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ABSTRACT

Background: Persons with congestive heart failure may be at higher risk of the acute effects 

related to daily fluctuations in ambient air pollution.  To meet some of the limitations of previous 

studies using grouped-analysis, we developed a cohort study of persons with congestive heart 

failure to estimate whether daily non-accidental mortality were associated with spatially-resolved, 

daily exposures to ambient nitrogen dioxide (NO2) and ozone (O3), and whether these 

associations were modified according to a series of indicators potentially reflecting complications 

or worsening of health. 

Methods: We constructed the cohort from the linkage of administrative health databases. Daily 

exposure was assigned from different methods we developed previously to predict spatially-

resolved, time-dependent concentrations of ambient NO2 (all year) and O3 (warm season) at 

participants’ residences. We performed time-stratified case-crossover and nested case-control 

analyses that provide two different epidemiological parameters of effect: the case-crossover 

design contrasts the same person at different times, and the nested case-control design contrasts 

different persons at similar times. We modelled the effects of air pollution and weather (case-

crossover only) on mortality using distributed lag nonlinear models over lags 0 to 3 days. We 

developed from administrative health data a series of indicators that may reflect the underlying 

construct of “declining health”, and used interactions between these indicators and the cross-basis 

function for air pollutant to assess potential effect modification.

Results: The magnitude of the cumulative as well as the lag-specific estimates of association 

differed in many instances according to the metric of exposure. Using the back-extrapolation 

method, which is our preferred exposure model, we found for the case-crossover design a 

cumulative mean percentage changes (MPC) in daily mortality per interquartile increment in NO2  

(8.8 ppb) of 3.0% (95% CI: -0.9, 6.9%) and for O3 (16.5 ppb) 3.5% (95% CI: -4.5, 12.1). For O3 

there was strong confounding by weather (unadjusted MPC = 7.1%; 95%CI: 1.7, 12.7%). For the 

nested case-control approach the cumulative MPC for NO2 in daily mortality was 2.9 % (95% CI: 

-0.9, 6.9%) and for O3 7.3% (95% CI: 3.0, 11.9%). We found evidence of effect modification 

between daily mortality and cumulative NO2 and O3 according to the prescribed dose of 



furosemide in the nested case-control analysis, but not in the case-crossover analysis.

Conclusions: Mortality in congestive heart failure was associated with exposure to daily ambient 

NO2 and O3 predicted from a back-extrapolation method using a land use regression model from 

dense sampling surveys. The methods used to assess exposure can have considerable influence on 

the estimated acute health effects of the two air pollutants.  

Keywords: ambient air pollution; cohort study; congestive heart failure; mortality; nested case-

control; case-crossover; nitrogen dioxide; ozone.

 

Funding: Stephane Buteau was supported by the Canadian Institute for Health Research 

(Doctoral Award - Frederick Banting and Charles Best Canada Graduate Scholarship 

(201310GSD)). Dr. Gasparrini was supported by a research grant from the Medical Research 

Council, UK (Grant ID: MR/M022625/1).

Conflict of interest: none declared.



1

1 Associations between ambient air pollution and daily mortality in a cohort of 

2 congestive heart failure: Case-crossover and nested case-control analyses 

3 using a distributed lag nonlinear model
4
5
6
7
8 Authors: Stephane Buteau1,2, Mark S. Goldberg1,3, Richard T. Burnett4, Antonio Gasparrini5, 

9 Marie-France Valois1,3, James M. Brophy1,6, Dan L. Crouse7, Marianne Hatzopoulou8

10

11 1. Department of Medicine, McGill University, Montreal, Quebec, Canada 

12 2. Institut national de sante publique du Quebec (INSPQ), Montreal, Quebec, Canada

13 3. Division of Clinical Epidemiology, Research Institute of the McGill University Hospital 

14 Centre, Montreal, Canada

15 4. Population Studies Division, Health Canada, Ottawa, Ontario, Canada.

16 5. Department of Medical Statistics, London School of Hygiene and Tropical Medicine, 

17 London, United Kingdom

18 6. Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 

19 Montreal, Canada  

20 7. Department of Sociology, University of New Brunswick, Fredericton, New Brunswick, 

21 Canada; New Brunswick Institute for Research, Data, and Training, Fredericton, New 

22 Brunswick, Canada 

23 8. Department of Civil Engineering, University of Toronto, Toronto, Ontario, Canada 

24
25
26 Correspondence: Stephane Buteau, Division of Clinical Epidemiology McGill University 

27 Health Center, Montreal General Hospital, Livingston Hall, L8-113, 1650 Cedar Ave, Montreal, 

28 QC H3G 1A4. 

29 Tel:  (514) 934-1934, ext 36922. Email: stephane.buteau@mail.mcgill.ca 

30

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56



2

31 1. INTRODUCTION 

32 The associations between ambient air pollution and acute health events (e.g., mortality, 

33 hospitalizations) have been most often investigated using grouped analyses of parallel time series 

34 or grouped case-crossover designs (Goldberg et al., 2003), which estimate marginal changes in 

35 risk when the exposure is assumed to be the same across individuals living in a geographically 

36 circumscribed area (Lu et al., 2008; Lu and Zeger, 2007; Thomas, 2009). In these types of 

37 studies, the objective is to determine whether there are increases in the numbers of 

38 hospitalizations or deaths on the day, or the next few days, following an increase in the level of 

39 air pollution. 

40 A limitation of these types of studies is that they rely on aggregated data, thus providing limited 

41 or no information on individual risk factors and not accounting for individual characteristics or 

42 clinical conditions that may vary on short time scales and which may confound the associations 

43 or modify the effects of air pollution (Goldberg and Burnett, 2005). An additional issue is that 

44 exposure is estimated from routine monitoring systems that are not dense enough to capture 

45 small-scale variability, particularly for air pollutants that exhibit greater spatial variability, such 

46 as some traffic-related air pollutants (Crouse et al., 2009; Deville Cavellin et al., 2016; Jerrett et 

47 al., 2007).

48 One group of persons that may be at higher risk of adverse health events after exposure to 

49 exogenous insults are those with congestive heart failure. In Canada, approximately 600,000 

50 persons are affected by congestive heart failure, with 50,000 new cases diagnosed every year 

51 (Heart and stroke foundation of Canada, 2016). Epidemiological time-series and case-crossover 

52 studies, including time series of mortality conducted in Montreal (Quebec, Canada) (Goldberg et 

53 al., 2001a; Goldberg et al., 2013; Goldberg et al., 2003b), have reported some of the strongest 

54 positive associations between increases in ambient air pollution and daily mortality, 

55 hospitalisations and emergency department visits in people having congestive heart failure 

56 (Colais et al., 2012; Forastiere et al., 2007; Goldberg et al., 2003; Goldberg et al., 2013; Haley et 

57 al., 2009; Hsieh et al., 2013; Koken et al., 2003; Lee et al., 2007a; Lee et al., 2007b; Peel et al., 

58 2007; Pope Ca et al., 2008; Rappold et al., 2011; Stieb et al., 2009; Symons et al., 2006; Ueda et 

59 al., 2009; Wellenius et al., 2005; Wellenius et al., 2006; Yang, 2008; Zanobetti et al., 2009). 

60 Findings from panel studies also support that air pollution may affect health in persons with heart 
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61 failure, as indicated by intermediate physiological parameters such as oxygen saturation, pulse 

62 rate and diastolic blood pressure (Goldberg et al., 2008; Goldberg et al., 2009; Goldberg et al., 

63 2015b).

64
65 To meet some of the limitations of the studies using grouped-analysis, we developed a cohort 

66 study of persons with heart failure, with the objectives to estimate whether non-accidental 

67 mortality rates among people diagnosed with congestive heart failure were associated with 

68 spatially-resolved, daily exposures to ambient nitrogen dioxide (NO2) and ozone (O3), and 

69 whether these associations were modified according to a series of indicators potentially reflecting 

70 a complication or worsening in a person’s health. We report herein two distinct types of analyses 

71 suitable for estimating the acute effects of air pollution, as well as estimating possible effect 

72 modification: a case-crossover design that contrasts the same person at different times, and a 

73 nested case-control design that contrasts different persons at similar times (Appendix A).

74

75 2. METHODS

76 2.1 The cohort of persons with congestive heart failure

77 We included persons 65 years of age and older, who were resident of Montreal and having 

78 congestive heart failure during the study period of January 01, 1991 to December 31, 2002. We 

79 linked administrative health databases as described previously (Goldberg et al., 2013; Goldberg 

80 and Burnett, 2005). The databases covered the period 1989-2002, inclusive, and included the 

81 registration file from the universal Quebec Medicare system (Régie de l’assurance maladie du 

82 Québec, RAMQ), the hospital discharge file, the drug prescription file that included all 

83 prescriptions reimbursed during this time period by the Quebec Medicare system for individuals 

84 65 years of age and older, the fee-for medical service file, and the mortality file. These files also 

85 include sex and date of birth, as well changes in participants’ addresses, according to 

86 geographical districts defined by the first three characters of the six-character postal code. These 

87 districts represent a block face or a large apartment complex and reflect “natural 

88 neighbourhoods” (Ross et al., 2004). There were 98 three-character postal code districts in 

89 Montreal in 2001, ranging from 0.3 to 28 km2 (average of approximately 6 km2) depending on the 
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90 population density. Appendix Figure B1 shows the boundaries of these districts from the 2001 

91 Census Boundary Files (Statistics Canada, 2001).

92
93 Appendix B provides a detailed description of the methods used to construct the cohort and 

94 shows a schematic of the study design (Figure B2). Briefly, the date of initiating the cohort was 

95 January 1, 1991 and the last date of entry was January 1, 2001, thus leaving a potential of at least 

96 two years of follow-up, as the follow-up ended for all non-censored subjects on December 31, 

97 2002. Those entering the cohort were followed until death, migration out of the Montreal area, or 

98 termination of follow-up. The cohort was dynamic and because of the information about 

99 residential locations was time-varying, it allowed for a person who moved out of Montreal to re-

100 enter the cohort later if they moved back into the study area.

101
102
103 2.2. Definition of congestive heart failure

104 We defined congestive heart failure using algorithms developed previously (Goldberg et al., 

105 2013): 1) a diagnosis of congestive heart failure in the hospital discharge record or; 2) one or 

106 more procedures for congestive heart failure and at least one prescription for a diuretic and 

107 digoxin or; 3) one or more procedures for congestive heart failure and at least one prescription for 

108 a diuretic and an angiotensin converting enzyme inhibitor.  Congestive heart failure diagnoses 

109 and procedures were identified using the International Classification of Diseases (ICD), 9th 

110 Revision codes (see Appendix Table C1 for details).

111
112 2.3. Daily estimates for ambient air pollution and weather

113 NO2 and O3 were two pollutants measured in Montreal routinely by the Canadian National Air 

114 Pollution Surveillance network of fixed-site monitors (https://www.ec.gc.ca/rnspa-naps/), 

115 administered by the City of Montreal. According to previous land use regression surfaces 

116 developed from dense sampling surveys in Montreal, NO2 (Crouse et al., 2009) and O3 (Deville 

117 Cavellin et al., 2016) exhibit substantial intra-urban spatial variability (predicted annual average 

118 concentrations ranging from 4.2-35.9 ppb for NO2 and from 0-123 ppb for O3.) 

119 Errors may result when fixed-site ambient monitoring station data are used to estimate small-
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120 scale fluctuations of air pollutants that are spatially heterogeneous. We thus developed a series of 

121 alternative models of O3 and NO2 to estimate daily concentrations according to three-character 

122 postal code districts (Buteau et al., 2017), and we compared these to models that have been used 

123 commonly. Daily estimates of O3 were restricted to the “warm season” (May-September) 

124 whereas estimates of NO2 were for the whole year. Briefly, we computed, for each day of the 

125 study period, 24-hour mean concentrations of NO2 and daily 8-hour mean concentrations of O3 

126 and assigned these to our postal code districts (Buteau et al., 2017):

127 1) Inverse-distance weighting interpolation from daily mean values of all fixed-site monitors 

128 using a first-order decay; 

129 2) A back-extrapolation method (Chen et al., 2010) that used as baseline land-use regression 

130 surfaces (LUR) developed from two dense monitoring campaigns (129 monitoring sites 

131 for NO2, Crouse et al., 2009; 76 sites for O3, Deville Cavellin et al., 2016). These LUR 

132 surfaces were multiplied by an inverse-distance weighting surface interpolated for each 

133 day of study period from the ratios of concentrations observed at the same fixed-site 

134 monitors that were operational at baseline (i.e., year the land use regression surface was 

135 developed) and on the day of interest; and

136 3) A Bayesian maximum entropy model (BME) to estimate daily concentrations of O3 that 

137 incorporated daily measurements from fixed-site monitors and spatial predictions from a 

138 LUR developed from fixed-site monitors (Adam-Poupart et al., 2014). 

139 In addition, we developed two other exposure metrics that have been used often in the literature, 

140 namely: 

141 4) The daily mean of concentrations measured at the nearest monitor; and

142 5) The average of concentrations across all monitoring stations. This daily estimate had no 

143 spatial variability and was only used in the case-crossover analysis in which comparisons 

144 were made across time.

145 We showed previously that depending on the methods used to predict concentrations there could 

146 be substantial differences in the daily mean exposure assigned to a postal code area on a given 

147 day (Buteau et al., 2017). In view of these differences, and because we lacked a gold standard to 

148 ascertain which model provided the “best” estimates, we thus decided to use, in both designs, the 

149 above set of spatially-resolved, daily residential exposures to NO2 and O3. 
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150 We used hourly weather data from a meteorological station that is operated by Environment 

151 Canada (Goldberg et al., 2013; Goldberg et al., 2006; Goldberg et al., 2009). The station is 

152 located at the Pierre-Elliott-Trudeau International Airport (Latitude: 45°28′05′′N; Longitude: 

153 73°44′29′′W), approximately 30 km west of downtown Montreal. From the various metrics of 

154 weather available, we retained only daily mean maximum temperature and mean relative 

155 humidity for our analyses. With only one site for weather, we could not develop a spatiotemporal 

156 model for these variables.

157
158 2.4. Statistical analyses 

159 We applied a case-crossover design that contrasts the same person at different times, and an 

160 incidence density case-control nested within the cohort that estimates rate ratios across subjects 

161 (Maclure, 2007; Maclure and Mittleman, 2000). Both models are suitable for investigating the 

162 acute effects of air pollution, as well as estimating possible effect modification. The rationale for 

163 using both analyses was that the regression coefficients (or smoothed functions) in each design 

164 are estimated consistently with alternative definitions of the risk sets, thus providing two 

165 parameters of effect with distinct inferential interpretation. In Appendix A, appealing to the 

166 partial likelihood function of the Cox model, we show explicitly how to interpret the estimates in 

167 each of these designs. 

168
169 In both designs, we used the above set of spatially-resolved, daily residential exposures to NO2 

170 and O3 and we used distributed lag nonlinear regression models (DLNMs) that account 

171 simultaneously for the delayed and possible non-linear effects of air pollution and weather on 

172 daily mortality (Armstrong, 2006; Gasparrini et al., 2010; Gasparrini, 2014).

