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ABSTRACT 

 

Background:  

Electronic healthcare records (EHRs) provide opportunities to estimate the effects of type two 

diabetes (T2DM) treatments on outcomes such as cancer and cardiovascular disease.  Marginal 

structural models (MSMs) with inverse probability of treatment weights (IPTW) can correctly 

estimate the causal effect of time-varying treatment in the presence of time-dependent 

confounders such as HbA1c. Dynamic MSMs can be used to compare dynamic treatment 

strategies. This thesis applies weighted MSMs and dynamic MSMs to explore risks and benefits 

of early-stage T2DM treatments, and considers the practicalities/impact of using these models 

in a complex clinical setting with a challenging data source.  

Methods and Findings:  

A cohort of patients with newly diagnosed T2DM was identified from the Clinical Practice 

Research Datalink. MSMs with IPTW were used to estimate the causal effect of metformin 

monotherapy on cancer risk, and the effects of metformin and sulfonylurea monotherapies on 

risks of MI, stroke, all-cause mortality, and HbA1c trajectory. Dynamic MSMs were 

implemented to compare HbA1c thresholds for treatment initiation on risks of MI, stroke, all-

cause mortality (ACM) and glucose control. No association was found between metformin use 

and cancer risk. Metformin and sulfonylureas led to better HbA1c control than diet only, as 

expected, and there was some evidence of reduced MI risk with long-term metformin use. 

Changes in estimates between standard models and weighted models were generally in the 

expected direction given hypothesised time-dependent confounding. For stroke and ACM, 

results were less conclusive, with some suggestions of residual confounding. Higher HbA1c 

thresholds for treatment initiation reduced the likelihood of reaching target HbA1c, and there 

was a suggestion that higher initiation thresholds increased MI risk.  

Conclusions:  

Fitting weighted MSMs and dynamic MSMs was feasible using routine primary care data. The 

models appeared to work well in controlling for strong time-dependent confounding with 

short-term outcomes; results for longer-term outcomes were less conclusive.  
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1 INTRODUCTION  
 

1.1 TYPE 2 DIABETES   
 

1.1.1 Prevalence, risk factors and economic burden.  

 

Type 2 Diabetes Mellitus (T2DM) is a condition related to a person’s ability to produce and 

process insulin. Sufferers have difficulty in controlling blood glucose levels [1]. T2DM affects 

approximately 5.5% of the UK population [2], and this number is expected to rise to just under 

10% by 2030 [3]. Key risk factors for T2DM are a family history , being overweight, older age, 

history of high blood pressure, and ethnicity (e.g. South Asian, African and African -Caribbean 

ethnicities have an elevated risk) [4]. It has also been suggested that smoking may be an 

independent risk factor for T2DM [5], possibly as a result of its effect on insulin resistance [6]. 

The strongest risk factors however, are those associated with being overweight. Specifically, a 

large waist circumference and weight gain in early adulthood have both been shown to increase 

risk [7, 8]. The American Diabetes Association estimates that after adjustment for age, gender 

and ethnicity, the average medical cost of a patient with diabetes is 2.3 times what it would be 

in the absence of diabetes, with an overall cost for diabetes in the USA of $245 billion in 2012 

[9]. In the UK, the cost to the National Health Service (NHS) for diabetes is expected to be 

between £13 billion and £20 billion by 2035, which will be approximately 17% of overall 

expenditure [10]. Around 80% of this is attributed to treating complications (see 1.1.3) [11]. 

Since T2DM accounts for around 90% of diabetes cases [2], it is clear that T2DM is a large and 

increasing economic burden worldwide.  

 

1.1.2 Management of T2DM 

 

T2DM is treated with diet and exercise and/or anti-diabetes drugs, and is predominantly 

managed within primary care [12]. Figure 1.1 shows a simplified version of the recommended 

treatment pathways defined by the National Institute for Health and Care Excellence (NICE) [13]. 

For initial control of T2DM, the most common pharmacological treatment is the biguanide 

metformin [14]. This is a widely available drug that is also indicated for polycystic ovary 

syndrome [15]. Use of this as the first line treatment for T2DM has increased rapidly since the 

year 2000 [16]. As an alternative first line therapy, patients may be prescribed sulfonylureas, 

though use of these has declined in recent years [16] due to guidelines changing to advocate 
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metformin as the preferred first line therapy. In later stages treatment is usually intensified by 

adding additional oral anti-diabetes drugs (OADs) if glucose control is not well maintained with 

monotherapy. In newly diagnosed T2DM the current UK guidelines advocate the initiation of 

metformin if diet and lifestyle interventions cannot control blood glucose levels (as measured 

by glycated haemoglobin (HbA1c)) to below 6.5%. Other factors also have an influence on 

treatment decisions, for example, sulfonylureas are less likely to be used in overweight patients, 

and metformin is contra-indicated in patients with renal failure [15].  

 

 

Figure 1.1 Simplified diagram of care pathway for type 2 diabetes in the UK, as developed by 
NICE and presented in the 2015 updated guidelines [13] 

 

 

SU Sulfonylureas Pio Pioglitazone DPP4-I Dipeptidyl peptidase 4 inhibitors 

 

1.1.3 Complications of T2DM and associations with anti-diabetes drugs 

 

There is evidence that T2DM conveys additional risks of many other complications, for example, 

retinopathy, neuropathy, kidney disease, foot problems, cardiovascular disease (CVD) and 

cancer [2, 17-20]. As such, the potential effects of diabetes therapy on these excess risks are 

important to understand. A recent example of a potentially important treatment effect is the 

possible protective effect of metformin on risk of cancer [21-27]. In the last decade, multiple 

observational studies have suggested a reduced risk of both cancer incidence and mortality in 
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T2DM patients using metformin. A full systematic review of the evidence for this will be 

presented in chapter 2. As brief illustrations, studies by both Currie et al. [26] and Libby et al. 

[27] , using primary care data from the UK, estimated a decreased risk of cancer among 

metformin users of 27% and 37% respectively. However, other studies found no evidence of a 

protective effect, such as a study by Tsilidis [28] that found a HR for metformin use of 0.96 (0.89-

1.04). In other contexts, concerns have been raised over diabetes medications. Multiple 

observational studies have suggested an increased risk of cardiovascular and all-cause mortality 

with use of sulfonylureas, as shown by a systematic review in 2013 [29]. However, the authors 

did acknowledge strong heterogeneity in their findings and potential for bias, and a recent meta- 

analyses of randomised studies did not find the same increased risk [30]. Long term clinical trials, 

in particular the UK Prospective Diabetes Study [31] have also suggested a protective effect of 

metformin on risk of myocardial infarction (MI), stroke and all- cause mortality in patients with 

T2DM compared to a lifestyle intervention. This may explain the apparent harmful effect of 

sulfonylureas, since many observational studies use metformin monotherapy as the comparator 

agent [32, 33]. However, even the beneficial effect of metformin is not confirmed. For example, 

a meta-analysis and meta-regression of randomised trials found that effect of metformin on a 

range of cardiovascular outcomes appeared to be dependent upon the age of the included 

patients and on the comparator group [34].  

 

1.2 TIME-DEPENDENT CONFOUNDING  
 

A major issue in studying the risks and benefits of early stage type 2 diabetes treatments, is that 

many risk factors for the complications outlined above, such as BMI and glucose control are 

themselves associated with diabetes severity. As such, they are predictors for initiation of OADs 

through time. In other words, at any given time, patients initiating OADs are likely to have an 

underlying risk of complications that is different to patients continuing a lifestyle and diet 

intervention. This can be difficult to control for, particularly when modelling a time-varying 

treatment. Specifically, since OADs are prescribed to control diabetes severity by way of glucose 

control, it is clear that diabetes severity is both a confounder of the association between 

treatment and outcome, but also on the causal pathway between treatment and outcome. In 

this situation, difficulties arise in estimating the overall effect of treatment on outcome using 

standard statistical methods.  

Any time-dependent covariate L that is predictive of an outcome Y, and also of a time-varying 

exposure of interest X (often a treatment) is known as a time-dependent confounder. If past 

values of the treatment X also influence future values of L, then this confounder is referred to 

as a “time-dependent confounder affected by prior treatment”. This key definition is outlined in 
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Box 1.1 with an accompanying diagram. For clarity, we assume that the associations between L 

and X and L and Y are not both results of unmeasured common causes, as in this case L is not a 

confounder and treating it as such would induce selection bias [35, 36].  

 

 

 Box 1.1: Definition of a time-dependent confounder affected by prior treatment  

 

 

In this situation standard statistical methods are unable to estimate the overall effect of 

treatment on outcome. To explain why, we consider the two options available for covariate 

adjustment. Firstly, an adjustment could be made for the value of L at time 0 (Figure 1.2, left). 

This would control for the initial confounding , however when exposure is time updated at time 

1 and 2, the baseline value of L may no longer reflect the risk of the outcome Y at that time, and 

so residual confounding will remain (as indicated by the bold dashed lines). Secondly, the 

adjustment for L could be time updated (Figure 1.2, right). This will remove any residual 

confounding, but will also remove any effect of treatment that acts via L and so the overall effect 

of treatment cannot be established. Further, conditioning on time updated values of L may cause 

further confounding if there are risk factors for outcome and L that have not been accounted 

for, by inducing an association between X and U [36] as shown in the right hand pane of Figure 

1.2.  

 

A variable is a time-dependent (or time-varying) confounder affected by prior treatment 

if it satisfies the following conditions: 

1. The variable changes through time. 

2.  The variable is predictive of changes in treatment.  

3. The variable is also associated with the outcome of interest.  

4. The variable is also affected by past treatment.  
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Figure 1.2 Visualisation of the issues with standard methods of adjustment in the presence of 
time-dependent confounders affected by prior treatment.  

 

 
Left – Baseline adjustment only. Right – time updated adjustment 

Box indicates adjustment. Bold lines indicate those included in the estimate of treatment effect under the different 

options. Dotted lines indicate confounding pathways. Solid lines indicate assumed causal pathways. 

 

1.3 THESIS MOTIVATION AND AIMS  
 

Causal methodology has been developed to allow the correct estimation of the effect of time-

varying treatment on outcome in the presence of time-dependent confounders [37-39]. One 

method in particular, the method of inverse probability of treatment weighting (IPTW) 

(sometimes more generally referred to as inverse probability weighting (IPW)) of marginal 

structural models (MSMs), is relatively intuitive and has been used successfully in other disease 

areas, such as establishing the causal effect of antiretroviral therapy on survival in HIV in the 

presence of time-dependent confounding by CD4 count [40, 41].  

There are relatively few applications of IPTW of MSMs in the diabetes context, and an 

anticipated issue is that well-defined treatment guidelines may cause issues with the positivity 

assumption (necessary for MSMs, see 4.3.4.5), where certain treatment patterns are entirely 

determined by a particular covariate history. As described in 5.1, the data source for this thesis 

will be a large database of routinely collected primary care data. Such data sources are a valuable 

resource, allowing pharmacoepidemiological questions to be studied in large population-based 

samples. Although applications of MSMs in routinely collected electronic healthcare records 

(EHR) exist [42], some aspects of EHR data may cause uncertainty around the necessary 

assumptions. For example, there may be concerns of unmeasured or residual confounding from 

risk factors that are either not recorded, or are recorded with low accuracy. Additionally, 

frequency of visits to the GP will affect the opportunity to receive treatment, the recording of 

key information, and could be associated with underlying health.  
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1.3.1 Thesis aims 

 

The main aims of this thesis are: 

1. To investigate, via the use of inverse probability of treatment weighting of MSMs, the 

potential risks and benefits of early stage type 2 diabetes treatments, focussing on areas of 

current interest in diabetes epidemiology which are likely to be affected by time-dependent 

confounding.  

Within this, the specific objectives are:  

a) To understand how the question of whether metformin affects cancer risk has been previously 

addressed in terms of study designs, data sources, statistical methodology and risk of various 

biases; including how issues of time-dependent confounding may have been 

avoided/addressed.  

b) To use IPTW of MSMs to estimate the effect of metformin monotherapy vs lifestyle 

intervention only on risk of cancer in a cohort patients with newly diagnosed T2DM. 

c) To use IPTW of MSMs to estimate effect of metformin and sulfonylureas vs lifestyle 

intervention only on risk of cardiovascular events, all-cause mortality and glucose control in a 

cohort patients with newly diagnosed T2DM. 

d) To use existing extensions to the methodology to compare risk of cardiovascular events, all-

cause mortality and glucose control between “dynamic” treatment strategies. For example, the 

risk could be compared for “treat with metformin when HbA1c rises above 6.5%” vs ““treat with 

metformin when HbA1c rises above 8%”.  

2. To investigate the practicalities and impact of using inverse probability of treatment 

weighting of MSMs to adjust for anticipated time-dependent confounding in a complex clinical 

setting with a challenging data source.  

Explicitly, this aim has two key objectives as follows:  

e) To descriptively examine whether both the anticipated issues with positivity in the diabetes 

context, and potential issues of visit frequency appear to be present in the data.  

f) To compare the estimated effects of treatment obtained from the MSMs to those obtained 

via standard analysis methods. Specifically, the differences between methods will be compared 

in situations where the true effect of the drugs of interest are both unknown (cancer, CV 

outcomes, mortality) and better established (glucose control).  
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1.4 THESIS OUTLINE  
 

Chapter two presents a full systematic review and bias evaluation of the current literature on 

metformin and cancer risk, with a thorough discussion of the advantages and limitations of 

differing methodological approaches that have been used. Chapter three then presents a further 

short review of the existing literature on the risks and benefits of treatment strategies using 

metformin and sulfonylureas on cardiovascular outcomes and all-cause mortality. 

Following this in chapter four; the concepts of causal inference are introduced, and the method 

of inverse probability of treatment weighting of MSMs described. Details of the data source will 

then be introduced in chapter five, along with a description of how the cohort of patients with 

T2DM used within this thesis were identified.  

To establish the feasibility of the method, and to gain insight into the extent to which anticipated 

issues of positivity and visit frequency may be present, chapter six presents some initial 

descriptive analyses. Specifically, treatment patterns within the identified cohort are examined, 

and the measurement frequencies of key time-dependent confounders described.  

In chapters seven, eight and nine; the three main pieces of analysis are presented. Chapter seven 

presents a study investigating the effect of metformin on risk of cancer incidence. In chapter 

eight, the effect of metformin and sulfonylureas on risk of MI, stroke, all-cause mortality, and 

longitudinal HbA1c control are estimated. In chapter nine, treatment strategies of the form 

“treat when HbA1c raises above x%” (known as dynamic treatments), will be compared for 

varying values of x. The aim of this will be to investigate whether the current HbA1c threshold 

of 6.5% for treatment initiation is appropriate in terms of maintaining good glucose control and 

minimising risk of cardiovascular events and mortality. 

In the final chapter, the overall conclusions, and the key observed limitations of the 

methodology are discussed. Ideas for further work are also presented. 

 

1.5 ETHICAL APPROVALS  
 

The necessary ISAC approval and ethical approval from the London School of Hygiene and 

Tropical Medicine (LSHTM) was obtained (see appendices 1 and 2 for LSHTM Ethics and ISAC 

approval and associated protocol respectively). 
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1.6 ORIGINAL CONTRIBUTION  
 

This thesis contributes original research to the existing field of diabetes pharmacoepidemiology 

in several ways. Firstly, although other systematic reviews of the effect of metformin on cancer 

exist; the review presented in chapter 2 is the first (as far as could be identified) that 

systematically summarises the existing research both in terms of estimated effects, and a 

comprehensive objective bias evaluation, to identify which existing studies appear the most 

reliable. Secondly, no existing literature could be found that applies a marginal structural model 

approach to any of the associations examined within this thesis. Approaching these questions 

from a different perspective, using an approach that allows (in theory) for the correct estimation 

of the effect of a time-varying treatment in the presence of time-dependent confounders 

affected by prior treatment, could potentially add to our understanding of the causal effect of 

first line diabetes treatments on important clinical outcomes. Thirdly, the extension of MSMs to 

the dynamic treatment setting has not yet been applied to examine strategies for first line 

diabetes interventions. This work could therefore provide insight into whether the current 

guidelines for initiation of first line therapy are optimal to reduce risk of later complications. 

Finally, from a methodological perspective, the experience of applying MSMs in a complex 

setting using large scale EHRs may be informative for future applications of the methodology in 

the growing field of e-health research. 
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2 A SYSTEMATIC REVIEW OF METFORMIN AND RISK OF CANCER IN TYPE 

2 DIABETES  
 

2.1 RATIONALE AND AIM  
 

The aim of this review was to summarise existing observational studies investigating possible 

associations between metformin use and cancer risk in patients with T2DM, and to 

systematically examine the research design, analysis methods, and risks of bias. In line with the 

overall aims of the thesis, one of the key issues to examine was the extent to which the existing 

studies could be affected by time-dependent confounding affected by prior treatment. A 

secondary aim was to use meta-regression to investigate whether it was possible to quantify the 

extent to which study design characteristics and possible biases may account for the differences 

between study estimates. A version of this review was published in the International Journal of 

Epidemiology prior to submission of this thesis [43], and the published pdf is presented in 

appendix 3. 

 

2.2 METHODS 
 

2.2.1 Search strategy 

 

MEDLINE was searched using OvidSP on 30th May 2014 for all English language articles on cancer 

risk and type 2 diabetes treatments from 1946 onwards. The search involved using MeSH 

headings as well as key word searches in the title and abstract. The full search terms are 

presented in Box 2.1. Conference abstracts and unpublished studies were excluded.  

 

2.2.2 Screening strategy  

 

Articles were included in the review if they were of a standard epidemiological design (i.e. cohort 

study or case control study) and presented original observational research. Reviews and meta- 

analyses were not included. Studies were required to present a measure of estimated effect of 

metformin on risk of cancer incidence (either all cancer or site specific) in patients with T2DM, 

with age adjustment as a minimum. Studies restricted to populations with additional co-

morbidities or diseases (other than diabetes) were excluded.  
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Box 2.1 Full MEDLINE search terms 

1. Metformin/ or Insulin, Isophane/ or Insulin, Long-Acting/ 
or Insulin, Regular, Pork/ or Insulin/ or Insulin, Short-

Acting/ or Insulin, Regular, Human/ or Hypoglycemic Agents/ 

or Thiazolidinediones/ or Sulfonylurea Compounds/ or 

(Metformin or (Insulin not ("insulin resistance" or 

"insulin receptor")) or Sulfonylurea* or Pioglit* or 

Thiazo*).ab. 

2. epidemiologic studies/ or case-control studies/ or cohort 
studies/ or exp clinical trial/ or meta-analysis/ or exp 

epidemiology/ or ("case control" or "case - control" or 

"cohort" or "follow up" or "longitudinal" or hazard or risk 

or rate or odds).mp. 

3. Diabetes Mellitus, Type 2/dt 
4. Diabetes Mellitus, Type 2/ 
5. neoplasms/ or exp neoplasms by histologic type/ or exp 

neoplasms by site/ or exp neoplasms, multiple primary/ 

6. (DIABETES and ("type" and ("2" or II))).ab. 
7. 5 or (cancer or tumor or malig* or neoplas*).ab. 
8. 3 and 7 
9. (4 or 6) and 1 and 7 
10. (8 or 9) and human/ 

11. 10 and 2 

12. 11 not (Cell line/ or cell proliferation/ or genetic 

association/ or genotypes/ or animal/ or cytokine.mp. or 

chemokine.mp.) 

13. limit 12 to english 

14. obesity/ or weight loss/ 

15. 13 not 14 

 

OR 

16. (("anti diabet*" or "anti-diabet*" or Metformin or 

Sulfonylurea* or Pioglit* or Rosiglit* Thiazo* or antidiab* 

or (insulin not ("insulin resistance" or "insulin receptor" 

or "insulin-like" or "insulin like"))) and (cancer or 

(tumor not "tumor necrosis factor") or malig* or neoplas* 

or carcin*)).ti. 

17. 16 and 2 

18. 17 not 15 

19. 18 not (Cell line/ or cell proliferation/ or 

genetic association/ or genotypes/ or animal/ or 

cytokine.mp. or chemokine.mp.) 

20. limit 19 to English  
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During an initial title and abstract screen, reviews, meta-analyses and editorial pieces that 

looked at metformin and cancer were retained so that reference lists could be checked. 

Additionally, papers that appeared not to meet inclusion criteria (e.g. those that had primarily 

compared cancer incidence between diabetics and non-diabetics), were kept for full text 

screening in case the required measure of effect was reported as a secondary analysis. A full text 

screen was then applied to the remaining papers, and the reference lists of relevant reviews and 

meta-analyses searched. To test the reliability of the inclusion criteria an additional researcher 

screened a 10% random sample of the extracted studies. A Cohens kappa score was calculated 

to give a quantitative measure of rater reliability [44], with a value of 0.75 used as the threshold 

for “excellent agreement” [45]. 

 

2.2.3 Data extraction and bias assessment 

 

The data extraction table was piloted on five studies, and subsequently refined to ensure 

systematic documentation of the relevant information. The key information extracted consisted 

of details on the data source, study population (including size and follow up length ), study entry, 

study exit, exposure definition, exact outcome(s) studied, comparator group, considered 

covariates, analysis methods, details of any sensitivity analyses, key results and conclusions. 

Detailed criteria for assessment of bias were produced in order to consider risks of bias for each 

study. The 8 domains assessed for bias were 1) outcome definition; 2) exposure definition 

(including choice of comparator); 3) control selection (case control studies only); 4) 

consideration of HbA1c, BMI and other anti-diabetes drugs as time-dependent confounders 

affected by prior treatment; 5) adjustment for baseline (study entry) confounders (smoking, 

diabetes severity, age, gender); 6) immortal time (cohort studies only); 7) missing data; and 8) 

censoring methods (cohort studies only). For each bias domain, pre-defined criteria allowed 

categorisation into high, medium, low or unlikely risk of bias. These criteria are presented in 

appendix 4. Broadly, studies were considered unlikely risk of bias in a particular domain if the 

design and analysis methods were unlikely to induce a systematic difference between risk of 

cancer between metformin users and non-users. Low risk meant that there was small possibility 

of bias but the likely magnitude of the bias was not expected to have materially affected the 

overall study conclusions. Medium and high risk of bias meant that there was potential for 

moderate or substantial bias respectively in the study findings. Although the specific criteria for 

each bias domain may have left some room for subjectivity, they were developed in advance to 

make them as objective as possible.  
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Time-dependent confounders affected by prior treatment (e.g. HbA1c and BMI) were 

considered as a separate domain in addition to baseline confounding, to highlight the difference 

between baseline confounding that could be adjusted for in a standard analysis given 

appropriate data, and the subtler bias that may arise if valid methods to adjust for time-

dependent confounders affected by prior treatment are not used. As an example, a study 

seeking to answer an “intention to treat” (ITT) question, where exposure was defined at baseline 

then assumed constant was considered at unlikely risk of time-dependent confounding by 

HbA1c even if it only adjusted for baseline HbA1c. This is because the exposure is no longer time-

varying, so the issue of time-dependent confounding is eliminated. The same adjustment in a 

design where exposure was time updated after baseline was categorised as at risk of bias in the 

time-dependent confounding domain due to potential for confounding between post baseline 

changes in exposure and cancer. If studies omitted a particular confounder because they found 

it did not alter the estimate of metformin on cancer risk in a multivariable model, then they were 

not deemed to be at risk of bias due to its exclusion. However, the timing and accuracy of the 

confounder were still considered as sources of bias, since these aspects could have resulted in 

its incorrect omission. Bias from outcome and exposure definition encompassed both 

misclassification bias, biases induced by timing of measurement, and selection biases resulting 

from the definitions. Potential bias induced by using time-varying exposure without 

consideration for the time needed for exposure to plausibly cause cancer, could be considered 

as inappropriate censoring, or as inappropriate exposure definition; to avoid double counting 

this was considered a censoring bias.  

Some studies provided multiple estimates based on dose response categories (13 studies), or 

differing comparators (5 studies). In this situation, the main estimate used for our analyses was 

that deemed to be most comparable to other studies. For multiple estimates from a dose 

response model, if an overall exposed vs non-exposed estimate was not presented (5 studies), 

a middle category best representing a moderate level of exposure was taken.  

 

2.2.4 Meta-regression 

 

As an exploratory analysis designed to investigate whether between study heterogeneity in the 

observed effect of metformin could be explained by bias and other study level factors; a random 

effects meta-regression was performed. Separate regressions were performed for the five most 

common outcomes – all cancer, colorectal/bowel cancer, lung cancer, breast cancer and 

pancreatic cancer. Studies that reported only stratum specific results (3 studies) were each 
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entered into a meta-analysis to generate a pooled estimate for that study, which was 

subsequently used in the meta-regression. 

Study characteristics evaluated in the meta-regression were a subset of all available, based on a 

-priori assumptions about which might have the largest impact on study estimates. 

Characteristics included were comparator exposure (diet only, OADs, less metformin, and no 

metformin (diet and other OADs combined)), bias in exposure definition, bias in outcome 

definition, bias from baseline adjustments, bias from time-dependent confounders, immortal 

time bias, and whether the cohort were incident users of diabetic drugs. Zero was assigned to 

studies rated as unlikely or low in the bias assessment, and one to those rated medium or high. 

A binary classification was chosen to reduce sparsity. Backwards stepwise selection was used to 

identify which (if any) characteristics best explained study heterogeneity. A p value cut off of 0.4 

was used due to small sample size and the large number of parameters in the full model.  

 

2.3 RESULTS  
 

2.3.1 Search and screening 

 

The numbers of studies included/excluded at each stage of the process are presented in Figure 

2.1. From an initial 822 references (779 after removal of duplicates), 46 studies were included 

in the final review. Full texts were available for all studies. The random sample of 76 studies 

independently screened by two researchers against the inclusion criteria resulted in a Cohens 

kappa of 0.79, and only a single initial disagreement over inclusion of a study; it was agreed on 

discussion that this study did meet the inclusion criteria. One article examined adverse event 

reports from two randomised controlled trials so was technically not observational, however it 

was included as it could be considered a retrospective cohort study with a trial based data 

source. It did not adjust for age but this exclusion criterion was waived since treatment was 

randomised.  
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Figure 2.1 Flow chart of screening process, detailing number of studies excluded at each stage 
and reason for exclusions  

 

 

 

 

Flow chart as presented in [43] 10.1093/ije/dyw275

515 removed (numbers in brackets 

represent primary exclusion reason): 

17 (17) no abstract  

19 (19) case reports  

406 (383) cancer incidence not the 

outcome  

386 (93) diabetes treatments not an 

exposure  

53 (2) non-diabetic populations 

29 (0) diabetic therapy use in cancer 

patients 

3 (0) restricted to type 1 diabetes 

8 (0) non-clinical cancer outcome 

88 (1) reviews/comments/editorial articles  

Relevant non-original data articles kept at 
this stage and reference lists checked.  

107 no original data  

36 cancer incidence not an outcome (solely 

mortality or effect of treatment after cancer 

diagnosis) 

51 No age adjusted effect of metformin 

presented 

14 comparison to non-diabetics 

10 not in general population (e.g. post-

menopausal women, those undergoing 

colonoscopy) 

4 no exact quantification of risk for comparison 

of interest. E.g. summary statistics only, 

comparison of incidence between trials.  

  

4 identified from 

reference list search 

of systematic reviews 

and meta-analyses 

1 identified from 

expert knowledge 

822 studies exported 

779 after removal of duplicates 

264 remaining for full text scan 

41 Met 

inclusion 

criteria 

46 Included 
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Case 

Control N 
(%) 

Cohort N 
(%) 

Total N 
(%) 

Number of studies 22 24 46 

Data Source 

    Clinical Trial 0  (0) 1  (4) 1  (2) 

    Diabetes Registry 2  (9) 4  (17) 6  (13) 

    Insurance database 2  (9) 9  (38) 11  (24) 

    CPRD (or GPRD) 8  (36) 6  (25) 14  (30) 

    Other primary/secondary care database 1  (5) 4  (17) 5  (11) 

    Recruited from Hospital/Clinic  9  (41) 0  (0) 9  (20) 

Outcome definition* 

All cancer 5  (23) 16  (67) 21  (46) 

Colorectal/Bowel 2  (9) 12  (50) 14  (3) 

HCC/ICC 5  (23) 2  (8) 7  (15) 

Ovarian/Endometrial 2  (9) 1  (4) 3  (7) 

Bladder 0  (0) 3  (13) 3  (7) 

Breast 3  (14) 10  (42) 13  (28) 

Oesophagus 0  (0) 4  (17) 4  (9) 

Kidney 0  (0) 2  (8) 2  (4) 

Liver 0  (0) 5  (21) 5  (11) 

Leukaemia 0  (0) 1  (4.2) 1  (2) 

Lung 4  (18) 8  (33) 12  (26) 

Melanoma 0  (0) 2  (8) 2  (4) 

Pancreas 3  (14) 10  (42) 13  (28) 

Prostate 3  (14) 8  (33) 11  (24) 

Stomach 1  (5) 4  (17) 5  (11) 

Definition of exposure to metformin for primary estimate 

Any Exposure 14  (64) 8  (33) 22 (48) 

Any exposure but minimum time/number of prescriptions needed 1  (5) 2  (8) 3  (7) 

Total Exposure (Number of prescriptions/time on metformin)  6  (27) 4  (17) 10  (22) 

Monotherapy  1  (5) 8  (33) 9  (20) 

Randomisation  0  (0) 1  (4) 1  (2) 

Combination therapy with a sulfonylurea  0  (0) 1  (4) 1  (2) 

Timing of Exposure measurement  

Current use (at time of cancer/matched date) 3  (14) 0  (0) 3  (7) 

Time updated (current/ever/cumulative) 0  (0) 8  (33) 8 (17) 

Fixed from start of follow up, with exposure occurring in a baseline 
period or follow up starting from first exposure (Intention to treat 
(ITT)).  

0  (0) 8 (33) 8  (17) 

Single summary measure of exposure over entire follow up. 19  (86) 8  (33) 27  (59) 

Comparator group for primary estimate  

Less exposure (i.e. continuous exposure variable) 0  (0) 2  (8) 2  (4) 

Diet Only 0  (0) 1  (4) 1  (2) 

Rosiglitazone 0  (0) 1  (4) 1  (2) 

Sulfonylurea 2  (9) 9  (38) 11  (24) 

Any other OAD 3  (14) 4  (17) 7  (15) 

No metformin (combination of diet and other OADs)  17  (77) 7 (29) 24  (52) 

** New users of Oral Antidiabetic Drugs (OADs) 

Yes 3  (14) 7  (29) 10  (22) 

No 17  (77) 12  (50) 29  (63) 

Unsure 2  (9) 5  (21) 7 (15) 

Table 2.1 Frequency table to summarise data source, outcome and exposure definitions for 46 
studies.  

*Studies may have multiple outcomes therefore column percentages will not sum to 1. **Based on whether clear 
description given in methods. 
Table as presented in [43] 10.1093/ije/dyw275 
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2.3.2 Study characteristics 

 

Table 2.1 summarises the data sources, outcomes, exposure definitions, timing of exposure 

measurements, and comparator exposures used. More detailed study level information is 

presented in appendix 5. Of the 46 studies, 22 were case control design [22, 46-66], and 24 were 

cohort studies [23-28, 67-84]. Thirty-seven (80%) of the studies used data from electronic health 

records; most commonly, the UK’s Clinical Practise Research Datalink (CPRD) (13 studies) and 

the Taiwan National Health Insurance Claims Database (8 studies). As previously mentioned, one 

paper [72] used data from two randomised controlled trials. The remaining 8 (all case control) 

collected data from a specific cancer or diabetes clinic.  

Twenty-two studies (46%) defined exposure to metformin as any exposure, without considering 

overall duration. Three further studies refined this definition by requiring a minimum time 

period or number of prescriptions before an individual was considered exposed. Nine studies 

(20%) looked at monotherapy with metformin and 10 studies (22%) used total exposure to 

enable dose-response analyses. The remaining 2 studies looked at metformin in combination 

with specific OADs, with a comparator group that allowed the estimation of the effect of just 

metformin. The most frequently used comparator group was no metformin, used in 24 studies 

(52%). Use of sulfonylureas (another popular first line oral agent) (11 studies (24%)) was also a 

common comparator.  

There were 116 estimates presented for the effect of metformin on risk of cancer when 

considering separate estimates for different cancer sites. Twenty studies examined the outcome 

of all cancer excluding non-melanoma skin cancer (NMSC) (or similarly, a combination of a range 

of cancer types). One provided two estimates based on different data sources [72] making 21 

estimates in total. Colorectal and/or bowel (14 studies) were the most common sites studied, 

followed by pancreas (13 studies), breast (13 studies), lung (12 studies) and prostate (11 

studies). Other sites had less than 10 estimates each.  

 

2.3.3 Effect of metformin on cancer risk  

 

Figure 2.2 displays the study estimates and 95% confidence intervals (CIs) for relative risk (odds 

ratio (OR) or hazard ratio (HR)) of metformin use on incidence of all cancer. Estimates and 95% 

CIs for the four most commonly studied site specific cancers are presented in Figure 2.3.
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Figure 2.2 Study specific estimated relative risk (odds Ratio or hazard Ratio) with 95% CI for metformin vs comparator on risk of all cancers, and corresponding 
assessment of risk of bias. 

 

a Represents the hazard ratio for cancer risk per one extra prescription of metformin. Figure as presented in [43] 10.1093/ije/dyw275

? Unknown   ‼ High   ! Medium      Low      Unlikely  Risk of bias:  
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Figure 2.3 Study specific estimated relative risks (odds ratio or hazard ratio) with 95% CI for 
metformin vs comparator on risk of 4 most commonly studied site specific cancers 

 

 

Case control studies are represented by hollow triangle, Cohort studies by filled circles. Figure as presented in [43] 

10.1093/ije/dyw275
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For all cancer, 18/21 estimates were below one, with 12/18 having upper confidence limits 

below or equal to one. The magnitude of the effect estimates ranged from just a 0.04% reduction 

in risk [67], to a 77% reduction in risk [70]. For site specific cancers, estimates were also highly 

variable across studies (Figure 2.3).  

 

2.3.4 Bias evaluation 

 

Study specific results of bias assessment for studies assessing all cancer as an outcome are 

displayed alongside risk estimates in Figure 2.2. Only three studies [28, 72, 83] scored low or 

unlikely for risk of bias in all categories. One further study, which looked at lung cancer only, 

scored unlikely or low in all categories except missing data [65], where it was rated unknown. 

Three of these studies saw no evidence of an effect of metformin. One study estimated a modest 

protective effect of long term use (>60 months) in comparison to short term use (0-6 months) 

with a hazard ratio (HR) of 0.82 0.75-0.90, but ultimately concluded that there was no evidence 

for a causal effect due to patterns of risk that were inconsistent with causality [83]. Of the 12 

studies that estimated a statistically significant protective effect of metformin, eleven had at 

least medium risk of bias in at least two domains. Nine had medium or high risk of bias from 

exposure definition and seven had medium or high risk of bias for treatment of HbA1c, BMI and 

other OADs. The fully detailed bias assessments for each study are presented in appendix 6.  

 

Time-dependent confounders affected by prior treatment  

Table 2.2 (case control) and Table 2.3 (cohort) detail which adjustments were made for HbA1c, 

BMI and other anti-diabetes drugs, and the timing of the measurement within the follow up 

period for each study separately. Only four studies were considered as unlikely to be at risk of 

bias due to how HbA1c, BMI and other anti-diabetes treatments were accounted for in the 

analysis. These studies considered exposure to metformin as fixed from baseline (“intention to 

treat” (ITT) principle), and had confounders measured immediately prior to baseline.  

Only 16/46 studies included HbA1c as a confounder in the final model. Six further studies 

reported considering it as a potential confounder, but did not include it in their final model due 

to lack of statistical significance [26, 67] for its association with cancer, or because it did not alter 

the estimate of effect of metformin in the multivariable model [28, 47, 49, 81]. All but one of 

these studies [28] were still considered at risk since it was questionable whether the HbA1c used 

was representative of HbA1c at the time of starting treatment. Twenty-six studies accounted for 
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BMI in their final model. In most case control studies, the measurement of HbA1c and BMI was 

prior to the date of cancer diagnosis (or matched date for the control) but it was rarely clear 

where this occurred in relation to the measurement of exposure. Therefore, the potential for 

these studies to have adjusted for factors on the causal pathway between metformin and cancer 

was high. For the cohort studies, most used BMI and HBA1c measurements at, or close to the 

time of cohort entry, which therefore either preceded or coincided with exposure classification. 

None of the studies reviewed used time updated values of either HbA1c or BMI, though some 

used averages across follow up. The appropriate adjustment for other anti-diabetes drugs is 

dependent upon the exposure and comparator group definitions. In six of 46 studies, adjustment 

for use of other diabetes drugs was not considered necessary [23, 24, 28, 72, 78, 81]; in the 

remaining studies, 22/40 accounted for it.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 
 

 

Study Name 

HbA1c adjustment BMI adjustment 
Other Diabetic Medication 

adjustment 

value 
prior to 

first 
exposure 

value 

between 
exposure 

and 
index 
date a 

value 
at 
index 
date a 

value 
prior to 

first 
exposure 

value 
between 
exposure 
and index 

date a 

value 
at 
index 
datea  

value 
prior to 

first 
exposure 

value 
between 
exposure 
and index 

date a 

value 
at 
index 
date 
a 

Azoulay et al.  

(2011) [46] 

 

✔  

 
✔  

 
✔  

Becker et al.   (2013)  

[47] 

  
 

 
✔  

 
✔  

Bodmer et al.   

(2011)  [51] 

 

✔  

 

✔  

 

✔  

Bodmer et al.  

(2010)  [52] 

 

✔  

 
✔  

 
✔  

Bodmer et al.  

(2012) (Lung)  [48] 

  
 

 
✔  

 
✔  

Bodmer et al.   

(2012) (Pancreatic)   

[50] 

  

 

 

✔  

 

✔  

Bodmer et al.   

(2012) (Colorectal)  

[49] 

  

 

 

✔  

 

✔  

Bosco et al.  (2011)  

[53] 

  
 

  
 

 
  

Chaiteerakij et 

al.(2013) [54] 

  
 

  
 

 
  

Dabrowski et 

al.(2013) [56] 

  
 

  
 

 
✔  

Donadon et 

al.(2010) [57] 

  
✔ 

  
✔ 

  
 

Li et al. (2009)  [59] 
    

✔  
 

✔  

Evans et al.  (2005)  

[22] 

  
 

 
✔  

  
 

Hassan et al.  (2012)  

[60] 

  
 

  
 

  
 

Margel et al.  (2013)  

[61] 

  
 

  
 

 
✔  

Mazzone et al.  

(2012)  [62] 

 

✔  

 
✔  

  
 

Monami et al.  

(2009)  [64] 

  
✔ 

  
✔ 

 

✔  

Monami et al.   

(2011)  [63] 

  
 ✔ 

 

 
 

✔  

Smiechowski et al.  

(2013)  [65] 
✔b ✔  ✔b ✔  ✔b ✔  

Wang et al.   (2013)  

[66] 

  
 

  
 

  
 

Chen et al.  (2013)  

[55] 

  
 

  
 

 
✔  

Donadon et al.  

(2010) - 2  [58] 
     ✔    

Table 2.2 Adjustment method for key time-dependent confounders affected by prior treatment: 
Case control Studies. 

Table as presented in [43] 10.1093/ije/dyw275 a Index date: time of cancer diagnosis/matched date for 
control. b Sensitivity analysis assessed difference between adjusting for covariates measured before 
exposure or between 1 year prior to exposure and index date.  
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Study name 

HbA1c adjustment BMI adjustment 
Other Diabetic Medication 

adjustment 

value at 
cohort 

entry (at 
time of 
or prior 
to first 

exposur
e) 

time 
update

d  

average 
of 

values/ 
at any 
point 
after 
exposur
e    

value at 
cohort 

entry (at 
time of 
or prior 
to first 

exposur
e) 

time 
update

d v 

average 
of 

values/ 
at any 
point 
after 
exposur
e    

value at 
cohort 

entry (at 
time of 
or prior 
to first 

exposur
e) 

time 
update

d  

average 
of 

values/ 
at any 
point 
after 
exposur
e    

Currie et al.(2009)[26]          

Currie et al.(2013)[25] ✔   ✔      

Geraldine et 

al.(2012)[70] 
✔   ✔a      

Home et al.(2010)[72]          

Hsieh et al.(2012)[23]          

Lai et al.(2012) 

(HCC)[73] 
         

Lai et al.(2012) 

(LUNG)[74] 
         

Lee et al.(2011)[75]         ✔ 

Libby et al.(2009[27]   ✔   ✔ ✔b   

Qiu et al.(2013)[81]          

Redaniel et 

al.(2012)[82] 
  ✔ ✔      

Ruiter et al.(2012)[24]          

Tsilidis et al.(2014)  

[28] 
   ✔      

Yang et al.(2011)[84] ✔   ✔     ✔ 

Buchs & Silverman 

(2011)[67] 
        ✔ 

Oliviera et 

al.(2008)[80] 
         

Hense et 

al.(2011)[71] 
   ✔   ✔   

Chiu et al.(2013)[68]          

Ferrara et 

al.(2011)[69] 
✔       ✔  

Lehman et 

al.(2012)[76] 
  ✔       

Morden et 

al.(2011)[77] 
✔c   ✔*      

Neumann et 

al.(2011)[79] 
       ✔  

Van Staa et 

al.(2012)[83] 
   ✔    ✔  

Morgan et 

al.(2012)[78] 
✔   ✔      

Table 2.3 Adjustment method for key time-dependent confounders affected by prior treatment: 
Cohort Studies  

Table as presented in [43] 10.1093/ije/dyw275  
aweight used instead of BMI bmeasured within 3 months/1 year of cohort entry (either side of first exposure) 
cdiabetes complications used as proxy measures for severity Grey boxes indicate that adjustment not necessary. For 
HbA1c and BMI, this was due to randomised treatment allocation. For use of other OADs, adjustment was not 
necessary if the study looked at incident users of diabetes medications and censored at change in medication.  
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Other sources of bias  

Exposure definition (n=28) and baseline adjustments (n=22) were the other most common 

reasons for medium or high risk of bias (see Figure 2.2 and appendix 6). The exposure definition 

was most likely to have introduced potential bias in case-control studies by having different time 

windows to measure exposure, meaning the overall chance of seeing individuals exposed to 

metformin was systematically different between the cases and controls. Potential bias was most 

often introduced into cohort studies because future information was used to inform exposure 

definition. 7/24 cohort studies were considered to have high risk of immortal time bias. 22 

studies were considered at risk of bias from confounding due to incomplete or inappropriate 

baseline adjustment. This was because either the comparator used may have resulted in 

comparing patients at differing disease stages without adjustment for baseline disease severity, 

or because measures of severity used in the adjustment could be on the causal pathway 

between exposure and outcome, therefore not correctly accounting for differences in disease 

severity (and as such risk of cancer) that influenced choice of treatment at baseline. In addition, 

36 studies were considered at risk of bias due to not considering a latency period for cancer 

(outcome definition). Since the effect of this bias is probably small in magnitude, this risk was 

considered low. This was supported by the five studies that considered different latency periods 

in sensitivity analyses, concluding that estimates did not differ substantially [24, 28, 46, 65, 82].  

Many studies were considered to be at unknown risk of bias for censoring (12/24 cohort studies) 

and missing data (16 studies) due to a lack of information. Particularly for censoring, few cohort 

studies reported the numbers lost to follow up or for what reason. Four studies were rated 

medium or high for risk of bias from missing data, three of these because the missing indicator 

method was used, which will increase the risk of residual confounding [85]. With these three 

studies having > 20% missing data, the effect of residual confounding could be large.  

By assigning values of 0, 1, 2 and 3 to unlikely, low, medium and high risk respectively, and 

summing over all domains, an overall bias score was calculated. When estimates for effect of 

metformin on all cancer were ordered by this score (Figure 2.4, right) it was observed that 

heterogeneity increased as risk of bias increased, and the strongest protective effects were 

observed in studies with the highest risk of bias overall. A similar figure was also created to look 

at bias from exposure definition only (Figure 2.4, left).
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Figure 2.4 Estimates of relative risk of cancer with metformin use, ordered by risk of bias from exposure assessment only (left) and by overall risk of bias (right).  

Overall bias score is sum of bias risk over all domains, with unlikely = 0, low = 1, medium = 2, high = 3.  Case control studies are represented by hollow triangle, Cohort studies by 

filled circle. Figure as presented in [43] 10.1093/ije/dyw275 
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2.3.5 Meta-regression  

 

Parameter estimates and model diagnostics for the final meta-regression models obtained are 

shown in Table 2.4. For the outcome of all cancer, after backwards stepwise selection, the only 

two study level predictors that remained in the model were comparator group and bias from 

exposure definition. The model estimated that using a comparator group of diet as opposed to 

no metformin made metformin appear more protective, whereas using other OADs or less 

metformin as a reference group made metformin appear less protective. Bias from exposure 

definition was estimated to make metformin appear more protective. However, the amount of 

residual heterogeneity between studies was still over 80%, and the estimated between study 

variance of this model was larger than the between study variance that would be estimated with 

no covariates in the model (as indicated by the negative adjusted R2).  

Both comparator group and exposure definition were also retained in the models for the site 

specific cancers, though in the models for colorectal/bowel, breast and lung cancer, using other 

OADs as the comparator was estimated to make metformin appear more protective. Bias from 

exposure definition was estimated to make metformin appear more protective in all site specific 

analyses. For example, for studies of lung cancer it was estimated to reduce the log risk ratio by 

0.44, 95% CI (0.17, 0.72) p=0.007. For breast cancer, the strongest predictor was use of an 

incident user cohort, which made metformin look less protective. This predictor was also 

identified for studies of lung and pancreatic cancer, but the estimates had much less precision. 

Presence of both time-dependent and baseline confounding were also estimated to influence 

study heterogeneity for colorectal/bowel, breast and pancreatic cancer, with presence of these 

biases estimated to have broadly equal and opposite effects on the log risk ratio.  
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All cancer  Colorectal/Bowel Lung  Breast Pancreatic   

*Estimate 95% CI 
for effect on log risk 
ratio  

P 
value  

*Estimate 95% CI 
for effect on log 
risk ratio  

P 
value  

*Estimate 95% CI 
for effect on log 
risk ratio  

P value  *Estimate 95% CI 
for effect on log 
risk ratio  

P value  *Estimate 95% CI 
for effect on log 
risk ratio  

P 
value  

Comparator Group No metformin  0 (ref)  0 (ref)  0 (ref)  0 (ref)  0 (ref)  
 

Diet only -1.16 (-2.41 , 0.10) 

0.217d 

        
 

Less 
Metformin 

0.14 (-0.28 , 0.55) -0.04 (-0.43 , 0.34) 0.386d 0.05 (-0.34 , 0.44) 
0.107 d 

-0.37 (-0.81 , 0.07) 
0.625 d 

-1.66 (-3.30 , -0.01) 0.004 

d  
Other OAD 0.10 (-0.19 , 0.38) -0.09 (-0.24 , 0.05)  -0.15 (-0.31 , 0.02) -0.22 (-0.41 , -0.02) 0.36 (-1.10 , 1.83) 

Bias from Exposure Definition  Low Risk  0 (ref)  0 (ref)  0 (ref)    0 (ref)  
 

High Risk -0.16 (-0.43 , 0.10) 0.208 -0.40 (-0.58 , -0.21) 0.001 -0.44 (-0.72 , -0.17) 0.007   -0.84 (-1.74 , 0.06) 0.06 
Bias from Outcome Definition  Low Risk     0 (ref)    0 (ref)  
 

High Risk     -0.17 (-0.48 , 0.14) 0.234   -0.58 (-1.75 , 0.59) 0.238 

Immortal Time bias Low Risk         0 (ref)  
 

High Risk         0.96 (0.03 , 1.90) 0.046 
Bias from Time-dependent 
confounding  

Low Risk   0 (ref)    0 (ref)  0 (ref)  
 

High Risk   0.11 (-0.06 , 0.28) 0.171   0.22 (0.00 , 0.44) 0.047 0.92 (-0.13 , 1.96) 0.071 
Bias from Baseline confounding  Low Risk   0 (ref)    0 (ref)  0 (ref)  
 

High Risk   -0.12 (-0.18 , -0.06) 0.002   -0.22 (-0.46 , 0.02) 0.069 -1.05 (-2.01 , -0.10) 0.037 
Incident users Yes      0 (ref)  0 (ref)  0 (ref)  
 

No      0.18 (-0.14 , 0.50) 0.218 -0.25 (-0.5 , -0.01) 0.041 1.28 (-0.20 , 2.76) 0.074 

Constant  
 

-0.15 (-0.43 , 0.13) 0.269 0.00 (-0.14 , 0.15) 0.954 0.01 (-0.16 , 0.18) 0.892 0.17 (-0.08 , 0.42) 0.155 -0.55 (-2.07 , 0.97) 0.371   
          

1I squared   85.21%  0%  0%  3.5%  9.5%  

2Adjusted R2   -20.32%  100.00%  100%  -190%  99.97  

3Tau2  0.046  0  0  0.000305  0.000156  

Table 2.4 Parameter estimates from meta-regression models after backwards stepwise selection  
*Estimate represents the expected change in the log risk ratio (either HR or OR) for the effect of metformin on cancer, for each study level predictor. a I squared is the estimate of residual variation 
due to study heterogeneity.  b Adjusted R2 is the estimated proportion of between study variance explained by the covariates in the meta-regression. This can be negative when the between study 
variation in the model is increased because of loss of degrees of freedom more than it is improved by the addition of the covariates. c Tau2 is the estimate of the remaining between study variance.  
dJoint test of null hypothesis. Table as presented in [43] 10.1093/ije/dyw275  
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2.4 DISCUSSION  
 

2.4.1 Key findings  

 

This review has systematically identified and assessed the existing literature on the 

pharmacoepidemiological question of metformin use and cancer risk. The search identified a 

large number of studies from varying countries and journals, and the inclusion criteria were 

shown to have good reliability between raters. Although only one database was used in the 

search, by searching reference lists of other meta-analyses and systematic reviews the majority 

of studies are likely to have been identified, however the possibility that some relevant literature 

may have been omitted cannot be completely excluded.  

The 46 studies examined in this review did not provide consistent evidence to support a 

protective effect of metformin on risk of cancer. Two of three studies with low or unlikely risk 

of bias for all categories had estimates consistent with no effect of metformin. The third study 

had an estimate consistent with a moderate protective effect with longer exposure to 

metformin, though the authors concluded this finding was unlikely to be causal [83]. In 

particular, this study included many analyses, and also reported that when comparing 

metformin exposure to other classes of oral antidiabetics, the risk of cancer did not differ 

between drugs. The authors also found that the incidence rates of cancer were higher in the first 

three months after therapy initiation which they suggested may be due to detection bias, which 

would also explain why longer exposure appears protective when compared to the first six 

months of therapy.  

The estimates of effect reported across the 46 studies were highly variable for all outcomes 

studied. The bias evaluation performed was detailed and thorough, and every effort was made 

to agree in advance the criteria for risk of bias in each of the 8 domains examined. However, as 

in all studies of this kind, it was not possible to eliminate all subjectivity from this process.  

Many studies were at high risk of bias from exposure definition, which, for reasons already 

outlined by Suissa & Azoulay [86], can have a large effect on estimates of risk. Within studies 

considered to be at low or unlikely risk of such bias, effect estimates were closer to the null, but 

there was still variation in point estimates albeit with some wide confidence intervals. It is 

possible that confounding by disease severity, and in particular confounding from time-

dependent variables affected by prior treatment could partly explain the remaining 

heterogeneity in observed estimates.  
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2.4.2 Time-dependent confounding  

 

Different approaches for dealing with a time-dependent confounder affected by prior treatment 

can have quite different consequences for interpretation. Figure 2.5A represents the total causal 

effect of metformin use on cancer risk that we wish to estimate in a simple example where we 

assume HbA1c is the only time-dependent confounder affected by prior treatment. Figure 2.5 

B, C and D illustrate the causal pathways that are actually being estimated under the three 

approaches most commonly used in the studies examined in this review. In B, studies adjust for 

HbA1c but the measurement is taken anytime during follow up, which may result in “adjusting 

out” any effect of metformin that is mediated through HbA1c. Additionally, although not shown 

in the figure, if there are unmeasured confounders between HbA1c and the outcome, HbA1c 

acts as a “collider” [36]. This means that when HbA1c is adjusted for, an association between 

treatment and the unmeasured confounder is created, leading to further confounding of the 

association of interest. In C, because treatment may change after baseline, the single adjustment 

at time 0 may lead to residual confounding by post-baseline HbA1c. In D, the fixing of exposure 

from baseline removes the issue of time-dependent confounding and therefore allows the total 

effect of exposure on cancer to be estimated, but typically estimates an ITT effect only. This may 

not be appropriate given patients are unlikely to adhere to a single treatment throughout follow 

up.  

One study adjusted for non-adherence [28] using a weighting method that produces an unbiased 

estimate if there are no unmeasured confounders of the association between non-adherence 

and outcome [87]. In this case, the validity of this assumption is questionable given that they 

only looked at time points of 1, 3 and 5 years post baseline, with an indicator for whether 

patients had switched treatment up to these times. By using the most recent covariates at each 

of these time points, the covariates used to predict switching may have already been affected 

by the switch. In general, the active comparator approach is also limited by only considering 

comparisons between drugs. When applied and analysed carefully, it will give an unbiased 

estimate of the effect of initiating metformin compared to initiating (as an example) 

sulfonylureas on development of cancer, however this is not necessarily equivalent to 

estimating causal pharmacological effect of metformin use on cancer incidence and may be 

inappropriate if the comparator in question may itself affect risk of cancer. 

Most studies with low risk of other biases used the approach outlined in Figure 2.5D The lack of 

variation in how time-dependent confounders were adjusted for in these studies mean that it is 
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not possible with the current literature alone to assess whether there is a meaningful impact of 

time-dependent confounders affected by prior treatment on the estimated effect of metformin 

on cancer risk.  

 

 

Figure 2.5 Directed Acyclic Graphs (DAGs) to represent estimated causal pathways for A) the 
desired total causal effect of treatment on cancer risk, and B)-D) the estimated effect under 
different methods of adjustment for time-dependent confounders affected by prior treatment.  

 

 
 
Figure as presented in [43] 10.1093/ije/dyw275 
Box indicates adjustment.  
Dotted line represents causal associations that are present but not included in the desired/estimated effect. 
A Solid lines represent the pathways needed to estimate the total causal effect of time-varying treatment on 
cancer.  
B HbA1c measured at a single time point during the measurement window (usually the most recent value). 
Exposure may be time updated or assumed fixed from cohort entry.  Solid line represents the pathways included in 
the estimate of effect under this approach.  
C HbA1c measured once at/before cohort entry, exposure modelled as time-varying. Solid line represents the 
pathways included in the estimate of effect under this approach.  
D Exposure is assigned at cohort entry and assumed fixed (Intention to treat (ITT) principle), HbA1c measured once 
at/before cohort entry. Solid line represents the pathways included in the estimate of effect under this approach.  
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2.4.3 Meta-regression  

 

The meta-regression aimed to establish whether any of the potential sources of bias could 

explain the heterogeneity in risk estimates. Although some of the results obtained (e.g. the 

estimated effects of risk of bias from exposure definition) are plausible, the overall reliability of 

the meta-regression is questionable. For all cancer there were 21 studies contributing to this 

analysis, and even after selecting only key study level predictors, there were nine parameters in 

the initial model. The analysis was likely underpowered and backward selection may not have 

produced reliable results. Additionally, many of these estimates lacked precision. For the site 

specific cancers, since the sample size for the meta-regressions were smaller, these issues may 

be enhanced further, and individual studies with extreme estimates are likely to have had a large 

influence. Furthermore, for some biases, two high risk studies could be rated as such for 

different reasons which would bias the estimate in opposite directions, resulting in the bias 

appearing to have no effect overall. In addition, the ability to examine only published studies 

may itself introduce a publication bias, which cannot be accounted for in a meta-regression. The 

lack of reliability is also compounded by the presence of negative values for the adjusted R2, 

which indicate that the addition of parameters to the models has inflated the between study 

variance due to loss of degrees of freedom to a greater extent than the covariates improve the 

variance by explaining heterogeneity. Therefore, overall the results of this exploratory analysis 

should be interpreted extremely cautiously. 

 

2.4.4 Conclusions 

 

The existing literature provides inconsistent answers to the question of metformin use and 

cancer risk in type 2 diabetes. Variation in design of studies, and the potential for many kinds of 

bias make it difficult to fully explain the differences in risk estimates, particularly in terms of the 

potential impact of less easily detectable bias such as that from time-dependent confounders 

affected by prior treatment. It is likely that the largest protective effects that have been 

observed are a result of immortal time bias, and other issues relating to how metformin use was 

defined. Studies without such biases tend to have estimates closer to the null, and while an 

effect of metformin use on risk of subsequent cancer in patients with type 2 diabetes cannot be 

excluded, the previously reported large protective associations are unlikely to be causal. 
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In order to estimate the causal pharmacological effect of metformin on risk of cancer, the ideal 

would be to emulate a randomised controlled trial where patients are randomised to either 

metformin or diet only. This would involve comparison of patients initiating metformin with 

those controlling their disease by diet only, and correctly adjusting for disease severity at time 

of initiation while maintaining the effect of prior treatment on future disease severity measures. 

Using observational data, the only way to estimate such an effect would be with causal inference 

methods such as marginal structural models with inverse probability of treatment weighting or 

the g-computation formula, both of which will be introduced in chapter 4. This review and its 

update (see section 2.5) have shown that no studies to date appear to have used such causal 

methods to address the issue of time-dependent confounders affected by prior treatment in the 

metformin/cancer context. To be certain about the impact of such confounders, comparisons 

between adjustment methods need to be made within the same study population, using the 

same definitions of exposure, outcome, and confounders. A study utilizing causal methodology 

to deal with issues of time-dependent confounding, and how this compares to standard analysis 

methods would be a valuable and novel addition to the existing literature. 

 

2.5 UPDATE ON STUDIES PUBLISHED SINCE THIS REVIEW  
 

The same search as outlined in section 2.2.1 was repeated in November 2016, limiting to papers 

published since 2014 (to allow for studies that had been published but were not available on 

MEDLINE by May 2014). Forty-five studies were identified as potentially relevant new studies 

(excluding reviews and meta-analyses) from a title screen of around 350 additional articles. A 

more detailed screen of the abstracts and full text of these studies resulted in 24 new studies 

[88-111].  

Key details of the 24 studies are presented in Table 2.3. None of the 24 studies used analysis 

methods that were substantially different than those covered in the original review. Some 

studies used propensity scores [93, 94, 107, 110] to deal with baseline confounding, either 

through inverse probability weighting [93, 110], or via adjustment for the score [94, 107]. The 

results of these studies were variable in terms of estimated effect of metformin, due to differing 

exposure groups, outcomes, and potential for immortal time bias in one study [94].  

It was noticeable that more studies were explicit in stating that they used time-varying exposure 

to avoid immortal time, particularly when looking at cumulative exposure [90, 98-100, 103-109]. 

In contrast to the original review, there was also some variation in how time-dependent 
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confounders were adjusted for, with one study [90] time updating the adjustment for Hba1c as 

part of a secondary analysis. Time updating the adjustments for confounders will remove any 

effect of past treatment that acts via the confounder. It may also cause further confounding by 

inducing “collider bias” (as previously explained in 1.2). One study [99] adjusted for the mean 

value of HbA1c through follow up, however it not clear which pathways are (or are not) removed 

by such an adjustment. 

Despite different methods of adjustment for time-dependent confounders, most of the newly 

identified studies using time updated exposure found little evidence of an association between 

metformin use and cancer risk, either when looking at ever/never medication, or cumulative 

exposure. Three studies focussed on risk of bladder cancer took different approaches to dealing 

with time-dependent confounding. Two studies time updated exposure, with one using the time 

updated adjustment [90] , and one with baseline adjustment as in Figure 2.5c [103]. A final study 

did not time update exposure (as in Figure 2.5d) [98]. The study using time updated adjustments 

[90] found a HR for metformin vs sulfonylureas for risk of bladder cancer of 0.92 (0.76-1.11). The 

study that time updated exposure with baseline confounder adjustment only [103] estimated 

the effect of metformin use vs non-use to be 0.6 (0.56-0.64). This study however did not adjust 

for HbA1c or BMI directly, instead using presence of comorbidities to measure diabetes severity. 

It is also not clear what the referent group were exposed to, and is likely a mixture of no drugs, 

and other first line alternatives. The third study that compared metformin to sulfonylureas in 

incident users only, with no time updating of exposure found an HR of 0.81 (0.60-1.09) [99]. 

These three estimates are somewhat consistent, though the point estimates do differ. Although 

the reference group in one of the studies is not perfectly comparable; the results from these 

three studies appear to support the view that the method of adjustment for time-dependent 

confounders may have impact on the estimated risk of metformin use on cancer. 
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Author  Year Cancer type Data source Method Comparison OR/HR (95% CI)  Notes 

Bosetti 
[88] 

2015 HCC 

Italian healthcare 

utilization 
databases 

New user 

nested case 
control study 

Metformin vs no 

metformin at 
cohort entry  

0.67  
(0.48 -0.95) 

 Only a two year window to observe exposure and cancer, unlikely metformin can have an effect 
that quickly.  

 Not clear that diabetes severity has been balanced between those exposed and not exposed to 
metformin. 

Cardel 
[89] 

2014 Colorectal 
Danish 
nationwide 
registries 

Case control 
study  

Metformin vs no 
metformin 

0.83 
(0.68 -1.00) 

 Not clear that diabetes duration and therefore opportunity for exposure has been accounted for 
in this analysis.  

 Authors acknowledge that information on smoking, alcohol etc. is limited and that there may be 

residual confounding.  

Goossens 
[90] 

2015 Bladder  CPRD 

New user 

cohort study / 
prevalent 
user sens 
analysis 

Metformin vs 
sulfonylureas  

1.03 (0.81,1.31) / 
0.92 
(0.76-1.11)  

 Split follow up into 90 day periods and assigned exposure to each period as current if 
prescription in interval, past if not, or none if never prescribed.  

 Not clear what total person time/average follow up in the metformin only and sulfonylureas only 
categories is, so difficult to judge if long enough to observe cancer.  

 Authors also present analysis by time on metformin which gives an HR of 0.87 (0.46-1.63) for 
>=5 years use. 

Hagberg 
[91] 

2014 Liver  CPRD 
Case control 
study 

Metformin 
monotherapy vs 
no medication 

0.74  
(0.45-1.20) 

 Adjusted for diabetes duration and matched on length of time in CPRD but cases not eligible to 
be controls for other cases before their index date.  

 All adjustments made prior to index date but this could be after metformin use so not clear that 

risk of cancer between exposed and unexposed fully adjusted for.   

Kim  
[92] 

2014 Gastric  
Korean National 
Health insurance 

Cohort study  
Metformin vs no 
metformin  

0.73  
(0.53-1.01) 

 Also report significant dose response effect by duration of metformin use. Info in table 1 
suggests categorisation into use/no use and duration of use done using future information. 

Ko  
[93] 

2015 Endometrial  
US healthcare 
claims  

New user 
cohort study  

Metformin vs 
sulfonylureas 

1.09  
(0.88-1.35) 

 Censored at drug crossover.  

 Used inverse probability weighting of propensity score.  

Kong  
[94] 

2014 
All site 
cancers 

Hong Kong 
diabetes registry  

Cohort study  
Metformin vs no 
metformin 

0.39  
(0.25 , 0.61) 

 Possible immortal time? 

 Authors present an analysis looking at statins and CVD, comparing different methods where 

immortal time is included/excluded. The model including immortal time gives closest result to 
the known effect of statins, justifying use of this model for their analyses.  

Kowall 
[95] 

2015 
All site 
cancers 

German Disease 
Analyzer 
database 

New user 
cohort study  

Metformin 
monotherapy vs 
sulfonylurea 
monotherapy 

0.91  
(0.73-1.14)  

 Started follow up 1 year after first prescription. 

 As treated approach excludes monotherapy person time (I think) in patients that later intensify.  

 An ITT analysis where authors look at first medication and ignored changes was also conducted, 
gives an HR of 0.99 (0.85-1.13). 

Kowall 
[96] 

2015 

All site 
cancers 
(plus some 
site 
specific)) 

 Disease Analyzer 
database, 
Germany and UK  

Multi 
database New 
user cohort 

study  

Metformin 
monotherapy vs 
sulfonylurea 

monotherapy 

1.02 
 (0.90-1.15) 

 As above, ITT estimate 1.05 (0.99-1.12). 

Table 2.5 Basic extraction information from the 24 additional studies identified in the updated search (Nov 2016) 
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Author  Year Cancer type Data source Method Comparison OR/HR (95% CI)   Notes 

Lin 
[97] 

2014 
All site 
cancers 

Taiwan National 
Health Insurance 
Database 

Cohort study  
Metformin 
monotherapy vs no 
medication 

0.88  
(0.77-1.01) 

 Possible immortal time  
 

Mamtani  
[98] 

2014 Bladder  THIN 
New user 
cohort study  

Metformin vs 
sulfonylureas 

0.81 
(0.60-1.09) 

 Patients censored at treatment crossover. 

 Time-varying cumulative exposure also examined.  

 Median follow about 2 years. 

Onitilo 
[99]  

2014 
Breast, 
Prostate 
and Colon  

Marshfield Clinic - 
healthcare 
system  

New user 
cohort study  

Metformin vs no 
metformin 

0.65 
(0.45 - 0.94) 

 Time updated exposure - unexposed to exposed.  

 Adjustment for BMI and HbA1c is mean throughout follow up. 

Sakoda 
[100] 

2015 Lung  
Kaiser 
Permanente 

diabetes registry 

New user (of 
metformin) 

cohort study  

Metformin vs no 
metformin 

1.02  
(0.85-1.22) 

 Exposure time updated from never to ever for each medication class.  

 Mean of 9 years of follow up.  

 Also found no effect looking at time updated cumulative use. Some suggestion that metformin 
decreased risk in non-smokers HR 0.57 (0.33-0.99). 

Sehdev 
[101] 

2015 Colorectal Marketscan 
ase control 
study  

Metformin vs no 
metformin 

0.88 (0.77-1.00) 

 Only looked at prescriptions for metformin in the 12 months prior to index date. Causal 

protective effect in such a short time unlikely. 

 Also found a non-significant protective effect of increasing metformin duration in days and by 
increasing dose.  

Tsai [102] 2014 Lung 

Taiwan National 

Health Insurance 
Database 

New user 
cohort study  

Years of metformin 

use (<1, 1-3, 3-5, >5) 
vs no use  

<1 :0.69  
(0.49-0.98) 
1-3:0.55  
(0.39-0.76) 
3-5: 0.63  
(0.47-0.86) 
>5: 0.76 

 (0.61-0.95) 

 Possible immortal time . 

Tseng  
[103-109] 

2014 

Thyroid 

Taiwan National 
Health Insurance 
Database 

Cohort study  
Metformin vs no 
metformin at cohort 
entry  

0.68 (0.60-0.78) 
 Follow up in never users at baseline censored if they initiated metformin. If thyroid cancer can 

affect diabetes severity then many cancers that cannot be plausibly impacted by metformin 
may be missed.  

Bladder 

New user (of 
metformin) 
cohort study   

Metformin vs no 
metformin 

0.60 (0.564-0.638)  Time updated exposure, unexposed to exposed.  

 All adjustments made at baseline. (* using Propensity score adjustment ) 

 Also looked at cumulative use but not clear that cumulative exposure was time updated. If 
updated from not exposed to the category of ever cumulative use then this will introduce 
immortal time? 

 History of cancer at time of diagnosis is much higher in those never treated with metformin for 
all studies. This could suggest post baseline confounding by previous cancers?  

Prostate*  0.47 (0.45-0.49) 

Breast   0.63  (0.60-0.67) 

2015 Endometrial  0.68 (0.61-0.74) 

2015 Ovarian  0.66 (0.59-0.73) 

2016 Kidney* 0.28 (0.25-0.31)  
 As above, though inverse probability weighting of propensity score used.   

 Appears to be no adjustment for CKD/AKD, which is potentially important. 

Table 2.5 continued: Basic extraction information from the 24 additional studies identified in the updated search (Nov 2016) 
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Author  Year Cancer type Data source Method Comparison OR/HR (95% CI)   Notes 

Walker 
[110] 

2015 Pancreatic  
San Francisco 
Medical Clinics 

Hospital 
based case 
control study  

Metformin vs no 
metformin 

1.01 (0.61-1.68) 
 Also looked at months of metformin use ad found NS increased risk for all durations 

compared to no use.  

Yen  
[111] 

2015 
Head and 
Neck  

Taiwan National 
Health Insurance 
Database 

New user 
cohort study  

Metformin vs no 
metformin 

0.66 (0.55-0.79) 

 Not clear whether exposure status for controls based on entire follow up or just the first 
year.  

 Not matched on overall follow up so possible they are not exposed to metformin because 

they have shorter follow up…since rate of cancer higher later in time, this will produce a 
protective effect? Potentially issue with not matching on calendar time?  

Table 2.5 continued: Basic extraction information from the 24 additional studies identified in the updated search (Nov 2016)
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3 EFFECTS OF METFORMIN AND SULFONYLUREAS ON CARDIOVASCULAR 

EVENTS AND ALL-CAUSE MORTALITY 
 

3.1 RATIONALE AND AIM 
 

It is well established that type 2 diabetes confers an excess risk of cardiovascular (CV) 

complications [112]. Therefore, obtaining clear evidence as to whether particular treatment 

choices or strategies may affect this risk is of great importance. Outcomes such as MI, stroke, 

CV mortality, and combined endpoints such as major adverse cardiac events (MACE) and all-

cause mortality have been frequently studied in both randomised clinical trials (RCTs) [31, 113-

118] and various observational studies [32, 119] of oral anti-diabetes drugs. Some observational 

studies have suggested an increased risk to sulfonylurea users [33, 120, 121], particularly for all-

cause mortality, compared to other treatment options and between different classes of 

sulfonylureas [122]. Since it is important to reduce any elevated risk of CV events as early as 

possible, comparisons of first line agents such as metformin and sulfonylureas are particularly 

pertinent. This section reviews the current literature relating to the effects of both metformin 

and sulfonylureas on the risks of CV events (limited to macro vascular events, in particular MI 

and stroke), CV mortality and all-cause mortality. Since first line therapy in newly diagnosed 

T2DM is the focus of subsequent chapters, the review is limited to any comparisons between 

metformin monotherapy, sulfonylurea monotherapy and no medication/diet only.  

One of the main pathways by which type 2 diabetes medications may reduce the risk of CVD 

outcomes and all-cause mortality is by improving glycaemic control [123]. It is therefore 

important to know how well hyperglycaemia needs to be controlled to reduce this risk, and at 

what level of HbA1c a pharmacological therapy should be initiated over a lifestyle only 

intervention. UK guidelines currently have an HbA1c of 6.5-7% as the overall target and point of 

first line therapy initiation [13]. A recent article outlining the latest updates of evidence and 

policy [124] presents existing American target HbA1c values for managing CVD risk as <7% for 

most patients, <6.5% in patients with longer life expectancy, and <8% (or slightly higher) for 

older populations or where lifespan is limited by other comorbidities. However, the authors 

concluded that the epidemiological evidence to support these targets remains unclear. 

Therefore, as secondary aspect of this review, the existing evidence relating to target HbA1c 

control and levels for treatment initiation will also be summarised.  
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This review was less in depth than the previous review on metformin and risk of cancer. The 

reasons for this are firstly, that time did not allow another fully detailed systematic review, the 

scope of which would have been impractical with the given outcomes and quantity of existing 

research. Secondly, many review papers already exist for these questions and therefore there 

would have been considerable duplication of existing work. The aim was therefore limited to 

identifying and summarising the most important findings in this area.  

 

3.2 SEARCH METHOD 
 

A simple MEDLINE search using the following search terms was conducted to identify existing 

clinical trials and observational studies that have examined the effect of metformin or 

sulfonylurea use on cardiovascular events and glucose control.  

(“metformin”OR”sulfonylureas”)AND(“type 2 diabetes”OR”type II diabetes”)AND(“myocardial 

infarction”OR”stroke”OR”all-cause mortality”OR”cardiovascular events”OR”cardiovascular 

risk”OR”glucose control”)AND(“epidemiology”OR”risk”)  

This search produced approximately 600 results. A title screen identified 70 papers that would 

be potentially relevant. After reviewing abstracts, four of the most recent systematic review 

articles that presented results for the relevant comparisons were included. Two recent 

observational studies not included in the systematic reviews (identified by expert knowledge) 

were also obtained in full text. Finally, as a large long term clinical trial, the relevant publications 

from the UK Prospective Diabetes Study (UKPDS) were also obtained in full text. To identify 

whether any of the observational studies included in the systematic reviews used advanced 

statistical methodology to deal with issues of time-dependent confounding, the titles and study 

characteristics were reviewed via information provided in the review articles (including 

supplementary data), or by searching the studies and reviewing the abstracts. To identify papers 

relating to target glycaemic control or thresholds for treatment initiation; a recent umbrella 

review article was identified via a search of (“Glycaemic control”)AND(”cardiovascular 

risk”)AND(“type 2 diabetes”OR”type II diabetes”). This was used as a starting point to identify 

potentially relevant literature, with further studies identified via expert knowledge.  
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3.3 FINDINGS  
 

A summary of the key studies included and the relevant reported results are organised by 

outcome and comparison in Table 3.1. The descriptive details of the different studies included 

are then presented by outcome. 

