1	Genome-based analysis of Enterococcus faecium bacteremia associated with recurrent and
2	mixed strain infection
3	
4	Kathy E. Raven, ¹ # Theodore Gouliouris, ^{1,2} Julian Parkhill, ³ Sharon J. Peacock. ^{1,3,4}
5	
6	¹ Department of Medicine, University of Cambridge, Cambridge, United Kingdom; ² Public Health
7	England, Clinical Microbiology and Public Health Laboratory, Addenbrooke's Hospital,
8	Cambridge, United Kingdom; ³ Wellcome Trust Sanger Institute, Hinxton, Cambridge, United
9	Kingdom; ⁴ London School of Hygiene and Tropical Medicine, London, United Kingdom
10	
11	Running title: Enterococcus faecium recurrent and mixed infection
12	
13	# Address correspondence to Kathy E. Raven, <u>ker37@medschl.cam.ac.uk</u> .
14	
15	
16	

17 ABSTRACT

18 Vancomycin-resistant Enterococcus faecium (VREfm) bloodstream infections are associated with 19 high recurrence rates. This study used genome sequencing to accurately distinguish the 20 frequency of relapse and reinfection in patients with recurrent E. faecium bacteremia, and to 21 investigate strain relatedness in patients with apparent VREfm and vancomycin-susceptible E. 22 faecium (VSEfm) mixed infection. A retrospective study was performed at the Cambridge 23 University Hospitals NHS Foundation Trust (CUH) between November 2006 and December 2012. 24 We analyzed the genomes of 44 E. faecium isolated from 21 patients (26 VREfm from 12 25 patients with recurrent bacteremia, and 18 isolates from 9 patients with putative VREfm/VSEfm 26 mixed infection). Phenotypic antibiotic susceptibility was determined using the Vitek2 27 instrument. Genomes were compared with those for a further 263 E. faecium associated with 28 bacteremia in patients at CUH over the same time period. Pairwise comparison of core genomes 29 indicated that 10 (71%) episodes of recurrent VREfm bacteremia were due to reinfection with a 30 new strain, with reinfection being more likely with increasing time between the two positive 31 cultures. The majority (78%) of patients with a mixed VREfm and VSEfm infection had unrelated 32 strains. More than half (59%) of study isolates were closely related to another isolate associated 33 with bacteremia from CUH. This included 60% of isolates associated with re-infection, indicating 34 acquisition in the hospital. This study provides the first high-resolution insights into recurrence 35 and mixed infection by E. faecium, and demonstrates that reinfection with a new strain, often 36 acquired from the hospital, is a driver of recurrence.

37 INTRODUCTION

Enterococcus faecium is an important cause of bloodstream infections in critically ill and immunocompromised patients (1), and ranks among the ten most common microorganisms associated with healthcare-associated infections in the United States (US) (2). Bacteremia caused by vancomycin-resistant enterococci is associated with increased mortality, costs of care and rates of recurrence compared to vancomycin-susceptible strains (3–5).

43

44 Despite the establishment of linezolid and daptomycin as mainstay therapeutic agents for 45 vancomycin-resistant *E. faecium* (VREfm) bacteremia since the early 2000s, recurrence remains 46 a common clinical challenge with rates ranging from 3% to 25% (6–8). Following apparent 47 clearance of infection, recurrent bacteremia can be explained by either relapsing infection with 48 the same strain due to a persistent focus of infection, or reinfection with the same or a different 49 strain. Differentiating between these scenarios is clinically relevant; relapsing infection requires 50 investigation and interventions to deal with a persistent focus of infection, whilst reinfection is 51 more likely to be associated with an underlying susceptibility that increases the risk of invasion 52 due to breakdown of host immune defenses. Surprisingly little is known about the relative 53 frequency of relapse versus reinfection in recurrent E. faecium bacteremia, with the literature 54 limited to case reports (9-11) and case series predominantly containing patients with 55 Enterococcus faecalis infection (12, 13).

56

57 *E. faecium* bacteremia is polymicrobial in up to 35% of cases due to mixed infection with other 58 bacterial genera or enterococcal species (14). Apparent mixed infection with VREfm and

vancomycin-susceptible *E. faecium* (VSEfm) has been reported in the context of *in-vivo* loss or gain of the *van* transposon by sub-populations of the same strain (15–17). However, whilst carriage of multiple strains of *E. faecium* is presumed to be common (18, 19), the frequency of mixed infection with different *E. faecium* strains is unknown.