173 2.4.1 Case-crossover analyses 

174 The case-crossover design was developed originally to investigate acute responses to 

175 environmental triggers by using each subject as their own control in a matched analysis, similar 

176 to a matched case-control study (Maclure, 1991; Maclure and Mittleman, 2000; Maclure and 

177 Mittleman, 2008; Mittleman et al., 1995), and then using a conditional logistic model, or 

178 equivalently a stratified Cox model (Prentice and Breslow, 1978), to obtain a population 

179 “average”. Therefore, by design, the case-crossover analysis estimates an average within-person 
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180 risk (Appendix A) and controls for individual time-independent factors throughout each subject’s 

181 hazard period and allows for adjustments of causal factors between subjects. The design contrasts 

182 exposure of a plausible hazard period immediately preceding the event to that of referent periods 

183 assumed to be representative of the exposure distribution in the non-case time periods at risk. 

184 We performed the case-crossover analysis using a time-stratified design (Levy et al., 2001; 

185 Lumley and Levy, 2000; Lumley and Sheppard, 2000), but we considered each subject separately 

186 rather than as a grouped analysis. Thus, for each subject we matched the day of death to all 

187 similar days of the week within the same month. The use of control periods after the event is 

188 suitable because the exposures cannot be influenced by the event. In grouped analyses, the time-

189 stratified approach has been shown to minimize bias by controlling for unwanted secular trends 

190 in the air pollution and mortality time series (Janes et al., 2005; Mittleman, 2005). 

191 We assigned time-varying exposures to case and control days using the daily mean 

192 concentrations across monitoring stations as well as the four spatially-resolved concentrations of 

193 O3 and NO2 estimated at participants’ residences. We modelled each air pollutant and metric of 

194 exposure separately adjusting only for weather conditions, as time trends and time-independent 

195 factors were controlled implicitly by design. We modelled weather using maximum temperature 

196 and average relative humidity. 

197 Rather than analyzing air pollutants, temperature and relative humidity at separate lags, we made 

198 use of the DLNMs (Gasparrini, 2014). We selected a lag period of four days for the effects of air 

199 pollution (i.e., lag 0 to lag 3, where lag 0 days corresponds to the case and referent days) as most 

200 studies, especially in Montreal (Goldberg et al., 2013), have not found effects for air pollution 

201 beyond this period. We used the same lag period for weather variables as for the air pollutants, as 

202 we suspected that using a longer lag structure could result in over-adjustment of the effects of air 

203 pollution (Goldberg et al., 2013) or possibly a loss of power (Gasparrini et al., 2016). Different 

204 smoothing functions were chosen for each predictor and lag spaces. Given our limited lag period, 

205 we used an unconstrained lag structure. 

206 We performed the analysis using an extension of the Cox proportional hazards model for time-

207 dependent variables (Fisher and Lin, 1999; Therneau and Grambsch, 2000). We accounted for the 

208 matched nature of the selection of cases and controls by defining time intervals that were specific 

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392



8

209 to each individual and not overlapping (this approach is equivalent to conditional logistic 

210 regression). Time-independent factors (e.g., gender, socio-economic status) are accounted for by 

211 design; thus, our final model was simple, comprising smoothing terms for the air pollutants, 

212 maximum temperature, and relative humidity, which were represented by their respective cross-

213 basis functions. 

214
215 We assessed potential nonlinearity in the response functions for the three covariates (i.e., air 

216 pollutants, maximum temperature, relative humidity) by fitting univariate models using natural 

217 cubic splines, using two and three degrees of freedom (knots placed at equally spaced percentiles 

218 of the variable’s distribution). The “best” fit was assessed through visual inspection of the 

219 response function and comparisons of the Akaike information criterion (a measure of goodness-

220 of-fit; AIC; (Akaike, 1974)), with a lower AIC suggesting a better fit to the data, although we 

221 excluded smoothers that produced implausible “wiggles” in the response curves. Response 

222 functions that were consistent with linearity were replaced by linear functions.

223 2.4.2. Nested case-control analyses

224 We conducted nested case-control analyses using incidence density sampling with calendar time 

225 as the time axis. We generated a risk set at each failure time that was matched on gender, with up 

226 to 100 non-censored, matched subjects selected randomly at the failure time to serve as 

227 controls. One hundred controls provided a substantial computational benefit, yielding estimates 

228 similar to those obtained from an entire cohort analysis (Breslow et al., 1983; Essebag et al., 

229 2003; Kass and Gold, 2005), and without affecting statistical precision (Breslow and Day, 1987; 

230 Breslow et al., 1983; Essebag et al., 2005). After the risk sets were created, we incorporated the 

231 spatial-temporally resolved daily concentrations of O3 and NO2 using each participant’s three-

232 character residential postal code at each failure time. In contrast to the case-crossover the daily 

233 mean across monitoring stations could not be used because this analysis requires variation in the 

234 daily exposure across individuals.  This analysis provides an estimate of the between-person 

235 hazard ratio for immediate and slightly delayed effects of exposure.  

236 We used the same modelling strategy as in the case-crossover analysis. Use of time intervals in 

237 the time-dependent Cox regression model to define each risk set, rather than strata, led to 

238 computational times that were 300 times faster (see Appendix F for an example of the R code). 
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239 Using the DLNM framework, we selected a lag period of 4 days, and we used the same strategy 

240 to assess the functional form of the air pollution-daily mortality association. In contrast to the 

241 case-crossover analysis, weather was controlled by design as cases and controls were matched by 

242 calendar time. We adjusted our models for current age (sex was a matching factor in defining the 

243 risk sets) and for the following area-based contextual variables: median household income; 

244 unemployment rate; percentage of adults who had not completed high school. These were all 

245 continuous variables that were extracted from the 1996 census (Statistics Canada) available for 

246 areas defined by the three-first characters of the postal code (thus matching the spatial level of 

247 information we had about residential location). Potential nonlinearity in the response functions 

248 for each air pollutant, age, and contextual variables was assessed using natural cubic splines 

249 using a range of degrees of freedom. We inspected the resulting fitted curves and compared the 

250 AICs.

251 2.4.3. Presentation of results

252 We present results of both analyses by pollutant, recognizing the different parameters being 

253 estimated. In both sets of analyses, the effects of NO2 and O3 were found to be linear (see results). 

254 To compare pollutant-specific estimates within each type of analysis, we report results as the 

255 mean percentage change from the estimated regression coefficient for an increase of the 

256 interquartile (IQR) in the daily mean concentration of each air pollutant metric, computed as: 

257 [exp(ln(OR) x IQR) -1] x 100%, where OR is the estimated odds ratio for a unit increase in the 

258 pollutant. 

259
260 2.4.4. Potential effect modification by indicators of “health”

261 Individuals having congestive heart failure have different natural histories. We presumed that 

262 exogenous insults interfere in potential causal pathways linking air pollution and mortality by 

263 either “triggering” declines in health or causing exacerbations of concurrent conditions. These 

264 changes in health potentially modify a person’s risk of experiencing adverse health effects related 

265 to daily fluctuation in air pollution. As there is no gold standard by which to define indicators of 

266 “health”, we have developed from the administrative health data the following four indices that 

267 may reflect the underlying construct of “declining health”: 1) the number of hospitalisations and 
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268 emergency room visits in the past three months and 2) in the past six months; 3) the cumulative 

269 number of hospitalisations during the whole follow-up; 4) the prescribed dose of furosemide (also 

270 referred as Lasix, a brand name under which the drug is marketed), which is a loop diuretic 

271 commonly used in the treatment of heart failure to prevent the body from absorbing too much salt 

272 and thus relieving symptoms of congestion. The first three indicators were treated as ordinal, with 

273 all cumulative counts greater than the 99th percentile of the marginal distribution rounded to this 

274 value. The fourth indicator based on furosemide was a four-level categorical variable (not taking 

275 furosemide, “mild” dose (0-40mg), “moderate” dose (41-80mg), “high” dose (>80mg, or 

276 intravenous or oral solution)). More details about the rationale and assumptions underlying each 

277 of these indicators are presented in Appendix D.

278
279 In both types of analyses, we considered these four indicators of health separately to determine 

280 whether they modified the associations between air pollution and mortality. In the case-crossover 

281 analyses, these indicators were time-invariant (we assigned the value at time of death), whereas 

282 in the nested case-control study they were time-dependent. We investigated effect modification 

283 using an interaction term between the indicator of health and the cross-basis function for the air 

284 pollutant (Gasparrini et al., 2015; Gasparrini et al., 2016).  We report estimates of association and 

285 their 95% confidence intervals for an interquartile increment in the air pollutant. (Appendix E 

286 presents the procedure and an example of the R code used to investigate effect modification for 

287 both ordinal and categorical indicators of health.)

288
289 2.4.3. Other sensitivity analyses 

290 For NO2, we also conducted the analyses restricted to the warm season (May-September). For 

291 both pollutants and designs, we also investigated deviations from a multiplicative model by 

292 assessing effect modification by gender. For each metric of exposure, we included in our 

293 regression models an interaction term between gender and the distributed lag function for air 

294 pollutant, and we reported estimates of association and 95% confidence interval for each gender.

295
296 In a previous paper (Buteau et al., 2017), in which we developed spatially-resolved 

297 concentrations of O3 and NO2 of participants’ residences in Montreal, we found that the spatial 

298 pattern of agreement differed between pollutants; for O3, but not NO2, postal code districts that 
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299 showed greater disagreement were mostly located near the city centre and along highways. We 

300 thus performed case-crossover analyses stratified by postal code area according to the level of 

301 absolute agreement in the daily exposure assigned to postal codes across the different metric of 

302 exposure. For each pollutant, we created two strata (one for postal code districts showing greater 

303 agreement across the different metrics and another for those of higher disagreement) using the 

304 median value of the mean absolute agreement intraclass correlation (ICC) across all pairs of 

305 metrics as the threshold for determining in which category each postal code was assigned (mean 

306 ICC=0.75 for NO2; mean ICC = 0.65 for O3). 

307 3. RESULTS

308 3.1. Description of the cohort and outcomes

309 Tables 1 and 2 show a description of the cohort. (Table E1 shows additional details about 

310 characteristics of the cases and controls in the nested case-control analysis defined across all 

311 failures.) The cohort comprised 63,534 individuals who were residents of Montreal between 

312 1991-2003, 65 years of age and older, and identified as having congestive heart failure. Mean age 

313 at entry in the cohort was approximately 77 years and with an average follow-up time of 

314 approximately four years. At time of entry in the cohort, many subjects had other important 

315 comorbid conditions in addition to congestive heart failure. The most frequent concurrent 

316 conditions were myocardial infarction, chronic pulmonary disease, and diabetes (about 20% of 

317 prevalence) (Table 2).

318
319 Of the 63,534 cohort members, 31,707 (14,062 men and 17,645 women) died during the follow-

320 up period while being resident of Montreal (Figure 1 shows the spatial distribution of these 

321 deaths). Of these deaths, 11,824 (6,515 women and 5,309 men) occurred during the months of 

322 May to September, inclusive. However, 12 individuals (including one during May-September) 

323 were excluded from the analysis because of an erroneous postal code at time of death, which 

324 prevented us from assigning exposure. Therefore, a total of 31,695 and 11,823 persons who died 

325 during the follow-up period were included in our analyses for NO2 (all year) and O3 (May-

326 September), respectively.

327
328 3.2. Air pollution and weather variables
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329 Appendix Tables E2-E3 show the daily mean concentrations of NO2 and O3 that were assigned to 

330 individuals included in the case-crossover and in the nested case-control analysis, respectively. 

331 For each metric of exposure, the distribution of daily concentrations assigned was similar 

332 between the two designs.  For NO2, the back-extrapolation method had the lowest mean daily 

333 concentrations (16.6 ppb) whereas the other methods had similar mean estimates ranging from 

334 20.1 to 21.6 ppb. The nearest station approach had the wider distribution of NO2 (range: 0 to 

335 169.5 ppb; interquartile range (IQR) = 13.6 ppb) as compared to the other metrics (maximum 

336 values ranging from 90.6-121.8 ppb; IQR ranging from 8.8 and 10.0 ppb).

337
338 For O3, the daily 8-hour mean concentrations were similar between the nearest station, inverse-

339 distance weighting, and BME methods (ranging from 28.7 to 30.8 ppb), whereas the back-

340 extrapolation (21.1 ppb) and the mean of all stations (used in the case-crossover only; 21.6 ppb) 

341 method had a lower mean concentration. However, the back-extrapolation had the widest range 

342 of exposures (maximum values of 148.5-174.3 ppb), whereas the mean of all stations yielded to 

343 the most constrained one (maximum value of 66.6 ppb). 

344
345 The distribution of selected weather variables, for the study period 1991-2003, is presented in 

346 Appendix Table E4. The average maximum daily temperature was 11.3°C, varying from -24.0 to 

347 35.4°C (interquartile range (IQR) of 20.6°C). For the months of May-September, the average 

348 maximum daily temperature was 22.7°C, varying from -1.2 to 35.4°C (IQR of 6.8°C). Maximum 

349 temperature was highly correlated with other metrics of temperature (i.e., minimum and mean) as 

350 well as with the humidex index (Spearman and Pearson correlation coefficients of about 99%; 

351 data not shown).

352
353 Appendix Table E5 shows Spearman correlation coefficients for the selected weather variables 

354 and same-day air pollutants concentrations for the different metrics. Maximum temperature was 

355 positively correlated with both air pollutants, with stronger correlations for O3. Relative humidity 

356 was negatively correlated with both pollutants, but there was no correlation with NO2. 

357 3.2. Associations between daily non-accidental mortality and ambient NO2 and O3

358 The adjusted response-functions fitted as natural cubic splines with three degrees of freedom 
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359 between the odds (case-crossover) and hazards (nested case-control) of non-accidental mortality 

360 accumulated over the 4-day lag period (referred to as the “cumulative lag”) and the different 

361 metrics of NO2 and O3 are shown in Appendix Figures E1-E4. Using two rather than three 

362 degrees of freedom removed many of the “wiggles” (data not shown), thus suggesting that these 

363 variations were attributable to under-smoothing (i.e., using too many degrees of freedom). In all 

364 instances, the 2-df fitted response curves appeared linear and we found a lower AIC, suggesting 

365 an improved fit, when using the linear structure in the fully adjusted models (see Appendix Table 

366 E6). Therefore, we concluded that for the two types of analyses all response functions for the air 

367 pollutants were consistent with linearity.

368 In the case-crossover analysis, we used a distributed lag non-linear model accumulated over lags 

369 0 to 3 days for maximum temperature (non-linear structure fitted as natural cubic splines with 

370 three degrees of freedom (df)) and relative humidity (linear), and time-invariant characteristics 

371 were controlled by design. The unadjusted response-functions between these weather variables 

372 and the odds of non-accidental mortality are shown in Appendix Figure E5. 

373 In the nested case-control analyses, our sampling scheme controlled for gender, weather and 

374 time-related factors, and we adjusted explicitly for age (natural cubic splines with 3 df), and time-

375 varying area-based contextual variables (median household income and unemployment rate fitted 

376 as natural cubic spline functions with 3 df, and percentage of adults who had not completed high 

377 school fitted as linear). Appendix Figure E6 shows the response-functions of the univariate 

378 models between mortality and age and the contextual covariates. 

379 3.2.1. Associations between daily non-accidental mortality and ambient NO2

380 Figure 1 shows the fully-adjusted mean percentage change (and 95% confidence intervals (CI)) in 

381 daily non-accidental mortality for single-day lagged effects from lag 0 to lag 3-days, as well as 

382 for cumulative effects for an interquartile range increase in the daily 24-hour mean NO2 exposure 

383 (all year), according to each type of analysis and metric of exposure. (Appendix Table E7 shows 

384 the numerical values of these figures.) 