 

3.3.1 Cardiovascular mortality 

 

Three of the identified systematic reviews provided a summary of the existing evidence on use 

of metformin or sulfonylureas and the risk of CV mortality [30, 32, 120]. Two reviews included 

data from RCTs only, to examine the effect of sulfonylureas on CV mortality. The first review 

combined data from 18 trials [120], though only three trials compared to placebo/no therapy. 

The authors estimated an increased risk of CV mortality for sulfonylureas vs placebo, albeit with 

a very wide confidence interval, with a Mantel-Haenszel odds ratio (M-H OR) of 1.55 (0.17-

13.64). The second review included 47 trials [30], but the summary measure for comparison to 

diet only/placebo was only based on three trials, with a summary estimate of 1.01 (0.68-1.51). 

Only one of these trials was included in the first review. Published in 2016, the third systematic 

review and meta-analysis reporting cardiovascular mortality as an outcome combined both RCTs 

and observational studies [32]. This review aimed to assess the evidence relating to a range of 

different medications, with a key comparison of interest being metformin monotherapy vs 

sulfonylurea monotherapy. For this comparison, the authors found that the range of risk ratios 

(RR) from the RCTs was 0.6 to 0.7 (two trials) and 0.6 to 0.9 for the observational studies (three 

studies), suggesting a reduced risk of metformin in comparison to sulfonylureas for CV mortality. 

For these particular outcomes, the authors did not present a summary estimate due to lack of 

studies. More studies (both observational and randomised) were identified but not included as 

they had either less than 1 year of follow up or were considered to be at risk of bias.  
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Cardiovascular mortality 

Author (year)  Type of Study  Met vs Diet Sulf vs Diet  Met vs Sulf       

UKPDS 34 (1998)[31] Clinical Trial  0.68 (0.53-0.87) 
  

UKPDS 33 
(1998)*[114] 

Clinical Trial   0.92 (0.68-1.23) 
0.92 (0.69-1.24) 

 

Maruthur (2016) [32] Review/Meta-analysis -Trials    Range 0.6-0.7 (2)  

Review/Meta-analysis -
Observational  

  Range 0.6-0.9 (3)  

Monami  (2013) [120] Review/Meta-analysis - Trials 
only  

 1.55 (0.17-13.64) 
(3) 

 

Varvaki Rados (2016) 

[30] 

Review/Meta-analysis – 

Trials only 
 1.01 (0.68-1.51) (3) 

 

  
Combined cardiovascular events   

Met vs Diet Sulf vs Diet Met vs Sulf  

Monami  (2013) [120] Review/Meta-analysis - Trials 
only  

 

0.87 (0.91-1.07) 0.95 (0.34-2.70) 

Morgan  (2014) [33] Cohort study  
 

 0.93 (0.88-1.14) 

Lamanna 
(2011)***[34] 

Review/Meta-analysis - Trials 
only  

0.79 (0.64-0.98) (8)  1.01 (0.82-1.23) (3)  

Hippisley Cox  (2016) 
[125] 

Cohort study  
0.68 (0.64-0.71)** 1.00 (0.95-1.05)**  

     
  

MI   
Met vs Diet Sulf vs Diet Met vs Sulf  

UKPDS 34  (1998) [31] Clinical Trial  0.61 (0.41-0.89)  
 

UKPDS 33 (1998)* 
[114] 

Clinical Trial  
 

0.87 (0.68-1.12) 
0.78 (0.60-1.01) 

 

Pladevall  (2016) [119] Review/Meta-analysis -- 
Observational  

 
 0.80 (0.74-0.88) (4) 

Monami  (2013) [120] Review/Meta-analysis - Trials 

only  

 

0.82 (0.65-1.03) (3)  
     
  

Stroke   
Met vs Diet Sulf vs Diet Met vs Sulf  

UKPDS 34  (1998) [31] Clinical Trial  0.58 (0.29-1.18)  
 

UKPDS 33 (1998)* 
[114] 

Clinical Trial  
 

1.01 (0.65 - 1.58) 
1.38 (0.52-2.08) 

 

     
  

All cause mortality   
Met vs Diet Sulf vs Diet Met vs Sulf  

UKPDS 34  (1998) [31] Clinical Trial  0.64 (0.45-0.91)  0.62 (0.40-0.98)* 

UKPDS 33 (1998)* 
[114] 

Clinical Trial  
 

1.02 (0.82-1.27) 
0.91 (0.73-1.15) 

 

Maruthur (2016) [32] Review/Meta-analysis -Trials  
 

 Range 0.5-1.00 (2)  

Review/Meta-analysis -
Observational  

 
 Range 0.5-0.8 (7)  

Morgan  (2014) [33] Cohort study  
 

 0.77 (0.60-0.83) 

Lamanna (2011)*** 
[34] 

Review/Meta-analysis - Trials 
only  

1.07 (0.56-2.06) (5)    

Hippisley Cox  (2016) 
[125] 

Cohort study  
0.64 (0.63-0.66)** 1.24 (1.20-1.28)**  

Varvaki Rados (2016)  
[30] 

Review/Meta-analysis – 
Trials only 

 
0.97 (0.71-1.33) (3)  

Table 3.1 Summary table of included articles, type of study, and estimated effects of either 
metformin or sulfonylureas on multiple diabetes related outcomes.  

For meta-analyses, number of studies contributing to summary estimate is given in brackets after the confidence 
interval.  
Estimates are HRs/summary HRs unless otherwise stated.  
*compared two difference classes of sulfonyulreas. Top estimate = chloropropamide vs diet, bottoms estimated = 
glibenclamide vs diet 
**Although comparing to no therapy, the timing of no therapy in terms of diabetes duration was not clear. Therefore 
this could combine early diet treatment in relatively healthy patients, with later removal of treatment due to frailty.  
*** 2 studies were in patients with impaired glucose tolerance rather than a formal diagnosis of T2DM.  
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Although not the largest, one of the RCTs with the longest follow up time (mean 10.6 years) 

examined in nearly all the reviews was the UK Prospective Diabetes Study (UKPDS) [31, 114]. 

Between 1977 and 1991, GPs in 23 centres across the UK referred patients with T2DM for 

potential inclusion. Patients between 25-65 years of age with FPG above 6.0 mmol/L were 

recruited. All patients received 3 months of conventional treatment with diet only. After this 

time, randomisation to two different sulfonylureas, insulin or continued conventional therapy 

occurred, with 619 patients randomised to chloropropamide and 615 to glibenclamide, 1156 to 

insulin and 1136 to remain on conventional treatment. In the first 15 centres, overweight 

patients could also be randomised to metformin. In total 1704 overweight patients were 

randomised, 411 to conventional therapy, 342 to metformin and 951 to one of the intensive 

treatments (either of the two sulfonylureas or insulin). This allowed for the effect of metformin 

vs diet only to be evaluated within overweight patients, and the effect of two classes of 

sulfonylureas to be examined vs diet only in an overall population of patients with T2DM. After 

15 years of follow up, results suggested that compared to diet only, metformin monotherapy 

was associated with a reduced risk of diabetes-related death (similar to cardiovascular mortality) 

(HR 0.68 (0.53 – 0.87)). For sulfonylureas, there was no suggestion of a difference in risk 

compared to diet only, with HRs of 0.92 (0.68-1.23) and 0.92 (0.69-1.24) for treatment with 

chloropropamide and glibenclamide respectively.  

 

3.3.2 Combined major cardiovascular events  

 

More frequently, studies and reviews have examined occurrence of combined CV events. 

Lamanna (2011) [34] performed a meta-analysis of RCTs that looked at use of metformin in 

relation to risk of CV morbidity, MI, stroke, heart failure, all-cause mortality and CV mortality 

combined. With 12 studies included in the meta-analysis, they observed a summary OR of 0.94 

(0.82-1.07).However, this included trials with differing comparator groups. When looking only 

at comparison to placebo or no therapy, eight studies contributed to a summary OR of 0.79 

(0.64-0.98). For three studies where the effect of metformin was estimated by comparing 

metformin and sulfonylureas combined to sulfonylureas alone, no difference in risk of CV events 

was found (summary OR of 1.01 (0.82-1.23)). A Meta-regression of all 12 studies estimated that 

the effect of metformin on risk of CV events was estimated to be more protective in trials with 

longer duration and with a wider age range for inclusion.  

The review by Monami [120] previously discussed for CV mortality, also examined the outcome 

of major adverse cardiac events (MACE). Two trials that compared sulfonylureas to placebo or 
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no therapy gave a summary OR of 0.87 (0.91-1.07), and a further two studies compared to 

metformin gave a summary OR of 0.95 (0.34-2.70).  

An observational study by Morgan et al. [33] not included in any reviews also looked at risk of 

MACE (defined as acute MI or stroke) using data from the CPRD; by comparing new users of 

metformin with new users of sulfonylureas. The authors used propensity score methods in a 

sensitivity analysis to look at potential effect of insufficient control for confounding by 

indication. A small increased risk for sulfonylurea use was found the primary analysis (adjusted 

HR for metformin vs sulfonylureas 0.83 (0.76-91)) but in the propensity-matched cohort, the 

adjusted HR increased to 0.93 (0.88-1.14).  

Another newly published study by Hippsley-Cox was a cohort study in UK primary care data 

[125], examining the effect of different diabetes medications on cardiovascular disease (CVD); 

defined as any of angina, MI, stroke or transient ischaemic attacks. They excluded prevalent 

users of insulin, gliptins, or glitazones, as well as anyone with a history of CVD or heart failure. 

Follow up time was split into treatment periods, allowing for periods of no therapy, 

monotherapy and combination therapy with different agents. They adjusted for a wide range of 

confounding variables at the beginning of each treatment period. Despite their main interest in 

comparing newer second line agents, results for exposure to a range of diabetes medications 

both alone and in combination were reported. The authors reported a decreased risk of 

cardiovascular disease when comparing metformin monotherapy to no treatment (HR 0.68, 0.65 

-0.71). For sulfonylureas, the equivalent comparison gave an estimate of 1.00 (0.95-1.05). 

However, residual confounding may be an issue with this particular study. Periods of “no 

therapy” were not restricted to be in the early stages of diabetes, and so may include periods in 

which treatment was stopped due to high risk of death in the short term. In addition, the authors 

also adjusted for covariates at the beginning of each treatment period. This may have resulted 

in adjusting for covariates on the causal pathway between past exposure and outcome, or 

induced collider bias as previously explained in 1.2. 

 

3.3.3 Myocardial infarction  

 

One issue with combining cardiovascular events is that drugs may have different effects on 

individual events. In this case, it would be more appropriate to look at specific cardiovascular 

events in isolation. The UKPDS study reported events separately, finding that metformin was 

associated with a decreased risk of MI (HR 0.61 (0.41-0.89). For sulfonylureas vs conventional 
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therapy, the estimated HRs were 0.87 (0.68-1.12) for chloropropamide and 0.78 (0.60-1.01) for 

glibenclamide.  

Three existing systematic reviews also reported results for MI alone [34, 119, 120], but one of 

these did not break down their overall summary HR by comparator group [34]. The meta-

analysis by Monami [120] examined the effect of sulfonylurea use on MI, with their overall 

analysis containing 23 trials. When restricting this to comparisons to placebo or no therapy there 

were three studies, with a summary OR of 0.82 (0.65-1.03).  

Pladevall (2016) [119] conducted a systematic review of observational studies that examined MI 

as an individual outcome, with four studies of metformin vs sulfonylureas included. These four 

studies combined gave a summary relative risk of 0.80 (0.74 -0.88). This review also assessed 

the potential for bias in each study, and it was observed that the study with the strongest 

protective effect of metformin vs sulfonylureas on risk of MI had the highest number of items 

at high or unclear risk of bias out of the four studies included. 

 

3.3.4 Stroke  

 

The UKPDS study was the only paper to present estimates for the effect of metformin or 

sulfonylureas on risk of stroke comparing to each other, or no therapy/placebo. For metformin, 

a protective effect was estimated but precision was low (HR 0.58 (0.29-1.18). Chloropropamide 

was not estimated to have an effect on risk of stroke compared to diet only, HR 1.01 (0.65-1.58). 

For glibenclamide, an increased risk was estimated but with very wide confidence intervals HR 

1.38 (0.52-2.08). 

 

3.3.5 All-cause mortality 

 

For the effect of metformin or sulfonylureas on all-cause mortality, the only summary of 

evidence from observational studies comes from the review by Maruthur et al. [32] where seven 

observational studies comparing metformin use with sulfonylureas gave risk estimates from 0.5 

to 0.8 for the relative risk of all-cause mortality. The corresponding range for RCTs was 0.5-1.02, 

based on two studies. Again, summary estimates were not presented for this outcome.  

Two additional observational studies found consistent results. Morgan [33] estimated a 

decrease in relative risk for metformin vs sulfonylurea monotherapy of 33% (40% - 27%) in their 
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propensity matched analysis. In the Hippsley-Cox study, which examined the risks for metformin 

and sulfonylureas separately [125], use of metformin compared to no therapy was estimated to 

reduce the risk by 35% (HR 0.64 (0.63 – 0.66)). Sulfonylureas were estimated to increase risk of 

death vs no therapy (HR 1.24 (1.20 – 1.28)). However, as previously discussed in 3.3.2, this study 

had two notable limitations and the observed results should be cautiously interpreted.  

Two further systematic reviews contributed to the evidence for metformin vs diet, and 

sulfonylureas vs diet only for risk of all-cause mortality. For metformin, the review of clinical trial 

data by Lamanna [34], estimated the summary OR for metformin vs placebo on all-cause 

mortality to be 1.07 (0.56-2.06), which is less supportive of a protective effect. The meta-analysis 

by Varvaki Rados [30] estimated an effect of sulfonylurea use vs diet only on all-cause mortality 

of 0.97 (0.71 - 1.33) based on three studies. Although this does not exclude a harmful effect, it 

is not consistent with the result from the Hippsley – Cox study. 

The UKPDS study estimated a protective effect of metformin on risk of death vs diet only, with 

an HR of 0.64 (0.45-0.91). The equivalent results for the comparisons between chloropropamide 

and glibenclamide were 1.02 (0.82-1.27) and 0.91 (0.73-1.15) respectively. In a sub study of the 

overweight patients; patients randomised to metformin were subsequently randomised to 

combine with sulfonylureas or not. There was less follow up for this group as they were 

randomised six years after their initial randomisation to metformin, but comparing metformin 

only to metformin plus a sulfonylurea resulted in an HR of 1.60 (1.02-2.52).  

 

3.3.6 HbA1c control and thresholds for treatment initiation 

 

A recent umbrella review by Rodriguez-Gutierrez et al. [126] aimed to compare the latest 

guidelines on glycaemic control, with the latest evidence on “tight glycaemic control”. They 

examined five key RCTs [31, 114, 116, 117, 127], their extension studies (if conducted), 11 meta-

analyses, 16 guidelines and 328 statements relating to glycaemic control in patients with T2DM. 

The authors found that there was no evidence that tight control reduced risk of all-cause 

mortality or stroke, but they did observe a consistent reduction in non-fatal MI across all trials 

and reviews. In a meta-analysis of the trial extension studies, they estimated an overall RR of 

0.85 (0.74-0.96) for the effect of “intensive control” (defined as discussed below) on non-fatal 

MI. The equivalent estimates for all-cause mortality and stroke were 1.02 (0.91 – 1.14) and 0.99 

(0.89-1.08) respectively. They also found that the published statements and guidelines favouring 

tight glycaemic control for reduction of macro vascular endpoints had decreased with time. This 
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likely reflects the uncertainty that remains around this issue, making it difficult to inform policy 

in terms of target HbA1c.  

To gain further insight into the evidence examined in the large scale umbrella review, two 

relatively recent and frequently cited meta-analyses of intensive glucose control and CVD risk 

included in the review were also examined. Ray (2009) [128] conduced a meta-analysis of 5 large 

RCTs, with the aim of understanding whether intensive glucose control was beneficial in terms 

of all-cause mortality and macro vascular events. Hemmingsen (2011) [129] conducted a similar 

review with 14 trials included. Both reviews concluded that the existing evidence suggest no 

decreased risk of all-cause mortality with intensive glucose control. For MI, both studies found 

similar overall ORs favouring intensive glucose control (summary ORs 0.83 (075-0.93) [128] and 

0.85 (0.76-0.95) [129].  

The five key trials discussed by Rodriguez-Gutierrez et al were included in both of these reviews. 

One issue with combining the evidence from these trials in meta-analyses is that they had 

differing definitions of “intensive” control. Three of the five studies examined by Ray 

randomised patients to treatment strategies that involved a target HbA1c. “Intensive” target 

definitions included  6%, 6mmol/L (5.4%) and 6.5%. These were then compared to “standard” 

treatment targets, which varied by definition (e.g. 7-7.9%, “as per local guideline”, or 15mmol/L 

(11%)). Therefore, despite the existing evidence comparing “intensive” vs “standard” control, 

the evidence to support a particular target HbA1c is still lacking. In addition, the UKPDS study 

was the only study in newly diagnosed T2DM. All other studies were conducted in patients with 

a mean of 8-10 years since time of diagnosis, meaning that the validity of the combined results 

in terms of early stage diabetes and the effect of early HbA1c control is questionable.  

In order to identify an optimum target to reduce risk of all-cause mortality, Arnold and Wang 

[130] used data from six observational studies, identified via a systematic search, that examined 

the relationship between HbA1c and all-cause mortality. They used meta-regression techniques 

to estimate an overall association, finding a J shaped curve with minimum risk between 6% and 

7.5%. This shape was only evident in an analysis restricted to studies that examined more than 

five HbA1c categories. In another analysis of 14 studies with more than two levels of HbA1c 

included, the authors did not observe this non-linear association, finding instead suggestion of 

increasing risk with increasing HbA1c. This study therefore provides some support for the 

current guidelines of targets between 6.5 and 7% but may also suggest that a target up to 7.5% 

could be considered without compromising overall mortality.  
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An alternative way to approach the issue of optimal HbA1c control may be to ask a slightly 

different but related question. Particularly relevant in newly diagnosed diabetes, where patients 

may present with a wide range of elevated HbA1c levels is the question of when to start 

pharmacological treatment over a lifestyle intervention. Looking at treatment initiation 

thresholds has the added benefit of being able to ask other useful questions, such as does it 

matter if we start treating at 10% or 7%, in terms of subsequently achieving “target” Hba1c? 

Alternatively, does starting first line therapy at a higher HbA1c affect long-term risk of 

cardiovascular outcomes? Comparing treatment thresholds in observational data is challenging, 

because the value of Hba1c at which a particular patient initiates treatment will depend on many 

factors that a) vary with time, b) are affected by past decisions to remain untreated, and c) affect 

future risk of CVD and mortality. Therefore, issues of time-dependent confounding arise.  

One option to avoid time-dependent confounding would be to compare HbA1c levels at the time 

of treatment initiation for risk of cardiovascular outcomes. However, this approach does not 

fully compare treatment strategies relating to a threshold HbA1c, since they ignore person time 

in which patients are maintaining an HbA1c below the threshold but have not initiated 

pharmacological treatment. No existing literature could be found directly comparing HbA1c 

thresholds for first line treatment initiation on risk of long-term outcomes or on future HbA1c 

control. One study was identified that compared HbA1c levels at which treatment was 

intensified from metformin to a combination therapy, in terms of risk of MI, renal function, and 

albuminuria [131]. The authors used dynamic marginal structural models to compare HbA1c 

thresholds while adjusting for time-dependent confounding and informative censoring, using 

data from an American insurance claims database. They found that there was no increased or 

decreased risk of MI with lower HbA1c thresholds, but found some protective effect of lower 

HbA1c thresholds on reducing onset or progression of albuminuria.  

 

3.4 DISCUSSION 

 

The results summarised above appear to indicate that metformin has an overall protective effect 

on cardiovascular outcomes, both in comparison to sulfonylurea monotherapy, and to diet only. 

The evidence for the effect on all-cause mortality appears less conclusive. However, for 

comparisons to diet only, these findings (for all outcomes) are largely based on a single clinical 

trial (UKPDS), a single meta-analysis that only included 8 trials (5 for all-cause mortality) and 

included the UKPDS, and a cohort study that had an unclear risk of bias.  
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Four articles that compared metformin to sulfonylurea monotherapy suggested a protective 

effect of metformin for at least one outcome. This was most clear in observational studies or 

reviews of observational studies where, across all outcomes, 4/6 estimates had upper 

confidence limits below one. In contrast, the equivalent number for studies including clinical 

trial data was 2/5 (with a third study having an upper limit of 1 exactly). However, all that can 

really be established from these studies is there may be a difference in effect between the two 

drugs. The cause of the difference cannot be determined.  

It was apparent that although the reviews of RCTs had a large number of trials included, 

comparisons of metformin and sulfonylureas to placebo or diet therapy were relatively limited. 

In particular, many RCTs had small sample size or short follow up. In order to establish the reason 

for observed differences in effect when metformin is compared with sulfonylureas, studies in 

large cohorts, with longer follow up comparing both metformin monotherapy and sulfonylurea 

monotherapy with diet alone are needed. Such comparisons in observational data, if not done 

with careful consideration and appropriate methods to deal with time-dependent confounding, 

have the potential to be biased. None of the existing studies identified, through the reviews or 

otherwise, appear have taken account of time-dependent confounders affected by prior 

treatment using appropriate causal methodology. A separate review by Patorno published in 

2014 [132] identified 81 observational studies examining association between glucose lowering 

medications and cardiovascular outcomes, and aimed to describe the most common 

methodological limitations. Key issues identified included immortal time, adjusting for 

intermediate factors (“over adjustment bias”), censoring at treatment changes with no latency 

period, and confounding by disease severity. These conclusions are similar to those established 

in the review of studies of metformin and cancer in chapter 2, and give further support for the 

overall need for careful design and analysis when studying the effects of time-varying diabetes 

treatments.  

One RCT with mean follow up on 10.6 years exists (the UKPDS study) that compared first line 

treatments to diet only. This study began in 1977, and there have been many advances in overall 

management of cardiovascular disease since then, which, as discussed be Ferrannini (2105) 

[133] may affect generalisability of such a study to the present day. Having said this, as long as 

one is mindful of these limitations, the results from the UKPDS study may serve as good 

comparators for results from an observational study of metformin and sulfonylureas vs diet 

alone. Specifically, this study found (i) evidence that metformin was protective for all of MI, 

stroke, and all-cause mortality, estimating a 30-40% decreased risk vs diet only for all outcomes; 
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(ii) no clear evidence that sulfonylureas were protective for any of MI, stroke or all-cause 

mortality, but also no strong suggestion that they were harmful.  

In terms of the literature relating to optimal HbA1c control, this review suggested that intensive 

vs standard HbA1c control has been studied extensively in T2DM. More intensive control 

appears to lower the risk of all-cause mortality according to clinical trial data, however the actual 

optimal target for reducing long-term risk remains unclear. In addition, no literature was found 

directly comparing HbA1c thresholds for initiation of first line therapy. In chapter 9, such a 

comparison using observational data will be presented. 

This was not a comprehensive systematic review, and by relying primarily on a few recent 

systematic reviews and meta-analyses, it is unlikely that all relevant literature has been 

identified. However, the main aim was to gain a general overview of the existing literature and 

weight of evidence for the effects of metformin, sulfonylureas and HbA1c control on 

cardiovascular outcomes to inform analyses presented later in the thesis. It was noticeable that, 

as eluded to above, many more trials and observational studies (and reviews of them) exist that 

have different comparator groups or look at the effect of treatments at later stages of disease 

[29, 121, 134]. However, as with the comparison between metformin and sulfonylurea 

monotherapy, the estimate of comparative effectiveness cannot be interpreted in terms of the 

effect of a specific drug, unless it is known that the comparator agent has no effect on the 

outcome of interest.  
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4 OUTLINE OF STATISTICAL METHODOLOGY 
 

4.1 BACKGROUND  
 

Causal models aim to provide estimates for the effect of exposure on outcome that can be given 

a causal interpretation. A causal estimate is the target of almost every study with a question 

such as “what is the effect of a on b?” whether it is a randomised trial or an observational study. 

The validity of the study result as a causal estimate invariably relies on certain assumptions, 

which vary with the context and methodology used.  

This section will outline the formal definitions of a causal effect, and define other key terms in 

causal inference. It will then introduce the possible approaches for obtaining causal effect 

estimates in the presence of time-dependent confounders affected by prior treatment (see 1.2), 

and lay out the assumptions under which a causal effect may be established. The methodology 

of the specific modelling approach to be used in this thesis, namely inverse probability of 

treatment weighting of marginal structural models, will then be explained in further detail. An 

overview of the practical implementation will also be given. Further details relating to the 

practical implementation will be given in the methods section of the relevant analyses (chapters 

7,8 and 9). 

 

4.2 BASIC DEFINITIONS  
 

4.2.1 Definition of a causal effect  

 

Throughout, capital letters represent random variables and lower case letters represent 

observed values. Define 𝐴 as a random variable representing the exposure of interest (usually 

treatment, which will be assumed to be the exposure from here onwards), where 𝐴 can take the 

value 𝑎 = 0  or 𝑎 = 1, i.e. treated or untreated. If 𝑌  represents a continuous outcome of 

interest, then 𝑌𝑎 is the outcome if the treatment variable takes the value 𝑎. 

It then follows that there are two potential outcomes for a subject, also known as 

counterfactuals, 𝑌0 and 𝑌1 that could be observed dependent on treatment. In real life, a subject 

is either treated or untreated, and can only experience one of these outcomes. These concepts, 
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and the following definitions were introduced and developed by Neyman et al [135] and Rubin 

[136] respectively. 

Using the idea of potential outcomes, the individual causal effect of treatment A on outcome Y 

can be defined as  

𝑌1– 𝑌0 

In general, it is not possible to identify an individual causal effect. Instead, the average causal 

effect, which contrasts the expected potential outcomes for multiple observations, can be 

defined as  

𝐸[𝑌1] –  𝐸[𝑌0]   

where 𝐸[𝑌𝑎] is the expected value of the outcome 𝑌 where everyone’s treatment status is equal 

to 𝑎. If 𝑌 is binary, the average causal effect may be re-defined as a risk difference, a risk ratio 

or an odds ratio.  

In a longitudinal setting, 𝐴 can be represented as a vector 𝐴 of longitudinal treatment choices, 

with 𝑎  being the vector of observed values 𝑎1 , 𝑎2, 𝑎3 … 𝑎𝑇  for time 𝑡 = 1,2,3, … 𝑇 . The 

counterfactual outcome for a specific longitudinal treatment strategy is then represented by 𝑌𝑎. 

 

4.2.2 Direct and indirect effects  

 

A variable 𝑋 on the causal pathway between 𝐴 and 𝑌, is a variable such that the effect of 𝐴 on 

𝑌 acts through 𝑋. Such variables may also be referred to as “mediators” [137]. 

When there are multiple pathways through which 𝐴 can act on Y, the average causal effect can 

be dissected into direct and indirect causal effects, which sum to the total effect. The causal 

diagrams in Figure 4.1 below provide simple examples of each of these in the presence of a 

single mediator.  
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Figure 4.1 Simple depiction of direct, indirect and total effect of treatment A on outcome Y in 
the presence of a single mediator X. 

 

Thick lines indicate the pathways included in the effect estimation 

 

4.3 AN OVERVIEW OF METHODS FOR DEALING WITH TIME-DEPENDENT CONFOUNDING  
 

As previously explained in 1.2; a variable that is both a mediator and a confounder when 

modelling time-varying treatment in longitudinal studies is known as a “time-dependent 

confounder affected by prior treatment”, and standard statistical methods cannot estimate the 

total effect of time-varying treatment on outcome without bias in the presence of such 

confounders. Throughout this thesis, the term “causal effect” is taken to mean the total effect.  

Three approaches exist that allow, in theory, the estimation of the total effect of time-varying 

treatment in the presence of time-dependent confounders affected by prior treatment. These 

are g-computation [38], inverse probability of treatment weighting of marginal structural 

models [37] and g-estimation of structural nested models [39].  

 

4.3.1 G-computation  

 

G-computation was introduced by Robins [38] in 1989, and is, as explained by Daniel et al [138], 

a generalisation of standardisation to the longitudinal setting. For a time fixed confounder, one 

could standardise over a confounder 𝐿 by multiplying the expected outcome 𝑌 conditional on 𝐿 

by the probability of 𝐿, for each possible value of L, and summing the joint probabilities.  

Longitudinally, the confounder 𝐿 will have an observed vector of values 𝑙, taking the values 

𝑙1, 𝑙2 , 𝑙3. . 𝑙𝑇 at time 𝑡 =  1,2,3, … 𝑇...  

G-computation allows the estimation of the expected potential outcome 𝐸[𝑌𝑎] of a particular 

treatment strategy 𝑎, by expressing the expectation as a function of the conditional probability 
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of 𝑌 given treatment history 𝑎 and covariate history 𝑙; and the probability of 𝐿 conditional on 

treatment and covariate history.  

More formally, defining 𝐴(𝑡)  to be the treatment at time 𝑡 =  1 … . 𝑇, and 𝐴(𝑡−) to be the 

vector of treatment up to time 𝑡 − 1, and defining 𝐿(𝑡) and 𝐿(𝑡−) analogously for a set of time-

dependent confounders 𝐿 (where we now allow 𝐿 to mean a set of variables without changes 

to notation);  the specification of the g-computation formula (or “g-formula”) is, as in [138]: 

 

𝐸(𝑌𝑎) =  ∑ {𝐸(𝑌|𝐴 = 𝑎 ,  𝐿 = 𝑙) ∏ 𝑃(𝐿(𝑡) = 𝑙(𝑡)|𝐴(𝑡−) = 𝑎(𝑡−), 𝐿(𝑡−) = 𝑙(𝑡−))𝑇
𝑡=1 }𝑙 ∈ 𝐿   (1) 

 

This can be extended to continuous forms of 𝐿 by replacing the sum with an integral (as shown 

in [138]). Due to the complexity for long follow up and large numbers of covariates, the practical 

implementation of estimating and contrasting potential outcomes under different treatment 

patterns uses Monte Carlo simulation to estimate the expected outcomes. Macros are available 

in both SAS and Stata for its implementation [139, 140].  

Some examples of the application of the g-formula in existing literature include estimating the 

effect of hypothetical lifestyle interventions such as smoking cessation and increased exercise 

on risk of coronary heart disease (CHD) [139] , the effect of a new drug on mortality in bone 

marrow transplants [141] and the effect of asbestos exposure on lung cancer mortality [142].  

 

4.3.2 Inverse-probability of treatment weighting of marginal structural models   

 

Marginal structural models (MSMs) directly model counterfactual outcomes. They are so called 

because they describe the average causal effect of treatment on the marginal distribution of the 

potential outcomes, and because models for potential/counterfactual outcomes are referred to 

as “structural” in social and economic literature [143]. 

The most commonly applied approach to estimate the parameters of an MSM in the presence 

of time-dependent confounding, is that of inverse probability of treatment weighting (IPTW)) of 

MSMs [37]. Also developed by Robins [144], Daniel et al. describes the basic intuition behind 

IPTW by noting that it aims to  

 

“Re-weight the subjects in the analysis to mimic a situation in which the assignment to 

treatment is at random” ([138] page 1598).  
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The process of applying MSMs with IPTW is a two stage process. Firstly, each individual’s 

probability of having their own treatment history is calculated; and used to calculate the IPTW. 

In the second stage, the treatment-outcome association is estimated in a regression model that 

is weighted using the IPTW. 

The resulting estimate can then be interpreted as the estimate that would be obtained in a 

pseudo population where treatment allocation is independent of the time-dependent 

confounders.  

Defining 𝐴(𝑡), 𝐴(𝑡−), 𝐿(𝑡), and 𝐿(𝑡−) as before, namely, as the value of treatment at time t, the 

full treatment history to time t-1, and the analogous variables for a set of time-dependent 

covariates L, the simplest IPTW is the “unstabilised” weight, defined as in [145], as:  

 

𝑊(𝑡) =  ∏
1

𝑓[𝐴(𝑘)|𝐴(𝑘−) ,𝐿(𝑘−)]

𝑡
𝑘=1   (2) 

 

where 𝑓[] is the conditional probability mass function. In words, 𝑊(𝑡) is the inverse of the 

probability of receiving the observed treatment, conditional on past treatment and covariate 

history. 

Due to the more intuitive nature of MSMs with IPTW over g-computation, and the ability to 

implement the method using standard statistical routines, there are more examples of this 

method in the current literature. For example, it has been used to look at questions of 

concomitant medication in randomised trials [41, 146-150], as well as pharmacoepidemiological 

studies [42]. It is also possible to implement using standard statistical software packages. As the 

method of interest in this thesis, further details of IPTW estimation of MSMs will be given in 

4.4.1.  

 

4.3.3 G-estimation of structural nested models  

 

Again developed by Robins [39], structural nested models (SNMs) are different from MSMs, in 

that instead of estimating the effect of treatment on the marginal distribution of the potential 

outcomes, they condition on the time-dependent confounder. As outlined by Vandsteelandt and 

Joffe [151], they deal with the issue of time-dependent confounding by breaking down the 

effects of treatment into unique incremental effects through time, adjusted for past treatment 
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and covariate history. There are different kinds of SNMs. For example, Structural Nested Mean 

Models (SNMMs) [152] are applicable for estimating causal effects on the mean value of an 

outcome. In simple terms, a SNMM expresses the effect of removing treatment from a given 

time 𝑡 onwards on the mean of the subsequent outcome [151], in the subset of patients with 

the same treatment and covariate history to time 𝑡 − 1. For time-to-event outcomes, Structural 

Nested Distribution Models (SNDMs) such as the Structural Nested Failure Time Model (SNFTM) 

[153] could be used. These express the effect of removing treatment from a time 𝑡  onwards, on 

overall failure time𝑇 > 𝑡.  

As a simple example, consider three time points where the continuous outcome 𝑌 is measured 

at time 𝑡 = 2. Exposure 𝐴 (0 𝑜𝑟 1) is assigned at 𝑡 = 0 (defined 𝐴0) and 𝑡 = 1 (defined 𝐴1). A 

covariate 𝐿 is also measured at these times (with similar notation as for 𝐴). Let 𝑌𝑎0 𝑎1 represent 

the outcome observed if treatment is set to 𝐴0 = 𝑎0, and 𝐴1 = 𝑎1 (note this assumes that the 

outcome is independent of treatment and covariates at time t=2).  

The SNMM would be expressed (as in [151]) as: 

𝐸[𝑌𝑎0 𝑎1 − 𝑌𝑎0 0|𝐴0 = 𝑎0, 𝐴1 = 𝑎1, 𝐿0 = 𝑙0, 𝐿1 = 𝑙1] = (𝛹0
∗ + 𝛹1

∗𝑙1 + 𝛹2
∗𝑎0)𝑎1 

          𝐸[𝑌𝑎0 0 − 𝑌0 0|𝐴0 = 𝑎0, 𝐿0 = 𝑙0] = (𝛹3
∗ + 𝛹4

∗𝑙0)𝑎0   (3) 

where the parameters 𝛹0
∗ … 𝛹4

∗  are the causal effects to be estimated. E.g. 𝛹0
∗  is the causal 

effect of setting 𝑎1 to 1 vs 0, if 𝑙1 and 𝑎0 = 0. 

G-estimation is the method by which the set of equations are solved to obtain the estimates for 

𝛹. Still following the above example, the expressions are transformed to obtain an expression 

for a function 𝑈∗(𝛹∗) of 𝑌 such that  

𝐸[𝑈∗(𝛹∗)|L0, L1, A0 = a0, A1]  =  E[𝑌𝑎0 0|L0, L1, A0 = a0, A1]   (4) 

Under the assumption of conditional exchangeability (see 4.3.4.3), 𝛹∗ can be estimated by 

searching values of 𝛹 for which the assumption holds (as measured by the “g-test”) to obtain 

the value that is most likely. A confidence interval may be obtained by finding the range of values 

for which the g-test gives p>0.05 [154], usually done via a grid search [138, 153, 155].  

The use of g-estimation of structural nested models in the literature has mostly been in the 

analysis of survival data. Some recent examples include applications to cancer epidemiology 

[156, 157], cardiovascular disease [158, 159] and chronic obstructive pulmonary disease (COPD) 

[160]. The authors of [158] have also written a program for the implementation of g-estimation 

in Stata [161].  
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4.3.4 Necessary assumptions  

 

For the methods outline above to provide valid causal estimates, the following assumptions 

must hold. 

 

4.3.4.1 No interference 

 

A subject’s potential outcome under treatment 𝐴 = 𝑎 is not affected by the treatment values of 

other subjects [162]. An example of where this may not hold, is if the exposure were a flu 

vaccination, and the outcome were contracting the flu virus. In this case, the outcome for an 

unvaccinated individual may be affected if another subject in the same household were 

vaccinated.  

 

4.3.4.2 Consistency 

 

Formally, the assumption of consistency implies the following:  

 

𝑌𝑎  =  𝑌 if 𝐴 = 𝑎  

 

I.e. The observed outcome under treatment 𝐴 = 𝑎 is equal to the potential outcome 𝑌𝑎. This 

assumption is usually satisfied by design in a randomised trial, but it may not be automatically 

true in the observational setting. As explained by Cole [163], informally, the assumption is that, 

although there are various ways in which treatment a could be assigned, any version of 

treatment would give the same potential outcome. Careful definition of the exposure can 

usually ensure this assumption is sufficiently satisfied [35]. An example of where this may not 

hold, is if exposure was defined as “weight loss”. In this situation, weight loss could be achieved 

by diet, by exercise, or by bariatric surgery. However, it is not clear whether all of these versions 

of the exposure would result in the same potential outcome.  

 

4.3.4.3 (Conditional) exchangeability  

 

This assumption is also referred to as the assumption of no unmeasured confounders, or 

ignorability. Mathematically for the example of binary exposure, exchangeability is the 

assumption that 
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 𝐸[𝑌𝑎|𝐴 = 0]  =  𝐸 [𝑌𝑎|𝐴 = 1] 

 

In other words, subjects who were not exposed in real life have the same probability of the 

outcome had they been exposed, as subjects who were exposed in real life. 

 

This assumption can be relaxed to that of conditional exchangeability, which is expressed as 

follows:  

 

𝐸[𝑌𝑎|𝐴 = 0, 𝐿]  =  𝐸 [𝑌𝑎|𝐴 = 1, 𝐿]  

 

I.e. conditional on a set of covariates 𝐿 (which may be a mixture of fixed baseline and time-

dependent confounders), exchangeability holds.  

 

This assumption may be extended to longitudinal data (known as sequential exchangeability or 

sequential ingorability). In the situation where we measure treatment and covariates at visits 

𝑡 = 1 … . 𝑇, with outcome 𝑌 assessed at time 𝑇 + 1, we assume that: 

 

“Conditional on treatment history up to visit 𝑡 − 1 and the history of all measured 

covariates up to visit 𝑡, the treatment received at visit 𝑡 is independent of the potential 

outcomes.” ([138] page 1589).  

 

4.3.4.4 Correct model specification   

 

In practice, all methods involve specifying models for treatment assignment, the structural 

model (model for the outcome) itself, and for g-computation, a model for the covariate history. 

To obtain valid causal estimates, these models must be correctly specified. For example, 

modelling age as a linear function when the association is truly quadratic would result in 

incorrect model specification. For MSM with IPTW, the correct specification of the model for 

treatment assignment can be relaxed as explained in 4.4.2.3 

 

4.3.4.5 Positivity  

 

In addition to the first four assumptions, the method of IPTW needs the additional assumption 

of positivity. To define this formally, let 𝐴(𝑡) be the treatment at time 𝑡 =  1 … . 𝑇, with 𝐴(𝑡−) 
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and 𝐿(𝑡−) as before to be the treatment and covariate history to time 𝑡 − 1. Then the positivity 

assumption can be formally defined as:  

 

𝑃(𝐴(𝑡) = 𝑎|𝐴(𝑡−), 𝐿(𝑡−))  > 0  ∀ 𝑎  

 

In other words, treatment allocation may not be entirely determined by prior treatment and 

covariate history. This assumption is necessary for the causal effect to be defined in every subset 

of the population given the confounders [35].  

 

4.3.5 Method comparison 

 

Daniel et al. usefully provide a clear outline of the strengths and weaknesses of each of the three 

methods described above [138]. The discussion here will be limited to the advantages and 

disadvantages most relevant to this thesis. In general, the appropriateness of one method over 

another would be largely dependent upon the exact research question, and the data available.  

In contrast to MSMs with IPTW, neither g-computation nor g-estimation require the positivity 

assumption to hold. This is advantageous in observational settings where a) strict guidelines or 

clear contraindications to treatment may cause violations of this assumption, or, b) in smaller 

sample sizes where the assumption may be violated by chance. In practice, complete violation 

of this assumption if using IPTW would result in the inability to adjust for the confounding factor 

that causes the violation. Near violation of the assumption (i.e. a probability of treatment close 

to 0) results in extremely large weights which can cause bias and instability when applied to the 

MSM. Simple methods such as weight truncation [164] can reduce the impact of such violations, 

though may result in increased risk of residual confounding (see 4.4.2.3).  

The associations between diabetes treatments and risk of cancer or cardiovascular outcomes 

are likely to be complex, involving a large number of covariates that are themselves associated 

with each other. Compared to IPTW of MSMs and g-estimation, g-computation requires the 

specification of more complex joint distributions, meaning that the chance of model 

misspecification may be higher [138].  

A limitation of g-computation and g-estimation in the context of this thesis is their potential 

computational cost. The need for Monte Carlo simulation methods and bootstrapping in g-

computation, can result in lengthy estimation time. In g-estimation, the use of a searching 

algorithm could also be computationally intensive. Longitudinal data from the CPRD (see 5.1) 
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would likely have long follow up, which may need to be split into short time intervals, and 

coupled with a large sample size (50,000-100,000 for a cohort of incident type 2 diabetes 

patients), the implementation of the g-methods may be infeasible.  

The intuitive nature and ease of implementation (i.e. no need for specialist routines) of MSMs 

with IPTW, coupled with the likely issue of computational complexity of the g-methods, are the 

key reasons that MSMs with IPTW have been chosen as the method to be used in this thesis. 

The following sections will provide a more detailed explanation of the methods, including details 

of implementation in the statistical package Stata [165].  

 

4.4 MARGINAL STRUCTURAL MODELS  
 

As previously explained in 4.3.2; a marginal strutural model is a model for a counterfatual 

outcome. Specifically for this thesis, two forms of marginal structural model will be 

implemented. Firstly, for time to event outcomes, marginal structural Cox proportional hazard 

(PH) models will be used [144].   

As outlined in [145], if we define the survival time 𝑇 , under treatment history 𝑎  to be the 

potential outcome 𝑇𝑎  ,then the potential hazard at time 𝑡 =  1 … . 𝑇𝑎  is  

𝜆𝑇𝑎
(𝑡|𝑉) =  𝜆0(𝑡) exp{𝛽𝑎(𝑡−) +  𝜸𝑽}   [145] (pg 408) 

where 𝑉 is a vector of baseline covariates,  𝑎(𝑡−) is defined as before, and 𝜆0(𝑡) is the baseline 

hazard.  

In words, the marginal structural Cox PH model models the hazard at time t as a function of a 

baseline hazard 𝜆0, treatment history to time 𝑡 − 1 and baseline covariates only. The baseline 

hazard therefore represents the hazard for patients who are untreated at all time points, and 𝛽 

is the causal effect of treatment history 𝑎. In this thesis we are interested in the specific case 

where 𝑎  represents having been treated at all time points.  

Secondly, for repeated measures outcomes, a marginal structural generalised estimating 

equation (GEE) will be used, which is defined as in [166] pg. 1693 (but with slightly different 

notation) as  

𝐸[𝑌𝑎(𝑡)|, 𝑉] =  𝛼 +  𝛽𝑎(𝑡−) +  𝛾𝑡 +  𝜻𝑉       

where 𝑌𝑎(𝑡)is the counterfactual outcome at time t, for a person with treatment history 𝑎.  
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The marginal structual GEE must be fitted with an independent working correlation matrix to 

avoid bias, since an exchangable matrix takes information from future time points to inform 

correlations at previous times [167].   

In both of the above models, the effect of treatment is represented by the parameter 𝛽 . 

Estimation of 𝛽 is done via use of IPTW. Interactions between the components of these models 

can also be included but are not shown here for simplicity.  

 

4.4.1 Inverse probability of treatment weighting of MSMs 

 

4.4.1.1 A simple example  

 

The following example serves to demonstrate how IPTW removes the association between a 

time-dependent confounder 𝐿 and treatment initiation. We consider a simple situation with a 

single time-dependent confounder and two time points. This example will use the simple 

unstabilised weight as defined by equation (2) in section 4.3.2. 

Consider a population of 100 patients with newly diagnosed type 2 diabetes. At the time of 

diagnosis (t=0) they all have their HbA1c measured. At this point, the decision to treat with 

metformin (treated) or recommend a change in diet and lifestyle only (untreated) is made by a 

clinician, depending on their measured HbA1c. Six months later (t=1), all HbA1cs are measured 

again, and depending on the value, some patients initially untreated will now commence 

treatment. All those previously treated remain so. This situation (with numbers treated by strata 

of HbA1c) is depicted by the tree diagram in Figure 4.2.  

.  
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Figure 4.2 Tree diagram depicting HbA1c and treatment pathways of 100 patients with newly diagnosed t2DM over two time intervals  
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Although not shown, imagine interest is in the effect of treatment with metformin on an 

outcome Y (e.g. cardiovascular risk). Assume HbA1c is known to affect cardiovascular risk. It is 

also predictive of, and affected by treatment. HbA1c therefore satisfies the definition of a time-

dependent confounder affected by prior treatment. In order to remove the association between 

HbA1c and treatment allocation through time, such that risk of the outcome attributable to 

differences in HbA1c prior to treatment initiation becomes balanced between treatment groups, 

we calculate IPTW as follows:  

Let 𝐴𝑡 = 0 𝑜𝑟 1 (i.e. untreated or treated at time t), and let 𝐿𝑡  denote HbA1c at time t. At time 

0, we calculate the probability of observed treatment conditional on HbA1c:  

 

𝑃(𝐴0 = 1 |𝐿0 > 7)) =  
40

60
=  

2

3
   ,       𝑃(𝐴0 = 0 |𝐿0 > 7) =  

20

60
=  

1

3
 

𝑃(𝐴0 = 1 |𝐿0 ≤ 7) =  
10

40
=  

1

4
  , 𝑃(𝐴0 = 0 |𝐿0 ≤ 7) =  

30

40
=  

3

4
 

 

It is clear from this result that treatment allocation is dependent upon HbA1c.  

Note that in this example, 𝐿𝑡  affects 𝐴𝑡 and is assumed to be measured strictly before treatment 

at time 𝑡 is determined. Therefore in formula (2), we redefine 𝐿(𝑡−) to be the history to time 𝑡. 

Using this we calculate the corresponding weights for subjects within each stratum (by inverting 

the above probabilities).  

𝑊0 =
3

2
  𝑖𝑓 𝐴0 = 1 𝑎𝑛𝑑 𝐿0 > 7  ,    𝑊0 =

3

1
= 3  𝑖𝑓 𝐴0 = 0 𝑎𝑛𝑑 𝐿0 > 7 

𝑊0 =
4

1
= 4  𝑖𝑓 𝐴0 = 1 𝑎𝑛𝑑 𝐿0 ≤ 7 ,    𝑊0 =

4

3
  𝑖𝑓 𝐴0 = 0  𝑎𝑛𝑑 𝐿0 ≤ 7 

 

Moving to the next time point, we calculate the probability of observed treatment conditional 

on observed treatment history and observed history of HbA1c:  

Since if treated at time 0, the patient remains treated, we have that:  

𝑃(𝐴1 = 1 |𝐴0 = 1, 𝐿0 > 7, 𝐿1 > 7) = 𝑃(𝐴1 = 1 |𝐴0 = 1, 𝐿0 > 7, 𝐿1 ≤ 7 = 1  

 𝑃(𝐴1 = 1 |𝐴0 = 1, 𝐿0 ≤ 7, 𝐿1 ≤ 7) =  𝑃(𝐴1 = 1 |𝐴0 = 1, 𝐿0 ≤ 7, 𝐿1 > 7) = 1 

 In those untreated at time 0:  
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𝑃(𝐴1 = 1 |𝐴0 = 0, 𝐿0 > 7, 𝐿1 > 7) =
8

12
=

2

3
 ,   𝑃(𝐴1 = 1 |𝐴0 = 0, 𝐿0 > 7, 𝐿1 ≤ 7) =

2

8
=

1

4
 

𝑃(𝐴1 = 0 |𝐴0 = 0, 𝐿0 > 7, 𝐿1 > 7) =
4

12
=

1

3
 ,   𝑃(𝐴1 = 0 |𝐴0 = 0, 𝐿0 > 7, 𝐿1 ≤ 7) =

6

8
=

3

4
 

The probability of treatment at time 1 is not affected by HbA1c other than the HbA1c at time 1; 

hence: 

𝑃(𝐴1 |𝐴0 = 0, 𝐿0, 𝐿1) =  𝑃(𝐴1 |𝐴0 = 0, 𝐿1)  

It follows that the probabilities for observed treatment at time 1 conditional on Hba1c at time 1 

(𝐿1) for those with 𝐿0 ≤ 7 are the same as those already calculated for 𝐿0 > 7.  

The weights for time 1 would be calculated as follows:  

𝑊1 =
3

2
 × 1  𝑖𝑓 𝐴0 = 1 𝑎𝑛𝑑 𝐿0 > 7 , 𝑊1 = 4 × 1  𝑖𝑓 𝐴0 = 1 𝑎𝑛𝑑 𝐿0 ≤ 7 

𝑊1 = 3 ×
3

2
=

9

2
  𝑖𝑓 𝐴1 = 1, 𝐴0 = 0 , 𝐿0 > 7 ,  𝐿1 > 7 

𝑊1 = 3 × 4 = 12  𝑖𝑓 𝐴1 = 1, 𝐴0 = 0 , 𝐿0 > 7 ,  𝐿1 ≤ 7 

𝑊1 =  3 × 3 = 9  𝑖𝑓 𝐴1 = 0 , 𝐴0 = 0 , 𝐿0 > 7 ,  𝐿1 > 7 

 𝑒𝑡𝑐 … 

 

The updated tree diagram in Figure 4.3 shows how the original population 𝑁 converts to the 

weighted population 𝑁∗ . Effectively, we have upweighted the subjects that were under-

represented in the original population, i.e. those treated despite a low HbA1c, and those 

untreated with a high HbA1c. At each time point, in the weighted population, treatment 

initiation in those untreated at time 𝑡 is no longer dependent upon HbA1c for both 𝑡 =  0 and 

𝑡 =  1. However, the distribution of Hba1c at each time point is preserved, as is the effect of 

treatment at time 0 on HbA1c at time 1. Put simply, the weighting has removed the causal 

pathway from confounder to treatment without affecting any other associations, as shown in 

Figure 4.4. The final step would then be to estimate the effect of treatment on outcome in this 

weighted population without adjustment for HbA1c. 
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Figure 4.3 Tree diagram depicting HbA1c and treatment pathways of original (N) and inverse probability of treatment weighted population (N*)  

 

p(treat) and p(no treat) defined to be probability of treatment or no treatment respectively, conditional on observed treatment and covariate history.
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Figure 4.4 Assumed causal pathways between treatment A, time-dependent confounder L and 
outcome Y before (left) and after (right) inverse probability of treatment weighting. 

 

 

 

4.4.1.2 Weight stabilisation  

 

In practice, using unstabilised weights can result in very large weights. This usually occurs when 

there are many covariates in the model, and the probability of treatment is very small for some 

combinations of these covariates. To reduce the impact of this, a stabilised weight is used [37], 

which has the following formulation (as stated by Fewell [145]):  

 

𝑆𝑊(𝑡) =  ∏
𝑓[ 𝐴(𝑘)|𝐴(𝑘−), 𝑉]

𝑓[𝐴(𝑘)|𝐴(𝑘−) , 𝐿(𝑘−)]

𝑡

𝑘=1

 

 

(as per section 4.3.2,  𝑓[] is the conditional probability mass function, and here 𝐿(𝑘−) is defined 

as it was originally, as the covariate history to time k-1.) 

Informally, the numerator of a stabilised weight is an individual’s probability of receiving their 

treatment at time t, conditional on past treatment history 𝐴(𝑘−) and baseline covariates 𝑉 only 

(but not conditional on time-dependent confounders).The denominator is the same as for the 

unstabilised weight (𝑉 will be a subset of 𝐿). In the simple case, this translates to emulating a 

population where sequential treatment in patients still off treatment is random conditional on 

baseline confounders and treatment history.  
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4.4.1.3 Censoring  

 

In most situations, loss to follow up will occur through time, for reasons such as death , study 

dropout or administerative censoring in databases. If a subject is censored before the end of 

follow up, then this can be accounted for via the use of inverse probability of censoring weights 

(IPCW)[168].  

Let 𝐶(𝑘) be an indicator for whether a subject is uncensored up to time k, k = 1…t, with 0 

indicating uncensored, and 1 indicating censored. Then the IPCW at time 𝑡, denoted 𝐶𝑊(𝑡), is 

defined as ( as in [145]) 

 

𝐶𝑊(𝑡) =  ∏
𝑓[𝐶(𝑘) |𝐴(𝑘−) ,𝐶(𝑘−1)=0,𝑉]

𝑓[𝐶(𝑘)|𝐴(𝑘−) ,𝐶(𝑘−1)=0,,𝐿(𝑘−),𝑉]
𝑡
𝑘=1         

 

In the presence of censoring,  𝑆𝑊(𝑡) must be re-defined so that we estimate the probability of 

treament conditional on remaining uncensored:  

 

𝑆𝑊(𝑡) =  ∏
𝑓[𝐴(𝑘)| 𝐶(𝑘)=0,𝐴(𝑘−),𝑉 ]

𝑓[𝐴(𝑘)|𝐶(𝑘)=0,𝐴(𝑘−) ,𝐿(𝑘−),𝑉]

𝑡
𝑘=1  [145] 

 

(where again, 𝑓[] is the conditional probability mass function.) 

𝑆𝑊(𝑡) and 𝐶𝑊(𝑡) can then be multiplied together, in order to obtain a joint inverse probabiltiy 

weight. This can be thought of as the inverse of the joint probability of observed treatment and 

remaining uncensored [37]. The resulting weighted population would be interpreted as a 

population in which there is random treatment allocation with respect to risk of outcome, and 

no loss to follow up, conditional on baseline covariates and treatment history. The assumption 

of no unmeasured confounding must extend to the censoring to have this interpretation, 

meaning it is also necessary to assume that there are no unmeasured common causes of both 

censoring and outcome. 

With the addition of censoring, we now specify that we estimate 𝑌(𝑡) to also be conditional on 

𝐶(𝑡)  =  0. That is, we only evaluate the outcome in those remaining uncensored to time 𝑡. As 

specified at the beginning of section 4.4, the risk of the outcome is evaluated with respect to 
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previous treatment history, i.e. 𝑌(𝑡)  depends on  𝐴(𝑡−). This has implications in terms of 

ensuring correct timing when applying the joint weight, since the weight for time 𝑡 in the model 

for the MSM must then relate to the probability of 𝐴(𝑡 − 1) and 𝐶(𝑡). More formally, by the 

above notation, the combined weight at time 𝑡 should be  

𝐶𝑊(𝑡) 𝑥 𝑆𝑊(𝑡 − 1) 

where 𝑆𝑊(−1) is set to 1.  

 

4.4.1.4 fitting the MSM 

 

Under the assumptions outlined in 4.3.4, the parameters of the MSMs are equivalent to the 

estimates of the weighted model fitted in the observed data [169], which will be referred to as 

the “outcome model”. For both types of MSM, the practical process of fitting the MSM with 

IPTW (or joint IPTW/IPCW) is the same apart from the kind of outcome model fitted.  

Stata is limited in that time updated weights cannot be applied to a time-varying Cox model. 

Therefore, the MSM specified at the beginning of 4.4 is approximated by a pooled logistic 

regression, which is a good approximation providing the probability of the outcome in each 

separate time interval is small [145, 170]. 

Formally, for an event 𝑌, define the outcome at each time point 𝑡 =  1 … 𝑇, to be 𝑌(𝑡) . 𝑌(𝑡)  =

0 for all intervals until the interval in which the event occurs, at which point 𝑌(𝑡)  =  1. Then 

the pooled logistic regression model is defined as: 

𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌(𝑡) = 1|𝑌(𝑡 − 1) = 0, 𝐶(𝑡) = 0, 𝐴(𝑡−), 𝑉) ] =  𝛼(𝑡) +  𝛽𝐴(𝑡−)  +  𝜸𝑉     [145] 

As indicated in the formula, to correctly approximate the hazard ratio that would be obtained 

from a Cox model, time must be included as a covariate in the logistic regression. How treatment 

history to time t-1 (denoted 𝐴(𝑡−)) is modelled may vary. For example, it is often assumed that 

the effect of treatment history is sufficiently represented by current treatment (𝐴(𝑡 − 1)) only. 

This approach will estimate an effect of treatment (𝛽) that is constant through time, so has a 

similar interpreation as a hazard ratio. Specifically, under the assumption that once treated, a 

subject remains treated, we obtain an effect estimate interpretable as the effect of continuous 

treatment on risk of outcome, analogous to the estimate obtained from an intention to treat 

analysis in a clinical trial [171]. Alternatively, if the effect of treatment is cumulative, entering 

treatment in terms of time since start of treatment may be more appropriate. 
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Because the stabilisation of the weight means that treatment initiation is balanced conditional 

on baseline covariates, all variables 𝑉 included in the numerator of the stabilised weight should 

be included in the outcome model [143]. This model must also account for the dependence 

between observations from the same subject which are introduced by the weighting process, 

and therefore the variance may be estimated by use of a robust variance estimator as described 

by Hernan, Brumback and Robins [143]. 

For the MSM for repeated measures, a weighted GEE is used [166]. Time updated weighting is 

not possible with the Stata command xtgee [172], but since an independent working 

correlation matrx is to be assumed, it can be done using the glm command [172].  

When using IPTW to estimate an MSM for repeated measures data, historical values of the 

outcome Y may be included as a time-dependent confounder in the treatment model (i.e. 

historical values of Y) and the imputation method of last one carried forward (LOCF) can be used 

where the outcome was not observed for a given interval. In the outcome model, Y is only 

modelled if observed , meaning the data may be unbalanced.  

 

4.4.2 Practical implementation 

 

Previous literature details the practical step by step process for fitting marginal structural cox 

models in Stata [145, 170]. In the following sections, the general method as applied in this thesis 

will be summarised , including the processes implemented to check for and deal with possible 

violations of assumptions. Further aspects of implementation specific to the analysis in question 

will be described in the methods of subsequent chapters.  

 

4.4.2.1 Data set up 

 

The first step is to split follow up for each subject into discrete time intervals 𝑡 =  1 … 𝑇. The 

size of these intervals will be dependent on the question of interest. In each interval, information 

is required on treatment, covariates, outcome and a censoring indicator 𝐶(𝑡).  

A weight must be calculated for each interval of follow up, to correctly balance treatment reciept 

with respect to risk of future outcome. Consequently, follow up can only start once a patient 

has complete data. “Baseline” will therefore be defined as the end of the interval in which 

complete data occurs (in other words, complete data are obtained in interval t=0). In addition, 
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patients must still be untreated at the beginning of interval 1, otherwise it is possible that that 

covariates and outcome have already been influenced by prior treatment.  

Looking specifically at the diabetes context and first line treatments, in the ideal situation, all 

patients would be followed up from time of diabetes diagnosis. For patients for whom study 

entry is delayed because of incomplete data, it was decided that they would only enter the study 

once they had complete data, if they would have still been under follow up had they entered 

the study at the time of diabetes diagnosis. This is demonstrated with an example in Figure 4.5. 

Here, patient one has complete data from the ideal study entry, i.e. time of diagnosis, and is 

followed up until their (non fatal) outcome. Patient two has the outcome at the same time as 

patient one, but does not get complete data until after this time. If they had entered the study 

at the ideal time they would not still be in follow up by this point, so they do not enter the study. 

Patient three however, has not had the event prior to their complete data, and therefore enters 

the study at the time of complete data.  

 

Figure 4.5 example patients to demonstrate rules for study entry if delayed due to incomplete 
data 

 

 

 

For outcomes where patients must have no history of the outcome when they enter the study, 

this follows automatically. However, it becomes a relevant decision where history of a non fatal 

outcome at baseline is not an exclusion criteria. The specific situations where this is relevant will 

be highlighted in later chapters. 
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Going forwards from study entry, if covariate data are missing for a particular interval, the 

process of LOCF can be used, which assumes the values remains constant at its last observed 

value until it is measured again in the data.  

If 𝐶(𝑡)  =  1, then the subject is censored from the beginning of this interval. This happens 

regardless of what else may occur in that interval (e.g. treatment change, change in covariate 

value, occurrence of outcome). 

 

4.4.2.2 Calcuating IPTW and IPCW 

 

In the example in 4.4.1.1, the probability of treatment at each time point conditional on the 

history of HbA1c and previous treatment was calculated by hand. In most situations, the number 

of covariates and number of time intervals means this must be estimated using a parametric 

model. With the data set up as already described, we can use regression models to estimate 

these probabilities. For binary treatment, this is a logistic regression model. If there are more 

than two levels of treatment, multinomial logistic regression can be used [173].  

As in the example (see section 4.4.1.1), througout the thesis we make the assumption that once 

the treatment of interest is initiated, it is continued until end of follow up or a censoring event 

(which may be a switch to a different treatment). Therefore the probability of treatment in 

interval 𝑡  is estimated conditional on being untreated up to the end of interval 𝑡 − 1 and 

uncensored up to the end of interval 𝑡. All probabilties of treatment after treatment initiation 

are equal to one. For survival data, the probability of treatment initiation must also be 

conditional on the outcome not occuring in interval 𝑡. In practical terms, this means fitting the 

weighting model in those who have not had the event up to the end of interval 𝑡.  

For the unstabilised weight (or for the denominator of the stabilised weight), the model includes 

time since baseline, baseline variables (𝑉), and time-dependent variables (𝐿) representing the 

value of the covariate in the previous interval. This assumes that the baseline and most recent 

values for L capture full covariate history. However, if this is not the case, then additional 

variables may be entered to better model covariate history. For example, variables to represent 

values in further previous intervals t-2, t-3, t-4…. could also be included. For the numerator of 

the stabilised weight, we again use a logistic/multinomial regression. This time using time since 

baseline and baseline values of covariates only to predict treatment initiation. This is the 

“numerator model”. In theory, all, or just a subset of basline variables may be used in the 

stabilisation, but in this thesis all baseline variables will be used. 
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To estimate the IPCW, we fit separate denominator and numerator models to estimate the 

probability of being censored in interval t, conditional on remaining uncensored to the end of 

interval t-1. Since the aim of the IPCW is to balance the censoring process with respect to risk of 

the outcome, the covariates included in these models should be reflective of those that are 

predictive of both censoring and outcome. As with the IPTW, time since baseline should be 

included in both numerator and denominator models. In addition, treatment history should be 

a covariate in both numerator and denominator because, as explained in 4.4.1.3 we aim to 

model the joint probability of treament and remaining uncensored. It is likely that there will be 

multiple censoring mechanisms, e.g. death and study withdrawal. This can be handled by 

modelling censoring as a categorical variable in a multinomial logistic regression.  

The joint weight corresponding to the interval 𝑡  in the outcome model is then obtained by 

multiplying by multiplying the IPTW in interval 𝑡 − 1 by the IPCW for interval 𝑡 (where the IPTW 

for 𝑡 = 0 is 1) 

 

4.4.2.3 The bias-variance trade off 

 

The stabilised weights at each time 𝑡 should be approximately normally distributed with an 

expected value of one [174]. Larger means can be an indication of violations of the positivity 

assumption, since they may indicate that some individuals have a covariate history that strongly 

predicts their treatment history. Large, or “extreme” weights may also be an indication of poorly 

specified treatment models [169]. Using extreme weights in the outcome model will reduce the 

precision of the treatment effect estimate, and may cause bias. On the other hand, methods to 

reduce extreme weights can re-introduce bias from confounding. This is known as the bias-

variance trade off [169]. As such, fitting the treatment and censoring models must be done with 

the aim of finding the best model to balance residual confounding with reduced variance or bias 

from positivity violations.  

As suggested by Cole and Hernan [169] examination of the weight distribution is a good way to 

identify possible violations of assumptions during the model fitting process. As they explain, 

although the distribution should be ideally examined at each time point, with long follow up and 

many time intervals, this may not be practical, and so the distribution of all the weights can be 

examined instead.  

A common approach to deal with near positivity violations is weight truncation. Simply, extreme 

values are truncated in order to reduce their impact on the overall distribution of the weights. 
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This approach was advocated by Cole and Hernan [169] as a good approach to balance the bias-

variance trade off, since gradual truncation can provide information on the extent to which 

variance improves, but potential bias may be introduced (as indicated by changes in effect 

estimate).  

In order to calculate weights that correctly balance treatment with respect to risk of outcome, 

it is important that the treatment model is correctly specified [175] , most importantly for 

variables that are predictive of outcome. This necessitates having the correct variables in the 

model, and that the functional forms of the associations between covariates and log odds of 

treatment/censoring are correctly specified. The issue of modelling the correct functional form 

is also relevant to the bias-variance trade off. Also demonstrated by Cole and Hernan [169], fine 

modelling of covariates ( in their example, using a large number of categorisations) will increase 

control of confounding but may increase variance due to positivity violations. They 

recommended that multiple forms of covariates are tested to compare how variance and 

possible bias of the estimate of interest are impacted by fine vs coarse modelling.  

One of the key things to consider when deciding how finely to model the association between 

the variable and treatment is how much residual confounding might be expected if the 

functional form for a particular variable is not precisely specified in the treatment model. It is 

most important to have the correct form over intervals/values for which the risk of outcome 

changes. If the risk of outcome is roughly the same for all values of the covariate across a 

particular range, then a misspecification of the association between treatment and the covariate 

over this range is unlikely to result in serious residual confounding. 

In terms of variable selection, Lefebvre et al recommend that variables should be selected based 

primarily on their association with the outcome. This is because including variables that are 

strongly associated with treatment and not outcome will increase variance and cause bias in the 

causal effect estimate [175]. Variable selection may be based on a priori clinical knowledge, or 

by looking at the observed associations between potential confounders and outcome within the 

data. 

 

4.4.2.4 Planned approach to obtaining treatment and censoring models 

 

For this thesis, the approach to obtaining treatment and censoring models that adequately 

balance the bias-variance trade was a relatively subjective process guided by the 

recommendations described above. A priori discussions with clinicians established a set of 



88 
 

 

confounders and risk factors for the outcome in question to be included in the models, though 

the exact form of these variables was not pre-specified. Additional covariates were also 

considered for inclusion if initial analysis of association with outcome suggested they might be 

important. 

Two model specifications were used as a starting point to look at the impact of potential model 

misspecification:  

1. continuous variables were fitted using natural cubic splines (spline form)  

2. all covariates fitted as categorical variables (categorical form) 

Time was always entered into the model as a continuous covariate, represented by a natural 

cubic spline, though the exact form of the spline was allowed to vary between specifications 1 

and 2. Further details of how these models were obtained and developed for the specific 

analysis are described in 7.2.7.2 and 8.2.5.2.1.  

The distribution of the weights for the different model specifications was then examined to get 

an indication of whether different specifications had a large impact on the size of the weights. 

For each model specification, weights were truncated to see how this affected the overall mean 

of the weights. Truncation at the 1st and 99th percentile was considered first, though a range of 

more severe or more lenient truncations were also considered.  

 

4.4.2.5 Correct specification of the MSM  

 

As with the treatment and censoring models, the outcome model must be correctly specified. 

The correct functional forms of time and baseline covariates may differ between the treatment, 

censoring and outcome models. For example, time may have a linear association with 

probability of treatment, but a non-linear association with risk of outcome.  

When fitting the outcome model, multiple forms for covariates were also investigated. As with 

treatment and censoring models, the two initial specifications were based on:  

1. Natural cubic splines for continuous covariates  

2. Categorisations for all covariates. 

For practicality, the same spline parameterisations were used in all models if they appeared to 

model all associations with sufficient accuracy. Further details as to how these models were 
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established are given in later chapters. Different forms of treatment were also investigated to 

ensure treatment history was sufficiently captured. 

 

4.5 DYNAMIC MARGINAL STRUCTURAL MODELS  
 

4.5.1 Introduction  

 

A static treatment strategy (or regime) is one that is decided from time 0 and is fixed. Examples 

of static regimes could be: always treat, never treat, or treat every other month. To this point, 

the focus has been on using inverse probability of treatment weighting to remove the 

dependency of treatment on time-dependent confounders to allow the estimation of the causal 

effect of static treatment strategies.  

However, treatment strategies that include dependency on time-dependent covariates may also 

be of interest and are frequently used in clinical settings. Type 2 diabetes medications are 

initiated and intensified in response to blood glucose measures, for example, the current UK 

clinical guidelines advocate the treatment strategy “initiate medication if HbA1c raises above 

the threshold of 6.5%” [13]. Such a treatment strategy is known as a dynamic treatment strategy 

(or regime), and comparison of such strategies may enable the identification of the optimal 

strategy to improve long term outcomes for patients.  

Dynamic regimes are rarely compared in clinical trial settings, most likely because if the interest 

were in comparing many different thresholds, a very large number of participants would be 

required, and the trial would be extremely expensive. In the observational setting, variation in 

and compliance with strategies will likely be dependent on factors that affect risk of outcome, 

and so time-dependent confounding will be an issue.  

The three methods described in 4.3 have all been extended to allow estimation of the causal 

effects of dynamic regimes [176-180]. Since MSMs are the focus of this thesis, the description 

of methods here will be limited to a MSM approach. Two extensions of MSMs have been 

suggested to compare dynamic treatment regimes: History adjusted marginal structural models 

(HAMSMs)[178], and dynamic marginal structural models (dMSMs) [179, 181], the latter being 

the approach of interest going forward. Some examples of the use of dynamic marginal 

structural models in existing literature include comparing dynamic treatment strategies for HIV 

[182], schizophrenia [183] and cancer[184].  
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4.5.2 The basic idea  

 

Dynamic marginal structural models aim to emulate the randomised trial where patients are 

randomised to 𝑚  interventions, which in some way depend upon the value 𝑥  of a time-

dependent variable 𝐿. For the purposes of the thesis, we assume an intervention of the form 

“treat when 𝒍  exceeds 𝒙 ”, for 𝑚  different values of  𝑥 . 𝑥  may also be referred to as the 

“treatment threshold”. Specifically, we take L to be a patient’s HbA1c.  

Different patients in observational data will be compliant with different regimes. At the start of 

follow up, all patients are compliant with all possible regimes (or we restrict the population so 

that this is the case). With time, patients will be compliant with regime 𝑥 until they are either 

treated with 𝑙 < 𝑥, or remain untreated with 𝑙 > 𝑥, at which point they become noncompliant. 

The basic intuition is to expand the data such that each patient’s follow up is duplicated for each 

regime. For each regime, a patient is followed up until they become noncompliant with the 

regime, at which point they are censored. We estimate inverse probability of censoring weights 

to produce a weighted population in which noncompliance with a particular regime is not 

dependent upon subsequent risk of outcome, conditional on covariate history. Modelling the 

association between treatment regime and outcome in this weighted population will allow, 

under the same assumptions as for static regimes, the causal effect of the regime on risk of 

outcome to be estimated.  

 

4.5.3 Formal notation of method 

 

The notation and formulation of the models given here broadly follows that used by Ewings et 

al [182].  

 

4.5.3.1 The dynamic marginal structural Cox model  

 

As in section 4.4, consider a time-to-event outcome 𝑌 with survival time 𝑇, with 𝑌(𝑡) (=0 or 1 to 

mean no or yes respectively) representing whether the outcome has occurred by time 𝑡. Here, 

times are discrete time intervals, such that 𝑡 is meant to represent the interval (𝑡 − 1, 𝑡].  
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Define the different possible treatment regimens by the thresholds at which treatment should 

be initiated, as 𝑥 =  𝑥1,  𝑥2 … . 𝑥𝑚. The counterfactual survival time under regime 𝑥 is denoted 

𝑇𝑥 , where 𝑇𝑥 will be observed for a subset of 𝑥 for each subject.  

Then, the dynamic marginal structural cox model has the form  

𝜆𝑇𝑥
(𝑡|𝑉) =  𝜆0(𝑡) exp{𝛽𝑔(𝑥, 𝑡) +  𝜸𝑉}   [182] 

where 𝜆0(𝑡) and 𝑉are defined as in 4.4, and 𝑔(𝑥, 𝑡) is some function of the strategies, which 

usually includes an interaction with time.  

