactions and ligand binding. There are many programs

which can collect metrics on the changes of these properties caused by mutation. A
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potential route of future investigations could be the application of deep neural networks
,which could model the effect of multiple parameters, to these metrics to predict drug
resistance variants. However, many of the protein structures for drug targets are

currently unavailable or do not characterise the whole protein.

After successful implementation of the GWAS method (Chapter 3), in Chapter 4 | applied
the analysis pipeline on a global set of 6,465 strains. This dataset combined publically
available data and our own in-house sequencing, and represents one of the largest
studies of drug resistance in Mtb to date. The large sample size (n>6,000) meant | was
able to detect resistance variants at low minor allele frequency, as well as the genes
involved by combining the rare alleles (as applied in Chapter 3). Large sample sizes are
needed to perform per variant approaches, and thereby provide a higher resolution to
identify causal variants. This may be difficult to achieve for new forms of resistance
where samples sizes are small, but the effects sizes are likely to be large. In my work,
lineages 1, 2, 3 and 4 were represented, allowing for the detection of strain-specific
effects along with increasing the chance to pick up mutations appearing convergently
across all lineages using the PhyC approach. To look for novel variants the results from
the GWAS and PhyC methods were compared to the well-established resistance variant
list from the TBProfiler database. A large number of mutations were found in well-
established resistance loci such as rpoB and katG. Additionally, | report several novel
mutations which were not present in the database. These will need to be validated using
allelic exchange experiments, and is beyond the scope of my thesis. However, | looked
at the effect of adding the new mutations on the sensitivity of the database and found

sensitivity gains ranging from 1% (isoniazid/rifampicin) to 55% (PAS) para-amino salicylic
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acid. Many small indels and large deletions were found in drug activating enzymes.
Using small indels increased the sensitivity from 20% to 40% for PAS, adding large
deletions increased this 65%. By including these new mutations, we can improve
predictive accuracy of mutation libraries and bring in-silico prediction a step closer to
application in a clinical setting. By developing large databases across clinical settings of
well characterised Mtb with whole genome sequences and DSTs, it may be possible
apply machine learning methods to detect mutations and through a learning process
update mutation libraries®. Analyses involving large sample sizes are likely to be robust

to errors in DSTs, and the use of MIC values may assist issues with resistance cut-offs.

To date, mutation libraries have focused on SNPs and small indels in drug targets or
activators. Although relatively rare for some pro-drugs such as INH, large indels seem to
play a major role in PAS and ETH resistance and calls for the integration large deletion
calling into existing profiling tools. Association was found between the XDR phenotype
and the efflux pump drrA which has been reported to cause resistance to anitibiotics’.
Another efflux pump (Rv2688c) was associated with fluoroquinolone resistance®. This
gene has been reported to cause resistance to ciprofloxacin and moxifloxacin when
expressed in M. smegmatis®. This highlights the importance of the efflux pumps in
conferring antibiotic resistance and could help to explain the resistance in isolates which

do not have mutations in the drug targets or activators.

In Chapter 3 a correlation was found between the number of mutations in drug
resistance genes with the MIC for that drug. Although | did not have the MIC values for

the 6,545 used in Chapter 4, | looked for a correlation between the distribution of odds
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ratioin a gene and information on the known levels of resistance conferred by that gene.
Unsurprisingly, | found a positive correlation between the median odds ratio and the
level of resistance conferred by the gene. Whilst this data is very preliminary, the odds
ratios of resistance mutations appears to be an epidemiological surrogate of levels of

resistance.

In summary, the work in Chapter 4 has identified potentially new variants, which would
require validation work in laboratory experiments. Whilst this is a slow and expensive
process using Mtb, a number of surrogate models have been proposed*”. M. aurum has
been proposed as a good surrogate model for Mtb due to the similarities in cell wall lipid
content and drug sensitivity profile. A good characterisation of the genome is required
for allelic exchange experiments; however, no draft reference sequence has been
published for M. aurum. In Chapter 5, to facilitate its use as a model organism, | have
analysed sequence data of M. aurum (NCTC 10437) and assembled a draft reference
genome. Comparison of the Mtb reference sequence (H37Rv) with our assembly
revealed a high degree of similarity between drug resistance genes of Mtb and their
homologues in M. aurum. The genome of M. aurum is significantly larger than Mtb and,
as such, was found to contain 2,090 genes which were not found in Mtb. These genes
could potentially influence allelic exchange experiments and high throughput drug
screening by metabolising potential compounds or by providing alternate resistance
mechanisms and should be considered in experimental design. The published draft
reference should aid the development of M. aurum as a surrogate model for Mtb and

aid in the development of new drugs and elucidation of resistance mechanisms. An
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interesting finding was the presence of copy number variants of katG and embB, which

needs to be considered when analysing derivatives of isoniazid and ethambutol.