385 For the nested case-control analysis, we found negative associations for the nearest station and 

386 inverse-distance weighting, with overall cumulative effects of -5.5% (95% CI: -8.1, -2.9%) and -
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387 9.0% (95% CI: -15.2, -2.4%), respectively. In contrast, using daily concentrations from the LUR 

388 model that was back-extrapolated, the cumulative risk of non-accidental daily mortality over the 

389 4-day lag period was 2.9% (95% CI: -0.9, 6.9%). 

390 For the case-crossover analyses, results were consistent across the different metrics of exposure. 

391 All cumulative response-functions were positive and the mean percentage change in the 

392 cumulative risk of daily non-accidental mortality ranged from 2.3% (mean of stations; 95% CI: -

393 0.8, 5.6%) to 3.0% (back-extrapolation from LUR; 95% CI: -0.3, 6.1%). The effects at single day 

394 lags were similar across all methods; the estimates were essentially null at lag 0 days and 

395 increased in magnitude until lag 2 days, with a negative mean percentage change at lag 3-days. 

396 The cumulative effects from the case-crossover were confounded slightly by weather. The 

397 unadjusted mean percentage changes were between 0.6% and 0.8% higher than in the fully 

398 adjusted estimates (Appendix, Table E8).

399 3.2.2. Association between daily non-accidental mortality and ambient O3

400 Figure 2 shows the results for the daily 8-hour mean exposure to O3 (May-September) using the 

401 same lags as in the analyses of NO2. (Numerical values of the estimates are shown in Appendix 

402 Table E7.)  Note that the scale of the y-axis differs considerably between the two designs. In the 

403 case-crossover analysis we were concerned that adjusting for weather may lead to over-

404 adjustments, as ozone formation during the warm season is generally strongly dependent on 

405 weather conditions, particularly temperature and relative humidity (Camalier et al., 2007; Jacob 

406 and Winner, 2009); therefore, we presented the estimates adjusted and unadjusted for weather. 

407 In the nested case-control analysis, we found a positive cumulative effect for the nearest station 

408 (6.7%; 95%CI: 0.3, 13.5%), inverse-distance weighting (18.5%; 95%CI: -2.6, 44.1%) and back-

409 extrapolation (7.3%; 95%CI:  3.0, 11.9%), whereas the cumulative effect for the BME was close 

410 to null (0.8%; 95%CI: -7.3%, 9.5%). There were substantial differences in the magnitude of 

411 estimated effects at single day lags across the different metrics of exposure, but stronger effects 

412 was found at lag 0 and 3 days for the nearest station, inverse-distance weighting and back-

413 extrapolation methods.
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414 For the case-crossover analysis, the adjusted cumulative estimate was negative for the BME (-

415 3.0%; 95%CI: -10.0, 4.5%) and the nearest station (-2.2%; 95%CI: -19.2, 5.2%). In contrast, 

416 inverse-distance weighting (2.4%; 95%CI: -4.9, 10.3%) and back-extrapolation (3.5%; 95%CI: -

417 4.5, 12.1%) yielded positive associations, whereas the cumulative association was essentially null 

418 for the mean of all stations (0.1%; 95%CI: -5.7, 6.3%). The 95% confidence intervals for all 

419 adjusted estimates substantially overlapped across metrics of exposure and included the null. 

420 Single lag day effects were stronger at lag 0 days for the nearest station and the back-

421 extrapolation analyses, both showed a mean increase of 1.6% in the risk of non-accidental daily 

422 mortality per interquartile increase in daily mean 8-hour O3 exposure. For the other metrics of 

423 exposure, the larger increase in the risk of mortality was observed at lag 1-day, with magnitude of 

424 the effect ranging between 2.2% (95%CI: -2.5, 7.1%) and 2.8% (95%CI: -2.6, 8.5%).

425
426 Adjusting for weather in the case-crossover analysis did not yield a meaningful improvement in 

427 the fit of the model (Appendix Table E8); however, there was strong confounding by weather on 

428 O3 during the warm season, particularly for the BME (from 4.3% to -2.2%) and for the nearest 

429 station (from 4.0% to -3.0%). The unadjusted results were fairly consistent across the different 

430 metrics, with cumulative percentage changes ranging from 4.0% (95%CI: -0.1, 8.3%) to 7.0% 

431 (95%CI: 1.7, 12.7%). For all metrics, the effects at lag 0 days were positive and stronger effects 

432 were observed at lag-1 day, ranging from 2.1% (nearest station; 95%CI: -1.6, 6.0%) to 4.7% 

433 (BME; 95%CI: 0.6, 8.9%). 

434
435
436 3.2.3. Potential heterogeneity in the associations between non-accidental mortality and air 

437 pollution

438 Appendix Figure E7 shows the response-functions of the univariate models between daily 

439 mortality and each of the four indicators of health. Appendix Table E9 shows the effects of 

440 adjustments for each indicator of health on the model fit and hazard of non-accidental mortality 

441 in the nested case-control analyses (in the case-crossover analysis, these were controlled by 

442 design). In general, the influence on the estimates was modest but adjustment for the indicator of 

443 hospitalisations and emergency department visits yielded lower AICs.
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444 Figure 3 shows the cumulative risk of non-accidental mortality over the entire lag period per 

445 interquartile increase in each air pollutant, according to the prescribed dose of furosemide. In the 

446 nested case-control analyses, we found evidence of effect modification for both air pollutants. 

447 However, in the case-crossover analyses, the confidence intervals were wide, particularly for the 

448 high dose category arising from a limited number of subjects, and there was no evidence of 

449 heterogeneity.

450 The results of the assessment of effect modification according to the number of hospitalisations 

451 and emergency room in the past three months, six months and the number of hospitalisations 

452 since the beginning of follow-up, are presented in Appendix Figures E8-E10. There were some 

453 positive trends in the estimated mean effect according to values of these indicators, particularly 

454 for O3 during the warm season. However, for all three indicators, the confidence intervals of the 

455 estimated effects were wide, particularly for the higher values of the indicators, and there was 

456 substantial overlap between the different values of the indicators.  

457 Cumulative estimates of associations by gender are presented in Appendix Figure E11. For NO2, 

458 there was no evidence of heterogeneity by gender.  For O3, in the nested case-control study, men 

459 were found to be at greater risk when exposure was estimated from the nearest station (women: -

460 1.4% (95%CI: -8.7, 6.6%); men: 46.2% (95%CI: 13.6, 88.3%) and inverse-distance weighting 

461 (women: -2.2% (95%CI: -23.5, 24.9%); men: 46.2% (95%CI: 13.6, 88.3%)), whereas there was 

462 no evidence of heterogeneity by gender for the other metric of exposure as well as in the case-

463 crossover analysis. 

464 For NO2, restricting the analyses to the “warm” season generally lead to attenuated estimates, but 

465 confidence intervals were broad and substantially overlapped, thus we concluded that there was 

466 no evidence of effect modification (Appendix, Table E10). For both pollutants, we also found no 

467 evidence of heterogeneity for three-character postal code districts that showed higher agreement 

468 between the different metrics as compared to postal code districts that showed lower agreement 

469 (Appendix Table E11). 

470
471 4. DISCUSSION
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472 In these individual-level analyses of the associations between daily mortality and short-term 

473 exposures to NO2 and O3, we estimated the acute effect of air pollution on mortality using case-

474 crossover and nested case-control designs, as both designs are suitable for investigating the acute 

475 effects of air pollution, as well as estimating effect modification. Although from a statistical point 

476 of view, the case-crossover and nested case-control designs can be viewed as two similar 

477 conditional models using different risk sets, we emphasize that the inferential questions addressed 

478 by each design are distinctly different. The case-crossover design, which contrasts the same 

479 persons at different times, addresses the question “Why this person dies now rather than one or a 

480 few weeks ago?”, whereas the nested case-control, which contrasts different persons at the 

481 similar time, addresses the question “Why this persons dies now whereas others did not?”  

482 (Maclure, 2007; Maclure and Mittleman, 2000). Moreover, another conceptual difference 

483 between the nested case-control and the case-crossover designs resides in their study base, as 

484 persons who did not die were excluded from the case-crossover analysis.  Both designs are valid 

485 and can be used to assess the hypothesis that increases in daily ambient air pollution increases the 

486 risk of daily mortality.

487
488 In the case-crossover analyses, we made use of five alternative exposure metrics and found 

489 similar positive associations between daily mortality and daily ambient NO2. These metrics were 

490 the same as the ones we published previously (Buteau et al., 2017), and in that paper we 

491 concluded that, in view of the substantial differences in daily concentrations of NO2 and O3 
492 predicted at participants’ residences by these different metrics, health effects should be analysed 

493 using multiple exposure assessment methods.

494 For O3, the direction of the associations varied, although statistical variability was substantial. 

495 However, we were concerned with potential over-adjustments by weather. In the eastern United-

496 States, for example, daily maximum 8-hour concentrations of O3 were found to be explained (R2 

497 as high as 80%) by weather, with temperature and relative humidity being the most important 

498 factors (Camalier et al., 2007). Because of this strong dependence, we suggest that weather acts 

499 to some extent as a surrogate for O3, particularly during episodes of high O3 concentrations, and 

500 thus it seems plausible to assume that the true effects of O3 maybe in between the adjusted and 

501 unadjusted values. In the nested case-control analyses, results for NO2 varied amongst the four 

502 alternative exposure metrics, but suggested a positive association for O3. 
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503 We found that the estimates of risk depended on which exposure method was used. This 

504 influence was more pronounced in the nested case-control design for which the contrast in 

505 exposures was essentially driven by the spatial component, as the analysis contrasted same day 

506 exposures between persons living at different location in Montreal. In contrast, the case-crossover 

507 contrasted exposures from the same individual, thus living at the same spatial location, on 

508 different days; thus, the contrast in exposures was essentially temporal. 

509 Although we cannot state which exposure method is the most valid, our preference in exposure 

510 models is the back-extrapolation from a land use regression model because it made use of 

511 measurements from dense sampling surveys that captured the influence of very local sources such 

512 as roadways, whereas the other methods relied solely on measurements from the sparse, fixed-site 

513 monitoring network. Using this exposure metric, in the case-crossover the cumulative mean 

514 percentage changes in daily mortality were 3.0% (95% CI: -0.9, 6.9%) and 3.5% (95% CI: -4.5, 

515 12.1) per interquartile increment in NO2 (8.8 ppb) and O3 (16.5 ppb), respectively. For O3, the 

516 increases in daily mortality unadjusted for weather was 7.1% (95%CI: 1.7, 12.7%). In the nested 

517 case-control approach, the cumulative increases in daily mortality was 2.9 % (95% CI: -0.9, 

518 6.9%) for NO2 and 7.3% (95% CI: 3.0, 11.9%) for O3. These positive associations were 

519 consistent with the findings of the latest time-series study conducted in Montreal (Goldberg et al., 

520 2013); for similar increments in ambient NO2 and O3, the cumulative increases in non-accidental 

521 mortality among the elderly with heart failure were approximately 3.3% (95%CI: 1.2, 5.4%) and 

522 3.4% (95%CI: -2.1, 9.0%), respectively.

523 One main advantage of the case-crossover design is that the self-matching accounts for within-

524 person, time-invariant confounding (Maclure and Mittleman, 2000; Mittleman and Mostofsky, 

525 2014; Weinberg, 2017). Therefore, risk factors, such as smoking history, obesity, physical 

526 activity, are eliminated by design. These are risk factors for which information at the individual 

527 level is typically lacking in cohorts constructed from administrative health data, like ours. In the 

528 nested case-control analyses, we adjusted for these factors by using some area-based indicators of 

529 socioeconomic status, but it is possible that some residual confounding remained. We could not 

530 perform indirect adjustments (Shin et al., 2014; Steenland and Greenland, 2004; Villeneuve et al., 

531 2011) for smoking behaviour and obesity due to unavailability of data at the geographical level 

532 that we used. In some previous cohort studies of air pollution conducted in Canada, indirect 
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533 adjustments for smoking and obesity have had limited impact, generally in the range of +1–2% in 

534 the hazard ratios for non-accidental mortality (Chen et al., 2013; Crouse et al., 2015; Villeneuve 

535 et al., 2013). 

536
537 Historical exposures as well as disease severity and comorbidity are among factors that were 

538 controlled by self-matching in the case-crossover design but may have varied considerably in the 

539 nested case-control analysis between persons in a given risk set. While we consider that these 

540 factors may play an important role in the development of congestive heart failure and contribute 

541 in putting individuals at different risks for exogenous exposures, these are not a common cause of 

542 both acute mortality and daily exposures. Therefore, under our hypothetical model, not 

543 controlling or matching for factors such as disease severity, comorbidities and historical air 

544 pollution exposures should not be expected to bias the results, as these may act not as 

545 confounders but rather as potential effect modifiers. This is the same implicit assumption made in 

546 grouped time series and case-crossover studies. Specifically, we could not assess potential effect 

547 modification by historical exposures to air pollution as we lacked information about residential 

548 locations of participants prior to our study period, we did not have exposure data prior to the 

549 study, and we had no reason to believe that their exposure at entry into the cohort or during the 

550 follow-up period was representative of their exposure decades ago. In addition, in the context of 

551 modeling association using the DLNMs, adjusting for historical exposures will lead to spurious 

552 effects as the “long-term” temporal component cannot be incorporated properly.

553
554 In the present study, we estimated whether a worsening in one’s health, as reflected by our 

555 indicators of health, modified the risk of mortality associated with daily exposures to ambient air 

556 pollution. In the nested case-control analyses, we found evidence of effect modification 

557 according to the prescribed dose of furosemide, but not in the case-crossover analysis. The 

558 differences in the two designs of the results of effect modification may be explained by the study 

559 bases, which differed between the two designs, as the case-crossover is restricted to persons who 

560 died. In addition, in the case-crossover analyses, the indicators of health did not vary substantially 

561 over the one month time period that included the case and referent time periods The definition of 

562 “health” is complex and multidimensional (Goldberg et al., 2015a), and definitions of our 

563 indicators of health were limited by the information that was available in the administrative data. 
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564 To the best of our knowledge, similar indicators have not been used in previous studies of acute 

565 air pollution. The modeling framework used here can form the basis of future investigations to 

566 elucidate factors, such as physiological conditions, disease processes and concurrent comorbidity, 

567 that may modify the underlying risk profile of persons. Such investigations may contribute 

568 important insights both for clinical management and public health in the current context of ageing 

569 populations and increasing rates of age-related diseases, notably cardiovascular diseases. 

570 A main strength of this study was its population-based design conducted over a 12 year follow-up 

571 period and to nearly capturing the entire population of persons 65 years and older residing in 

572 Montreal. To our knowledge, cohort studies have been used only twice (Beverland et al., 2012; 

573 Lepeule et al., 2006) to investigate the associations between acute exposures to ambient air 

574 pollution and daily mortality. In these two cohort studies (Beverland et al., 2012; Lepeule et al., 

575 2006), age rather than calendar time was used to generate risk sets and thus daily means of fixed-

576 monitors were used in principle to distinguish spatial exposures. Although this is a clever way to 

577 solve the problem of resolving exposures spatially, secular trends need to be adequately 

578 accounted for. A strength of our study was the ability to conduct individual-level analysis by 

579 incorporating spatially-resolved time-dependent concentrations of ambient NO2 and O3. 