 

4.5.3.2 The censoring process  

 

To indicate whether a subject is still compliant with regime 𝑥 (and so uncensored) at time 𝑡, 

define 𝐶𝑥(𝑡)  = 0 to mean they are compliant, and 𝐶𝑥(𝑡)  = 1 to indicate they are no longer 

compliant. Further to this, for each regime 𝑥 , an indicator variable is needed to know whether 

the observed value HbA1c, has exceeded the threshold 𝑥 by time t. We denote this indicator 

𝑄𝑥(𝑡) to be equal to 1 if HbA1c exceeds the threshold in interval t, and 0 if HbA1c remains below 

the threshold up to the end of interval 𝑡 . 𝐶𝑥(𝑡)  is then determined by treatment at time 

𝑡 (denoted 𝐴(𝑡) as before), 𝑄𝑥(𝑡 − 1), and 𝑌(𝑡).  

Specifically  

𝐶𝑥(𝑡) = 0  if for all times 𝑘 =  1 … 𝑡  ,  when 𝑄𝑥(𝑘 − 1) = 0 , 𝐴(𝑘)  =  0  and 𝑌(𝑡) = 0,  

or when 𝑄𝑥(𝑘 − 1) = 1, 𝐴(𝑘)  =  1 and 𝑌(𝑡) = 0    [182] 

It will be assumed in all analyses, that once treatment is initiated, it should be continued 

regardless of further changes in HbA1c. Therefore if treatment is initiated in line with regime 𝑥, 

then the patient is compliant with 𝑥 for the rest of follow up. It follows therefore, that if 𝐴(𝑡)  =

 1 and 𝐶𝑥(𝑡) = 0  , then 𝐶𝑥(𝑠) = 0   for all  𝑠 > 𝑡.  Additionally, once a patient is censored they 

remain censored even if they later become compliant with the strategy.  

 

4.5.3.3 Inverse probability weighting 

 

The censoring process formulated above is likely to be dependent upon time-varying and 

baseline factors that also affect risk of outcome. As before, the vector of baseline covariates is 

denoted by V and the history of a covariate from time 1 …  𝑡 − 1 by 𝐿(𝑡−). Under the same 
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assumptions of no unmeasured confounding (in this case for censoring mechanism and 

outcome), exchangeability, consistency, positivity, and correct model specification; the 

informative censoring process can be adjusted for by using inverse probability weights, defined 

similarly to in 4.4.1.3; as: 

 

𝑊𝑥(𝑡) =  ∏
1

𝑃(𝐶𝑥(𝑘)=0|𝐶𝑥(𝑘−1)=0,𝐿(𝑘−),𝑉 ,𝑌(𝑘)=0)

𝑡
𝑘=1   if 𝐶𝑥(𝑘) = 0  and 0 otherwise. 

 

where 𝑊𝑥(𝑡) is weight at time 𝑡 for an individual uncensored to 𝑡 on regime 𝑥.  

Note that in contrast to 4.4.1.3, treatment history 𝐴(𝑡−) is not included. Additionally, only time-

to-event outcomes are considered here, so the condition that the outcome has not occurred up 

to time is included in the formal definition. In fact, since 𝐶(𝑡) is a function of 𝐴, 𝑌 and 𝑄, where 

𝑄 is dependent upon 𝐿, this weight is equivalent to the inverse of the probability of treatment 

at time t, conditional on treatment and covariate history: 

𝑊𝑥(𝑡) =  ∏
1

𝑃(𝐴(𝑘)|𝐴(𝑘−),𝐿(𝑘−),𝑉 ,𝑌(𝑘)=0)

𝑡
𝑘=1   if 𝐶𝑥(𝑘) = 0  and 0 otherwise. 

To avoid confusion, despite the equivalence to the IPTW, in the dynamic context these will be 

referred to just as “inverse probability weights”. Formulations of stabilised weights have been 

proposed by Cain et al [181] , however the authors report that the stabilisation cannot 

guarantee less variable estimates than unstabilised weights. Additionally, stabilisation is not well 

developed for use with grace periods (see section 4.5.5), and with sensible regime choice, 

extreme weights are less of an issue. Consequently, for simplicity, only unstabilised weights are 

presented and implemented in this thesis.  

 

4.5.3.4 Dealing with additional loss to follow up 

 

Other informative censoring (loss to follow up) can be dealt with by separate IPCW. This is done 

in the same way as described in 4.4.1.3, but for clarity is presented again within the dynamic 

framework. Define 𝐷(𝑡) to be 0 if a patient is not lost to follow up in interval 𝑡, and 1 if the 

patient is lost to follow up in interval 𝑡. Then we calculate the IPCW as  

𝐷𝑊(𝑡) =  ∏
1

𝑃(𝐷(𝑘) = 0|𝐴(𝑘−) , 𝐷(𝑘 − 1) = 0, 𝐿(𝑘−), 𝑉)

𝑡

𝑘=1
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 and the formula for 𝑊𝑥 (𝑡) becomes 

𝑊𝑥(𝑡) =  ∏
1

𝑃(𝐴(𝑘)|𝐴(𝑘−),𝐿(𝑘−),𝐷(𝑘)=0,𝑉 ,𝑌(𝑘)=0)

𝑡
𝑘=1  if 𝐶𝑥(𝑘) = 0  and 0 otherwise. 

 

4.5.4 Practical implementation  

 

4.5.4.1 Defining plausible strategies for comparison 

 

It is important to consider in advance, the range of 𝑥  for which the data are compatible. 

Therefore the number of subjects compliant with various strategies should be examined in 

advance, and strategies with low compliance excluded.   

 

4.5.4.2 Calculating weights  

 

As was the case for comparison of static regimes, data for each subject are again split into 

discrete time intervals 𝑡 =  1 … . 𝑇.  Calculation of the weight at time 𝑡 are independent of the 

specific strategy 𝑥, so unstabilised inverse probability weights can be calculated before any 

expansion takes place[181, 182]. The process is the same as described in 4.4.2.  

 

4.5.4.3 Data expansion and censoring 

 

For each of 𝑚 values of 𝑥 (the treatment initiation thresholds being compared), a subject’s data 

must be replicated. In the expanded data, the indicator for 𝐶𝑥(𝑡) is created so that subjects are 

censored once they become noncompliant with regime 𝑥. Therefore, in contrast to censoring 

by loss to follow up, the subject is not censored until the end of the first interval in which 

𝐶𝑥(𝑡) = 1. In other words, we evaluate the risk of outcome for 𝑥 in those compliant with 𝑥 up 

to the end of the previous interval. This avoids bias that could be induced by censoring events 

that occur in the same interval in which a patient becomes noncompliant with a particular 

regime, that would not have been censored if they had remained compliant in that interval 

[185]. For example, bias could be induced if occurrence of the outcome affects ability to comply. 

This assumes, in the same way as for the standard MSM, that the risk of outcome is not affected 

by treatment in the same interval. 
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4.5.4.4 Estimation of the dynamic MSM 

 

To estimate the parameters of the dynamic MSM presented in 4.5.3.1; we again approximate a 

Cox PH model using pooled logistic regression [170]. In contrast to the standard MSM, this 

model includes an interaction between time and treatment regime. This is important because 

unless the risk of outcome is the same between the regimes, any difference between regimes 

cannot be constant through time, since some follow up is compatible with multiple regimes. The 

general model used is of the form 

𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌(𝑡) = 1|𝑌(𝑡 − 1) = 0, 𝐶𝑥(𝑡 − 1) = 0, 𝑥 , 𝑉) ] 

=  𝛼𝑓(𝑡 − 1) +  𝛽𝑔(𝑥) +  𝜸𝑉 + 𝛿𝑔(𝑥)𝑓(𝑡 − 1) 

where 𝑓 and 𝑔 are functions of time and regime respectively. As with the standard MSM, the 

weight applied to time 𝑡 must be that relating to probability of treatment at time 𝑡 − 1 [182], 

and if additional IPCW are used to account for loss to follow up, we additionally condition on 

remaining uncensored in that interval. More formally, we evaluate  

𝑃(𝑌(𝑡) = 1|𝑌(𝑡 − 1) = 0, 𝐶𝑥(𝑡 − 1) = 0, 𝐷(𝑡) = 0, 𝑥 , 𝑉) 

This model is solved in the weighted expanded population, in order to specify a functional form 

for 𝑥 [181].Confidence intervals for the effect of regime over time can be estimated using non-

parametric bootstrapping [186]. 

 

4.5.5 Grace periods 

 

To this point, compliance with a regime when treatment is indicated has been defined by 

initiation in the interval 𝑡 + 1 if 𝑄𝑥(𝑡)  =  1. In real life settings such a short period to allow 

treatment initiation may be impractical. It may be more realistic, and increase numbers 

complying to given regimes, to allow initiation within a longer period. These extended initiation 

periods are known as grace periods [181]. Under a grace period, the regimes are no longer fully 

identified. Applying a grace period 𝑝 would alter the regime to be of the form: “treat within 𝑝 

intervals of the time point at which 𝑙 first exceeds 𝑥”. To demonstrate this, Figure 4.6 shows 

four subjects observed over five consecutive time intervals, where in the first time interval 𝑡, all 

four subjects have their first measurement of 𝑙 above the treatment threshold 𝑥.  

Assume that we have a grace period 𝑝 = 3. Subject 1 initiates treatment in the first interval 

following a measure of  𝑙 > 𝑥, and is therefore compliant with regime 𝑥 in the same way that 
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compliance was originally defined (which could be seen as applying a grace period of 𝑝 = 1 

[185]). Subjects 2 and 3 also initiate within three intervals, and therefore they are also 

compliant. Subject 4 however, gets to the end of t+3 and has not yet initiated treatment, 

therefore 𝐶(𝑡 + 3) is set to 1, and follow up for subject 4 in terms of risk of outcome ends at 

the end of interval 𝑡 + 3.  

 

Figure 4.6 Graphical representation of how compliance with regime 𝒙 is assessed with a grace 
period 𝒑 =  𝟑.  

 

 

The use of grace periods requires modifications to the inverse probability weights, because it is 

impossible to be noncompliant with the regime until the last interval of the grace period. Cain 

et al [181] have suggested two possible approaches to how the weighting is adjusted during the 

grace period. The simplest approach (the one used in this thesis) is if the patient is uncensored 

at the beginning of the grace period, to set the probability of remaining uncensored (𝑃(𝐶𝑥(𝑡) =

0)) to be one in all intervals within the grace period other than the final interval. This is because 

once the grace period starts, the subject cannot become noncompliant before the end of the 

final interval. In practice, this means that we upweight the subjects that initiate in the final 

interval of the grace period to account for those who are censored at the end of the grace period 

because they do not initiate treatment. This approach makes the assumption that the 

probability of initiation will not be uniform across the grace period. More specifically, it re-

defines the regime to be: “treat in the 𝑝𝑡ℎ interval following that when HbA1c first exceeds 𝑥% 

if treatment has not already been initiated within the 𝑝 − 1 intervals following that when HbA1c 

first exceeds 𝑥%”.  

Formally, if we take time 𝑞𝑥 to be a time interval in which 𝑄𝑥(𝑞𝑥 − 1) = 0  and 𝑄𝑥(𝑞𝑥) = 1  

then for a grace period of length 𝑝:  
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𝑊𝑥(𝑡) =  ∏
1

𝑃(𝐶𝑥(𝑘)|𝐶𝑥(𝑘−1)=0,𝐿(𝑘−),𝑉 ,𝑌(𝑘)=0)

𝑡
𝑘=1     if 𝐶𝑥(𝑘) = 0 and 0 otherwise 

where 𝑃(𝐶𝑥(𝑘) = 0|𝐶𝑥(𝑘 − 1) = 0) ≡ 1 𝑓𝑜𝑟 𝑞𝑥 + 1 ≤ 𝑘 < 𝑞𝑥 + 𝑝 

and 𝑃(𝐶𝑥(𝑘) = 0) = (𝑃(𝐴(𝑘) = 0|𝐴(𝑘−), 𝐿(𝑘−), 𝑉 , 𝑌(𝑘) = 0) for 𝑘 ≤ 𝑞𝑥 

and 𝑃(𝐶𝑥(𝑘) = 0) = (𝑃(𝐴(𝑘)|𝐴(𝑘−), 𝐿(𝑘−), 𝑉 , 𝑌(𝑘) = 0) 𝑓𝑜𝑟 𝑘 = 𝑞𝑥 + 𝑝 

 

The initial weight estimation is the same as described in 4.5.4.2. After data expansion, the 

weights can be adjusted as explained above. The dynamic MSM is then fitted in the same way 

as described in section 4.5.4.4.
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5 DATA SOURCE AND COHORT IDENTIFICATION 
 

The source population of interest was adult patients with newly diagnosed type 2 diabetes, 

including those controlling their diabetes with diet and lifestyle measures. This chapter describes 

the data resource used and the process implemented to identify a study sample to represent 

this population.  

 

5.1 THE CLINICAL PRACTICE RESEARCH DATALINK 
 

The Clinical Practice Research Datalink (CPRD) (formerly known as the General Practice Research 

Database (GPRD)) is a database containing general practice (GP) records from 691 UK practices 

as of the January 2016 extract, with over 14 million patients contributing records [187]. GPs are 

free at the point of use, and provide the first point of contact for non-urgent healthcare. They 

provide multiple services, including care for ongoing chronic disease, treating minor illnesses, 

and providing the necessary referrals to secondary care in hospitals or specialist clinics. The 

CPRD contains all available data from primary care consultations, including clinical diagnoses, 

prescription information, test results (including HbA1c), and other clinical information such as 

BMI, blood pressure, smoking status etc. Information from secondary care, for example, 

diagnoses of conditions, are also fed back to the GP and should in theory also end up in the 

record. However, some information may be lost if only typed into free text data fields, as these 

are not available for research use currently. Many validation studies have shown CPRD primary 

care data to have good validity for a wide range of diagnoses [188]. Those in the database have 

been shown to be broadly representative of the UK population in terms of age, gender and 

ethnicity [189]. In 2005, incentivised recording and monitoring for certain chronic conditions 

including diabetes was introduced, meaning that the data quality and completeness from this 

time is much improved [190]. 

Briefly, the different aspects of CPRD (prescriptions, test results, clinical consultations etc.) are 

linked by unique patient identification numbers, and each have an event date by which to order 

events. For individual patients, entry and exit times from the database can be identified by date 

of registration and date of transfer out or date of death (if entered by the GP). For patients that 

have neither left the practice nor died, each patient can be linked to specific practice information 

to detail the date of last data collection for that practice. This allows reasons and timings of 
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censoring to be identified. The data structure, as previously presented by [189] is outlined in 

Figure 5.1. 

CPRD can be linked to other data sources such as Hospital Episode Statistics, cancer registries 

and national death records and to practice level measures of deprivation, though the addition 

of linked data was not within the scope of this thesis.  

 

Figure 5.1 Data structure for CPRD, recreated from Herrett et al. figure 2 [189] 

 

 

 

5.2 COHORT IDENTIFICATION  
 

5.2.1  Biobank algorithm overview  

 

Pre-existing code lists for patients with diabetes have been developed for CPRD based on an 

algorithm originally developed for the UK Biobank data [191]. These lists were developed in 

order to identify patients with prevalent type I and II diabetes.  

Briefly, the UK Biobank algorithm extracts patients based on an initial diagnosis code list, which 

will be referred to as primary diagnosis codes. The algorithm then aims to confirm diagnoses of 

diabetes by assessing the additional presence of  

a) Oral antidiabetic medication  

or 
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b) Codes relating to the care and management of diabetes within a patient’s medical history, 

termed “process of care” codes, such as “diabetic monitoring” and “diabetic annual review”.  

The code “diabetic on diet only” is classified by BioBank as a process of care code, and not a 

diagnostic code. For the purposes of this research, “diabetic on diet only” was moved into the 

primary diagnosis code list, because initial data exploration suggested that this code was often 

used in CPRD to denote a diagnosis with no further diagnosis code present. Following the 

Biobank algorithm may have led to the exclusion of a lot of pre-medication follow up. All other 

process of care codes were used as in the original algorithm. All code lists used are presented in 

appendix 7.  

For some patients, information is also required on ethnicity, BMI, and age to judge whether it is 

likely that the patient has type 1 or type 2 diabetes. For the application to this thesis, the 

dependence upon ethnicity was removed from the algorithm, and this part of the algorithm was 

based on BMI and age only. The reason for this was to improve the sample size by not excluding 

a large proportion of patients who did not have ethnicity recorded. The implementation of the 

algorithm with the modifications described above is described in the following section.  

 

5.2.2 Algorithm implementation 

 

The flow chart in Figure 5.2 shows a simplification of the overall algorithm. In an initial step, 

primary diagnosis codes in a patient’s history were sorted to place the patient into their most 

likely category of the following: Definite Type 1, Definite Type 2, Probable Type 1, Probable Type 

2, Possible Type 1, Possible Type 2, Vague codes (referring to codes that are unclear), Genetic 

diabetes, and Other Types (secondary, gestational, not diabetes, resolved diabetes).  

These categories were allocated in a hierarchical way; with definite codes having priority over 

probable codes within the same type, and type 1 codes taking priority over type 2 codes overall. 

For example, a definite type 2 code was given priority over a possible type 2 code, but regardless 

of other codes, if a patient had a code suggesting type 1 diabetes, they were initially classified 

with that. Where patients had conflicting codes in relation to “other types”, rules based on the 

timing of codes were implemented to pick the most appropriate code to take forward to the 

next stage. For example, a patient with confirmed gestational diabetes after a previous possible 

type 2 code was classed as having gestational diabetes. The patients were then given an initial 

“date of onset” corresponding to the first occurrence of a code from the category they had been 

assigned. This initial process corresponds to stage 1 of the flow chart in Figure 5.2, where 
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definite, probable, and possible for each type are combined for simplicity. Codes considered to 

be “vague” were included with the possible type 2 diabetes. Genetic diabetes was combined 

with “other types”, and patients assigned any of these codes were excluded. A more detailed 

flow chart for this initial stage is presented in appendix 8. 

The second stages of the algorithm also required information on whether the patient had ever 

been prescribed insulin, metformin, or other OADs (see appendix 9), and also: 

 The age of the patient at their date of onset.  

 The BMI of the patients closest to their date of onset (see appendix 9). 

 Presence of hyperglycaemia (defined as HbA1c > 6.5% or fasting glucose >7.5 mmol/L) 

at the closest time to date of onset available (see appendix 9).  

 Process of care codes to indicate that the patient was receiving ongoing care for DM.  

Two further sorting algorithms were then applied to the data. Firstly, those patients initially 

identified as definite, probable or possible type 1 were sorted and either kept as a type 1, or re-

entered as possible type 2. In brief, patients entering this algorithm were immediately 

reclassified as possible type 2 if they had never been prescribed insulin; if they had been on an 

oral anti-diabetes drug other than metformin for more than 6 months; or if they were ever on 

insulin and metformin, or were overweight and over the age of 35 at the time of the first 

diagnosis code. All remaining patients were classified as having type 1 diabetes. The re classified 

patients were put back into the next stage of the algorithm. A flow chart to show how patients 

were sorted through this algorithm is given in appendix 8.  

Secondly those initially sorted as definite, probable, possible type 2, vague, or patients coming 

back into the pool of possible patients from the type 1 algorithm were sorted by a second 

algorithm into type 2, probably type 1, and not diabetes. This process corresponds to stage 2 of 

Figure 5.2, with a more detailed flow chart of this step given in appendix 8.   

The 437,297 patients remaining as type 2 were kept as a cohort of patients with both incident 

and prevalent type 2 diabetes.  
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Figure 5.2 Flow chart to show numbers identified as T2DM patients from August 2014 CPRD 
extract 

 

*See appendix 8 for details 

 



102 
 

 

5.2.3  Defining onset, start of follow up, and final incident diabetes cohort 

 

Once the initial cohort of 437,297 patients with T2DM was identified, a more specific date of 

diabetes onset was defined. This process was not part of the original Biobank algorithm, but was 

implemented to obtain a cohort of patients that could (with greater certainty) be followed up 

from time of diabetes diagnosis. In consideration of the order in which the algorithm priorities 

information, but also to maintain simplicity, the patient’s date of diabetes onset was taken to 

be the earliest of: 

a) their earliest of a possible/probable/definite T2 diabetes code  

b) the earliest process of care (POC) code 

c) the earliest medication with either metformin or an OAD.  

Firstly, the data were further cleaned to ensure all patients within the final cohort had were of 

a reasonable age at time of diagnosis. It was decided to exclude patients aged < 30 or > 90 years 

at diabetes diagnosis since the number of incidence cases under 30 was expected to be low [16, 

192] and, very different treatment strategies would be expected to apply to these ages, 

particularly for patients aged > 90 , due to increased frailty. This reduced the available sample 

size to 418,473.  

For a patient to be considered an “incident” rather than a prevalent case, it was required that 

there were at least 12 months of history prior to their onset date with no diabetes related codes. 

This was because when patients enter the database (are registered with the GP), previous 

history of pre-existing conditions may be entered into the database, and so using codes within 

the first year is likely to pick up prevalent cases of diabetes [193]. As an example, patient 1 in 

Figure 5.3 would not satisfy this requirement. Since multiple codes define the inclusion of a 

patient into the cohort, it was important to ensure that a patient did not begin follow up until 

the time when the minimum number of codes that defined inclusion had occurred. Alongside 

the diagnosis code, the three points in the Biobank algorithm that defined final inclusion were a 

prescription for an oral anti-diabetes drug other than metformin, a test indicating 

hyperglycaemia, or a process of care code. To ensure a more certain diagnosis of diabetes, the 

decision was made to require a process of care code in addition to the record of hyperglycaemia 

(resulting in the loss of about 6,000 of the 110,492 identified by the Biobank Algorithm (Figure 

5.2). As shown in Figure 5.3 by the circle, the date of cohort entry (follow up start) was defined 

as the latest of  

 a) the first T2 diabetes code, and  

 b) the first process of care code OR first medication with an OAD other than metformin.  



103 
 

 

To be sure that the cohort was still a cohort of incident cases of T2DM, the follow up start date 

and the date of onset were further required to be within 30 days of each other. Patients 

satisfying these criteria were those taken as the final cohort for study. In Figure 5.3 only patient 

4 satisfies this final assumption. Finally, all patients were required to have had no history of 

cancer at the time of diabetes diagnosis. This would be necessary when examining cancer 

incidence as an outcome, but was applied for all analyses to avoid including patients whose 

future risk of diabetes, and complications from diabetes, may have been modified by cancer in 

a way that cannot be clearly controlled for. These additional requirements resulted in a final 

incident cohort of 98,080 patients. 
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Figure 5.3 Example patients to demonstrate inclusion and exclusion rules to obtain the final cohort of patients with incident type 2 diabetes. 
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6 TREATMENT PATTERNS AND FREQUENCY OF COVARIATE 

MEASUREMENT 
 

6.1 MOTIVATION AND AIMS  
 

It is important in advance to have a well-defined causal question and exposure[194], and more 

broadly to know it would be feasible to answer this question with the available data. As outlined 

in 1.3, there are a limited number of existing applications of IPTW of MSMs in both the diabetes 

context and in routinely collected primary care data and particular aspects of this setting may 

present issues in terms of the feasibility of the method. Two key areas for concern are a) possible 

violations of the positivity assumption (4.3.4.5) due to strict guidelines for diabetes 

management, and b) visit frequency will affect the availability of covariate measurement, and 

the opportunity to be treated. This chapter therefore aims to descriptively examine some key 

aspects of the data that may provide insight into whether these issues may be present, and more 

broadly gain an overview of any other limitations of the data, for example, the extent of missing 

data and length of available follow up. 

 

6.1.1 Treatment patterns  

 

With the intention of looking at first line treatments, the most obvious comparators for 

metformin use would be no treatment (assumed to be diet only) or use of sulfonylureas. To 

feasibly answer a question that makes comparisons between metformin, sulfonylureas and diet 

only, it is important to know that:  

a) All treatments are observed in the data.  

b) Treatment decisions are not completely or strongly determined by variables that are 

important risk factors (key time-dependent confounders) for any of the outcomes of interest, 

namely cancer, cardiovascular disease and all-cause mortality. I.e. that there are no clear 

violations of the positivity assumption that may prevent the ability to adjust for time-dependent 

confounding via IPTW.  

To this aim, the observed treatment pathways of patients with newly diagnosed T2DM (as 

obtained in 5.2) were investigated. Patterns for further intensification were examined to gain an 

idea of the expected follow up length for the three main treatments of interest.  
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6.1.2 Frequency of measures of disease severity  

 

As described in 4.4.2, the model fitting process involves separating follow up time into discrete 

time intervals. It is reasonable to assume that for assessing the presence of particular 

comorbidities, the absence of a diagnosis code up to a particular interval suggests that the 

patient does not have that comorbidity. This is because it is likely that a patient would visit the 

GP either during or shortly after the time at which such a comorbidity develops, to either aid 

diagnosis or to seek referral to secondary care. Similarly, the absence of a prescription in a 

particular interval suggests a treatment was not prescribed in that interval, and by making 

assumptions of continual exposure, or defining exposure to other medications as “use in the last 

x months”, we can obtain non-missing measures of exposure to all types ofGP prescribed 

medication for each interval. However, for key time varying measures such as BMI and HbA1c 

there may be intervals in which these measures are not updated, which could be problematic, 

particularly if there are large differences in frequency of measurement between those on and 

off treatment. Further, differences in frequency of measures between those initiating and not 

initiating treatment may be an indication that those not being treated are not attending, and 

therefore they cannot possibly be treated. Before beginning the modelling process, the 

availability and frequency of the longitudinal data in the CPRD for the two key time updated 

covariates of HbA1c and BMI were examined, to establish the presence of any differences in 

availability of measures, and more generally in attendance, between those initiating and not 

initiating treatment.  

 

6.2 METHODS 
 

Cleaned files of longitudinal data on BMI, HbA1c and both diabetic and non-diabetic medications 

were created from those used for diagnosis confirmation (see 5.2.2), to provide longitudinal 

covariate and exposure information. As well as the existing information about use of metformin 

and insulin, the group of other OADs were further classified to separately identify sulfonylureas, 

thiazolidinedione’s (TZDs), prandial glucose regulators (glinides), glucagon-like peptide 1 

receptor agonists (GLPs) , DPP4 inhibitors (gliptins) and “other” which contained anything else 

under the BNFcode 6.1.2.3 “Other antidiabetic drugs” .  
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6.2.1 Treatment patterns  

 

This analysis was restricted to the 98,080 patients for whom follow up started at time of diabetes 

diagnosis, with no history of cancer prior to diabetes diagnosis. As explained in 5.2.3, their 

baseline visit (time 0) was defined to be the point at which the diabetes diagnosis was confirmed. 

The month preceding this time was their “baseline interval”. For some patients, treatment 

initiation may have occurred in this interval, and these patients were considered to be exposed 

(treated) at baseline. From time 0 onwards, first and second line therapy choices were 

summarised. Specifically, the absolute number (and percentage) of patients initiating each class 

of therapy (as monotherapy and specific combinations) at each stage of intensification were 

calculated. Time between diagnosis and initiation of first treatment, and then time from first 

treatment to intensification, were also summarised by looking at the mean, median and 

interquartile range of the follow up time for each choice of treatment.  

With specific interest in the treatment options of no treatment, metformin monotherapy, 

sulfonylurea monotherapy or “other” (which included dual therapy with metformin and 

sulfonylureas), the distributions of categorical forms of age, BMI, HbA1c, and calendar year of 

diagnosis were compared between baseline treatments. Missing indicators for BMI and HbA1c 

were used to investigate the extent of missing data at baseline. Since first line initiation may 

happen later, mean HbA1c and BMI were also presented per month of follow up, in those 

initiating and not initiating in each month. This analysis was limited to the first 24 months of 

follow up and restricted to those with complete data at baseline. 

 

6.2.2 Frequency of measures of disease severity 

 

Because the interest of later chapters is in first line treatment initiation with the most common 

anti-diabetes agents, for this part of the analysis, patients were only followed while they were 

on no treatment, metformin monotherapy or sulfonylurea monotherapy. Specifically, follow up 

time was censored at initiation of any other drug after the first prescription for either metformin 

or a sulfonylurea.  

As explained in 4.4.2.1, when investigating the effect of treatment on outcome using MSMs, 

only follow up time once patients have complete data on covariates is included. In later chapters, 

study entry is defined as the start of the interval after complete data are obtained, and the 

baseline interval (interval 0) is defined to be the interval in which complete data occurs. For 

patients who have complete data from time of diagnosis, this means their baseline interval 
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remains, as stated in 6.2.1 and Figure 5.3, to be the month preceding the confirmed diabetes 

diagnosis. This is explained in more detail in sections 7.2.4 and 7.2.5. To ensure that the 

frequency of measures was examined within the relevant follow up for the main analyses, we 

used the new definition of study entry for this part of the analysis, and ended follow up at the 

earliest of death, transfer from GP practice, intensification of treatment (as described above), 

or end of data collection. 

Looking separately at BMI and HbA1c, the number of measures per person year of follow up 

were estimated in the overall population. Then, for each patient, the average time between 

measures during their follow up was calculated. This was done by dividing total person time for 

each individual by the number of measures taken during their follow up. This was repeated 

looking in the periods both before and after (if applicable) initiation of first line treatment with 

either sulfonylureas or metformin.  

In those patients who initiated treatment, and therefore had a relevant date as reference, time 

between the closest measurement of BMI/HbA1c and treatment date was calculated and 

summarised to assess whether these measures could plausibly represent the value that may 

have informed the decision to initiate treatment. 

Additionally, the number of measures since study entry, and the time since last measure, were 

examined at specific time points (6, 12 and 24 months after study entry) in both those initiating 

at that time point (initiators), and in those who were still untreated (non-initiators) at that time 

point. This was done to better compare frequency and timeliness of measures between treated 

and untreated individuals.  

To further investigate any differences in frequency of measures between initiators and non-

initiators, the number of months in the previous calendar year where a patient received at least 

one consultation was calculated. The distribution of this variable was then examined between 

initiators and non-initiators at the same time points of 6, 12 and 24 months after study entry, to 

see whether any differences in frequency of measures could be explained by increased or 

decreased attendance. Note that because data were available in the CPRD before actual study 

entry, this could still be estimated for only 6 months into study follow up. Finally, the change in 

value from baseline was also examined in initiators and non-initiators that had an updated 

HbA1c or BMI within 3 months of the 6, 12 and 24 month time points.  
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6.3 RESULTS 
 

6.3.1 Treatment patterns 

 

Mean follow up for the 98,080 patients was 64.6 months (SD 47.8 months, median 55 months, 

IQR 25-96 months).  

Numbers initiating each class of therapy, and summary statistics for time between diagnosis and 

initiation of first line therapy are displayed in Table 6.1. Metformin monotherapy was the most 

popular first line therapy choice, with 75% of patients initiating this as their first anti-diabetes 

agent. However, the time to initiation of metformin varied. In those patients who initiated 

metformin, the mean number of months from time of diagnosis to initiation of metformin was 

12.8 months, with a median time of 2 months, IQR 1-16 months. The second most popular choice 

was a sulfonylurea, though if this was the first line therapy used, the time that it was started 

tended to be much closer to diagnosis (mean 7.8 months, median 1 month, IQR 1-4 months).  

Options for second line intensification and time between first and second therapy are also 

summarised in Table 6.1. Sulfonylureas were the most common therapy choice for second line 

treatment, with 55% of all those who intensified moving onto them (70% if the first line therapy 

was metformin). The median time between first treatment and intensification in those who 

intensified was 20 months (IQR of 7-41 months). In those who didn’t start a second therapy, 

median follow up time after first line therapy initiation was 31 months (IQR 13-58 months). The 

use of newer agents such as DPP4 inhibitors appeared low, however this is likely to be a 

reflection of length of time since such medications were approved. Restricted to 2005 onwards, 

metformin became an even more popular first line therapy choice with around 80% of patients 

initiating on this drug. Also, use of DPP4 inhibitors for treatment intensification after metformin 

increased. See appendix 10 for more detailed post 2005 results. 

In the overall study population, 14,388 patients went onto a third, and 4820 to a fourth line 

treatment. Only 1,223 patients initiated further therapies (fifth line and beyond) during their 

follow up. The most common choices for these third and fourth line therapies were insulin, DDP4 

inhibitors and GLPs (for 4th line).  

When looking at different first line treatments by levels of different covariates, those who were 

older at time of diagnosis were more likely to remain untreated, or be treated with a 

sulfonylurea rather than metformin. As would be anticipated, patients being treated with 

medication straight away had higher HbA1c at time of diabetes diagnosis, with the highest 
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Hba1c in those initiating a sulfonylurea. Patients initiating sulfonylureas also had slightly lower 

BMI at the time of diagnosis than those initiating metformin (Table 6.2–Table 6.4). Overall, 41% 

of patients had missing data on HbA1c at baseline, and 23% had missing data on BMI. The finding 

of metformin and sulfonylurea initiators having higher mean HbA1c, and sulfonylurea initiators 

having lower mean BMI remained when this was examined at each month for the first 2 years 

of follow up (Table 6.5, Table 6.6).  
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First line treatment choice  Followed by intensification with …  

 
    All those who intensify  if first therapy was metformin if first therapy was a sulfonylurea  

 
First therapy  
N (%) 

Average time from diagnosis 
to start of therapy (months)  
Mean, Median, IQR 

Second 
therapy  
N (%) 

Average time from 
first to second 
therapy (months) 

Mean, Median, IQR 

Second 
therapy  
N (%) 

Average time from 
first to second 
therapy (months) 

Mean, Median, IQR 

Second 
therapy  
N (%) 

Average time from first 
to second therapy 
(months) 

Mean, Median, IQR 

Metformin  53134 (73.8) 12.8 , 2 , 1 – 16 7310 (21.1) 27.9 , 19 , 7 – 40 
 

  6,880 (86.3) 28.1 , 20 , 7 – 40 

Sulfonylurea  12436 (17.3) 7.8 , 1 , 1 – 4 16975 (49.0) 25.5 , 17 , 6 – 37 16754 (69.5) 25.6 , 17 , 6 – 37 
 

  

Insulin  434 (0.6) 8.3 , 1 , 1 – 6 1458 (4.2) 25.7 , 15 , 4 – 38 360 (1.5) 24.2 , 17 , 5 – 37 598 (7.5) 23.5 , 12 , 3 – 35 

TZDs  160 (0.2) 17.4 , 3 , 1 – 30.5 3389 (9.8) 34 , 27 , 11 – 51 2727 (11.3) 33.0 , 26 , 10 – 50 192 (2.4) 38.4 , 29 , 11 – 55 

Glinides 86 (0.1) 10.3 , 1 , 1 – 12 284 (0.8) 18 , 11 , 4 – 25 199 (0.8) 17.9 , 11 , 4 – 25 46 (0.6) 18.5 , 12 , 4 – 29 

GLPs  9 (0.01) 32.2 , 16 , 5 – 53 399 (1.2) 32.4 , 24 , 10 – 48 268 (1.1) 31.1 , 24 , 10 – 46 1 (0.0) 9 , 9 , 9 – 9 

DPP4 87 (0.1) 18.4 , 3 , 1 – 28 3704 (10.7) 34.5 , 27 , 11 – 50 3001 (12.4) 33.6 , 26 , 11 – 49 97 (1.2) 42.0 , 31 , 15 – 60 

Other 100 (0.1) 8.7 , 1 , 1 – 7 794 (2.3) 32.0 , 25 , 9 – 46 592 (2.5) 31.3 , 24 , 9 – 44 83 (1.0) 28.3 , 20 , 8 – 41 

Metformin/Sulf 
combination  

4567 (6.3) 3.4 , 1 , 1 – 1 11 (0.0) 9.0 , 4 , 2 – 11     
  

Metformin/Insulin  159 (0.2) 2.7 , 1 , 1 – 1 22 (0.1) 19.9 , 4 , 1 – 14     22 (0.3) 19.9 , 4 , 1 – 14 

Metformin/Other  344 (0.5) 5.8 , 1 , 1 – 1 53 (0.2) 30.6 , 18 , 7 – 46     50 (0.6) 32.3 , 20 , 8 – 47 

Sulfonylurea/Insulin  220 (0.3) 3.9 , 1 , 1 – 1 50 (0.1) 15.2 , 8 , 1 – 17 50 (0.2) 15.2 , 8 , 1 – 17 
 

  

Sulfonylurea/Other  45 (0.06) 10 , 1 , 1 – 1 143 (0.4) 27.9 , 21 , 5 – 43 138 (0.6) 27.0 , 20 , 4 – 42 
 

  

Insulin/Other  3 (0.0) 7 , 1 , 1 – 19 24 (0.1) 28.8 , 26 , 3 – 39 5 (0.0) 23.8 , 10 , 1 – 31 4 (0.1) 43.3 , 31 , 3 – 84 

Other dual combination  0 (0.0)   19 (0.1) 22.7 , 18 , 3 – 33 12 (0.0) 24.3 , 18 , 4 – 33 0 (0.0)   

3 or more  222 (0.3) 3 , 1 , 1 – 1 5 (0.0) 31.6 , 15 , 14 – 51 2 (0.0) 14.5 , 15 , 14 – 15 2 (0.0) 32.5 , 33 , 14 – 51 

Sub Total  72,006 11.2 , 1 , 1 – 12 34,640 28.0 , 20 , 7 – 41 24,108 27.5 , 20 , 7 – 41 7,975 28.2 , 19 , 6 – 40 

None 26,074 43.7, 34,12-64 37,366 39.8 , 31 , 13 – 58 29,026 39.9 , 30 , 13  - 57 4,461 43.3 , 30 , 12-63 

Total  98,080   72,006   53,134   12,436   

Table 6.1 Summary of first and second line treatment options for patients diagnosed with T2DM. 
Time in months for “none” represents time until end of follow up.  
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Medication at diagnosis Age (years) 
 

30-49 50-59 60-69 70+ Total 

None 9,173(49.3) 13,765(56.8) 17294(62.3) 18076(65.8) 58,317(59.5) 

Metformin monotherapy 6,561(35.3) 7364(30.4) 6995(25.2) 5163(18.8) 26,083(26.6) 

Sulfonylurea monotherapy 1,276(6.9) 1692(7.0) 2203(7.9) 3088(11.2) 8,259(8.4) 

Other 1,601 (8.6) 1415 (5.8) 1263 (4.6) 1151 (4.2) 5,430 (5.5) 

Total 18,611 24,236 27,755 27,478 98,080 

Table 6.2 N (%) of patients initiating each kind of therapy at time of diabetes diagnosis*, 
presented by categories of age at time of diagnosis.  

* within the one month interval (“baseline interval”) in which diagnosis of diabetes is confirmed. 

 

 

 

Medication at 
diagnosis 

BMI (kg/m2) 

 
<25 25-29 30-34 35+ missing Total 

None  4,770(54.7) 14,701(62.1) 14,247(62.9) 11,601(58.8) 12,989(55.7) 58,308(59.4) 

Metformin 
monotherapy  

1,635(18.8) 6,026(25.4) 6,743(29.8) 6,998(35.5) 4,681(20.1) 26,083(26.6) 

Sulfonylurea 
monotherapy  

1,633(18.7) 1,751(7.4) 713(3.1) 345(1.7) 3,817(16.4) 8,259(8.4) 

Other  676 (7.8) 1,214 (5.1) 937 (4.1) 786 (4.0) 1,817 (7.8) 5,430 (5.5) 

Total  8,714 23,692 22,640 19,730 23,304 98,080 

Table 6.3 N (%) of patients initiating each kind of therapy at time of diabetes diagnosis*, 
presented by categories of BMI at time of diagnosis. 

* within the one month interval (“baseline interval”) in which diagnosis of diabetes is confirmed. 

 

 

 

Medication at 
diagnosis 

HbA1c (%) 

 
<6% 6-6.5% 6.5-7% 7-8% 8-9% >=10% missing Total 

None 3,148 
(89.5) 

5,354 
(86.3) 

7,891 
(82.7) 

7,848 
(67) 

4,574 
(40.5) 

2,682 
(18.6) 

26,811 
(64.8) 

58,308 
(59.4) 

Metformin 
monotherapy 

281 
(8.0) 

724 
(11.7) 

1,493 
(15.6) 

3,355 
(28.6) 

5,313 
(47.1) 

7,530 
(52.2) 

7,387 
(17.9) 

26,083 
(26.6) 

Sulfonylurea 
monotherapy 

68 
(1.9) 

83 
(1.3) 

98 
(1.0) 

330 
(2.8) 

807 
(7.1) 

1,825 
(12.6) 

5,048 
(12.2) 

8,259 
(8.4) 

Other 22 
 (0.6) 

44  
(0.7) 

62  
(0.6) 

189  
(1.6) 

595 
 (5.3) 

2,396 
(16.6) 

2,122 
 (5.1) 

5,430  
(5.5) 

Total 3,519 6,205 9,544 11,722 11,289 14,433 41,368 98,080 

Table 6.4 N (%) of patients initiating each kind of therapy at time of diabetes diagnosis*, 
presented by categories of HbA1c at time of diagnosis. 

* within the one month interval (“baseline interval”) in which diagnosis of diabetes is confirmed. 
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Months since diagnosis  Non initiator Metformin monotherapy Sulfonylurea monotherapy 
 

N Mean SD 50% 25% 75% N Mean SD 50% 25% 75% N Mean SD 50% 25% 75% 

1 31,497 7.37 1.59 6.9 6.4 7.8 18,696 9.48 2.26 9.2 7.6 11.1 3,211 10.44 2.49 10.4 8.5 12.2 

2 31,704 7.23 1.47 6.8 6.4 7.6 1,484 9.09 1.92 8.8 7.6 10.4 256 9.90 2.22 9.7 8.1 11.3 

3 32,900 7.06 1.33 6.7 6.3 7.4 1,587 8.69 1.73 8.3 7.4 9.6 224 9.18 1.83 9.1 7.8 10.4 

4 34,788 6.85 1.16 6.6 6.2 7.2 1,594 8.42 1.52 8.0 7.4 9.2 177 8.77 1.83 8.5 7.6 9.7 

5 35,285 6.72 1.04 6.6 6.1 7.1 1,019 8.32 1.47 8.0 7.3 9.1 122 8.76 1.57 8.45 7.6 9.5 

6 35,142 6.65 0.97 6.5 6.1 7.0 707 8.10 1.43 7.8 7.2 8.6 99 8.39 1.73 8.0 7.3 9.3 

7 34,718 6.58 0.91 6.5 6.0 6.9 663 7.94 1.34 7.7 7.1 8.5 94 8.14 1.63 7.8 7.2 8.7 

8 34,173 6.54 0.88 6.5 6.0 6.9 517 8.08 1.41 7.8 7.2 8.7 84 8.15 1.66 7.8 7.1 8.7 

9 33,599 6.51 0.86 6.4 6.0 6.9 481 7.88 1.32 7.6 7.1 8.4 44 7.94 1.51 7.9 7.15 8.55 

10 32,897 6.49 0.84 6.4 6.0 6.8 469 7.94 1.44 7.6 7.1 8.4 68 8.09 1.74 7.7 7.1 8.85 

11 32,216 6.47 0.83 6.4 6.0 6.8 462 7.89 1.43 7.6 7.0 8.3 49 7.99 1.57 7.8 7.0 8.6 

12 31,435 6.45 0.82 6.4 6.0 6.8 547 7.86 1.32 7.5 7.0 8.3 51 7.97 1.62 7.6 7.0 8.6 

13 30,728 6.43 0.80 6.4 5.9 6.8 547 7.87 1.28 7.6 7.0 8.4 58 7.74 1.48 7.5 6.9 8.5 

14 30,035 6.42 0.80 6.4 5.9 6.8 462 7.90 1.29 7.6 7.1 8.3 43 8.42 1.91 8.2 7.1 9.0 

15 29,363 6.41 0.79 6.3 5.9 6.8 412 7.81 1.21 7.6 7.0 8.3 56 7.97 1.44 7.7 7.2 8.5 

16 28,666 6.41 0.79 6.3 5.9 6.8 400 7.85 1.32 7.6 7.0 8.3 31 7.95 1.62 7.9 6.7 9.2 

17 28,019 6.40 0.78 6.3 5.9 6.8 391 7.85 1.29 7.5 7.0 8.4 39 7.59 1.16 7.6 6.6 8.1 

18 27,325 6.40 0.78 6.3 5.9 6.8 394 7.81 1.24 7.6 7.1 8.3 36 7.83 1.68 7.6 6.7 8.6 

19 26,715 6.39 0.77 6.3 5.9 6.8 377 7.81 1.31 7.6 7.1 8.2 53 7.77 1.67 7.5 6.7 8.1 

20 26,105 6.39 0.78 6.3 5.9 6.8 314 7.84 1.22 7.6 7.0 8.3 46 7.60 1.44 7.4 7.0 8.3 

21 25,501 6.39 0.77 6.3 5.9 6.8 348 7.85 1.44 7.6 6.9 8.3 43 7.87 1.66 7.7 6.5 8.7 

22 24,941 6.39 0.77 6.3 5.9 6.8 297 7.90 1.46 7.6 7.0 8.4 35 8.01 1.72 7.7 7.07 8.4 

23 24,344 6.39 0.77 6.3 5.9 6.8 326 7.83 1.54 7.5 6.9 8.3 45 7.64 1.28 7.5 6.9 8.2 

24 23,739 6.39 0.77 6.3 5.9 6.8 319 7.87 1.31 7.6 7.1 8.5 37 8.11 1.59 7.9 6.9 9.0 

Table 6.5 Distribution of HbA1c (%) in those initiating metformin and sulfonylureas vs non initiators in the first 24 months of follow up after diabetes diagnosis.  
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Months since 
diagnosis  

Non initiators Metformin monotherapy Sulfonylurea monotherapy 
 

N Mean SD 50% 25% 75% N Mean SD 50% 25% 75% N Mean SD 50% 25% 75% 

1 45319 31.8 6.2 30.9 27.6 35.1 21402 33.1 6.8 32.0 28.4 36.7 4442 27.2 5.3 26.4 23.7 29.8 

2 45757 31.7 6.2 30.8 27.5 35.0 1847 32.7 6.4 31.9 28.1 36.1 392 27.2 4.9 26.1 24.0 29.5 

3 44804 31.6 6.2 30.7 27.4 34.8 2015 32.5 6.1 31.4 28.3 35.9 316 27.1 4.8 26.6 23.9 29.3 

4 43409 31.4 6.1 30.5 27.3 34.6 1794 33.0 6.5 31.7 28.4 36.3 264 27.2 5.1 26.6 24.0 29.5 

5 42458 31.2 6.1 30.4 27.1 34.4 1137 32.6 6.1 31.6 28.1 36.0 164 27.8 5.3 26.7 24.1 30.8 

6 41607 31.1 6.0 30.2 27.0 34.3 765 32.8 6.3 32.0 28.1 36.3 138 28.1 4.8 27.5 24.8 29.7 

7 40703 31.0 6.0 30.1 26.9 34.2 733 32.7 6.4 31.7 28.5 36.3 117 28.2 5.1 27.3 25.2 30.3 

8 39837 30.9 6.0 30.1 26.8 34.1 560 33.2 6.1 32.3 28.9 36.4 115 27.7 5.7 26.7 23.8 30.8 

9 38972 30.8 6.0 30.0 26.8 34.0 530 33.4 6.5 32.4 29.2 36.8 64 27.7 4.6 26.9 24.5 30.3 

10 38050 30.7 6.0 29.9 26.7 33.9 508 33.1 6.3 32.1 28.7 36.7 98 28.5 5.3 27.0 24.7 31.2 

11 37182 30.7 6.0 29.8 26.6 33.9 506 33.0 6.1 32.0 29.1 36.4 62 27.8 3.5 27.8 25.3 30.2 

12 36147 30.6 6.0 29.8 26.6 33.8 602 32.8 6.0 32.2 28.4 36.2 72 27.7 4.6 27.3 24.0 29.9 

13 35150 30.6 6.0 29.8 26.6 33.7 591 32.9 6.0 32.3 28.7 36.2 72 28.2 5.0 27.3 24.3 31.8 

14 34224 30.5 6.0 29.7 26.5 33.7 510 33.0 6.3 32.1 28.7 35.9 63 28.0 4.6 27.4 24.8 30.0 

15 33335 30.5 6.0 29.7 26.5 33.7 465 32.6 6.6 31.4 28.2 35.9 76 29.2 4.9 28.9 25.3 32.6 

16 32479 30.5 6.0 29.7 26.4 33.6 443 32.7 6.1 31.8 28.5 36.1 46 28.7 5.0 28.4 25.5 31.3 

17 31657 30.4 6.0 29.7 26.4 33.6 436 33.2 6.3 32.0 28.7 36.8 53 28.2 5.4 27.6 24.1 31.1 

18 30817 30.4 5.9 29.6 26.4 33.6 426 33.1 6.6 31.8 28.7 36.2 53 27.5 4.8 26.9 24.2 30.8 

19 30074 30.4 5.9 29.6 26.4 33.5 403 32.8 6.1 31.7 28.6 36.2 66 28.6 4.9 27.3 25.3 31.2 

20 29348 30.4 5.9 29.6 26.4 33.6 336 32.8 6.5 31.4 28.3 36.3 54 27.8 4.8 27.8 25.0 29.6 

21 28641 30.4 5.9 29.6 26.3 33.5 375 32.7 6.4 31.5 28.4 35.9 52 27.7 4.1 27.3 25.1 30.2 

22 27976 30.3 5.9 29.6 26.3 33.5 323 32.9 6.3 31.9 28.7 36.1 47 27.6 5.2 27.1 23.3 30.2 

23 27285 30.3 5.9 29.5 26.3 33.5 350 32.5 5.6 32.2 28.5 35.5 56 28.7 6.1 26.8 24.8 32.8 

24 26567 30.3 5.9 29.5 26.3 33.4 344 33.0 6.3 32.4 28.3 36.6 50 27.9 4.7 27.3 25.2 30.8 

Table 6.6 Distribution of BMI (kg/m2) in those initiating metformin and sulfonylureas vs non initiators in the first 24 months of follow up after diabetes diagnosis.
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6.3.2 Visit frequency  

 

Redefining study entry to be the time after complete data were obtained (as explained in section 

6.2.2) resulted in 59,079 patients contributing to this analysis. 7,389 of these patients were 

treated with metformin or a sulfonylurea from baseline. 23,428 did not receive prescriptions for 

metformin or a sulfonylurea at any time during their follow up and were assumed to be 

managing their diabetes with diet alone.  

Excluding the baseline measures, the rate of measures of HbA1c over all of follow up was 1.60 

per person year of follow up, and 1.61 per person year for BMI. This rate translates to an mean 

time between measures of 7.49 months. Alternatively, calculating the rate of measurements in 

each individual and converting this to an average time between measurements, gives a mean 

time for HbA1c of 7.6 months, with a median of 6.5 months, IQR (5–9 months). Restricting this 

to the time before any treatment occurs, and ignoring those who were treated or lost to follow 

up in the same interval in which their first measure occurred, the mean time between measures 

pre-treatment was 6.8 months, median 6 months, IQR 3-9 months (Table 6.7). For BMI, the 

equivalent numbers were very similar (Table 6.8). 

Looking only in those who received treatment, 2,669/35,651 had no further HbA1c measures 

after treatment initiation, and 503/36,561 initiated therapy in their last month of follow up. 

However in the remaining 32,479, the mean time between measures of HbA1c after treatment 

was initiated was 8.14 months (Table 6.7). A longer gap between measures after treatment 

initiation was also observed for BMI (Table 6.8).    

 

 

Time between intervals 
with updated HbA1c  

N Mean 
(months) 

Std. Dev. 
(Months) 

Median IQR 

Overall 59,079 7.62 5.8 6.5 4.9 - 8.8 

Pre- treatment* 48,481 6.86 6.4 5.9 3.3 – 8.5 

Post – treatment** 32,479 8.14 5.0 7.0 5.6 - 9.2 

Table 6.7 Summary of number of months between HbA1c records in CPRD data after study 
entry, presented by overall, pre and post treatment periods. 

*excludes 3,209 who have a time between intervals of 0 as these are people who are either treated or lost to follow 
up in the same interval in which they have their first measure. 
**excludes 2,669 patients with no further HbA1c measures after treatment initiation and 503 that initiate in their 
last month.  
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Time between intervals 
with updated BMI 

N Mean 
(months) 

Std. Dev. 
(Months) 

Median IQR 

Overall 59,079 7.87 5.8 6.8 4.8 - 9.5 

Pre- treatment* 48,481 6.70 5.9 5.6 3.2 - 8.5 

Post – treatment 31,348 9.69 6.7 8.0 5.9 - 11.7 

Table 6.8 Summary of number of months between BMI records in CPRD data after study entry, 
presented by overall, pre and post treatment periods. 

*excludes 3,209 who have a time between intervals of 0 as these are people who are either treated or lost to follow 
up in the same interval in which they have their first measure. 
**excludes 3800 patients with no further BMI measures after treatment initiation and 503 that initiate in their last 
month.  
 

 

This suggests that, on average, once patients had been diagnosed with T2DM and have had at 

least one measure taken (at study entry), they are re-measured just over every six months, with 

the possibility that once treated, the monitoring gets slightly less frequent.  

The number of measurements taken between baseline and 6, 12 and 24 month intervals were 

summarised separately for those initiating and not initiating in those intervals (Table 6.9). For 

both HbA1c and BMI, those initiating in a given interval had more measures on average recorded 

up to that point than those not treated. 

 

 Non initiator  
[Mean (SD) Median (IQR)] 

Initiator  
[Mean (SD) Median (IQR)] 

 6 
months 

12 
months 

24 
months 

6 
months 

12 
months 

24 
months 

HbA1c 2.15 
(0.91) 
2 (1-3) 

2.79 
(1.12) 
3 (2-4) 

3.97 
(1.50) 
4 (3-5) 

2.77 
(0.90) 
3 (2-3) 

3.38 
(1.15) 
3 (3-4) 

4.81 
(1.54) 
5 (4-6) 

BMI  2.84 
(1.80) 
3 (2-3) 

3.60 
(2.08) 
3 (2-4) 

5.02 
(2.56) 
5 (3-6) 

2.97 
(1.35) 
3 (2-4) 

3.99 
(2.22) 
4 (3-5) 

5.36 
(2.09) 
5 (4-7) 

Table 6.9 Mean, SD, median and IQR of the total number of measures of HbA1c/BMI recorded 
by 6, 12 and 24 months after study entry, in those initiating and not initiating treatment at 

those time points. 

 

To understand how these measures were distributed in terms of time to treatment, the time 

between treatment and the closest updated measurement were summarised. For both HbA1c 

and BMI, the majority of patients who were treated had an updated measure within three 

months prior to the treatment date (Table 6.10, Table 6.11). However, in those who were not 
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treated, the mean time in months since the last measure was much greater, and the longer they 

remained untreated, the longer the time since the last measure appeared to be (Table 6.11).  

 

 

Timing of closest 
measurement entry to 
treatment initiation 

HbA1c  
N (%) 

BMI  
N (%) 

< 3 months  32,301 (90) 28,314 (79) 

3-6 months  1,977 (6) 3,479 (10) 

6-12 months 1,039 (3) 2,707 (8) 

> 12 months 499 (1) 1,316 (4) 

Total 35816 35816 

Table 6.10 Timing of closest HbA1c and BMI to treatment initiation. Includes data from all 
patients who are started on treatment at any time during follow up. 

 

 

 

 Non initiator  
[Mean (SD) Median (IQR)] 

Initiator  
[Mean (SD) Median (IQR)] 

 6 
months 

12 
months 

24 
months 

6 
months 

12 
months 

24 
months 

HbA1c 3.93 
(2.78)  
4 (2-6) 

5.30 
(4.60) 
 4 (1-9) 

6.73 
(6.75) 
 5 (2-10) 

1.47 
(1.97)  
1 (0-2) 

1.58 
(2.78) 
 1 (0-1) 

1.67 
(3.13)  
1 (0-1) 

BMI  4.19 
(3.96) 
 5 (2-6) 

5.62  
(5.30)  
5 (1-10) 

6.65 
(6.68) 
 5 (2-10) 

2.37 
(3.26)  
1 (0-5) 

2.58 
(4.14) 
 0 (0-4) 

2.54 
(4.55) 
 0 (0-3) 

Table 6.11 Time in months since last measure, at 6, 12 and 24 months after study entry, 
separately by those initiating and not initiating treatment at those times. 

 

 

Despite this finding, for all three time points examined, the number of consultations in the 

previous year (simplified to maximum of 1 visit per month) was not appreciably different 

between initiators and non-initiators (Table 6.12). The changes (as a percentage of the baseline 

value) in HbA1c from baseline to each time interval examined were larger in those initiating 

treatment than those not (Table 6.13). For BMI, both the mean and median percentage change 

from baseline was approximately 1% larger in patients not initiating treatment at all three 

intervals, though overall the percent change was relatively small. For example, at a starting BMI 
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of 30, after 24 months the average change was only 4% in initiators, and 5% in non-initiators, 

resulting in an absolute change in BMI of 1.2 in initiators and 1.5 in non-initiators.  

 

 Non initiator  
[Mean (SD) Median (IQR)] 

Initiator  
[Mean (SD) Median (IQR)] 

 6 
months 

12 
months 

24 
months 

6 
months 

12 
months 

24 
months 

Number of months in 
previous year that at least 
one consultation occured 

8.7 
(2.6) 

9 (7-11) 

8.0 
(2.8) 

8 (6-10) 

8.9 
(2.3) 

9 (7-11) 

9.2 
(2.4) 

9 (8-11) 

8.2 
 (2.7) 

8 (6-10) 

8.7 
(2.6) 

9 (7-11) 

Table 6.12 Mean, SD median and IQR of the number of months in the previous year in which at 
least one consultation occurred, recorded at 6* 12 and 24 months after study entry, in those 

initiating and not initiating at those time points. 

*because data source has information on consultations for at least 1 year prior to study entry for all patients, this is 

estimable for 6 months into follow up. 

 

 

 Non initiator 
[Mean (SD) Median (IQR)] 

Initiator 
[Mean (SD) Median (IQR)] 

Absolute % 
change from 
baseline in: 

6 months 12 months 24 months 6 months 12 months 24 months 

HbA1c (%) 8.6 
(9.0) 

5.7 (3.0-10.8) 

8.6 
(9.3) 

5.8 (2.9-11.1) 

9.4 
(10.0) 

6.3 (3.1-12.3) 

13.1 
(14.9) 

8.6 (4.1-16.7) 

15.5 
(16.5) 

11 (5.4-20.4) 

21.4 
(20.3) 

16.2 (7.0-28.4) 

BMI 4.1 
(3.77) 

3.2 (1.5-5.7) 

4.8 
(4.5) 

3.5 (1.6-6.5) 

5.1 
(5.0) 

3.8 (1.7-6.9) 

3.1 
(2.8) 

2.4 (1.1-4.1) 

3.8 
(5.0) 

2.9 (1.3-4.5) 

4.0 
(3.4) 

3.3 (1.6-5.3) 

Table 6.13 Mean, SD, median and IQR of the absolute percentage change between study entry 
and most recent* HbA1c/BMI recorded by 6, 12 and 24 months after study entry, in those 

initiating and not initiating treatment at those time points. 

*must have occurred within 3 months of the time point for HbA1c, and 4 months for BMI to ensure mean change is 

not reduced by patients who have not had any updated measurement. 

 

 

6.4 DISCUSSION 
 

The results confirmed that, as per UK guidelines, metformin is the preferred first line treatment 

out of all options. In addition, the changes in prescribing over the last 20 years in terms of a 

move towards metformin over sulfonylureas, and the introduction of new 2nd line therapies in 

the last decade (e.g. DPP4) were apparent when comparing between categories of calendar year 

or restricting to data from post 2005.   



119 
 

 

These findings are consistent with a recently published study by Sharma et al. [16] which looked 

at incidence and prevalence of diabetes and the patterns of pharmacological treatment between 

2000 and 2013 in a different UK primary care database (The Health Information Network (THIN) 

database). The study found that 63% of newly diagnosed patients initiated therapy at some point 

in the follow up, compared to 73% in our study. Though, when restricting our study to post 2005 

only, this number was 68%. The authors’ findings in the period 2005 to 2013, showed an increase 

in metformin prescribing as first line therapy from around 80% to 90%, and a decrease in 

sulfonylurea usage from around 15% to 6%. These results are highly consistent with our findings 

over a similar period (appendix 10). Their findings on second line treatments are also very 

similar.  

In those who do initiate metformin, the median time to initiation was 2 months. However, there 

were a substantial number of people who started later, or did not start at all. There is the 

possibility that patients appearing to not be treated are getting pharmacological therapy 

elsewhere, although for diabetes the majority of prescribing is done in primary care so the risk 

of misclassification of treatment is relatively small [12].  

Overall, the findings of this analysis provide support for the hypothesis that not all patients with 

diagnoses of T2DM initiate medication immediately, and that there is some variation in choice 

of first line diabetes therapy. Therefore it should be possible to model time-varying treatment 

and compare diet only, metformin monotherapy and sulfonylurea monotherapy. 

Age, HbA1c and BMI all appeared to be strong predictors of treatment, even when relatively 

simply categorised. However, there did not appear to be a group that were never or always 

treated, suggesting that there should be no outright positivity violations. Having said this, it is 

acknowledged that only a small selection of possible confounders were examined and only in 

univariable analyses. The prescribing of glucose lowering medications in CPRD appeared to 

reflect guidelines [13], but suggested that there was enough overlap in the distributions of 

potential confounders for those starting and not starting treatment, that MSM with IPTW may 

be viable to implement. It is possible that there will be some near positivity violations not 

identified here. For example, there may be issues at the extremes of the continuous distributions 

of these or other potential confounding variables, or when multivariable associations with 

treatment are examined. This will be considered in the modelling process as previously 

explained in relation to the bias-variance trade off (see sections 4.4.2.3-4.4.2.4).  

The above analysis also suggested that there were a substantial amount of data missing for key 

time-dependent confounders at time of diabetes diagnosis. As explained in 4.4.2.1 and 6.2.2 , 
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the approach taken will be define study entry to the closest time after diagnosis that complete 

data are available, and use the method of last one carried forward (LOCF) to impute values going 

forward in time. How well the inverse probability of treatment weighting will account for post 

baseline confounding when using LOCF will depend on how often the measures are updated, 

since we wish to capture the values that might influence the risk of outcome at the time the 

treatment decisions are made. The second set of analyses in this chapter aimed to describe the 

frequency of measurements for HbA1c and BMI, along with general measures of visit frequency, 

to gain an idea of whether there are enough data on such measures to obtain valid weights.  

Overall, both HbA1c and BMI, once measured, had a mean time between measurements of just 

under 8 months, with a median of nearer 6 months. In those eventually treated, the time 

between measures was slightly shorter before treatment than after, though this was not 

formally tested, and the difference was small. This could suggest that HbA1c and BMI are more 

frequently monitored during the time when a patient is attempting to control their diabetes 

with a diet/lifestyle intervention, though it could also be a reflection of the fact that those more 

closely monitored are more likely to be treated. This potential imbalance was accounted for by 

looking at the number of measures of HbA1c and BMI taken by 6, 12 and 24 months after study 

entry in those initiating or not initiating treatment in those months. Here, there was a trend 

towards a higher number of measures in those initiating treatment at the given time points than 

those not initiating treatment, though the differences were relatively small.  

HbA1c is a measure that is representative of glucose control over approximately 3 months, and 

changes in BMI are likely to take a longer to occur. Within those treated, the majority of patients 

(90% for HbA1c and 80% for BMI) had a measure recorded in the 3 months prior to treatment 

initiation. This suggests that, ignoring issues of measurement error, the value that would be used 

to estimate probability of being treated is likely representative of the value used by the GP when 

making the decision to initiate pharmacological therapy. In those not treated, we are limited to 

making this comparison at specific time points. In doing this, it was apparent that the closest 

measures for both HbA1c and BMI were further in the past in those not initiating than initiating 

at 6, 12 and 24 months after study entry. If this is because they are not visiting the GP, then the 

patient can neither have a measurement or be treated. This could be very problematic for two 

main reasons. Firstly, using LOCF as a method to estimate the probability of treatment in each 

interval is likely to result in an estimated weight that does not correctly adjust for the time-

dependent confounding, since the risk of the outcome at each time interval may not be correctly 

represented in the patients not initiating treatment. Secondly, if the reason for non-attendance 

is related to risk of outcome, then additional bias could be introduced, since patients not being 
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treated are at a systematically different risk of the outcome than those who are treated. Having 

said this, for BMI, the mean time since the last measure was not so large that it was likely have 

changed radically. For example, in those not initiating by 2 years after diabetes diagnosis, the 

mean time since the last BMI was 6.65 months. A large change in BMI over this interval is unlikely 

to occur, except perhaps following bariatric surgery. 

The finding of less measures and longer time since measures in those not initiating treatment 

may also be reflective of the GP only recording the measure if it has substantially changed from 

the previous recorded measure. If a patient is visibly stable while controlling their diabetes with 

diet alone then they may not have as many updated measures. If this is the case, then using 

LOCF may still provide measures that are broadly representative of the value at the time the 

decision to remain untreated is made, and as such, correctly represent risk of outcome at this 

time. Smaller percentage changes in HbA1c from baseline were observed at 6, 12 and 24 months 

from study entry in patients not initiating treatment compared to those initiating treatment, 

when restricted to patients that had an updated measure within 3 months of the given time 

point. For BMI, the percentage change was marginally bigger in patients not being treated, but 

only by about 1% at each time point. These observations are consistent with the assumption 

that those not initiating treatment have more stable covariates, so gives some reassurance that 

LOCF may be a reasonable approach. At all three time points of 6, 12 and 24 months after study 

entry, the number of months in the previous year in which at least one consultation occurred 

was similar between initiators and non-initiators. This provides further assurance that the 

patients not initiating treatment were still visiting the GP, and that they had similar opportunity 

to be treated as patients that did initiate treatment. Having said this, these analyses cannot 

remove all concern that the issue of differing visit frequency may impact the results obtained in 

subsequent chapters.  

It should also be noted that this analysis did not consider the limitations that may be 

encountered due to completly missing data either for HbA1c and BMI, or other time invariant 

(for the purposes of this research) variables such as smoking and alcohol intake. This will be 

discussed in more detail in the next chapter. 

 

6.5 CHAPTER SUMMARY  
 

This chapter has provided an overview of diabetes treatment patterns in this base cohort, and 

frequency of key time updated variables have been examined descriptively to gain initial insight 
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into whether use of causal methodology, in particular the implementation of MSMs with IPTW 

will be feasible. 

The key findings from the work presented in this chapter are as follows: 

1. The most common first line treatment for type 2 diabetes was metformin, though not all 

patients who do initiate metformin initiate at time of diagnosis. Therefore, in order to compare 

no treatment to treatment with metformin, time-dependent confounders affected by prior 

treatment should be considered.   

2. The total mean follow up in those never treated was 43 months. In patients who ever initiated 

a first line therapy, the mean time to first therapy was 11 months. Second line treatment or end 

of follow up occurred on average 30 months after initiation of first line therapy. This suggests 

there should be sufficient follow up to capture many outcomes if we censor at treatment 

intensification and apply inverse probability of censoring weights to adjust for informative loss 

to follow up. However, sensitivity analyses will be necessary to look at treatment effects in 

patients with longer follow up or exposure time to investigate long term outcomes such as 

cancer in more detail. 

3. Treatment decisions appear strongly associated with HbA1c levels as expected, and to a lesser 

extent BMI. Assuming HbA1c and BMI are also associated with the outcomes of interest in the 

later chapters, these two key time-dependent confounders will need to be adjusted for. The 

strength of the associations with treatment, particularly for HbA1c, is likely to cause issues with 

large weights, and therefore careful consideration of how to include these variables in the model 

to balance sufficient control for the confounding with minimising the impact of positivity 

violations will be needed.  

5. Comparison of consultation rates suggested that patients not initiating treatment visit their 

GP at roughly the same frequency as patients who initiate treatment. The frequency and timing 

of both HbA1c and BMI appears to be sufficient to calculate the IPTW (and IPCW). In those who 

are treated, the measures that will contribute to estimating the probability of treatment appear 

to be measured close enough to the time of treatment to be broadly representative of the values 

influencing the risk of outcome at the time of the treatment decision. It is less clear whether the 

same is true for those who remain untreated at a particular time, and the potential impact of 

this on the results of subsequent analysis will be considered. 
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7 METFORMIN AND RISK OF CANCER: AN APPLICATION OF MARGINAL 

STRUCTURAL MODELS WITH INVERSE PROBABILITY OF TREATMENT 

WEIGHTING 
 

7.1 INTRODUCTION, AIMS AND OBJECTIVES 
 

As established by the systematic review in chapter 2, many studies have previously examined 

the association between metformin use and risk of cancer. However, most were at risk of various 

biases, and none to date have expressly addressed the potential issue of time-dependent 

confounding affected by prior treatment when time varying treatment is modelled.  

In order to examine the true causal association between use of metformin and cancer incidence 

in patients with T2DM, an ideal randomised controlled trial might randomise patients with newly 

diagnosed T2DM to receive either metformin monotherapy or placebo. To ensure everyone 

receives standard care, both groups could be additionally advised to follow a diet and exercise 

regime to further control their diabetes. Providing that there is then sufficient follow up to 

capture development of cancer, and patients adhere to their randomised treatment, this trial 

would, as best is possible, remove any systematic differences between those using and not using 

metformin prior to any further treatment initiation. However, such a trial is not feasible, since it 

is unethical to withhold pharmacological treatment to patients with T2DM if they may need it in 

addition to a diet and lifestyle intervention. In addition, due to the progressive nature of T2DM, 

treatment intensification or switching, and non-adherence to randomised therapy would be 

likely to occur.  

Longer follow up and large sample sizes may be observed in routinely collected primary care 

records, but treatment initiation will not be randomised, so initiators and non-initiators of 

metformin through time are likely to have differing underlying risks of cancer. By using MSMs 

with inverse probability of treatment weights (IPTW) and inverse probability of censoring 

weights (IPCW), the issues surrounding time-dependent confounding and loss to follow up can 

be addressed as outlined in 4.4.1. In theory, providing all assumptions are satisfied, it will be 

possible to compare the risk of cancer under the scenario in which everyone receives metformin 

monotherapy, vs the scenario where all patients are advised to follow a diet and lifestyle 

intervention only, with all patients adhering to their treatment and no one lost to follow up. The 

main objective of this chapter is the implementation of MSMs with IPTW (and IPCW) to estimate 
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the causal effect of metformin use and risk of cancer in patients with T2DM. This will be done 

using the CPRD study population identified in section 5.2. Specific further objectives include (i) 

the evaluation of the impact of adjusting for time-dependent confounders using MSMs vs 

standard methods, and (ii) careful consideration of the limitations of the methodology in the 

specific context of metformin use and cancer in T2DM, and due to the use of EHR data.  

 

7.2 METHODS 
 

A cohort of patients from the CPRD (see 5.1), with incident T2DM diagnosed between 1990 and 

2014 and aged between 30 and 90 at time of diagnosis were identified, as described in section 

5.2. This cohort were used as the base cohort for this study, however additional exclusions were 

made to enable implementation of the methods, and are detailed where relevant within this 

section. As explained in 4.4.2.1, study entry was defined as the beginning of the first interval 

after complete data on all covariates were obtained. Patients were included only if they were (i) 

still untreated to this point and (ii) would have still been in the risk set had they had complete 

data from time of diabetes diagnosis. Patients were excluded if they had a history of any cancer 

at study entry. 

 

7.2.1 Exposure and comparison group definition 

 

The exposure of interest was metformin monotherapy for first line treatment of T2DM. To avoid 

using a comparator that may itself have an impact on cancer risk, the comparator group were 

patients with a diagnosis for T2DM who were not taking any pharmacological therapy. Many of 

these patients had clinical codes such as “diabetic on diet only” and so it was considered 

reasonable to assume that they were attempting to control their disease with a lifestyle 

intervention, referred to going forward as “diet only”. A patient’s record in CPRD was searched 

for the date of first prescription for metformin, which was then taken as the date at which a 

patient became exposed to metformin. The BNF code used to define metformin was the code 

6.1.2.2 for biguanides. Drugs that had this code in combination with another type of drug were 

excluded as they were indicative of exposure to dual therapy. The exposure status of an 

individual could update once at the date of the first metformin prescription, from diet to 

metformin. Further prescriptions were not needed to confirm or maintain exposure status. A 

patient’s follow-up was censored at subsequent use of any other medication class. This simple 
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definition closely mimics what would happen in a randomised controlled trial analysed by the 

ITT principle. Dosage and minimum adherence were not considered.  

 

7.2.2 Outcome definition 

 

The primary outcome was incidence of any cancer, as defined by clinical codes found in the 

patient’s CPRD record only. The algorithm used to identify incident cancers was developed for 

previous work by Bhaskaran et al.[195]. A flow chart to describe an overview of this process is 

given in appendix 11. Briefly, in the initial stage, string searches identified codes containing key 

strings including (but not only) “MELANOMA” “TUMOUR” “CANCER” “MALIG” and “NEOP”, as 

well as strings indicating treatment for cancer such as “CHEMOTHERAPY” and “RADIOTHERAPY”. 

All codes containing the keyword strings were identified as possible cancers. A second set of key 

strings indicating exclusion were also used to identify which of these possible cancer codes 

should be excluded. Such key words here included “BENIGN” “H/O”, and “SCREEN”. After this 

stage, manual checking of the codes was used to class the codes into different groups, indicating 

whether the code was definite cancer, indicative, suspected, or not cancer, including whether 

the site was known or unknown. Further classifications grouped codes relating to treatment for 

cancer. All codes were then manually linked to ICD 10 to enable easy sorting into specific cancer 

types by a well-known and accepted coding system. Only codes that came under chapter C of 

the ICD coding system, classed as definite malignancies, were used to identify cases of cancer in 

this analysis.  