63

64 Whole-genome sequencing has demonstrated superior discriminatory power compared to 65 traditional bacterial typing techniques such as pulsed-field gel electrophoresis (PFGE) or 66 multilocus sequence typing (MLST) in epidemiological investigations and in studies of the 67 population structure of *E. faecium* causing bacteremia at a local and national level (20–23). 68 Here, we use genome sequencing to gain a better understanding of *E. faecium* bacteremia. 69 Specifically, we investigated strain relatedness in patients with recurrent VREfm bacteremia, 70 and in patients with apparent mixed bloodstream infection with VREfm and VSEfm. In addition, 71 we compared the findings of genome sequencing with antibiotic resistance profile.

72

73 **RESULTS**

A retrospective review of patients at CUH between November 2006 and December 2012 identified 231 patients with at least one episode of VREfm bacteremia. Of these, 14 patients had at least one episode of recurrence, giving an estimated recurrence rate of 6.1%. We identified twelve patients that had isolates from at least two episodes of VREfm bacteremia available for whole genome sequencing (see Table 1 for patient summary and Dataset S1 for individual isolate information). Ten patients had one recurrence and two patients had two recurrences of bacteremia. To determine the genetic relatedness of isolates causing recurrence we identified

81 SNPs in the core genome based on mapping to a reference genome. Of the fourteen isolate 82 pairs associated with a recurrent bacteremia, four (from four patients) were closely related (1-7 83 SNPs, median 1.5 SNPs) to the isolate from the previous episode (Figure 1A, Table 1). This 84 finding is highly indicative of relapse (or reinfection) with the same strain, based on a study that 85 reported a genetic distance between E. faecium carried by the same person (within-host 86 diversity) of 6 core SNPs (24). By contrast, 10 isolates (from ten patients) were more genetically 87 distant from the isolate from the previous episode (25-368 SNPs, median 258 SNPs), which is 88 consistent with reinfection by a different strain (Figure 1A, Table 1). The two patients with two 89 recurrences of bacteremia had both an episode of relapse (pairwise SNP difference of 2 or 7 90 SNPs, respectively), and an episode of reinfection with a new strain (25 or 309 SNPs, 91 respectively) (Table 1). The SNPs acquired between the first and second isolate for the four 92 genetically related isolate pairs were located in different genes in different patients (Table S1). 93 The median time to first recurrence across the study population was 80 days (range 39 to 1578 94 days), and the second episodes of recurrence occurred 36 and 168 days after the preceding 95 bacteremia. Comparison of the timing of recurrence with the genomic analyses indicated that 96 all isolates from cases of relapse/reinfection with the same strain were isolated within 108 days 97 of each other, whilst recurrences due to reinfection with a different strain were equally likely to 98 occur within 108 days (5/10 episodes) and after 108 days (5/10).

99

All twelve study patients with recurrent bacteremia had multiple co-morbidities that predispose to VREfm bacteremia (Table 1, Dataset S1). The most probable source for the bacteremia was defined for each case (Table 1). Mucosal translocation (n=7, with possible concurrent

103 intravascular catheter infection) and intravascular catheters (n=5) were the most common 104 sources of bacteremia for the study patients. There was no clear difference identified between 105 the sources of infection in patients with recurrence due to the same or different strains (Table 1, 106 Table S2). The four episodes of recurrence due to the same strain were associated with 107 presumed persistent intravenous catheter colonization and/or gut carriage (n=3), or failure to 108 eradicate a persistent focus of infection (n=1, chronic pyelonephritis associated with kidney 109 stones) (Table 1, Table S2). A central venous catheter was known to be retained between 110 episodes of bacteremia in 2/10 cases with reinfection with a different strain, meaning that 111 whole genome sequencing was able to refute these as being a persistent focus.