580 Although we had tens of thousands of deaths and we used a large number of referents, the 

581 confidence intervals were in some instances relatively wide, and this is likely due to lower than 

582 optimal spatial and/or temporal variability. Notably, the inverse-distance weighting method 

583 yielded wider confidence intervals likely because it generated a smoother surface of 

584 concentrations, thus constraining between-person exposure variability. In general, confidence 

585 intervals from our nested case-control analysis were wider as compared to the time-stratified 

586 case-crossover analysis despite using a greater number of referents (100 controls per risk set in 

587 the nested case-control design versus 3-4 control days in the case-crossover design), and this was 

588 probably due to reduced spatial variability in exposure at each failure time as compared to the 

589 case-crossover design which had greater temporal variation at a given location.

590 Another key strength of this study was the application of DLNMs to individual level data 

591 (Gasparrini, 2014). The application of these flexible statistical models can substantially improve 

592 the characterization of relationships between mortality and air pollution and weather. We 
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593 consider that these models are the most appropriate for time series analyses and are clearly an 

594 essential method for characterizing delayed effects in cohort studies. 

595
596 The present study also adds to the limited literature comparing the influence of different methods 

597 to predict daily exposures on the magnitude of the acute mortality or morbidity of air pollution 

598 (Sarnat et al., 2013). Because NO2 and O3 exhibit a substantial degree of spatial variability within 

599 Montreal (Crouse et al., 2009; Deville Cavellin et al., 2016), the expectation is that enhancing the 

600 spatial resolution of our ambient air concentration data should contribute in reducing exposure 

601 measurement errors as compared to assuming that the daily mean concentration of air pollutant is 

602 spatially homogeneous over the study area. However, the spatiotemporal methods used to predict 

603 exposures have limitations (Buteau et al., 2017) and these may in part explain the observed 

604 differences in the estimated associations. In particluar, in the back-extrapolation method it is 

605 assumed that the surface derived from a land use regression model would change from day to day 

606 in proportion to what was observed at fixed-site monitoring stations in the study area. Therefore, 

607 the accuracy of the predictions from this method depends first on the land use regression model, 

608 but also on the number and spatial distribution of available historical monitors. The nearest 

609 station and inverse-distance weighting interpolation both depended entirely on the density of the 

610 monitoring network and ignored sources (e.g., road traffic) and other factors (e.g., 

611 meteorological, built environment, topography) that potentially influence daily concentrations. Of 

612 note is that the monitors are situated in areas to assess compliance to regulations (many monitors 

613 in high air pollution areas) as well as some are placed in residential areas, thus providing an over 

614 representation of high or low concentrations relative to that of population exposure (Sheppard et 

615 al., 2012). The Bayesian maximum entropy model developed for O3 (Adam-Poupart et al., 2014) 

616 was also highly depended on the monitoring network, as the model used measurements at fixed-

617 site monitors and incorporated a land use regression model developed from only the fixed-site 

618 monitors. The predictive ability of a LUR derived from a fixed-site network will be constrained 

619 by the number of monitoring stations and the variability in the land use characteristics 

620 surrounding the monitoring sites (Jerrett et al., 2005).

621 Another limitation was that residential postal codes of subjects, although time-varying, were not 

622 updated on a daily basis. Daily mobility or activity patterns were also not available, but because 

623 of the age and compromised health conditions of participants, it is plausible that many spent a 
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624 greater amount of time near their homes.

625 Potential misclassification of congestive heart failure due to inaccurate diagnostic or coding on 

626 the medical records is another potential limitation. Our definitions of congestive heart failure 

627 were based on knowledge of clinical practice in Quebec but have not been validated against 

628 patient charts and other clinical data. Also, before August 1996 prescriptions for persons age 65 

629 years and over were covered entirely by the Quebec Health Insurance Plan; however, this has 

630 changed through time and the public drug insurance program was estimated to cover 96.6% of 

631 persons aged 65 and over in 1998 and 89.6% in 2003(Goldberg et al., 2013). Thus, it is unlikely 

632 that there were large errors in characterizing these subjects as having heart failure.  

633
634 5. CONCLUSIONS

635 In this population-based cohort study of persons having congestive heart failure in Montreal, 

636 1991-2003, non-accidental mortality was found to be associated with spatially-resolved 

637 exposures to daily ambient concentrations of NO2 and O3 predicted from a back-extrapolation 

638 method using a land use regression model from dense sampling surveys.  We showed that the 

639 method used to assess daily exposures of individuals influenced the estimates of risk. Notably, 

640 this study suggests that more effort is needed to improve exposure models for estimating daily 

641 exposures at the individual level. Additional cohort studies making use of subject-specific 

642 information (including residential history) and of refined spatiotemporal exposure models are 

643 needed to further elucidate how air pollution exposures (both daily and historical) and individual 

644 factors, notably physiological conditions, disease processes (e.g., heart failure severity) and 

645 changes in a person’s health, contribute to the underlying personal risk profile.
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Figure 1. Estimated percentage change in daily non-accidental mortality among subjects 65 years 

of age and over with congestive heart failure according to the interquartile range in daily 24-hour 

mean exposures to ambient NO2 (all year) from different spatiotemporal methods to predict 

concentrations and type of analysis, Montreal, 1991–2003. 

Figure 2. Estimated percentage change in daily non-accidental mortality among subjects 65 years 

of age and over with congestive heart failure according to the interquartile range in daily 8-hour 

mean exposures to ambient O3 (May-September) from different spatiotemporal methods to predict 

concentrations and type of analysis, Montreal, 1991–2003.  

Figure 3. Estimated cumulative percentage change in the (A) nested case-control and, (B) case-

crossover analysis on the risks of non-accidental mortality per interquartile range increase in daily 

mean 24-hour mean exposures to ambient NO2 (all year) and, daily 8-hour mean exposures to 

ambient O3 (May-September), according to the prescribed dose of furosemide. 
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Figure 1. Estimated percentage change in daily non-accidental mortality among subjects 65 years of 
age and over with congestive heart failure according to the interquartile range in daily 24-hour 
mean exposures to ambient NO2 (all year) from different spatiotemporal methods to predict 
concentrations and type of analysis, Montreal, 1991–2003. Interquartile ranges (IQRs) were 13.6, 10.0, 
8.8 and 9.6 ppb for the nearest station approach (“Nearest station”), inverse-distance weighting (“IDW”), 
back-extrapolation from a land use regression (“LUR back-extrapol.”), and the daily mean across all 
stations (“Mean of stations”), respectively.  Numbers on the horizontal axis denote single day lags (0 to 3) 
and the cumulative for these lags (“cumul.”). Dots represent maximum likelihood estimates and bars 
represent 95% confidence intervals. In both type of analysis NO2 was fitted from a distributed lag non-
linear model accumulated over lags 0 to 3 days using a linear structure for NO2 and an unconstrained 
structure for lags. In the case-crossover analyses, time invariant factors and temporal trends were 
controlled by design and we statistically adjusted for maximum temperature (natural cubic spline with 3 
df), and relative humidity (linear), from a distributed lag non-linear model accumulated over lags 0 to 3 
days. In the nested case-control analyses, we adjusted for age (natural cubic splines with 3 df), sex, and 
area-based indicators of socio-economic status including median household income (natural cubic splines 
with 3 df), unemployment rate among adults (natural cubic splines with 3 df), and percent of adults 
without high school diploma (linear). We could not in the nested case-control analyses estimate the mean 
of all stations, as this metric does not have any variability between individuals. 
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Figure 2. Estimated percentage change in daily non-accidental mortality among subjects 65 years of 
age and over with congestive heart failure according to the interquartile range in daily 8-hour mean 
exposures to ambient O3 (May-September) from different spatiotemporal methods to predict 
concentrations and type of analysis, Montreal, 1991–2003.  Interquartile ranges (IQRs) were 19.6, 16.6, 
16.4, 11.6 and 11.8 ppb for the nearest station approach (“Nearest station”), inverse-distance weighting 
(“IDW”), back-extrapolation from a land use regression (“LUR back-extrapol.”), Bayesian maximum 
entropy model (“BME”) and the daily mean across all stations (“Mean of stations”), respectively. We 
present results for the case-crossover adjusting (“Adj. Case-crossover”) and not adjusting for weather 
(“Unadj. Case-crossover”). Numbers on the horizontal axis denote single day lags (0 to 3) and the 
cumulative for these lags (“cumul.”). Dots represent maximum likelihood estimates and bars represent 
95% confidence intervals. In both types of analyses, O3 was fitted from a distributed lag non-linear model 
accumulated over lags 0 to 3 days using a linear function for O3 and an unconstrained structure for lags. In 
the nested case-control analysis, we adjusted for age (natural cubic splines with 3 df), sex, and area-based 
indicators of socio-economic status including: median household income (natural cubic splines with 3 df; 
unemployment rate among adults (natural cubic splines with 3 df); and percent of adults without high 
school diploma (linear). The case-crossover controlled for time invariant factors and temporal trend by 
design and in the adjusted model (“Adj. Case-crossover”) we statistically adjusted for maximum 
temperature (natural cubic spline with 3 df), and relative humidity (linear), from a distributed lag non-
linear model accumulated over lags 0 to 3 days. We could not in the nested case-control analyses estimate 
the mean of all stations, as this metric does not have any variability between individuals.
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(A)

(B) 

Figure 3. Estimated cumulative percentage change in the (A) nested case-control and, (B) case-
crossover analysis on the risks of non-accidental mortality per interquartile range increase in daily 
24-hour mean exposures to ambient NO2 (all year) and, daily 8-hour mean exposures to ambient O3 
(May-September), according to the prescribed dose of furosemide. Dots represent maximum 
likelihood estimates and bars represent 95% confidence intervals. For O3, we present results adjusting 
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(“O3-Adj.”) and not adjusting for weather (“O3-Unadj.”). The horizontal axis indicates the different 
categories based on the dose of furosemide, with “Others” defining people who were not taking 
furosemide. We did not develop the BME model for NO2. For NO2, interquartile ranges (IQRs) were 13.6, 
10.0, 8.8 and 9.6 ppb for the nearest station approach (“Nearest station”), inverse-distance weighting 
(“IDW”), back-extrapolation from a land use regression (“LUR back-extrapol.”), and the daily mean 
across all stations (“Mean of stations”), respectively. For O3, IQRs were 19.6, 16.6, 16.4, 11.6 and 11.8 
ppb for the nearest station, IDW, LUR back-extrapol., BME and mean of stations, respectively. 



List of Tables 

Table 1. Description of the cohort of persons 65 years of age and older having congestive heart 
failure in Montreal, 1991-2003. 

Table 2. Prevalence of selected important comorbidities at time of entry in the cohort among 
persons 65 years of age and older having congestive heart failure in Montreal, 1991-2003.  



Table 1. Description of the cohort of persons 65 years of age and older having congestive heart failure in 
Montreal, 1991-2003 

Women Men All 
Number of persons included in the cohort 37,587 25,947 63,534
Mean (SD) age at entry in the cohort 75.8 (6.9) 78.1 (7.4) 77.2 (7.3) 
No. of deaths 14,062 17,645 31,707
Mean (SD) age at death (in years) 79.9 (7.2) 83.2 (7.6) 81.7 (7.6) 

Furosemide (Lasix) usage at time of death
Not taking furosemide 6,560 (60%) 4,394 (40%) 10,954
Mild dose (0-40 mg) 8,843 (55%) 7,203 (45%) 16,046 
Moderate dose (41-80 mg) 2,094 (48%) 2,274 (52%) 4,368 
High dose (>80 mg or intravenous or oral solution) 148 (44%) 191 (56%) 339

Percentiles

5th 25th 50th 75th 95th 99th

Number of selected important health conditions at 
entry in the cohort1 0 1 1 2 4 6

Number of hospitalisations and emergency 
department visits during follow-up

No. of hospitalisation and emergency visits 

in the last 3 months 0 0 1 2 5 8

No. of hospitalisation and emergency visits 

in the last 6 months 0 0 1 2 6 10

No. of hospitalisation during the whole follow-up 0 0 1 2 6 11
Abbreviation: SD, standard deviation.
1Refer to Appendix Table C2 for the list of selected important comorbidities and the algorithms used for 
each condition.



Table 2. Prevalence of selected important comorbidities at time of entry in the cohort among persons 65 
years of age and older having congestive heart failure in Montreal, 1991-20031  

Comorbidities Prevalence (%) 

Myocardial infarction 19.0%

Chronic pulmonary disease 18.9%

Diabetes without chronic complication 17.3%

Cerebrovascular disease 13.3%

Peripheral vascular disease 11.4%

Renal disease 10.5%

Any malignancy, including lymphoma and leukemia, 
except malignant neoplasm of skin 7.3%

Peptic ulcer disease 4.4%

Diabetes with chronic complication 4.1%

Dementia 3.5%

Hemiplegia or paraplegia 3.0%

Mild liver disease 2.2%

Rheumatic disease 1.7%

Metastatic solid tumor 1.5%

Moderate or severe liver disease 0.4%

AIDS/HIV <0.1%
1Comorbidities were identified from primary and secondary diagnoses from hospital discharge data based 
on the Enhanced ICD-9-CM diagnosis coding algorithms. Please refer to Appendix Table C2 for the 
coding algorithms used to define each comorbid condition. 
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Appendix A. Parameters estimated by the nested case-control and 
case-crossover designs

In both models that we used in this study (nested case-control, and case-crossover), we made use 

of the Cox proportional hazards model, which is essentially equivalent to a conditional logistic 

model. 

The regression coefficients (or smoothed functions) in each design are estimated consistently 

with alternative definitions of the risk sets, thus providing two parameters of effects with distinct 

inferential interpretation. To see this explicitly, we appeal to the partial likelihood function of the 

Cox model. 

Let Yi = I(xi>u), for ith individual at risk at time=u.

For one covariate that is assumed to be either a linear or a categorical variable, the partial log-

likelihood is

l(β)= Σ{all grid points u} [dN(u) { zI(u) β -  log [ΣI exp(ziβ)Yi(u)] }]

where β is the parameter being estimated and zi  is the exposure for subject i. 

In the nested case-control study, i in the last sum represents different subjects in each risk set, 

which implies that the parameter β that is being estimated represents the log rate ratio for an 

increase in exposure, across subjects in each risk sets, summed across all failures. It is assumed 

that the underlying rate ratio is invariant in time (proportional hazards assumption) and assumes 

independent censoring. 