For the primary analysis, the main outcome was incidence of any cancer, including non-

melanoma skin cancer (NMSC). This was included to increase power, and because there is no 

reason to think that the mechanism by which metformin may affect cancer risk (if any) would 

be any different for this less serious cancer outcome. However, since it is often excluded from 

composite outcomes since some of the risk factors are not shared with other cancer types, a 

sensitivity analysis excluding NMSC was also performed. Secondary analysis also investigated 

the specific outcomes of lung, breast and prostate cancer as these were the three most 

commonly occurring cancers.  Pancreatic cancer was also investigated in isolation due to its 

observed strong association with T2DM. 

Cancer can take a long period of time to develop, and it should be considered that early stage 

cancer, before it has been diagnosed, may affect control of diabetes and hence result in need 

for treatment initiation or intensification (which results in censoring). To avoid issues of reverse 
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causation, and also informative censoring, the date of cancer diagnosis was brought forward in 

time by 6 months in the primary analysis. This was varied to 0 months and 12 months in 

sensitivity analyses.  

 

7.2.3 Covariates 

 

A list of confounders of the association between metformin use and risk of cancer, both time 

fixed and time- dependent were identified based on a priori knowledge and discussions with 

clinicians. These were included in the weighting models (and outcome models if baseline 

covariates) regardless of the observed associations in the data. The covariates considered in this 

analysis and details of how they were defined in data are outlined below. Full codelists (where 

applicable) and further details of how the covariates were obtained are given in appendix 12.  

7.2.3.1 Time invariant confounders  

 

Age and gender are important risk factors for cancer, and may also impact treatment decisions. 

Age was categorised as <45, 45-59, 60-75, > 75.  Continuous non linear forms for age were also 

considered as detailed in 7.2.7.2.1. 

Calendar time, although not causally related to the risk of cancer, is associated with the 

detection of cancer due to changes in screening policies etc. It could also capture some aspects 

of lifestyle that cannot be measured directly due to changes in knowledge through time in terms 

of cancer prevention. Since it is not feasible to make adjustment for the exact mediating factors, 

an adjustment for calendar time is needed. Calendar time is also strongly associated with 

treatment choice due to changes in prescribing guidelines over the study period. Calendar year 

of diabetes diagnosis was calculated as described in 5.2.3, and parameterised as a categorical 

variable of pre 1995, 1995-2000, 2000-2005 and 2005 onwards. Continuous forms of calendar 

year of diagnosis were not considered due to concerns over positivity violations and small 

sample size pre-2000.  

For simplicity, smoking and alcohol consumption were considered as time invariant for the 

purposes of this analysis. Both variables were considered important to include due to known 

association with risk of cancer. These behaviours are also indicative of general unhealthy 

behaviour and therefore may lead a clinician to make judgements about how likely a patient is 

to adhere to a diet/lifestyle intervention, altering the probability of receiving pharmacological 

treatment.  
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Smoking status was categorised into non-smoker, ex-smoker, current smoker or unknown. 

Alcohol was defined in more detail, categorising into non-drinker, ex-drinker, current drinker 

unknown quantity, rare drinker <2u/d, moderate drinker 3-6u/d, excessive drinker >6u/d, and 

drinking status unknown. Each patient was classified into one of these categories using 

algorithms previously developed within the research group. Further details are given in appendix 

12. 

 

7.2.3.2 Time-dependent confounders  

 

7.2.3.2.1 HbA1c  

 

HbA1c is strongly associated with treatment choice, via treatment guidelines [13]. Literature 

also exists suggesting that HbA1c may be associated with cancer risk, though the exact 

mechanisms are still unknown [19, 20] . The details of how HbA1c was extracted are detailed in 

appendix 12. The baseline HbA1c was taken to be the closest measure prior to study entry. For 

patients entering the study at time of diabetes diagnosis, the HbA1c was required to have been 

within 6 months otherwise it was considered missing. Values below and above the 1st and 99th 

percentiles of the distribution were truncated by setting them to the 1st and 99th percentile 

values. HbA1c was categorised as <6%, 6-6.5%, 6.5-7%, 7-8%, 8-10% and >10%. As with age, non-

linear continuous forms were also investigated (see 7.2.7.2.1 and7.2.7.2.2).  

7.2.3.2.2 BMI  

 

Existing literature supports the hypothesis that BMI is associated with risk of several cancers 

[195, 196]. Due to the potential weight reducing properties of metformin, there is also reason 

to believe that higher BMI will increase the probability of treatment. How BMI was extracted 

from CPRD is detailed in appendices 9 and 12. The cut of off 6 months prior to time of diagnosis 

for a valid measure was also applied for BMI. BMI changes more slowly than HbA1c, and other 

studies have suggested that a BMI measures as much as 3 years before would be broadly 

representative of the current value [195]. However, as obesity is so strongly associated with 

development of T2DM, it was felt that a shorter time window for valid measurement should be 

applied than for the general population. As with HbA1c, values were truncated at the 1st and 

99th percentiles. BMI was categorised as <25, 25-29, 30-35 and > 35, and again, non-linear 

continuous forms were also investigated.  
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7.2.3.2.3 Key comorbidities 

 

Chronic kidney disease (CKD), defined by a chronic decline in kidney function, is a common co-

morbidity in patients with T2DM, and metformin is contraindicated for patients with severe 

chronic kidney disease [15]. The causal pathways by which CKD may be associated with cancer 

are unclear, however review articles summarising evidence for the association suggest one 

reason may be the presence of excess toxins in the body causing both CKD and cancer [197]. As 

such, it was considered important to adjust for CKD. In order to create a simple measure of 

whether a patient may have decreased kidney function the quality outcome framework (QOF) 

[198] preferred and accepted codes for stages of chronic kidney disease were used as a set of 

Read codes to identify patients with CKD and are listed in appendix 12. A patient was considered 

to have no CKD until the time at which the first code suggesting CKD appeared, and at this point, 

presence of CKD was updated to reflect this. A separate variable was also created to represent 

the value at baseline. The binary variable combined stages 3, 4 and 5 together. Initial 

investigations suggested that the number of patients initiating metformin with stage 4 or 5 CKD 

was too low to allow a finer categorisation than this (see appendix 13).  

Presence of CVD was defined using the QOF preferred and accepted codes [198] for ischaemic 

heart disease, acute myocardial infarction, all types of stroke and transient ischemic attack (TIA). 

The full code list is given in appendix 12 .Adjustment for CVD was considered important since 

presence of these comorbidities will be strongly associated with diabetes severity (and as such 

treatment) and cancer risk due to many shared risk factors [199]. The date of first record of any 

CVD was recorded and a patient’s record time updated from time of diagnosis onwards to reflect 

presence or no presence of CVD as well as a separate record to identify if it was already present 

at baseline.  

 

7.2.3.2.4 Concomitant medications  

 

To further attempt to adjust for the underlying health of the patient, which may affect risk of 

cancer via pathways which cannot be measured directly, information on prescriptions of other 

kinds of medication were obtained and adjusted for. Medications considered were:  

 Statins and anti-hypertensives (Anti HTs), which will provide more detail on severity of CVD 

or diabetes (e.g. Presence of diabetic nephropathy). Additionally, hypertension is argued to 

be a risk factor for cancer [200] and ongoing use of an anti-hypertensive is an indicator for 
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this which is simpler and more complete than using longitudinal measures of blood pressure 

which may be poorly updated.  

 Non-steroidal anti-inflammatory’s (NSAIDs), which are indicative of chronic pain that may 

be caused by diabetic complications e.g. neuropathy. This may give further detail on likely 

severity of diabetes on top of HbA1c measures, to better control for differing cancer risks 

between those initiating and not initiating treatment through time.  

Use of these three medications was established by searching the prescription data for BNF codes 

relating to those three medications (see appendix 12). For each patient, longitudinal data were 

collected consisting of the dates of prescriptions for each medication type for their whole 

history. This could then be used to calculate variables indicating use in the year prior to study 

entry. Equivalent time updated variables for use in the previous year were also created.  

 

7.2.4 Interval Set up 

 

With CPRD data, the visit schedule is defined by an individuals need to visit their GP. Different 

aspects of a patients care or medical history that may be relevant to a particular treatment 

decision may not be recorded at the same time. For example, a patient with type 2 diabetes may 

visit their GP and have their HbA1c measured and BMI checked. The BMI can go into the system 

straight away, however the HbA1c result may not be entered until the result is returned, perhaps 

7 – 14 days later. Details on history of other comorbidities such as cardiovascular disease or 

kidney function may have been recorded at a completely different visit. Because of the 

unbalanced nature of the data, appropriate decisions are needed to define interval length, and 

to assign variable measurements into these intervals to ensure the data used to predict 

treatment or outcome in a given interval are appropriate.  

 

7.2.4.1 Interval length 

 

The results in chapter 6 showed that the key time-dependent confounders of HbA1c and BMI 

were updated roughly every 6 months on average. However, HbA1c is a measure of glucose 

control over approximately 3 months, and some patients have more frequent measures. Further 

to this, in order to establish temporality between predictors of treatment and treatment itself, 

it is conventional to use covariates measured in the previous interval to predict treatment in the 

current interval, as outlined in 4.4.2.2. Because of this, if we choose an interval of three months, 
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the predictor may have been measured up to 6 months before. Such a measure may not 

accurately reflect the HbA1c level influencing a patient’s cancer risk when the treatment 

decision was made. Because of this, one month intervals were chosen for the primary analysis, 

with three months used in a sensitivity analysis.  

 

7.2.4.2 Assigning variables to intervals  

 

For intervals in which BMI or HbA1c records did not occur, last one carried forward (LOCF) was 

used. This assumes that this most recent value is the most representative of the true value 

during this time. If the reason for the missing value is that a patient has not visited the GP at all 

during that month, then no other time-dependent covariates will change either and nor will the 

patient’s exposure status. Given that normal patient behaviour would be to visit the GP if any 

major changes occurred relating to diabetes severity or other conditions, it could be reasonably 

assumed that patients not visiting are stable in terms of their key covariates. If the patient has 

visited the GP (as indicated by changes in other covariates/exposure in this interval) then either, 

the measure was not updated because it has not changed, or the GP is making decisions based 

on the latest available data. Under either of these scenarios, LOCF seems reasonable, and is 

unlikely to cause serious bias in the calculation of the weights.   

Due to the likely lag between measurement and recording of HbA1c, it was decided that an 

HbA1c entered into a patient’s record would be considered to have actually occurred 7 days 

before, based on discussions with a GP advisor. The same was done for CKD diagnoses, as, if not 

already there at time of diagnoses as a “history of” code, these are likely to be in response to an 

eGFR or creatinine test, or a hospital diagnoses that may take time to reach the GP.  

 

7.2.5 Including patients treated from study entry  

 

As explained in 4.4.2.1; in order to ensure treatment has not already affected covariates, 

patients were required to be treatment free at the study entry. For patients that entered the 

study at their the time of diabetes diagnosis, the decision was made to allow patients who 

initiated metformin within their baseline interval to be included as long as all baseline covariates 

were measured strictly before the date of treatment initiation. These patients would always 

have a probability of treatment of 1, and so had a constant weight of 1 in the outcome model. 

These patients did not contribute to the models for the IPTW. Difference in baseline covariates 
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between these patients and those who are untreated at baseline would be adjusted for since all 

baseline covariates are included in the outcome model. Figure 7.1 shows inclusion/exclusion 

decisions for six example patients to demonstrate this, and to re-iterate how the ordering of 

complete data and treatment must occur for a patient to be eligible to enter the study.  

Sensitivity analyses were conducted to look at the impact of including/excluding a) patients who 

had complete data and started medication at time of diagnosis; but whose baseline covariates 

occurred after the time of medication, and b) patients who started medication in the same 

interval in which they obtained complete data where study entry was after diabetes diagnosis.  

 

7.2.6 Censoring 

 

Patients were censored from follow up for the following reasons:  

1. Death  

2. Transfer out of practice  

3. Initiation of any other diabetes medication other than metformin  

4. The last data collection date.  

Otherwise, follow up ended in the interval in which there was a cancer diagnosis. 

The last data collection date was considered administrative and highly unlikely to be informative 

in terms of differing risk of outcome, therefore this was not included as a censoring event in the 

models for the IPCW. As explained in the methods, if a patient was censored in an interval (for 

reasons 1-3), they were censored from the beginning of that interval. It was felt that minimal 

cancer events would be missed by this, because it is unlikely that a patient would have no record 

of the cancer diagnoses before they died, particularly since the date of cancer diagnosis was 

moved forwards in time by 6 months as explained in 7.2.2.  

 

  



132 
 

 

Figure 7.1 Follow up for some example patients to show different scenarios in which a patient may or may not be included in the analysis. 

 

 

 

Patient 1: Starts follow up in interval 3, 

the interval after they have complete 

data. Since up to this point they have not 

initiated treatment, then covariates have 

not been affected by prior medication so 

patient one can be included. Interval 3 

counts as unexposed time, patient is 

exposed from interval 4.  

Patient 2: Already on medication at study 

entry. The values contributing to the 

“baseline adjustment” (as defined by 

covariate values in interval 2) may have 

been influenced by treatment in interval 

1 Therefore patient 2 must be excluded. 

Patients 3 and 4: Initiate medication at 

time of diagnosis. Here we allow more 

leniency in that the covariates can occur 

in the same interval, as long as they are 

strictly before the time of treatment 

(satisfied by patient 3 but not 4). Patient 

3 would be classified as being on 

metformin at study entry.  

Patient 5: Same as patient 1 but does not 

then subsequently initiate treatment. 

This patient is included and contributes 

to follow up as unexposed.  
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7.2.7 Analysis plan  

 

7.2.7.1 Descriptive analysis  

 

Patient demographics (age, year of diagnosis, gender etc.) and all potential confounders were 

summarised overall and by treatment choice at study entry (diet only, metformin). Continuous 

variables were summarised as mean, SD, median and IQR. Binary/categorical variables were 

summarised as n (%). Crude cancer rates were summarised, including descriptive information 

on different cancer types. This was also useful to inform which site-specific analyses were 

feasible to perform.  

To understand the extent to which the covariates specified in 7.2.3 were predictive of the 

outcome within the cohort, associations were estimated for each covariate in turn. This was 

performed after the data had been split into intervals, and so was done via pooled logistic 

regression with adjustment for time since study entry to approximate a Cox proportional 

hazards (PH) model. This was useful to understand in advance the extent to which the IPTW and 

IPCW models might be expected to produce differing results to standard statistical methods, but 

did not alter any decisions on covariate inclusion. To ensure that any observed associations were 

not solely mediated by use of metformin, or confounded by age, these analyses were adjusted 

for age and time updated diabetes medication (none or metformin).  

 

7.2.7.2 Models for the IPTW and IPCW 

 

Although the covariate selection process for this analysis was based on a priori knowledge and 

discussions with experts, the functional form of the covariates was not pre-specified. As outlined 

in 4.4.2.4, the starting point was to have two model specifications, one using natural cubic 

splines to model non-linear forms of association between continuous variables and log odds of 

cancer, and another where all variables except time were categorical.  

For all model specifications, time since study entry was used as the underlying time scale, with 

time between diabetes diagnosis and study entry also entered as an adjustment for those 

patients entering later due to incomplete data. These variables were modelled as cubic splines 

in both model specifications.   

For this analysis, three model specifications were eventually used for the models for the IPTW. 

Namely: 
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A) Time, time between diagnosis and study entry, age, HbA1c (baseline and time updated) and 

BMI (baseline and time updated) fitted as natural cubic splines, all other covariates categorical.  

B) Simplification of the specified forms in A, to assess the sensitivity of the models to overfitting. 

C) All covariates (except time and time between diagnosis and study entry) were entered as 

categorical variables, with the categorisations as described in 7.2.3.  

 

7.2.7.2.1 Estimating spline forms for specification A  

 

Natural Cubic splines were used in order to fit flexible non-linear relationships between 

exposure and outcome [201]. The Stata functions UVRS and MVRS [202] use an iterative based 

approach to choose the optimal number and location of knots, to best model the observed 

association between the exposure and outcome, allowing this to be done for multiple variables 

simultaneously. This is a data driven approach, and allowing such flexible associations could 

result in extreme overfitting, leading to uninterpretable “wiggles” in the curve. However, since 

the aim of IPTW is essentially to remove the association between treatment and time-

dependent confounder within the data set, evaluating the shape of the associations as indicated 

solely by the data was considered a good starting point.  

This function was used to calculate natural cubic splines for all continuous covariates listed for 

specification A above. To do this, the function was called to fit a logistic regression model to 

estimate probability of being treated with metformin vs diet only. This model included all 

continuous and categorical variables both baseline and time-dependent. Once these initial 

estimated spline curves had been generated, the shapes of the association between each 

continuous covariate and probability of treatment were plotted separately.  

 

7.2.7.2.2 Simplification to obtain specification B  

 

Model specification B was obtained by simplifying, where possible, the form in A, for each 

continuous variable. This was done with the aim of reducing issues of positivity that may occur 

with overfitting, and to reduce the number of parameters needed to model the association with 

sufficient detail. Initially, the forms from model specification A were examined for plausibility in 

discussion with clinicians. In general, the simplification was approached in a subjective manner, 

with a trial and error approach to obtaining simpler splines or polynomial forms that appeared 
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similar to the overall shape to those estimated by model specification A. As outlined in 4.4.2.3, 

decisions on whether associations could be smoothed/simplified were based on how strong the 

association with outcome was expected to be over the covariate range that would be affected. 

Decisions on whether the association with outcome over a given interval of the covariate were 

important were based on the descriptive univariate analyses (7.2.7.1). If the categorisations 

used in these analyses did not allow the relative risk of cancer over the range of interest to be 

estimated in enough detail, the association with cancer was re-estimated using a continuous 

form for the covariate, by fitting it as a natural cubic spline with four evenly spaced percentile 

knots (20th, 40th, 60th and 80th).  

 

7.2.7.2.3 Weight calculation and truncation  

 

The stabilised IPTW were then calculated as described in 4.4.1.2, using each of the three 

specifications. Due the number of potential interactions between covariates that could be 

tested, it was decided that interactions would not be included in the weighting models. With the 

exception of calendar time, there were no clear a priori covariates that were considered to be 

likely to modify the effect of other covariates on probability of treatment. The effect of potential 

interactions with calendar time were investigated in a sensitivity analysis (see 7.2.7.4).   

Once the IPTW were estimated, the distribution of the weights was examined as described in 

4.4.2.4, and truncation performed if necessary to obtain a mean of the IPTW close to one.  

 

7.2.7.2.4 Models for the IPCW 

  

IPCW were estimated as described in 4.4.1.3, using a multinomial logistic regression to model 

the probabilities for censoring due to death, transfer from practice, or initiation of any other 

medication other than metformin. The same predictors that were used for the treatment model 

were all included in the censoring model. For model specification A and C, the same spline 

parameterisations and categorisations were used for all variables. Use of the same spline forms 

was considered appropriate because with the exception of BMI in the previous interval, all spline 

parameterisations allowed flexible non-linear associations, and so would likely be sufficient to 

model any non linear associations with probability of censoring from medication change, death 

or transfer out. Any major bias resulting from incorrect specification of previous BMI in the 

censoring models would most likely be highlighted by comparing the results from specifications 
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A and C, since the categorisation of BMI would, to an extent, be expected to pick up a non linear 

association with censoring. Specification B was not used as it was felt that the simplified form of 

these splines was unlikely to be able to correctly model all associations with different reasons 

for censoring.  

Once the IPCW were estimated, the joint weight was calculated as described in 4.4.2.2. 

Specifically, the untruncated IPTW was multiplied by the untruncated IPCW, and the distribution 

of the joint weight examined and truncated as described previously (see section 4.4.2.4).  

 

7.2.7.3 Outcome models 

 

MSMs also require the assumption of correct specification of the outcome model as so each 

model was fitted using each of the three covariate specifications described previously (A, B and 

C). The knot points and categorisations used were the same as in the weighting models. This was 

done to simplify code as far as possible during the computation process. The same spline 

parameterisation does not enforce the same shape of association as the treatment model, but 

it if the parametrisation is too simple for the association between the covariate and cancer, 

there is the risk of misspecifying the outcome model. To check whether this may be the case, 

the associations between continuous baseline covariates and outcome were plotted using 

covariate forms in A and B, and also using splines with 4 knots based at even percentiles in an 

unweighted model. No appreciable differences in shape of association were observed (see 

appendix 14).  

For the primary analysis, exposure history was modelled using a binary variable to represent 

whether the patient was on/off metformin. This assumes that the effect of treatment is fully 

accounted for by current treatment, analogous to the single HR obtained from a Cox model. If 

the effect of treatment is not constant through time, then this may not be appropriate, and so 

cumulative use of medication was also modelled in a secondary analysis (see 7.2.7.5.1).  

For each model specification, five models were fitted to evaluate the effect of metformin use vs 

diet on risk of cancer in patients with T2DM. For all models, the effect of metformin use on risk 

of cancer was estimating as described in 4.4.1.4, using a pooled logistic regression with time 

since study entry as the main time scale. The first 3 models were standard analyses models with 

varying levels of confounder adjustment. Performing standard analyses provided a comparator, 

so that the impact of controlling for time-dependent confounding using MSMs in the later 

models could be investigated. Although it would be possible to fit Cox models for the first three 
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models, rather than the approximation by a pooled logistic regression model, it was decided for 

simplicity and ease of comparability to use a pooled logistic regression for all models. The 4th 

and 5th models were marginal structural models with IPTW and then joint IPTW and IPCW. The 

exact specifications of each model are outlined below:  

Model 1 – Minimal adjustment for confounding: adjustment for age, gender, smoking status 

and alcohol status and year of onset of diabetes.  

Model 2 – Full adjustment for baseline covariates: Model 1 + baseline adjustment for: HbA1c, 

BMI, use of other medications in previous year (NSAIDS, statins, antihypertensive drugs), history 

of chronic kidney disease (CKD) and cardiovascular disease (CVD).  

Model 3 – Full adjustment for baseline covariates with time-dependent covariates added: 

Models 2 + adjustment for time updated HbA1c, BMI, and history of CVD, CKD and use of other 

medications in the past 12 months. 

Model 4 – As model 2, weighted using IPTW. (MSM with IPTW)  

Model 5 – As Model 2, weighted using joint IPTW and IPCW (MSM with IPTW and IPCW)  

It was not planned to explore interactions between treatment and baseline covariates in the 

main analysis, as there was no clear reason to think they would exist. Additionally, the overall 

aim was to estimate the effect of metformin in the general diabetic population and therefore 

specific interactions were not of interest.  

 

7.2.7.4 Sensitivity analyses 

 

To examine how various modelling decisions may have affected the results of the MSMs, the 

treatment and censoring weights were re-calculated (if required) and the outcome models re-

run for nine scenarios (listed below) as sensitivity analyses. All sensitivity analyses were 

conducted for each of the three covariate specifications A, B and C.  

 

7.2.7.4.1 Dividing time into 3-month instead of 1-month intervals  

 

The descriptive analysis presented in chapter 6 suggested that a patient’s HbA1c and BMI were 

updated on average just over every 6 months. It also suggested that measures were commonly 

updated within 1 month of treatment. This sensitivity analysis was conducted to investigate 

whether the results could be altered if larger intervals were used.  
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7.2.7.4.2 Different lags on the cancer diagnosis  

 

In the primary analysis, the date of cancer diagnosis was moved forward in time by 6 months to 

allow for un-diagnosed cancer. This was because developing cancer may affect diabetes 

symptoms and therefore affect treatment decisions. To test the sensitivity of the models to this 

assumption (i.e. to assess the potential impact of reverse causation on results), two sensitivity 

analyses were performed, one where the cancer diagnosis date was shifted forward by 12 

months, and one where it was not changed at all.  

 

7.2.7.4.3 Excluding non-melanoma skin cancer from outcome  

 

As explained in 7.2.2, non melanoma skin cancer was included in the definition of “any cancer” 

since it improved power and there was no reason to think the mechanism by which metformin 

may affect risk was any different to other cancers. However, since it is often excluded from 

definitions of all cancer, the analysis was re-run excluding this cancer type. This was done by 

excluding it entirely from the definition of cancer. Specifically, any previous history of NMSC was 

ignored, and if a patient developed, NMSC during follow up, this was ignored and other cancers 

occurring after this were included as an incident primary cancer.  

 

7.2.7.4.4 Assigning a patient as exposed from 1 year after first prescription 

 

Assuming continuous exposure to metformin after the first prescription, this sensitivity analysis 

aimed to investigate whether the relative risk of cancer with metformin use was any different if 

outcomes observed within 1 year of starting metformin were not attributed to the “exposed” 

group. This, to an extent, tested the sensitivity of the results to making differing assumptions 

about how quickly any effect of metformin may become apparent. This was investigated further 

in a secondary analysis looking at cumulative medication use.  

 

7.2.7.4.5 Relaxing assumptions of temporality between covariate measurement and treatment 

 

In the primary analysis, patients who initiated treatment in the same interval in which they 

obtained complete data were excluded. This group of patients could be divided into two distinct 

groups: firstly, patients initiating at time of diagnosis whose baseline covariates were measured 
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after treatment initiation; and secondly, patients who initiated treatment post baseline but in 

the same interval in which they obtained complete data. These two sensitivity analyses looked 

at the impact of including these two groups of patients.  

 

7.2.7.4.6 Using covariates in current interval to predict treatment in weight calculation 

 

By using covariates from the previous interval to predict treatment initiation and censoring (as 

is standard practice for IPW), we may not have correctly controlled for confounding at the time 

the treatment decision was actually made. This is because for many covariates, the true value 

may be measured at a GP consultation and treatment initiated (or not) immediately in response 

to this. By using covariates from the same interval to predict treatment initiation, it was possible 

to investigate whether the potential to be missing the true value that represents outcome risk 

and drives the treatment decisions may have influenced the estimated relative risks.  

 

7.2.7.4.7 Fitting different treatment models for each calendar period 

 

In the overall model fitting process, potential interactions between covariates were not 

examined. Due to changing guidelines, there was some concern that calendar time may have 

been an important effect modifier for the effect of covariates on probability of treatment. For 

example, in the 1990s, those patients who were not overweight were more likely to be 

prescribed a sulfonylurea than metformin, however more recent guidelines indicate that 

metformin should be used in preference. Therefore, the effect of BMI on probability of 

treatment may be modified by calendar time. To control for this, IPTW and IPCW were estimated 

separately for patients diagnosed in different calendar periods. Due to small numbers for some 

time intervals, this analysis was restricted to a smaller range of calendar periods, including only 

patients diagnosed from the year 2000 onwards.  

 

7.2.7.5 Secondary analyses 

 

7.2.7.5.1 Modelling cumulative use of metformin  

 

One of the biggest anticipated limitations of this analysis is the probable lack of follow up time 

in which to observe an effect of metformin use on cancer risk if it exists. In line with the majority 
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of studies that have previously examined this association, the primary analysis assumed a 

constant effect of treatment through time. However, in reality, it is likely that an effect of 

metformin may take years to become apparent. By instead defining treatment as a categorical 

variable representing time since first metformin prescription, the effect of longer term 

metformin use was estimated. Time since start of metformin was categorised as <6 months, 6-

12 months, 1-2 years, 2-5 years and 5-7 years and > 7 years. As with the primary analysis, this 

was estimated for all three covariate specifications.  

 

7.2.7.5.2 Site specific analysis 

 

The three most common site specific cancers (namely breast, lung, prostate) were analysed as 

separate, secondary outcomes, to investigate whether the risk of cancer with metformin use 

may differ between cancer types.  In addition, pancreatic cancer was also investigated. There is 

a strong association between risk of pancreatic cancer and type 2 diabetes, so it was 

hypothesised that the issues of time-dependent confounding affected by prior treatment may 

be stronger for this cancer type.  

Since having any cancer can modify the risk of subsequent cancers, patients who were diagnosed 

with a cancer other than the type of interest were censored. Therefore, another category level 

for censoring was added in this analysis, and new IPCW estimated for each cancer type of 

interest. IPTW were also re-estimated for the relevant populations for each cancer type. E.g. 

breast and prostate cancer analyses were restricted to women and men respectively. As with 

the primary analysis, the site specific analyses were run with the 3 different covariate 

specifications, and all cancer diagnoses dates brought forward in time by 6 months.  

 

7.2.7.5.3 Sulfonylurea vs diet  

 

Risk of cancer was also compared for use of sulfonylureas vs diet only. This comparison allowed 

informal inferences on how the risk of cancer may differ between metformin and sulfonylurea 

users, which enabled comparison of these results to many of the existing observational studies 

that used active comparator designs. Sulfonylurea use was defined and recorded in the same 

way as metformin use in the primary analysis, but using the BNF code 6.1.2.1. Patients were 

censored if they initiated any other drug than a sulfonylurea. IPTW and IPCW were estimated 

using the same approach as for the primary analysis.   
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7.3 RESULTS  
 

7.3.1  Basic cohort description  

 

From the 98,080 patients identified as having incident type 2 diabetes and who were free of any 

cancer at time of diabetes diagnosis in section 5.2, a total of 55,629 were alive, cancer free and 

eligible to enter the study. Of these, 54,342 were not censored in month one due to death, 

transfer out of practice, or initiation of another therapy, and contributed to the outcome model. 

Figure 7.2 shows how this cohort was obtained from the original population.  

 

Figure 7.2  Flowchart to show how initial population of 98,080 were reduced into population of 
54,342contributing to outcome model. 

 

a 55,629 contribute to model for censoring weights.   

b the 49,524 untreated at study entry, less the 815 censored and 48 with a cancer diagnosis in month 1 result in 48,661 patients 
contributing to the model for IPTW.  

 

 

During follow up, just under 50% of the cohort were censored due to death, transfer out, or 

initiation of other therapy. The most common reason for censoring was initiation of a 

sulfonylurea, which could occur both before or after a patient had started metformin. Table 7.1 

presents the reasons for study exit for all patients eligible for study entry (n=55,629).  
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Reason for end of follow up  N % 

End of study (last collected date for practice)  28,979 52.1% 

Cancer event  2,530 4.5% 

Initiates Insulin   1,898 3.4% 

Initiates OAD other than metformin or 
sulfonylureas  

3,964 7.1% 

Initiates sulfonylureas  8,642 15.5% 

Transfer out of practice  5,554 10.0% 

Died 4,062 7.3% 

Total 55,629 100% 

Table 7.1 Proportion of patients and reasons for exiting the study. 

 

The characteristics of all 55,629 patients alive and cancer free at study entry are displayed in 

Table 7.2, shown overall, and by medication at study entry. Mean follow up time overall was 3.8 

years. Total time contributing to diet only was 119,325 person years, and 79,267 person years 

for metformin. The average age at diabetes diagnosis was 62 years (SD 12 years). Patients 

initiating metformin at study entry were slightly younger (mean age 58 years, SD 12 years). Mean 

HbA1c and BMI were higher in those initiating metformin at study entry than not, and patients 

with a history of chronic kidney disease were less likely to initiate metformin. Numbers initiating 

metformin at study entry also increased with increasing calendar time as expected due to 

changes in treatment guidelines.  

Within the 54,342 patients who contribute to the outcome model, 2,530 had a cancer event 

during follow up. The crude rates of events for no medication and metformin were 13.7 per 1000 

person years and 11.2 per 1000 person years respectively. Table 7.3 presents a breakdown of 

cancer type as defined by ICD code. Table 7.4 presents the estimated associations between all 

covariates and incidence of any cancer. As expected, the strongest evidence of an association 

was observed for age, where increasing age was associated with increasing risk of cancer. 

Additionally, current and ex-smokers were also estimated to have an increased risk of cancer 

compared to non-smokers. There was also some suggestion that compared to a reference level 

of <6%, all categories of HbA1c in the previous interval were associated with a higher risk of 

cancer, with the risk being higher for categories spanning an HbA1c of 6% -8%. The majority of 

covariates, both baseline and time-dependent, had estimated HRs with confidence intervals that 

contained one.  
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No Therapy 

N = 49,524 

Metformin 

N=6,105 

Total  

N=55,629 

Mean (SD) median, 25th %ile – 75th 
%ile 

   

Age at diagnosis 62.2 (12)  63 ,54 - 71 57.6 (11.8)  57 ,49 - 66 61.7 (12)  62 ,53 - 71 

Time (months) to complete data 3.8 (3)  3.1 ,1.3 - 5.6 0 (0)  0 ,0 - 0 3.4 (9.7)  0 ,0 - 3 

HbA1c 7.2 (1.6)  6.8 ,6.2 - 7.7 9.4 (2.3)  9 ,7.4 - 11 7.5 (1.8)  6.9 ,6.3 - 8 

BMI 31.6 (6.3)  30.7 ,27.3 - 34.9 33.4 (6.9)  32.3 ,28.6 - 37.1 31.8 (6.3) 30.9 ,27.5 - 35.2 

N (%) 
   

Gender 
   

Male 27763 (56.1) 3594 (58.9) 31357 (56.4) 

Female  21761 (43.9) 2511 (41.1) 24272 (43.6) 
History of Chronic Kidney Disease  

   

No  46463 (93.8) 5866 (96.1) 52329 (94.1) 

Yes  3061 (6.2) 239 (3.9) 3300 (5.9) 

History of Cardiovascular Disease  
   

No 41868 (84.5) 5479 (89.7) 47347 (85.1) 

Yes 7656 (15.5) 626 (10.3) 8282 (14.9) 
Use of statins in previous year 

   

No  25035 (50.6) 2739 (44.9) 27774 (49.9) 

Yes 24489 (49.4) 3366 (55.1) 27855 (50.1) 

Use of NSAID in previous year 
   

No  39575 (79.9) 4999 (81.9) 44574 (80.1) 
Yes 9949 (20.1) 1106 (18.1) 11055 (19.9) 

Use of Anti HT in previous year 
   

No  18048 (36.4) 2767 (45.3) 20815 (37.4) 

Yes 31476 (63.6) 3338 (54.7) 34814 (62.6) 

Smoking Status  
   

Never  20132 (40.7) 2449 (40.1) 22581 (40.6) 
Current  8746 (17.7) 1287 (21.1) 10033 (18) 

Ex  20646 (41.7) 2369 (38.8) 23015 (41.4) 

Alcohol consumption  
   

non-drinker 5770 (11.7) 884 (1.8) 6654 (13.4) 

ex-drinker 3474 (7) 529 (1.1) 4003 (8.1) 

current drinker quantity unknown  979 (2) 121 (0.2) 1100 (2.2) 
rare drinker <2u/d 11543 (23.3) 1484 (3) 13027 (26.3) 

moderate drinker 3-6u 22934 (46.3) 2570 (5.2) 25504 (51.5) 

excessive drinker >6u 4824 (9.7) 517 (1) 5341 (10.8) 

Calendar Year of onset     

1990 - 1995 134 (0.3) 0 (0) 134 (0.2) 
1995 - 2000 1708 (3.5) 20 (0.3) 1728 (3.1) 

2000-2005 12764 (25.8) 595 (9.8) 13359 (24) 

post 2005 34918 (70.5) 5490 (89.9) 40408 (72.6) 

Table 7.2 Baseline demographics of patients eligible for study entry , by treatment at study 
entry (treatment at study entry defined as in 7.2.5) 

 

ICD code/Site Number of 
events 

% 

C43 & 44 /Malignant Skin Cancer 738 29 

C61/Prostate Cancer 266 11 

C50/Breast Cancer 241 10 

C34/Lung Cancer 185 7 
C18/Colon Cancer 158 6 

C67/Bladder Cancer 69 3 

C25/Pancreatic Cancer 50 2 

C15/Oesophageal Cancer 65 3 

C20/Rectal Cancer 68 3 

C54/Endometrial Cancer 47 2 
C85/ Lymphoma 40 2 

Other* 603 24 

Total 2530 100 

Table 7.3 Frequency table of cancer types occurring in study cohort 

*all other cancers with less than 40 events each, plus ICD C80 for “cancer of unspecified site” 
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Risk Factor  Hazard ratio 95% CI  

Age 
  

<45 1(ref) 
 

45-59 3.48 ( 2.38 , 5.10 ) 

60-74 8.12 ( 5.58 , 11.81 ) 

75+ 12.07 ( 8.26 , 17.64 ) 

Gender  
  

Male 1 (ref) 
 

Female 0.75 ( 0.70 , 0.82 ) 
Smoking status  

  

Never 1(ref) 
 

Current  1.25 ( 1.10 , 1.41 ) 

Ex  1.27 ( 1.17 , 1.39 ) 

Drinking Status  
  

Non drinker  1(ref) 
 

ex-drinker 1.08 ( 0.89 , 1.32 ) 

current drinker unknown 1.26 ( 0.95 , 1.67 ) 

rare drinker <2u/d 0.97 ( 0.84 , 1.12 ) 

moderate drinker 3-6u/d 1.09 ( 0.96 , 1.24 ) 

excessive drinker >6u/d 1.15 ( 0.97 , 1.37 ) 
Year of diabetes onset  

  

pre 1995 1 (ref) 
 

1995 - 2000 0.67 ( 0.32 , 1.40 ) 

2000-2005 0.71 ( 0.34 , 1.48 ) 

post 2005 0.68 ( 0.32 , 1.42 ) 

Any history at baseline of …  
  

CVD  1.12 ( 1.02 , 1.24 ) 

CKD  1.08 ( 0.92 , 1.27 ) 

Time updated history of…  
  

CVD  1.12 ( 1.02 , 1.22 ) 

CKD  1.06 ( 0.95 , 1.18 ) 
Use in year before baseline of…  

  

Anti-hypertensive medications 1.05 ( 0.96 , 1.15 ) 

Statins  0.98 ( 0.91 , 1.06 ) 

NSAIDS 0.99 ( 0.90 , 1.09 ) 

Time updated use in previous year of… 
  

Anti-hypertensive medication 1.09 ( 0.99 , 1.21 ) 
Statins  1.06 ( 0.97 , 1.16 ) 

NSAIDS 0.93 ( 0.84 , 1.03 ) 

Baseline BMI a 
  

<25 1(ref) 
 

25-29 0.92 ( 0.78 , 1.09 ) 

30-34 1.08 ( 0.88 , 1.32 ) 

35+  0.92 ( 0.71 , 1.20) 

Baseline HbA1c a 
  

<6% 1(ref) 
 

6-6.5% 0.89 ( 0.78 , 1.01 ) 
6.5 -7% 0.99 ( 0.87 , 1.14 ) 

7-8% 0.97 ( 0.83 , 1.12 ) 

8-10% 0.91 ( 0.76 , 1.09 ) 

10% + 0.82 ( 0.65 , 1.03 ) 

Previous BMI (interval -1) b 
  

<25 1(ref) 
 

25-29 0.95 ( 0.82 , 1.11 ) 
30-34 0.85 ( 0.71 , 1.03 ) 

35+  0.93 ( 0.71 , 1.20 ) 

Previous HbA1c (interval -1) b 
  

<6% 1(ref) 
 

6-6.5% 1.15 ( 1.01 , 1.31 ) 

6.5 -7% 1.15 ( 1.00 , 1.32 ) 

7-8% 1.12 ( 0.96 , 1.30 ) 

8-10% 1.07 ( 0.86 , 1.33 ) 
10% + 1.06 ( 0.72 , 1.57 ) 

Table 7.4 HR and 95% CI for associations between covariates and cancer. Each covariate 
considered in turn, Adjusted for age, and time updated diabetes medication (none/metformin). 

a Additionally adjusted for value of covariate in previous interval  b Additionally adjusted for baseline value of 
covariate  
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7.3.2 Primary analysis  

 

7.3.2.1 Spline fitting 

 

48,661 subjects not treated at study entry contributed to the model for the IPTW (see Figure 7.2 

footnote b). Using the Stata function MVRS, natural cubic splines were fitted to estimate the 

probability of metformin initiation in a full multivariable model. The log odds ratios for the 

associations with treatment as estimated by the cubic splines are displayed in Figure 7.3 (for 

time since study entry, time between diagnosis and study entry, and age) and Figure 7.4 (for 

baseline and time updated BMI and HbA1c), alongside the simplified spline forms (if applicable) 

that were created as outlined in 7.2.7.2.2. 

Time since study entry was simplified to remove an uninterpretable “wiggle” in the curve 

between 0 and 5 years from study entry. Both previous and baseline HbA1c were mostly 

quadratic in shape, and therefore these two curves were simplified by using a linear and 

quadratic term rather than a cubic spline. BMI at study entry was mostly linear, except for a 

slightly shallower gradient for those with BMI below about 28. This was simplified to a linear 

term. Spline terms for age at onset, previous BMI (which was already linear) and time between 

diagnosis and study entry were not simplified further from their initial spline form as chosen by 

MVRS function. Table 7.5 outlines the final forms for continuous covariates for each of the three 

model specifications A, B and C.  

 

 
A (MVRS output)  B Simplified  C Categorised  

 
natural cubic spline with 
knots at minimum and 
maximum plus…  

  

Time since study 
entry (months)  

10 , 25 , 44 natural cubic spline 
with knots at knots 
at 
10,25, 120 

As B 

Time between 
diagnosis and 
study entry 
(months)  

4 as A as A 

HbA1c (%) in 
previous interval  

6 , 6.8 linear and 
quadratic term 

<6, [6-6.5), [6.5-7) , [7-8) , [8-10) 
, 10 +  

BMI in previous 
interval  

Linear as A <25 , [25-30), [30-35), 35+ 

Age at diagnosis  56 , 72 as A 32-44 , 45--59 , 60-74 , 75+ 

HbA1c (%) at study 
entry  

5.9 , 6.4 , 6.9 linear and 
quadratic term 

<6, [6-6.5), [6.5-7) , [7-8) , [8-10) 
, 10 +  

BMI at study entry  26.8 , 30.1 linear <25 , [25-30), [30-35), 35+ 

Table 7.5 Forms for continuous covariates in different model specifications. 
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Figure 7.3 Associations between continuous variables (time and age) and treatment with 
metformin from multivariable model.  

 

 

Associations where spline knots and knot points decided by iterative function MVRS are shown on the left. If 

simplification deemed possible, this is shown on the right. 

Reference time = 1, Reference age = 50.  
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Figure 7.4 Associations between continuous variables (BMI and HbA1c) and treatment with 
metformin from multivariable model.  

 

 

Associations where spline knots and knot points decided by iterative function MVRS are shown on the left. If 

simplification deemed possible, this is shown on the right. 

Reference BMI = 30 kg/m2, Reference HbA1c = 6.5% 
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7.3.2.2 Models for the IPTW 

 

Table 7.6 displays the parameter estimates for models predicting probability of treatment with 

metformin through time, for both the denominator and numerator models for the IPTW 

calculations. Results are shown for covariate specification C only. Full model outputs for A and 

B are displayed in appendix 15.  

HbA1c was a strong predictor of treatment, with higher HbA1c in the previous interval resulting 

in higher odds of being treated with metformin. Very large ORs were observed for the highest 

values of HbA1c. This indicated that there may be some near violations of the positivity 

assumption for these models. In contrast, baseline HbA1c had the opposite direction of effect, 

suggesting that change in HbA1c from baseline was important. The same pattern was seen for 

BMI, though the estimated ORs were smaller in magnitude than for HbA1c. Other covariates 

such as age, gender, smoking, history of CKD and use of statins, anti HTs and NSAIDs were also 

associated with treatment, although the associations were not as large in magnitude as for 

HBA1c. Increasing age at diabetes diagnosis and history of CKD were associated with a decreased 

probability of treatment, whereas being an ex or current smoker was estimated to increase the 

probability of treatment compared to a non-smoker. Females were estimated to be more likely 

to be treated with metformin than males. All concomitant medications were estimated to 

increase the probability of being treated, with the estimates for use at study entry suggesting 

that the increased probability of treatment was related to initiation of anti-hypertensives or 

statins since baseline.  

Table 7.7 shows the distribution of the IPTWs calculated from the models described above, 

including patients who were treated from baseline and therefore had a weight of one 

throughout follow up. Both the un-stabilised and stabilised weights are shown for comparison 

purposes. As expected, the un-stabilised weights had very large means and standard deviations. 

After stabilisation, the mean weights under the two continuous models were still extremely 

high.  

A brief investigation was undertaken to look at the characteristics of the subjects contributing 

to the top 1% of the IPTWs after stabilisation (see Table 7.8). 958 unique individuals made up 

the top 1% of the IPTW. Of these 958, 29% were patients who were treated with an HbA1c < 

6.5%. 60% were patients not treated with a previous HbA1c >=8%. Examining the distribution of 

covariates more generally, the mean previous HbA1c in those with the top 1% of weights who 

were untreated was 8.87, versus 6.45 in those untreated but in the bottom 99% of IPTW. In 
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those treated with metformin, the corresponding means were 7.05 and 8.15 respectively. 

Additionally, those treated with metformin who had a large weight, tended to be treated later 

in time, and their baseline HbA1c levels were relatively high (mean 8.08), suggesting that these 

are subjects whose IPTW increases through time due to not being treated when perhaps they 

should have been, and so stays high once treated. There were no clear differences in BMI, time 

between diagnosis and study entry, or any large differences in age at diagnosis between patients 

that had weights in the top 1% or bottom 99% of the distribution. 

Weights were initially truncated at the 99th and 1st percentiles, which resulted in a mean weight 

just below 1. A slightly more lenient truncation at absolute weight values of 10 and 0.1 gave a 

mean weight of 1.01 for all three models (Table 7.7). The truncation at 10 and 0.1 was the one 

carried forward for use in the MSM with IPTW only.
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DENOMINATOR MODEL NUMERATOR  MODEL 

 
OR  SE  95% CI (OR)  OR  SE  95% CI (OR)  

BASELINE FIXED  
      

*Time since study entry (months) spl 1  0.98 0.001 0.98 , 0.98 0.98 0.001 0.98 , 0.98 

*Time since study entry (months) spl 2 1.05 0.004 1.04 , 1.06 1.08 0.004 1.07 , 1.08 

*Time between diagnosis and study entry spl 1 0.87 0.022 0.82 , 0.91 0.85 0.027 0.80 , 0.91 

*Time between diagnosis and study entry spl 2 1.06 0.020 1.02 , 1.10 0.86 0.020 0.82 , 0.90 

Age at diagnosis (years)  
      

32-44 1 (ref) 
  

1 (ref) 
  

45-59 0.97 0.032 0.91 , 1.04 0.96 0.330 0.90 , 1.02 

60-74 0.88 0.029 0.83 , 0.94 0.76 0.024 0.71 , 0.81 

75-89 0.63 0.025 0.58 , 0.68 0.51 0.019 0.47 , 0.55 

Gender (F v M) 1.13 0.019 1.09 , 1.17 1.12 0.019 1.08 , 1.15 

Smoking Status  
      

Never 1 (ref) 
     

Current  1.03 0.024 0.99 , 1.08 1.10 0.025 1.06 , 1.15 

Ex 1.07 0.019 1.03 , 1.10 1.07 0.019 1.04 , 1.11 

Alcohol consumption  
      

non_drinker  1 (ref) 
     

ex-drinker 0.97 0.040 0.90 , 1.06 0.96 0.037 0.89 , 1.04 
current drinker unknown 0.82 0.057 0.71 , 0.94 0.87 0.053 0.77 , 0.98 

rare drinker <2u/d 0.98 0.028 0.93 , 1.04 0.97 0.027 0.92 , 1.03 

moderate drinker 3-6u/d 0.98 0.026 0.93 , 1.03 0.94 0.024 0.89 , 0.99 

excessive drinker >6u/d 0.93 0.033 0.86 , 0.99 0.87 0.030 0.81 , 0.93 

Year of diabetes onset  
      

1990-1994 1 (ref) 
     

1995-2000 1.30 0.268 0.87 , 1.95 1.19 0.243 0.79 , 1.77 

2001-2005 1.33 0.273 0.89 , 1.99 1.14 0.229 0.77 , 1.69 

2005 onwards  1.39 0.286 0.93 , 2.08 1.11 0.224 0.75 , 1.65 

Use of anti HT in year prior to study entry   0.87 0.027 0.81 , 0.92 0.97 0.017 0.93 , 1.00 

Use of statin in year prior to study entry  0.89 0.021 0.85 , 0.93 1.21 0.021 1.17 , 1.25 
Use of NSAID in year prior to study entry  1.09 0.025 1.04 , 1.14 1.16 0.021 1.12 , 1.20 

HbA1c at study entry  
      

<6%  1 (ref) 
     

6% - 6.5% 0.86 0.031 0.80 , 0.92 1.61 0.045 1.52 , 1.70 

6.5%-7%  0.76 0.028 0.71 , 0.82 2.52 0.068 2.39 , 2.66 

7% - 8%   0.62 0.024 0.57 , 0.67 5.21 0.139 4.95 , 5.49 
8%-10%  0.44 0.020 0.40 , 0.48 10.26 0.329 9.64 , 10.93 

>10%  0.42 0.025 0.38 , 0.48 15.9 0.670 14.64 , 17.27 

BMI at study entry  
      

<25 1 (ref) 
     

25-29  0.96 0.046 0.88 , 1.06 1.41 0.043 1.33 , 1.49 
30-34  0.89 0.051 0.79 , 0.99 1.55 0.048 1.46 , 1.65 

35+  0.76 0.052 0.66 , 0.87 1.76 0.057 1.65 , 1.87 

History of CVD at study entry  0.92 0.053 0.82 , 1.03 1.03 0.023 0.99 , 1.08 

History of CKD at study entry  0.82 0.047 0.74 , 0.92 0.69 0.028 0.64 , 0.75 

TIME UPDATED  
      

Use of anti HT in previous year  1.07 0.024 1.03 , 1.12 
   

Use of statin in previous year  1.55 0.037 1.48 , 1.63 
   

Use of NSAID in previous year  1.21 0.039 1.14 , 1.29 
   

History of CVD 1.03 0.057 0.93 , 1.15 
   

History of CKD 0.87 0.036 0.80 , 0.94 
   

HbA1c in previous interval  
      

<6% 1 (ref) 
     

6% - 6.5% 2.35 0.141 2.09 , 2.64 
   

6.5%-7% 7.13 0.409 6.37 , 7.98 
   

7% - 8%  41.58 2.357 37.21 , 46.47 
   

8%-10% 186.22 11.370 165.22 , 209.89 
   

>10% 311.57 22.934 269.71 , 359.92 
   

Bmi in previous interval  
      

<25 1 (ref) 
     

25-29 1.38 0.064 1.26 , 1.52 
   

30-34 1.67 0.093 1.50 , 1.86 
   

35+ 2.21 0.147 1.94 , 2.52 
   

Table 7.6 Estimated OR, standard error and 95% CI for probability of treatment with metformin 
for denominator and numerator models for the IPTW, covariate specification C.  

*estimates for time since study entry and time between diagnosis and study entry equivalent to the simplified spline in Figure 7.3.  
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Table 7.7 Distribution of inverse probability of treatment weights (unstabilised, stabilised and two different truncations) from treatment models with differing 
covariate specifications.  

 

 

 

 

 
 

Mean Standard 
Deviation 

1st %ile 5th 
%ile 

10th 
%ile 

25th 
%ile 

50th 
%ile 

75th 
%ile 

90th 
%ile 

95th 
%ile 

99th 
%ile 

Minimum Maximum 

MVRS (A) 

Un -stabilised 389944 281000000 1.01 1.02 1.03 1.09 1.47 15.42 72.55 170.06 743.57 1 2.88x1011 

Stabilised 11871 5514653 0.04 0.14 0.29 0.68 0.89 0.98 1.38 2.21 6.41 1.23x10-6 4.83x109 

Stabilised Truncated 
at 1st and 99th %ile 

0.98 0.86 0.04 0.14 0.29 0.68 0.89 0.98 1.38 2.21 6.41 0.04 6.41 

Stabilised Truncated 
at 0.1 and  10 

1.01 1.07 0.10 0.14 0.29 0.68 0.89 0.98 1.38 2.21 6.41 0.1 10 

Simplified 
(B) 

Un -stabilised 85990 60900000 1 1.01 1.03 1.1 1.48 16.77 73.32 156.76 787.67 1 6.23x1010 

Stabilised 3098 1364186 0.04 0.15 0.31 0.64 0.89 0.99 1.36 2.12 7.78 3.99x10-8 1.17x109 

Stabilised Truncated 
at 1st and 99th %ile 

0.99 0.98 0.04 0.15 0.31 0.64 0.89 0.99 1.36 2.12 7.78 0.04 7.78 

Stabilised Truncated 
at 0.1 and  10 

1.01 1.13 0.10 0.15 0.31 0.64 0.89 0.99 1.36 2.12 7.78 0.10 10 

Categorical 
(C ) 

Un -stabilised 104.5 14181 1 1.02 1.03 1.09 1.49 16.91 78.81 188.98 673.11 1 1.18x108 

Stabilised 2.34 281 0.04 0.15 0.29 0.65 0.88 0.99 1.46 2.39 6.13 5.32x10-6 187863 

Stabilised Truncated 
at 1st and 99th %ile 

0.98 0.85 0.04 0.15 0.29 0.65 0.88 0.99 1.46 2.39 6.13 0.04 6.13 

Stabilised Truncated 
at 0.1 and  10 

1.01 1.06 0.1 0.15 0.29 0.65 0.88 0.99 1.46 2.39 6.13 0.1 10 
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MVRS (A)  Simplified (B) Categorical (C ) 

 
No Medication Metformin No Medication Metformin No Medication Metformin 

Top 1% of Weights  
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Stabilised Weight value 3463088 9.54E+07 1034535 2.06E+07 996745.2 2.48E+07 317304.2 6.31E+06 375.0967 4.87E+03 110.1523 1.41E+03 

Previous HbA1c 8.87 1.47 7.05 1.80 9.07 1.49 7.03 2.07 8.79 1.56 6.82 1.55 

Previous BMI 33.17 5.77 32.74 6.55 33.40 6.09 32.69 6.37 33.48 5.97 32.53 6.22 

Age at onset 55.17 10.63 55.81 11.75 54.42 10.64 55.75 11.80 55.15 10.82 57.03 11.45 

Time since study entry 51.74 26.00 28.38 23.59 49.01 27.04 26.79 24.42 51.43 26.36 27.06 24.53 

Calendar Year of onset 2005 3.50 2005 4.19 2005 3.51 2005 4.14 2005 3.51 2005 4.22 

Baseline BMI 33.45 5.88 33.74 6.56 33.72 6.19 33.74 6.65 33.93 6.02 33.61 6.29 

Baseline HbA1c 7.34 1.72 7.98 1.66 7.60 1.85 7.79 1.95 7.35 1.57 7.85 1.57 

Time from diagnosis to complete data 3.93 8.99 3.36 8.46 3.67 8.30 2.90 7.13 3.90 9.64 3.45 9.68 

Bottom 99% of weights 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Stabilised Weight value 0.93 3.94E-01 0.87 9.22E-01 0.94 4.32E-01 0.85 9.66E-01 0.94 4.07E-01 0.87 9.34E-01 

Previous HbA1c 6.45 0.83 8.15 1.56 6.45 0.83 8.15 1.56 6.45 0.84 8.16 1.56 

Previous BMI 30.25 5.94 32.62 6.23 30.25 5.94 32.62 6.24 30.25 5.94 32.62 6.24 

Age at onset 63.91 11.53 59.64 11.33 63.91 11.53 59.64 11.33 63.91 11.53 59.62 11.35 

Time since study entry 31.03 27.78 20.46 23.33 31.06 27.78 20.49 23.32 31.04 27.78 20.49 23.32 

Calendar Year of onset 2006 3.76 2006 3.72 2006 3.76 2006 3.72 2006 3.76 2006 3.72 

Baseline BMI 30.88 5.97 32.70 6.19 30.88 5.97 32.70 6.19 30.87 5.97 32.70 6.20 

Baseline HbA1c 6.55 1.09 7.72 1.74 6.55 1.08 7.73 1.74 6.55 1.09 7.73 1.74 

Time from diagnosis to complete data 4.30 10.22 2.95 7.80 4.30 10.22 2.95 7.83 4.30 10.22 2.95 7.78 

Table 7.8 Patient characteristics of those with extreme (top 1%) vs non extreme (bottom 99%) of inverse probability of treatment weights. 

 



153 
 

 

7.3.2.3 Models for IPCW 

 

Parameter estimates for the denominator and numerator models to estimate the IPCW are 

given in appendix 15. Briefly, HbA1c was a strong predictor of censoring, particularly for 

censoring due to medication change. However, the magnitude of the ORs was much smaller 

than seen for the treatment models. The distribution of the resulting un-stabilised and stabilised 

IPCWs are shown in Table 7.9.  

 

 
MVRS (A) Categorical (C ) 

 
Un -stabilised Stabilised Un -stabilised Stabilised 

Mean 3.6 1.1 2.0 1.0 

Standard Deviation 496.9 15.7 86.7 1.5 

1st %ile 1.0 0.4 1.0 0.4 

5th %ile 1.0 0.7 1.0 0.7 

10th %ile 1.0 0.8 1.0 0.8 

25th %ile 1.1 0.9 1.1 0.9 

50th %ile 1.2 1.0 1.2 1.0 

75th %ile 1.5 1.0 1.5 1.0 

90th %ile 2.1 1.1 2.1 1.1 

95th %ile 2.8 1.3 2.9 1.3 

99th %ile 7.3 2.4 7.2 2.3 

Minimum 1.0 0.0 1.0 0.0 

Maximum 299,198 8,753 59,553 318 

Table 7.9 Distribution of un-stabilised and stabilised inverse probability of censoring weights 

 

 

7.3.2.4 Combined weights  

 

The distribution of the joint stabilised weights, with and without truncation, are summarised in 

Table 7.10. As with the IPTW, the joint stabilised weights were truncated at 10 and 0.1, and after 

truncation the means were 1.00 to 2dp for all covariate specifications.  
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MVRS (A) Simplified (B)  

 
Categorical (C ) 

 
Stabilised  truncated 

at 1st and 
99th 
%iles  

truncated 
at 0.1 and 
10  

Stabilised  truncated 
at 1st and 
99th 
%iles  

truncated 
at 0.1 and 
10  

Stabilised  truncated 
at 1st and 
99th 
%iles  

 
truncated 
at 0.1 and 
10  

Mean 150885 0.97 1.00 15413 0.98 1.00 4.3 0.97 1.00 

SD 
7950000

0 
0.88 1.07 7717480 1.00 1.13 832.5 0.86 1.06 

1st 
%ile 

0.04 0.04 0.10 0.04 0.04 0.10 0.05 0.05 0.10 

5th 
%ile 

0.15 0.15 0.15 0.16 0.16 0.16 0.16 0.16 0.16 

10th 
%ile 

0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 

25th 
%ile 

0.65 0.65 0.65 0.63 0.63 0.63 0.64 0.64 0.64 

50th 
%ile 

0.88 0.88 0.88 0.87 0.87 0.87 0.86 0.86 0.86 

75th 
%ile 

0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 

90th 
%ile 

1.35 1.35 1.35 1.32 1.32 1.32 1.42 1.42 1.42 

95th 
%ile 

2.14 2.14 2.14 2.05 2.05 2.05 2.25 2.25 2.25 

99th 
%ile 

6.83 6.83 6.83 8.03 8.03 8.03 6.48 6.48 6.48 

Mini
mum 

0.00 0.04 0.10 0.00 0.04 0.10 0.00 0.05 0.10 

Maxi
mum 

7.57x101 6.83 10 7.17x109 8.03 10 608003 6.48 10 

Table 7.10 Overall distribution of Joint weights for IPTW and IPCW, stabilised and truncated at 
99th and 1st percentiles, or 0.1 and 10, for three covariate specifications. 

 

7.3.2.5 Outcome models  

 

Table 7.11 presents estimates of the hazard ratios (HRs) and 95% CI for the effect of metformin 

vs diet on risk of cancer in patients with newly diagnosed diabetes, for the three model 

specifications. With standard analysis methods and only a basic adjustment for age, gender, 

smoking, alcohol and time between diagnosis and study entry, the HR for metformin use was 

0.94 (0.86-1.02) for model specification A. A more complete baseline adjustment to this model 

resulted in the HRs moving closer to 1, though the confidence intervals remained wide. Including 

adjustments for time updated values of covariates made very little difference to the estimated 

HRs (model 3). The MSMs with IPTW and then IPTW and IPCW also had very similar HRs, 

consistent with the results from the standard analysis, though moving to the MSM resulted in a 

small loss of precision. For specifications A and B, the changes between models were small. 

Model C showed slightly larger changes in estimated HR between the standard models and the 

MSMs, but overall, all models were consistent with one another, and with no effect of 
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metformin on risk of cancer. Model 1 C was suggestive of a small protective effect but this was 

more likely to be either chance, or residual confounding by age since this was less well adjusted 

for when only categorised.  

 

 

 

 

 Covariate 
Specification A  

Covariate 
specification B 

Covariate 
Specification C  

HR 95% 
Confidence 

Interval 

HR 95% 
Confidence 

Interval 

HR 95% 
Confidence 

Interval 
Model 1 - basic baseline 
adjustment 

0.94 (0.86 , 1.02) 0.94 (0.86 , 1.02) 0.91 (0.84 , 1.00) 

Model 2 - Full baseline 
adjustment 

0.97 (0.88 , 1.07) 0.98 (0.89 , 1.07) 0.95 (0.86 , 1.04) 

Model 3 - Baseline and 
time updated 
adjustment 

0.96 (0.87 , 1.06) 0.96 (0.87 , 1.06) 0.94 (0.85 , 1.03) 

Model 4 – MSM with 
IPTW 

0.95 (0.82 , 1.10) 0.97 (0.83 , 1.13) 0.99 (0.86 , 1.14) 

Model 5 – MSM with 
IPTW and IPCW 

0.97 (0.83 , 1.12) 0.99 (0.85 , 1.15) 1.02 (0.88 , 1.18) 

Table 7.11 Hazard ratios (HRs) for metformin vs diet only on risk of all cancer in patients with 
T2DM.  

Estimates from three standard analysis methods (1-3) and two MSMs. One with IPTW only (4) and one with joint 

IPTW and IPCW (5).Model 1 – Minimal adjustment for confounding: adjustment for age, gender, smoking status 

and alcohol status and year of onset of diabetes. Model 2 – Full adjustment for baseline covariates: Model 1 + 

baseline adjustment for: HbA1c, BMI, use of other medications in previous year (NSAIDS, statins, antihypertensive 

drugs), history of chronic kidney disease (CKD) and cardiovascular disease (CVD). Model 3 – Full adjustment for 

baseline covariates with time-dependent covariates added: Models 2 + adjustment for time updated HbA1c, BMI, 

and history of CVD, CKD and use of other medications in the past 12 months. Model 4 – As model 2, weighted using 

IPTW. (MSM with IPTW) Model 5 – As Model 2, weighted using joint IPTW and IPCW (MSM with IPTW and IPCW). 

HRs approximated from a pooled logistic regression 

 



156 
 

 

7.3.2.6 Sensitivity analysis  

 

Figure 7.5 provides an overall visual summary of how the sensitivity analyses changed the 

estimated HR and 95% CI for all five models, for all three covariate specifications. Overall, there 

were minimal differences to the primary analysis. Full results and confidence intervals for all 

these analyses are given in appendix 16.  

Changing the assumption about how early undiagnosed cancer may affect diabetes severity had 

very little impact on the result. As a general pattern, using the cancer diagnosis date in the record 

(0 lag), moved all estimates away from 1 towards a slightly more protective effect, and moving 

the diagnosis date further forward to 12 months rather than 6 months pushed the results closer 

to 1 for all models. However, all changes were consistent with random variation and the 

confidence intervals were all wide. 

Estimating IPTW and IPCW separately for different calendar time periods resulted in the need 

to restrict the analysis to patients diagnosed after the year 2000 only. This was due to small 

numbers in the previous calendar times meaning the treatment models for some calendar 

periods had issues with sparsity. There was some suggestion from the results of the models for 

weights, that the effect of some covariates may be different for differing calendar periods (see 

appendix 17). For example, the effect of having and HbA1c of 7-8%, 8-10% or >=10% vs <6% post 

2005 were all at least 20% higher than for 2000-2005. However, when the weights were applied 

to the outcome model there was very little difference in the effect of metformin when compared 

to the primary analysis. 

In the remaining sensitivity analyses, changed in estimates from the primary analysis were very 

small, as shown in Figure 7.5. 
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Figure 7.5 Estimated HR and 95% CI for metformin vs diet only on risk of any cancer for primary 
analysis (far left) and 9 sensitivity analyses from MSM with joint IPTW and IPCW 

 

 

See section 7.2.7.4 for specific details on each sensitivity analysis (order here left to right matches order in which 

analyses are outlined in section 7.2.7.4) NMSC – non melanoma skin cancer 

. 



158 
 

 

7.3.3 Secondary analyses 

 

7.3.3.1 Cumulative use of metformin  

 

Estimated HRs and 95% CIs for the effect of metformin on risk of cancer over differing exposure 

lengths are presented in Table 7.12. For all but > 7 years of exposure, the MSM with IPTW (model 

4) estimated HRs that were consistent with no effect of metformin on cancer, with decreasing 

precision as exposure length increased. For > 7 years of exposure, the IPTW model gave some 

suggestion that metformin was protective against cancer (HR 0.81 (0.44-1.51)) for covariate 

specification A), albeit with very wide confidence intervals. The standard analyses were 

generally similar to the MSM with IPTW for all exposure periods. The addition of the IPCW to 

the MSM (model 5) moved the estimate for > 7 years back towards the null (HR 1.02 (0.50-2.08)) 

for covariate specification A). All other exposure lengths also had estimates consistent with no 

effect of metformin on cancer for model 5. All covariate specifications gave broadly similar 

results.  

 

7.3.3.2 Site specific cancers (prostate, breast, lung, pancreas) 

 

Results of all site specific analyses are presented in Table 7.13. 232 breast cancer events were 

observed in females with T2DM during the follow up period. A simple baseline adjustment in a 

standard pooled logistic regression estimated around a 20% decreased risk of breast cancer with 

metformin use vs diet only (HR 0.81 (0.62-1.06)). Full baseline adjustment made little difference 

to the estimate. Under model specification C, use of MSMs attenuated the estimate of effect 

towards the null, while models A and B moved the estimate of effect further away from the null. 

However, the width of the confidence intervals limits interpretation of any changes that were 

observed. None of the models investigating the risk of prostate cancer with metformin use in 

males with T2DM were suggestive of either an increase or decrease in risk. The differences 

between the model specifications or levels of adjustment, and between standard and MSM 

analyses were small. For lung cancer, all analyses using standard statistical methods were 

consistent with no effect of metformin on risk of cancer. Although the confidence intervals are 

much wider, and therefore interpretation is limited, the weighted analyses appeared to increase 

the risk estimates to a moderate increased risk of cancer with metformin use.  
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Length of 
time on 

metformin  

Model 1 - 
basic 

baseline 
adjustment 

Model 2 - 
Full baseline 
adjustment 

Model 3 - 
Baseline and 

time 
updated 

adjustment 

Model 4 – 
MSM with 

IPTW  

Model 5 – 
MSM with 
IPTW and 

IPCW 

 Covariate Specification A 

0-6 months  0.86  
(0.71 , 1.03) 

0.88  
(0.73 , 1.06) 

0.88  
(0.72 , 1.07) 

0.9  
(0.67 , 1.23) 

0.93  
(0.68 , 1.26) 

6-12 months  0.99  
(0.83 , 1.19) 

1.03 
(0.85 , 1.24) 

1.02  
(0.84 , 1.23) 

0.87  
(0.68 , 1.12) 

1.00 
 (0.75 , 1.34) 

1-2 years 0.92 
 (0.79 , 1.07) 

0.95 
 (0.81 , 1.11) 

0.93  
(0.79 , 1.10) 

0.95 
 (0.73 , 1.23) 

1.02 
 (0.78 , 1.32) 

2-5 years 0.97 
 (0.86 , 1.10) 

1.00 
 (0.88 , 1.15) 

0.99  
(0.86 , 1.14) 

1.00 
 (0.8 , 1.25) 

1.09 
 (0.87 , 1.37) 

5-7 years 0.97 
 (0.77 , 1.23) 

1.02 
 (0.80 , 1.30) 

1.01 
(0.79 , 1.29) 

1.15 
 (0.79 , 1.68) 

0.96  
(0.63 , 1.47) 

>7 years 0.88 
 (0.61 , 1.25) 

0.94  
(0.65 , 1.36) 

0.93  
(0.64 , 1.35) 

0.81  
(0.44 , 1.51) 

1.02  
(0.50 , 2.08) 

 Covariate Specification B 

0-6 months  0.86  
(0.71 , 1.03) 

0.89  
(0.73 , 1.07) 

0.88 
 (0.72 , 1.07) 

0.92 
 (0.68 , 1.24) 

0.93 
 (0.69 , 1.25) 

6-12 months  0.99  
(0.83 , 1.19) 

1.03  
(0.86 , 1.24) 

1.02  
(0.84 , 1.23) 

0.89  
(0.69 , 1.15) 

0.89 
 (0.69 , 1.15) 

1-2 years 0.92  
(0.79 , 1.07) 

0.95  
(0.81 , 1.12) 

0.94 
 (0.8 , 1.10) 

0.98  
(0.75 , 1.30) 

1.00 
 (0.76 , 1.32) 

2-5 years 0.97 
 (0.86 , 1.10) 

1.02  
(0.89 , 1.16) 

1.00 
 (0.87 , 1.15) 

1.01  
(0.80 , 1.26) 

1.04  
(0.83 , 1.31) 

5-7 years 0.97  
(0.77 , 1.23) 

1.03 
 (0.81 , 1.31) 

1.02  
(0.80 , 1.29) 

1.13 
 (0.78 , 1.65) 

1.06  
(0.69 , 1.64) 

>7 years 0.88 
 (0.61 , 1.25) 

0.93  
(0.64 , 1.34) 

0.91 
 (0.63 , 1.32) 

0.87  
(0.44 , 1.70) 

1.06  
(0.51 , 2.18)  

Covariate Specification C 

0-6 months  0.83  
(0.69 , 1.00) 

0.86  
(0.71 , 1.04) 

0.86  
(0.71 , 1.05) 

0.93  
(0.68 , 1.27) 

0.91 
 (0.67 , 1.23) 

6-12 months  0.97 
 (0.81 , 1.16) 

1.00 
 (0.83 , 1.21) 

0.99  
(0.82 , 1.19) 

1.00 
 (0.75 , 1.35) 

0.87 
 (0.67 , 1.12) 

1-2 years 0.89  
(0.77 , 1.04) 

0.92 
 (0.79 , 1.08) 

0.91  
(0.78 , 1.07) 

0.98 
 (0.76 , 1.26) 

0.96  
(0.74 , 1.24) 

2-5 years 0.95  
(0.83 , 1.07) 

0.98 
 (0.86 , 1.12) 

0.97  
(0.85 , 1.11) 

1.05 
 (0.84 , 1.31) 

1.04 
 (0.82 , 1.31) 

5-7 years 0.95  
(0.75 , 1.20) 

1.00 
 (0.78 , 1.27) 

0.99  
(0.77 , 1.26) 

1.06 
 (0.73 , 1.53) 

1.09 
 (0.70 , 1.68) 

>7 years 0.85  
(0.60 , 1.22) 

0.90 
 (0.62 , 1.29) 

0.88 
 (0.61 , 1.28) 

0.75 
 (0.41 , 1.36) 

1.00 
 (0.49 , 2.03) 

Table 7.12 Hazard Ratios and 95% Confidence interval for risk of metformin use on risk of 
cancer, estimated by time since first metformin prescription. 
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 Covariate 
Specification A  

Covariate 
specification B 

Covariate 
Specification C  

HR 95%  CI  HR 95%  CI HR 95%  CI 
Breast cancer 

Model 1 - basic baseline 
adjustment 

0.81 (0.62 , 1.06) 0.81 (0.61 , 1.06) 0.82 (0.62 , 1.07) 

Model 2 - Full baseline 
adjustment 

0.84 (0.62 , 1.14) 0.85 (0.63 , 1.14) 0.82 (0.61 , 1.11) 

Model 3 - Baseline and 
time updated adjustment 

0.89 (0.65 , 1.22) 0.88 (0.65 , 1.20) 0.86 (0.63 , 1.17) 

Model 4 – MSM with IPTW 0.80 (0.51 , 1.27) 0.74 (0.47 , 1.18) 0.95 (0.63 , 1.44) 
Model 5 – MSM with IPTW 
and IPCW 

0.77 (0.47 , 1.24) 0.73 (0.45 , 1.18) 0.94 (0.62 , 1.43) 

Prostate cancer 

Model 1 - basic baseline 
adjustment 

1.07 (0.82 , 1.40) 1.07 (0.82 , 1.40) 1.05 (0.8 , 1.38) 

Model 2 - Full baseline 
adjustment 

1.13 (0.84 , 1.53) 1.13 (0.83 , 1.53) 1.08 (0.8 , 1.47) 

Model 3 - Baseline and 
time updated adjustment 

1.16 (0.85 , 1.57) 1.13 (0.83 , 1.54) 1.10 (0.81 , 1.51) 

Model 4 – MSM with IPTW 1.02 (0.70 , 1.48) 1.01 (0.70 , 1.44) 1.05 (0.70 , 1.58) 
Model 5 – MSM with IPTW 
and IPCW 

1.06 (0.73 , 1.55) 1.06 (0.73 , 1.53) 1.09 (0.72 , 1.65) 

Lung Cancer 
Model 1 - basic baseline 
adjustment 

0.97 (0.71 , 1.33) 0.97 (0.71 , 1.34) 0.93 (0.68 , 1.28) 

Model 2 - Full baseline 
adjustment 

0.99 (0.71 , 1.38) 1.02 (0.73 , 1.43) 0.99 (0.71 , 1.37) 

Model 3 - Baseline and 
time updated adjustment 

1.01 (0.72 , 1.40) 1.04 (0.74 , 1.45) 1.01 (0.72 , 1.40) 

Model 4 – MSM with IPTW 1.34 (0.80 , 2.26) 1.54 (0.82 , 2.88) 1.24 (0.74 , 2.08) 
Model 5 – MSM with IPTW 
and IPCW 

1.45 (0.88 , 2.38) 1.57 (0.89 , 2.79) 1.26 (0.77 , 2.06) 

Pancreatic Cancer 
Model 1 - basic baseline 
adjustment 

2.37 (1.31 , 4.29) 2.31 (1.29 , 4.14) 2.25 (1.26 , 4.04) 

Model 2 - Full baseline 
adjustment 

2.06 (0.99 , 4.30) 1.95 (0.93 , 4.09) 1.96 (0.96 , 4.03) 

Model 3 - Baseline and 
time updated adjustment 

1.61 (0.80 , 3.23) 1.51 (0.76 , 3.02) 1.66 (0.85 , 3.24) 

Model 4 – MSM with IPTW 1.92 (0.84 , 4.41) 2.03 (0.88 , 4.67) 2.66 (1.14 , 6.20) 

Model 5 – MSM with IPTW 
and IPCW 

2.12 (0.96 , 4.68) 2.39 (1.05 , 5.44) 3.11 (1.24 , 7.76) 

Table 7.13 Hazard ratios (HRs) for metformin vs diet only on risk of Breast, prostate, lung and 
pancreatic cancer. 