Whilst drug resistance can be explained by mutations a select few genes or pathway,
phenotypes such as virulence are dictated by a multitude of proteins and pathways,
which interact directly or indirectly interact with the host. Although we have a good
understanding of the genetic variation in Mtb, ~10% of the genome corresponding to
the pe and ppe genes is routinely ignored. Standard mapping techniques do not perform
well with the repetitive sequences present in these genes and as a result are discarded.
In Chapter 6, to improve characterisation of the pe/ppe gene families | performed
genome assembly on a set of 518 isolates with high depth of coverage. All isolates had
>70% fully assembled pe/ppe genes, and the remaining genes were > 90% assembled.
By comparing to the H37Rv reference strain 5,853 SNPs were found in the pe/ppe genes,
equating to roughly 11.6% of the total number of SNPs. Phylogenetic analyses pointed
to a region surrounding the pe_pgrs3 and pe_pgrs4 genes causing anomalous clustering
of strains. A large number of variants were observed in this region across the dataset.
These genes share a highly similar sequence and could potentially recombine. |
hypothesised that recombination between these genes contributes towards the large
amount of sequence diversity seen in this region. In Chapter 7 | used PacBio sequencing
to confirm the presence of a large structural variant occurring in a lineage 2 strain. This
variant caused the insertion of a large amount of sequence in between the PE_PGRS3
and PE_PGRS4 genes. Sequence annotation reported two small open reading frames
within this new region. This work demonstrates that, in general, the pe/ppe genes show

a lineage specific pattern of variation, and intragenic recombination may contribute
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towards this variation. This variation may contribute towards phenotypes which differ
between strains, such as transmissibility and virulence, especially since the pe/ppe
genes are thought to be in contact with host cells. The pe/ppe genes have been
proposed as vaccine candidates. This work has highlighted the presence of selection
acting on a subset of these genes and needs to be considered in the development

process.

The work so far has focused on the analysis of DNA sequence, methylation of DNA can
modulate the effects of genomic variation. In Chapter 7 | sought to use PacBio SMRT
sequencing to characterise methylation in Mtb and to confirm observations described
in Chapter 6. The dataset used for PacBio sequencing included strains from diverse
genetics to capture as much genetic variation as possible. Sixteen isolates were
sequenced and supplemented with two sequences from the ENA database. These
strains were selected to represent the diversity seen in Mtb, with all lineages except
lineage 7 represented. Future work should consider lineage 7, as it is an intermediate
strain. Three candidate motifs were identified, although not all motifs were methylated
in each sample. The differential methylation of motifs in different strains prompted me
to look for mutations which might lead to the lack of methylation and analyse these in
terms of their distribution across the lineages. Six potential loss of function (LOF)
mutations were identified and their distributions were characterised in the >6000
strains described in Chapter 4. Surprisingly, loss of function in methyltransferase genes
is common. All lineage 3 isolates and 71% of lineage 4 isolates contained a LOF mutation
in the MTase associated with the GATN4RTAC motif. All lineage 2 isolates harboured a

LOF mutation in the MTase (MamA) associated with the CTCCAG motif. Previous reports
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have shown that strains lacking a functional copy of MamA had a decreased survival rate
in hypoxic conditions®. Interestingly, “modern” Beijing lineages have been reported to
upregulate the DosR regulon’ which is regulated in response to hypoxia®. Whether the
co-occurrence of the LOF in MTase and upregulation of the DosR regulon is simply
chance or whether they are linked would be an interesting question to investigate. The
effects of a MamA LOF in H37Rv strains have been investigated, where this strain-type
have normal expression of the DosR regulon®. Application of a Beijing strain might lead
a different effect on the survival rate. The thesis work puts methylation in Mtb in a global
context and demonstrates the strain and lineage specific methylation patterns. Little
functional work has been performed to elucidate the effect of methylation in TB, and
this work highlights the importance role that methylation could play in explaining
phenotypic differences between strains. Future work could include investigating gene
expression and the heritability of methylation. Strains could be whole genome
sequenced using PacBio technology and whole transcriptome sequenced using an
[llumina platform. This would allow investigation of the direct effect of methylation on
transcription. Additionally, PacBio sequencing of transmission clusters could provide

insights into the heritability of methylation in Mtb.