In the case-crossover design, the risk set at each failure now comprises only the case. Thus, zI 

represents the exposure of the case at two sets of times; one at the time of the event and the other 

at the set of selected reference times.  The last sum is therefore over the failure time of the case 

and his own exposure reference times.  This is then summed over all failures. Thus, β represents 

an estimate of the within-subject log rate ratio, assuming that there exists a common log rate ratio 

for each failure. Thus, this is an estimate of the within-subject log rate ratio for a change in 

exposure. 
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Appendix B. Addition information about the construct of the cohort 
of congestive heart failure, Montreal, 1991-2003

This is an open cohort of men and women, 65 years of age and older, residing in Montreal and 
classified as having congestive heart failure during the study period of January 1st, 1991 to 
December 31st, 2002. The date of initiating the cohort was January 1, 1991. The cohort was 
constructed as follows. Individuals were considered as having congestive heart failure at baseline 
if they met our definitions (see Table B1 for the algorithms used to define congestive heart 
failure) in the two years prior to January 1, 1991. Persons who were resident of Montreal and age 
65 years and older, who were identified as having congestive heart failure, and who were not 
censored (due to death or moving outside of the Montreal area) during the definition period were 
entered into the cohort. The same pattern was repeated every two years, i.e., new subjects entered 
the cohort on January 1 every two years if they were classified as having congestive heart failure 
sometime in the two preceding years and met the study inclusion criteria. The last sub-cohort was 
entered on January 1, 2001, thus leaving a potential of two years of follow-up for this last sub-
cohort, as the follow-up ended for all non-censored subjects on December 31, 2002. Those 
entering the cohort were followed until death, migration out of the Montreal area, or termination 
of follow-up. The cohort was dynamic and because of the information about residential locations 
was time-varying, it allowed for a person who moved out of Montreal to re-enter the cohort later 
if they moved back into the study area. 

Figure A1 shows the Island of Montreal, the boundaries of the three-character postal code 
districts from the 2001 Census Boundary Files, as well as the distribution of the number of 
death among persons 65 years and older during the study period of 1991-2002, inclusively. 
Figure A2 shows the schematic of the study design.
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Figure B1. Map of Montreal showing the boundaries of the geographic units designated by the 
first three characters of the postal code, location of highways (bold black lines), and the spatial 
distribution of deaths among persons age 65 years and older having congestive heart failure, 
1991-2003.
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2002. 
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Appendix C. Algorithms used to define congestive heart failure and 
other important comorbidities

Table C1. Algorithm used to define congestive heart failure from administrative health data1. 

Diagnoses (ICD-9 
code 428) in 
billings, in 
specified time 
interval

Diagnoses (ICD-9 
code 428) in 
hospitalization 
(primary or 
secondary), in 
specified time 
interval

Prescriptions in 
specified time 
interval

Services / tests 
/ procedures in 
the specified 
time interval

CHF (specialists only)

Definition 1: None None > 1 prescription 
for diuretics 
AND > 1 
prescription for 
Digoxine 

> 1 CHF 

Definition 2: None None > 1 prescription 
for diuretics 
AND > 1 
prescription for 
ACE-inhibitors 

> 1 CHF 

Definition 3: None > 1 CHF 
(Any MD)

None None

1We identified congestive heart failure diagnoses and procedures using the International Classification of 
Diseases (ICD), 9th Revision codes, specifically ICD-9 428 for diagnosis and codes 8303, 8305, 8307, and 
8670 for procedures.
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Table C2. Coding Algorithms and weights used for defining comorbidity from hospital discharge data 
using International Classification of Disease, 9th Revision, Clinical Modification (ICD-9-CM).
Comorbidities Enhanced ICD-9-CM coding used to define comorbidity1

Myocardial infarction 410, 412 

Congestive heart failure 428 (see Table A1 for the exact algorithms used)

Peripheral vascular disease 0930, 4373, 440, 441, 4431, 4432, 4438, 4439, 4471, 5571, 5579, V434

Cerebrovascular disease 430, 431, 432, 433, 434, 435, 436, 437, 438 

Dementia   290, 2941, 3312 

Chronic pulmonary disease  4168, 4169, 490, 491, 492, 493, 494, 495, 496, 500, 501, 502, 503, 504, 505, 
5064, 5081, 5088 

Rheumatic disease 4465, 7100, 7101, 7102, 7103, 7104, 7140, 7141, 7142, 7148, 725 

Peptic ulcer disease  531, 532, 533, 534 

Mild liver disease  570, 571, 5733, 5734, 5738, 5739, V427 

Diabetes without chronic 
complication 

2500, 2501, 2502, 2503, 2508, 2509 

Diabetes with chronic complication 2504, 2505, 2506, 2507 

Hemiplegia or paraplegia 3341, 342, 343, 3440, 3441, 3442, 3443, 3444, 3445, 3446, 3449 

Renal disease 582, 5830, 5831, 5832, 5834, 5836, 5837, 585, 586, 5880, V420, V451, V56 

Cancer  140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 
156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 170, 171, 172, 174, 175, 176, 
179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 
195, 200, 201, 202, 203, 204, 205, 206, 207, 208, 2386 

Moderate or severe liver disease  4560, 4561, 4562, 5722, 5723, 5724, 5728 

Metastatic solid tumor  196, 197, 198, 199 

AIDS/HIV  042, 043, 044 

1 Based on Quan, H., et al., 2005. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 
administrative data. Med Care. 43, 1130-9.
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Appendix D. Development of indicators if health in older adults with 
congestive heart failure 

Individuals having congestive heart failure have different natural histories. We presumed that 

exogenous insults interfere in the potential causal pathway linking air pollution and mortality by 

either “triggering” declines in health or causing exacerbations of concurrent conditions. As there 

is no gold standard by which to define indicators of “health”, we have developed a series of 

possible indices that may reflect the underlying construct of “declining health” from the 

administrative health data, including hospital discharge, billings, pharmaceutical prescriptions. 

The following describe four indicators that we developed from the administrative health data.

Indicators of hospitalisations and emergency department visits
First we used the combined number of hospitalisations and emergency department visits. We 

created two indices reflecting the cumulative number in the three months and in the six months 

before an event. (Events refer to either a death of the subject or being included in a risk set for 

other deaths.) The underlying assumption was that each hospitalisation and emergency 

department visit potentially reflected a complication or worsening in a person’s health. If a 

patient’s record included more than one hospitalisation or emergency room visit on a single day, 

these were counted as one event. Because the distributions were highly skewed to the right and 

we were concerns that some very high values may be wrong (see Table D1 for the distributions) 

the indicators were treated as ordinal, with all cumulative counts greater than the 99th percentile 

of the marginal distribution (i.e., 8 and 10 for the indicator based in the prior three and six 

months, respectively) rounded to this value. Therefore, the indicators based on number of 

hospitalisations and emergency department visits in the past three and six months had nine 

(taking values from 0 to 8) and eleven (taking values from 0 to 10) categories, respectively. 

The third indicator was the time-varying cumulative number of hospitalisations from time of 

entry into the study until an event. The rationale for using only hospitalisations, rather than 

hospitalisations and emergency department visits combined, was that a hospitalisation plausibly 

reflects a greater complication or worsening in a person’s health of greater severity than an 

emergency department visit. This indicator was treated as ordinal, with all cumulative counts 
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greater than the 99th percentile (i.e., 11 hospitalisations) rounded to this value. Therefore, the 

indicator based on the number of hospitalisations since entry in the cohort had twelve categories 

with value ranging from 0-11. 

Table D1. Distribution of the number of hospitalisations and emergency department visits in 
persons 65 years of age and older who were diagnosed with congestive heart failure in Montreal, 
1991-2003.

PercentilesIndicator of health based on hospitalisations 
and emergency department visits Min 25th 50th 75th 95th 99th Max

No. of  hospitalisations and emergency department visits 

in the last 3 months

0 0 1 2 5 8 60

No. of hospitalisations and emergency department visits 

in the last 6 months

0 0 1 2 6 10 63

No. of hospitalisations since beginning of follow-up 0 0 1 2 6 11 111

Indicators of pharmaceutical usage
The fourth indicator was constructed from the pharmaceutical data. Based on expert judgement 

(Dr. James M. Brophy), the indicator relies on the prescribed dose of furosemide (Lasix), which 

is a loop diuretic commonly used in the treatment of heart failure to prevent the body from 

absorbing too much salt and thus relieves congestion. Furosemide is not specific to the treatment 

of congestive heart failure, and may be prescribed to those having liver disease, a kidney disorder 

such as nephrotic syndrome, or to treat hypertension. Typically, furosemide is taken as an oral 

tablet at doses of 20, 40, 80 or 500 mg. Other forms include oral solution and intravenous 

injection, which are generally reserved for in-hospital usage. The indicator was defined 

considering a tablet dosage of 40 mg or less as a “low dose” of furosemide, 41 to 80 mg as a 

“moderate dose” and greater than 80 mg as a “high dose”. Oral solution and intravenous injection 

of furosemide were considered in the latter category (i.e., “high dose”) as they are generally 

administrated to in-patients or out-patients. Those not taking furosemide were considered as a 

separate category. Table D2 describes prescribed usage of furosemide at time of death for persons 

included in the cohort of residents of Montreal, 1991-2003, 65 years of age and older, who were 

diagnosed with congestive heart failure.
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 Table D2. Description of furosemide prescribed usage among persons 65 years of age and older 
who were diagnosed with congestive heart failure and died in Montreal, 1991-2003.
Furosemide (Lasix) usage at time of death Women Men All

Not taking furosemide 6,560 (60%) 4,394 (40%) 10,954

Mild dose (0-40 mg) 8,843 (55%) 7,203 (45%) 16,046 

Moderate dose (41-80 mg) 2,094 (48%) 2,274 (52%) 4,368 

High dose (>80 mg or intravenous or oral solution) 148 (44%) 191 (56%) 339
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Appendix E. Additional Results 

Table E1. Distribution of the indicators of health for all cases and controls included in the nested 
case-control analyses for NO2 (all year).
Furosemide (Lasix) usage Controls Cases

Not taking furosemide 50.9% 34.6%

Mild dose (0-40 mg) 42.7% 50.7%

Moderate dose (41-80 mg) 6.1% 13.8%

High dose (>80 mg or intravenous or oral solution) 0.3% 0.9%

PercentilesIndicator of health based on hospitalisations 
and emergency department visits 1 Min 25th 50th 75th 95th 99th Max

No. of  hospitalisations and emergency department 
visits in the past 3 months

Controls 0 0 1 2 5 8 8

Cases 0 1 2 4 7 8 8

No. of  hospitalisations and emergency department 
visits in the past 6 months

Controls 0 0 1 2 6 10 10

Cases 0 1 3 5 10 10 10

No. of hospitalisations since beginning of follow-up

Controls 0 0 1 2 6 11 11

Cases 0 1 2 4 10 11 11
1The indicators of health based on hospitalisations and emergency department visits were treated as ordinal with all 
cumulative counts greater than the 99th percentile of their marginal distribution rounded to this value (i.e., 8 and 10 
for the indicator based in the number of hospitalisations and emergency department visits in the past three and six 
months, and 11 for the indicator based on the number of hospitalisations since the begging of the follow-up).
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Table E2. Distributions of exposure of the different metrics used for daily 8-hour (9 a.m. to 5 
p.m. from May-September) mean concentrations (ppb) of O3 and daily 24-hour mean 
concentrations (ppb) of NO2, assigned to participants of the case-crossover design, Montreal, 
1991-2003.

Daily mean concentration (ppb) 

Percentiles

Methods

Mean
Standard 

deviation Minimum 5th 25th 50th 75th 95th Maximum

8-hour O3 (May-September)

Nearest station 28.7 15.2 0 7.5 17.7 27.2 37.4 57.2 108.8

Inverse-distance 

weighting
29.0 13.2 0.2 10.2 19.6 27.3 36.1 53.7 91.4

Back-

extrapolation 

from a current 

LUR 

21.1 14.0 0 4.6 11.1 18.1 27.6 47.9 148.5

Bayesian 

maximum 

entropy

30.7 9.3 0 16.9 24.4 30.3 35.9 46.9 83.7

Mean of all 

stations
21.6 10.0 1.1 7.6 14.7 19.8 26.5 39.3 66.6

24-hour NO2 (entire year)

Nearest station 21.5 10.7 0 6.7 13.9 20.3 27.5 40.4 169.5

Inverse-distance 

weighting
21.1 8.1 1.5 8.6 15.4 20.1 25.4 33.9 121.8

Back-

extrapolation 

from a current 

LUR

16.6 7.1 0.7 6.5 11.5 15.5 20.3 28.7 121.5

Mean of all 

stations
20.1 7.8 4.0 5.7 14.6 19.1 24.2 30.0 90.6

Abbreviations: ppb, parts per billion; LUR, land use regression model
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Table E3. Distributions of exposure of the different metrics used for daily 8-hour (9 a.m. to 5 
p.m. from May-September) mean concentrations (ppb) of O3 and daily 24-hour mean 
concentrations (ppb) of NO2, assigned to participants of the nested case-control design, Montreal, 
1991-2003.

Daily mean concentration (ppb) 

Percentiles

Methods

Mean
Standard 

deviation Minimum 5th 25th 50th 75th 95th Maximum

8-hour O3 (May-September)

Nearest station 28.9 15.3 0 7.5 17.8 27.3 37.5 57.5 108.8

Inverse- distance 

weighting
29.2 13.3 0.1 10.3 19.7 27.5 36.4 54.2 91.4

Back-

extrapolation 

from a current 

LUR 

21.3 13.9 0 4.8 11.4 18.3 27.8 47.9 174.3

Bayesian 

maximum 

entropy

30.8 9.4 0 16.8 24.4 30.3 36.0 47.2 83.7

24-hour NO2 (entire year)

Nearest station 21.6 10.9 0 6.7 14.0 20.4 27.7 40.9 169.5

Inverse-distance 

weighting
21.2 8.2 1.5 8.7 15.4 20.2 25.5 34.2 138.6

Back-

extrapolation 

from a current 

LUR

16.6 7.2 0.7 6.5 11.5 15.4 20.3 28.9 131.5

Abbreviations: ppb, parts per billion; LUR, land use regression model
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Table E4. Distribution of selected weather variables for all years and summers (May-September, 
inclusive), 1991-2003, Montreal, Canada
Environmental variables Percentiles 

Mean
Standard 

deviation Minimum 25th 50th 75th Maximum

All year

Daily Temperature (ºC)

Mean 7.2 11.7 -27.6 -1.5 7.9 17.7 29.2

Minimum 2.7 11.5 -31.2 -5.1 3.2 12.6 25.8

Maximum 11.3 12.2 -24.0 1.6 12.0 22.2 35.4

Average relative humidity 

(%) 70.2 12.4 28.54 61.8 70.5 79.3 100

May-September

Daily Temperature (ºC)

Mean 18.1 4.6 3.3 15.2 18.7 21.4 29.2

Minimum 13.2 4.9 -1.2 10.0 13.7 16.7 25.8

Maximum 22.7 5.0 4.9 19.5 23.3 26.3 35.4

Average relative humidity 

(%) 68.7 11.7 28.5 60.9 69.0 76.9 97.8
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Table E5: Spearman correlation coefficients of same-day daily mean concentrations of air pollutants for the different metrics, and mean values of 
maximum temperature, Montreal, 1991-2003. 1

NO2 O3

Maximum 
temperature

Relative 
humidity

Nearest 
station IDW Back-

extrapol.
Mean of 
stations

Nearest 
station IDW BME Back-

extrapol.
Mean of 
stations

Maximum 
temperature 1

Relative 
humidity -0.14 1

Nearest 
station 0.10 -0.02 1

IDW 0.18 -0.01 0.79 1
Back-
extrapol. 0.17 -0.01 0.73 0.90 1N

O
2

Mean of 
stations 0.18 -0.01 0.63 0.94 0.83 1

Nearest 
station 0.51 -0.38 -0.12 0.09 0.07 0.18 1

IDW 0.61 -0.43 0.08 0.20 0.17 0.24 0.89 1

BME 0.59 -0.37 0.11 0.22 0.19 0.24 0.73 0.85 1
Back-
extrapol. 0.44 -0.33 -0.09 0.01 -0.12 0.12 0.76 0.78 0.63 1

O
3

Mean of 
stations 0.49 -0.32 0.03 0.08 0.08 0.07 0.71 0.84 0.81 0.62 1

1 Spearman correlation coefficients for O3 were computed using data limited to the period of May-September, inclusively. Abbreviations: O3, ozone; NO2, 
nitrogen dioxide; IDW, inverse-distance weighting; back-extrapol., back-extrapolation from a land use regression surface; BME, Bayesian maximum entropy 
model.
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Table E6. Model fit of the adjusted cumulative response functions for air pollutants fitted using 
linear and non-linear structures in the case-crossover analyses over lags 0 to 3 days for the odds 
of non-accidental mortality among subjects 65 years of age and over with congestive heart 
failure, Montreal, 1991-2003.