Estimates from three standard analysis methods (1-3) and two MSMs. One with IPTW only (4) and one with joint 

IPTW and IPCW (5). HRs approximated from a pooled logistic regression. Breast cancer - females only. Prostate 

cancer – males only. Due to no events occurring in some subsets of the population, the analyses of lung and 

pancreatic cancer were restricted to patients over the age of 45 at diagnosis of diabetes who were diagnosed after 

the year 1995. 
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For pancreatic cancer, only 50 events were observed during follow up. A simple baseline 

adjustment estimated an HR of 2.37 (1.31-4.29) for metformin use vs diet, which was expected 

due to strong confounding by disease severity. A full baseline adjustment moved this estimate 

back slightly lower (HR 2.06 (0.99 – 4.3 for model specification A). The use of MSMs had little 

effect on model specification using continuous forms, however for model specification C, the 

weighting increased the estimated HR to 2.66 (1.14 – 6.20) for IPTW and 3.11 (1.24-7.76) for 

IPTW and IPCW. However, with the other site specific analyses, the increased width of the 

confidence intervals in the MSM made the changes between standard methods and the MSMs 

difficult to interpret. Differences between model specifications could be a result of residual 

confounding by a less accurate adjustment for HbA1c in the weighting, which is supported by 

the observation that the differences between model specifications are much smaller for model 

one which does not include HbA1c. 

 

7.3.3.3 Sulfonylurea monotherapy vs diet  

 

962 patients alive, cancer free and otherwise eligible for study entry initiated a sulfonylurea at 

time of diabetes diagnosis. A further 3,256 patients initiated a sulfonylurea as a first line therapy 

at some point during follow up. Total person years of follow up exposed to sulfonylurea 

monotherapy was 8,757 person years.  

Comparisons between distributions of baseline covariate values between patients initiating 

sulfonylureas at time of study entry compared to diet only (analogous to table 4.3) are presented 

in appendix 18, table 18.1. The mean HbA1c of patients initiating sulfonylureas was much higher 

than those not starting any therapy, and the mean BMI was much lower. Post 2005, a smaller 

proportion of patients were prescribed sulfonylureas compared to before 2005, reflective of the 

increase in metformin prescribing. The distributions of most baseline variables for those 

initiating sulfonylureas at study entry were similar to those observed in baseline metformin 

initiators. The exception was that statins and anti-hypertensive drugs appeared to be used less 

frequently in patients initiating a sulfonylurea compared to both metformin and diet only.  

For many continuous covariates, the associations estimated by the cubic splines were similar to 

those for metformin. However, the shape of the associations with previous BMI and age at 

diagnosis were estimated to be quite different (see appendix 18 figures 18.1 and 18.2). The 

stabilised IPTW had smaller extremes than those for the metformin analysis. The distribution of 



162 
 

 

the joint censoring weights was similar that of the joint weights in the primary analysis (see 

appendix 18 tables 18.2 and 18.3). 

With just a basic baseline adjustment using standard methods, the estimated HR for the effect 

of sulfonylurea use vs diet only on risk of cancer was 0.79 (0.67-0.96) for model specification A, 

and almost identical for B and C. Full baseline adjustment attenuated this protective effect to 

around a 15% reduced risk for sulfonylurea users compared to diet. In all model specifications, 

the MSMs appeared to further attenuate the effect, particularly when using joint IPTW and IPCW 

(Table 7.14). Although the changes between standard methods and MSMs appeared slightly 

larger than in the metformin analysis, once again the confidence intervals for all models 

overlapped to a considerable extent.  

 

 

 Covariate 
Specification A  

Covariate 
specification B 

Covariate 
Specification C  

HR 95% 
Confidence 

Interval 

HR 95% 
Confidence 

Interval 

HR 95% 
Confidence 

Interval 
Model 1 - basic baseline 
adjustment 

0.79 (0.64 , 0.96) 0.79 (0.65 , 0.96) 0.79 (0.64 , 0.97) 

Model 2 - Full baseline 
adjustment 

0.84 (0.68 , 1.04) 0.84 (0.67 , 1.04) 0.82 (0.66 , 1.02) 

Model 3 - Baseline and 
time updated 
adjustment 

0.85 (0.68 , 1.06) 0.83 (0.66 , 1.03) 0.83 (0.67 , 1.03) 

Model 4 – MSM with 
IPTW 

0.90 (0.67 , 1.21) 0.89 (0.66 , 1.19) 0.85 (0.64 , 1.14) 

Model 5 – MSM with 
IPTW and IPCW 

0.92 (0.65 , 1.30) 0.94 (0.66 , 1.34) 0.89 (0.63 , 1.26) 

Table 7.14 Hazard ratios (HRs) for sulfonylureas vs diet only on risk of any cancer in patients 
with T2DM  

HRs approximated from a pooled logistic regression. Estimates from three standard analysis methods (1-3) and two 

MSMs. One with IPTW only (4) and one with joint IPTW and IPCW (5). Model 1 – Minimal adjustment for 

confounding: adjustment for age, gender, smoking status and alcohol status and year of onset of diabetes. Model 2 

– Full adjustment for baseline covariates: Model 1 + baseline adjustment for: HbA1c, BMI, use of other medications 

in previous year (NSAIDS, statins, antihypertensive drugs), history of chronic kidney disease (CKD) and 

cardiovascular disease (CVD). Model 3 – Full adjustment for baseline covariates with time-dependent covariates 

added: Models 2 + adjustment for time updated HbA1c, BMI, and history of CVD, CKD and use of other medications 

in the past 12 months. Model 4 – As model 2, weighted using IPTW. (MSM with IPTW) Model 5 – As Model 2, 

weighted using joint IPTW and IPCW (MSM with IPTW and IPCW) 
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7.4 DISCUSSION  
 

This study aimed to investigate the causal association between metformin use and cancer risk 

in patients with type 2 diabetes, using routinely collected primary care records. By modelling 

medication with metformin as a time-varying exposure, and using MSMs with IPTW, it was 

possible to compare metformin users with patients managing their diabetes with diet alone, 

while adjusting for time-dependent confounders affected by prior treatment.  

Performing the analysis as such, no evidence of an association between metformin use and risk 

of cancer in patients with type 2 diabetes was found, with HRs for the association close to 1 for 

all models fitted. This finding was broadly consistent across a range of sensitivity analyses, and 

also when looking at cumulative metformin use.  

The differences between the MSMs and standard analysis methods were minimal in the primary 

analysis and across a range of sensitivity analyses. Slightly larger differences were observed 

when examining site specific cancers, though small numbers of events resulted in extremely 

wide confidence intervals making differences between models difficult to interpret.  

The effect of sulfonylureas vs diet on risk of cancer was also estimated in a secondary analysis, 

and here, although lacking precision, there was a tendency for the results of the MSMs to be 

closer to the null than the standard analysis methods.  

 

7.4.1 Comparison to other studies 

 

To date, no existing studies that implemented MSMs with IPTW to examine the association 

between metformin and cancer risk could be found. As discussed in the literature review, 

existing studies with lowest risk of bias tended to be studies comparing metformin to an 

alternative first line diabetes therapy such as a sulfonylurea, with adjustment for potential 

differences in disease severity that may affect both cancer risk and choice of medication at the 

time of first exposure. Although answering a slightly different question, the results of these 

studies are consistent with the analysis presented here, in that they found no evidence of an 

association between metformin use and cancer risk. For example, Van staa et al (2012) [83] 

found no protective effect of metformin compared to sulfonylureas apart from in the first year 

of treatment, which is likely to be a result of undiagnosed cancer causing changes in disease 

severity that result in sulfonylureas being used over metformin. Additionally, a systematic 

review and meta-analysis of safety data from randomised controlled trials [203] found a 
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summary RR for metformin use on risk of cancer of 1.36 (0.74-2.49) for trials of usual 

care/placebo comparators, and 1.02 (0.82-1.26) for all trials (i.e. a mixture of placebo controlled, 

usual care, and active comparator trials). These results are both consistent with the results from 

this study. Though it has a wide confidence interval, the RR for metformin vs placebo/usual care 

is slightly higher than we observed. This difference in estimates could be due to differences 

between the comparator treatments. Our comparator was no record of medication, which was 

assumed to be diet only. However, the review pooled placebo and “usual care”, where usual 

care was not clearly defined. Additionally, the review did not limit to trials in patients with 

diabetes, and also included trials in patients “at risk” of diabetes. The mean follow up of the 13 

trials included was 3.58 years, which is also similar to our study. 

Other causal methods have previously been used to attempt to better adjust for baseline 

confounding, and informative loss to follow up.  A recent study by Ko et al [93] used inverse 

probability weighting based on a baseline propensity score (PS) to compare incident metformin 

and sulfonylurea users for risk of endometrial cancer over a median follow up time of 1.2 years 

(IQR 0.4-2.3 years). This study did not restrict to patients with diabetes, but in a secondary 

analysis the authors estimated a HR or 0.88 (0.69-1.16) for diabetic patients without a diagnosis 

of polycystic ovary syndrome, which is the closest subgroup to the population in this analysis. 

Their result is broadly consistent with the results presented here, and is most similar to the 

model with only the basic baseline adjustment (0.93 (0.85-1.01)), which could be explained by 

the fact that this study did not have information on HbA1c or BMI to include in their propensity 

score. The authors did not report the distribution of the IPTW in order to compare with what 

was observed here, however the lack of HbA1c in their models would imply they most likely had 

less extreme weights. They did report that progressive trimming of the PS distribution made 

very little difference to the overall estimate.  

In another study, new users of metformin were compared with new users of sulfonylureas, 

where like the current study, patients were censored if they initiated any other treatment. IPCW 

were used to adjust for loss to follow up [28] but the weights only calculated at time points of 

1, 3 and 5 years. Also based on patients with early T2DM in the CPRD, this study serves as a good 

comparison to our analysis. The authors estimated the risk for cancer for metformin vs 

sulfonylureas to be 0.96 (0.89-1.04) without IPCW, and 0.94 (0.85-1.04) with IPCW (for censoring 

by 5 years of follow up). Although they compare metformin with sulfonylureas, these results are 

similar to the findings from this analysis, and also consistent in that they also observed few 

differences between the models with IPTW alone, and IPTW with IPCW.  
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Although these studies are consistent with one another and with our results, all these studies 

also had relatively short average follow up within which a true effect of metformin may have 

been observed, and it is possible that this explains the estimated null effects. 

 

7.4.2 Comparing MSMs to standard analysis methods  

 

The results from the models using MSMs with IPTW and also joint IPTW and IPCW weights, were 

compared with results using standard analysis methods that in theory would not correctly adjust 

for time-dependent confounders affected by prior treatment. There was an a priori belief based 

on existing literature that covariates such as BMI, HbA1c, and other measures of diabetes 

severity satisfied the definition of time-dependent confounders affected by prior treatment. In 

addition, initial analyses (although univariate) suggested that there were associations between 

these covariates and cancer in our data (7.3.1). However, the MSMs produced results that were 

similar to those obtained via standard analysis methods. The standard pooled logistic regression 

model with time updated exposure and full baseline adjustment estimated an HR for metformin 

use of 0.96 (0.87 – 1.06) for covariate specification A, compared to 0.97 (0.84 – 1.13) for the 

MSM with joint IPTW and IPCW weights. None of the varying levels of adjustment for 

confounding via standard analysis methods produced noticeably different results.  

An obvious reason for the lack of difference is that the post baseline confounding between 

initiation of metformin and cancer incidence is not as strong as initially hypothesised. One 

reason for this could be that not enough patients were initiating treatment far enough away 

from baseline for the values of the confounders to change sufficiently to make post-baseline 

confounding apparent. The analysis in chapter 6 suggested that the median time to treatment 

after study entry was 2 months. Considering HbA1c is a measure of long term glucose control 

over approximately 3 months, this means that the post baseline confounding would at most 

affect around 50% of the population. In the analysis of cumulative medication, the differences 

in estimates for > 7 years exposure between standard methods and MSM with both IPTW and 

IPCW were more noticeable, which supports the idea that longer follow up may be needed for 

the time-dependent confounding to become apparent.  

HbA1c was by far the strongest predictor of treatment initiation through time, which is 

unsurprising due to the UK diabetes treatment guidelines being primarily based on observed 

HbA1c levels.  However, for there to be significant confounding, there must be clear association 

between HbA1c and risk of cancer. Review articles examining diabetes and cancer risk overall 
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[19, 20] suggest that the epidemiological evidence for hyperglycaemia and cancer risk indicates 

an association, but not necessarily causality. They suggest for example, that in non-insulin 

deficient situations, hyperglycaemia is a proxy indicator for hyperinsulemia, which is a more 

plausible causal risk factor. However, they also acknowledge that many cancers require glucose 

for energy, so a causal association should not be completely disregarded. This suggests that 

HbA1c should certainly be considered as a confounder, and therefore requires the use of MSMs 

to model time updated exposure. In a practical sense however, the necessity of the adjustment 

(in both the MSM and standard analysis) then depends on the strength of the association. Two 

meta-analyses, one in clinical trial data and another using observational research provide 

possible quantifications of the effect of hyperglycaemia on cancer risk. A meta-analysis of safety 

data from clinical trials in patients with T2DM comparing intensive vs normal glucose control 

were suggestive of a marginal decrease in risk of cancer incidence with tighter glucose control, 

albeit with a relatively wide confidence interval, pooled HR (0.91, 0.79-1.05) [204]. In overweight 

patients with T2DM, there was larger decrease in risk of cancer mortality with intensive glucose 

control (HR 0.74, 0.37-1.48). Although the authors are cautious and overall suggest there is no 

evidence of an increased risk of cancer with poor glucose control, their estimates do not exclude 

it. A larger meta-analysis of 14 studies looking at various site specific analyses reported 

associations between raised HbA1c and increased risk of cancer that were much larger in 

magnitude [205]. However, the quality of the included studies has not been thoroughly 

examined and the same issues of time-dependent confounding may also be relevant to these 

studies. Based on these findings, it is certainly clear that HbA1c should be considered a potential 

time-dependent confounder, however for the MSM to be beneficial over standard methods, the 

association must be apparent in the data. In the data used for this analysis, there was some 

evidence of a univariate association between current HbA1c and risk of cancer, though the 

increase in risk was relatively consistent around a 10% increase for all HbA1c categories vs 6% 

(Table 7.4). Overall, if the effect of raised HbA1c on cancer risk is only around a 10% increased 

risk, it is quite possible that when taking into consideration factors such as measurement error 

and frequency of HbA1c measurements in CPRD, the effect of adjusting for HbA1c as a time-

dependent confounder via use of MSMs may not have a prominent effect on the overall 

estimate of risk. However, with the current literature providing wide-ranging estimates for the 

actual association, it was necessary and useful to explore the effect that use of MSMs may have 

had on the estimated risk. 

Similarly, BMI has been shown to be associated with risk of cancer [195, 196, 206] . Therefore, 

this was an important potential time-dependent confounder. Original guidelines suggested that 
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metformin should be prescribed to more overweight patients, due to its weight reduction 

properties, and in terms of the secondary analysis, that sulfonylureas should be prescribed more 

cautiously in overweight patients due to the potential for it causing further weight gain. 

However, only about 4% of the population studied were diagnosed with T2DM before the year 

2000, beyond which BMI was less clearly associated with choice of treatment. Therefore, 

although it can still be useful to adjust for in the model, it may have made less of a difference 

between the standard methods and MSMs than initially hypothesised. Another issue may be 

that the association between BMI and risk of cancer differs for different cancer types [195, 196]. 

By combining all cancers into a single outcome, differing effects of BMI on different cancers 

combine in ways that are hard to predict. This could have reduced additional benefit of 

adjustment for confounding by BMI (both baseline and time dependent). The slightly larger 

observed changes between standard models and MSMs in the site specific analysis support this 

possibility, though the imprecision of these analyses limits interpretation of these differences.  

 

7.4.3 Validity of assumptions  

 

The discussion below focuses on the assumptions needed for valid interpretation of the results 

from the MSMs, providing further insight into the potential reasons for lack of differences 

observed between the MSM and the standard analysis methods. 

 

7.4.3.1 Unmeasured confounding. 

 

Importantly, there may be key confounders missing from the model. Although discussions with 

experts concluded that the most important measured confounders in CPRD had been 

considered, there are potentially some confounders that were not available in CPRD that could 

have had an impact, such as levels of physical activity and diet. These factors may affect risk of 

cancer independently of BMI [207-210], and be associated with treatment through time, due to 

their influence on the GP’s perception of whether a patient would be likely to adhere to a diet 

and lifestyle intervention.  

Residual confounding when using primary care records is likely for factors such as smoking and 

alcohol despite adjustment, due to a lack of detailed information on quantity (i.e. amount of 

smoking/alcohol). For example, although groups of current, ex or never smokers has been 

shown to be relatively well recorded in primary care [211], the smoking quantity is rarely 



168 
 

 

recorded, and when it is, it is likely to be under-estimated due to self report [212]. Similarly, 

although alcohol quantity is better recorded, it may also be subject to social desirability bias. 

This lack of detail is likely to be an important limitation when looking at cancer, particularly in 

terms of smoking. In particular, since smoking is associated with incidence of type 2 diabetes 

[213], the prevalence of smoking is high in patients with T2DM.  In this study, only 40% of 

patients were never smokers at the time of diabetes diagnosis, which is around 10-15% lower 

than the proportions reported by the ONS for similar age ranges between 2000 and 2016 [214]. 

Therefore, the residual confounding due to limited information on smoking quantity and 

duration in ex and current smokers may affect this analysis more than an analysis within the 

general population. To investigate how much residual confounding may have been present, it 

may have been useful to re-run the analysis looking at non-smokers only. However this would 

have reduced the numbers available to less than 50% of the original sample and would have had 

limited power. This would also be problematic if the effect of metformin on cancer risk was 

modified by smoking, as the marginal effect of metformin would then be different to the effect 

in non-smokers alone, making the results incomparable. Further to the issue with lack of data 

on duration and quantity, which is a limitation of the CPRD, in this study, smoking and alcohol 

were considered as fixed baseline confounders only. Although all past information from baseline 

was used to determine the most appropriate category, this was not allowed to change after 

study entry, and so patients quitting smoking after diabetes diagnosis would not have been 

captured. Although given the length of follow up, it is unlikely that any changes in smoking or 

alcohol after study entry could have substantially modified their cancer risk, there is the 

possibility of further residual time-dependent confounding from this. However, it is unlikely that 

a lack of time updated information on smoking and alcohol alone would completely explain the 

lack of difference between the standard methods and MSMs.  

Issues of residual confounding apply to other covariates such as use of statins, anti-

hypertensives and NSAIDS, where dosage was not taken into account. In addition, the possibility 

of misclassifying patients in terms of CKD and CVD cannot be excluded.  

 

7.4.3.2 Misspecification of the weighting models 

 

It is also possible that the variables specified in the model had inappropriate forms/parameter 

specifications. Three alternative specifications were used to fit the weighting models, and the 

estimates of risk of cancer with metformin use were very similar for all. This suggests either that 

the model was in fact relatively robust to different model specifications, and as such that this is 
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not the reason for the lack of difference from the standard methods, or that none of the 

specifications were appropriate. However, one of the specifications used a data driven approach 

to fit cubic splines, and therefore should have modelled the association between the covariates 

and treatment extremely finely. This specification did result in some very large weights, even 

after stabilisation, and the truncation of these weights may have attenuated the added benefit 

of the flexible form for the weighting model. Having said this, the truncation used in the primary 

model was to truncate at 10, which was beyond the 99th percentile, so is unlikely to have 

substantially removed any effect of weighting from the parameter estimate.  

 

7.4.3.3 Misspecification of the MSM (outcome model)  

 

As explained in section 4.4.2.5, it is particularly important that the outcome model is correctly 

specified in terms of the effect of time, the baseline confounders and treatment. The three 

different covariate specifications were also used for the outcome models to look at how 

sensitive the results may be to potential misspecifications. The same spline functions that were 

used in the treatment models were applied to the outcome models. It is acknowledged that this 

would not be appropriate if the spline function was too simple to model the complex association 

between the covariate and risk of cancer, however this was not considered to be an issue here, 

as checks indicated that using more flexible splines did not estimate very different shapes of 

association for any of the covariates in the outcome model (appendix 14). The use of the same 

simplified continuous parameterisations in specification B may have been more problematic, 

particularly for baseline BMI that was simplified to a linear term. However, the estimates of 

effect from all outcome models, including the categorical specification were very similar. As 

such, it is unlikely that any major bias was introduced from incorrect specifications for some 

covariates in any one of these model specifications. In terms of how treatment was specified, 

the primary analysis assumed a constant effect of treatment in line with most of the existing 

studies that have examined the same association. The potential misspecification of this was 

investigated by looking at cumulative use of metformin in a secondary analysis, but this did not 

show any strong suggestions of differing effects through time. Finally, no interactions were 

included in the outcome model due to the large number of possible combinations of covariates, 

lack of power, and because there were no clear a priori hypothesised interactions. Although 

unlikely to be a major limitation, it is acknowledged that this could have resulted in some 

misspecification of the outcome model.  

 



170 
 

 

7.4.3.4 Positivity 

 

Initial descriptive statistics suggested that HbA1c may cause issues with near violations of 

positivity, as high HbA1c is such a strong indicator for being treated with metformin. As 

expected, even after stabilisation there were extremely large weights for some individuals, 

usually driven by the characteristic of having a high HbA1c but not being treated with metformin, 

or having a very low HbA1c but initiating metformin. However, just a slight truncation of the 

weights reduced the mean of the stabilised weight to 1, and therefore it was not considered 

necessary to attempt alternative approaches to reduce the extreme weights. Another approach 

to address the near violations of positivity could have been to trim the actual study population 

according to pre-specified HbA1c criteria, and so remove the patients that had the most extreme 

weights. This would have resulted in a population whose HbA1c levels remained within a stricter 

range and as such would have changed the generalisability and interpretation of the estimates 

of effect, though an advantage over weight truncation is that this change in interpretation can 

be clearly defined. It would however, have been difficult since HbA1c is a time-dependent 

measure, and as such a decision would have been needed as to whether the patient should be 

censored when their HbA1c goes outside the range, or whether to remove a patient if their 

HbA1c ever went outside the range. The first approach would result in needing another level of 

censoring in the IPCW models, which would not only increase computational intensity but also 

mean that censoring would become highly dependent upon HbA1c, and therefore would likely 

increase the size of the IPCW. The second approach would also be problematic as it would result 

in excluding patients based on future information. The coarser form of HbA1c used in covariate 

specification C did reduce the size of the extreme weights, but not enough to avoid the need for 

truncation, and so in this case altering the model specification had only a minimal effect on 

improving positivity. Overall, the process of fitting treatment and censoring models requires 

balance between having an adequately specified model and one that does not result in violations 

of positivity. Considering the robustness of the models to different covariate specifications, and 

the need to only truncate the most extreme 0.6% of the joint weights, it seems that overall this 

was sufficiently achieved.  

 

7.4.4 Visit frequency 

 

A key issue with using data from primary care, is that the probability of treatment can only be 

non zero if the patient visits their GP. As discussed in chapter 6, HbA1c and BMI were only 
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recorded every 6-8 months; and this was less frequent in patients who were not initiating 

metformin, which could suggest that the lack of treatment was due to non-attendance. If the 

reason for not visiting impacts the risk of cancer, then further bias will be introduced. Since 

patients are more likely to visit their GP if they are generally unwell, have particular concerns, 

or think they may developing cancer, it is possible this could have been the case in the present 

study. However, the total number of GP consultations in the past year was similar between those 

initiating metformin and those remaining untreated, which argues against attendance patterns 

being a major determinant of treatment initiation. Also Since 2005, the quality outcomes 

framework [215] has incentivised regular visits for patients with T2DM, meaning that all such 

patients should have more regular visits. A more formal assessment of this issue could be 

achieved by extending the causal methodology used here to model visit frequency in addition 

to probability of treatment and probability of censoring, in a similar way to how the joint effect 

of two treatments are modelled in other settings [216]. This would require consideration of 

whether it is important to differentiate between complete non-attendance vs having 

intermittent missing data on specific covariates. 

 

7.4.5 Interval data format  

 

It was necessary to split the time into discrete time intervals in order to estimate time updated 

IPTW and IPCW. This required decisions to be made on length of interval, how to assign 

measurements to the intervals, and how to deal with intervals in which multiple events 

occurred. For this study, 1 month intervals were used for the primary analysis. This choice was 

a balance between a plausible visit frequency (likely to be longer than one month) and an 

interval length that would ensure variables measured in the previous interval could plausibly 

affect treatment and risk of outcome in the following interval. Sensitivity analyses using wider 

intervals of 3 months made little difference to the estimates of effect of metformin on cancer 

risk from the MSMs, suggesting that in this case, the interval choice was not important.  

Related to this, another sensitivity analysis assessed the difference between using data from the 

previous interval to predict treatment and censoring (primary analysis), or data from the same 

interval (sensitivity analysis). This tested how important it was to ensure strict temporality 

between covariate measurement and treatment initiation. Again, there was little difference to 

the primary analysis, suggesting that the data in the previous interval was sufficient to capture 

risk of outcome between those initiating or not initiating treatment in the following interval. 

Having said this, the lack of difference between the sensitivity analysis and primary analysis 
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could also just reflect the lack of updating of key covariates in every interval. As long as it can be 

assumed that any large changes in covariates that will have a strong impact on treatment 

decisions and risk of cancer are likely to be recorded, then the approach of LOCF is tolerable. Via 

both initial investigations of the data (as presented in 6.3.2) and discussions with GPs and other 

clinicians, it was decided that this was a reasonable assumption. Having said this, the possibility 

that infrequently updated data on HbA1c and BMI has caused bias in our estimates cannot be 

excluded. This could have been investigated further by obtaining a sub-sample of patients with 

more regular measurements, to see if the weighting models were substantially different. The 

reason this was not done was because patients in such a sub-sample are likely to have different 

characteristics that cause them to have measurement taken more frequently, and so the results 

of such a comparison would be hard to interpret. 

A final discussion point related to interval set up was how to deal with censoring and cancer 

events occurring in the same interval. With EHR data, unless the censoring event is death or 

transfer out, we do not actually lose the patient to follow up, and it may be that a patient has 

the cancer event either before or after censoring but in the same interval. If this occurred, the 

decision was made to censor the subject and not count the cancer as an event. This was done 

because formally, the MSM evaluates the risk of cancer conditional on remaining uncensored to 

the end of the discrete interval. However, if censoring events such as medication change are a 

result of the cancer diagnosis, then this censoring rule may result in some cancer events being 

missed. Further, if the available covariates do not adequately balance this potential informative 

censoring then there may be some bias introduced into the estimated effects of treatment. In 

the primary analysis, because diagnosis dates were brought forward by 6 months, the applied 

censoring rules were not considered to be a major limitation. However, outside the scope of this 

study, if the research question examines more acute outcomes, the ordering of censoring and 

outcomes within an interval may be important to consider (and will be considered in later 

chapters). 

 

7.4.6 Other Limitations  

 

7.4.6.1 Missing data  

 

In an ideal clinical trial, all patients would be followed up from time of diabetes diagnosis. 

However, to correctly balance the risk of outcome between those initiating and not initiating 

metformin, data are needed on all relevant covariates from the beginning of the study. In our 
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data, since not all patients had complete data at the time of their diabetes diagnosis, some 

patients had what could be thought of as “delayed entry” into the study. This was adjusted for 

with a variable representing time between diagnosis and study entry. Using this approach 

compared to using only patients with complete data at the time of diagnosis increased the 

sample size by about 20,000 patients, but there are potential limitations. All patients that initiate 

treatment before they have complete data must be excluded, since the covariates at study entry 

may have already been affected by treatment. This could induce selection bias if the reason for 

not having complete data is related to risk of cancer, since exposed patients with lower/higher 

risk of cancer would be systematically excluded. Considering around 27,000 patients were 

excluded due to initiating treatment before having complete data, this issue could have had a 

big impact on the results.  

An alternative approach could have been to use multiple imputation to impute baseline 

covariate values for all subjects and then use LOCF as if they were true values. This however 

relies on the assumption that the data are missing at random, so that the probability a value is 

missing is not related to the value itself, after conditioning on other available covariates. In this 

context, it may be a fair assumption, since one of the main predictors of missing data at time of 

diagnosis was calendar time, though in general the missing at random assumption is unlikely to 

be perfectly satisfied in data recorded for clinical care. There is a limited amount of research on 

the use of multiple imputation with MSMs and how it may impact the estimation of the 

treatment weights. However, recent research into multiple imputation in a propensity score 

context has shown the importance of implementing the entire process of calculating the 

propensity score and IPW within a multiple imputation framework before combining the 

imputations, to avoid bias [217]. It is likely that the full multi-step process of fitting a marginal 

structural model would also have to be done within an imputation framework, and the 

computational cost of this in such a large sample may be prohibitive.  

 

7.4.6.2 Computational limitations  

 

Other issues relating to the size of EHR data sets were also apparent during the model 

implementation process. With a median follow up time of 3.7 years, each patient had an average 

of 44 rows of data using one month intervals. This meant an overall data set of more than 2.2 

million observations, resulting in computation times of around 30 minutes to calculate IPTW and 

IPCW weights, and a minimum of 10 minutes to fit the outcome models. Although this was 

manageable with a high specification PC, for this study, the cohort had relatively strict inclusion 
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criteria, as it was important to identify patients with incident diabetes with a clearly identifiable 

date of diagnosis. For EHR studies in less specific populations, for example, in users of statins, 

sample sizes could be much larger, and using MSMs with IPTW (and IPCW) may be less feasible 

without some restriction of the study population.  

 

7.4.6.3 Follow up time 

 

As already eluded to in 7.4.1, the average follow up time of patients in this study was relatively 

short. With a mean time of just under 4 years, there may have been insufficient follow up to 

detect any causal effect of metformin on cancer. By stratifying by length of exposure to 

metformin in a secondary analysis, it was possible to obtain an estimate for the effect of 5-7 and 

> 7 years of metformin use on cancer risk. This analysis did not find any long-term effect, 

however due to fewer numbers at risk; the precision of these estimates was low. In the 

systematic review of clinical trials conducted by Stevens [203] only one trial had greater than 10 

years follow up, and this study looked at cancer mortality rather than incidence [31].  

 

7.4.6.4 Outcome definition  

 

The potential for misspecification or measurement error for covariates has already been 

discussed, however the possibility of information bias arising from the definitions of exposure 

and outcome used in this study also require evaluation.  

The definition of cancer diagnoses used was based on an existing algorithm used in previously 

published work [195]. Although not formally tested for validity, the broad starting inclusion 

followed by manual sorting of codes with checking performed by two separate researchers 

including a clinician means it is likely to accurately identify cancer diagnoses with good 

sensitivity and specificity. The cancer definition is limited however, in that is only uses 

information from primary care. A previous study by Boggon et al [218] estimated that 92% of 

cancers (excluding NMSC) recorded in the CPRD were also recorded in at least one of the 

National Cancer Data Repository (NCDR), Hospital Episode Statistics (HES) or death certificates. 

This suggests that cancer diagnoses taken from CPRD alone have relatively good concordance 

with external sources, and have a low false positive rate. This is strengthened by a further 

systematic review of validation studies in the CPRD found that from 7 studies examining the 

validity of cancer diagnoses, the proportion of confirmed cases ranged from 74% to 100% 
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[188]. However, feedback to GPs may be imperfect, if for example, hospital letters to the GP 

are just scanned and attached to the patient’s record, or the diagnosis entered as free text. For 

example, in the study by Boggon et al, although 94% of cancer records within the cancer 

registry were recorded in some way in the CPRD, 11% were in free text only, and so our 

algorithm would not have captured these, meaning we may have underestimated the number 

of cancer cases overall by around 10%. Further, the study found that concordance between 

the two data sources was lower for certain cancer sites. For example, for colorectal, lung and 

pancreatic cancers, there were more cases recorded in the NCDR. Therefore, in some of the 

site-specific analyses conducted, it is possible that we will have missed a larger proportion of 

cancer events. However, the effect this is likely to have had on the estimated effects of 

metformin is small, since the hazard ratio remains unbiased when the misclassification only 

affects sensitivity and not specificity [219]. Therefore, the main issue with the underestimation 

of cancer events is the reduced precision. Linkage to cancer registries from the CPRD is only 

available for about 60% of the patients within the CPRD. If we were to restrict the analysis to 

patients eligible for linkage, despite getting a more complete capture of cancer outcomes 

within that population, the overall number of events captured would likely be smaller due to 

the reduced sample size overall. It was therefore felt that using cancers recorded within the 

CPRD only was a reasonable approach.  

It is also possible that some of the cancer diagnoses in CPRD would be delayed in their entry as 

there would be a time lag between diagnoses in secondary care, and this diagnosis being 

communicated to the GP. This however would be partially taken into account by the fact that in 

the primary analysis, the cancer diagnosis date was brought forward by 6 months (albeit because 

this was primarily to make sure that changes in disease severity due to un-diagnosed cancer 

were accounted for). Whether this lag was appropriate is another point for consideration. 

Sensitivity analysis of no lag and 12-month lag did not show large differences in estimates, 

though there was some indication that the 12-month lag pulled estimated metformin/cancer 

associations closer towards 1, and using no lag made metformin appear slightly more protective. 

A possible explanation for this is that changing the cancer diagnoses date changes the time point 

at which we compare medication with the rest of the risk set. Patients already on metformin are 

more likely to be censored for starting a treatment other than metformin than those not on 

treatment, and without the lag, we are more likely to censor because of treatment before we 

observe the cancer. Removing the lag on the cancer diagnosis may therefore systematically 

remove metformin users that go on to get cancer. The more the cancer date is brought forward, 

the more of these cancers are then included. Although the CIs were wide and the difference 
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between these analyses were small, the change was consistent with what would occur should 

pre-existing cancer have an impact on medication intensification, suggesting that use of the lag 

was warranted. Potentially, larger lags of 2 and 3 years could also have been explored to see if 

this continued to increase the estimates.  

The main definition of all cancer in this analysis included non-melanoma skin cancer. This was 

done initially to improve power, and because there was no reason to think that any effect of 

metformin might be different for this specific cancer type. However, the association with the 

risk factors for cancer may be different or weaker for this cancer type. Removal of this kind of 

cancer from the outcome did not alter the estimated effect of metformin on cancer risk 

substantially for any of the models fitted, but there some suggestion of a larger difference 

between the MSMs and standard methods, particularly for the joint IPTW and IPCW. This is 

consistent with what would be expected upon the removal of events that have no strong 

association with the risk factors that also influence treatment decisions, though the differences 

that emerged could have been due to chance since the magnitude of the changes was very small.  

 

7.4.6.5 Exposure definition  

 

The definition of metformin used in this study was chosen for simplicity and to reduce 

complications with estimating the IPTW. Specifically, only a single prescription was required to 

be considered exposed, and then it was assumed that the patient remained exposed until there 

was evidence of a change in medication. However, an obvious limitation of this approach was 

that it did not take into account that some patients may not adhere to their prescribed 

medication. Censoring patients if they switched to any other treatment reduced the issue of 

misclassifying person time exposed to other medications as person time exposed to metformin, 

but could not account for the situation in which a patient cannot tolerate metformin and so 

stops and/or reverts to a diet and lifestyle regime. Other options for defining exposure could 

have included requiring a minimum number of prescriptions before considering a patient 

exposed, or looking at cumulative use based on actual number of prescriptions. The problem 

with the former option in the context of using MSMs, is that it becomes unclear how to estimate 

the probability of treatment in the period between the first prescription and the prescription 

that confirms exposure.  

Another limitation of the way exposure was defined in this study is that dosage of metformin 

was not taken into account. Aside from requiring more complex models for IPTW, when using 
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prescription data, dosage must be estimated using information on number of tablets per 

prescription, tablet dosage, and time between prescriptions. This would raise the complication 

of deciding what dosage to apply to each interval, and would have to be implemented carefully 

to avoid using future information to define dosage level. Although beyond the scope of this 

thesis, investigations into the effects of dosage could be explored in further research.  

 

7.5 CHAPTER SUMMARY  
 

This chapter has presented an application of MSMs with IPTW to assess whether metformin may 

be causally associated with cancer risk in patients with T2DM, using data from the CPRD.  

The key findings of this analysis were as follows:  

1. .All models produced results consistent with no effect of metformin on cancer risk, though 

due to wide confidence intervals, a small protective effect (or harmful effect) could not be 

excluded. This finding was consistent across models assuming a constant effect of treatment 

through time, and also analyses that looked at cumulative use of medication.  

2. Only minimal differences in estimates of effect of metformin on cancer risk were observed 

between the MSMs and standard analyses methods. Possible reasons for this could be 

unmeasured confounding, residual confounding from poor data quality or misspecified models, 

or weaker time-dependent confounding than anticipated.  

3. Secondary analyses of site specific cancers and of sulfonylurea use instead of metformin 

yielded larger differences between standard analyses methods and MSMs, but the differences 

were inconsistent between analyses, and very large confidence intervals made sensible 

interpretation of any changes difficult.  

4. Results were robust to a wide range of sensitivity analyses, though this could be partially due 

to there being no estimated effect of metformin on cancer, meaning that different modelling 

decisions that in other situations may impact the causal estimate had no effect here.  

This study did not suggest any causal effect of metformin on cancer risk. Despite the 

acknowledged limitations, this adds weight to the existing evidence that suggests that the large 

protective effects previously observed were not causal. In the following chapter, further analysis 

aims to identify whether the apparent lack of difference between the MSM and standard 

analyses observed here was due to poorly developed weighting models, or because the issue of 
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time-dependent confounding was not important in this particular epidemiological question. The 

methodology will be applied to different questions regarding metformin use in T2DM, where 

stronger time-dependent confounding would be expected. Specifically, the next chapter 

describes an analysis the effect of metformin on risks of MI, stroke, all-cause mortality, and 

longitudinal glucose control. Assessment of the use of causal methods for these questions will 

be further enhanced by using existing evidence from randomised controlled trials for 

comparison purposes.  
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8 MSM WITH IPTW TO EXAMINE EFFECT OF METFORMIN AND 

SULFONYLUREA USE ON MORTALITY, CARDIOVASCULAR ENDPOINTS 

AND LONG TERM HBA1C CONTROL 
 

8.1 AIMS AND OBJECTIVES   
 

The review of the literature given in chapter 3 determined that despite a number of meta-

analyses of both clinical trial data and observational studies, there was no firm conclusion about 

the efficacy/safety of metformin/sulfonylureas on cardiovascular outcomes and all-cause 

mortality. Importantly, the number of trials and observational studies comparing metformin or 

sulfonylureas to a diet and lifestyle intervention or placebo was relatively small. In general, the 

meta-analyses for trials or observational studies that included the most data were for 

comparisons of metformin vs sulfonylureas. Due to the potential differing effects of metformin 

and sulfonylureas, such a comparison is unable to distinguish the individual causal effects of the 

two medications. 

The primary aim of this analysis was to estimate the efficacy of first line therapy with metformin 

and sulfonylureas separately in comparison to diet, with respect to MI, stroke and all-cause 

mortality using MSMs with IPTW and IPCW to control for time-dependent confounding affected 

by prior treatment. Time-dependent confounding was anticipated to be greater for these 

outcomes, due to the stronger association between diabetes severity and cardiovascular 

complications and mortality. As a long term randomised trial including the same outcomes, the 

UKPDS study [31] was chosen to serve as a comparison for this analysis.  

The secondary aim was to explore whether a clear benefit of using MSMs in data from CPRD 

could be demonstrated. To do this, it was necessary to examine a question where time-

dependent confounding is highly likely, and the true causal effect more clearly established. As 

far as is known, such an example using EHR data has not been presented to date. It is well 

recognised that both metformin and sulfonylureas do lower blood glucose levels [220], and the 

UKPDS study also examined the effect of metformin and sulfonylureas on long term HbA1c. 

Here, the outcome itself (HbA1c) is a key time-dependent confounder affected by prior 

treatment, so a strong a priori assumption exists that the standard methods would be biased. 

Therefore, in addition to the cardiovascular outcomes and mortality, the effect of metformin 

and sulfonylureas on long terms HbA1c control was also investigated.  
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8.2 METHODS 
 

8.2.1 Study population  

 

The study population was the same source population used in the previous chapter, namely a 

cohort patients with incident T2DM, aged between 30 and 90 years and free of any cancer at 

the time of diabetes diagnosis. However, for this and the following chapter, the data were 

updated to incorporate the latest data cut available from CPRD at the time of analysis. 

Therefore, these chapters use an underlying cohort from the January 2016 extract of CPRD, using 

the same algorithms previously described (see section 5.2). As before, the small number of 

patients with missing alcohol and smoking data at baseline were excluded. Study entry (baseline) 

for all other patients was defined as the end of the first interval after diabetes diagnosis that the 

patient had complete data on all covariates. 

Patients were followed up until the event of interest, death (if not the event), transfer out of 

practice, initiation of any diabetes medication other than metformin or sulfonylureas, or the last 

data collection date. As before, last collection date was not included as a censoring event for the 

IPCW. 

Two additional restrictions were placed on the study population for these analyses. Firstly, 

although in the previous chapter, estimation of weights separately by calendar period did not 

appreciably change the estimated effect of metformin on cancer, it did suggest that the effect 

of covariates on treatment may be different by calendar period (see appendix 17). Since time-

dependent confounding was expected to be stronger for the outcomes in the present chapter, 

it was felt that the separate treatment models by time should be used. In order to do this, only 

patients diagnosed after the year 2000 could be included, due to small numbers in earlier 

calendar periods causing difficulties with model convergence. Secondly, initial investigations 

(see appendix 19) suggested that follow up should be restricted to a maximum to 10 years to 

reduce the risk of severe positivity violations. 

 

8.2.2 Exposure definition 

 

The way in which exposure to metformin and sulfonylureas was defined has been described 

previously (see 7.2.1 and 7.2.7.5.3). Briefly, the exposure status of an individual could update 

once at the date of the first metformin or sulfonylurea prescription; from diet to metformin, or 
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diet to sulfonylureas. As before, further prescriptions were not needed to confirm or maintain 

exposure status. In contrast to the previous chapter, where patients who had started metformin 

were censored if they then initiated a sulfonylurea, and vice versa; in this analysis the patient 

was only censored if they initiated something other than a sulfonylurea or metformin. Use of an 

intention to treat (ITT) approach based on first line initiation not only increased follow up time 

to observe the cardiovascular events, but it was also more reflective of the UKPDS study 

protocol, where patients could intensify with one of the other study drugs if necessary. An “as 

treated” effect, where patients were censored at any treatment switch (other than their first 

initiation with either metformin or sulfonylureas) was estimated in a sensitivity analysis.  

 

8.2.3 Outcome definitions 

 

8.2.3.1 MI and stroke  

 

Occurrence of MI and stroke was identified from the patient’s primary care record only. These 

were identified using the Quality and Outcomes Framework (QOF) preferred and alternative 

reporting codes [198]. The full code lists are presented in appendix 12. Both fatal and non-fatal 

stroke and MI were included. The diagnosis of stroke was broad, and included both ischaemic 

and haemorrhagic stroke, and the less serious event of transient Ischaemic attack (TIA). 

Although not usually included within the definition of stroke, TIA was included to improve 

power. It was felt that this would be reasonable since it has very similar risk factors to stroke, 

and is a strong predictor of subsequent stroke [221]. A sensitivity analysis was conducted to look 

at whether excluding TIA had an impact of the estimated effect of metformin (see 8.2.5.3.) The 

outcome was defined as the first occurrence of the event after study entry. Patients with a 

history of the outcome at the time of their diabetes diagnosis were not excluded, but CVD 

history was adjusted for in the modelling (see 8.2.4). A small number of participants were 

excluded where the outcome of interest occurred between time of diabetes diagnosis and study 

entry (51 for MI, 79 for stroke), since these patients would not have still been at risk had they 

been followed up from time of diagnosis (see section 4.4.2.1). 

 

8.2.3.2 All-cause mortality  

 

Death and date of death was identified using a specific “death date” variable specified within 

the database. This variable is derived by the CPRD via an algorithm that takes information from 
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the patient’s clinical and administrative records to identify whether the patient has died, and 

the date that it was entered onto the system. Linkage to ONS was not used to obtain cause of 

death and as such only all-cause mortality was studied.  

 

8.2.3.3 HbA1c  

 

A variable capturing time updated HbA1c was constructed for each patient, as described in the 

previous chapter (see section 7.2.3.2.1 and appendix 12). These HbA1c measurements were 

used as a repeated measures outcome, to model the trajectory of HbA1c through time. Only 

intervals in which HbA1c was observed were included in the vector of outcomes values for each 

patient.  

 

8.2.4 Covariates  

 

All covariates from the previous analysis were included in the weighting models, namely age, 

gender, calendar period of diabetes onset (pre or post 2005), baseline smoking status, baseline 

alcohol consumption, use in the previous year of anti-hypertensive drugs, statins, NSAIDS (both 

baseline and time updated); previous history of any CVD or CKD (both baseline and time 

updated); HbA1c and BMI (both baseline and time updated).This decision was based both on a 

priori knowledge about potential associations with outcome; and from examining the observed 

associations with the outcomes of interest (see sections 8.2.5.1 and 8.3.2). Additional covariates 

were included to further adjust for possible time-dependent confounding, and are described 

below.  

 

8.2.4.1 Recent history of CVD  

 

In the previous chapter, both baseline and time updated history of CVD included stroke, MI, TIA 

and ischaemic heart disease. However, for the outcomes of interest in this analysis, it was felt 

that it may be important to distinguish between history of the outcome in question, and other 

CVD. Therefore history of MI, stroke (including TIA) and other CVD were entered separately. 

Variables indicating a recent history, as defined by occurrence of a code in the last 3 months, 

were also included due to the fact that recent history of an event is likely to substantially 

increase the risk of another event. As in the previous chapter, these variables were considered 
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time-dependent. Time updated history of stroke was omitted from the models relating to stroke 

as an outcome, and time updated MI from the models for MI, since in these cases any update 

after baseline would represent occurrence of the outcome.  

 

8.2.4.2 Systolic blood pressure (SBP)  

 

Both baseline and time updated SBP were included due to the strong association between 

cardiovascular events and hypertension. Full details of how SBP was extracted and cleaned are 

available in appendix 12. As with HbA1c and BMI, the baseline SBP was taken to be the closest 

measure prior to study entry. For patients entering the study at time of diabetes diagnosis, the 

baseline SBP was required to have been within 6 months otherwise it was considered missing. 

Values were truncated at the 1st and 99th percentiles of their baseline distributions to avoid 

potential issues with positivity violations. This resulted in a range of 100-190 mmHg. To create 

the categorical variables from baseline and time updated SBP, 4 categories were generated 

based on evenly spaced percentiles, resulting in categories of 100-129 mmHg, 130-139 mmHg, 

140-149 mmHg and >=150 mmHg.  

 

8.2.4.3 Aspirin  

 

Use of aspirin in the previous year, as defined by presence of a prescription in the patient’s 

record (see appendix 12) was also added as an indicator for elevated CVD risk. This was entered 

both as a baseline and as a time updated variable.  

 

8.2.4.4 Cancer  

 

Occurrence of cancer during follow up may affect treatment decisions and may have an impact 

on risk of CVD and mortality, therefore it was considered important to include this as an 

adjustment. Patients with a history of cancer at diabetes diagnosis were excluded as described 

in 5.2.3. If a patient developed cancer during follow up, this was adjusted for with an indicator 

variable that was updated from 0 to 1 at the occurrence of their first cancer diagnosis. Consistent 

with the study entry requirements (as described in 4.4.2.1 and Figure 4.5), if a patient developed 

cancer between diabetes diagnosis and study entry they were not excluded. This is because if 

they had been followed up from diagnosis, this cancer occurrence would not be a censoring 
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event. This meant that only patients who were untreated at study entry could have a history of 

cancer at study entry. Since this raises possible issue of selection bias, a sensitivity analysis was 

also performed where these patients were excluded.  

 

8.2.5 Analysis plan  

 

8.2.5.1 Descriptive analyses  

 

Demographics at study entry for the updated cohort were presented by medication at study 

entry, as previously described (see 7.2.7.1). Crude incidence rates of MI, stroke and all-cause 

mortality after study entry were calculated, both overall and per month of follow up. These were 

calculated after the data had been split into intervals, by fitting a logistic regression to 

approximate the incidence per 1000 person years. To gain an understanding of possible HbA1c 

trajectories, a sample of observed trajectories for different treatment patterns was plotted. To 

gain an understanding of the extent to which confounding by the selected covariates may actual 

be present in the data, associations between all outcomes and all covariates (in categorical form) 

were estimated, considering each covariate in turn. These were adjusted for age, gender, 

smoking status and a time updating indicator for diabetes treatment (none, metformin, 

sulfonylureas). This ensured that associations with outcome were not solely due to a mediating 

effect of diabetes treatment, or due to confounding by strong known risk factors. For HbA1c, 

BMI and SBP, the association between baseline and most recent values and outcome were 

estimated with both variables (again in their categorical form) in a single model since it was 

anticipated that change from baseline may be important to capture.  

Modelling only the most recent value for a time-dependent confounder assumes that the rest 

of the covariate history has no independent association with the risk of outcome. It was felt that 

shorter term changes in HbA1c and SBP not captured by the change from baseline may also be 

predictive of CV outcomes, so to capture this, the values of these covariates two intervals back 

were also investigated for their association with outcome. Because it is likely that changes in 

HbA1c and SBP are also associated with each other, the effects of these additional variables 

were estimated from a single model, adjusting for age, gender, smoking, time updated diabetes 

medications, and the baseline and most recent values SBP and HbA1c. Due to concerns over 

collinearity from using a LOCF approach, these additional variables were only added to the 

weighting models if there was a strong suggestion of association with the outcome. Specifically, 

they were included if the variable was statistically significant (p<0.05), or the estimated HR for 
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any level of the covariate vs the reference level were >1.15 or <0.85. Short term change in BMI 

was not considered for the primary analysis as overall, as BMI changes much more slowly (as 

shown in 6.3.2) and therefore concerns over collinearity in the LOCF approach were greater. 

However, since rapid decline in BMI could be a strong indicator of increasing frailty, or could be 

a result of bariatric surgery, a time updated variable to capture short term change in BMI was 

added to the weighting model in a sensitivity analysis (see 8.2.5.3).  

 

8.2.5.2 Primary analyses 

 

8.2.5.2.1 Models for IPTW and IPCW 

 

IPTW were estimated as described in 4.4.2. In contrast to the previous chapter, initiation of 

sulfonylureas when interested in the effect of metformin was not considered a censoring event, 

and vice versa. Therefore it was possible to estimate the probability of treatment with 

metformin or sulfonylureas within the same model, using multinomial logistic regression with 

three outcome levels.  

As with the previous analysis, continuous variables were entered into the model with varying 

levels of complexity. Since in the previous chapter the simplified form of the spline model was 

not observed to improve the weighting model, it was decided to compare just two different 

covariate specifications. Specification A used natural cubic splines for all HbA1c, BMI and SBP 

variables, as well as age, time since study entry and time between diabetes diagnosis and study 

entry. Categorical/binary variables were used for all other covariates. Specification B was the 

same as A, but with categorical variables for age, and all HbA1c, BMI and SBP variables. A 

simplified continuous form for time since study entry (simplified from the full spline as 

previously described in 7.2.7.2.2) was also used.  

Although it was not expected for the overall shape of associations between continuous 

covariates and probability of treatment to be different from the previous chapter, the optimal 

parameterisations of the cubic splines were re-estimated using the MVRS function [202]. This 

was done because of the restriction to 10 years follow up, the addition of new continuous 

variables, and to have a parameterisations that could appropriately model both the association 

with metformin initiation and sulfonylurea initiation. The resulting estimated spline 

parameterisations are presented in appendix 20.  
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As in the previous chapter (see 7.2.6), if a patient was censored for death, transfer out or change 

in medication, they were censored at the beginning of the interval. Unlike the previous chapter, 

there is a greater risk that this could result in missing fatal stroke or MI events; or non fatal 

events that resulted in the need for intensification of treatment. The potential impact of this 

was assessed in a sensitivity analysis (see 8.2.5.3.4 ). IPCW were estimated as described in 

4.4.1.3, using a multinomial logistic regression to model the probabilities for censoring due to 

death, transfer from practice, or initiation of any other medication other than metformin or a 

sulfonylurea. Initial investigations suggested that the new parameterisation of baseline BMI 

estimated by the MVRS function was not appropriate to model the association between baseline 

BMI and probability of death (see appendix 21). Therefore for covariate specification A, baseline 

BMI was entered into the censoring model as a natural cubic spline with knots at 20, 27, 30 and 

50. This was the parameterisation used in the previous chapter (see Table 7.5), which was more 

flexible. If the joint IPTW and IPCW models made little difference to the main analyses compared 

to IPTW alone (as defined by a relative change in HR of <10%), the addition of IPCW would be 

dropped for the sensitivity analysis where appropriate. This was because the addition of IPCW 

doubled the time taken to estimate the weights, so removing them for multiple sensitivity 

analyses was more efficient.  

 

8.2.5.2.2 Outcome models  

 

A single model was fitted per outcome. The effects of metformin vs diet only and sulfonylureas 

vs diet only on risk of MI, stroke and all-cause mortality were estimated using a single pooled 

logistic regression model with robust standard errors. Longitudinal HbA1c was modelled using a 

GEE with independent working correlation matrix. Both of these methods have been described 

previously (see section 4.4). For longitudinal HbA1c, because time since study entry was entered 

in both model specifications as a cubic spline, no assumption was made about the shape of the 

trajectory of HbA1c. For this model, as well as including all baseline covariates, an interaction 

term between baseline HbA1c and time since study entry was included. This was done to allow 

for the expected change in HbA1c through time to depend upon the starting value 

independently from any treatment effect [222].  

To investigate the effects of the two treatments though time, three alternative 

parameterisations of exposure were used. Firstly, a three level exposure for current treatment 

was used (none, metformin, sulfonylureas). This assumed a constant effect of treatment, and 
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was used to allow a direct comparison to the results of the UKPDS study and other existing 

research that estimate a single hazard ratio (HR) from a cox PH model. For longitudinal HBA1c, 

this assumes that absolute differences in HbA1c remain fixed through time, so the model 

assumes three parallel (but possibly non-linear) trajectories for the three treatment options. 

Secondly, since current treatment may not completely capture full treatment history, time since 

first prescription (assumed to represent cumulative medication use) was calculated. This was 

entered into the outcome model as a categorical variable, with groupings as follows: none, 1-3 

months metformin, 3-6 months metformin, 6-12 months metformin, 1-2 years metformin, 2-5 

years metformin, >5 years metformin, 1-3 months sulfonylureas, 3-6 months sulfonylureas, 6-

12 months sulfonylureas and so on. Broader categorisations later in time were to reduce sparsity 

and because differences of a few months would be less important after longer exposure. To 

increase flexibility, cumulative medication was also modelled using a natural cubic spline with 

five knots at 0, 6, 12, 40 and 100 months, and entered into the model as interaction with the 3 

level variable for current treatment to allow separate curves to be estimated for metformin and 

sulfonylureas. This model also included the three level variable for current treatment as a 

separate variable to allow an immediate change in treatment between 0 months of exposure 

and 1 month of exposure, which may not be fully captured by a smooth continuous function. 

For the time-to-event outcomes, modelling time on treatment in this way allows for non-

proportional hazards. For longitudinal HbA1c, this approach allows for the difference in HbA1c 

trajectories between the treatments to vary through time.  

For each exposure definition, five models were fitted to estimate the effect of metformin and 

sulfonylureas. As in the previous chapter, this was to investigate the impact of the different 

modelling approaches. Three models were the “standard analyses” (1: basic baseline 

adjustment, 2: full baseline adjustment, 3: full baseline adjustment plus time updated 

covariates) and two were the weighted MSMs (4: IPTW only and 5: joint IPTW/IPCW). For the 

repeated measures outcome, the third standard analysis model was not fitted because time 

updated values of HbA1c are the outcome, and such a model would not have a clear 

interpretation. 

Consistent with the previous chapter, the parametrisations of the baseline covariates for each 

model specification were the same as those entered into the treatment model. This was done 

to simplify code and to minimise the size of the data as far as possible during the computation 

process. As previously discussed (see 7.4.3.3), the same spline parameterisation does not 

enforce the same shape of association as the treatment model, but it if the parametrisation is 

too simple for the association between the covariate and outcome, there is the risk of 
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misspecifying the outcome model. To investigate whether this may be the case, initial checks 

were performed to compare the estimated associations between baseline covariates and each 

outcome using the parameterisations used in the treatment model, and parameterisations of 4 

knots based at the 20th, 40th, 60th and 80th percentiles of the variable’s distribution. This was 

done in an unweighted model with full baseline adjustment (model 2). All comparisons are 

shown graphically in appendix 21. With the exception of the association between baseline BMI 

and all-cause mortality, no appreciable differences were observed to suggest that using the 

parameterisations from the treatment model would cause serious model misspecification. 

Baseline BMI was entered into the outcome model for all–cause mortality in a more flexible 

form because of differences observed in this exploratory work. Specifically, it was entered as a 

natural cubic spline with knots at 20, 27, 30 and 50 kg/m2, which was observed to better model 

the apparent non-linear association, as shown in appendix 21. For clarity, the exact spline 

parameterisations and categorisation used are tabulated in appendix 20.  

 

8.2.5.3 Sensitivity analyses 

 

All sensitivity analyses were performed using model specification A only (cubic splines for time, 

HbA1c, BMI, SBP and age), and with categorical cumulative exposure unless otherwise stated. 

Since the main aim was to establish if the estimates from the MSM were affected, the sensitivity 

analyses were restricted to the weighted models only. As explained in 8.2.5.2.1, IPCW to adjust 

for loss to follow up by death, transfer out or intensification to a medication other than 

metformin or sulfonylureas, were not included in the sensitivity analyses unless specifically 

stated.  

 

8.2.5.3.1 Restrict population to one more similar to UKPDS population.  

 

The UKPDS study was conducted among “overweight” patients (defined being >120% of ideal 

body weight), and recruited patients aged 25-65 years. This sensitivity analysis aimed to recreate 

this population as far as possible, by restricting to patients aged < 65 years at time of diabetes 

diagnosis, (though the original lower bound for the cohort remained 32 years) and that had a 

BMI of 25 kg/m2 or more at study entry.  
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8.2.5.3.2 Exclude any history of cancer before study entry  

 

The analysis was repeated excluding patients that had a history of cancer between time of 

diagnosis and study entry, to check whether there was any suggestion of selection bias from 

their inclusion.  

 

8.2.5.3.3 For MI and stroke, restrict analysis to those with no history of outcome. 

 

This sensitivity analysis was done to assess the impact of allowing patients already at higher risk 

of the outcome to be included in the primary analysis.  

 

8.2.5.3.4 For MI and stroke, do not censor for death or treatment intensification at the 

beginning of the interval if an event occurs in the same interval.  

 

This analysis altered the censoring such that the occurrence of an MI or stroke event and death 

in the same interval was re-coded as an outcome event instead of a censoring event. The 

sensitivity analysis was then extended to additionally not censor if a patient experienced their 

MI or Stroke in the same interval in which they intensified treatment.  

 

8.2.5.3.5 Censor at any change from first initiated treatment.  

 

This sensitivity analysis was designed to assess whether assuming an intention to treat principle 

until intensification with something other than sulfonylureas or metformin resulted in a 

different estimate of treatment effect compared to an as treated analysis. IPCW were used for 

this analysis, with the addition of sulfonylurea initiation as a censoring event for the metformin 

model, and vice versa. Therefore, the IPTW were re-estimated with separate models for 

metformin and sulfonylureas as in chapter 7. Since this analysis approach was most likely to 

affect the treatment estimates for longer follow up, the weighted outcome model fitted was 

that with cumulative medication in its spline form. 
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8.2.5.3.6 Remove TIA from definition of stroke 

 

The definition of stroke in the main analysis included TIA. To look at the potential impact of this, 

TIA was excluded from the definition of stroke and prior TIA was included as a time-dependent 

predictor in the weighting model.  

8.2.5.3.7 Addition of short term change in BMI to weighting models 

 

The primary analysis did not capture changes in BMI other than that from baseline to the current 

value, since BMI typically changes slowly. However, it is possible that rapid weight decline may 

be predictive of mortality. Conversely, it may also indicate bariatric surgery which may reduce 

risk of CV events. To check whether the omission of this variable had an impact on the estimated 

treatment effects for the time to event outcomes, the IPTW’s were re-estimated including BMI 

two intervals back as an additional time-dependent variable. Since this variable was not included 

originally, no spline parameterisation was estimated in advance. For simplicity, a natural cubic 

spline with 4 evenly spaced knots at the 20th, 40th, 60th and 80th percentiles (equating to 22, 28, 

33 and 42 kg/m2) was used.  

 

8.3 RESULTS  
 

8.3.1 Cohort description 

 

The updated cohort of patients with incident type 2 diabetes consisted of 57,675 subjects alive 

and eligible to be included in the analysis at baseline (study entry). Demographics are presented 

by medication at baseline in Table 8.1.  
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 No Medication Metformin Sulfonylureas 
 

Mean SD Median, 
IQR 

Mean SD Median, 
IQR 

Mean SD Median, 
IQR 

Age at diabetes 
diagnosis  

62.3 12.0 63  
(54 - 71) 

57.6 11.8 57  
(49 - 66) 

59.5 13.3 59 
 (49 - 70) 

Time between 
diagnosis and study 
entry (months) 

3.4 9.8 0  
(0 - 3) 

0.0 0.0 0 
 (0 - 0) 

0.0 0.0 0 
(0 - 0) 

A1c at study entry  7.3 1.6 6.8  
(6.3 - 7.7) 

9.3 2.2 8.9 
 (7.4 - 11) 

10.9 2.2 11.1  
(9.1 - 12.7) 

BMI at study entry  31.7 6.1 30.8  
(27.4 - 35.1) 

33.4 6.5 32.4  
(28.7 - 37.2) 

27.6 5.5 26.2  
(23.8 - 30.2) 

SBP at study entry  137.8 16.3 138  
(128 - 147) 

136.9 16.0 136  
(127 - 146) 

136.5 17.6 135 
 (124 - 147) 

          

 N %  N %  N %  
Sex          

Male 27,799  56  4,130  59  596  62  

Female 21,951  44  2,832  41  367  38  

History of cancer * 

No  49,569  99.6  6,962  100  963  100  
Yes  181  0.4  0 0  0 0  

History of CVD 

No  42,183  85  6,230  89  860  89  

Yes  7,567  15  732  11  103  11  

CVD event in past 3 months  

No  48,794  98  6,890  99  943  98  

Yes  956  2  72  1  20  2  
History of MI 

No  47,925  96  6,771  97  930  97  

Yes  1,825  4  191  3  33  3  

MI in past 3 months  

No  49,588  99.7  6,950  99.8  956  99  

Yes  162  0.3  12  0.2  7  1  
History of Stroke  

No  47,949  96  6,804  98  933  97  

Yes  1,801  4  158  2  30  3  

Stroke in past 3 months  

No  49,550  99.6  6,944  99.7  959  99.6  
Yes  200  0.4  18  0.3  4  0.4  

History of CKD  

No  46,436  93  6,673  96  888  92  

Yes  3,314  7  289  4  75  8  

Table 8.1 Cohort demographic at time of study entry,stratified by medication at study entry  

*only patients with delayed study entry are able to have a history of cancer at study entry therefore this is only patients who are 

not on treatment at study entry (as already explained in 8.2.4.4)  
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 No Medication Metformin Sulfonylureas 

 N %  N %  N %  

Use of statins in 
previous year 

         

No  23,598  47  3,124  45  571  59  

Yes  26,152  53  3,838  55  392  41  

Use of anti HTs in 
previous year 

         

No  17,765  36  3,174  46  523  54  

Yes  31,985  64  3,788  54  440  46  

Use of NSAIDS in 
previous year 

         

No  40,056  81  5,783  83  802  83  

Yes  9,694  19  1,179  17  161  17  

Use of ASPIRIN in 
previous year 

         

No  35,285  71  5,445  78  727  75  

Yes  14,465  29  1,517  22  236  25  

Smoking Status           

non 19,942  40  2,754  40  396  41  

current 8,764  18  1,474  21  238  25  

ex 21,044  42  2,734  39  329  34  

Alcohol 
consumption  

         

non-drinker        5,667  11  952  14  105  11  

ex-drinker   3,797  8  660  9  75  8  

current drinker 
unknown       

882  2  129  2  25  3  

rare drinker <2u/d   11,951  24  1,761  25  222  23  

moderate drinker 3-
6u/d    

22,648  46  2,904  42  443  46  

excessive drinker 
>6u/d      

4,805  10  556  8  93  10  

Year of diabetes 
onset  

         

2000-2005 12,315  25  578  8   284  29  

post 2005 37,435  75  6,384  92  679  71  

Table 8.1 continued: Cohort demographics of at time of study entry continued,stratified by 
medication at study entry  

 

8.3.2 Descriptive analysis of outcomes 

 

Total follow up time for the 57,675 patients was 259,660 person years for MI, 257,781 person 

years for stroke, and 263,036 person years for all-cause mortality. There were 1007 MI events, 

1471 stroke events and 5121 deaths observed during follow up. Crude incidences (per 1000 

person years) with 95% CI were 3.9 (3.6 – 4.1), 5.7 (5.4-6.0) and 19.5 (19.0-20.0) for MI, stroke 

and all-cause mortality respectively.  

Crude Incidence per 1000 person years of MI, stroke and all-cause mortality for each month of 

follow up and are presented in Figure 8.1. 
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Figure 8.1 Crude incidence* (per 1000 person years) of MI, Stroke and all-cause mortality per 
month of follow up 

 

*estimated using pooled logistic regression with month since study entry as a categorical variable with 120 levels 

(one per month). Bars represent 95% confidence intervals. 
 

 

The frequency of HbA1c measures was highly variable between patients; as previously described 

in chapter 6. Figure 8.2 displays HbA1c through time for a selection of individuals who had 

different medication patterns from study entry. There appeared to be no clear pattern in 

trajectory based on medication decisions alone. HbA1c tended to fluctuate frequently, 

particularly in those who initiated treatment at some point (Figure 8.2A and B).  

Associations between covariates and the three time to event outcomes are displayed in Table 

8.2. The estimated associations with longitudinal HbA1c are given in Table 8.3. The majority of 

covariates that were identified in advance to be included in the weighting models showed at 

least some association with all outcomes. The additional term for HbA1c two intervals back met 

the criteria for inclusion (see 8.2.5.1) for all outcomes and so was added to the models for 

treatment and censoring weights. However, the additional value for SBP two interval back did 

not appear to add further information for any outcome and so was not included. The results 

suggested that same weighting model (in terms of covariate selection) could be assumed 

appropriate for all outcomes.  
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Figure 8.2 Sample of observed longitudinal HbA1c in patients who A were treated from study 
entry, B Introduced treatment part way through and C never started treatment. 

 

 

Different colours represent different individual patients 
 

.
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MI Stroke All-cause mortality 

Risk Factor  HR 95% CI  HR 95% CI  HR 95% CI  
Age 

      

   <45 1(ref) 
 

1(ref) 
 

1(ref) 
 

   45-59 2.23 ( 1.50 , 3.31 ) 2.79 ( 1.82 , 4.28 ) 2.37 ( 1.80 , 3.13 ) 

   60-74 3.24 ( 2.20 , 4.76 ) 5.63 ( 3.71 , 8.54 ) 7.23 ( 5.53 , 9.45 ) 
   75+ 6.62 ( 4.47 , 9.81 ) 12.33 ( 8.09 , 18.77 ) 23.60 ( 18.03 , 30.90 ) 
Gender  

      

   Male 1(ref) 
 

1(ref) 
 

1(ref) 
 

   Female 0.54 ( 0.47 , 0.61 ) 0.9 ( 0.81 , 1.00 ) 0.84 ( 0.79 , 0.89 ) 

Smoking status  
      

   Non  1(ref) 
 

1(ref) 
 

1(ref) 
 

   Current  2.19 ( 1.85 , 2.59 ) 1.46 ( 1.26 , 1.69 ) 2.51 ( 2.32 , 2.71 ) 
   Ex  1.38 ( 1.20 , 1.60 ) 1.18 ( 1.05 , 1.32 ) 1.55 ( 1.45 , 1.65 ) 
Drinking Status  

      

   Non drinker  1(ref) 
 

1(ref) 
 

1(ref) 
 

   Ex-drinker 1.60 ( 1.19 , 2.14 ) 1.04 ( 0.82 , 1.32 ) 1.25 ( 1.11 , 1.42 ) 
   Current drinker unknown 1.88 ( 1.23 , 2.90 ) 1.03 ( 0.69 , 1.53 ) 1.55 ( 1.29 , 1.86 ) 
   Rare drinker <2u/d 1.35 ( 1.07 , 1.71 ) 0.95 ( 0.79 , 1.13 ) 0.94 ( 0.86 , 1.04 ) 

   Moderate drinker 3-6u/d 1.21 ( 0.97 , 1.51 ) 0.92 ( 0.78 , 1.09 ) 0.89 ( 0.81 , 0.97 ) 
   Excessive drinker >6u/d 1.09 ( 0.81 , 1.48 ) 0.91 ( 0.72 , 1.16 ) 1.22 ( 1.08 , 1.38 ) 
Year of diabetes onset  

     

   2000-2005 1(ref) 
 

1(ref) 
 

1(ref) 
 

   Post 2005  0.98 ( 0.85 , 1.12 ) 0.77 ( 0.69 , 0.86 ) 0.95 ( 0.90 , 1.01 ) 

Use in year before baseline… 
     

   Anti-hypertensives 1.55 ( 1.34 , 1.81 ) 1.32 ( 1.17 , 1.50 ) 1.18 ( 1.10 , 1.26 ) 
   Statins  1.36 ( 1.19 , 1.55 ) 1.13 ( 1.02 , 1.26 ) 0.95 ( 0.90 , 1.01 ) 
   NSAIDS 1.20 ( 1.04 , 1.39 ) 1.13 ( 1.00 , 1.28 ) 0.92 ( 0.86 , 0.99 ) 
   Aspirin  1.73 ( 1.52 , 1.97 ) 1.40 ( 1.26 , 1.56 ) 1.19 ( 1.12 , 1.26 ) 

Event in three months before baseline of…  
    

   Any CVD  2.82 ( 2.19 , 3.63 ) 1.76 ( 1.36 , 2.27 ) 1.27 ( 1.09 , 1.47 ) 
   MI  5.79 ( 3.52 , 9.52 ) 0.62 ( 0.20 , 1.94 ) 1.77 ( 1.22 , 2.57 ) 
   Stroke  2.46 ( 1.35 , 4.47 ) 5.63 ( 3.97 , 7.99 ) 1.46 ( 1.06 , 2.01 ) 
Any history at baseline of … 

     

   CVD  2.59 ( 2.26 , 2.97 ) 1.94 ( 1.73 , 2.18 ) 1.51 ( 1.42 , 1.61 ) 
   MI  3.56 ( 2.91 , 4.35 ) 1.33 ( 1.05 , 1.68 ) 1.69 ( 1.52 , 1.90 ) 
   Stroke  1.56 ( 1.20 , 2.01 ) 3.51 ( 2.99 , 4.12 ) 1.42 ( 1.27 , 1.58 ) 
   CKD  1.21 ( 0.95 , 1.54 ) 1.10 ( 0.90 , 1.34 ) 1.45 ( 1.32 , 1.59 ) 

   Cancer  1.06 ( 0.38 , 3.00 ) 0.60 ( 0.22 , 1.68 ) 2.27 ( 1.67 , 3.09 ) 
Time updated use in previous year of.. 