In Chapter 8, | assessed the potential of using host and pathogen genomic data to
identify host-pathogen interactions. | hypothesised that the lack of replication in GWASs
could be due to the differential strains circulating globally. Previous studies have shown
a close co-evolution between humans and Mtb°. This evolutionary effect could lead to
adaptation of Mtb or resistance of humans to historically circulating strains. | performed

an analysis of host genotyping and pathogen WGS data from Thailand to identify
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potential interactions, as measured by the co-occurrence of mutations on both genomes
in a genome-to-genome analysis. Using a GWAS, using the pathogen genotypes as a
phenotype | identified highly significant associations between subclades of Mtb and
human variants. | also find, to a lesser extent, association between the HLA region and
lineage 1. These putative interactions could potentially represent selection acting on
the pathogen to evade the host immune system, however validation is required. Using
a similar dataset from another population with similar pathogen strains in circulation
(e.g. Vietnam) could provide the support required before functional work is performed.
Work is underway to perform a similar analysis within a Vietnamese TB cohort, and

could lead to validation of findings.
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9.2 Conclusions

This thesis presents the analysis of Mtb and host genomic data to characterise the
variation and its downstream effects. Chapters 2 to 5 focus on the evolution of drug
resistance and the applicability of NGS to predict drug resistance. Chapters 6 and 7 focus
on the less well characterised variation of the pe/ppe genes and methylome which could
correlate to phenotypic differences between strains. Finally, Chapter 8 integrates host
data to look for specific interactions between the two genomes. | hope that this data
will enable researchers to answer questions concerning the diversity of Mtb and that
results from this work will contribute towards our understanding of this complex

pathogen.

9.3 The future of Tb genomic analysis

The cost of sequencing has fallen at a faster rate than Moore’s law predictions'® and is
likely to continue along this trajectory in the next couple of years. This price drop has
enabled sequencing of thousands of isolates as demonstrated in this thesis. The
bottleneck to scaling up Mtb sequencing projects currently lies at the culture step.

Whilst significant strides have been made towards the achievement of this goalll'lz,

a
cost effective and high throughput solution is still lacking and further development is
needed. We have shown the value of having big datasets to discover novel drug
resistance variants. As national TB programs start to adopt WGS as a diagnostic tool a
large amount of data will be collected. This not only has an impact at the patient level,
but serves to provide an epidemiological view of TB at a national and international level.

Work should focus on building a platform for real-time analyses of new sequence data

to provide useful information, such as drug resistance, to clinicians. Additionally,
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sequence data generated in clinics could be sent to a centralised database along with
meta data such as location and date of collection. Here, new data could be integrated
with all other sequences in real-time to update epidemiological metrics which could help
with developing control measures. Results from DSTs could be fed in and a real-time
GWAS could be envisioned whereby, p-values are updated on-the-fly to create a live
drug resistance database. As more data is generated, the sensitivity and specificity of
the database will increase too, thereby encouraging more countries/regions to take part
and generating a positive feedback loop. Geographical data could also provide insights
into routes of transmission and help TB programs identify high risk areas and where to
focus efforts. As host-based therapies advance, so will the need to characterise host-
pathogen interactions'>. Data from patients could optionally be collected at the same
time as the pathogen and used in a similar analysis as described in Chapter 8. This could
potentially delineate the molecular interaction mechanisms and lead to a more effective
host-directed therapy. Future advances in technology and software will bring prospect
of sequencing in the clinic closer to realisation, helping with patent management and
decreasing the burden on public health services. This in turn will facilitate the
epidemiological surveillance of TB on a national and international level and is likely to
lead to greater insights into the disease and control measures, leading to the fulfilling of

WHO targets for eradication.
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