Metric of exposure Akaike information criterion (AIC)

and Case-crossover Nested case-control

functional form 

for air pollutant

24-hour NO2

(all year)

8-hour O3

(May-Sep.)

24-hour NO2

(all year)

8-hour O3

(May-Sep.)

Nearest station

Linear 93,152 33,791 286,209 104,725

Natural cubic splines, 2df 93,159 33,794 286,212 104,727

Natural cubic splines, 3df 93,161 33,799 296,216 104,727

Inverse-distance 

weighting

Linear 93,151 33,790 286,218 104,727

Natural cubic splines, 2df 93,157 33,795 286,222 104,727

Natural cubic splines, 3df 93,161 33,803 286,227 106,733

Back-extrapolation from 

LUR

Linear 92,640 33,791 284,623 104,723

Natural cubic splines, 2df 92,647 33,796 284,628 104,727

Natural cubic splines, 3df 92,652 33,803 284,633 104,731

Bayesian maximum 

entropy model

Linear N/A 33,789 N/A 104,735

Natural cubic splines, 2df N/A 33,796 N/A 104,742

Natural cubic splines, 3df N/A 33,798 N/A 104,747

Mean of all stations

Linear 93,153 33,793 N/A N/A

Natural cubic splines, 2df 93,159 33,794 N/A N/A

Natural cubic splines, 3df 93,162 33,799 N/A N/A

Abbreviations: df, degrees of freedom, LUR, land use regression model, N/A, not available (the Bayesian maximum 
entropy model for NO2 was not developed and the nested case-control analysis requires variation in the daily 
exposure across individuals; thus cannot be performed using the mean of all stations).
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Table E7. Estimated percentage change in non-accidental mortality among subjects 65 years of 
age and over with congestive heart failure according to an interquartile range increase in the daily 
24-hour mean concentrations (ppb) of NO2 (all year) and the daily 8-hour mean concentrations 
(ppb) of O3 (May-September), Montreal, 1991–2003.1 

Lagged effect NO2 - % Change (95% CI) O3 - % Change (95% CI)

(in days) Nested case-
control

Case-
crossover

Nested case-
control

Case-crossover, 
adjusted for 

weather 

Case-crossover, 
unadjusted

Nearest station
Lag 0 -2.5 (-5.8, 0.8) -0.4 (-2.8, 2.1) 7.7 (0.3, 15.7) 1.6 (-3.2, 6.7) 1.8 (-1.7, 5.3)
Lag 1 -1.0 (-4.7, 2.9) 1.7 (-1.0, 4.6) -6.0 (-13.0, 1.6) -1.8 (-6.7, 3.3) 2.1 (-1.6, 6.0)
Lag 2 -0.2 (-4.0, 3.7) 2.4 (-0.4, 5.3) -1.0 (-8.5, 7.1) -1.4 (-6.3, 3.8) 0.3 (-3.5, 4.1)
Lag 3 -1.9 (-5.2, 1.5) -1.6 (-3.9, 0.8) 6.4 (-0.9, 14.3) -0.6 (-5.4, 4.4) 0.1 (-3.4, 3.6)
Cumulative -5.5 (-8.1, -2.9) 2.1 (-1.1, 5.5) 6.7 (0.3, 13.5) -2.2 (-9.2, 5.2) 4.3 (-0.5, 9.2)
Inverse-distance 
weighting
Lag 0 -4.8 (-12.6, 3.6) 0.1 (-2.3, 2.5) 34.2 (6.8, 68.6) 1.2 (-3.5, 6.3) 1.2 (-1.9, 4.4)
Lag 1 -0.1 (-9.1, 9.8) 1.6 (-1.1, 4.3) -11.9 (-31.2, 12.7) 2.6 (-2.4, 7.8) 3.9 (0.4, 7.4)
Lag 2 1.2 (-8.0, 11.4) 2.6 (-0.1, 5.4) -10.6 (-30.3, 14.6) 0.9 (-4.1, 6.1) 1.0 (-2.4, 4.6)
Lag 3 -5.5 (-13.2, 2.9) -1.4 (-3.7, 0.8) 12.2 (-10.7, 40.8) -2.3 (-7.0, 2.6) -0.7 (-3.8, 2.5)
Cumulative -9.0 (-15.2, -2.4) 2.8 (-0.3, 6.1) 18.5 (-2.6, 44.1) 2.4 (-4.9, 10.3) 5.4 (1.2, 9.8)
Back-extrapolation 
from LUR
Lag 0 0.4 (-6.6, 7.9) 0.3 (-2.2, 2.8) 3.6 (-4.8, 12.7) 1.6 (-3.8, 7.3) 1.8 (-2.1, 5.8)
Lag 1 2.2 (-6.0, 11.2) 1.7 (-1.1, 4.6) -3.0 (-12.0, 7.0) -0.4 (-5.9, 5.5) 3.1 (-1.2, 7.6)
Lag 2 1.9 (-6.4, 10.9) 2.6 (-0.2, 5.6) -1.0 (-10.4, 9.4) 1.6 (-4.2, 7.7) 1.5 (-2.8, 6.0)
Lag 3 -1.6 (-8.5, 5.9) -1.5 (-3.9, 0.9) 7.8 (-1.0, 17.4) 0.6 (-4.9, 6.4) 0.5 (-3.4, 4.6)
Cumulative 2.9 (-0.9, 6.9) 3.0 (-0.4, 6.6) 7.3 (3.0, 11.9) 3.5 (-4.5, 12.1) 7.1 (1.7, 12.7)
Bayesian maximum 
entropy model
Lag 0 N/A N/A 0.6 (-6.1, 7.9) -0.9 (-5.9, 4.4) 0.9 (-2.6, 4.5)
Lag 1 N/A N/A -0.1 (-7.1, 7.5) 2.8 (-2.6, 8.5) 4.7 (0.6, 8.9)
Lag 2 N/A N/A 1.0 (-6.2, 8.7) -2.1 (-7.3, 3.3) -0.3 (-4.3, 3.8)
Lag 3 N/A N/A -0.8 (-7.5, 6.4) -2.7 (-7.6, 2.4) -1.2 (-4.6, 2.3)
Cumulative N/A N/A 0.8 (-7.3, 9.5) -3.0 (-10.0, 4.5) 4.0 (-0.1, 8.3)
Mean of all stations
Lag 0 N/A 0.1 (-2.2, 2.5) N/A 0.8 (-3.4, 5.2) 2.0 (-1.2, 5.4)
Lag 1 N/A 1.4 (-1.2, 4.1) N/A 2.2 (-2.5, 7.1) 3.4 (-0.4, 7.4)
Lag 2 N/A 2.2 (-0.5, 5.0) N/A -0.6 (-5.1, 4.2) 0.2 (-3.6, 4.1)
Lag 3 N/A -1.4 (-3.6, 0.9) N/A -2.2 (-6.3, 2.0) -1.4 (-4.6, 1.9)
Cumulative N/A 2.3 (-0.8, 5.6) N/A 0.1 (-5.7, 6.3) 4.3 (0.3, 8.5)
Abbreviations: LUR, land use regression, N/A, not applicable (the Bayesian maximum entropy model for NO2 was 
not developed and the nested case-control analysis requires variation in the daily exposure across individuals; thus 
cannot be performed using the mean of all stations). 
1For NO2, interquartile ranges (IQRs) were 13.6, 10.0, 8.8 and 9.6 ppb for the nearest station approach, inverse-
distance weighting, back-extrapolation from a land use regression (LUR), and the daily mean across all stations 
(“Mean of stations”), respectively. For O3, IQRs were 19.6, 16.6, 16.4, 11.6 and 11.8 ppb for nearest station 
approach, inverse-distance weighting, back-extrapolation from a land use regression (LUR), Bayesian maximum 
entropy model and the daily mean across all stations, respectively.
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Table E8. Effect of adjustments for weather (maximum temperature and relative humidity) in the 
case-crossover analyses on the odds of non-accidental mortality among subjects 65 years of age 
and over with congestive heart failure, per interquartile range increase in each air pollutant, 
Montreal, 1991–2003.1

24-hour mean NO2

(all year)

8-hour mean O3

(May-Sep.)

AIC % Change (95%CI) AIC % Change  (95%CI)

Nearest station

Unadjusted for weather 93338 2.9 (-0.2, 6.1) 33797 4.3 (-0.5, 9.2)

Adjusted for weather 93152 2.1 (-1.1, 5.5) 33791 -2.2 (-9.2, 5.2)

Inverse-distance weighting

Unadjusted for weather 93335 3.5 (0.5, 6.6) 33790 5.4 (1.2, 9.8)

Adjusted for weather 93151 2.8 (-0.3, 6.1) 33790 2.4 (-4.9, 10.3)

LUR back-extrapolated

Unadjusted for weather 92823 3.7 (0.5, 7.0) 33793 7.1 (1.7, 12.7)

Adjusted for weather 92640 3.0 (-0.4, 6.6) 33791 3.5 (-4.5, 12.1)

Bayesian maximum entropy

Unadjusted for weather N/A N/A 33792 4.0 (-0.1, 8.3)

Adjusted for weather N/A N/A 33789 -3.0 (-10.0, 4.5)

Mean of all stations

Unadjusted for weather 93338 3.1 (0.1, 6.1) 33790 4.3 (0.3, 8.5)

Adjusted for weather 93153 2.3 (-0.8, 5.6) 33789 0.1 (-5.7, 6.3)

Abbreviations: LUR, land use regression, N/A, not applicable
1 Effect estimates are from the case-crossover analysis that controlled for time invariant factors and temporal trend 
by design. The model adjusted for weather included maximum temperature (natural cubic spline with 3 df), and 
relative humidity (linear), from a distributed lag non-linear model using an unconstrained lag structure over lags 0 to 
3 days. For NO2, interquartile ranges (IQRs) were 13.6, 10.0, 8.8 and 9.6 ppb for the nearest station, inverse-distance 
weighting, LUR back-extrapolated and the daily mean of all stations, respectively. For O3, IQRs were 19.6, 16.6, 
16.4, 11.6 and 11.8 ppb for the nearest station, inverse-distance weighting, LUR back-extrapolated, Bayesian 
maximum entropy and the daily mean of all stations, respectively.
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Table E9. Effects of adjustments for the indicators of health in the nested case-control analyses 
on the hazards of non-accidental mortality among subjects 65 years of age and over with 
congestive heart failure per interquartile range increase in air pollutant, Montreal, 1991–2003.1 

24-hour mean NO2

(all year)

8-hour mean O3

(May-Sep.)

AIC % Change (95% CI) AIC % Change (95% CI)

Nearest station 

Model without any indicator of health 286,209 -5.5 (-8.1, -2.9) 104,726 6.7 (0.3, 13.5)

Model adjusting for Hosp + ER in past 3 months 266,811 -4.8 (-7.4, -2.1) 97,362 3.9 (-2.3, 10.5)

Model adjusting for Hosp + ER in past 6 months 267,138 -5.5 (-7.7, -2.5) 97,211 4.0 (-2.2, 10.6)

Model adjusting for Hosp over whole follow-up 267,764 -7.3 (-9.8, -4.7) 97,656 10.5 (3.8, 17.5)

Model adjusting for furosemide 281,502 -5,2 (-7.8, -2.5) 102,792 5.9 (-0.5, 12.6)

Inverse-distance weighting

Model without any indicator of health 286,218 -9.0 (-15.2, -2.4) 104,727 18.5 (-2.6, 44.1)

Model adjusting for Hosp + ER in past 3 months 266,814 -9.5 (-15.7, -2.9) 97,361 17.1 (-3.9, 42.6)

Model adjusting for Hosp + ER in past 6 months 267,141 -10.7 (-16.8, -4.2) 97,210 19.2 (-2.1, 45.2)

Model adjusting for Hosp over whole follow-up 267,767 -16.4 (-22.1, -10.3) 97,652 45.6 (19.6, 77.2)

Model adjusting for furosemide 281,511 -8.1 (-14.4, -1.4) 102,791 15.7 (-5.0, 40.8)

LUR back-extrapolated

Model without any indicator of health 284,623 2.9 (-0.9, 6.9) 104,723 7.3 (3.0, 11.9)

Model adjusting for Hosp + ER in past 3 months 265,347 1.7 (-2.2, 5.6) 97,361 5.6 (1.3, 10.1)

Model adjusting for Hosp + ER in past 6 months 265,672 1.0 (-2.8, 4.9) 97,209 6.1 (1.8, 10.6)

Model adjusting for Hosp over whole follow-up 266,279 -0.6 (-4.3, 3.3) 97,641 12.2 (7.6, 17.0)

Model adjusting for furosemide 279,918 2.0 (-1.8, 5.9) 102,789 6.7 (2.3, 11.2)

Bayesian maximum entropy

Model without any indicator of health N/A N/A 104,736 0.8 (-7.3, 9.5)

Model adjusting for Hosp + ER in past 3 months N/A N/A 97,370 -0.6 (-8.6, 8.1)

Model adjusting for Hosp + ER in past 6 months N/A N/A 97,219 -0.2 (-8.2, 8.6)

Model adjusting for Hosp over whole follow-up N/A N/A 97,672 1.7 (-6.5, 10.6)

Model adjusting for furosemide N/A N/A 102,800 0.8 (-7.3, 9.6)

Abbreviations: AIC, Akaike information criterion; ER, emergency room visits; Hosp, hospitalisation; LUR, land use 
regression; N/A, not applicable.
1 Effect estimates are from the nested case-control analysis that controlled for temporal factor and gender by design. 
The model adjusted for weather included maximum temperature (natural cubic spline with 3 df), and relative 
humidity (linear), from a distributed lag non-linear model using an unconstrained lag structure over lags 0 to 3 days. 
For NO2, interquartile ranges (IQRs) were 13.6, 10.0 and 8.8 ppb for the nearest station, inverse-distance weighting 
and LUR back-extrapolated methods, respectively. For O3, IQRs were 19.6, 16.6, 16.4 and 11.6 ppb for the nearest 
station, inverse-distance weighting, LUR back-extrapolated and Bayesian maximum entropy methods, respectively.
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Table E10. Cumulative percentage change (and 95% confidence interval) in non-accidental 
mortality among subjects 65 years of age and over with congestive heart failure according to an 
interquartile range increase in the daily 24-hour mean concentrations (ppb) of NO2 for all year 
and the warm season (May-September), Montreal, 1991–2003.