    

   Anti-hypertensives 1.85 ( 1.55 , 2.22 ) 1.58 ( 1.36 , 1.83 ) 0.90 ( 0.84 , 0.97 ) 
   Statins  1.06 ( 0.92 , 1.23 ) 1.15 ( 1.02 , 1.3 ) 0.71 ( 0.67 , 0.75 ) 
   NSAIDS 1.04 ( 0.89 , 1.23 ) 1.08 ( 0.94 , 1.23 ) 1.08 ( 1.00 , 1.16 ) 

   Aspirin  1.82 ( 1.60 , 2.07 ) 1.79 ( 1.61 , 1.99 ) 1.14 ( 1.08 , 1.21 ) 
Event in previous three months of…  

     

   Any CVD  6.82 ( 5.01 , 9.27 ) 3.15 ( 2.15 , 4.62 ) 3.16 ( 2.66 , 3.76 ) 
   MI  71.78 ( 30.92 , 166.63 ) 2.03 ( 0.76 , 5.44 ) 4.32 ( 3.08 , 6.06 ) 
   Stroke  2.27 ( 0.94 , 5.47 ) 27.12 ( 10.05 , 73.21 ) 3.94 ( 2.99 , 5.18 ) 

Time updated history of … 
     

   CVD  2.80 ( 2.45 , 3.20 ) 2.10 ( 1.88 , 2.35 ) 1.71 ( 1.61 , 1.81 ) 
   MI   

 
1.36 ( 1.11 , 1.68 ) 1.88 ( 1.71 , 2.07 ) 

   Stroke  1.61 ( 1.29 , 2.00 ) 
  

1.69 ( 1.55 , 1.85 ) 

   CKD  1.21 ( 1.03 , 1.43 ) 1.02 ( 0.89 , 1.17 ) 1.51 ( 1.41 , 1.61 ) 
   Cancer  1.14 ( 0.85 , 1.53 ) 1.03 ( 0.81 , 1.32 ) 4.70 ( 4.32 , 5.11 ) 

Table 8.2 Estimated HR and 95% CI for the association between covariates and outcomes of MI, 
stroke and all-cause mortality.  

Each covariate considered separately, with adjustment for age, smoking status and time updated diabetes 
medication. HR approximated from a pooled logistic regression with time since baseline as underlying time scale.  
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MI Stroke All-cause mortality 

Risk Factor  HR 95% CI  HR 95% CI  HR 95% CI  
aBaseline BMI  

     

   <25 1(ref) 
 

1(ref) 
 

1(ref) 
 

   25-29 1.02 ( 0.79 , 1.32 ) 0.75 ( 0.61 , 0.92 ) 1.22 ( 1.11 , 1.34 ) 

   30-34 0.90 ( 0.66 , 1.23 ) 0.82 ( 0.63 , 1.06 ) 2 ( 1.76 , 2.27 ) 

   35+  0.74 ( 0.49 , 1.11 ) 0.77 ( 0.55 , 1.08 ) 3.06 ( 2.56 , 3.65 ) 
aBaseline HbA1c   

     

   <6% 1(ref) 
 

1(ref) 
 

1(ref) 
 

   6-6.5% 1.04 ( 0.81 , 1.33 ) 0.95 ( 0.78 , 1.14 ) 1.14 ( 1.03 , 1.26 ) 

   6.5 -7% 1.25 ( 0.98 , 1.61 ) 0.87 ( 0.72 , 1.06 ) 1.27 ( 1.14 , 1.41 ) 

   7-8% 1.11 ( 0.86 , 1.44 ) 0.89 ( 0.72 , 1.08 ) 1.4 ( 1.25 , 1.57 ) 

   8-10% 1.10 ( 0.83 , 1.46 ) 0.84 ( 0.67 , 1.05 ) 1.42 ( 1.25 , 1.61 ) 

   10% + 1.21 ( 0.89 , 1.64 ) 0.59 ( 0.45 , 0.77 ) 1.21 ( 1.05 , 1.40 ) 
aBaseline SBP        

   100-129 1(ref)  1(ref)  1(ref)  

   130-139 1.07 ( 0.89 , 1.28 ) 0.95 ( 0.82 , 1.11 ) 0.91 ( 0.84 , 0.98 ) 

   140-149 1.00 ( 0.83 , 1.20 ) 1.03 ( 0.89 , 1.20 ) 0.96 ( 0.89 , 1.04 ) 

   150+ 1.02 ( 0.84 , 1.23 ) 1.19 ( 1.03 , 1.37 ) 1.01 ( 0.93 , 1.10 ) 
bPrevious BMI (t -1)       

   <25 1(ref)  1(ref)  1(ref)  

   25-29 1.06 ( 0.84 , 1.34 ) 1.12 ( 0.92 , 1.35 ) 0.39 ( 0.36 , 0.43 ) 

   30-34 1.17 ( 0.87 , 1.57 ) 1.06 ( 0.83 , 1.37 ) 0.23 ( 0.21 , 0.27 ) 

   35+  1.12 ( 0.76 , 1.66 ) 0.91 ( 0.65 , 1.29 ) 0.18 ( 0.15 , 0.21 ) 
bPrevious HbA1c  (t -1)  

      

   <6% 1(ref) 
 

1(ref) 
 

1(ref) 
 

   6-6.5% 0.65 ( 0.35 , 1.22 ) 0.81 ( 0.46 , 1.40 ) 0.62 ( 0.50 , 0.78 ) 

   6.5 -7% 0.33 ( 0.18 , 0.6 ) 0.85 ( 0.43 , 1.68 ) 0.55 ( 0.42 , 0.73 ) 

   7-8% 0.39 ( 0.21 , 0.72 ) 1.11 ( 0.56 , 2.18 ) 0.54 ( 0.40 , 0.74 ) 

   8-10% 0.38 ( 0.17 , 0.83 ) 0.99 ( 0.47 , 2.11 ) 0.54 ( 0.37 , 0.78 ) 

   10% + 0.38 ( 0.15 , 1.00 ) 1.36 ( 0.53 , 3.49 ) 0.56 ( 0.33 , 0.97 ) 
bPrevious SBP (t -1)   

    

   100-129 1(ref) 
 

1(ref) 
 

1(ref) 
 

   130-139 0.95 ( 0.67 , 1.35 ) 0.92 ( 0.8 , 1.06 ) 0.6 ( 0.52 , 0.68 ) 

   140-149 1.06 ( 0.73 , 1.55 ) 1.04 ( 0.91 , 1.20 ) 0.53 ( 0.45 , 0.62 ) 

   150+ 1.28 ( 0.85 , 1.93 ) 1.51 ( 1.3 , 1.75 ) 0.58 ( 0.49 , 0.69 ) 
cPrevious HbA1c (t -2) 

      

   <6% 1(ref) 
 

1(ref) 
 

1(ref) 
 

   6-6.5% 1.56 ( 0.81 , 2.97 ) 1.16 ( 0.67 , 2.02 ) 1.03 ( 0.82 , 1.29 ) 

   6.5 -7% 2.77 ( 1.50 , 5.10 ) 1.08 ( 0.55 , 2.11 ) 1.02 ( 0.77 , 1.35 ) 

   7-8% 2.88 ( 1.50 , 5.53 ) 0.97 ( 0.49 , 1.92 ) 1.10 ( 0.80 , 1.51 ) 

   8-10% 3.52 ( 1.59 , 7.79 ) 1.25 ( 0.59 , 2.67 ) 1.33 ( 0.92 , 1.93 ) 

   10% + 4.95 ( 1.88 , 13.05 ) 1.44 ( 0.56 , 3.70 ) 1.48 ( 0.86 , 2.54 ) 
cPrevious SBP (t-2)       

   100-129 1(ref)  1(ref)  1(ref)  

   130-139 0.91 ( 0.65 , 1.29 ) 1.12 ( 0.84 , 1.49 ) 0.91 ( 0.79 , 1.04 ) 

   140-149 0.90 ( 0.62 , 1.31 ) 0.85 ( 0.62 , 1.16 ) 0.91 ( 0.78 , 1.06 ) 

   150+ 0.96 ( 0.63 , 1.45 ) 0.93 ( 0.66 , 1.31 ) 1.02 ( 0.87 , 1.21 ) 

Table 8.2 cont. Estimated HR and 95% CI for the association between covariates and outcomes 
of MI, Stroke and all-cause mortality.  

Each covariate considered separately, with adjustment for age, smoking status and time updated diabetes 
medication. HR approximated from a pooled logistic regression with time since baseline as underlying time scale.  
a Additionally adjusted for value of covariate in previous interval. b Additionally adjusted for value of covariate at 
baseline c Estimated from a single model containing baseline HbA1c, previous HbA1c (interval t-1) , baseline SBP, and 
previous SBP (interval t-1).  
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Risk Factor  Difference 
in HbA1c 

95% CI   Risk Factor Difference 
in HbA1c 

95% CI  

Age (years) 
  

 aBaseline BMI (kg/m2) 
 

   <45 0(ref) 
 

 <25 0(ref) 
 

45-59 -0.21 ( -0.25 , -0.17 )  25-29 0.04 ( 0.02 , 0.07 ) 
60-74 -0.42 ( -0.45 , -0.38 )  30-34 0.09 ( 0.07 , 0.12 ) 
75+ -0.47 ( -0.51 , -0.44 )  35+  0.12 ( 0.09 , 0.15 ) 
Gender  

  
 aBaseline HbA1c  

 

Male 
  

 <6% 0(ref) 
 

Female -0.02 ( -0.03 , 0.00 )  6-6.5% 0.10 ( 0.09 , 0.11 ) 
Smoking status  

  
 6.5 -7% 0.13 ( 0.12 , 0.14 ) 

Non  0(ref) 
 

 7-8% 0.17 ( 0.16 , 0.18 ) 
Current  0.08 ( 0.06 , 0.11 )  8-10% 0.24 ( 0.22 , 0.25 ) 

Ex  0.00 ( -0.01 , 0.02 )  10% + 0.33 ( 0.31 , 0.34 ) 
Drinking Status  

  
 aBaseline SBP (mmHg)  

 

Non drinker  0(ref) 
 

 100-129 0(ref) 
 

ex-drinker -0.04 ( -0.07 , 0.00 )  130-139 -0.02 ( -0.03 , -0.01 ) 
current drinker unknown 0.11 ( 0.04 , 0.18 )  140-149 -0.03 ( -0.04 , -0.03 ) 

rare drinker <2u/d 0.00 ( -0.03 , 0.03 )  150+ -0.06 ( -0.07 , -0.05 ) 
moderate drinker 3-6u/d -0.03 ( -0.05 , 0.00 )  bPrevious BMI (t -1) 

 

excessive drinker >6u/d -0.13 ( -0.16 , -0.10 )  <25 0(ref) 
 

Year of diabetes onset  
 

 25-29 0.10 ( 0.08 , 0.12 ) 
2000-2005 

  
 30-34 0.21 ( 0.19 , 0.23 ) 

post 2005  -0.02 ( -0.04 , 0.00 )  35+  0.28 ( 0.26 , 0.31 ) 
Use in year before baseline of…   bPrevious HbA1c  (t -1)  

 

Anti-hypertensives -0.05 ( -0.07 , -0.04 )  <6% 0(ref) 
 

Statins  -0.02 ( -0.03 , 0.00 )  6-6.5% 0.49 ( 0.49 , 0.50 ) 

NSAIDS 0.01 ( -0.01 , 0.03 )  6.5 -7% 0.94 ( 0.93 , 0.95 ) 
Aspirin  0.01 ( -0.01 , 0.02 )  7-8% 1.49 ( 1.48 , 1.50 ) 
Event in three months before baseline of…   8-10% 4.03 ( 4.00 , 4.06 ) 
Any CVD  0.00 ( -0.05 , 0.05 )  10% +   
MI  0.00 ( -0.12 , 0.13 )  bPrevious SBP (t -1) 

 

Stroke  -0.04 ( -0.14 , 0.06 )  100-129 0(ref) 
 

Any history at baseline of … 
 

 130-139 0.05 ( 0.03 , 0.07 ) 
CVD  0.06 ( 0.04 , 0.08 )  140-149 0.07 ( 0.05 , 0.09 ) 
MI  0.08 ( 0.04 , 0.12 )  150+ 0.12 ( 0.10 , 0.14 ) 
Stroke  0.01 ( -0.03 , 0.04 )  

   

CKD  -0.05 ( -0.08 , -0.02 )  cPrevious HbA1c (t -2)  
Cancer  -0.03 ( -0.16 , 0.10 )  <6% 0(ref)  

Time updated use in previous year of..  6-6.5% 0.05 ( 0.00 , 0.09 ) 
Anti-hypertensives -0.07 ( -0.09 , -0.06 )  6.5 -7% 0.09 ( 0.03 , 0.15 ) 
Statins  -0.05 ( -0.07 , -0.04 )  7-8% 0.11 ( 0.04 , 0.17 ) 
NSAIDS -0.03 ( -0.04 , -0.01 )  8-10% -0.04 ( -0.12 , 0.03 ) 
Aspirin  -0.03 ( -0.05 , -0.02 )  10% + -0.34 ( -0.45, -0.23 ) 

Event in previous three months of…   cPrevious SBP (t-2)  
Any CVD  0.02 ( -0.02 , 0.06 )  100-129 0(ref)  
MI  0.05 ( -0.06 , 0.16 )  130-139 -0.01 ( -0.03 , 0.00 ) 
Stroke  0.01 ( -0.06 , 0.09 )  140-149 -0.01 ( -0.03 , 0.01 ) 

Time updated history of … 
 

 150+ 0.01 ( -0.01 , 0.03 ) 

CVD  0.05 ( 0.03 , 0.07 )  a Additionally adjusted for value of covariate in 
previous interval. b Additionally adjusted for value 
of covariate at baseline. 
 c Estimated from a single model containing baseline 
HbA1c, previous HbA1c (interval t-1) , baseline SBP, 
and previous SBP (interval t-1).  

MI  0.06 ( 0.03 , 0.10 )  
Stroke  0.00 ( -0.03 , 0.03 )  
CKD  -0.08 ( -0.1 , -0.06 )  
Cancer  -0.01 ( -0.05 , 0.03 )  

Table 8.3 Estimated associations between covariates and longitudinal HbA1c. 

Each covariate considered separately, with adjustment for age, smoking status and time updated diabetes 
medication. . Estimate and 95% CI relate to absolute expected difference in HbA1c. Estimated from a generalised 

estimating equation including only intervals in which HbA1c is observed.  
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8.3.3 Models for the IPTW and IPCW 

 

Exact numbers contributing and follow up times were slightly different for the different 

outcomes, but the full multivariable models estimating probability of treatment with metformin 

or sulfonylureas and probability of censoring were similar for all outcomes. The full model 

output for both treatment and censoring models for follow up to all-cause mortality, using the 

categorical covariate specification, are presented in appendix 22 as an example. The distribution 

of the calculated stabilised and truncated weights (IPTW only and joint IPTW and IPCW) for each 

outcome model are presented in Table 8.4. In the categorical models, the means of the stabilised 

weights were lower, suggesting that the categorisations reduced, to an extent, issues with 

positivity violations. Having said this, the 99th percentiles of the distribution were similar, the 

maximum weights for the categorical specification were still large, and truncation was still 

necessary. Overall, the means of the stabilised weights were much smaller than were observed 

in the previous chapter. For example, a mean of 4.18 was observed for the stabilised IPTW for 

MI vs a mean of 11,871 in the previous analysis (see 7.3.2.2). Since the truncated weights had 

means much closer to one, these were the weights taken forward to use in the outcome models. 

 

8.3.4 Outcome models  

 

For MI, stroke and all-cause mortality, the estimates obtained by the two covariate 

specifications were very similar. For clarity of presentation, only the results of covariate 

specification A (continuous parameterisations of covariates) are presented here, with results for 

covariate specification B (categorical parameterisations of covariates) displayed in appendix 23.  
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MI 

 
Categorical  Spline 

 
Stabilised 

IPTW 
Stabilised 

IPTW 

Truncated 

Joint 
IPTW 

IPCW 

Joint 
IPTW 

IPCW 
Truncated 

Stabilised 
IPTW 

Stabilised 
IPTW 

Truncated 

Joint 
IPTW 

IPCW 

Joint 
IPTW 

IPCW 
Truncated 

Mean  1.27 1.00 1.26 0.99 4.18 0.99 4.65 0.99 
SD 15.66 0.95 14.78 0.95 635.93 0.90 736.10 0.92 

1st 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

25th  0.66 0.66 0.65 0.65 0.68 0.68 0.67 0.67 

50th  0.90 0.90 0.88 0.88 0.91 0.91 0.90 0.90 

75th  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
99th  7.16  7.16 7.12 7.12 6.93 6.93 7.11 7.11  

Stroke  
Categorical Spline 

 Stabilised 

IPTW 

Stabilised 

IPTW 
Truncated 

Joint 

IPTW 
IPCW 

Joint 

IPTW 
IPCW 

Truncated 

Stabilised 

IPTW 

Stabilised 

IPTW 
Truncated 

Joint 

IPTW 
IPCW 

Joint 

IPTW 
IPCW 

Truncated 

Mean  1.26 1.00 1.26 0.99 4.32 0.99 4.83 0.99 
SD 15.40 0.95 14.55 0.94 671.93 0.90 782.31 0.91 

1st 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

25th  0.66 0.66 0.65 0.65 0.68 0.68 0.67 0.67 

50th  0.90 0.90 0.88 0.88 0.92 0.92 0.90 0.90 

75th  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

99th  7.16 7.16 7.09 7.09 6.94 6.94 7.04 7.04  
All-cause mortality 

 
Categorical Spline 

 
Stabilised 

IPTW 
Stabilised 

IPTW 
Truncated 

Joint 
IPTW 
IPCW 

Joint 
IPTW 
IPCW 

Truncated 

Stabilised 
IPTW 

Stabilised 
IPTW 

Truncated 

Joint 
IPTW 
IPCW 

Joint 
IPTW 
IPCW 

Truncated 

Mean  1.27 1.00 1.26 0.99 4.28 0.99 4.75 0.98 

SD 15.78 0.95 15.04 0.94 660.54 0.90 771.96 0.91 

1st 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

25th  0.65 0.65 0.65 0.65 0.68 0.68 0.67 0.67 
50th  0.90 0.90 0.88 0.88 0.91 0.91 0.90 0.90 

75th  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

99th  7.16 7.16 7.08 7.08 7.04 7.04 7.06 7.06  
HbA1c 

 
Categorical Spline 

 Stabilised 
IPTW 

Stabilised 
IPTW 

Truncated 

Joint 
IPTW 
IPCW 

Joint 
IPTW 
IPCW 

Truncated 

Stabilised 
IPTW 

Stabilised 
IPTW 

Truncated 

Joint 
IPTW 
IPCW 

Joint 
IPTW 
IPCW 

Truncated 

Mean  1.27 1.00 1.26 0.99 4.29 0.99 4.77 0.99 

SD 15.71 0.95 14.85 0.95 661.04 0.90 768.05 0.92 
1st 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

25th  0.65 0.65 0.65 0.65 0.68 0.68 0.66 0.66 

50th  0.90 0.90 0.88 0.88 0.91 0.91 0.90 0.90 

75th  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

99th  7.16 7.16 7.13 7.13 7.00 7.00 7.13 7.13 

Table 8.4 Distribution of stabilised IPTW and joint IPTW and IPCW  

Separate treatment models fitted for each of the 4 outcomes due to differing overall follow up. Weights estimated 
from two models differing in specification by the form of continuous variables, which were modelled as cubic splines 

(A, right) or categorised (b, left).



200 
 

 

8.3.4.1 MI  

 

The MSM with IPTW and IPCW estimated an overall summary hazard ratio for metformin vs diet 

for risk of MI as 0.93, with 95% CI from 0.73–1.18. The MSM without the IPCW was almost 

identical (Table 8.5). For metformin, this estimate was slightly lower than the unweighted model 

with full baseline adjustment (HR 0.98 (0.83-1.15)) which was itself lower than the standard 

model with basic baseline adjustment for age, time since diagnosis, smoking, alcohol and year 

of diabetes onset (HR 1.11, 0.96-1.28), though all confidence intervals had similar ranges. When 

examining the effect of cumulative metformin use on risk of MI, both MSMs gave some 

suggestion of a small increased risk in the first 3 months. For greater than 5 years, that the risk 

of MI compared to diet only was reduced by 34% (HR 0.66, CI 0.42-1.03) (Table 8.6). The 

unweighted model with full baseline adjustment estimated a similar trend, but the increased 

risk in the first 3 months was greater and the decreased risk with >5 years use was not as large, 

suggesting that the weighting may be working as expected. Modelling cumulative metformin 

use as a continuous spline more clearly showed the differences between standard analysis and 

weighted modes (Figure 8.3). Particularly, the decreased risk of MI with long term metformin 

use estimated by the MSMs was much more apparent. 

For sulfonylureas vs diet, the overall HR for risk of MI was estimated to be 1.00, with a 95% CI of 

0.66-1.51 (MSM with IPTW and IPCW). There were no appreciable differences between the fully 

adjusted baseline model and the MSMs (Table 8.5). When looking at cumulative use of 

sulfonylureas, both standard analysis methods and MSMs estimated early use of a sulfonylurea 

to reduce the risk of MI, with the HR over time appearing to vary above and below of one, albeit 

with wide confidence intervals (Table 8.6). This variation around a HR of one was also apparent 

when modelling cumulative use as a continuous function (Figure 8.3). As with metformin, 

differences between MSMs with IPTW and joint IPTW and IPCW were minimal. 
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Metformin Sulfonylureas 

 
HR SE 95% CI HR SE 95% CI 

1 Basic adjustment  1.10 0.08 0.96 , 1.27 1.26 0.16 0.98 , 1.62 

2 Full baseline adjustment  0.98 0.08 0.83 , 1.15 1.02 0.14 0.77 , 1.34 

3 Time updated adjustment  0.93 0.08 0.79 , 1.10 0.95 0.14 0.72 , 1.26 

4 IPTW model  0.92 0.12 0.72 , 1.18 1.01 0.21 0.68 , 1.52 

5 IPTW and IPCW model  0.93 0.11 0.73 , 1.18 1.00 0.21 0.66 , 1.51 

Table 8.5  HR for risk of MI with current use of metformin (left) or sulfonylureas (right) 
compared to diet only.  

Models 1-3 are standard pooled logistic regression with varying levels of adjustment for confounders. Model 4 is a 

MSM with IPTW, and model 5 a MSM with joint IPTW and IPCW.Basic adjustment – age, gender, calendar period of 

diabetes onset, smoking and alcohol Full baseline adjustment – Basic adjustment + baseline measures of: HbA1c, 

BMI, SBP, history of stroke (ever and in previous 3 months), history of MI (ever and in previous 3 months), history of 

other CVD (ever and in previous three months), ever history of cancer, ever history of CKD, use in the previous 12 

months of aspirin, NSAIDS, anti-hypertensive drugs or statins (all drugs entered separately). Time updated 

adjustment – Full baseline adjustment plus time-dependent measures of: HbA1c, BMI, SBP, history of stroke (ever 

and in previous 3 months), history of other CVD (ever and in previous three months), ever history of cancer, ever 

history of CKD, use in the previous 12 months of aspirin, NSAIDS, anti-hypertensive drugs or statins (all drugs entered 

separately). IPTW model – full baseline adjustment plus stabilised IPTW, where denominator model for IPTW includes 

all variables in time updated adjustment, and all baseline variables in the numerator. IPTW and IPCW – IPTW model 

plus joint weights for censoring, where censoring models include all baseline and time updated variables in 

denominator and all baseline variables in numerator.  
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Metformin  

 
1 Basic Adjustment 2 Baseline Adjustment 3 Time updated adjustment 4 IPTW 5 IPTW and IPCW 

 
HR SE 95% CI HR SE 95% CI HR SE 95% CI HR SE 95% CI HR SE 95% CI 

1- 3 months  1.30 0.23 0.91 , 1.84 1.20 0.22 0.84 , 1.71 1.00 0.19 0.69 , 1.46 1.13 0.24 0.74 , 1.72 1.10 0.24 0.72 , 1.68 

3-6 months 1.19 0.23 0.82 , 1.73 1.09 0.21 0.75 , 1.61 0.97 0.19 0.65 , 1.43 0.90 0.21 0.57 , 1.41 0.88 0.21 0.56 , 1.39 

6-12 months  1.18 0.18 0.88 , 1.58 1.07 0.16 0.8 , 1.45 1.02 0.16 0.75 , 1.38 0.81 0.15 0.57 , 1.15 0.81 0.14 0.57 , 1.15 

1-2 years  1.16 0.14 0.92 , 1.47 1.04 0.13 0.81 , 1.34 1.01 0.13 0.79 , 1.30 1.10 0.23 0.73 , 1.67 1.11 0.24 0.73 , 1.69 

2 - 5 years 1.05 0.11 0.86 , 1.28 0.91 0.10 0.73 , 1.13 0.89 0.10 0.72 , 1.11 0.94 0.16 0.68 , 1.30 0.94 0.15 0.68 , 1.30 

> 5 years 0.88 0.13 0.67 , 1.17 0.71 0.11 0.52 , 0.97 0.69 0.11 0.51 , 0.94 0.62 0.14 0.4 , 0.98 0.65 0.15 0.42 , 1.01 
 

Sulfonylureas  

 
1 Basic Adjustment 2 Baseline Adjustment 3 Time updated adjustment 4 IPTW 5 IPTW and IPCW 

 
HR SE 95% CI HR SE 95% CI HR SE 95% CI HR SE 95% CI HR SE 95% CI 

1- 3 months  0.87 0.51 0.28 , 2.72 0.71 0.42 0.23 , 2.23 0.47 0.28 0.14 , 1.53 0.56 0.34 0.17 , 1.85 0.56 0.34 0.17 , 1.85 

3-6 months 1.30 0.66 0.48 , 3.49 1.05 0.54 0.39 , 2.87 0.88 0.46 0.32 , 2.43 0.79 0.47 0.25 , 2.52 0.78 0.46 0.25 , 2.48 

6-12 months  2.02 0.62 1.10 , 3.70 1.63 0.51 0.88 , 3.01 1.52 0.47 0.82 , 2.79 1.18 0.42 0.59 , 2.36 1.18 0.42 0.59 , 2.36 

1-2 years  1.37 0.39 0.78 , 2.39 1.10 0.32 0.62 , 1.93 1.06 0.31 0.60 , 1.87 0.99 0.40 0.45 , 2.19 0.98 0.40 0.44 , 2.19 

2 - 5 years 0.99 0.22 0.64 , 1.54 0.77 0.18 0.49 , 1.22 0.75 0.17 0.48 , 1.19 0.70 0.22 0.38 , 1.30 0.72 0.23 0.38 , 1.36 

> 5 years 1.25 0.29 0.79 , 1.96 0.94 0.23 0.58 , 1.52 0.95 0.23 0.58 , 1.54 1.27 0.49 0.59 , 2.72 1.25 0.50 0.57 , 2.75 

Table 8.6 HR for risk of MI with cumulative use of metformin (top) or sulfonylureas (bottom) compared to diet only.  
Models 1-3 are standard pooled logistic regression with varying levels of adjustment for confounders. Model 4 is a MSM with IPTW, and model 5 a MSM with joint IPTW and IPCW. Basic adjustment – 

age, gender, calendar period of diabetes onset, smoking and alcohol Full baseline adjustment – Basic adjustment + baseline measures of: HbA1c, BMI, SBP, history of stroke (ever and in previous 3 

months), history of MI (ever and in previous 3 months), history of other CVD (ever and in previous three months), ever history of cancer, ever history of CKD, use in the previous 12 months of aspirin, 

NSAIDS, anti-hypertensive drugs or statins (all drugs entered separately). Time updated adjustment – Full baseline adjustment plus time-dependent measures of: HbA1c, BMI, SBP, history of stroke 

(ever and in previous 3 months), history of other CVD (ever and in previous three months), ever history of cancer, ever history of CKD, use in the previous 12 months of aspirin, NSAIDS, anti-hypertensive 

drugs or statins (all drugs entered separately). IPTW model – full baseline adjustment plus stabilised IPTW, where denominator model for IPTW includes all variables in time updated adjustment, and 

all baseline variables in the numerator. IPTW and IPCW – IPTW model plus joint weights for censoring, where censoring models include all baseline and time updated variables in denominator and all 

baseline variables in numerator.  
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Figure 8.3: HR curve for cumulative use of metformin (top) or sulfonylureas (bottom) vs diet only, for risk of MI. 

 

95% confidence interval range shown by grey shading. Red Line indicates HR of 1. 
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8.3.4.2 Stroke  

 

The MSMs estimated an overall increased risk of stroke for metformin use vs diet only, with a 

HR of 1.29 (1.07-1.55) for the MSM with joint IPTW and IPCW (Table 8.7, left). Standard analysis 

methods estimated a smaller increased risk of stroke for metformin use vs diet, which was not 

statistically significant. When examining cumulative medication use, there was no clear 

association between increasing length of metformin use and risk of stroke, with the HR’s 

remaining within the range of 1.2–1.4, with the exception of 3-6 months, where the HR was 

0.96. However, estimates had relatively wide confidence intervals (Table 8.8, top). Plotting the 

estimated HR curve showed that the model estimated that the risk of stroke was increased even 

further for greater than 100 months (≈ 9 years) of use. This effect was much stronger in the 

MSMs than in the standard models (Figure 8.4 top). 

For sulfonylureas, there was no evidence of an overall association with stroke for either standard 

methods or MSMs, with an overall HR of 0.99 (0.71-1.38) (MSM with IPTW and IPCW). When 

looking at cumulative use, the pattern of results for the MSMs was similar to that for metformin 

up to 2 years, but from this point onwards the elevated risk was diminished (Table 8.8). When 

looking at the continuous form of cumulative use, there was some suggestion that the risk of 

stroke may be decreased for between 4 and 9 years of exposure. This was more slightly 

prominent in the MSMs compared to the standard analysis methods, but the confidence 

intervals for all models had similar ranges. (Figure 8.4, bottom). 
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Metformin Sulfonylureas 
 

HR SE 95% CI HR SE 95% CI 

1 Basic adjustment  1.07 0.06 0.95 , 1.20 1.02 0.12 0.82 , 1.27 

2 Full baseline adjustment  1.10 0.07 0.97 , 1.26 1.08 0.13 0.85 , 1.38 

3 Time updated adjustment  1.07 0.07 0.93 , 1.22 1.04 0.13 0.81 , 1.32 

4 IPTW model  1.27 0.12 1.06 , 1.54 0.99 0.17 0.71 , 1.38 

5 IPTW and IPCW model  1.29 0.12 1.07 , 1.55 0.99 0.17 0.71 , 1.38 

Table 8.7  HR for risk of stroke with use of metformin (left) or sulfonylureas (right) compared to 
diet only.  

Models 1-3 are standard pooled logistic regression with varying levels of adjustment for confounders. Model 4 is a 

MSM with IPTW, and model 5 a MSM with joint IPTW and IPCW. Basic adjustment – age, gender, calendar period of 

diabetes onset, smoking and alcohol Full baseline adjustment – Basic adjustment + baseline measures of: HbA1c, 

BMI, SBP, history of stroke (ever and in previous 3 months), history of MI (ever and in previous 3 months), history of 

other CVD (ever and in previous three months), ever history of cancer, ever history of CKD, use in the previous 12 

months of aspirin, NSAIDS, anti-hypertensive drugs or statins (all drugs entered separately). Time updated 

adjustment – Full baseline adjustment plus time-dependent measures of: HbA1c, BMI, SBP, history of MI (ever and 

in previous 3 months), history of other CVD (ever and in previous three months), ever history of cancer, ever history 

of CKD, use in the previous 12 months of aspirin, NSAIDS, anti-hypertensive drugs or statins (all drugs entered 

separately). IPTW model – full baseline adjustment plus stabilised IPTW, where denominator model for IPTW includes 

all variables in time updated adjustment, and all baseline variables in the numerator. IPTW and IPCW – IPTW model 

plus joint weights for censoring, where censoring models include all baseline and time updated variables in 

denominator and all baseline variables in numerator.  
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Metformin  

 
1 Basic Adjustment 2 Baseline Adjustment 3 Time updated adjustment 4 IPTW 5 IPTW and IPCW 

 
HR SE 95% CI HR SE 95% CI HR SE 95% CI HR SE 95% CI HR SE 95% CI 

1- 3 months  1.33 0.20 0.99 , 1.79 1.40 0.21 1.04 , 1.88 1.14 0.18 0.84 , 1.55 1.28 0.24 0.9 , 1.84 1.26 0.23 0.88 , 1.81 

3-6 months 0.81 0.16 0.55 , 1.19 0.85 0.17 0.58 , 1.25 0.79 0.16 0.53 , 1.17 0.94 0.29 0.52 , 1.70 0.96 0.31 0.51 , 1.82 

6-12 months  1.16 0.15 0.91 , 1.49 1.22 0.16 0.95 , 1.58 1.15 0.15 0.89 , 1.49 1.39 0.27 0.94 , 2.03 1.44 0.29 0.97 , 2.15 

1-2 years  1.06 0.11 0.87 , 1.30 1.12 0.12 0.91 , 1.38 1.07 0.12 0.87 , 1.32 1.35 0.22 0.97 , 1.86 1.37 0.23 0.99 , 1.90 

2 - 5 years 1.01 0.08 0.86 , 1.19 1.07 0.10 0.89 , 1.28 1.04 0.10 0.86 , 1.24 1.20 0.16 0.92 , 1.57 1.21 0.16 0.93 , 1.58 

> 5 years 1.05 0.12 0.84 , 1.31 1.13 0.14 0.88 , 1.44 1.08 0.14 0.85 , 1.39 1.33 0.22 0.96 , 1.84 1.33 0.23 0.95 , 1.86 
 

Sulfonylureas  
 

1 Basic Adjustment 2 Baseline Adjustment 3 Time updated adjustment 4 IPTW 5 IPTW and IPCW 
 

HR SE 95% CI HR SE 95% CI HR SE 95% CI HR SE 95% CI HR SE 95% CI 

1- 3 months  1.74 0.59 0.89 , 3.38 1.81 0.62 0.93 , 3.52 1.19 0.40 0.62 , 2.31 1.12 0.45 0.51 , 2.46 1.08 0.44 0.49 , 2.41 

3-6 months 0.86 0.43 0.32 , 2.29 0.90 0.45 0.33 , 2.40 0.83 0.42 0.31 , 2.25 0.81 0.49 0.25 , 2.67 0.72 0.46 0.21 , 2.54 

6-12 months  1.32 0.40 0.72 , 2.39 1.38 0.43 0.76 , 2.53 1.33 0.41 0.73 , 2.43 1.65 0.62 0.78 , 3.46 1.61 0.60 0.77 , 3.35 

1-2 years  1.31 0.30 0.84 , 2.06 1.39 0.33 0.88 , 2.21 1.35 0.32 0.85 , 2.13 1.13 0.36 0.60 , 2.12 1.11 0.36 0.59 , 2.09 

2 - 5 years 0.91 0.17 0.63 , 1.32 0.99 0.19 0.68 , 1.45 0.97 0.19 0.66 , 1.42 1.02 0.27 0.61 , 1.72 1.00 0.27 0.59 , 1.69 

> 5 years 0.73 0.17 0.46 , 1.16 0.83 0.20 0.51 , 1.33 0.80 0.19 0.50 , 1.29 0.66 0.18 0.39 , 1.14 0.72 0.22 0.40 , 1.31 

Table 8.8 HR for risk of stroke with cumulative use of metformin (top) or sulfonylureas (bottom) compared to diet only.  

Models 1-3 are standard pooled logistic regression with varying levels of adjustment for confounders. Model 4 is a MSM with IPTW, and model 5 a MSM wtih joint IPTW and IPCW. Basic adjustment – 

age, gender, calendar period of diabetes onset, smoking and alcohol Full baseline adjustment – Basic adjustment + baseline measures of: HbA1c, BMI, SBP, history of stroke (ever and in previous 3 

months), history of MI (ever and in previous 3 months), history of other CVD (ever and in previous three months), ever history of cancer, ever history of CKD, use in the previous 12 months of aspirin, 

NSAIDS, anti-hypertensive drugs or statins (all drugs entered separately). Time updated adjustment – Full baseline adjustment plus time-dependent measures of: HbA1c, BMI, SBP, history of MI (ever 

and in previous 3 months), history of other CVD (ever and in previous three months), ever history of cancer, ever history of CKD, use in the previous 12 months of aspirin, NSAIDS, anti-hypertensive 

drugs or statins (all drugs entered separately). IPTW model – full baseline adjustment plus stabilised IPTW, where denominator model for IPTW includes all variables in time updated adjustment, and 

all baseline variables in the numerator. IPTW and IPCW – IPTW model plus joint weights for censoring, where censoring models include all baseline and time updated variables in denominator and all 

baseline variables in numerator  
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Figure 8.4: HR curve for cumulative use of metformin (top) or sulfonylureas (bottom) vs diet only, on risk of stroke.  

 
95% confidence interval range shown by grey shading. Red Line indicates HR of 1. Note: Regression for time updated covariate adjustments would not converge therefore results for this analysis not 
presented. 
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8.3.4.3 All- cause mortality  

 

The MSMs estimated overall HRs for ever use of metformin vs diet only on risk of all-cause 

mortality that were consistent with no association (HR 0.96 (0.86-1.08) for joint IPTW and IPCW, 

Table 8.9). The standard analysis methods produced similar results. The estimated relative risk 

of all-cause mortality by cumulative use of metformin is presented in Table 8.10 (top). All three 

standard analysis models produced very similar results, with estimates and 95% confidence 

intervals broadly consistent with either no association or a small protective effect for all lengths 

of exposure. IPTW and joint IPTW and IPCW models were similar to the standard analysis 

methods for greater than 6 months use of metformin, but had estimates suggestive of a small 

increased risk for early exposure to metformin, albeit with wide confidence intervals (HR 1.12, 

0.77-1.65 for <3 months, HR 1.24, 0.90-1.73 for 3-6 months). The differences between the 

standard methods and MSMs were more noticeable in the models where cumulative exposure 

was modelled as a continuous function, though the confidence intervals had broadly similar 

ranges (Figure 8.5). For the standard models, the general trend was for an early decreased risk 

that rose to no difference in risk (HR =1), then remained steady as length of exposure increased. 

In the weighted models, there was an early increased risk which declined relatively quickly to a 

small decreased risk, then declined further with greater than ≈ 7 years of exposure.  

For sulfonylurea use, all models estimated an overall increased risk of all-cause mortality 

compared to diet only, however the MSM estimated a smaller increased risk compared to the 

standard analyses, with an overall HR of 1.10 (0.91-1.33) from the MSM with IPTW and IPCW, 

compared with 1.22 (1.08-1.37) from the unweighted model with full baseline adjustment (Table 

8.9). By looking at cumulative use, it became apparent that there was a large increased risk with 

immediate exposure (1-3 months), with a HR and 95% CI of 2.11 (1.30 – 3.43) for the joint IPTW 

and IPCW model. This estimated risk declined in a dose dependent manner as length of exposure 

increased, to an HR of 0.84 (0.62-1.13) for > 5 years exposure. The standard analyses estimated 

a similar trend but the estimated HR’s were generally higher. Though the confidence intervals 

around the curves were wide, plotting the continuous HR for cumulative exposure to both 

metformin and sulfonylureas allowed the observed trend from the categorical exposure model 

to be visualised more clearly (Figure 8.5). All methods clearly suggested an immediate increased 

risk that was reduced with time over the first 4-5 years, with a smaller immediate risk in both 

MSMs and the standard analysis with time updated covariate adjustment.  
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Metformin Sulfonylureas 
 

HR SE 95% CI HR SE 95% CI 

1 Basic adjustment  0.97 0.03 0.91 , 1.04 1.47 0.08 1.33 , 1.63 

2 Full baseline adjustment  0.92 0.03 0.85 , 0.99 1.22 0.07 1.08 , 1.37 

3 Time updated adjustment  1.01 0.04 0.94 , 1.1 1.37 0.09 1.21 , 1.56 

4 IPTW model  0.96 0.06 0.85 , 1.08 1.10 0.11 0.91 , 1.33 

5 IPTW and IPCW model 0.96 0.06 0.86 , 1.08 1.10 0.10 0.92 , 1.33 

Table 8.9 HR for risk of all-cause mortality with use of metformin (left) or sulfonylureas (right) 
compared to diet only.  

Models 1-3 are standard pooled logistic regression with varying levels of adjustment for confounders. Model 4 is a 

MSM with IPTW, and model 5 a MSM with joint IPTW and IPCW. Basic adjustment – age, gender, calendar period of 

diabetes onset, smoking and alcohol Full baseline adjustment – Basic adjustment + baseline measures of: HbA1c, 

BMI, SBP, history of stroke (ever and in previous 3 months), history of MI (ever and in previous 3 months), history of 

other CVD (ever and in previous three months), ever history of cancer, ever history of CKD, use in the previous 12 

months of aspirin, NSAIDS, anti-hypertensive drugs or statins (all drugs entered separately). Time updated 

adjustment – Full baseline adjustment plus time-dependent measures of: HbA1c, BMI, SBP, history of MI (ever and 

in previous 3 months), history of stroke (ever and in previous 3 months), history of other CVD (ever and in previous 

three months), ever history of cancer, ever history of CKD, use in the previous 12 months of aspirin, NSAIDS, anti-

hypertensive drugs or statins (all drugs entered separately). IPTW model – full baseline adjustment plus stabilised 

IPTW, where denominator model for IPTW includes all variables in time updated adjustment, and all baseline variables 

in the numerator. IPTW and IPCW – IPTW model plus joint weights for censoring, where censoring models include all 

baseline and time updated variables in denominator and all baseline variables in numerator 
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Metformin  

 
1 Basic Adjust 2 Baseline Adjust 3 Time updated 4 IPTW 5 IPTW and IPCW 

 
HR SE 95% CI HR SE 95% CI HR SE 95% CI HR SE 95% CI HR SE 95% CI 

1- 3 months  0.91 0.10 0.73 , 1.13 0.92 0.10 0.74 , 1.15 0.93 0.11 0.74 , 1.17 1.12 0.22 0.77 , 1.65 1.12 0.22 0.77 , 1.65 

3-6 months 1.01 0.11 0.82 , 1.24 1.02 0.11 0.82 , 1.26 1.05 0.12 0.85 , 1.30 1.23 0.21 0.89 , 1.72 1.24 0.21 0.90 , 1.73 

6-12 months  0.84 0.07 0.71 , 0.99 0.85 0.07 0.72 , 1.00 0.90 0.08 0.76 , 1.07 0.90 0.12 0.70 , 1.15 0.91 0.12 0.70 , 1.17 

1-2 years  0.91 0.06 0.81 , 1.03 0.91 0.06 0.80 , 1.03 0.97 0.06 0.85 , 1.10 0.83 0.08 0.68 , 1.01 0.83 0.08 0.68 , 1.01 

2 - 5 years 0.98 0.04 0.90 , 1.07 0.96 0.05 0.88 , 1.06 1.03 0.05 0.93 , 1.14 0.92 0.07 0.79 , 1.07 0.93 0.07 0.80 , 1.08 

> 5 years 1.02 0.06 0.92 , 1.14 0.98 0.06 0.87 , 1.11 1.04 0.07 0.91 , 1.19 0.95 0.09 0.78 , 1.15 0.95 0.09 0.78 , 1.15 
 

Sulfonylureas  
 

1 Basic Adjust 2 Baseline Adjust 3 Time updated 4 IPTW 5 IPTW and IPCW 
 

HR SE 95% CI HR SE 95% CI HR SE 95% CI HR SE 95% CI HR SE 95% CI 

1- 3 months  2.90 0.47 2.10 , 3.99 2.53 0.42 1.83 , 3.51 1.94 0.34 1.38 , 2.73 2.12 0.52 1.31 , 3.43 2.11 0.52 1.30 , 3.43 

3-6 months 2.71 0.46 1.95 , 3.77 2.37 0.40 1.70 , 3.29 1.94 0.34 1.38 , 2.74 1.68 0.42 1.03 , 2.74 1.69 0.41 1.04 , 2.73 

6-12 months  2.43 0.31 1.89 , 3.12 2.12 0.27 1.64 , 2.73 1.96 0.26 1.51 , 2.54 1.71 0.29 1.22 , 2.40 1.71 0.29 1.22 , 2.39 

1-2 years  1.53 0.18 1.21 , 1.92 1.32 0.16 1.05 , 1.68 1.35 0.17 1.06 , 1.73 1.11 0.22 0.76 , 1.63 1.10 0.21 0.76 , 1.61 

2 - 5 years 1.28 0.11 1.09 , 1.50 1.09 0.10 0.91 , 1.29 1.27 0.12 1.05 , 1.52 1.00 0.14 0.77 , 1.31 1.01 0.14 0.78 , 1.32 

> 5 years 1.11 0.10 0.92 , 1.33 0.92 0.09 0.76 , 1.13 1.12 0.12 0.91 , 1.38 0.84 0.13 0.62 , 1.13 0.84 0.13 0.62 , 1.13 

Table 8.10 HR for risk of all-cause mortality with cumulative use of metformin or sulfonylureas (Top, bottom respectively) compared to diet only.  

Models 1-3 are standard pooled logistic regression with varying levels of adjustment for confounders. Model 4 is an MSM with IPTW, and model 5 – joint IPTW and IPCW.  Basic adjustment – age, 

gender, calendar period of diabetes onset, smoking and alcohol Full baseline adjustment – Basic adjustment + baseline measures of: HbA1c, BMI, SBP, history of stroke (ever and in previous 3 months), 

history of MI (ever and in previous 3 months), history of other CVD (ever and in previous three months), ever history of cancer, ever history of CKD, use in the previous 12 months of aspirin, NSAIDS, 

anti-hypertensive drugs or statins (all drugs entered separately). Time updated adjustment – Full baseline adjustment plus time-dependent measures of HbA1c, BMI, SBP, history of MI (ever and in 

previous 3 months), history of stroke (ever and in previous 3 months), history of other CVD (ever and in previous three months), ever history of cancer, ever history of CKD, use in the previous 12 months 

of aspirin, NSAIDS, anti-hypertensive drugs or statins (all drugs entered separately). IPTW model – full baseline adjustment plus stabilised IPTW, where denominator model for IPTW includes all variables 

in time updated adjustment, and all baseline variables in the numerator. IPTW and IPCW – IPTW model plus joint weights for censoring, where censoring models include all baseline and time updated 

variables in denominator and all baseline variables in numerator 
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Figure 8.5: HR curve for cumulative use of metformin (top) or sulfonylureas (bottom) vs diet only, on risk of all-cause mortality. 

 

 

95% confidence interval range shown by grey shading. Red Line indicates HR of 1.  



212 
 

 

8.3.4.4 HbA1c  

 

The overall estimates for differences in HbA1c are displayed in Table 8.11. A basic baseline 

adjustment in an unweighted GEE estimated HbA1c to be higher in patients on both treatments 

compared to diet only, with estimated absolute differences in HbA1c of 0.71 (0.69-0.72) and 

0.95 (0.91-0.98) for metformin and sulfonylureas respectively. Full baseline adjustment resulted 

in the same direction of difference but of a smaller magnitude. In the weighted GEE’s however, 

use of metformin and sulfonylureas were estimated to reduce HbA1c overall compared to diet 

only, with absolute differences of -0.22 (-0.24, -0.21) and -0.16 (-0.19, -0.13) for metformin and 

sulfonylureas respectively, using IPTW and IPCW. Results excluding IPCW were very similar. 

Covariate specification B produced similar results (see table 23.4, appendix 23).  

 

 
 

Metformin Sulfonylureas 
 

Estimated 
absolute 

difference in 
HbA1c (%) 

SE 95% CI Estimated 
absolute 

difference in 
HbA1c (%) 

SE 95% CI 

1 Basic adjustment 0.71 0.01 0.69 , 0.72 0.95 0.02 0.91 , 0.98 

2 Full baseline 
adjustment 

0.18 0.01 0.17 , 0.20 0.26 0.02 0.22 , 0.30 

4 IPTW model -0.25 0.01 -0.27 , -0.23 -0.16 0.01 -0.19 , -0.14 

5 IPTW and IPCW 
model 

-0.22 0.01 -0.24 , -0.21 -0.16 0.02 -0.19 , -0.13 

Table 8.11 Absolute difference in HbA1c (%) with use of metformin (left) or sulfonylureas (right) 
compared to diet only.  

Models 1-2 are standard pooled logistic regression with varying levels of adjustment for confounders. Model 4 is a 

MSM with IPTW, and model 5 a MSM with joint IPTW and IPCW. Basic adjustment – age, gender, calendar period of 

diabetes onset, smoking and alcohol Full baseline adjustment – Basic adjustment + baseline measures of: HbA1c, 

BMI, SBP, history of stroke (ever and in previous 3 months), history of MI (ever and in previous 3 months), history of 

other CVD (ever and in previous three months), ever history of cancer, ever history of CKD, use in the previous 12 

months of aspirin, NSAIDS, anti-hypertensive drugs or statins (all drugs entered separately). IPTW model – full 

baseline adjustment plus stabilised IPTW, where denominator model for IPTW includes all variables in time updated 

adjustment, and all baseline variables in the numerator. IPTW and IPCW – IPTW model plus joint weights for 

censoring, where censoring models include all baseline and time updated variables in denominator and all baseline 

variables in numerator. 

 

When looking at the effect by cumulative exposure, the unweighted models tended to estimate 

that users of metformin had higher HbA1c compared to those on diet only. The weighted models 

estimated that within 3 months, HbA1c would be lower on metformin compared to diet only. 

This reduction was greatest for between 3-6 months with an estimated difference of -0.44% (-

0.47%--0.41%). From 6-12 months onwards the estimated differences ranged between -0.17% 
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and -0.28% (Table 8.12, top). There were only small differences observed between the IPTW and 

joint IPTW and IPCW estimates.  

The two covariate specifications gave very similar results in general, with the exception of the 

first 3 months of exposure, where the categorical specification (B) estimated that HBA1c would 

still be higher in those treated with metformin for less than three months. Additionally, from 6-

12 months onwards, the estimated differences in HbA1c tended to remain larger (between -

0.29% and -0.45%) (Table 23.8, appendix 23). 

In the MSM with IPTW and IPCW, the pattern of effect with cumulative use of sulfonylureas was 

similar to that observed for metformin, though the initial drop within the first 6 months was 

greater, with an absolute difference of -0.72%, CI (-0.84 , -0.60) for 3-6 months for covariate 

specification A. Also, the rate at which this initial drop was subsequently attenuated appeared 

faster, estimating that a patient’s HbA1c rose back to that of an untreated patient between 1 

and 2 years (Table 8.12, bottom). The MSM excluding IPCW gave very similar results. The 

differences between model specifications A and B for sulfonylureas showed a similar pattern to 

that observed for metformin (see appendix 23).  

Figure 8.6 displays the estimated absolute difference in HbA1c compared to diet only when 

cumulative exposure was modelled as a continuous function, clearly demonstrating the 

changes between standard models and weighted MSMs. The results are broadly consistent 

with the results in Table 8.12, though here the maximum reduction appears to be somewhere 

between 10 and 12 months. To visualise how these results translate to predicted HbA1c 

trajectories, Figure 8.7 shows the estimated trajectories of HbA1c for a patient entering the 

study with an Hba1c of 7.5% at time 0, if they were to treat continuously with diet only, 

metformin, or sulfonylureas. The first 5 years of follow up are shown in greater detail on the 

right side of the figure. In these plots, cumulative use of medication has been modelled with 

the cubic spline parameterisation. It should be noted that since the plots start at month 1, not 

all trajectories are expected to start at 7.5% exactly. Analogous results for covariate 

specification B (categorical parameterisations for covariates) are given in figures 23.4and 23.5, 

in appendix 23 and show similar findings.  
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Metformin 

 
1 Basic Adjust  2 Baseline Adjust  4 IPTW  5 IPTW and IPCW 

 
Est* SE 95% CI Est* SE 95% CI Est* SE 95% CI Est* SE 95% CI 

< 3 month  1.06 0.01 1.04 , 1.08 0.16 0.01 0.15 , 0.18 -0.10 0.01 -0.12 , -0.07 -0.10 0.00 -0.12 , -0.07 

3-6 months 0.50 0.01 0.48 , 0.52 -0.06 0.01 -0.08 , -0.04 -0.44 0.02 -0.47 , -0.41 -0.44 0.04 -0.47 , -0.40 

6-12 months  0.59 0.01 0.57 , 0.60 0.20 0.01 0.18 , 0.22 -0.22 0.01 -0.25 , -0.19 -0.21 0.00 -0.24 , -0.18 

1-2 years  0.62 0.01 0.60 , 0.64 0.27 0.01 0.25 , 0.29 -0.20 0.01 -0.23 , -0.18 -0.18 0.04 -0.21 , -0.16 

2 - 5 years 0.65 0.01 0.63 , 0.67 0.19 0.01 0.17 , 0.22 -0.33 0.01 -0.35 , -0.30 -0.28 0.07 -0.31 , -0.26 

> 5 years 0.80 0.02 0.77 , 0.84 0.30 0.02 0.26 , 0.34 -0.26 0.02 -0.30 , -0.22 -0.17 0.01 -0.21 , -0.12 
 

Sulfonylureas 
 

1 Basic Adjust  2 Baseline Adjust  4 IPTW  5 IPTW and IPCW 
 

Est* SE 95% CI Est* SE 95% CI Est* SE 95% CI Est* SE 95% CI 

< 3 month  1.69 0.04 1.6 , 1.77 0.05 0.03 -0.01 , 0.11 -0.16 0.04 -0.25 , -0.07 -0.15 0.01 -0.24 , -0.06 

3-6 months 0.45 0.04 0.38 , 0.52 -0.48 0.04 -0.56 , -0.40 -0.73 0.06 -0.85 , -0.61 -0.72 0.00 -0.84 , -0.60 

6-12 months  0.76 0.03 0.70 , 0.83 0.28 0.03 0.21 , 0.35 -0.19 0.04 -0.27 , -0.11 -0.18 0.00 -0.26 , -0.10 

1-2 years  0.92 0.03 0.86 , 0.98 0.55 0.03 0.49 , 0.61 0.05 0.03 -0.02 , 0.11 0.06 0.00 -0.01 , 0.12 

2 - 5 years 0.88 0.03 0.83 , 0.93 0.33 0.03 0.27 , 0.38 -0.18 0.02 -0.22 , -0.13 -0.16 0.01 -0.22 , -0.11 

> 5 years 0.89 0.03 0.83 , 0.96 0.34 0.04 0.27 , 0.42 -0.22 0.03 -0.28 , -0.16 -0.20 0.00 -0.26 , -0.13 

Table 8.12 Absolute difference in HbA1c (%) for cumulative use of metformin or sulfonylureas (Top, bottom respectively) compared to diet only. 

*Est: absolute difference in HbA1c. Basic adjustment – age, gender, calendar period of diabetes onset, smoking and alcohol Full baseline adjustment – Basic adjustment + baseline measures of: HbA1c, 

BMI, SBP, history of stroke (ever and in previous 3 months), history of MI (ever and in previous 3 months), history of other CVD (ever and in previous three months), ever history of cancer, ever history 

of CKD, use in the previous 12 months of aspirin, NSAIDS, anti-hypertensive drugs or statins (all drugs entered separately). IPTW model – full baseline adjustment plus stabilised IPTW, where denominator 

model for IPTW includes all variables in time updated adjustment, and all baseline variables in the numerator. IPTW and IPCW – IPTW model plus joint weights for censoring, where censoring models 

include all baseline and time updated variables in denominator and all baseline variables in numerator. 
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Figure 8.6 Absolute difference in HbA1c (%) compared to diet only with continued use of 
metformin (black) or sulfonylureas (red).  

 

 

95% CIs given by grey shading. Straight red line indicated zero difference. Basic adjustment – age, gender, calendar 

period of diabetes onset, smoking and alcohol Full baseline adjustment – Basic adjustment + baseline measures of: 

HbA1c, BMI, SBP, history of stroke (ever and in previous 3 months), history of MI (ever and in previous 3 months), 

history of other CVD (ever and in previous three months), ever history of cancer, ever history of CKD, use in the 

previous 12 months of aspirin, NSAIDS, anti-hypertensive drugs or statins (all drugs entered separately). IPTW model 

– full baseline adjustment plus stabilised IPTW, where denominator model for IPTW includes all variables in time 

updated adjustment, and all baseline variables in the numerator. IPTW and IPCW – IPTW model plus joint weights 

for censoring, where censoring models include all baseline and time updated variables in denominator and all baseline 

variables in numerator 
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Figure 8.7 Estimated trajectory of HbA1c through time on the three treatment options for full 
follow up (left) and first 5 years only (right).  

 

 

 

Basic adjustment – age, gender, calendar period of diabetes onset, smoking and alcohol Full baseline adjustment – 

Basic adjustment + baseline measures of: HbA1c, BMI, SBP, history of stroke (ever and in previous 3 months), history 

of MI (ever and in previous 3 months), history of other CVD (ever and in previous three months), ever history of 

cancer, ever history of CKD, use in the previous 12 months of aspirin, NSAIDS, anti-hypertensive drugs or statins (all 

drugs entered separately). IPTW model – full baseline adjustment plus stabilised IPTW, where denominator model 

for IPTW includes all variables in time updated adjustment, and all baseline variables in the numerator. IPTW and 

IPCW – IPTW model plus joint weights for censoring, where censoring models include all baseline and time updated 

variables in denominator and all baseline variables in numerator.  
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8.3.5 Sensitivity analysis  

 

For most of the additional analyses performed, differences to the primary analysis results were 

small, and therefore full results are only presented in the main text for some sensitivity analyses. 

All other results comparing the estimated HRs from the primary analysis with the sensitivity 

analyses are presented in appendix 24. 

 

8.3.5.1 Age < 65 and BMI ≥ 25 at study entry  

 

Limiting the population to a younger, overweight cohort had no substantial effect on the 

estimates of effect for MI and stroke. Due to smaller sample sizes and less events, confidence 

intervals were much wider, particularly for the estimates for use of sulfonylureas. In some 

instances, no events were observed for some exposure lengths in patients using sulfonylureas 

so HRs could not be estimated. For all-cause mortality the estimates for metformin use were 

mostly consistent with the primary analysis. For sulfonylurea use, the estimated HR for risk of 

all-cause mortality were generally higher compared to the primary analysis in the shorter 

exposure categories (<3 months, 3-6 months, 6-12 months) though the estimates lacked 

precision. In the later periods, the changes compared to the primary analysis were minimal 

(figure 24.1, appendix 24). .  

The effect of metformin and sulfonylureas through time on change in HbA1c in this restricted 

population were estimated to be very similar to the primary analysis, though for 2-5 years and 

> 5 years use, where for both drugs, the reduction in HbA1c compared to diet only were slightly 

larger than in the primary analysis (table 24.1, appendix 24).  

 

8.3.5.2 No history of cancer at study entry  

 

Excluding the 178 patients who had incident cancer between time of diabetes diagnosis and 

study entry made negligible differences to the analysis for all outcomes (table 24.1 and figure 

24.2, appendix 24).  
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8.3.5.3 No previous history of MI/Stroke  

 

Excluding patients with a previous history of MI at study entry made no appreciable differences 

to estimates of risk of MI for metformin or sulfonylurea use vs diet only. Similarly, excluding 

patients with no history of stroke made negligible differences to the risk of stroke for metformin 

users. For risk in sulfonylurea users, there was some suggestion that the estimated HR’s were 

lower compared to the primary analysis, however the confidence intervals for these estimates 

were still consistent with the primary analysis estimates (figure 24.3, appendix 24). 

 

8.3.5.4 For MI and Stroke, no censoring at the beginning of the interval if an event occurs in the 

same interval.  

 

Including events in the same interval as a death, increased the number of observed events by 

53 for MI and 34 for stroke. Including an event if it occurred in the same interval as a medication 

change further increased the number of observed events by 17 for MI, and 6 for stroke. 

However, these additional events made negligible differences to the estimated treatment 

effects (figure 24.4, appendix 24). 

 

8.3.5.5 Censoring metformin users if they start sulfonylureas and vice-versa 

 

8.3.5.5.1 MI, stroke and all-cause mortality 

 

Use of IPTW (and IPCW to account for the censoring of patients initiating sulfonylureas) resulted 

in the continued decreased risk of MI (Figure 8.8, top) with use of metformin, albeit with very 

wide confidence intervals by 10 years of exposure. For stroke, the changes to the primary 

analysis were minimal, although the estimated increased risk with long term metformin use 

was much smaller in magnitude. (Figure 8.8, middle). The decreased risk of all-cause mortality 

with metformin use was more prominent for earlier follow up when patients subsequently 

starting sulfonylureas were censored, but the continued decrease in risk past 6 years observed 

in the primary analysis was not apparent, though again confidence intervals by this time were 

wide (Figure 8.8, bottom).  

For use of sulfonylureas, the numbers included in the analysis once those who subsequently 

initiated metformin were excluded were too low to estimate reliable results for MI and Stroke, 
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since numbers of events were too low. For greater than four years exposure (approximately), 

confidence intervals ranged from <0.5 to > 2, with the range spanning 0 to >10 by 7 years, 

making results uninterpretable. For earlier exposure, results were very similar to the primary 

analysis but with wider confidence limits. For all-cause mortality, the overall HR curve was 

similar to that estimated in the primary analysis (Figure 8.9), with two main differences. Firstly, 

the immediate increased risk was no longer apparent, with instead an initial decreased risk. 

However, the increased risk over the first two years was still apparent and was estimated to be 

larger than the primary analysis. 

 

Figure 8.8 Estimated relative risk of MI (top), stroke (middle) and all-cause mortality (bottom) 
according to months of metformin use from the primary analysis (left) and analysis that 

censors at sulfonylurea initiation, with updated IPCW (right). 
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Figure 8.9 Estimated relative risk of all-cause mortality according to months of sulfonylurea use 
from the primary analysis (left) and analysis that censors at metformin initiation, with updated 

IPCW (right). 

 

 

8.3.5.5.2 HbA1c trajectory  

 

For less than 5 years, which is perhaps the most appropriate time interval to consider for this 

outcome, the estimated trajectories were similar to that of the primary analysis. The main 

difference for early exposure was that the estimated effect of sulfonylureas on HbA1c reduction 

was greater compared to the primary analysis (Figure 8.10).  

 

 Excluding TIA from definition of stroke 

 

Excluding TIA from the definition of stroke made only small differences to the estimated risk of 

stroke for both sulfonylureas and metformin use vs diet only (Figure 24.5, appendix 24). 

Compared to the primary analysis, for <3 months of metformin use, the estimated slightly HR 

was lower, though still above one. More noticeably, the increased risk at 1-2 years estimated in 

the primary analysis disappeared when TIA was removed. The increased risk of stroke with >5 

years metformin use was still apparent but was smaller in magnitude. For sulfonylureas, the 

main changes from the primary analysis were for < 3 months and 1-2 years, where the risk of 

stroke was estimated to be reduced vs diet only.  
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Figure 8.10 Estimated HbA1c trajectory through time for treatment with diet only (blue), 
metformin (red) and sulfonylureas (green) from primary analysis (top), and analyses where 

patients are censored at sulfonylurea initiation (middle), or at metformin initiaiton (bottom). 
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8.3.5.6 Addition of extra covariate history for BMI  

 

Addition of a term for BMI two intervals back in the weighting models did not make any 

appreciable differences to the estimated effects of treatment on any outcomes (table 24.6, 

appendix 24).  

 

8.4 DISCUSSION  
 

8.4.1 Summary of findings 

 

This analysis applied MSMs with IPTW to estimate the causal effect of metformin and 

sulfonylureas vs diet only on the risk of MI, stroke, all-cause mortality and HbA1c trajectory 

through time.  

Compared to standard analysis methods, the MSMs estimated a more protective effect of 

metformin on risk of MI. This was most noticeable with long term exposure. A similar trend was 

observed for all-cause mortality although confidence intervals were very wide. In contrast, > 8 

years exposure to metformin was estimated to increase the risk of stroke. For sulfonylureas, 

wide confidence intervals made interpretation challenging, and overall there was no evidence 

of an association between sulfonylurea use and MI or all-cause mortality except for early 

exposure. There was some suggestion that between 4 and 8 years of sulfonylurea exposure 

decreased risk of stroke, but this effect was attenuated with longer use. For all outcomes, using 

both categorical and spline forms for covariates gave similar results, and the differences 

between MSMs with and without IPCW were negligible. 

Models investigating the impact of metformin and sulfonylureas on HbA1c trajectory estimated 

similar effects for both drugs. The standard analysis methods suggested that HbA1c would be 

higher (or the same) in patients using metformin or sulfonylureas compared to diet only. In 

contrast, the MSM estimated that those using metformin and sulfonylureas would have lower 

HbA1c by three to six months, as expected. This was consistent across all model specifications. 
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8.4.2 Comparison to the UKPDS study 

 

8.4.2.1 Time-to-event outcomes:  

 

As a randomised trial that compared metformin and sulfonylureas to standard lifestyle 

intervention, the UK Prospective Diabetes Study (UKPDS) [31] provides a useful comparison for 

the analyses conducted here . For clarity, because the results of differing covariate specifications 

were very similar, throughout this section, comparison will be made with the results of the spline 

models only (specification A).  

The UKPDS estimated an overall HR for metformin vs diet on risk of MI of 0.61 (0.41-0.89), based 

on a median follow up of 10.7 years. The equivalent joint IPTW/IPCW estimate for this analysis, 

with a median follow up time of 4 years, was 0.93 (0.73-1.18).For greater than 5 years of 

exposure, the MSM estimated a HR more consistent with that of the UKPDS (0.65 (0.42-1.01)). 

The crude event rate was also much higher in the UKPDS study, with an event rate of 11 per 

1000 person years in the metformin group, and 18 per 1000 person years in the conventional 

therapy group, compared to an overall rate of 3.9 per 1000 person years in the present analysis. 

For all-cause mortality, the UKPDS estimated a protective effect of metformin with an overall 

HR of 0.64 (0.45 – 0.91), compared to 0.96 (0.86-1.08) estimated in this analysis. The moderate 

protective effect observed here for long term exposure (HR approximately 0.80 at 10 years but 

with wide CI’s) was also inconsistent with the UKPDS study overall. The overall rate of stroke 

observed in the UKPDS was more consistent with the rates observed here. However as with MI 

and all-cause mortality, the overall HR estimates for metformin vs diet for risk of stroke were 

not consistent (0.59 (0.29 – 1.18) for UKPDS vs 1.29 (1.07-1.54) for this analysis.  

The UKPDS presented direct comparisons between sulfonylureas and diet by two different 

classes of sulfonylureas, though results for the two classes were similar. For simplicity the 

comparison here is made to the UKPDS results for chloropropamide. The estimated overall HR’s 

for MI, stroke and all-cause mortality for chloropropamide vs diet only were 0.87 (0.68-1.12) 

,1.01 (0.65-1.58) and 1.02 (0.82-1.27) respectively. The analogous estimates obtained using 

MSMs (joint IPTW/IPCW) in our analyses were 1.01 (0.68 – 1.52) 0.99 (0.71-1.38) and 1.16 (0.97-

1.40). With the exception of all-cause mortality, these results were more consistent with the 

UKPDS than those for metformin were.  

There are several possible reasons for the observed differences in estimates between UKPDS 

and the analyses conduced in this chapter. Firstly, it is likely that there is residual confounding 

in the analyses performed here, in contrast with the randomised comparison made by the 
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UKPDS. The general issue of residual confounding in terms of possible explanation for results 

will be discussed in 8.4.3 and 8.4.4.1. Potential explanations specific to UKPDS are the issues of 

differing population, follow up, and time periods between the two studies.  

The UKPDS study began in the 1970’s, and the sub study on metformin vs diet alone was 

conducted in overweight patients with newly diagnosed type 2 diabetes, aged under 65 at the 

time of randomisation. Although the younger age group would have a reduced risk of MI, stroke 

and death compared to the population studied here, the restriction to overweight patients may 

increase their risk. The sensitivity analysis performed in patients aged <65 and with a BMI ≥.25 

at study entry did not provide results that were more similar to those obtained in the UKPDS 

study. The estimated effect of sulfonylureas on all-cause mortality was more harmful in this 

restricted population, making it less consistent with UKPDS. Young overweight patients were 

less likely to be prescribed a sulfonylurea in our data, and so this result may be explained by the 

possibility that the indication for the prescription was more strongly related to risk of death in 

this sub-population, for reasons that were not fully accounted for by the included covariates. 

Overall however, the restriction in sample size led to a small number of observed events and as 

such wide confidence intervals, so it was not possible to confidently determine whether 

differences in age and BMI distribution between the two populations could explain the observed 

differences in effect estimates.  

Rates of stroke, MI and death are not constant across diabetes duration, and so the lower 

observed event rates (particularly for MI) in this analysis compared to the UKPDS, could also be 

explained by shorter follow up. This is supported by the fact that the event rates in the CPRD 

population dropped substantially when the age was restricted to <65 years at study entry. With 

a median follow up of around 4 years, these patients may not have had sufficient follow up to 

observe cardiac events, or the effect of metformin on such events.  

Finally, the calendar time period during which the two studies were based were different. UKPDS 

began follow up in the 1970s, whereas the analysis here was from 2000 onwards. As discussed 

by Ferrannini [133] statins were not licenced until the 1990s, whereas nearly 50% the population 

studied here were on statins at study entry. This may partly explain the difference in event rates. 

It is also possible that any protective effect of metformin on these outcomes was diluted due to 

high prevalence of statin use.  
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8.4.2.2 HbA1c trajectory 

 

The UKPDS also examined change in Hba1c during the study period. The authors observed 

around a 1% drop in HbA1c for metformin and sulfonylurea users in the first year to 18 months 

of follow up, before it began to rise to a point still below the baseline value at three years. In 

contrast, those on a lifestyle intervention saw a near linear increase in HbA1c of about 0.5% over 

the same period.  

The results from the MSMs obtained here were broadly similar. The absolute changes in Hba1c 

varied slightly depending on model specification but in general, both metformin and 

sulfonylureas were estimated to reduce HbA1c by around 0.5-0.8% over the first 12 months, 

followed by an increase back up to the levels of patients on diet only by around 3 years, which 

in this case was slightly higher than the baseline value (when set at 7.5%). When comparing to 

diet only, the absolute differences observed here were slightly smaller than those in UKPDS since 

the diet group were also observed to have a small reduction in HbA1c in the first year. After 3 

years of follow up, although there was still an overall trend for metformin and sulfonylurea users 

to have lower in HbA1c compared to diet only, the magnitude of these differences became less 

consistent with what was observed for this time period in the UKPDS. The results of the 

sensitivity analysis restricting to a younger overweight population gave similar results to the 

primary analysis, so remained consistent with UKPDS findings. The smaller initial absolute drop 

in HbA1c in the present analysis compared to UKPDS may be explained by adherence to 

medication. In UKPDS, as patients were enrolled in a trial, they may have been more likely to 

take their medication regularly. However, in the present study, no minimum adherence was 

required. Other studies that have examined adherence using routinely collected data have 

estimated differences in HbA1c over the first 6-12 months to be less in patients with sub optimal 

adherence. For example, in a study by Nichols et al [223], 50-79% adherence to metformin 

(based on days covered by prescriptions) was estimated to reduce HbA1c by 0.45% compared 

to 0% adherence, which, assuming diet only is similar to 0% adherence, is consistent with the 

change observed in our analyses.  

 

8.4.3 Comparison between standard methods and MSMs  

 

In contrast to the analysis of metformin and cancer, the difference in effect estimates between 

standard analysis methods and the MSMs were more noticeable for the CVD, morality, and 

HbA1c outcomes considered in this chapter. The most substantial difference was between 
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models for longitudinal HbA1c. Prior values of the HbA1c are themselves a time-dependent 

confounder, and therefore as was observed, a standard adjustment for baseline confounders 

(baseline HbA1c in particular) will estimate a relative difference in HbA1c between those treated 

and untreated which makes treatment look ineffective or harmful, because those treated after 

baseline have higher HbA1c. However, the MSM estimated that that both metformin and 

sulfonylureas reduced HbA1c compared to diet only, most effectively over the first 12 months 

of exposure. While acknowledging that the actual effect estimates of the MSM may still lack 

precision, or have small residual bias, a large difference in effect estimates in the expected 

direction between the two analysis methods serves as good evidence that use of MSMs in the 

diabetes context can estimate known effects in the presence of strong time-dependent 

confounding.  

The results for risk of MI with prolonged metformin use, although not as prominent, also add 

weight to this conclusion. The analyses in section 8.3.2, suggested that higher HbA1c in the 

previous interval was predictive of higher risk of MI. With high HbA1c also being a strong 

predictor for metformin initiation, the standard analysis would be expected to bias the effect 

estimate in the direction of a more harmful effect for both drugs. Compared to all 3 standard 

analysis methods, the estimates from the MSMs were more indicative of protective effect of 

metformin, suggesting that the MSM was performing as would be expected. In contrast, there 

were less clear differences between models for the effect of sulfonylurea use on MI. Other time-

dependent risk factors for MI such as SBP, BMI, and statin use that were also included may also 

have affected the difference between the two models. In particular, obesity (as measured here 

by BMI) is inversely associated with sulfonylurea use and positively associated with risk of MI 

[224]. The opposite direction of confounding for BMI and HbA1c could explain the lack of clear 

effect of the weighting process on these estimates.  

For stroke, the changes between the MSM and standard analyses were not in the expected 

direction. Existing literature would suggest that higher values of both BMI and Hba1c would 

increase the risk of stroke [225-227]. Therefore, for both metformin and sulfonylureas, the 

direction of time-dependent confounding would be expected to be the same as for MI. However, 

in general the same patterns were not observed and the HRs for metformin suggested a more 

harmful effect in the MSM compared to the standard analysis. It is possible that the changes are 

random, since confidence intervals were relatively wide. The unexpected direction of 

confounding could also be due to the use of an ITT principle, in that by the time that the 

increased risk of stroke became most prominent, patients appearing to remain on metformin 

had actually intensified to joint therapy with sulfonylureas and so had an increased risk of stroke 
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compared to patients still treating with diet only. The observed reduction in the magnitude of 

the increased stroke risk for long term metformin users when an as treated approach was taken 

(see 8.3.5.5) supports this possibility, but a small increased risk was still observed in this analysis, 

albeit with wide confidence intervals. It is also possible that the definition of stroke was not 

precise enough, since different kinds of stroke have slightly different risk factors. This limitation 

will be discussed in more detail in 8.4.5.2.  

In contrast to non-fatal events such as MI and stroke, it is possible that being at high risk of death 

in the early stages of diabetes could reduce the likelihood of initiating treatment, even if the 

patient had a high HbA1c. In a standard analysis, this may result in a protective effect of short 

term treatment. The standard analysis estimated that there was a small decreased risk of death 

with metformin use for 0-3 and 3-6 months of exposure, while the MSM suggested a small 

increased risk. This change in effect is consistent with the removal of confounding due to 

extreme frailty, though the harmful effect of metformin (albeit with wide CIs) estimated by the 

MSM may suggest further residual confounding in the other direction. The same direction of 

confounding for early use may also be expected for sulfonylureas, but this was not observed. 

The standard analysis estimated a substantial harmful effect of early sulfonylurea use, which 

was reduced but not removed by the IPTW. This could suggest instead, that those at greatest 

risk of mortality in the short term are treated with sulfonylureas rather than metformin. Such 

an observation may be explained by confounding by unmeasured factors that indicate severe 

illness, one of which may be severe chronic kidney disease. Due to minimal numbers of patients 

with stage 4 or 5 CKD initiating metformin, presence of chronic kidney disease was dichotomised 

into none, or stage 3, 4 and 5 combined. Therefore, patients with CKD at time of treatment 

initiation who started metformin over sulfonylureas were more likely to have stage 3 CKD, and 

may be less likely to die than patients initiating sulfonylureas that have stage 3, 4 or 5 CKD. A 

simple descriptive investigation (see appendix 13) showed that 1.25% of person months in which 

a sulfonylurea was initiated were classified as stage 4 or 5 CKD. This is in contrast to 0.33% of 

person time prior to any treatment initiation (i.e. 0.33% of all “diet only” person time). 

Additionally, although the actual numbers were small, 0.007 deaths per person month (6/842) 

exposed to sulfonylureas with any CKD were observed in the first 12 months of follow up, in 

contrast to 0.003 per person month on diet only with any CKD (125/36169). Two of the 6 deaths 

observed among users of sulfonylureas were in stage 4 or 5 CKD, compared with only 11 of the 

125 deaths among those on diet only. These findings support the possibility that later stage CKD 

may partly explain the observed early risk of death with sulfonylurea use. In addition, although 

severity of CKD may also be associated with an increased risk of MI and stroke, this may be 
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accounted for by other covariates in the weighting models such as use of statins, use of anti-

hypertensive medications, and history of CVD, meaning that the inability to perfectly adjust for 

CKD stage is less likely to be problematic for the other outcomes. It is possible that the results 

from observational studies [125] discussed in chapter 3 that found a similar harmful effect of 

sulfonylureas when compared to metformin could have a similar explanation. 

 

8.4.4 Validity of assumptions  

 

8.4.4.1 No unmeasured confounding  

 

It is possible that the MSMs fitted here were affected by some residual or unmeasured 

confounding, particularly for all-cause mortality (as discussed in the previous paragraph). In 

addition to the possibilities discussed above, other unmeasured variables discussed in the 

previous chapter, such as exercise and smoking quantity, are known to be associated with MI, 

Stroke and mortality [228, 229]. Additionally, cholesterol is also a strong risk factor for 

cardiovascular disease and may also influence a GPs decision to initiate treatment, but was not 

included as a covariate in these analyses. Although measures of HDL and LDL cholesterol are 

available in the CPRD, there was concern over further reduction in numbers due to requiring 

complete data before treatment initiation. Omission of variables such as diet, exercise and 

cholesterol levels may have also affected how well the censoring weights were able to adjust for 

treatment switching in the sensitivity analysis where patients were censored at their first change 

after first line treatment, since all these factors could plausibly influence how quickly a patient 

needs to intensify. Another issue is the lack of detail in the adjustment for some of the measures 

of concomitant medication, such as the dosage or length of exposure to statins. 

 

8.4.4.2 Model misspecification 

 

To see whether different specifications of covariates in the models may affect the estimated 

treatment effects, both spline forms and categorisations of model parameters were used in the 

treatment, censoring and outcome models. There were no large differences between 

categorical and spline models, but a few small differences were observed, which may suggest 

issues with model misspecification. For example, in general, lower HRs were estimated for both 

metformin and sulfonylureas in the categorical models for all-cause mortality (see appendix 23, 

tables 23.3 and 23.7), which, for example, would be consistent with residual confounding by 
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age, since younger patients are more likely to be treated and older patients are at higher risk of 

death.  

There may also have been some issues of misspecification with the spline parameterisations, 

since the same splines for baseline covariates and time were used in the model for the weights 

and outcome model, and these parameterisations were based on the association with 

treatment. As explained in 8.2.5.2.2, it was felt that this would be preferable for ease of data 

management. The issues with this have been previously discussed (see section 7.4.3.3). As 

explained in 8.2.5.2.2, with the exception of baseline BMI for all-cause mortality, which was re-

parameterised accordingly; a simple check suggested that this approach was unlikely to have 

caused serious model misspecification (see appendix 21).  

The models for the weights assume that full covariate history is modelled. In this analysis, 

baseline, and the most current value of time updated covariates were included. For HbA1c, a 

further variable to represent the value two intervals back was also included after observing that 

it was also predictive of outcome (see section 8.3.2). However, no further variables for covariate 

history were considered. Although the reason for this was due to concerns over collinearity due 

to relatively infrequent updating of covariate values, it is acknowledged that by only considering 

more recent history of covariates, that full covariate history may not have been perfectly 

modelled, and as such any time-dependent confounding not perfectly removed. 

It was observed that there were minimal differences between the MSM with IPTW and IPCW, 

and IPTW only. For purely administrative censoring, this seems reasonable since there is no clear 

reason why this could be associated with risk of outcome. However, one reason for censoring 

was if treatment was intensified to something other than metformin or a sulfonylurea. This 

might be important since more severe diabetes would likely be predictive of all outcomes, and 

of treatment intensification. One possibility is that the censoring model was poorly specified. 

For example, although current treatment was included in the censoring model, time on 

treatment was not. However, since the number of patients censored for this reason was 

relatively small, the impact of such misspecification is likely to be minimal. As shown in chapter 

6 (see tables 6.1), 86% of patients who initiated metformin as a first line therapy intensified to 

sulfonylureas, and 70% of patients who initiated sulfonylureas intensified to metformin as their 

second line treatment. Therefore, the censoring at other treatment was predominantly 

reflecting censoring at third line intensification, which was only observed during follow up to all-

cause mortality for 15% of the population (see section 6.3.1).  
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Finally, the MSM with ITPW assumes that the full treatment history is modelled in the outcome 

model. To thoroughly investigate the effect of treatment history, both current treatment and 

cumulative treatment were considered in separate models. Results suggested that current 

treatment alone was not sufficient to fully describe treatment history in terms of the effect of 

treatment, but since other studies e.g. UKPDS present single HR’s for treatment effect, it was 

still felt useful to estimate the effect of a binary current treatment effect for comparison.  

 

8.4.4.3 Positivity 

 

The general issues around the positivity assumption (as discussed in 7.4.3.4) also apply here. 

More specific to this analysis, it was noticeable that the initial distribution of the weights was 

much improved compared to the previous chapter, in that the maximum weights, and as such 

the mean of the weights were smaller. It is possible that this is due to the fitting of separate 

treatment models by calendar period, and because only patients diagnosed after the year 2000 

were included. However, there were still some extreme weights observed and so truncation was 

still necessary. It was also noticeable that the categorical model specification had a lower mean 

for the untruncated stabilised IPTW, suggesting that this coarser categorisation was further 

reducing issues with positivity, but the 99th percentiles were similar between specifications. 

Once the truncation was applied therefore, the differences between the weights was minimal, 

which could explain the small differences observed between covariate specifications, and it is 

acknowledged that such a truncation may have removed the benefit of using the categorical 

specification to obtain less extreme weights  

 

8.4.5 Other limitations 

 

8.4.5.1 Visit frequency 

 

The implications of GP visit frequency being potentially dependent upon underlying health, for 

weight estimation and for the overall interpretation of studies using EHR data, have been 

discussed in detail in the previous chapter (see section 7.4.4), and the issue may also have 

affected this analysis. It is possible that frail patients at risk of death may be less likely to visit 

their GP for routine care as they are too weak to attend. This may also prevent them from 

receiving treatment, meaning that the issue of non-attendance may be more problematic for 

the outcome of death. As an example, patients diagnosed with diabetes who subsequently 
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become ill may then be unable to visit the GP for diabetes related care. If so, they would have 

no updated records to accurately predict risk of death, and would also be unable to receive 

diabetes treatment. Equally, frail patients may enter hospital care so their prescribing may move 

away from the GP (described by Suissa as immeasurable time bias [230]). It is conceivable 

therefore, that that the trend towards a protective effect of long term use of metformin and 

sulfonylureas on all-cause mortality could be residual confounding driven by patients who have 

a diagnosis for diabetes but then become unable to attend/enter hospital care and subsequently 

die. 

The results of a repeated measures GEE may also be affected by visit frequency issues. Using an 

unbalanced repeated measures model for the MSM means that the HbA1c trajectory is based 

only on patients who are attending the GP. However, the weighting uses LOCF for HbA1c values. 

Therefore as with the other outcomes, it is possible that the weighting does not appropriately 

balance the effect of the time-dependent covariates on HbA1c trajectory between the different 

treatment groups. Non-attending patients may have worsening HbA1c because their 

nonattendance is reflective of insufficient diabetes management. By not visiting, they cannot be 

treated, and therefore by the time they do visit the GP, remaining untreated will estimate higher 

HbA1c. In contrast, regular attendance will likely pick up changes in HbA1c that indicate the need 

for treatment, which will result in better HbA1c control in those treated. This issue would also 

affect the standard analyses, however it could be amplified in the weighted MSM if, for example, 

patients not attending are more likely to be upweighted based on the covariate values being 

carried forward. This will depend on where non-attending subjects start in terms of the HbA1c 

scale and other covariates, and whether the assumed trajectory of HbA1c while not attending is 

correct, making the direction of bias difficult to predict. Having said this, it is reassuring that the 

change in estimates with the MSMs compared to the standard analysis is consistent with what 

would be expected in the presence of time-dependent confounding and that the estimated 

trajectories in the MSM were broadly consistent with what has been previously observed in 

trials, which suggests that the issue of potentially differing visit schedules has not severely 

affected this analysis.  

 

8.4.5.2 Outcome definitions  

 

Identification of patients experiencing the outcomes of interest was based solely on the 

information provided in the primary care data files from CPRD. A study by Herrett et al [231] 

showed that this may underestimate the incidence of MI in the general population by 
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approximately 25% compared to using linkage with disease registries and Hospital Episode 

Statistics. This is also likely to be true for stroke, and is an acknowledged limitation of this study 

in terms of reduced precision. However, there is no clear reasoning to suggest the 

underestimation would be systematically different between treatment groups, so this is unlikely 

to have caused serious bias. Secondly, in a diabetic population, patients are more likely to have 

contact with their GP and therefore get the events recorded, so the underestimation may be 

lower.  

The rate of MI in particular was observed to be much lower in the present study than in the 

UKPDS study. As already discussed in 8.5.2, this may be due to the effects of statin use and 

shorter follow up. Herrett et al [231] estimated the crude incidence of MI in the general 

population to be 1.87 per 1000 person years when estimated using CPRD primary care data only, 

in the period from 2003-2009. A second study by Shah et al [18] aimed to estimate the relative 

risk of various cardiovascular events between diabetes and non-diabetes, finding an increased 

incidence of non-fatal MI (HR 1.54 (1.42 – 1.67)) in patients with diabetes compared to patients 

without diabetes. A different study estimated this relative risk to be closer to 2 for both fatal 

and non-fatal MI in subjects with no previous history of MI [232]. Considering these results 

together would give a rough incidence of MI in a diabetic population of 2.87 per 1000 person 

years (assuming a relative risk of 1.54), to 3.4 per 1000 person years (assuming a relative risk of 

2). The estimate of crude incidence of both fatal and non-fatal MI observed in the present study 

of 3.9 (3.6 – 4.1) per 1000 person years is roughly consistent with these studies, when also 

accounting for the fact that patients with previous history of MI were included, which will 

increase the incidence.  

Another limitation of these analyses was the broad definition used to define stroke. Inclusion of 

TIA may not have been appropriate since it is a less severe event, which may be poorly recorded 

and potentially misclassified in primary care records. Sensitivity analysis showed that exclusion 

of TIA as a stroke event did not materially change the effect of either metformin or sulfonylureas 

on overall stroke risk, except for 1-2 years of exposure, where the estimated HR was reduced 

for both drugs.  

The definition of stroke also combined ischaemic and haemorrhagic stroke. The same study by 

Shah previously mentioned [18] also looked at the risk of different types of stroke between 

patients with and without diabetes. They found that the incidence of ischaemic or unspecified 

stroke was increased in patients with diabetes, but that risk of subarachnoid haemorrhage was 

lower in patients with diabetes (HR 0.48, (0.26-0.89)). The authors also found that the risk of 

intracerebral haemorrhage was similar between patients with and without diabetes, particularly 
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for those aged less than 75. It is possible that these differences between stroke types may also 

be relevant for comparisons within patients with diabetes on different treatments, for example 

if use of metformin alters the risk to that more reflective of a patient without diabetes. The 

analyses of other outcomes are less likely to be affected by the combination of different types 

of stroke, since in general, history of any CVD event increases the risk of a future event. 

 

8.4.5.3 Follow up time  

 

As in the previous chapter, the relatively short follow up time and restriction to newly diagnosed 

diabetes may have limited the possibility of capturing the full effects of treatment on outcomes 

such as all-cause mortality, MI and Stroke. Although follow up was lengthened by allowing 

patients to switch between metformin and sulfonylureas, precision of the estimated treatment 

effects for long term exposure was still low. This limited the ability to draw firm conclusions 

about the effects of treatment through time. For longitudinal HbA1c, the effect of treatment is 

more short term, so insufficient follow up was less of a limitation. It should be noted that the 

interpretation of the estimated treatment effect was altered by allowing switches between the 

two treatments of interest. The primary analysis estimated the effect of being prescribed 

metformin (or a sulfonylurea) as a first line therapy compared to remaining untreated. This 

differs to the sensitivity analysis that censored at switch from metformin to sulfonylureas or vice 

versa. Here, the analysis estimated the effect of being prescribed metformin (or a sulfonylurea) 

as a first line therapy compared to diet only, where patients remain on metformin (or a 

sulfonylurea) only for their entire follow up.  

 

8.5 CHAPTER SUMMARY  
 

MSMs with IPTW were applied to estimate the causal effect of metformin and sulfonylurea use 

vs diet only on the risk of MI, stroke, all-cause mortality and HbA1c trajectory through time. The 

primary analyses indicated that long term use of metformin may be protective against incidence 

of MI and all-cause mortality, though confidence intervals were wide. In subsequent sensitivity 

analyses where patients were censored if they switched from metformin to a sulfonylurea, the 

estimated long term protective effect of metformin on mortality was reduced, though overall, 

results remained consistent with a beneficial effect. There was no strong suggestion that 

sulfonylurea use affected risk of MI in either direction. As has been observed in previous studies, 

standard analysis methods estimated a large increased risk of all –cause mortality with 
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sulfonylurea use, which was reduced, but not entirely removed with use of the MSMs. It is 

probable that residual confounding explains this observation, though the possibility of a harmful 

acute effect cannot be excluded. There was also some suggestion that long term metformin use 

increased the risk of stroke. This effect was somewhat reduced with removal of TIA from the 

outcome definition, and when time on dual treatment with sulfonylureas was excluded. Further 

work is required to understand the possible reasons for this.  

In contrast with the previous chapter on metformin and cancer, use of the MSMs to control for 

time-dependent confounding appeared more effective for analysing the outcomes presented in 

this chapter. This was particularly noticeable for modelling longitudinal HbA1c, where the use 

of the MSM recovered the expected findings that both metformin and sulfonylureas reduced 

HbA1c compared to no treatment. The large difference in effect estimates in the expected 

direction between the standard and causal analysis methods for examining HbA1c trajectory 

serves as good evidence that use of MSMs in the diabetes context can recover plausible drug 

effects in the presence of strong time-dependent confounding. For outcomes where the causal 

pathway between treatment and outcome are predominantly indirect and long term, residual 

confounding is likely to be an issue, and more long term data than was available here may be 

needed to draw confident conclusions.  
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9 DYNAMIC MARGINAL STRUCTURAL MODELS TO COMPARE HBA1C 

INITIATION THRESHOLDS FOR FIRST LINE TYPE 2 DIABETES 

TREATMENTS  
 

9.1 INTRODUCTION  
 

Current treatment guidelines in the UK suggest initiation of first line diabetes therapy if HbA1c 

cannot be controlled at under 6.5% with a diet and lifestyle intervention [13]. However, the 

review of literature in section 3.3 of this thesis suggested that there was no clear evidence 

supporting this specific threshold. Further to this, a direct comparison of alternative first line 

initiation strategies based on HbA1c monitoring could not be found within the search of 

published literature. As described in section 4.5, dynamic marginal structural models allow 

comparisons of alternative dynamic strategies in observational data sets, provided there are no 

unmeasured confounders of the association between strategy compliance and outcome.  

In the previous chapter, use of weighted MSMs for comparison of static first line treatment 

strategies showed that initiation of metformin or a sulfonylurea was associated with subsequent 

lowering of HbA1c during follow up in comparison to diet only. There was also some suggestion 

that metformin and sulfonylureas may affect risk of MI, stroke and all-cause mortality, but as 

discussed (see section 8.4), there were limitations to these analyses and the estimated effect of 

treatment on some outcomes lacked precision. In addition, the previous analyses did not 

examine dynamic strategies and questions about when to initiate treatment. Given that current 

treatment guidelines are predominantly based around HbA1c thresholds, comparison of 

dynamic strategies are highly clinically relevant. Comparison of dynamic strategies can also 

overcome issues of positivity violations if the strategies to be compared are observed to have 

reasonable compliance. 

The following analyses aim to compare different thresholds of HbA1c for initiation of first line 

treatment, with regard to a) the time taken to reach target HbA1c, and b) the relative risks of 

MI, stroke and all-cause mortality. Results of such analyses may have implications for 

management and monitoring of early stage T2DM.  
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9.2 METHODS  
 

9.2.1 Study population  

 

The study population was the broadly the same as in the previous chapter (see sections 8.2.1 

and 8.3.1). Briefly, it consisted of patients with newly diagnosed type 2 diabetes from the CPRD, 

diagnosed from the year 2000 onwards. As before, patients entered the study at the earliest 

time after date of diabetes diagnosis that they obtained complete data (see section 4.4.2.1) and 

were considered at risk in the analysis for a maximum of 10 years until the outcome of interest, 

death, transfer out, initiation of any treatment other than metformin or sulfonylureas, or end of 

data collection (January 2016). A key difference was that for the dynamic MSMs, only patients 

who were treatment free at study entry (n=49,750) were included. This was because when using 

unstablised weights (as described in 4.5.3.3), it is not necessary to adjust for baseline 

confounders in the dynamic MSM, as this is done by the weighting. If patients treated from study 

entry were included, then the baseline covariate adjustment in the MSM (see section 7.2.5) 

would have been necessary, therefore it was decided for simplicity that they should be excluded.  

 

9.2.2 Defining strategies for comparison 

 

For this analysis, the dynamic strategies to be compared were of the form “treat with metformin 

or a sulfonylurea when HbA1c first rises above 𝒙%” with variable 𝑥. Using the same ITT style 

approach to the primary analysis in chapter 8, switches between metformin and sulfonylureas 

after initial initiation were allowed, meaning that the strategy definition could be more precisely 

defined as “treat with metformin or a sulfonylurea when HbA1c first rises above 𝑥 % and 

continue with either or both medications”. The choice to allow treatment with either metformin 

or a sulfonylurea was made to allow greater numbers to be compliant to the different strategies. 

In doing this, we made the assumption that both drugs have the same effect on the outcome of 

interest. Since the results of the previous chapter suggested this may not be the case for CV 

outcomes and mortality, sensitivity analyses were performed to evaluate metformin only 

initiation strategies (see 9.2.7). 

As explained previously (see section 4.5.4.1), the values for initiation thresholds that can be 

investigated (denoted 𝑥) depend upon what is actually observed. If all GPs abide strictly to the 

current guideline of 6.5%, then there will be only one value for 𝑥  with which patients are 

compliant. It was decided to aim to look at strategies within the range of 6.5-10%, as this was 
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considered a clinically relevant range, with initial descriptive analysis used to determine whether 

the observed data would allow this range of thresholds to be investigated. For simplicity, 

compliance with a strategy was based only on first line initiation. If a patient initiated treatment 

in line with the strategy under consideration, they were considered compliant for the rest of 

their time at risk. As in previous chapters, censoring at initiation of medications other than 

metformin or sulfonylureas was treated as loss to follow up rather than subsequent 

noncompliance. For the thresholds of 6.5, 7, 8, 9 and 10%, the number of patients compliant 

with each strategy through time (i.e. still compliant and still at risk at a given time), and the 

overall proportion of patients compliant to each strategy up to and including the point of 

treatment initiation, referred to as “overall compliance” were calculated. Any strategies with 

low overall compliance, as defined by <10%, were removed from the set of strategies to be 

investigated further. Ideally, many values for 𝑥 over a particular range would have been used to 

model the strategies as a continuous function in order to identify optimal initiation thresholds. 

However, due to the size of the data set, only a limited number of strategies were considered 

and therefore a categorical variable was used.  

 

9.2.3 Outcomes of interest 

 

Four outcomes of interest were examined in this analysis. The outcomes of MI, stroke and all-

cause mortality have been previously described (see 8.2.3). In the previous chapter, long term 

HbA1c was examined as a repeated measures outcome. In the present chapter, “achieving 

target HbA1c of 6.5%” was instead examined as a time to event outcome, as it was felt this 

would have a more useful clinical interpretation. For example, faced with a patient with an 

HbA1c just over 6.5%, it may be beneficial to have the flexibility to trial a lifestyle intervention 

in the knowledge that delaying treatment, perhaps to 8%, would not prolong the overall time 

to reaching their target. For this outcome, patients with initial HbA1c below or equal to 6.5% 

were excluded. As an initial descriptive analysis of this new outcome, crude incidence of 

achieving target HbA1c through time was calculated, and the associations between the 

covariates previously specified in 8.2.4 and outcome were examined via time to event analysis. 

As in the previous chapter (see sections 8.2.5.1 and 8.3.2) the association between covariates 

and outcome were considered in turn, and were adjusted for time-varying diabetes medication 

to ensure the association was not solely due to medication being on the causal pathway 

between the covariate and outcome. The range of strategies to be compared was restricted to 

7, 8 9 and 10%, because for this particular outcome, the strategy of “treat when HbA1c raises 
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above 6.5%” would be equivalent to “treat from study entry” and therefore no longer 

dynamic.  

 

9.2.4 Weighting models 

 

9.2.4.1 Covariate selection  

 

As with the standard MSM, application of dynamic MSMs relies on identifying a set of 

covariates that sufficiently adjust for confounding of the causal association between 

compliance to a particular strategy and outcome. As explained in section 4.5.3.3, the model for 

probability of compliance is equivalent to the model for probability of treatment initiation, but 

to avoid ambiguity, in this chapter this model will be referred to as the “weighting model” and 

the weights referred to as “inverse probability weights (IPWs)”. For the outcomes of MI, stroke 

and all-cause mortality, which have already been examined in the previous chapter, the same 

set of covariates were used in the weighting models. Specifically, the models included age, 

gender, calendar period of diabetes onset (pre or post 2005), smoking status, alcohol 

consumption, use in the previous year of anti-hypertensive drugs, statins, NSAIDs or aspirin 

(baseline and time updated); previous history of any CVD, stroke, MI, CKD or cancer (baseline 

and time updated); HbA1c, BMI and SBP (baseline and time updated). These factors were also 

used in the previous chapter for the outcome of HbA1c trajectory (see sections 8.2.4 and 

8.3.2), and are also likely to affect achieving target HbA1c of 6.5%. Based on this assumption 

and given the results of the initial descriptive analyses of observed associations with outcome 

(9.3.1), it was decided to use the same set of covariates for the analysis of time to target 

HbA1c.  

 

9.2.4.2 Covariate form  

 

Given the size of the data set and the need to use bootstrapping to obtain confidence intervals 

(as described in section 4.5.4.4), it was decided it would not be computationally practical to 

estimate weights or treatment effects for multiple covariate forms. In previous analyses 

(chapters 7 and 8), minimal differences in estimates of effect were observed between models 

using simple categorical variables, and more complex spline functions for continuous 

covariates. Therefore, for simplicity, only one set of covariate specifications was used in this 

analysis. In the weighting models, time since study entry and time between diagnosis and 
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study entry were entered as natural cubic splines with 5 knots (at 1, 10, 24, 48 and 120 

months) and 4 knots (at 0, 1, 3 and 120 months) respectively, as previously specified (see 

8.2.5.2.1 and appendix 20). HbA1c, BMI and SBP were categorised as in previous chapters, for 

both baseline and time updated values. Because age is strongly associated with cardiovascular 

outcomes in particular, age was categorised more finely than previously, in 10-year age bands 

between 45 and 75. <45 and >=75 remained as single categories due to a smaller number of 

patients in these age groups.  

 

9.2.4.3 Weight estimation 

 

Unstabilised weights were estimated in the non-expanded population as described in section 

4.5.4. As the strategy of interest did not distinguish between metformin and sulfonylureas, the 

weighting model was fitted using logistic regression (outcome variable 0: no treatment, 1: 

initiated metformin or sulfonylureas). Due to negligible differences in estimates of effect when 

including inverse probability of censoring weights to account for informative censoring in 

previous chapters, censoring due to death, transfer out, end of data collection, or initiation of 

treatment other than metformin/sulfonylureas was not adjusted for using additional weighting 

in this analysis. This made the assumption that these censoring events were non-informative. 

Therefore, the resulting estimates could still be interpreted as the effects of each strategy that 

would have been observed had all patients initiated their first line therapy with metformin or a 

sulfonylurea in line with the strategy, and remained on one or both of these medications until 

the event of interest, or for 10 years, which was the maximum follow up period considered 

(see section 8.2.1). As in the previous chapter, the IPW’s were truncated at the 99th percentile.  

 

9.2.5 Addition of a grace period 

 

As explained in section 4.5.5, greater compliance with the strategies of interest may be 

observed by extending the period in which treatment initiation can occur after a raised HbA1c 

measurement. In the analysis described above, a one month grace period was assumed. In the 

context of primary care, an additional grace period may be necessary to allow for factors such 

as patient indecision or delayed test results causing delays to treatment initiation.  

HbA1c is a measure of blood glucose control over a time scale of approximately 3 months. 

Longer grace periods than this would increase the possibility that HbA1c (and other risk factors 
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for the outcome) could have changed by the end of the grace period. Therefore, 3 months was 

considered a reasonable choice for the maximum grace period. The decision of how far to 

extend the grace period was made by looking at how much compliance through time (the 

proportion of patients still at risk at a given time who were still compliant) was observed to 

increase for each strategy when extending the grace period in unit increments from 1 to 3 

months. The additional grace period to be considered (either 2 or 3 months) was chosen as 

that which was observed to have the greatest increase in compliance compared to a one 

month grace period.  

 

9.2.6 Fitting the dynamic MSM   

 

For each treatment strategy identified (see section 9.3.2) each patient’s data were replicated, 

and the patient censored at the end of the interval in which they became noncompliant with 

the strategy, as described in 4.5.4.3. Initially, compliance was defined with a one month grace 

period. The analysis was repeated allowing a grace period of three months, which was the 

value chosen based on the investigations described above (see section 9.3.3).  

Since all outcomes were time to event outcomes, the dynamic Cox MSM was approximated 

using pooled logistic regression as outlined in section 4.5.4.4. The strategies for comparison 

were entered as a categorical variable, with the current guideline of 6.5% taken to be the 

reference category, except for the outcome of reaching target HbA1c, 7% was taken as the 

reference category since as previously explained, 6.5% was not included.  

Time since study entry was modelled with a natural cubic spline. For MI, stroke and all-cause 

mortality, the same spline parameterisation from the previous chapter was used (specifically, a 

cubic spline with 5 knots at 1, 10, 24, 48 and 120 months). For time to target HbA1c, to allow 

more flexibility earlier in time (as suggested by initial investigations in 9.3.1), five evenly 

spaced percentile knots were used (1, 3, 6, 15, and 45 months).  

The model included an interaction term between time since study entry and strategy. This was 

because, as explained in section 4.5.4.4, unless the risk of outcome is the same between the 

strategies, any difference between strategies cannot be constant through time. To provide 

easily interpretable estimates of the relative differences between strategies through follow up, 

a categorical term for time since study entry was used to model this interaction. This 

parameterisation for time since study entry was included the model in addition to the cubic 

spline parameterisation described above. The relative effect of each strategy on risk of each 
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outcome was estimated for 0-6 months, >6-12months, >1-2 years, >2-3 years, >3-4 years and 

>4 years after study entry. These categorisations were initially made with the outcome of time 

to target HbA1c in mind, as this is a shorter term outcome, and the number of events observed 

after 4 years of follow up was low (see 9.3.1). Splitting the first year into two 6 month intervals 

was also relevant for the CV outcomes to detect possible residual confounding due to 

immediate risk of the event close to the time of diabetes diagnosis. For example, this could 

occur if immediate risk of death not captured by the covariates in the model had prevented a 

patient from initiating treatment regardless of their HbA1c.  

As well as estimation of relative effects of strategies, cumulative incidence at 1, 2 and 4 years 

post study entry was estimated for each strategy. To calculate smooth cumulative incidence 

curves to 10 years, a separate model was fitted where the categorical form of time was 

removed, and the interaction between time and strategy was fitted using the cubic spline term 

for time.  

For each outcome, the dynamic MSM included only time, treatment strategy and the 

interaction between them (parameterised as described above), since the unstabilised weight 

also adjusts for baseline covariates. To assess the impact of the weighting on the estimated 

effects of the dynamic strategies, an unweighted model was also fitted in the expanded data, 

with adjustment for baseline covariates. This will be referred to as the “unweighted analysis”.  

Confidence intervals for the hazard ratios and cumulative incidence at 1, 2 and 4 years from 

study entry were obtained via bootstrapping with 200 replications (see 4.5.4.4), stratified by 

calendar year of diagnosis. The cumulative incidence curves were plotted without confidence 

intervals. To reduce computation time, confidence intervals were not obtained for the 

cumulative incidence estimates in the unweighted analyses.  

 

9.2.7 Sensitivity analyses  

 

The sensitivity analyses described below were carried out for the dynamic MSM only with a 

one-month grace period.  

 

9.2.7.1 Defining compliance as initiation of metformin only  

 

The overall strategy of interest for the main analysis did not distinguish between initiating with 

metformin or a sulfonylurea. To check whether possible differing effects of metformin and 
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sulfonylureas on all outcomes may alter the estimated effects of the strategies, the first 

sensitivity analysis re-defined the strategies as “treat with metformin once HbA1c rises above 

𝑥%”, for the same values of 𝑥 as in the main analysis. For simplicity, initiation of a sulfonylurea 

was treated as a separate censoring event to compliance. It was coded in the same way as the 

other censoring events of death (if not the outcome), transfer from practice, and initiation of 

diabetes medications other than metformin or sulfonylureas, in that if it occurred, the patient 

was considered as if lost to follow up from the beginning of that interval. The additional 

censoring for sulfonylurea use was done in two ways for each outcome. Firstly, an ITT style 

approach was taken, whereby, as per the main analysis in the previous chapter (see section 

8.2.2), if a patient initiated metformin and then subsequently initiated a sulfonylurea, they 

were assumed to be still exposed to metformin and remained in the study until they were no 

longer considered to be at risk (as defined in 9.2.1). Therefore, the patient was only censored if 

initiating sulfonylureas as a first line therapy. This broadly redefined the strategy to be “initiate 

with metformin once HbA1c rises above 𝑥%, then continue with metformin, sulfonylureas or 

both as necessary”. Secondly, an as treated style approach was taken whereby patients were 

censored at any initiation of a sulfonylurea during follow up (as in section 8.2.5.3.5), effectively 

redefined the strategy as “treat with metformin monotherapy when HbA1c first rises above 

𝑥% and maintain monotherapy”. For both approaches, the IPW were re-estimated by 

modelling the probability of treatment (none, metformin) as described in sections 4.5.3.3 and 

4.5.4.2. Since it was felt that in both approaches, sulfonylurea initiation was unlikely to be non-

informative, separate IPCW for censoring due to sulfonylurea initiation were estimated as 

outlined in section 4.5.3.4. For the ITT style approach, since the probability of censoring due to 

sulfonylurea initiation becomes zero once metformin is initiated, the IPCW model was fitted 

only in patients who were still untreated in the previous interval, and the probability of 

remaining uncensored was set to 1 from the interval after which metformin was initiated.  

 

9.2.7.2 Using a HbA1c target of 6% instead of 6.5%  

 

Using 6.5% as the target HbA1c meant that the treatment threshold of 6.5% was included in 

the main analysis. In order to look at this threshold in comparison to higher values of HbA1c 

with regard to speed of glucose lowering, the outcome was re-defined as obtaining an HbA1c 

of 6%. 
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9.3 RESULTS  
 

9.3.1 Descriptive analysis of outcome: Achieving target HbA1c of 6.5%  

 

Removing patients from the cohort who had an HbA1c less than or equal to 6.5% at study entry 

left 31,872 patients, of which 131 were censored due to death, transfer out of practice or 

initiation of medication other than metformin or sulfonylureas in month one, and therefore did 

not contribute to the analysis. This left 31,741 patients. The general demographics for this 

reduced population, aside from the differing distribution of baseline HbA1c, were similar to that 

presented in the previous chapter (see section 8.3.1 and Table 8.1) and are presented in 

appendix 25 table 25.1. The crude rate of achieving target HbA1c was 18.2 per 1000 person 

months, 95% CI (17.8 – 18.5). Figure 9.1 shows the observed cumulative incidence (as a 

proportion of the initial patient population) for achieving target through time.  

Figure 9.2 shows the crude probability of target attainment per month of follow up in those still 

at risk, with 95% confidence bars, for the whole of follow up (top) and for the first 50 months 

(bottom). 

 

Figure 9.1 Proportion of original population achieving target HbA1c of 6.5% through follow up 
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In the overall population, the highest probabilities of reaching target were in the first 12 months 

after study entry, with this declining over time. After about 50 months, the probabilities were 

relatively constant with confidence intervals widening as less patients were still at risk, and 

fewer events occurred. 

Observed associations (estimated HR and 95% CI adjusted for time updated diabetes medication 

use) between all covariates (where each covariate was considered in turn) and target HbA1c are 

displayed in Table 9.1. Older age was associated with an increased likelihood of reaching target 

HbA1c. Patients diagnosed with diabetes after 2005 were slightly less likely to reach target 

compared to those diagnosed between 2000 and 2005. Current smokers were less likely to reach 

target compared to non-smokers, but heavier drinkers tended to be more likely to reach target. 

As would be expected, the higher the baseline/previous HbA1c, the less likely the patient was 

to achieve their target. Time updated BMI and SBP appeared to have a similar direction of 

association to HbA1c for both baseline and time updated values, but the size of the effect was 

smaller.  

Use of antihypertensive drugs or aspirin, both at baseline and in the previous year, was 

associated with increased likelihood of reaching target, as were time updated recent history of 

MI, stroke, and other CVD events, and ever history of CKD and cancer. On the other hand, 

recent use of statins was associated with a decreased chance of reaching target Hba1c  

For some baseline indicators of underlying health such as use of statins and use of NSAIDs, and 

ever history of CVD events, there was no strong evidence of an association with reaching 

target HBA1c. However, they were still included in the models for the weights, as was gender. 

This was because as with previous chapters, a conservative approach which reduces the 

chance of omitting important risk factors in error was preferred. Additionally, these covariates 

have not previously been shown to have strong associations with treatment, and so the risk of 

violations of the positivity assumption from their inclusion was considered minimal.  
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Figure 9.2 Probability of achieving target HbA1c in each month interval from study entry, for 
patients still under follow up and yet to achieve target.  

 

Top figure shows full 10 years of follow up, bottom figure shows first 50 months only for clarity. 

 

  



246 
 

 

Risk Factor Hazard Ratio  95% CI 

Age 
  

<45 1 (ref)  
 

45-54 1.06 ( 1.00 , 1.13 ) 
55-64 1.24 ( 1.17 , 1.31 ) 

65-74 1.42 ( 1.34 , 1.50 ) 
75+ 1.43 ( 1.35 , 1.52 ) 
Gender 

  

Male 1 (ref)  
 

Female 1.01 ( 0.98 , 1.03 ) 

Smoking status 
  

Non 1 (ref)  
 

Current 0.86 ( 0.83 , 0.90 ) 
Ex 1.05 ( 1.02 , 1.08 ) 
Drinking Status 

  

Non drinker 1 (ref)  
 

ex-drinker 1.11 ( 1.04 , 1.18 ) 
current drinker unknown 1.02 ( 0.91 , 1.14 ) 
rare drinker <2u/d 1.05 ( 1.00 , 1.10 ) 

moderate drinker 3-6u/d 1.13 ( 1.08 , 1.18 ) 
excessive drinker >6u/d 1.19 ( 1.12 , 1.27 ) 
Year of diabetes onset 

  

2000-2005 1 (ref)  
 

post 2005 0.90 ( 0.87 , 0.93 ) 

Baseline BMI 
  

<25 1 (ref)  
 

25-29 1.07 ( 1.02 , 1.13 ) 
30-34 1.05 ( 1.00 , 1.11 ) 
35+ 1.00 ( 0.95 , 1.06 ) 

Baseline HbA1c 
  

6.5 -7% 1 (ref)  
 

7-8% 0.55 ( 0.53 , 0.57 ) 
8-10% 0.41 ( 0.39 , 0.43 ) 
10% + 0.34 ( 0.32 , 0.35 ) 

Baseline SBP 
  

100-129 1 (ref)  
 

130-139 1.04 ( 1.00 , 1.07 ) 
140-149 1.09 ( 1.02 , 1.16 ) 

150+ 1.05 ( 1.01 , 1.09 ) 
Use in year before baseline of… 

 

Anti-hypertensive drugs 1.21 ( 1.17 , 1.24 ) 
Statins 1.01 ( 0.98 , 1.04 ) 
NSAIDS 1.03 ( 0.99 , 1.07 ) 

Aspirin 1.06 ( 1.02 , 1.09 ) 
Event in three months before baseline of… 
Any CVD 1.08 ( 0.97 , 1.20 ) 
MI 0.74 ( 0.56 , 1.00 ) 
Stroke 1.13 ( 0.9 , 1.41 ) 

Any history at baseline of … 
 

CVD 1.01 ( 0.97 , 1.06 ) 
MI 0.93 ( 0.86 , 1.01 ) 
Stoke 1.04 ( 0.96 , 1.12 ) 

CKD 1.22 ( 1.15 , 1.30 ) 
Cancer 0.82 ( 0.56 , 1.20 ) 

Table 9.1 Associations between all covariates (considered in turn) and reaching target HBA1c.  

Estimated from analyses adjusted for time-dependent use of metformin and sulfonylureas. Hazard ratio represents 

relative risk of achieving target of 6.5% compared to reference group. For variables without a reference indicated, 

reference is no history/no use.  
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Risk Factor  Estimate 95% CI  

Previous BMI (interval -1) 
  

<25 1 (ref)  
 

25-29 0.97 ( 0.93 , 1.02 ) 

30-34 0.89 ( 0.85 , 0.93 ) 

35+  0.82 ( 0.78 , 0.87 ) 

Previous HbA1c (interval -1)  
  

6.5 -7% 1 (ref)  
 

7-8% 0.44 ( 0.42 , 0.45 ) 

8-10% 0.29 ( 0.27 , 0.30 ) 

10% + 0.21 ( 0.2 , 0.23 ) 

Previous HbA1c (interval -2) 
  

6.5 -7% 1 (ref)  
 

7-8% 0.43 ( 0.42 , 0.44 ) 

8-10% 0.27 ( 0.26 , 0.29 ) 

10% + 0.19 ( 0.18 , 0.21 ) 

Previous SBP (interval -1) 
  

100-129 1 (ref)  
 

130-139 0.94 ( 0.90 , 0.97 ) 

140-149 0.92 ( 0.88 , 0.95 ) 

150+ 0.82 ( 0.78 , 0.86 ) 

Use in previous year of.. 
  

Anti-hypertensive drugs 1.19 ( 1.16 , 1.23 ) 

Statins  0.95 ( 0.93 , 0.98 ) 

NSAIDS 1.06 ( 1.02 , 1.10 ) 

Aspirin  1.08 ( 1.05 , 1.12 ) 

Event in previous three months of… 
 

Any CVD  1.36 ( 1.19 , 1.56 ) 

MI  1.43 ( 1.03 , 1.98 ) 

Stroke  1.70 ( 1.31 , 2.22 ) 

Any history of … 
  

CVD  1.06 ( 1.02 , 1.11 ) 

MI  1.00 ( 0.92 , 1.07 ) 

Stoke  1.10 ( 1.02 , 1.19 ) 

CKD  1.28 ( 1.21 , 1.34 ) 

Cancer  1.34 ( 1.20 , 1.50 ) 

Table 9.1 continued: Associations between all covariates (considered in turn) and reaching 
target HBA1c.  

Estimated from analyses adjusted for time-dependent use of metformin and sulfonylureas. Hazard ratio represents 

relative risk of achieving target of 6.5% compared to reference group. For variables without a reference indicated, 

reference is no history/no use 

 

 

 

.
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9.3.2 Defining the set of plausible strategies 

 

Compliance to different treatment strategies was examined as described in section 9.2.2 in the 

study population outlined in section 9.2.1 (that included patients with baseline Hba1c less than 

or equal to 6.5%, where patients were followed up to death, transfer out, end of data collection 

or initiation of any treatment other than metformin or sulfonylureas). This was to examine 

compliance in the overall population, and not just that relevant to the outcome of achieving 

target Hba1c. The numbers remaining compliant as a proportion of the patients still considered 

at risk through time (i.e. not censored due to death, end of data collection, transfer out or 

initiation of other medication) are shown in Figure 9.3 for thresholds of 6.5, 7, 8, 9 and 10%. 

Similar results were found when excluding follow up after the first HbA1c of 6.5% or less (the 

endpoint for the time-to -target analysis), and are presented in appendix 25, figure 25.1. Table 

9.2 shows that all strategies had sufficient overall compliance to be compared and had variation 

in reasons for (non)compliance.  

 

Figure 9.3 Proportion of at risk patients who were still compliant to the treatment strategy 
“treat with metformin or sulfonylureas when HbA1c first rises above x%” at each month of 

follow up, for x = 6.5, 7, 8, 9 and 10.  

 

*N at risk at time 0 excludes 125 patients censored for transfer out of practice or initiation of medication other than 

metformin or sulfonylureas in month1. 
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Compliant Non - compliant 

Treatment 
threshold 

Remain 
untreated 

Treated 
over 

threshold 

Total % 
compliant 

Treated 
below 

threshold 

Not treated 
above 

threshold 

Total %  
on-

compliant 

6.5% 15.5% 10.8% 26.2% 2.8% 70.9% 73.8% 

7% 32.0% 12.9% 44.9% 9.5% 45.7% 55.1% 

8% 41.9% 10.9% 52.8% 29.4% 17.9% 47.2% 

9% 43.8% 6.9% 50.7% 40.2% 9.1% 49.3% 

10% 44.5% 4.4% 49.0% 45.9% 5.2% 51.0% 

Table 9.2 Percentage of patients who remain, or do not remain compliant with each strategy 
for their time at risk up to and including first initiation with metformin or a sulfonylurea. 

Example: A patient initiates a sulfonylurea in the interval after their HbA1c raises to 8.5% from 6.8%. This patient 

contributes to “noncompliant, not treated above threshold” for the strategy of 6.5%, “compliant, treated over 

threshold” for 7% and 8%, and “noncompliant, treated below threshold” for 9 and 10%. If the same patient initiated 

insulin instead, they would be censored from the beginning of that interval, and so no longer at risk to become 

compliant by being treated for 7% and 8%, or noncompliant with the 9% and 10% strategies. Instead, they would be 

considered “compliant, remain untreated” for all of the 7, 8, 9 and 10% strategies, but still “noncompliant not treated 

above threshold” for the 6.5% strategy.  

 

9.3.3 Addition of a grace period for time allowed between HbA1c exceeding threshold and 

treatment initiation 

 

Compliance according to varying grace period used is presented for each treatment strategy in 

Figure 9.4 as the proportion of patients at risk who were complaint with the strategy at each 

month of follow up. For the stricter strategies (lower HbA1c thresholds), compliance was 

improved almost uniformly for every extra month of grace period, but only by a small amount. 

As the HbA1c threshold increased, there was even less compliance gained by allowing for a 

longer grace period. This is likely to be because for these strategies, non compliance due to 

initiating treatment before the threshold is common, and this is not affected by adding the grace 

period. However, since the greatest increase in compliance was observed for a grace period of 

three months, this was the length of grace period chosen for the secondary analysis, with a one 

month period for initiation kept for the primary analysis.  

 

1.1.1 Calculating IPW 

 

For each outcome, and for both one and three month grace periods, the distributions of IPWs 

before and after truncation at the 99th percentile are presented in Table 9.3. As expected, the 

distributions were very similar across outcomes, but are shown for each outcome for clarity due 
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to differences in follow up time. Due to large maximum weights before truncation, the truncated 

weights were used to weight the dynamic MSMs. 

 

Figure 9.4 Proportion of patients at risk still compliant to the treatment strategy for different 
lengths of grace period.  

 

 

*N at risk at time 0 excludes 125 patients censored for transfer out of practice or initiation of medication other than 

metformin or sulfonylureas in month1.



251 
 

 

 

 
Target HbA1c of 6.5% MI 

 
One month grace period Three month grace period One month grace period Three month grace period 

 
Untruncated Truncated Untruncated Truncated Untruncated Truncated Untruncated Truncated 

Mean 4.61 2.9 3.3 2.1 2.8 2.1 2.2 1.6 

SD 115.3 3.7 103.4 2.8 41.6 2.7 34.9 2.2 

25th Percentile 1.1 1.1 1.0 1.0 1.1 1.1 1.0 1.0 

50th Percentile 1.5 1.5 1.1 1.1 1.1 1.1 1.1 1.1 

75th Percentile 3.3 3.3 1.6 1.6 1.7 1.7 1.3 1.3 

Max 16209.4 27.0* 16209.4 20.0* 17011.2 18.9* 17011.2 17.1 
 

Stroke All- Cause mortality 
 

One month grace period Three month grace period One month grace period Three month grace period 
 

Untruncated Truncated Untruncated Truncated Untruncated truncated Untruncated Truncated 

Mean 2.8 2.1 2.1 1.6 2.8 2.1 2.1 1.7 

SD 40.7 2.7 32.7 2.2 41.3 2.8 33.9 2.2 

25th Percentile 1.1 1.1 1.0 1.0 1.1 1.1 1.0 1.0 

50th Percentile 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 

75th Percentile 1.7 1.7 1.3 1.3 1.7 1.7 1.3 1.3 

Max 17692.3 18.8* 17692.3 17.1* 18032.5 19.0* 18032.5 17.1* 

Table 9.3 Distribution of untruncated and truncated unstabilised IPWs for each outcome model, for strategies allowing both a one month and three month grace 
period for treatment initiation.  

*99th percentile of untruncated weight distribution
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9.3.4 Comparison of dynamic strategies  

 

9.3.4.1 Target HbA1c of 6.5%  

 

In both unweighted and weighted models, higher thresholds of HbA1c were associated with 

lower rates of reaching target HbA1c of 6.5% compared to the 7% threshold. In the dynamic 

MSM; the reduction in target attainment vs the 7% threshold was generally of greater 

magnitude than in the unweighted analysis, particularly for the strategies of 9% and 10%. Table 

9.4 displays the estimated hazard ratios for each strategy vs a 7% initiation threshold, for the 

unweighted model (top) and the dynamic MSM (bottom), for models assuming a one-month 

grace period. The same estimates and 95% confidence intervals are displayed graphically in 

Figure 9.5. For all time periods, the precision of the estimates was lower for the dynamic MSM 

than for the unweighted analysis. This was most prominent for periods > 2 years from study 

entry.  

 

 
Unweighted model baseline adjusted – hazard ratio for strategy vs 7% for reaching target 

HbA1c: one month grace period (HR<1 indicates inferior strategy) 

Strategy 
threshold 

0-6 months1 6-12 months1  1-2 years1 2-3 years1 2-4 years1 >4 years1 

7% 1 (ref)  1 (ref)  1 (ref)  1 (ref)  1 (ref)  1 (ref)  

8% 0.93  
(0.92 , 0.95) 

0.85  
(0.83 , 0.88) 

0.83  
(0.80 , 0.86) 

0.86  
(0.81 , 0.93) 

1.01  
(0.90 , 1.17) 

0.95  
(0.87 , 1.05) 

9% 0.91  
(0.90 , 0.93) 

0.83  
(0.81 , 0.86) 

0.80  
(0.77 , 0.84) 

0.80  
(0.75 , 0.87) 

0.91  
(0.80 , 1.08) 

0.89  
(0.80 , 1.00) 

10% 0.90  
(0.89 , 0.92) 

0.83  
(0.80 , 0.85) 

0.79  
(0.76 , 0.83) 

0.78  
(0.71 , 0.85) 

0.83  
(0.71 , 1.02) 

0.81  
(0.70 , 0.91)  

IPW* Dynamic MSM  – hazard ratio for strategy vs 7% for reaching target HbA1c: one month 
grace period (HR<1 indicates inferior strategy) 

Strategy 
threshold 

0-6 months1 6-12 months1  1-2 years1 2-3 years1 2-4 years1 >4 years1 

7% 1 (ref)  1 (ref)  1 (ref)  1 (ref)  1 (ref)  1 (ref)  

8% 0.86  
(0.82 , 0.92) 

0.79  
(0.73 , 0.84) 

0.79  
(0.73 , 0.86) 

0.86  
(0.75 , 1.00) 

0.98  
(0.79 , 1.19) 

0.96  
(0.79 , 1.17) 

9% 0.84  
(0.80 , 0.90) 

0.74  
(0.68 , 0.79) 

0.71  
(0.64 , 0.79) 

0.75  
(0.63 , 0.91) 

0.8  
(0.60 , 1.08) 

0.82  
(0.66 , 1.05) 

10% 0.84  
(0.80 , 0.90) 

0.74  
(0.68 , 0.80) 

0.68  
(0.61 , 0.75) 

0.67  
(0.56 , 0.82) 

0.61  
(0.45 , 0.83) 

0.64  
(0.48 , 0.81) 

Table 9.4 Hazard ratios (and 95% CIs) to compare strategy of “treat in the interval following 
that when HbA1c exceeds x%” for X = 8, 9, 10 and reference strategy of x=7 in terms of 

reaching target HbA1c of 6.5%.  

1Columns show estimated HR and 95% CI by time since study entry. CI’s obtained via 200 bootstrap replications 
* weighting model includes: age gender, calendar period of diabetes onset (pre or post 2005), smoking status, alcohol 

consumption, use in the previous year of anti-hypertensive drugs, statins, NSAIDS or aspirin (baseline and time 

updated); previous history of any CVD, stroke, MI, CKD or cancer (baseline and time updated); HbA1c, BMI and SBP 

(baseline and time updated). 
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Figure 9.5 Estimated HRs and 95% confidence intervals to compare target HbA1c attainment through time for different HbA1c thresholds for treatment initiation vs 
a 7% threshold. 

 

Reference category = 7% threshold for initiation. Results from unweighted model (top) and Dynamic MSM (bottom) allowing one month grace period (left) and three month grace period (right) for 

treatment initiation. CI’s obtained via 200 bootstrap replications
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Allowing a grace period of three months instead of one month made no major differences to 

either the unweighted model or the dynamic MSM, with the exception of 0-6 months from 

study entry, where for the dynamic MSM the estimates were slightly closer to those from the 

unweighted model compared to when using one month (Figure 9.5, and appendix 26, table 

26.1). 

Figure 9.6 shows the estimated cumulative incidence curves for target HbA1c attainment for 

each of the 4 strategies of interest. The dose response effect estimated by the dynamic MSM 

seen in Table 9.4 (and in table 26.1 in appendix 26) is reflected by the cumulative incidence 

curve, suggesting that higher thresholds for treatment initiation are associated with lower 

rates of reaching target HbA1c. In the dynamic MSM, by 4 years, under the strictest strategy 

(treat at 7%) 59% (95% CI 58%-61%) of the population were estimated to reach target, 

compared with 48% at 4 years (95% CI 47% -50%) under the most lenient strategy (treat at 

10%). The estimated cumulative incidences from the unweighted analyses were estimated to 

be higher than those from the MSM for all time points and for all strategies (Table 9.5).  

To further understand the finding of decreased incidence of achieving target HbA1c with the 

higher thresholds, the percentage of weighted person time in particular ranges of HbA1c up to 

the interval before target HbA1c was reached were estimated separately for each strategy and 

separately for time on and off treatment. These proportions are presented in Table 9.6. Once 

treated, the proportion of time at low range of HbA1c was highest for the stricter treatment 

strategies. For a threshold of 7%, 27% of treated person time was in the HBA1c range 6.5- 7%. 

The equivalent proportion for a threshold of 10 was 15%. In addition, for the threshold of 10%, 

another 25% of the treated person time was still spent with HbA1c >10%. This suggests that 

the effect of treatment is not immediate and that the lower rate of target attainment for the 

higher thresholds is not solely due to waiting longer to initiate treatment while HbA1c rises.  
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Figure 9.6 Cumulative incidence curves for reaching target HbA1c of 6.5% or less, for different HbA1c thresholds for treatment initiation.  

 

Curves are estimated from unweighted models adjusting for baseline covariates (top), and dynamic MSM with IPW (bottom). Curves are estimated or a allowing a one month grace period for initiation 

(left) three month grace period (right) 
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Unweighted (one-month grace 

period): proportion achieving target 
HBA1c by… 

IPW Dynamic MSM (one-month grace period): 
proportion achieving target HBA1c by… 

H
b

A
1

c 
 t

h
re

sh
o

ld
 

 
1 year 2 years 4 years 1 year 2 years 4 years 

7% 0.40 0.53 0.63 
0.36  

(0.35 , 0.38) 
0.49 

 (0.47 , 0.50) 
0.59  

(0.58 , 0.61) 

8% 0.34 0.46 0.57 
0.32 

(0.31 , 0.32) 
0.42  

(0.41 , 0.43) 
0.53 

 (0.52 , 0.54) 

9% 0.33 0.45 0.56 
0.30  

(0.30 , 0.31) 
0.40  

(0.39 , 0.41) 
0.50  

(0.49 , 0.52) 

10% 0.33 0.45 0.55 
0.30  

(0.30 , 0.31) 
0.40  

(0.39 , 0.41) 
0.48  

(0.47 , 0.50) 

Table 9.5 Estimated proportions of population achieving target HbA1c by 1, 2 and 4 years from 
study entry, for each treatment strategy.  

95% CI given in brackets for dynamic MSM only, obtained via 200 bootstrap replications.  

 

 

 Proportion of pre and post treatment weighted person time (using truncated weights) within 
given HbA1c range for treatment strategies of…   

7% 8% 9% 10% 

HbA1c 
range 

(%) 

Pre-treat Post -treat Pre-treat Post -
treat 

Pre-treat Post -treat Pre-treat Post -
treat 

6.5-7 83.7% 26.5% 49.6% 19.5% 40.6% 16.3% 37.5% 15.1% 

7-7.5 7.1% 28.1% 31.2% 22.6% 27.6% 19.1% 25.7% 16.3% 

7.5-8 3.0% 17.0% 14.4% 15.9% 14.6% 15.3% 14.1% 13.4% 

8-8.5 1.6% 8.4% 1.7% 12.3% 8.8% 10.1% 8.9% 9.5% 

8.5-9 1.0% 5.5% 0.9% 8.4% 5.7% 8.1% 5.8% 8.4% 

9-9.5 0.8% 3.8% 0.5% 5.6% 0.9% 8.5% 3.8% 7.0% 

9.5-10 0.6% 2.8% 0.4% 4.2% 0.6% 6.1% 2.6% 4.7% 

10-11 1.0% 3.8% 0.5% 5.6% 0.6% 7.9% 0.8% 12.3% 

11+ 1.3% 4.0% 0.7% 5.8% 0.7% 8.7% 0.8% 13.2% 

total 100% 100% 100% 100% 100% 100% 100% 100% 

Total weighted person months 

Truncated 178,086 1,087,782 496,788 765,828 635,135 608,913 712,374 394,619 

Un-
truncated 

170,432 1,141,529 909,690 876,218 1,136,210 1,241,113 1,411,086 681,093 

Table 9.6 Proportion of pre and post treatment person time at HbA1c range for treatment 
strategies of 7%, 8%, 9% and 10%, estimated from the weighted population.  

Greyed out numbers indicate ranges where HbA1c is above the threshold for that strategy during time off 

treatment. Each patient can contribute a maximum of two person months towards these percentages (i.e. the 

month before treatment initiation and the month in which treatment is (not) initiated). 
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9.3.4.2 MI  

 

For the first 6 months of follow up, the dynamic MSM with a one-month grace period estimated 

that all treatment strategies reduced the risk of MI compared to a 6.5% threshold, albeit with 

wide confidence intervals. From 6 months onwards, there was a suggestion of increasing risk of 

MI with the higher HbA1c thresholds but again the estimates had low precision (Table 9.7, 

bottom, Figure 9.7 bottom left). In the unweighted analysis, the increased risk from 6 months to 

2 years after study entry was not apparent (Table 9.7, top, Figure 9.7 top left). 

 
Unweighted model baseline adjusted – hazard ratio for strategy vs 6.5% for risk MI: one month 

grace period (HR<1 indicates superior strategy) 

Strategy 
threshol
d 

0-6 months1 6-12 months1  1-2 years1 2-3 years1 2-4 years1 >4 years1 

6.5% 1 (ref)  1 (ref)  1 (ref)  1 (ref)  1 (ref)  1 (ref)  

7% 0.84  
(0.75 , 1.00) 

1.00  
(0.83 , 1.31) 

1.03  
(0.88 , 1.24) 

1.22  
(0.99 , 1.65) 

1.13  
(0.85 , 1.68) 

0.97  
(0.85 , 1.13) 

8% 0.90  
(0.77 , 1.09) 

0.96  
(0.78 , 1.35) 

1.10 
(0.91 , 1.39) 

1.29  
(0.97 , 1.81) 

1.22  
(0.91 , 1.80) 

1.01  
(0.86 , 1.18) 

9% 0.91  
(0.76 , 1.11) 

0.99  
(0.79 , 1.47) 

1.12  
(0.91 , 1.44) 

1.34  
(1.00 , 1.82) 

1.26 
(0.90 , 1.97) 

1.00  
(0.86 , 1.21) 

10% 0.95  
(0.79 , 1.14) 

0.99  
(0.80 , 1.50) 

1.14  
(0.93 , 1.48) 

1.33  
(1.02 , 1.84) 

1.27  
(0.92 , 2.02) 

1.03  
(0.86 , 1.27)  

IPW* Dynamic MSM – hazard ratio for strategy vs 6.5% for risk MI: one month grace period  
(HR<1 indicates superior strategy) 

Strategy 
threshol
d 

0-6 months1 6-12 months1  1-2 years1 2-3 years1 2-4 years1 >4 years1 

6.5% 1 (ref)  1 (ref)  1 (ref)  1 (ref)  1 (ref)  1 (ref)  

7% 0.73  
(0.45 , 1.10) 

1.23  
(1.03 , 1.63) 

1.22  
(1.02 , 1.55) 

0.86  
(0.53 , 1.92) 

1.17  
(0.72 , 2.33) 

0.95  
(0.71 , 1.32) 

8% 0.84  
(0.54 , 1.43) 

1.56  
(1.26 , 2.24) 

1.42  
(0.93 , 2.16) 

1.30 
(0.70 , 3.28) 

1.29  
(0.62 , 3.66) 

1.13  
(0.78 , 1.61) 

9% 0.87  
(0.55 , 1.48) 

1.74  
(1.31 , 2.69) 

1.49  
(0.91 , 2.49) 

1.62  
(0.79 , 3.82) 

1.20  
(0.54 , 3.31) 

1.03  
(0.73 , 1.57) 

10% 0.95  
(0.58 , 1.67) 

1.70  
(1.16 , 2.89) 

1.63  
(0.98 , 2.81) 

1.47  
(0.82 , 4.14) 

1.24  
(0.55 , 3.86) 

1.26 
(0.84 , 1.99) 

Table 9.7 Hazard ratios (and 95% CIs) to compare risk of MI between strategy of “treat in the 
interval following that when HbA1c exceeds x%” for X = 7, 8, 9, 10 and reference strategy of 

x=6.5.  

1`Columns show estimated HR and 95% CI by time since study entry. CI’s obtained via 200 bootstrap replications. 
* weighting model includes: age gender, calendar period of diabetes onset (pre or post 2005), smoking status, alcohol 
consumption, use in the previous year of anti-hypertensive drugs, statins, NSAIDS or aspirin (baseline and time 
updated); previous history of any CVD, stroke, MI, CKD or cancer (baseline and time updated); HbA1c, BMI and SBP 
(baseline and time updated). 

 

. 
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Figure 9.7 Estimated HRs and 95% confidence intervals to compare risk of MI through time for different HbA1c thresholds for treatment initiation vs a 6.5% 
threshold. 

 

Results from unweighted model (top) and Dynamic MSM (bottom) allowing one month grace period (left) and three month grace period (right). Arrow indicates upper limit of CI exceeds 2.5. CI’s 

obtained via 200 bootstrap replications. 
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Using a three month grace period gave similar results for the unweighted analysis (Figure 9.7, 

top right and appendix 26 table 26.2). The estimates of the dynamic MSM were more similar to 

the unweighted analysis than for one month grace period, though, the suggested increased risk 

of MI with increasing HbA1c threshold in some follow up intervals was of larger magnitude than 

in the unweighted analysis (Figure 9.7, bottom right and appendix 26 table 26.2). 

Exact estimates for cumulative incidence of MI at 1, 2 and 4 years for the model with a one 

month grace period are shown in Table 9.8. By 4 years, the 9% and 10 % threshold strategies 

had similar cumulative incidence of around 1.5%. The estimates for the 6% and 7% strategies 

were lower (1.13% (0.84% - 1.44%) and 1.16% (0.96% - 1.41%) respectively). There were no clear 

difference between the unweighted and dynamic models for these estimates of cumulative 

incidence. Figure 9.8 presents the cumulative incidence curves for MI, from the unweighted 

models (top) and the dynamic MSM (bottom) with one and three month grace periods (left and 

right respectively). The cumulative incidence curves for MI were similar for all strategies in the 

unweighted models for both grace periods. For a one month grace period the dynamic MSM 

showed some separation in cumulative incidence curves for strategy thresholds of 6.5 and 7%, 

and the 8-10% strategies from around 2 years (Figure 9.8). The 10% strategy had estimated the 

highest proportion of events by 10 years, though the absolute difference in cumulative incidence 

between the 6.5% and 10% strategy was only about 2% by 10 years, and overall the rate of MI’s 

was low for all strategies.  

 

  
Unweighted (one-month grace period): % of 

population having had an MI by… 
IPW Dynamic MSM (one-month grace period): % 

(95% CI) of population having had an MI by… 

H
b

A
1
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 t

h
re

sh
o

ld
 

 
1 year 2 years 4 years 1 year 2 years 4 years 

6.5% 0.38 0.69 1.16 
0.36 

(0.23 , 0.50) 
0.61  

(0.46 , 0.81) 
1.13  

(0.85 , 1.44) 

7% 0.37 0.70 1.28 
0.33  

(0.25 , 0.41) 
0.63  

(0.51 , 0.78) 
1.16  

(0.96 , 1.41) 

8% 0.38 0.75 1.37 
0.40  

(0.32 , 0.46) 
0.74  

(0.63 , 0.85) 
1.41  

(1.17 , 1.68) 

9% 0.39 0.76 1.41 
0.42  

(0.34 , 0.49) 
0.79  

(0.66 , 0.93) 
1.52  

(1.25 , 1.79) 

10% 0.39 0.78 1.43 
0.43  

(0.36 , 0.51) 
0.83  

(0.69 , 0.98) 
1.53  

(1.31 , 1.85) 

Table 9.8 Estimated cumulative incidence (%) of MI by 1, 2 and 4 years from study entry, for 
each treatment strategy. 

95% CI given in brackets for dynamic MSM only, obtained via 200 bootstrap replications.  
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Figure 9.8 Cumulative incidence of MI for different HbA1c thresholds for treatment initiation.  

 

Curves are estimated from unweighted models adjusting for baseline covariates (top), and dynamic MSM with IPW (bottom). Curves are estimated allowing a one month grace period (left) or a three 

month grace period (right). Number at risk at time 0 excludes patients censored for death, transfer out or initiation of medication other than metformin or sulfonylureas in month 1. 
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9.3.4.3 Stroke  

 

Applying a one month grace period, the dynamic MSM was suggestive of an elevated risk of 

stroke for all strategies vs 6.5% for 0-6 months after study entry and most prominently for 1-2 

years after study entry. For time periods after 2 years, estimates tended to suggest a lower risk 

of stroke for higher initiation thresholds (Table 9.9 bottom, and Figure 9.9 bottom left), though 

the confidence intervals overlapped. Estimates from the unweighted analysis were generally 

consistent with no elevated stroke risk for the 7-10% thresholds compared with 6.5%, with the 

exception of 1-2 years, where results were suggestive of a moderate elevated risk for all 

strategies vs a 6.5% threshold, but the estimates for this time period were of lower magnitude 

than in the dynamic MSM (Table 9.9 top, Figure 9.9 top left). For the three month grace period, 

the results of the dynamic MSM were closer to that of the unweighted analysis (Figure 9.9, right 

and appendix 26, table 26.3), and showed no clear evidence of and increased or decreased 

stroke risk for any of the 7-10% thresholds compared to 6.5%.  

 
 

Unweighted model baseline adjusted – hazard ratio for strategy vs 6.5% for risk of stroke: one 
month grace period (HR<1 indicates superior strategy) 

Strategy 
threshold 

0-6 months1 6-12 months1  1-2 years1 2-3 years1 2-4 years1 >4 years1 

6.5% 1 (ref)  1 (ref)  1 (ref)  1 (ref)  1 (ref)  1 (ref)  

7% 1.09  
(0.97 , 1.24) 

0.83  
(0.74 , 0.99) 

1.15  
(1.02 , 1.34) 

0.94  
(0.84 , 1.10) 

1.00  
(0.87 , 1.21) 

0.97  
(0.87 , 1.08) 

8% 1.08  
(0.93 , 1.22) 

0.86  
(0.73 , 1.04) 

1.16  
(1.01 , 1.34) 

0.85  
(0.73 , 1.01) 

0.91  
(0.74 , 1.17) 

1.00  
(0.87 , 1.16) 

9% 1.09  
(0.93 , 1.25) 

0.90  
(0.76 , 1.10) 

1.15  
(1.00 , 1.31) 

0.88  
(0.75 , 1.07) 

0.86  
(0.71 , 1.08) 

0.99  
(0.86 , 1.15) 

10% 1.08  
(0.92 , 1.24) 

0.87  
(0.72 , 1.09) 

1.15 
(1.00 , 1.31) 

0.86  
(0.72 , 1.05) 

0.89  
(0.72 , 1.13) 

0.99  
(0.86 , 1.16)  

IPW* Dynamic MSM – hazard ratio for strategy vs 6.5% for risk of stroke: one month grace period 
(HR<1 indicates superior strategy) 

Strategy 
threshold 

0-6 months1 6-12 months1  1-2 years1 2-3 years1 2-4 years1 >4 years1 

6.5% 1 (ref)  1 (ref)  1 (ref)  1 (ref)  1 (ref)  1 (ref)  

7% 1.18  
(1.08 , 1.35) 

0.79  
(0.57 , 1.15) 

1.43  
(1.17 , 1.85) 

0.80  
(0.61 , 1.03) 

1.18  
(0.85 , 1.76) 

0.86  
(0.68 , 1.13) 

8% 1.23  
(0.89 , 1.62) 

0.74  
(0.48 , 1.32) 

1.76  
(1.21 , 2.56) 

0.69  
(0.48 , 1.09) 

0.78  
(0.50 , 1.31) 

0.98  
(0.70 , 1.36) 

9% 1.34  
(0.92 , 1.86) 

0.82  
(0.52 , 1.44) 

1.67  
(1.16 , 2.45) 

0.78  
(0.48 , 1.18) 

0.64  
(0.42 , 1.08) 

0.98  
(0.67 , 1.40) 

10% 1.24  
(0.82 , 1.73) 

0.72  
(0.46 , 1.36) 

1.73  
(1.19 , 2.61) 

0.67  
(0.41 , 1.07) 

0.75  
(0.47 , 1.30) 

0.90  
(0.65 , 1.34) 

Table 9.9 Hazard ratios (and 95% CIs) to compare risk of stroke between strategy of “treat in 
the interval following that when HbA1c exceeds x%” for X = 7, 8, 9, 10 and reference strategy of 

x=6.5.  
1`Columns show estimated HR and 95% CI by time since study entry. CI’s obtained via 200 bootstrap replications 
* weighting model includes: age gender, calendar period of diabetes onset (pre or post 2005), smoking status, 
alcohol consumption, use in the previous year of anti-hypertensive drugs, statins, NSAIDS or aspirin (baseline and 
time updated); previous history of any CVD, stroke, MI, CKD or cancer (baseline and time updated); HbA1c, BMI and 
SBP (baseline and time updated).
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Figure 9.9 Estimated HRs and 95% confidence intervals to compare risk of stroke through time for different HbA1c thresholds for treatment initiation vs a 6.5% 
threshold. 

 

Results from unweighted model (top) and Dynamic MSM bottom) allowing one month grace period (left) and three month grace period (right) for treatment initiation. Arrow indicates upper limit of CI 

exceeds 2.5. CI’s obtained via 200 bootstrap replications 
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The estimated cumulative incidences at 1, 2 and 4 years (Table 9.10) had broadly overlapping 

confidence intervals for all strategies. There was some indication that the dynamic MSM 

estimated slightly lower cumulative incidence at 2 and 4 years compared to the unweighted 

model, though differences were small. The complete estimated 10 year cumulative incidence 

curves for stroke are displayed in Figure 9.10. Overall there was no strong evidence of any 

differences between strategies. In the dynamic MSM, the 10% threshold strategy was estimated 

to have the lowest cumulative incidence by 10 years, and the 6.5% strategy the highest. 

However, the absolute difference between these was very small (Figure 9.10, bottom left). In 

the unweighted analysis, all estimates had similar cumulative incidence curves (Figure 9.10, top). 

 

  
Unweighted (one-month grace period): % of 

population having had a stroke by… 
IPW Dynamic MSM (one-month grace period): % 
(95% CI) of population having had a stroke by… 

H
b
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 t
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re
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1 year 2 years 4 years 1 year 2 years 4 years 

6.5% 0.59 1.08 2.38 
0.60 

(0.41 , 0.81) 
0.90 

(0.67 , 1.11) 
2.33 

(1.83 , 2.80) 

7% 0.56 1.12 2.40 
0.56 

(0.44 , 0.73) 
0.99 

(0.80 , 1.18) 
2.40 

(2.02 , 2.77) 

8% 0.56 1.14 2.32 
0.55 

(0.47 , 0.67) 
1.07 

(0.92 , 1.25) 
2.13 

(1.89 , 2.35) 

9% 0.58 1.14 2.32 
0.60 

(0.51 , 0.70) 
1.10 

(0.95 , 1.23) 
2.12 

(1.83 , 2.37) 

10% 0.57 1.13 2.31 
0.55 

(0.48 , 0.63) 
1.06 

(0.93 , 1.20) 
2.08 

(1.81 , 2.29) 

Table 9.10 Estimated cumulative incidence (%) of stroke by 1, 2 and 4 years from study entry, 
for each treatment strategy. 