% Change (95% CI)

Case-crossover Nested case-control

All year May-September All year  May-September

Nearest station 2.1 (-1.1, 5.5) 1.3 (-4.0, 6.9) -5.5 (-8.1, -2.9) -5.2 (-8.8, -1.5)

Inverse-distance 

weighting
2.8 (-0.3, 6.1) 1.3 (-4.1, 6.9) -9.0 (-15.2, -2.4) -9.4 (-17.7, -0.3)

LUR back-

extrapolated
3.0 (-0.4, 6.6) 1.6 (-4.1, 7.7) 2.9 (-0.9, 6.9) -0.2 (-5.8, 5.8)

Mean of stations 2.3 (-0.8, 5.6) -0.7 (-5.9, 4.9) N/A N/A

Abbreviations: N/A, not applicable; LUR, land use regression.
1 For the case-crossover, the results are from the model adjusting for weather. For all year, interquartile ranges were 
13.6, 10.0, 8.8 and 9.6 ppb for the nearest station approach, inverse-distance weighting, LUR back-extrapolated, and 
the daily mean across all stations (“Mean of stations”), respectively. For the warm season, interquartile ranges were 
12.7, 8.5, 7.3, 7.8 ppb for the nearest station approach, inverse-distance weighting, LUR back-extrapolated, and the 
daily mean across all stations (“Mean of stations”), respectively.
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Table E11. Cumulative percent change (and 95% confidence interval) in the case-crossover 
analyses on the odds of non-accidental mortality among subjects 65 years of age and over with 
congestive heart failure per interquartile range increase in air pollutant, Montreal, 1991–2003, 
according to level of agreement in the exposure assigned to postal areas by the different metrics.1

% Change (95% CI)

24-hour mean NO2 

(all year)

8-hour mean O3

(May-Sep.)

Adjusted 

for weather 

Unadjusted

For weather

Nearest station 

Postal districts of higher agreement 3.1 (-1.6, 8.0) -3.7 (-12.4, 5.9) 2.2 (-3.7, 8.5)

Postal districts of lower agreement 1.1 (-3.3, 5.7) -0.2 (-11.1, 12.2) 7.6 (-0.1, 15.9)

Inverse-distance weighting

Postal districts of higher agreement 3.8 (-0.5, 8.3) 0.4 (-8.9, 10.6) 3.5 (-2.0, 9.2)

Postal districts of lower agreement 1.6 (-3.0, 6.4) 5.2 (-6.3, 18.2) 8.4 (1.7, 15.6)

LUR back-extrapolated

Postal districts of higher agreement 3.4 (-1.0, 7.9) 2.6 (-7.4, 13.7) 4.6 (-1.5, 11.1)

Postal districts of lower agreement 2.9 (-2.6, 8.7) 8.7 (-5.7, 25.3) 14.4 (-0.4, 13.2)

Mean of all stations

Postal districts of higher agreement 3.1 (-1.2, 7.5) -2.0 (-9.5, 6.0) 2.5 (-2.7, 7.9)

Postal districts of lower agreement 1.3 (-3.4, 6.1) 2.7 (-46.3, 12.5) 6.8 (0.6, 13.3)

Bayesian maximum entropy

Postal districts of higher agreement N/A -3.2 (-12.0, 6.5) 2.6 (-2.7, 8.1)

Postal districts of lower agreement N/A -2.7 (-13.7, 9.8) 6.2 (-0.4, 13.2)

Abbreviations: N/A, not applicable; LUR, land use regression.
1 Effect estimates for NO2 are from the case-crossover that controlled for time invariant factors and temporal trend by 
design and we statistically adjusted for maximum temperature (natural cubic spline with 3 df), and relative humidity 
(linear), from a distributed lag non-linear model accumulated over lags 0 to 3 days. For O3 we presented the results 
adjusting (“Adjusted for weather”) and unadjusting for weather (“Unadjusted for weather”) as we were concerned 
with possible overadjustment. Threshold value used to distinguish postal districts of higher agreement from lower 
agreement was the median of the mean intraclass correlation coefficient (ICC) across pairs of methods by postal code 
area (ICC=0.75 for NO2, ICC = 0.65 for O3). For NO2, there were 17,389 cases in postal code districts of higher 
agreement and 14,152 cases in postal districts of lower agreement. For O3 there were 6,751 and 5,061 cases that were 
residents of postal district of higher and lower agreement, respectively. For NO2, interquartile ranges (IQRs) were 
13.6, 10.0, 8.8, 9.6 ppb for the nearest station, inverse-distance weighting, LUR back-extrapolated and mean of all 
stations, respectively. For O3, IQRs were 19.6, 16.6, 16.4, 11.8, 11.6 ppb for the nearest station, inverse-distance 
weighting, LUR back-extrapolated, mean of all stations and Bayesian maximum entropy, respectively. 
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Figure E1. Adjusted cumulative response functions fitted as natural cubic splines with 3 degrees 
of freedom in the case-crossover analyses over lags 0 to 3 days between the odds of non-
accidental mortality among subjects 65 years of age and over with congestive heart failure in 
Montreal, 1991-2003, and the spatially-resolved daily 24-hour mean exposures to ambient NO2 
predicted from the following methods: (A) nearest station; (B) inverse-distance weighting 
(“IDW”); (C) back-extrapolation from a land use regression model (“LUR-back-extrapolated”); 
(D) mean of all stations. We statistically adjusted for maximum temperature (natural cubic splines 
with 3 df), and relative humidity (linear), from a distributed lag non-linear model accumulated over 
lags 0 to 3 days. An unconstrained lag structure was always used. The odds ratios (OR) are relative to 
the minimum value of the exposure distribution. The solid line in blue represents the mean OR from 
the non-linear function fitted using natural cubic splines with 3 df, with shaded grey representing the 
95% confidence interval. The rug plot over the horizontal axis shows the distribution of NO2 
exposures of cases and controls, whereas the vertical line (dotted) indicates the 95th percentile.
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Figure E2. Adjusted cumulative response functions fitted as natural cubic splines with 3 degrees of 
freedom in the case-crossover analyses over lags 0 to 3 days between the odds of non-accidental 
mortality among subjects 65 years of age and over with congestive heart failure in Montreal, 1991-
2003, and the spatially-resolved daily mean 8-hour exposures to ambient O3 predicted from the 
following methods: (A) nearest station; (B) inverse-distance weighting (“IDW”); (C) back-
extrapolation from a land use regression model (“LUR-back-extrapolated”); (D) combined LUR 
and Bayesian maximum entropy model (“BME”); (E) mean of all stations. We statistically adjusted 
for maximum temperature (natural cubic splines with 3 df), and relative humidity (linear), from a 
distributed lag non-linear model accumulated over lags 0 to 3 days. An unconstrained lag structure was 
always used. The odds ratios (OR) are relative to the minimum value of the exposure distribution. The 
solid line in blue represents the mean OR from the non-linear function fitted using natural cubic splines 
with 3 df, with shaded grey representing the 95% confidence interval. The rug plot over the horizontal axis 
shows the distribution of O3 exposures of cases and controls, whereas the vertical line (dotted) indicates 
the 95th percentile. 
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Figure E3. Adjusted cumulative response functions fitted as natural cubic spline with 3 degrees 
of freedom in the nested case-control analyses over lags 0 to 3 days between the hazards of non-
accidental mortality among subjects 65 years of age and over with congestive heart failure in 
Montreal, 1991-2003, and the spatially-resolved daily 24-hour mean exposures to ambient NO2 
predicted from the following methods: A) nearest station; B) inverse-distance weighting 
(“IDW”); C) back-extrapolation from a land use regression model (“LUR-back-extrapolated”). 
An unconstrained lag structure was always used. The hazard ratios (HR) are relative to the minimum 
value of the exposure distribution. The solid line in blue represents the mean HR from the non-linear 
function fitted using natural cubic splines with 3 degrees of freedom, with shaded grey representing 
the 95% confidence interval. The rug plot over the horizontal axis shows the distribution of NO2 
exposures of cases and controls, whereas the vertical line (dotted) indicates the 95th percentile.
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Figure E4. Adjusted cumulative response functions fitted as natural cubic spline with 3 degrees of 
freedom in the nested case-control analyses over lags 0 to 3 days between the hazards of non-
accidental mortality among subjects 65 years of age and over with congestive heart failure in 
Montreal, 1991-2003, and the spatially-resolved daily 8-hour mean exposures to ambient O3 
predicted from the following methods: A) nearest station; B) inverse-distance weighting (“IDW”); 
C) back-extrapolation from a land use regression model (“LUR-back-extrapolated”); D) combined 
LUR and Bayesian maximum entropy model (“BME”). An unconstrained lag structure was always 
used. The hazard ratios (HR) are relative to the minimum value of the exposure distribution. The solid line 
in blue represents the mean HR from the non-linear function fitted using natural cubic splines with 3 
degrees of freedom, with shaded grey representing the 95% confidence interval. The solid and dashed 
lines in green represent the mean HR and the 95% confidence interval of linear response function, 
respectively. The rug plot over the horizontal axis shows the distribution of O3 exposures of cases and 
controls, whereas the vertical line (dotted) indicates the 95th percentile. 
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Figure E5. Unadjusted cumulative response function for maximum temperature and relative 
humidity in the case-crossover analyses over lags 0 to 3 days for the odds of non-accidental 
mortality among subjects 65 years of age and over with congestive heart failure, all year and the 
warm season (May-September), Montreal, 1991-2003. Daily maximum temperature and relative 
humidity were fitted from a distributed lag non-linear model over lag 0-3 day using natural cubic splines 
with 3 df and a linear function, respectively, and always using an unconstrained lag structure. The odds 
ratios (OR) and 95% confidence intervals are relative to A) 10°C, B) 23°C, C) 68%, D) 70%, which 
corresponded to the mean value of the weather variables over the different time periods. 
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Response functions for weather variables included in the case-crossover analyses and for 

contextual variables included in the nested case-control analyses.

 

Figure E5 shows below the unadjusted cumulative response function for maximum temperature 

and relative humidity in the case-crossover analyses over lags 0 to 3 days for the odds of non-

accidental mortality among subjects 65 years of age and over with congestive heart failure, all 

year and the warm season (May-September), Montreal, 1991-2003. The odds of non-accidental 

showed a strong increase at higher maximum temperatures, starting at about 20°C, whereas when 

limited to the warm season the response function was “U”-shaped with the lowest risk at about 

20°C. Relative humidity was positively associated with the odds of mortality, and the response-

function was consistent with linearity for the entire year and in the warm season.

Figure E6 shows below the unadjusted cumulative response functions in the nested case-control 

analyses of the hazards of non-accidental mortality among subjects 65 years of age and over with 

congestive heart failure, Montreal, 1991-2003, for age and selected area-based contextual 

covariates. For age and unemployment the mortality response-functions were positive and 

monotonically increasing. For the percentage of adults who did not complete high school the 

relationship was positive and linear, whereas the risk of mortality decreased with increasing 

median household income until approximately the 97th percentile (approximately $Cdn60,000), 

above which daily mortality appears to increase but the confidence interval was wide.
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Figure E6. Unadjusted cumulative response functions in the nested case-control analyses of the 
hazards of non-accidental mortality among subjects 65 years of age and over with congestive heart 
failure, Montreal, 1991-2003, for: (A) age and the following time-varying area-based contextual 
covariates: (B) unemployment rate; (C) percentage of adults that did not complete high school; D) 
median household income. All response-functions were fitted using natural cubic splines with 3df, and 
the hazard ratios (HR) and 95% confidence intervals were expressed relative to the mean value of each 
variable (vertical line).
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Figure E7. Unadjusted cumulative response functions in the nested case-control analyses of the 
hazards of non-accidental mortality among subjects 65 years of age and over with congestive heart 
failure, Montreal, 1991-2003, for: A) number of hospitalisations (hosp) and emergency room visits 
(ER) in the last 3 months; B) number of hospitalisation and emergency visits in the last 6 months; C) 
number of hospitalisations during the whole follow-up; D) furosemide (Lasix) usage. The hazard 
ratios (HR) and 95% confidence intervals were expressed relative to a value of zero for each variable 
(vertical line). For the indicator based on the prescribed dose of furosemide, the HR for the different 
categories of dose (low, moderate and high) are relative to those not taking furosemide. 
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Results of the assessment of effect modification according to the indicators of “declining 
health” based on the number of hospitalisations and emergency room in the past three and 
six months, and the cumulative number of hospitalisations since entry in the cohort

Figure E8, E9 and E10 shows below the results of the assessment of effect modification 

according to the indicators based on the number of hospitalisations and emergency room in the 

past three and six months, and the cumulative number of hospitalisations since entry in the 

cohort, respectively. 

For NO2, in the case-crossover the mean percentage change in the cumulative risk of non-

accidental mortality showed a increasing trend according to the number of hospitalisations and 

emergency department visits in the past three months, whereas in the case-control there was an 

increasing trend. However, for both designs the confidence intervals were wide, particularly for 

the higher values of the indicators, and there was substantial overlap in the confidence intervals 

across the selected values of the indicator.

For O3, in the nested case-control analysis for the nearest station and back-extrapolation methods 

from the LUR showed an increasing trend in the mean estimated effect according to the number 

of hospitalisations and emergency department visits in the past three (Figure E8) and six months 

(Figure E9). However, the confidence intervals were wide and overlapped between the different 

values of the indicator. Similarly, in the case-crossover analyses, the risk of non-accidental 

mortality increased with the number of hospitalisations and emergency department visits only for 

the back-extrapolation from the LUR, but the confidence intervals were wide and overlapped.