95% CI given in brackets for dynamic MSM only, obtained via 200 bootstrap replications.  

 

 

9.3.4.4 All-cause mortality  

 

All estimates for the unweighted analysis and dynamic MSM with one month grace period are 

given in Table 9.11, and visualised in Figure 9.11. The dynamic MSM in general estimated relative 

risks of all-cause mortality that were consistent with no association between treatment strategy 

and risk of death at any time during follow up. In general, these results were similar to those 

from an unweighted analysis. The main difference in the dynamic MSM was that there was no 

suggestion of an increased risk of mortality for any strategy in the first 6 months of follow up, 

whereas in the unweighted analysis, all strategies were estimated to have an increased risk of 

mortality in this period compared to the 6.5% threshold.  
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Figure 9.10 Estimated cumulative incidence of stroke for different HbA1c thresholds for treatment initiation. 

 

*N at risk at time 0 excludes patients censored for death, transfer out of practice or initiation of medication other than metformin or sulfonylureas in month1. Curves are estimated from unweighted 

models adjusting for baseline covariates (top), and dynamic MSM with IPW (bottom). Curves are estimated allowing a one month grace period for initiation (left) or a three month grace period (right) 
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Unweighted model baseline adjusted – hazard ratio for strategy vs 6.5% for risk of all-cause 

mortality: one month grace period (HR<1 indicates superior strategy 

Strategy 
threshold 

0-6 months1 6-12 months1  1-2 years1 2-3 years1 2-4 years1 >4 years1 

6.5% 1 (ref)  1 (ref)  1 (ref)  1 (ref)  1 (ref)  1 (ref)  

7% 1.09  
(1.00 , 1.2) 

0.92  
(0.86 , 1.01) 

1.03  
(0.96 , 1.10) 

0.96  
(0.89 , 1.05) 

0.99  
(0.90 , 1.10) 

1.00  
(0.96 , 1.05) 

8% 1.13 
(1.04 , 1.30) 

0.93  
(0.84 , 1.04) 

0.97  
(0.90 , 1.06) 

0.97  
(0.88 , 1.07) 

0.99 
(0.88 , 1.12) 

1.04  
(0.98 , 1.11) 

9% 1.18  
(1.07 , 1.35) 

0.92  
(0.82 , 1.04) 

0.96  
(0.88 , 1.06) 

0.99  
(0.89 , 1.09) 

0.98  
(0.87 , 1.12) 

1.05  
(0.99 , 1.12) 

10% 1.19  
(1.08 , 1.36) 

0.91  
(0.82 , 1.03) 

0.97  
(0.89 , 1.07) 

0.99  
(0.89 , 1.10) 

1.00  
(0.87 , 1.14) 

1.06  
(1.00 , 1.13)  

IPW* dynamic MSM – hazard ratio for strategy vs 6.5% for risk of all-cause mortality: one month 
grace period (HR<1 indicates superior strategy 

Strategy 
threshold 

0-6 months1 6-12 months1  1-2 years1 2-3 years1 2-4 years1 >4 years1 

6.5% 1 (ref)  1 (ref)  1 (ref)  1 (ref)  1 (ref)  1 (ref)  

7% 0.99  
(0.82 , 1.17) 

0.96  
(0.84 , 1.08) 

1.11  
(0.97 , 1.27) 

1.01  
(0.84 , 1.24) 

0.91  
(0.78 , 1.06) 

0.92  
(0.83 , 1.02) 

8% 1.03  
(0.80 , 1.35) 

0.92  
(0.69 , 1.22) 

1.02  
(0.83 , 1.27) 

1.03  
(0.83 , 1.27) 

0.88  
(0.67 , 1.16) 

1.06  
(0.92 , 1.25) 

9% 1.08  
(0.84 , 1.44) 

0.87  
(0.66 , 1.19) 

0.96  
(0.76 , 1.21) 

1.17  
(0.92 , 1.54) 

0.84  
(0.65 , 1.12) 

1.04  
(0.90 , 1.22) 

10% 1.10  
(0.86 , 1.44) 

0.86  
(0.65 , 1.18) 

0.97  
(0.78 , 1.23) 

1.22  
(0.92 , 1.61) 

0.89  
(0.69 , 1.20) 

1.06  
(0.92 , 1.26) 

Table 9.11 Hazard ratios (and 95% Cis) to compare risk of all-cause mortality between strategy 
of “treat in the interval following that when HbA1c exceeds x%” for X = 7, 8, 9, 10 and reference 

strategy of x=6.5. presented by time since study entry. 

1`Columns show estimated HR and 95% CI by time since study entry. CI’s obtained via 200 bootstrap replications 
* weighting model includes: age gender, calendar period of diabetes onset (pre or post 2005), smoking status, alcohol 
consumption, use in the previous year of anti-hypertensive drugs, statins, NSAIDS or aspirin (baseline and time 
updated); previous history of any CVD, stroke, MI, CKD or cancer (baseline and time updated); HbA1c, BMI and SBP 
(baseline and time updated). 

 

When applying a three month grace period to the dynamic MSM, the results were again more 

similar to the unweighted analysis, including the observation of increased risk of death for 7, 8 

9 and 10% vs 6.5% in the first 6 months after study entry (Figure 9.11, bottom right  and 

appendix 26, table 26.4). 
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Figure 9.11 Estimated HRs and 95% confidence intervals to compare risk of all-cause mortality through time for different HbA1c thresholds for treatment initiation 
vs a 6.5% threshold.  

 

Results from unweighted model (top) and Dynamic MSM (bottom) allowing one month grace period (left) and three month grace period (right). CI’s obtained via 200 bootstrap replications 
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For all models, cumulative incidence curves for mortality to 10 years were very similar, and 

comparing exact estimates of cumulative incidence at 1, 2 and 4 years showed negligible 

differences between strategies in the dynamic MSM and between the dynamic MSM and the 

unweighted analysis (Table 9.12 and Figure 9.12). 

 

  
Unweighted (one-month grace period): % 

cumulative incidence of all-cause mortality 
at… 

IPW Dynamic MSM (one-month grace period): % 
(95% CI) for cumulative incidence of all-cause 

mortality at… 

H
b

A
1

c 
 t

h
re

sh
o

ld
 

 
1 year 2 years 4 years 1 year 2 years 4 years 

6.5% 
1.39 2.94 6.75 

1.53  
(1.23 , 1.83) 

3.04  
(2.54 , 3.50) 

6.97  
(6.23 , 7.81) 

7% 
1.43 3.06 6.85 

1.49  
(1.27 , 1.72) 

3.16  
(2.76 , 3.49) 

6.90 
 (6.26 , 7.58) 

8% 
1.48 3.05 6.98 

1.49  
(1.33 , 1.62) 

3.02  
(2.81 , 3.26) 

6.73  
(6.36 , 7.15) 

9% 
1.49 3.05 7.03 

1.47  
(1.34 , 1.61) 

2.92  
(2.72 , 3.16) 

6.77 
 (6.34 , 7.21) 

10% 
1.49 3.07 7.10 

1.47  
(1.33 , 1.62) 

2.94  
(2.73 , 3.16) 

6.97  
(6.48 , 7.47) 

Table 9.12 Estimated cumulative incidence (%) of all-cause mortality by 1, 2 and 4 years from 
study entry, for each treatment strategy.  

95% CI given in brackets for dynamic MSM only, obtained via 200 bootstrap replications 
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Figure 9.12 Estimated cumulative incidence of all-cause mortality for different HbA1c thresholds for treatment initiation.  

 

Curves are estimated from unweighted models adjusting for baseline covariates (top), and dynamic MSM with IPW (bottom). Curves are estimated allowing a one month grace period (left) or a three 

month grace period (right). N at risk at time 0 excludes patients censored for transfer out of practice or initiation of medication other than metformin or sulfonylureas in month1.



269 
 

 

9.3.5 Sensitivity analyses 

 

9.3.5.1 Target HbA1c of 6% 

 

Redefining target HbA1c to be 6%, and including 6.5% as a treatment threshold in the dynamic 

MSM, produced broadly similar results to the primary analysis for the first two years of follow 

up (Table 9.13, Figure 9.13), in that strategies with higher thresholds were less likely to result in 

reaching target HbA1c. In contrast to the primary analysis, the hazard ratios for each strategy vs 

6.5% were relatively constant up to 4 years, with some suggestion of the differences between 

strategies reducing beyond this time. Although the general shape of the cumulative incidence 

curves were similar to the primary analysis, the overall rates of target attainment were much 

lower (Figure 9.14). At the distinct time points of 1, 2 and 4 years, all strategies in the sensitivity 

analysis had cumulative incidence that estimates that were approximately half that of the same 

strategy in the primary analysis (Table 9.14).   

 

 
 

IPW* dynamic MSM -hazard ratio for strategy vs 6.5% ,for reaching target HbA1c of 6%: (HR>1 
indicates superior strategy) 

Strategy 
threshold 

0-6 
months1 

6-12 months1  1-2 years1 2-3 years1 2-4 years1 >4 years1 

6.5% 1 (ref)  1 (ref)  1 (ref)  1 (ref)  1 (ref)  1 (ref)  

7% 0.83  
(0.77 , 0.90) 

0.85  
(0.77 , 0.92) 

0.82  
(0.74 , 0.91) 

0.91  
(0.76 , 1.15) 

0.96  
(0.77 , 1.17) 

1.09  
(0.91 , 1.30) 

8% 0.77  
(0.71 , 0.85) 

0.78  
(0.70 , 0.88) 

0.75  
(0.66 , 0.85) 

0.77  
(0.64 , 0.97) 

0.78  
(0.63 , 0.97) 

0.93  
(0.77 , 1.16) 

9% 0.75  
(0.68 , 0.82) 

0.76  
(0.68 , 0.86) 

0.72  
(0.62 , 0.84) 

0.72  
(0.60 , 0.90) 

0.77  
(0.60 , 1.01) 

0.97  
(0.77 , 1.30) 

10% 0.75  
(0.68 , 0.83) 

0.76  
(0.68 , 0.85) 

0.72  
(0.62 , 0.83) 

0.76  
(0.60 , 1.00) 

0.69  
(0.52 , 0.94) 

0.79  
(0.62 , 1.03) 

Table 9.13 Hazard ratios (and 95% CIs) to compare strategy of “treat in the interval following 
that when HbA1c exceeds x%” for X = 8, 9, 10 and reference strategy of x=7 in terms of 

reaching target HbA1c of 6%.  

1`Columns show estimated HR and 95% CI by time since study entry. CI’s obtained via 200 bootstrap replications 
* weighting model includes: age gender, calendar period of diabetes onset (pre or post 2005), smoking status, alcohol 
consumption, use in the previous year of anti-hypertensive drugs, statins, NSAIDS or aspirin (baseline and time 
updated); previous history of any CVD, stroke, MI, CKD or cancer (baseline and time updated); HbA1c, BMI and SBP 
(baseline and time updated). 
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Figure 9.13 Estimated HRs and 95% confidence intervals from dynamic MSM to compare 
different HbA1c thresholds for treatment initiation to a 6.5% threshold, in terms of reaching 

target HbA1c (6%) attainment through time. 

 

CI’s obtained via 200 bootstrap replications 

 

 

Figure 9.14 Estimated cumulative incidence curves for reaching target HbA1c of 6%, for 
different HbA1c thresholds for treatment initiation.  
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IPW Dynamic MSM primary analysis: 

proportion achieving target HBA1c of 6.5% by… 
IPW Dynamic MSM sensitivity analysis: 

proportion achieving target HBA1c of 6% by… 

H
b

A
1

c 
th

re
sh

o
ld

 

 
1 year 2 years 4 years 1 year 2 years 4 years 

6.5% 

   

0.17  
(0.16 , 0.18) 

0.25  
(0.24 , 0.26) 

0.32  
(0.31 , 0.34) 

7% 0.36  
(0.35 , 0.38) 

0.49  
(0.47 , 0.50) 

0.59  
(0.58 , 0.61) 

0.15  
(0.14 , 0.15) 

0.21  
(0.2 , 0.22) 

0.29  
(0.27 , 0.30) 

8% 0.32  
(0.31 , 0.32) 

0.42  
(0.41 , 0.43) 

0.53  
(0.52 , 0.54) 

0.14  
(0.13 , 0.14) 

0.20  
(0.19 , 0.20) 

0.26  
(0.25 , 0.27) 

9% 0.30  
(0.30 , 0.31) 

0.40  
(0.39 , 0.41) 

0.50  
(0.49 , 0.52) 

0.13 
 (0.13 , 0.14) 

0.19  
(0.19 , 0.20) 

0.25  
(0.24 , 0.26) 

10% 0.30  
(0.30 , 0.31) 

0.40  
(0.39 , 0.41) 

0.48  
(0.47 , 0.50) 

0.13  
(0.13 , 0.14) 

0.19  
(0.19 , 0.20) 

0.25  
(0.25 , 0.26) 

Table 9.14 Estimated proportions of population achieving target HbA1c by 1, 2 and 4 years 
from study entry, for each treatment strategy.  

Results from primary analysis (6.5% target) left, and sensitivity analysis (target 6%) right. 95% CI’s given in brackets, 

obtained via 200 bootstrap replications. 

 

 

9.3.5.2 Initiation with metformin only  

 

For all outcomes, the results of both the ITT style approach (treat with metformin above 

threshold then continue with metformin, sulfonylureas or both as necessary) and the as treated 

style approach (treat with metformin above threshold and continue with metformin only) to 

examining the effect of dynamic strategies involving metformin use alone as a first line therapy 

were broadly similar to the results of the primary analysis. Full results, including hazard ratio 

estimates, estimated cumulative incidence at 1, 2 and 4 years, and 10-year cumulative incidence 

curves for all outcomes are given in appendix 27.  

Due to greater censoring for sulfonylurea initiation in the as treated style approach, the 

precision of the estimates was reduced compared to the primary analysis, particularly for the 

HRs of the effects of strategies at 3-4 years and > 4 years after study entry. This loss of precision 

was most noticeable for the outcomes of MI and stroke (see appendix 27 tables 27.3 and 27.5). 

Although poor precision limited how clearly changes from the primary analysis could be 

interpreted, two notable differences were observed between the as treated sensitivity analysis 

and the primary analysis. Firstly, for stroke, the estimated effects of the 8, 9 and 10% threshold 

strategies vs a 6.5% threshold for > 4 years follow up were more consistent with an increased 

risk of stroke in the as treated sensitivity analysis (Figure 9.15). Secondly, for all-cause mortality, 

the dynamic MSM no longer reduced the estimated elevated risk of mortality for higher 

thresholds in the first 6-month period, which was observed in the unweighted primary analysis. 

The ITT and as treated approaches produced very similar results (Figure 9.16).
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Figure 9.15 Estimated HRs and 95% confidence intervals to compare different HbA1c thresholds 
for metformin initiation to a 6.5% threshold in terms of risk of stroke through time. Results 

from primary analysis (top) and sensitivity analysis where patients were censored from the risk 
set at any initiation of sulfonylurea (bottom).  

 

As treated style approach censors patient from the risk set at any initiation of a sulfonylurea after study entry. CI’s 

obtained via 200 bootstrap replications 
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Figure 9.16 Estimated HRs and 95% confidence intervals to compare risk of all-cause mortality 
through time for different HbA1c thresholds of metformin initiation vs a 6.5% threshold. Results 
from primary analysis (top), and sensitivity analysis where patients were censored from the risk 

set at first line initiation of a sulfonylurea (middle) or at any initiation of a sulfonylurea 
(bottom).  

 

ITT style approach censors patient from the risk set if a sulfonylurea is initiated as a first line therapy before 

metformin, but allows a patient to switch to or add a sulfonylurea at any time after metformin initiation. As treated 

style approach censors patient from the risk set at any initiation of a sulfonylurea after study entry. CI’s obtained via 

200 bootstrap replications
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9.4 DISCUSSION  
 

9.4.1 Main findings 

 

The aim of this analysis was to use dynamic marginal structural models to compare dynamic 

treatment strategies for first line treatment initiation in patients with newly diagnosed type 2 

diabetes. Four HbA1c thresholds of 7, 8, 9 and 10% were compared for how quickly a target 

HbA1c of 6.5% could be obtained. The same dynamic strategies and the additional strategy of a 

6.5% threshold were compared for risk of MI, stroke and all-cause mortality. In estimating these 

effects, an additional aim was to compare the results to that of an unweighted analysis to gain 

insight into whether the use of dynamic MSMs appeared to adjust for expected time-dependent 

confounding.  

For the outcome of achieving a target HbA1c of 6.5%, both the unweighted analysis and the 

dynamic MSM estimated that higher thresholds for initiating treatment resulted in lower 

incidence of attaining the target HbA1c of 6.5%. The magnitude of the differences in incidence 

through time was greater when estimated using the dynamic MSM, though there was loss of 

precision with the weighted models. Allowing for either one or three month grace periods for 

treatment initiation made little difference to the results.  

For MI, stroke and all-cause mortality, there was no consistent evidence that different strategies 

had differing effects on risk of any of these outcomes through time. There was some suggestion 

that risk of MI was greater from 6 months onwards for more lenient strategies (i.e. higher 

thresholds), though for all but the 10% threshold this increase in risk appeared to diminish with 

time. However overall, the absolute difference between estimated incidences of MI for different 

strategies was small. For these outcomes, many estimates lacked precision, particularly for the 

weighted models, limiting how far any observed differences between strategies, or between 

unweighted and weighted models could be interpreted.  

 

9.4.2 Comparison between unweighted and weighted models – interpretation and plausibility 

 

In order to understand whether the dynamic MSMs produced plausible estimates of effect, it is 

important to understand the expected direction of bias in the unweighted analyses. For now, 

the results obtained assuming a one month grace period will be discussed. The lengthening of 

the grace period and its effect on the results will be discussed in section 9.4.3.  
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9.4.2.1 Target HbA1c  

 

The majority of high risk patients are likely to be treated earlier, and would thus be compliant 

with stricter strategies dictating initiation at lower thresholds of HbA1c. Conversely, most 

patients who are considered lower risk might delay treatment and will therefore be compliant 

to the more lenient strategies. An unweighted analysis comparing strict vs lenient strategies may 

therefore tend to compare high vs low risk patients and so underestimate any benefit of earlier 

treatment. In the weighted analysis, we upweight the minority of lower risk patients who initiate 

treatment at lower HbA1c under the strategies with low initiation thresholds. For the more 

lenient strategies we upweight those who do not initiate treatment early but are at high risk, 

and so may be less likely to achieve target HbA1C. Therefore, the dynamic MSM would be 

expected to estimate a greater benefit of a lower threshold for treatment than a standard 

analysis. This hypothesised difference between unweighted and weighted models was observed 

in our analyses in both the estimated hazard ratios and the estimated cumulative incidence 

through time.  

From a clinical perspective, the finding that delayed treatment increases the time to target 

HbA1c may seem obvious. If patients must wait for their HbA1c to increase further before they 

are treated, then it will likely take them longer to achieve target HBA1c. However, the results in 

Table 9.6 suggested that the proportion of on-treatment person time at higher HbA1c was 

greater in the strategies with the higher thresholds and therefore that the lower incidence of 

target achievement is not solely due to more person time off treatment as HbA1c increases; 

even after treatment is initiated it may take longer to reduce HbA1c from a higher level. It was 

suggested by some of the literature reviewed in 3.3.6, that better HbA1c control (defined by 

maintaining a target of 6.5%) results in lower risk of MI [126] and possibly all-cause 

mortality[130]. These previous findings, although not directly comparable, are not contradicted 

by the analyses of MI and mortality conducted here, particularly for MI (see next paragraph). 

Therefore, the finding here that delayed treatment may delay subsequent glucose control even 

after treatment initiation, could be an important result to encourage closer monitoring of 

patients with pre or early diabetes. 

 

9.4.2.2 MI  

 

MI’s are potentially preventable occurrences and are not necessarily fatal. Therefore, patients 

presenting at high risk of MI may be treated with a more aggressive strategy in an attempt to 
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control their diabetes and in turn reduce risk of the event. If so, patients compliant to lenient 

strategies (high thresholds) may be at lower risk of events occurring. This could result in a 

downward bias in the estimated association between higher thresholds and MI risk in an 

unweighted analysis.  

For 0-6 months after study entry, there was little change observed between the standard 

analysis and dynamic MSM. This may be expected, since risk factors such as SBP, BMI and HbA1c 

levels take time to change and to be updated within the CPRD. For this early time period, the 

unweighted model suggested a protective effect of higher thresholds for initiation, which is in 

line with the expected direction of confounding assuming no causal effect of strategy would be 

plausible within the first 6 months. However, since the estimate for 0-6 months after study entry 

was similar in the weighted model, there may be some residual baseline confounding. 

Compared to the unweighted analysis, for 6-12 months onwards the dynamic MSM appeared to 

move estimated HRs in the expected direction for relative risk of MI, with higher thresholds for 

HbA1c in general estimated to have higher risk of MI in the dynamic MSM, but similar risk of MI 

in the unweighted analysis. Having said this, the magnitude of these changes was small relative 

to the loss in precision with the weighted analysis. For all strategies, the increase in risk in the 

dynamic MSM appeared to be highest at 6-12 months after study entry, with HRs observed to 

reduce for periods after this. One possible explanations for this pattern of risk is the varying 

patterns of treatment uptake within strategies. It is plausible that that more MIs occur in 

patients who delay treatment in the first 12 months in line with the more lenient strategies. 

Patients that do not have an MI in this time may then become treated in line with the particular 

strategy and at this point, the risk of MI reduces, since they are now treated with metformin or 

a sulfonylurea. In the previous chapter, the suggestion of a decreased risk of MI with metformin 

or sulfonylurea use was only apparent after about 4 years. This could explain why the differences 

to the 6.5% strategy appear to move slowly back towards the null: if those treated later at higher 

thresholds take time to “catch up” in terms of their reduced MI risk. Alternatively, it could be 

patients who do not have an MI in the first 12 months are overall at lower risk of MI therefore 

differences between treatment strategies are less clear after this time. Despite these possible 

explanations, it should be acknowledged that the low overall incidence of MIs meant the 

observed differences in strategies indicated by the estimated HRs differences did not translate 

into clinically meaningful differences in estimated cumulative incidence. For example, around a 

3% cumulative incidence of MI by 10 years was estimated for the 6.5% threshold vs 5% 

estimated incidence for the 10% threshold.  
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9.4.2.3 Stroke  

 

Overall, comparing risk of stroke between treatment initiation strategies did not produce results 

that were consistent with causality or that could be clearly explained, and as with MI, the 

magnitude of the differences between unweighted and weighted models was small when 

considering the width of the confidence intervals. The same direction of confounding that was 

postulated for MI would also be expected in the unweighted models for this outcome. However, 

the expected direction of change between the unweighted and weighted models was only 

apparent for 0-6 months and 1-2 years. For other time periods, the opposite direction of change 

was observed and a reduced risk of stroke was estimated for higher thresholds after 2 years of 

follow up. One possible explanation is suggested by the analysis in chapter 8 comparing 

metformin use to diet for risk of stroke, which suggested an increased risk of stroke, particularly 

with long term metformin use (see 8.3.4.2). Since compliance with more lenient strategies 

suggests less time on treatment, a drug-associated increased risk could explain the protective 

effect of more lenient strategies on stroke risk, which was observed in this analysis. 

As discussed in the previous chapter, the reason for this increased risk of stroke was not clear, 

but may have been a result of residual/unmeasured confounding, ignoring intensification with 

sulfonylureas after metformin monotherapy in the exposure definition, or the broad definition 

of stroke (which may have introduced further confounding). The same issues may also have 

contributed to the observed results here. In the sensitivity analysis where only metformin was 

examined, for earlier time periods the observed results were similar to the primary analysis, but 

the reduction in risk for higher initiation thresholds was removed for >4 years of follow up. Also, 

the cumulative incidence curves were more suggestive of higher stroke incidence after 10 years 

with the higher initiation thresholds. However, a protective effect of a higher initiation threshold 

was still observed for 2-3 years in this sensitivity analysis, which cannot be clearly explained. 

Overall, the observed results are likely to be explained by a combination of the above factors, 

though the most likely explanation is some unmeasured confounding. For example, although 

time-varying use of statins was adjusted for, specific values of LDL cholesterol were not. If the 

higher perceived risk which causes the GP to treat the patients at a lower HbA1c threshold is a 

result of poorly controlled cholesterol, then this confounding may remain, and may be more 

prominent in certain periods of follow up where more stroke events occur.  
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9.4.2.4 All-cause mortality  

 

As explained in the previous chapter, the expected direction of time-dependent confounding in 

unweighted models of all-cause mortality may not be the same as would be expected for MI and 

stroke. Although in patients not at immediate risk of death, the direction of expected 

confounding would be the same as for MI and stroke, there may also be strong confounding in 

the opposite direction if patients at high risk of mortality in the short term are less likely to be 

treated because of futility. The more lenient strategies may then look more harmful in an 

unweighted analysis compared to the dynamic MSM. In the unweighted analysis, a large 

estimated increased risk of all-cause mortality with higher HbA1c initiation thresholds was 

indeed observed in the first 6 months, with estimates consistent with no difference between 

strategies thereafter. The dynamic MSM on the other hand, did not estimate this increased risk 

of mortality in the first 6 months, but did not suggest evidence of differences in risk of mortality 

between strategies for the rest of follow up. This is consistent with the removal of confounding 

by frailty, but only in the early stages after study entry, which for most patients was the time of 

diabetes diagnosis. This could indicate an issue with reverse causality, in that the reason for 

mortality may also have caused the diagnosis of diabetes. However, in the sensitivity analysis 

where only metformin was considered, the estimates from the dynamic MSM were more similar 

to the unweighted analysis for 0-6 months, with an increased risk observed for higher initiation 

thresholds. This suggests that change in estimates between the unweighted and dynamic MSM 

in the primary analysis could have been driven by patients who initiate sulfonylureas soon after 

diabetes diagnosis. As discussed in the previous chapter in relation to the observed early 

increase in risk of mortality with sulfonylurea use, a possible contributing factor could be 

differences in severity of CKD that could not be fully adjusted for in the weighting due to 

positivity violations (see section 8.4.3). As previously explained, this is likely to only substantially 

affect the results for the outcome of mortality, since the associated risks of MI and stroke with 

severity of CKD could have been captured by other covariates in the model. 

 

9.4.3 Allowing a three month grace period  

 

For all outcomes studied, changing from a one month to a three month grace period had little 

impact on the results of the unweighted analyses. The one notable exception was for all-cause 

mortality, where the three month grace period resulted in a smaller increased risk with higher 

initiation thresholds in the first 6 month period. This can be explained by the fact that with a 
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longer grace period, those being censored from strict strategies for not being treated remained 

uncensored for 3 intervals instead one. Since a key reason for not being treated in line with the 

strategy is likely to be frailty, deaths occurring in these extra intervals would have been included 

for the more lenient strategies when using a three month grace period, since the censoring 

occurred later.  

For the dynamic MSMs, the longer grace period tended to make the estimates more similar to 

the standard analysis. This is possibly because some of the risk factors for the outcome changed 

within the grace period. Although covariates such as HbA1c and BMI are unlikely to have 

changed substantially within a three month period, other factors such as presence of 

comorbidities, or use of other medications that may indicate a change in risk could quite 

plausibly change and be re-recorded within the space of three months. If so, since the 

upweighting is applied to patients complying in the final interval of the grace period only, 

changes in risk factors for the outcome within the grace period may result in the weighting 

producing a poorer balance in the risk of outcome between those complying and those not 

complying by the end of the grace period. The weighting approach used was one of two 

suggested by Cain et al [181], with an alternative being to re-weight based on the assumption 

of uniform initiation across the grace period. This second approach may reduce the amount of 

residual confounding that is re-introduced, but will not completely remove the issue if most 

patients still initiate in the first interval of the grace period. Since this was the case in the present 

analysis, it is likely that neither approach was appropriate and in fact the use of an extended 

grace period may have been unsuitable for this application. 

 

9.4.4 Validity of assumptions 

 

As alluded to in the discussion of the observed results, it is possible that unmeasured 

confounding could explain the inconsistent differences between standard analyses and the 

dynamic MSMs, and also the unexpected direction of results for some periods of follow up time. 

If the lack of clearly interpretable results for MI, stroke and all- cause mortality when comparing 

static treatment strategies in the previous chapter were a result of unmeasured confounding, 

then the same unmeasured confounding is likely to affect these results too.  

The potential issues of model misspecification of the weighting and outcome models discussed 

in the previous chapter also apply to this analysis. Specific to dynamic strategies, if a difference 

between strategies is expected, then the proportional hazards assumption is unlikely to hold, 
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because for some time periods, patients will be compliant to more than one strategy, meaning 

the relative risk at that time between concurrent strategies must be one. It was important to 

make sure the model could allow for this. The interaction between time and treatment strategy 

was modelled in two different ways in this analysis (interactions with categorical time to 

estimate HRs, and an interaction with continuous time in its spline parameterisation to 

estimated cumulative hazard curves) to check the sensitivity of the results to misspecification of 

how and when the strategies may diverge. Both approaches produced results that were 

consistent with one another, increasing confidence that no one set of results was severely 

affected by misspecifying this aspect of the MSM.  

In previous chapters, the extremes of the distribution of the unstabilised weights were very 

large, suggesting probable violations of the positivity assumption. For example, the 99th 

percentile of the unstabilised IPTW for the analysis of metformin and cancer risk was over 700. 

In contrast, the 99th percentile for the IPW for dynamic strategies was around 40, thus 

demonstrating the reduction in positivity issues by looking at a sensible range of treatment 

thresholds.  

 

9.4.5 Other limitations 

 

9.4.5.1 Precision 

 

A loss of precision was observed between the weighted and unweighted analyses, which seemed 

to be greater than the loss when using stabilised weights in previous chapters. This loss of 

precision limited the extent to which the changes between the unweighted and weighted 

models, as well as the differences between strategies in the dynamic model, could be 

interpreted. The issue was most noticeable for the outcomes of MI and stroke where the 

incidence during follow up was lowest.  

Both the weighted and unweighted confidence intervals were estimated via bootstrap 

replication, and it is not clear what is driving this loss in precision. Existing literature where 

dynamic MSMs have been applied rarely report results of unweighted analyses; therefore it is 

unclear whether the same phenomenon has been observed previously. In a study by 

Neugebauer et al [131] (previously discussed in section 3.3.6), both unweighted and weighted 

analyses were reported, although how the confidence intervals for the unweighted analyses 

were obtained was not specified. No large changes in precision of estimates between 



281 
 

 

unweighted and weighted estimates of absolute risk differences at 4 years (where the dynamic 

MSM CIs were based on 1000 bootstrap replications) were observed. The sample size and overall 

cumulative incidence of MI for the Neugebauer et al study was similar to that found in the 

present study, but the focus on absolute differences may have played down any differences: 

large differences in hazard may have little effect on the estimated cumulative incidence when 

cumulative incidence is low. Indeed, the precision of the cumulative incidence estimates in the 

present analysis appeared to be higher than for the corresponding hazard ratios.  

One contributing factor to the losses in precision could be repeat sampling of subjects with 

extreme weights in some bootstrap replications, which may result in extreme bias in the effect 

estimates for those replications. With a small number of replications (200), there may be 

extreme results that remain even after removing the top and bottom 2.5% to obtain the 

confidence interval. As a check to see if this provided some explanation, the confidence intervals 

for the dynamic MSM looking at all-cause mortality were re-estimated using 500 replications. 

No notable improvements in precision were observed. Another possible explanation is that the 

weight estimation process is omitted from the bootstrap replications. The balancing of the 

censoring process with respect to the time-dependent confounders is done in the whole sample, 

and the weights are specific to that sample. If a particular bootstrap replication sample has, by 

chance, a very different distribution of covariates between those who do and don’t remain 

compliant to particular strategies, then the weights estimated in the original sample would not 

be appropriate to balance the time-dependent confounding; this process could lead to different 

levels of confounder control in different replications, and thus an increased variability in 

estimates and higher empirical standard errors. This issue would not affect the unweighted 

model as the baseline covariate adjustment in the unweighted model is always done within the 

bootstrap replication. To explore this possible explanation, a simple simulation was done with a 

single confounder, binary exposure and binary outcome occurring in approximately 2% of the 

simulated sample (where the 99th percentile of the IPW for the whole sample was around 20, 

and truncated at this value). There were no clear differences in precision observed when 

including or excluding the weighting process from the bootstrap replication. However, it may be 

necessary to consider a more complex simulation (in particular, a simulation of a dynamic 

strategy), and vary the strength of confounding and the underlying incidence of the outcome, in 

order to establish whether the loss of precision may be explained by the reasons outlined above. 

This is acknowledged as a potential area for future work.  
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9.4.5.2 Visit frequency 

 

For the same reasons as discussed previously (see sections 7.4.4 and 8.4.5.1), the issue of varying 

visit frequency and the implications for missing data may have reduced the effectiveness of the 

adjustment for informative noncompliance with a particular strategy. All patients must have had 

an HbA1c measure in order to enter the study, however if no further visits were recorded for an 

individual because they did not visit the GP, then depending on the value of the baseline HbA1c, 

the patient would have remained compliant with a set of strategies and not been censored. At 

the same time, potentially inaccurate information based on LOCF would have be used to 

upweight this individual and others when patients with what were assumed to be the same risk 

factors became noncompliant. For the outcome of time to target HbA1c, this individual would 

also never reach the target since they never had another measure, and therefore the rates of 

target attainment in the strategies with which these patients were apparently compliant would 

be underestimated. A major concern with the findings of the analysis of achieving target HbA1c, 

was that the decreased risk of the outcome in the most lenient strategy was driven by this. 

However, this would have to mean that patients with a higher HbA1c were those less likely to 

attend regularly. A simple check was to look at the rate of updated HbA1cs occurring for follow 

up on each strategy, and this was found to be similar across strategies, with observed rates of 

15, 12, 12 and 13 measures per 100 person months for 7 8 9 and 10% strategies respectively. 

Therefore, the results of this analysis are unlikely to be entirely attributable to issues of 

nonattendance. It was also observed that some patients did achieve target HbA1c off treatment, 

and these patients must have attended to have the outcome measured. Although it was not 

done for this thesis, a further extension could be to explore this group further, and examine 

interactions between baseline covariates and strategy to see whether delaying treatment in 

certain subgroups may be more beneficial or detrimental for any outcomes.  

 

9.4.5.3 Approach to dealing with diabetes treatments other than metformin or sulfonylureas 

 

To be consistent with previous chapters, patients were treated as if lost to follow up at initiation 

of any diabetes treatment other than metformin or a sulfonylurea, and were censored at the 

beginning of the interval in which this occurred. Therefore, if for example, a patient initiated 

insulin after their HbA1c exceeded the given threshold for a strategy, they were censored at the 

beginning of the interval, before they could be counted as noncompliant for not initiation 

metformin or a sulfonylurea. Such a patient would have been considered to have remained 
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compliant to that strategy as untreated until the beginning of the interval in which insulin was 

initiated, and would not have contributed to the weighting model or outcome model in the 

interval in which they actually became noncompliant, because they were no longer considered 

to be at risk. If the outcome occurrence influenced the decision to initiate an alternative first 

line therapy, then by censoring as if lost to follow up instead of treating it as noncompliance to 

the strategy, some bias may have been introduced. However, it is felt that the impact of this is 

likely to be negligible in the present analysis, since, as reported in 6.3.1, only 2.5% of patients 

initiated something other than metformin or a sulfonylurea as their first line therapy.  

It could also be argued, since the strategies were only focused on first line initiation, that all 

other treatment intensifications beyond first line initiation could have been ignored, thus 

including follow up after initiation of other medications, as long as it came after an initial 

prescription for metformin or a sulfonylurea. However, sulfonylureas are the most common 2nd 

line intensification to metformin, and vice versa (as reported in 6.3.1), meaning that strategies 

restricted to metformin and sulfonylureas may be the most clinically relevant to examine. 

Further, because these are the two most commonly used medications for first and second line 

treatment periods, the majority of 2nd line therapy follow up was captured, and most patients 

censored for treatment switch were censored at their third line therapy, which was only 

observed in 15% of the population. Also, by the time third line intensification happens, it is less 

plausible that differences in risk of outcomes could be directly attributed to the threshold for 

first line initiation, so it was considered reasonable to exclude follow up beyond this point. 

Further, although treatment intensification beyond these two therapies may indicate greater 

disease severity, or suggest contra-indications which could also affect outcome risk, in previous 

chapters, additional IPCW to adjust for censoring due to medication switch and other censoring 

events (death, transfer out of practice) made negligible differences to the estimated effects of 

treatment (see sections 7.3.2.5 and 8.3.4). This further justifies the opinion that censoring at 

initiation of therapies other than metformin and sulfonylureas is not a major limitation of this 

analysis.  

 

9.4.5.4 Computational limitations  

 

In order to compare dynamic treatment strategies, data must be expanded to create cohorts 

compliant to each strategy, and confidence intervals must be estimated via bootstrapping. For 

only 200 bootstrap replications, the time taken to run the dynamic MSM obtaining bootstrap 

standard errors for MI was 32 hours using a high specification PC. The long computation time 
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also impacted the number of regimes that it was considered practical to compare. In this 

context, the results of all analyses suggested that a smooth function for regime would not have 

been much more informative. Although it is possible that parallel computing, if available, may 

improve efficiency of computation, in general terms, if applying the method to other contexts 

where there is an a priori assumption that the effect of increasing thresholds on outcome is not 

linear, this could be a limitation.  

 

9.5 CHAPTER SUMMARY 
 

Dynamic marginal structural models were used to estimate the differences between dynamic 

treatment strategies for first line treatment initiation in patients with newly diagnosed type 2 

diabetes. Four HbA1c thresholds of 7, 8, 9 and 10% were compared for risk of MI, stroke and all-

cause mortality, as well as for achieving target HbA1c. 

For MI, the dynamic MSM estimated that higher thresholds for initiation resulted in elevated 

risk, which appeared to peak at 6-12 months after study entry. However, the low incidence of 

MIs for all strategies meant the differences in strategies indicated by the estimated hazard ratios 

were not clearly translated to meaningful differences in cumulative incidence over 10 years. For 

stroke and all-cause mortality, although some changes in point estimates were observed 

between unweighted and weighted analyses, the dynamic MSM did not estimate any clear or 

consistent differences in risk of outcome between treatment strategies through time.  

There was a clear trend that higher thresholds for initiation reduced the rate at which target 

HbA1c of 6.5% was achieved. The change between unweighted and weighted models was 

consistent with the expected direction of bias given the informative censoring. This result, if 

possible to confirm with greater precision, could have implications for treatments. Further work 

to examine whether this finding is the same for subgroups of diabetic patients could provide 

greater understanding of which patients may be more or less successful with a lifestyle change 

to treat early type 2 diabetes.   

The addition of a grace period appeared to re-introduce confounding, particularly for the 

outcomes of MI, stroke and all-cause mortality. It was concluded that this was most likely a result 

of incorrect assumptions about initiation patterns and how risk factors for the outcome changed 

within the grace period.  
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These analyses may still be affected by the same limitations as in previous chapters, the key 

limitations most likely being unmeasured confounding. The strongest evidence of differing 

effects of strategy was observed for time to target HbA1c. As discussed in previous chapters, 

dynamic MSMs using data from routine practice may only be useful to examine effects of 

diabetes treatment strategies on outcomes that are directly targeted by or closely related to the 

treatment used within the strategy. Further work could examine other such outcomes to 

confirm this.  
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10 THESIS SUMMARY  

 

This final chapter aims to provide an overall summary of the work presented. Firstly, the aims 

and objectives outlined at the beginning of the thesis will be recapped and the key findings 

relating to these aims summarised. The key strengths and limitations of the work will then be 

re-iterated and recommendations for future work outlined. Finally, the overall conclusions of 

the thesis will be presented.  

 

10.1 RECAP OF AIMS AND OBJECTIVES  
 

This thesis aimed to investigate potential risks and benefits of first line type 2 diabetes 

treatments via the application of inverse probability of treatment weighting of marginal 

structural models to routinely collected primary care data in the UK Clinical Practice Research 

Datalink (CPRD). In addition to investigating specific pharmacoepidemiological questions, a 

secondary aim was to establish whether the use of such methods in a complex clinical setting 

and data source was practical and valid.  

Specific objectives under these aims were to: 

a) Review the existing observational literature that examines the association between 

metformin use and risk of cancer. 

b) Use IPTW of MSMs to estimate the effect of metformin monotherapy vs lifestyle intervention 

only on risk of cancer. 

c) Use IPTW of MSMs to estimate the effects of metformin and sulfonylureas vs lifestyle 

intervention only on risks of cardiovascular events, all-cause mortality and glucose control. 

d) Use existing extensions to the methodology to examine questions relating to “dynamic” 

treatment strategies. 

e) Descriptively examine whether the anticipated issues relating to the diabetes context and 

routinely collected data that may affect validity of these methods appeared to be present in the 

data. 
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f) Compare the estimated effects of treatment obtained from the MSMs to those obtained via 

standard analysis methods, both in situations where the effect of treatment has been estimated 

previously in randomised trials, and where it is still unknown. 

 

10.2 SUMMARY OF FINDINGS AND COMPARISON WITH PREVIOUS STUDIES 
 

10.2.1 Aim 1: Apply IPTW of MSMs to investigate risk/benefits of first line diabetes therapies  

 

10.2.1.1 Objective a: systematic review of metformin use and risk of cancer in patients with T2DM 

 

The systematic review of metformin and risk of cancer was the first (as far as could be identified) 

to systematically and objectively summarise the existing research both in terms of estimated 

effects and potential for bias, to identify which existing studies appeared to be the most reliable. 

For all cancer, 18/21 estimated a protective effect of metformin on cancer risk, with 12/18 

having upper confidence limits of the relative risk (either HR or OR) below one. The magnitude 

of the effect estimates ranged from just a 0.04% reduction in risk, to a 77% reduction in risk. For 

site-specific cancers estimates were also highly variable across studies. Based on the 

information available, only 3 of the 46 studies identified had low or no risk of bias in all domains, 

and none of these studies found evidence of a protective effect of metformin on risk of cancer 

that would be consistent with causality. Of the 12 studies that estimated a statistically significant 

protective effect of metformin, 11 had at least medium risk of bias in at least two domains. Nine 

had medium or high risk of bias from exposure definition and 7 had medium or high risk of bias 

for how HbA1c, BMI and other OADs were accounted for in the analysis. A meta-regression of 

study characteristics and bias risk could not clearly identify any factors that influenced the 

magnitude of estimated associations but suggested that choice of comparator and biases arising 

from exposure definitions may both play an important role. In an updated search, a further 23 

studies were identified (see section 2.5). Across all 69 studies, none used any advanced causal 

methodology to deal with possible time-dependent confounding, confirming that such an 

analysis may be a valuable addition to the existing literature.  
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10.2.1.2 Objective b: Application of IPTW of MSMs to estimate the effect of metformin vs diet only 

on risk of cancer  

 

Within a cohort of diabetes patients identified from the CPRD primary care database, the MSM 

estimated no evidence of an effect of metformin monotherapy on risk of all cancer compared 

to diet only, with an estimated HR of 0.97 (0.83-1.12). This finding was consistent when looking 

at length of exposure, with all categories of exposure having HRs within the range 0.93-1.09. A 

range of sensitivity analyses also gave very similar results to the main analysis. In a secondary 

analysis, breast, prostate, lung and pancreatic cancer were examined separately, though results 

were varied and inconclusive. The results of the main analysis were broadly consistent with 

other existing literature deemed to be at least risk of bias (see 10.2.1.1).  

10.2.1.3 Objective c: Application of IPTW of MSMs to estimate the effect of metformin vs diet only 

and sulfonylureas vs diet only on risks of MI, stroke, all-cause mortality and glucose 

control 

 

Metformin was associated with a decrease in risk of MI compared to diet only for greater than 

5 years of exposure, which was consistent with the direction of the observed results of the 

UKPDS [31], although smaller in magnitude. There was no clear evidence that metformin was 

associated with a reduced risk of all-cause mortality, in contrast to the UKPDS findings and a 

meta-analysis of trials also discussed in chapter 3 [34]. There was some suggestion of an 

increased risk of stroke with long term use of metformin, which, based on the literature 

reviewed in chapter 3, has not been previously observed. However, this increase in risk was 

diminished in some sensitivity analyses. Metformin users were estimated to have an HbA1c 

around 0.4% lower (in absolute terms) than patients on diet only by 12 months, which although 

slightly smaller in magnitude than the effect estimated in the UKPDS, was consistent with a 

different study that considered how varying levels of metformin adherence were associated 

with the change in HbA1c after 1 year [223]. 

There were no clear patterns of increased or decreased risk through time of any of the time-to-

event outcomes with sulfonylurea use vs diet only. This was broadly consistent with existing trial 

data comparing sulfonylureas with diet only [30, 114, 120]. The estimated early increased risk 

of all-cause mortality, also observed in previous observational studies [32, 33, 125] was thought 

to be suggestive of residual confounding rather than a true causal effect. The estimated decline 

in HbA1c with sulfonylurea use compared to diet only was estimated to be larger than that for 

metformin, with estimates ranging from a 0.5% decrease to a 1% decrease over the first 12 
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months, depending on model specification, which was again broadly consistent with the findings 

of the UKPDS given likely differences in adherence.  

To our knowledge, these analyses were the first applications of IPTW of MSMs to examine the 

association between first line metformin and sulfonylureas vs lifestyle intervention and the risk 

of cardiovascular outcomes, all-cause mortality and glucose control.  

 

10.2.1.4 Objective d: Application of dynamic marginal structural models to estimate the effect of 

different HbA1c thresholds for treatment initiation 

 

Treatment strategies of the form “treat when HbA1c raises above 𝑥%” for 𝑥 = 7,8,9 and 10% 

were compared in terms of their effect on the outcomes of reaching target HbA1c of 6.5%, MI, 

stroke, and all-cause mortality. 𝑥=6.5% was also included for the latter three outcomes. Overall, 

higher thresholds for treatment initiation were estimated to result in lower incidence of target 

HbA1c attainment. For example, with a threshold of 10%, 30% of patients were expected to 

have reached target after 1 year, with a 95% CI of 30%-31%. The corresponding figure for a 

threshold of 7% was 36% (35% - 38%). By 2 years, the equivalent numbers for 10 and 7% 

thresholds were 40% (39%-41%) and 49% (47% - 50%) respectively. There was some suggestion 

that delayed initiation of first line therapy increased the risk of MI, with the highest increase in 

risk between 6 and 12 months from study entry. However, the low overall incidence of MI 

observed in this study meant the estimated relative differences between strategies had limited 

impact on how estimated cumulative incidence varied between strategies. There was no 

consistent evidence of differences between strategies for risk of stroke or all-cause mortality. 

For all outcomes, the precision of the estimated effects was very low. No existing literature was 

found comparing thresholds of HbA1c for first line treatment initiation; however, Neugbauer et 

al [131] compared thresholds for starting second line treatments. Consistent with the analysis 

presented here, they found some suggestion of a non-significant trend for fewer MIs with lower 

treatment intensification thresholds, but the absolute differences were very small. As discussed 

in section 3.3.6, other studies have compared “intensive” vs “conventional” glucose control in 

randomised settings, with a recent large umbrella review finding no evidence that tight control 

reduced risk of all-cause mortality or stroke, but did observe a consistent reduction in non-fatal 

MI across all trials and reviews. This review also found that in all major trials [31, 114, 116, 117, 

127] , HbA1c at the end of the study was lower in the intensive groups than the conventional 

groups. Although the question of interest in these studies is different to that addressed using 

the dynamic MSMs in this thesis, the findings are consistent for all outcomes examined, given 
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that broadly speaking, lower HbA1c thresholds for initiation would be included within the 

definition of “intensive” strategies, and higher thresholds within “conventional”. 

 

10.2.2 Aim 2: Investigate whether inverse probability of treatment weighting of MSMs can 

effectively adjust for anticipated time-dependent confounding in a complex clinical setting 

with a challenging data source 

 

10.2.2.1 Objective e: Descriptive investigation of anticipated positivity violations and differing visit 

frequency  

 

In an initial descriptive analysis, initiation of metformin and sulfonylureas as a first line therapy 

for T2DM appeared to be associated with the key confounders of age and HbA1c; and, to a 

smaller extent, BMI. The differences in HbA1c and BMI between those initiating the different 

treatments and remaining on diet only were apparent at the time of diagnosis, and as time 

progressed. Consistent with these initial findings, large weights were observed which increased 

the overall mean of the raw IPTW. Simple truncations at the 99th percentile (or more leniently 

at 10) were observed to move the mean close to 1. Additionally, use of simpler categorical model 

specifications was observed to improve the mean of the stabilised weight and did not 

substantially alter the estimated treatment effects. These findings suggested that simple 

existing methods for reducing near positivity violations were useful in this context, though the 

possibility that truncation of the weights re-introduced some residual confounding cannot be 

excluded. The distribution of the unstabilised weights from the dynamic models indicated that 

positivity violations were less severe in this setting, due to the selection of realistic strategies 

that were adhered to by at least 10% of the population. 

In terms of visit frequency issues, initial investigations indicated that HbA1c and BMI were less 

frequently updated in patients not initiating treatment. However, there were no clear 

differences in number of consultations. This suggested that although the updating of measures 

may differ, the patients not initiating treatment were still in contact with their GP and therefore 

still had the opportunity to receive treatment. In this case, and under the assumption that lack 

of updating meant the measures remained stable (which was not contradicted by some basic 

descriptive analyses), it was felt that the simple approach of LOCF would be reasonable; under 

section 10.4.2 possible modelling of the visit process is discussed as an alternative approach.  
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10.2.2.2 Objective f: Comparison to standard analysis methods  

 

For the analysis of metformin and risk of any cancer, the differences between standard analysis 

methods and the MSMs with both IPTW alone and joint IPTW and IPCW were minimal. The 

differences were greater for site specific analyses but interpretation was hampered by 

imprecision. For MI, stroke and all-cause mortality, there were slightly larger differences 

between results from MSMs and standard models, but in general, all confidence intervals were 

consistent between methods. Despite this, for MI and all-cause mortality, the differences 

observed were in the expected direction suggesting that the weighting was eliminating some 

likely time-dependent confounding. For longitudinal HbA1c, the standard analysis methods 

clearly suggested bias in the estimated treatment effect, and the MSMs with IPTW estimated 

the effect of treatment to be in the expected direction. For static treatment strategies, only two 

papers could be found that applied MSMs with IPTW using routinely collected data in the 

diabetes context. In the first, the authors were interested in comparing two options for 

intensification after metformin monotherapy in terms of risk of a composite cardiovascular 

outcome and found no substantial differences between standard analysis methods and use of 

MSMs [233]. In the second, the authors examined medication adherence in relation to risk of a 

composite microvascular endpoint [234], and found that the MSM with IPTW produced results 

that were closer to those observed previously in clinical trials compared to an unweighted 

analysis. These two studies support the findings in this thesis in that the differences to standard 

analysis methods were most pronounced for outcomes that may be more directly affected over 

a shorter time scale by the treatment of interest. Further, the example presented in this thesis, 

of using MSMs with IPTW to estimate an unbiased effect of metformin and sulfonylureas as first 

line therapy vs diet only on HbA1c trajectory, may be one of the first to show a clear benefit of 

this methodology in the diabetes context using UK primary care data.  

For the dynamic models, differences between weighted and unweighted models were in the 

expected direction for the outcomes of target HbA1c attainment, MI and all-cause mortality. 

The magnitude of the differences was largest for target HbA1c attainment. The differences 

between models for stroke were inconsistent and not easily interpretable. For all outcomes, the 

magnitude of the differences between models were relatively small in relation to the loss of 

precision in the weighted models compared to the unweighted models (see section 10.3.2.4).  
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10.3 KEY STRENGTHS AND LIMITATIONS  
 

Throughout the thesis, the limitations of each analysis have been discussed in detail in the 

relevant chapters. A summary of findings and main limitations for each objective are presented 

in Table 10.1. The focus here will be to summarise some key strengths of the research, as well 

as to reiterate and briefly discuss the limitations most relevant to the overall aims of the thesis.  

 

10.3.1 Strengths  

 

10.3.1.1 Study cohort 

 

The analyses in this thesis were conducted within a cohort patients with newly diagnosed type 

2 diabetes, that were identified using existing validated algorithms. This well-defined cohort 

with low risk of misclassification of diabetes status allowed for the estimation of the associations 

of interest in a relevant population. Additionally, the use of patients with incident type 2 

diabetes eliminated any pre-existing differences in risk of any outcome that could be due to 

varying diabetes duration at study entry. Further, the large sample size strengthens this work 

since, although some analyses still lacked precision, the cohort of roughly 50,000 enabled 

allowed outcomes such as site specific cancers and individual cardiovascular events that would 

have not been feasible at all in smaller data sources such as those derived from individual 

diabetes clinics or prospective observational studies.  

 

10.3.1.2 Careful methodological implementation  

 

This thesis presents examples of careful implementation of inverse probability of treatment 

weighting of marginal structural models to compare both static and dynamic treatment 

strategies. Initial investigations were performed to ensure there were no clear violations of the 

positivity assumption in advance, and in all applications, the treatment and (where used) 

censoring models for the weights were developed in a thorough process with due consideration 

of the necessary assumptions, and the existing literature on weight estimation [169, 175]. In 

particular, covariate selection was based primarily on a-priori knowledge of potential 

confounders and risk factors of the outcomes of interest, and not on observed associations with 

treatment initiation; multiple covariate forms were used such that possible bias due to model 
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misspecification might be identified and investigated; and the distribution of the weights 

examined for each weighting model separately. In the outcome models, again, multiple 

covariate parameterisations were investigated to assess how much varying model specification 

may affect estimated associations, and treatment history modelled in multiple ways to ensure 

the effect of treatment on outcome was quantified appropriately.  

 

10.3.1.3 Comprehensive sensitivity analyses  

 

From a clinical and epidemiological perspective, this thesis is strengthened by the many 

sensitivity analyses that were conducted. For the analysis of metformin and risk of cancer, no 

sensitivity analyses changed the conclusion that there was no evidence of an effect of metformin 

use on risk of all cancers combined, strengthening this as a reliable conclusion that is robust to 

a wide range of modelling decisions (though it is acknowledged that the same modelling 

decisions may have had a different effect if there were a true effect of treatment). In further 

analyses of the effects of metformin and sulfonylureas on risks of MI, stroke and all-cause 

mortality, thorough sensitivity analyses not only provided confidence that the observed results 

were not obviously affected by most aspects of the study design that were examined, but also, 

where differences were observed, gave some insight into possible explanations for unexpected 

results. For example, the increased risk of stroke with prolonged metformin use was attenuated 

when patients were censored at initiation of sulfonylureas and IPCW used to adjust for 

informative censoring (as discussed in 8.4.3).  

 

10.3.2 Limitations  

 

10.3.2.1 Follow up time  

 

The lack of power to detect long term effects of treatment due to short follow up is an 

acknowledged limitation of the analyses conducted. The average follow up times for the 

different analyses ranged from 3.8 to 4.5 years, but severe complications of diabetes may 

happen later than this. Additionally, any chemo-protective effect of metformin may take years 

to develop after initiation of treatment. Due to short average follow up in the metformin and 

cancer analysis, the estimated effects of long term use of metformin lacked precision. However, 
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the short average follow up for this analysis was partially due to censoring at any switch from 

metformin monotherapy, which was necessary to estimate an as treated effect vs diet only. 

In later chapters, patients were allowed to remain in the risk set after switching between 

metformin and sulfonylureas, and an ITT estimate based on their initial therapy was calculated. 

This increased the amount of follow up available for analysis. For MI, stroke and mortality, less 

follow up may be required than cancer, particularly since patients were not required to be free 

from CVD at study entry. It was therefore felt that the average follow up would be sufficient to 

begin to detect an effect of medication in newly diagnosed T2DM. Since the effect of treatment 

on HBA1c trajectory (and on achieving target HbA1c) is shorter term, short follow up time is less 

of a limitation for these analyses.  

The impact of available follow up on the ability to detect effects of medication on different 

outcomes may also partially explain the observation that differences between standard analysis 

methods and MSMs were smallest for cancer, and largest for HbA1c outcomes. It may be the 

case the association between confounder and outcome also develops over a long period of time, 

meaning that time-dependent confounding would only be problematic for longer follow up. 

 

10.3.2.2 Unmeasured and residual confounding  

 

One of the biggest limitations in terms of whether the estimated treatment effects can be 

interpreted causally, is the likelihood for unmeasured confounding. Particular examples of 

unmeasured confounders have been discussed previously, for example, diet and exercise. 

Although a large number of confounders were adjusted for, differences in risk between 

treatment groups may have remained. As well as confounders that were not included at all, the 

possibility for residual confounding by included variables remains. In particular, as has been 

explained, use of weight truncation to deal with near violations of positivity could re-introduce 

some confounding, and possible model misspecification, measurement error, or lack of detail 

for some confounders (e.g. smoking and alcohol) may mean not all confounding by these 

variables was accounted for. The strongest suggestion that the models were affected by residual 

confounding was in the analysis estimating associations between sulfonylureas and all-cause 

mortality. The models estimated an immediate increased risk within a single month of treatment 

initiation, which is unlikely to be plausible given the effect of treatment on HbA1c itself was not 

estimated to have its strongest effect until 3-6 months of exposure. It is more likely that there 

were factors that influence prescribing and were strongly predictive of death in the short term 
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that were not fully accounted for. One specific contributing factor may have been the inability 

to adjust for later stages of CKD because of positivity violations. To a smaller extent, there were 

some indications of immediate associations between treatment with metformin/sulfonylureas 

and MI risk, suggesting that there was also some residual confounding for this outcome.  

 

10.3.2.3 Visit Frequency  

 

Descriptive investigations into patient visit frequency (as summarised in 10.2.2.1) were 

considered important because frequency of visiting ones GP may be related to underlying 

health, and this is one of the key reasons for which using primary care data may have led to 

biases when implementing MSMs with IPTW. Although patterns of visit frequency and how this 

differed between treated and untreated individuals was not investigated beyond descriptive 

analyses, the ability of the weighted model to estimate a glucose lowering effect of metformin 

and sulfonylureas of a plausible magnitude when the standard analysis could not, gave some 

reassurance that any differences in GP contact and/or covariate measurement between treated 

and untreated individuals were not introducing serious bias. GPs are incentivised to encourage 

regular visits for patients with diabetes, which is likely to improve visits and recording, but even 

so, the possibility that varying visit frequency dependent upon exposure status has prevented 

full adjustment for time-dependent confounding cannot be excluded. For applications of IPTW 

of MSMs to other situations where comparisons may be made to healthier individuals who 

rarely visit the GP, associations between exposure status and visit frequency could be more of 

a problem and should be investigated descriptively prior to any analysis.  

 

10.3.2.4 Lack of precision 

 

An important observation throughout this thesis has been that the precision of estimates from 

weighted models has tended to be relatively low for time to event outcomes, particularly those 

where fewer events were observed, such as the site specific cancer analyses, and when 

estimating the effect of long term exposure. In the analysis of the static MSMs, since the weights 

induce non-independence, robust standard errors, which are likely to be conservative, were 

used. Coupled with the small number of events in site specific cancer analyses, or lower overall 

sample size when looking at longer term exposure, it is reasonable to have expected some loss 

of precision between unweighted and weighted analyses. For the dynamic strategy 

comparisons, the loss of precision in the estimated hazard ratios between the unweighted and 
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weighted models was more substantial than for the static treatment models. Both weighted and 

unweighted models used bootstrapping for confidence interval estimation, so an explanation 

for the differences in precision between models was not clear. As previously discussed in section 

9.4.5.1, some simple investigations were undertaken to see whether the low precision in the 

dynamic MSM may have been a result of a small number of extreme estimates (resulting from 

repeated sampling of individuals with large weights) remaining within the percentile confidence 

interval because there were too few bootstrap replications, or whether the omission of the 

weight estimation from the bootstrapping process may have led overall to more variable 

confounder control across replications and thus inflated the bootstrap standard errors 

compared to the unweighted analysis. Neither of these investigations proved conclusive in 

explaining the observed loss in precision in many of the dynamic MSMs, though future work 

could examine more complex simulations in order to investigate this more comprehensively.  

 

10.4 POSSIBILITIES FOR FUTURE WORK  
 

10.4.1 Epidemiological extensions 

 

There are various ways in which the analyses conducted within this thesis could be enhanced 

and extended to provide additional insight into the causal effects of first line diabetes 

treatments. Firstly, additional data obtained via linkage to registries, ONS records or secondary 

care may improve outcome detection [231], allow more specific outcomes to be examined (e.g. 

cardiovascular mortality), and may provide more detail or additional information on potential 

confounders, for example, socio-economic status from the ONS, or severity of CVD based on 

type and number hospital admissions. All these aspects may improve the ability of the weighting 

to adjust for time-dependent confounding and allow estimation of valid causal effects of 

treatment. Another aspect which may be interesting to examine is actual exposure to 

medication in terms of both dosage and adherence. All analyses in this thesis assumed that 

patients remained on treatment once initiated (until there was evidence of a switch), but did 

not take into account the continuity of or number of prescriptions relative to the prescribed 

daily dosage or indeed the prescribed dosage itself. It would be useful to investigate whether 

accounting for adherence to medication would alter any of the estimated effects of treatment. 

For example, a time-varying exposure based on actual number of prescriptions could be used. 

Alternatively, patients could be censored if their time-varying fill rate drops below a certain 
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level, and additional IPCW used to adjust for this, thereby estimating the effect of maintaining 

a particular level of adherence to treatment through time.  

For target HbA1c and MI, the results of the dynamic models suggested that there may be some 

differences between treatment thresholds. Although tentative due to poor precision and other 

acknowledged limitations, these results may warrant further investigation. Specifically, it may 

be interesting to examine whether particular subsets of the population have better or worse 

outcomes on different strategies, as this may allow hypotheses to be generated regarding 

stratified diabetes management.  

 

10.4.2 Methodological extensions  

 

Methodologically, there are four key areas for future work. Firstly, it would be interesting to 

look at the relative performance of alternative methods for dealing with time-dependent 

confounding in EHR data. For example, the use of g-computation or g-estimation, which have 

advantages over IPTW of MSMs in that they do not require the positivity assumption to hold. A 

possible issue with this is the anticipated computational intensity of these methods. This could 

be overcome by looking at a random sub-sample of the data, but would be at the expense of 

precision.  

Secondly, as discussed previously, the issue of differing visit frequency may be particularly 

important in other contexts where patients may have better overall health and no need to 

regularly visit the GP. In these situations, methods for modelling visit frequency may be required 

to reduce the potential for bias. For example, the visit process could be considered an additional 

“treatment”, and weights calculated assuming a joint treatment process [216]. Before this could 

be done however, further investigations may be needed into the reasons for non-attendance vs 

the reason for having missing data on specific variables, as modelling the visit process would still 

require the need for all covariates to be measured if a visit occurs.  

Third, the analyses conducted here have only been able to show a benefit of using MSMs in the 

situation where the effect of treatment on outcome was expected to be direct and relatively 

short term. Further outcomes where this may be the case, such as diabetic neuropathy, 

retinopathy, could be considered to investigate this further. 

Finally, further work could include investigations into dealing with the wider issue of missing 

data. In this thesis, missing baseline and longitudinal data has been dealt with by delaying study 
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entry until complete data occurs, and then using LOCF. This is a pragmatic solution, but as far as 

could be found, there is no research into whether this is a reasonable approach. Particularly, the 

need for patients to be untreated at study entry means that the delayed study entry will 

systematically exclude patients who initiate treatment prior to having complete data, and may 

therefore cause bias in the treatment effect. Aside from this, the treatment of missing data is 

underdeveloped for MSMs, and this data set and motivating example could be useful to inform 

simulation work to look at a) the appropriateness of the approach used here; and b) the use of 

multiple imputation within the MSM framework.  

 

10.5 OVERALL CONCLUSIONS  
 

Implementing MSMs with IPTW in routinely collected data to investigate the risks and benefits 

of first line therapy for T2DM proved to be practically achievable. Despite the acknowledged 

limitations, the analysis of metformin and cancer provides additional evidence that previously 

reported strong protective effects of metformin on cancer risk are unlikely to be causal, and 

adds a new perspective in terms of methodology to the existing literature. Specifically, the lack 

of evidence of an association between metformin and all cancers combined, and only small 

differences between MSMs and standard analysis methods, suggest that the variation in 

observed effects from previous studies was unlikely to be purely a consequence of time-

dependent confounding. The conclusion that time-dependent confounding was not a major 

issue in the metformin/cancer setting assumes that the MSMs as implemented were capable of 

effectively controlling for such confounding; this seems to be the case since differences between 

MSMs and standard models were observed, in the expected direction, for outcomes such as MI 

and all-cause mortality, where stronger time-dependent confounding was expected and similar 

weighting models were used.  

By examining HbA1c as a continuous repeated measures outcome, it was shown that IPTW of 

MSMs can be used to recover a known effect of treatment in the presence of strong time-

dependent confounding. This gives confidence that good weighting models can be obtained 

from routinely collected primary care data, and that there is potential value in using such 

methods in these complex data sources. However, the specific situation where a clear benefit 

of the method was observed was one in which the effect of treatment was relatively fast, the 

treatment directly affected the outcome, and time-dependent confounding was known to be 

strong. In such situations, the MSM approach may be useful, for example, to confirm results of 
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clinical trials in larger/different populations, or to generate hypotheses about the effects of 

dynamic treatment strategies that have not been examined in trials. Less clear from this thesis 

are the benefits for studying longer term outcomes that may have more complex associations 

with both treatment and confounders. In such situations there may be more opportunity for 

more unmeasured confounding, and there may be insufficient follow up available in the EHR 

data to observe both the hypothesised confounding and the effect of treatment. For such 

outcomes, it may be informative to use MSMs alongside standard methods, but more research 

is needed, with longer follow up and across a range of clinical contexts, to establish whether 

MSMs can produce valid estimates of long term treatment effects using routinely collected data. 



300 
 

 

Aim  Objective  Key findings  Key limitations  further work 

1.  

Systematic review and 
bias evaluation of the 
effect of metformin on 
cancer risk.  

  

 Chapter 2  

 Only 3/46 studies had low/no risk of bias in all domains.  

 Based on information available, studies with lowest risk of bias appeared consistent with no 
effect of treatment on risk of cancer.  

 An updated search found a further 23 studies - reflecting the interest in the question in 
recent years.  

 No studies identified used MSMs to examine this association.  

 Only one database used, possible some 
papers missed.  

 Bias evaluation aimed to be objective but 

difficult to remove all subjectivity. Authors not 
contacted so bias evaluation only based on 
available information in papers  

 

 

Application of IPTW of 
MSMs to estimate the 
effect of metformin vs 
diet only on risk of cancer 

 Chapter 7  

 MSM results were consistent with no overall effect of metformin on cancer risk 

 This finding was consistent across model specifications and when considering cumulative 
medication use.   

 A range of sensitivity analyses gave similar results to the main analysis. 

 Results for sulfonylureas also consistent with no overall effect.  

 Analysis of site-specific cancer outcomes inconclusive. . 

 Short follow up time  

 Cannot exclude residual confounding. 

 No linkage to cancer registry or HES therefore 
may have missed some events.  

 Too few events leading to low precision for 
site-specific cancer outcomes.   

 Consider 

adherence/dosage/actual 
exposure in some way. E.g. look 
at actual number of 
prescriptions to estimate 
cumulative use.  

 Investigate use of multiple 

imputation to deal with missing 
longitudinal or baseline data. 

 Incorporate database linkages to 
better capture outcomes and 
covariates.   
 
 

 

Application of IPTW of 
MSMs to estimate the 
effect of metformin vs 
diet only and 
sulfonylureas vs diet only 
on risks of MI, stroke, all-
cause mortality and 
glucose control. . 

 Chapter 8  

 Metformin  

 Suggestion that long-term use resulted in lower risk of MI.  

 No evidence of reduced risk of stroke or all-cause mortality. .  

 Estimated to reduce HbA1c by around 0.4 - 0.5% vs diet only by 12 months.  

 HbA1c remained lower in treated group vs. diet only for rest of follow up but relative 
difference reduced.  

 Sulfonylurea  

 No consistent evidence of increased or decreased risk through time for any time-to-event 
outcome (MI, stroke, all-cause mortality).  

 Estimated early increased risk of all-cause mortality with sulfonylurea use, but based on low 
event numbers and not consistent with causality.  

 HbA1c estimated to be between 0.5-1% lower after 12 months compared to diet only.   

 

 Strong suggestion of residual confounding for 
time-to-event outcomes during early exposure 

 Results for metformin and risk of stroke 

difficult to interpret. Possible issues with 
combining stroke types.  

 Follow up time short, small number of MI and 
stroke events observed 

 When looking at HbA1c trajectory, frequency 

of updating possibly limiting how well the 
effect can be measured for early exposure. 

 Estimates lacked precision for time-to-event 
outcomes, particularly for long-term 
medication use. 

Application of dynamic 
MSMs to estimate the 
effect of different HbA1c 
threshold for treatment 
initiation. 

 Chapter 9  

 Higher thresholds for initiating treatment resulted in lower incidence of attaining the target 
HbA1c of 6.5%.  

 Some evidence that higher thresholds increased risk of MI.  

 No consistent evidence that different strategies had differing effects on risk of stroke or all-

cause mortality through time.  

 Addition of grace period was found not be appropriate, most likely due to risk factors 
changing within the period.  

 Large loss of precision with weighting  

 Computational intensity with a large data set 

and monthly intervals 

 Some suggestions of  residual confounding, 

 Follow up time short for MI and stroke with 
small number of events observed.  

 Further work listed above for 
standard MSMs also apply to 
dynamic setting.  

 Look at HBA1c trajectory as well 

as target HbA1c. 

  Examine interactions between 
baseline covariates and strategy; 
to inform possible approaches 
for personalised medicine.  

Table 10.1 Summary of work to achieve thesis aims and objectives, key findings, limitations, and possibilities for future work. 
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Aim  Objective Key findings  Key limitations  further work 

2  

Descriptive 
investigation
s of 
anticipated 
positivity 

violations 
and differing 
visit 
frequency.   

Chapter 6 

 Initiation of metformin and sulfonylurea monotherapy strongly associated with HbA1c 

and age, there were no complete violations of the positivity assumption.  

 The number of updated HbA1c and BMI measures was lower in non-initiators. 

 However, comparison of consultation rates suggested that patients not initiating 
treatment were visiting the GP at roughly the same rate as initiators at various points 

through follow up.  
 

Chapters 7, 8 and 9 

 Large weights were observed as expected.  

 Simple truncation at either 99th percentile (or more leniently a value of 10) reduced 

mean of stabilised weights to close to 1. 

 Categorical models had slightly smaller means for weights suggesting that coarser 
parameterisation reduced positivity violations. 

 Dynamic MSM had much smaller extremes of unstabilised weights due to selection of a 
relevant range of strategies for comparison. 

 

Chapter 6 

 Only examined descriptively, and only a small 
selection of possible confounders examined.  

 Unable to tell from analysis performed the 
reason for differences between consultation 

frequency and updating of measurements. 
Chapters 7, 8 and 9  

 Unable to rule out that differences in visit 
frequency cause bias/residual confounding. 

 Weight truncation and categorisation may have 

reintroduced residual confounding.  

 Positivity violation due to metformin 
contraindication in severe CKD likely to have 
impacted observed results for all-cause 
mortality in particular.  

 Further investigations to 
examine possible 
reasons for non-
updating in non-
initiators. E.g. look at 
details of consultations 
when measures are and 

are not updated.  

 Alternative methods 
such as G-computation 
could be examined 
(probably in a smaller 
sample) to see whether 

positivity issues with 
Hba1c/ CKD could be 
overcome.  

 Dynamic strategy could 
be extended to also 
depend upon CKD stage.  

Comparison 
of weighted 
vs 
unweighted 
models.  

Chapters 7 and 8 

 For metformin and risk of any cancer, differences between standard analysis and MSM 
were minimal. 

 Differences for site-specific cancer analyses larger but limited precision made changes 
difficult to interpret.  

 For MI, stroke and all-cause mortality, slightly larger differences between methods but 

conclusions limited by low precision.  

 For MI and all-cause mortality, differences were generally in the expected direction. 

 For HbA1c, standard methods clearly showed bias in estimated treatment effect. MSM 

moved estimates in the direction of the expected effect, but estimated magnitude of 
change in HbA1c was slightly lower than that estimated by UKPDS, but still plausible 
given likely differences in adherence.   

Chapter 9  

 Differences between unweighted and weighted models were broadly in expected 
direction for MI and all-cause mortality, but magnitude of differences was small.  

 Differences for stroke were unclear, and not easily interpretable. 

 Differences for target HbA1c were also in expected direction, and were larger in 
magnitude than for CV outcomes. 

 For time-to-event outcomes in both static and 

dynamic MSMs, low precision made changes 
between models difficult to clearly interpret. 

 Possible issues of adherence in real life setting 
being less than in an RCT, so observational and 
trial results may not be completely comparable.  
  

 Look at a broader range 

of outcomes.  

 Investigate methods to 
model updating of 
measures. E.g. 
additional weighting for 
visit attendance.  

Table 10.1 continued: Summary of work to achieve thesis aims and objectives, key findings, limitations and possibilities for future work.
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