In Figure E10, for NO2 there was a decreasing trend in non-accidental mortality according to the 

number of hospitalisations for both designs, but the decreasing trend was more modest in the 

case-crossover and there was substantial overlap in the confidence intervals. For O3, the number 

of hospitalisations in the nested case-control analysis had practically no influence on the 

associations, whereas in the case-crossover analyses the odds of non-accidental mortality 

increased with the value of the indicator.
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(A)

 (B)

Figure E8. Estimated cumulative percentage change in non-accidental daily mortality over lag 0-3 
day per interquartile range increase in (A) daily 24-hour mean exposures to ambient NO2 (all year) 
and, (B) daily 8-hour mean exposures to ambient O3 (May-September), according to the number of 
hospitalisations and emergency room visits in the past three months. For O3, we present results for the 
case-crossover adjusting (“Adj. Case-crossover”) and not adjusting for weather (“Unadj. Case-
crossover”). Numbers on the horizontal axis are selected values of hospitalisation and emergency room 
visits, whereas “No EMM” represents the model without including the number of hospitalisations and 
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emergency room visits. Dots represent maximum likelihood estimates and bars represent 95% confidence 
intervals. We could not in the nested case-control analyses estimate the mean of all stations, as this metric 
does not have any variability between individuals. For NO2, interquartile ranges (IQRs) were 13.6, 10.0, 
8.8 and 9.6 ppb for the nearest station approach (“Nearest station”), inverse-distance weighting (“IDW”), 
back-extrapolation from a land use regression (“LUR back-extrapol.”), and the daily mean across all 
stations (“Mean of stations”), respectively. For O3, IQRs were 19.6, 16.6, 16.4, 11.6 and 11.8 ppb for the 
nearest station, IDW, LUR back-extrapol., BME and mean of stations, respectively. 
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 (A)

(B)

Figure E9. Estimated cumulative percentage change, over lag 0-3 day, in non-accidental daily 
mortality per interquartile range increase in (A) daily mean 24-hour mean exposures to ambient 
NO2 (all year) and, (B) daily 8-hour mean exposures to ambient O3 (May-September), according to 
the number of hospitalisations and emergency room visits in the past six months. Dots represent 
maximum likelihood estimates and bars represent 95% confidence intervals. Numbers on the horizontal 
axis are selected values of hospitalisation and emergency room visits, whereas “No EMM” represents the 
model without including the number of hospitalisations and emergency room visits. For O3, we present the 
results from the case-crossover adjusting (“Adj. Case-crossover”) and unadjusting for weather (“Unadj. 
Case-crossover”) as we were concerned with possible overadjustment. For both air pollutants the nested 
case-control analysis could not be performed using the mean of all stations, as it requires some variability 
in the exposure between individuals.  For NO2, interquartile ranges (IQRs) were 13.6, 10.0, 8.8 and 9.6 
ppb for the measurement at the nearest station (“Nearest station”), inverse-distance weighting 
interpolation (“IDW”), back-extrapolation from a land use regression (“LUR back-extrapol.”), and the 
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daily mean across all stations (“Mean of stations”), respectively. For O3, IQRs were 19.6, 16.6, 16.4, 11.6 
and 11.8 ppb for the nearest station, IDW, LUR back-extrapolated, BME and mean of stations, 
respectively.
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Figure E10. Estimated cumulative percentage change in non-accidental daily mortality over lag 0-3 
day per interquartile range increase in (A) daily 24-hour mean exposures to ambient NO2 (all year) 
and, (B) daily 8-hour mean exposures to ambient O3 (May-September), according to the number of 
hospitalisations since the beginning of the follow-up. For O3, we present results for the case-crossover 
adjusting (“Adj. Case-crossover”) and not adjusting for weather (“Unadj. Case-crossover”). Numbers on 
the horizontal axis are specific values of hospitalisation, whereas “No EMM” represents the model 
without including the number of hospitalisations. Dots represent maximum likelihood estimates and bars 
represent 95% confidence intervals. We could not in the nested case-control analyses estimate the mean of 
all stations, as this metric does not have any variability between individuals. For NO2, interquartile ranges 
(IQRs) were 13.6, 10.0, 8.8 and 9.6 ppb for the nearest station approach (“Nearest station”), inverse-
distance weighting (“IDW”), back-extrapolation from a land use regression (“LUR back-extrapol.”), and 
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the daily mean across all stations (“Mean of stations”), respectively. For O3, IQRs were 19.6, 16.6, 16.4, 
11.6 and 11.8 ppb for the nearest station, IDW, LUR back-extrapol., BME and mean of stations, 
respectively.
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 (A) 

(B)

Figure E11. Estimated cumulative percentage change, over lag 0-3 day, in non-accidental daily 
mortality per interquartile range increase in (A) daily mean 24-hour mean exposures to ambient 
NO2 (all year) and, (B) daily 8-hour mean exposures to ambient O3 (May-September), by gender. 
For O3, we present results for the case-crossover adjusting (“Adj. Case-crossover”) and not adjusting for 
weather (“Unadj. Case-crossover”). Numbers on the horizontal axis denote single day lags (0 to 3) and the 
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cumulative for these lags (“cumul.”). Dots represent maximum likelihood estimates and bars represent 
95% confidence intervals. We could not in the nested case-control analyses estimate the mean of all 
stations, as this metric does not have any variability between individuals. For NO2, interquartile ranges 
(IQRs) were 13.6, 10.0, 8.8 and 9.6 ppb for the nearest station approach (“Nearest station”), inverse-
distance weighting (“IDW”), back-extrapolation from a land use regression (“LUR back-extrapol.”), and 
the daily mean across all stations (“Mean of stations”), respectively. For O3, IQRs were 19.6, 16.6, 16.4, 
11.6 and 11.8 ppb for the nearest station, IDW, LUR back-extrapolated, BME and mean of stations, 
respectively.
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Appendix F. Example of R code

We performed our analyses in R, version 3.3.3 (R Foundation for Statistical Computing, 2016).  
For both type of analyses, i.e., time-stratified case-crossover and nested case-control, we used the 
Cox proportional hazards model for time-dependent variables (survival package, version 2.41-3) 
and we incorporated distributed lag non-linear models to simultaneously consider potential non-
linear and delayed dependencies in the association between daily mortality and air pollution, 
accounting for possible non-linear effects of air pollution and other covariates (temperature and 
relative humidity) (dlnm package, version 2.3.2). 

Traditionally, for both types of analyses the strata option is used in the code to specify that the 
models need to account for the matched nature of the selection of cases and controls. Rather than 
using this method we accounted for the matched nature of the selection of cases and controls by 
defining time intervals that were specific to each risk set and not overlapping. This method led to 
computational times that were approximately 300 times faster than the traditional approach. 
Below we show an example of the code used in R (see Stage 1) for this approach within the 
context of the nested case-control analysis between NO2 and mortality. For simplicity we show 
an unadjusted model. Note that the exact same procedure and code can be used for a case-
crossover analysis if time variables are defined according to each subject identification number.

Using the indicator based on the number of hospitalisations during the follow-up and the 
indicator based on furosemide (Lasix) usage as examples, we present in the second and third 
stage of the R code the procedure used to investigate potential effect modification in the 
associations between air pollution and mortality according to an ordinal and a categorical 
variable, respectively. Briefly, for the ordinal indicator of health and the cross-basis function for 
the air pollutant the procedure consisted into adding in the regression models an interaction term 
between the indicator of health and the cross-basis function for the air pollutant (Gasparrini et al., 
2015; Gasparrini et al., 2016). The interaction term was centered at selected values of the 
indicator for which we computed estimates of association and their 95% confidence intervals for 
an interquartile increment in air pollutant. As for categorical variables, the DLNM can handle 
interaction only for binary variables, not for a multi-level categorical variable. Therefore for the 
indicator based on furosemide usage, which is a four-level categorical variable, we used a 
dummy parameterization to represent each category. An interaction term was created for each 
binary indicator and the cross-basis for air pollutant, centered accordingly to the selected values 
of the indicator for which we wanted to report the estimate of associations. All interaction terms 
were then included in the Cox regression model.
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Example of R code: 
#################################################################################################
# STAGE 1: EXAMPLE OF CODE FOR THE NESTED CASE-CONTROL BETWEEN AMBIENT NO2 AND MORTALITY  #
# INCPORATING DISTRIBUTED LAG NON-LINEAR MODELS FOR AIR POLLUTANT #
#################################################################################################

library(survival) ; library(dlnm)

#STEP 1: LOADING THE DATASET.
# This is the Dataset for the nested case-control analysis.
no2data<-read.table(file="NESTEDCC_NO2.csv", sep=",", header=TRUE)
head(no2data)

#STEP 2: DEFINE MATRIX OF EXPOSURE FOR NO2
# I am considering a lag period of 4 days, (i.e.,lag 0 (same-day) to lag 3-day)

#MATRIX FOR NO2
QNO2near <- as.matrix (no2data[,(6:9)])
colnames(QNO2near) <- paste("nearlag", 0:3, sep="")
QNO2near [1:3, 1:4]

#STEP 3: DEFINE CROSSBASIS FOR NO2, AND WEATHER VARIABLES

#CROSS-BASIS FOR NO2 (using concentrations from the nearest station)
# The selected function is linear with an unconstrained lag structure.
basisrefno2near<-crossbasis(QNO2near, lag=3, argvar=list(fun="lin"), arglag=list(fun="integer"))

#STEP 5: COX REGRESSION MODEL
# I am using cox regression, which is equivalent to conditional logistic. 
# The variables included in the models are defined as following:
# cc, case/control status (1=case; 0=control);
# riskset_id, risk set identification number (defined as integer);
# basisrefno2near, cross-basis for NO2;

# DEFINE TIME VARIABLES IN A WAY THAT RISK SETS ARE AUTOMATICALLY DEFINED
# (NO STRATA NEEDED -> FASTER)
timeout <- as.numeric(factor(no2data$riskset_id))
timein <- timeout-0.1

# COX MODEL WITHOUT INTERACTION
modelref <- coxph(Surv(timein,timeout, cc)~ basisrefno2near,
                    no2data, method="breslow", x=T)

# STEP 6: GET CUMULATIVE ESTIMATE OF ASSOCIATION AS WELL AS SINGLE LAG DAY PREDICTIONS FOR AN 
INTERQUARTILE RANGE IN NO2
summary(as.numeric(QNO2near))
iqr <- diff(quantile(as.numeric(QNO2near),c(25,75)/100,na.rm=T))
crosspred(basisrefno2near,modelref,cen=0,at=iqr)
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################################################################################################# 
# STAGE 2: INVESTIGATION OF EFFECT MODIFICATION BY AN INDICATOR OF HEALTH THAT IS ORDINAL #
# IN THIS EXAMPLE THE SELECTED INDICATOR OF HEALTH IS THE NO. OF HOSPITALISATIONS (NHOSP) #
# AND WE WANT TO OBTAIN THE CUMULATIVE ESTIMATES OF ASSOCIATION AND 95% CI # 
# FOR AN INTERQUARTILE RANGE INCREASE IN NO2 AT NHOSP = 0 AND =5. #
#################################################################################################

# STEP 7: DEFINE INTERACTION TERMS BETWEEN NO2 AND HOSPITALISATION (NHOSP), CENTRED AT SELECTED 
VALUES OF THE INDICATOR:
basisint0 <- basisrefno2near*(no2data$nhosp)
basisint5 <- basisrefno2near*(no2data$nhosp-5)

# STEP 8: COX MODELS WITH INTERACTION
modelint0 <- coxph(Surv(timein,timeout, cc)~ basisrefno2near + nhosp + basisint0,

no2data, method="breslow", x=T)
modelint5 <- coxph(Surv(timein,timeout, cc)~ basisrefno2near + nhosp + basisint5,
 no2data, method="breslow", x=T)

# STEP 9: GENERATE PREDICTIONS FOR IQR INCREASE AT SELECTED VALUES OF THE INDICATOR FOR AN 
INTERQUARTILE INCREASE IN NO2
predint0 <- crosspred(basisrefno2near,modelint0,cen=0,at=iqr)
predint5 <- crosspred(basisrefno2near,modelint5,cen=0,at=iqr)

# STEP 10: COMPARE OVERALL CUMULATIVE HR (CAN ALSO ACCESS CONFIDENCE INTERVALS)
# HR AT NHOSP =0
c(predint0$allRRfit,predint0$allRRlow,predint0$allRRhigh)
# HR AT NHOSP =5
c(predint5$allRRfit,predint5$allRRlow,predint5$allRRhigh)

################################################################################################# 
# STAGE 3: INVESTIGATION OF EFFECT MODIFICATION BY AN INDICATOR OF HEALTH THAT IS CATEGORICAL #
# IN THIS EXAMPLE THE INDICATOR OF HEALTH IS BASED ON FUROSEMIDE (LASIX) USAGE, #
# WHICH IS A FOUR-LEVEL CATEGORICAL VARIABLE #
# AND WE WANT TO OBTAIN THE CUMULATIVE ESTIMATES OF ASSOCIATION AND 95% CI # 
# FOR AN INTERQUARTILE RANGE INCREASE IN NO2 SPECIFIC TO EACH CATEGORY #
# #
# #
# IN THE DATASET SET, FUROSEMIDE CATEGORIES ARE REPRESENTED USING THREE BINARY (CODED 0/1) #
# INDICATOR VARIABLES DEFEINED AS FURO1, FURO2, FURO3, #
# EACH OF THEM REPRESENTING A CATEGORY VS A REFERENCE IN A DUMMY PARAMETISATION #
#################################################################################################

# ESTIMATE THE ASSOCIATION FOR THE REFERENCE CATEGORY (I.E., ALL BINARY INDICATORS =0)
 
# STEP 11: CREATING INTEREACTION TERM BETWEEN EACH BINARY INDICATOR AND THE CROSS-BASIS FUNCTION 
FOR AIR POLLUTANT 

int_no2near_furo1 <- no2data$furo1* basisrefno2near
int_no2near_furo2 <- no2data$furo2* basisrefno2near
int_no2near_furo3 <- no2data$furo3* basisrefno2near

# STEP 12: COX MODEL WITH INTERACTIONS
cox_no2near_furo0<- coxph(Surv(timein,timeout, cc)~ basisrefno2near + int_no2near_furo1 + 
int_no2near_furo2 + int_no2near_furo3, no2data, method="breslow", x=T)

# STEP 13: GET PREDICTIONS FOR AN IQR INCREASE IN NO2

predrefnear0 <- crosspred(basisrefno2near,cox_no2near_furo0,cen=0,at=iqrno2near)
c(predrefnear0$allRRfit,predrefnear0$allRRlow,predrefnear0$allRRhigh)

### TO OBTAIN ESTIMATES OF ASSOCIATIONS FOR THE OTHER CATEGORIES OF FUROSEMIDE, REPEAT THE 
PROCEDURE (I.E., STEPS 11, 12 AND 13) BUT AT STEP 11 CENTER THE BINARY INDICATORS ON THE DESIRED 
CATEGORY

# ESTIMATE FOR THE FIRST CATEGORY (I.E., FURO1=1, FURO2=0, FURO3=0)
int_no2near_furo1 <- (no2data$furo1-1)*basisrefno2near
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int_no2near_furo2 <- no2data$furo2*basisrefno2near
int_no2near_furo3 <- no2data$furo3*basisrefno2near

cox_no2near_furo1<- coxph(Surv(timein,timeout, cc)~ basisrefno2near + int_no2near_furo1 + 
int_no2near_furo2 + int_no2near_furo3, no2data, method="breslow", x=T)

predrefnear1 <- crosspred(basisrefno2near,cox_no2near_furo1,cen=0,at=iqrno2near)
c(predrefnear1$allRRfit,predrefnear1$allRRlow,predrefnear1$allRRhigh)

# ESTIMATE FOR THE SECOND CATEGORY (I.E., FURO1=0, FURO2=1, FURO3=0)
int_no2near_furo1 <- no2data$furo1*basisrefno2near
int_no2near_furo2 <- (no2data$furo2-1)*basisrefno2near
int_no2near_furo3 <- no2data$furo3*basisrefno2near

cox_no2near_furo2<- coxph(Surv(timein,timeout, cc)~ basisrefno2near + int_no2near_furo1 + 
int_no2near_furo2 + int_no2near_furo3, no2data, method="breslow", x=T)

predrefnear2 <- crosspred(basisrefno2near,cox_no2near_furo2,cen=0,at=iqrno2near)
c(predrefnear2$allRRfit,predrefnear2$allRRlow,predrefnear2$allRRhigh)

# ESTIMATE FOR THE THIRD CATEGORY (I.E., FURO1=0, FURO2=0, FURO3=1)
int_no2near_furo1 <- no2data$furo1*basisrefno2near
int_no2near_furo2 <- no2data$furo2*basisrefno2near
int_no2near_furo3 <- (no2data$furo3-1)*basisrefno2near

cox_no2near_furo3<- coxph(Surv(timein,timeout, cc)~ basisrefno2near + int_no2near_furo1 + 
int_no2near_furo2 + int_no2near_furo3, no2data, method="breslow", x=T)

predrefnear3 <- crosspred(basisrefno2near,cox_no2near_furo3,cen=0,at=iqrno2near)
c(predrefnear3$allRRfit,predrefnear3$allRRlow,predrefnear3$allRRhigh)