112

113 The retrospective review of CUH patients also identified nine patients with putative mixed 114 bloodstream infection with VREfm and VSEfm for whom both isolates were available for whole 115 genome sequencing (Table 1). Pairwise core genome comparison of the 9 VREfm/VSEfm pairs 116 revealed that 7/9 (78%) patients had isolate pairs that were genetically distinct (median 217 117 SNPs, range 70-381 SNPs) (Figure 1B), which is consistent with true mixed-strain infection. The 118 most common source of infection for patients with true mixed infection was an intravascular 119 catheter (4/7, 57%). The remaining 2 patients had isolates that were identical at the core 120 genome level. Further analysis of the genetic content between these 2 pairs through 121 comparison to the ResFinder database confirmed the variable presence of the vanRSHAXYZ 122 genes, which encode vancomycin resistance. There was insufficient sequence adjacent to the vanA transposon in the genome assemblies to identify the genetic location of these genes, so 123 124 differences in gene content between the VREfm and VSEfm in each pair were assessed. In one

125 isolate pair (Patient 16) the van genes had been lost together with 21 genes, including 7 genes 126 best matched to a plasmid (based on BLAST), suggesting they may have been lost/gained 127 together with part of a plasmid (Dataset S2). Two genes labelled as tetM and ermB were lost 128 alongside the van genes in this patient, but both isolates retained a copy of tetM and ermB and 129 so this may not have affected the wider antibiotic resistance phenotype (Figure 2). In the 130 second isolate pair (Patient 21) an additional 14 genes had been lost with the van genes 131 including five genes located adjacent in the genome (Dataset S2) suggesting that vanA was not 132 gained/lost as part of a plasmid but may have moved as part of a smaller transposable element.

133

134 We evaluated whether the phenotypic antibiotic resistance profile (antibiogram) to 11 drugs 135 (excluding glycopeptides) could be used to distinguish between genetically related and distinct 136 strains from the same patient (Figure 2). Of the 6 isolate pairs that were closely related in the 137 two study collections, four had identical antibiograms, one varied by tetracycline resistance 138 associated with gain/loss of the tetM gene, and one varied between susceptible and 139 intermediate resistance to quinupristin-dalfopristin (Figure 2). Of the 17 strain pairs that were 140 genetically different, three had identical antibiograms and the remainder had between 1 and 5 141 (median 2) differences (Figure 2). The most variable antibiotic was tetracycline (10/17 pairs), 142 followed by high-level resistance to streptomycin (n=7), and nitrofurantoin (n=6). Since 3/7 143 identical antibiograms (43%) belonged to genetically distinct strains, this suggests that 144 antibiogram does not reliably distinguish between genetically related and distinct strains from 145 the same patient. However, more than one change in the antibiogram was only identified in 146 genetically distinct strains (12/17 genetically distinct pairs).

147

148 The high rate of true mixed VREfm and VSEfm infection and recurrence with a new strain 149 indicates carriage of multiple lineages or the acquisition of new strains over time. Healthcare 150 settings are associated with the acquisition of E. faecium, and so we investigated CUH as a 151 putative source by combining the 44 study E. faecium genomes with a further 263 E. faecium 152 genomes associated with bloodstream infection in 263 patients at the same hospital over the 153 same time period (2006-2012) (Figure S1). Taken together, 26 of the 44 study isolates were 154 closely related to at least one CUH isolate (0-8 SNPs, median 3), including 3 isolates that were 155 closely related to an isolate from another study patient. This included isolates from 6/7 patients 156 infected with different VREfm and VSEfm strains and 6/10 patients with recurrence caused by 157 different strains. The remaining isolates were between 12 and 86 SNPs (median 33 SNPs) from 158 the closest genetic match.

159

160 **DISCUSSION**

This study represents the first use of whole genome sequencing in the context of *E. faecium* bacteremia to investigate the relative rates of relapse and reinfection in recurrent infections, and to study mixed infection with VREfm and VSEfm. Although rates of recurrence vary in the literature, the estimated rate of 6.1% identified at CUH is within the range of those reported previously (6–8).

166

167 We found that the majority of patients in our study had a recurrent VREfm bacteremia caused 168 by reinfection with a new strain. This finding supports that of Cheng *et al.* which found

169 reinfection to be responsible for ~70% of recurrence based on PFGE, although the study focused 170 primarily on *E. faecalis* (12). These reinfections could either be due to persistent carriage of a 171 genetically distinct strain, or reinfection with a newly acquired strain. We found that at least 172 60% of reinfections were caused by isolates that were genetically closely related to another 173 bacteremia isolate from CUH, suggesting cross-transmission in the hospital. Additionally, the 174 rates of cross-transmission found in this study are likely to be an underestimate, since 175 asymptomatic gut carriage and the environment represent a large reservoir of VREfm and were 176 not sampled in this study. These findings suggest that the emphasis on preventing recurrent 177 VREfm bacteremia should be on infection control and minimizing periods of susceptibility to 178 infection. Further studies will be required to elucidate the role of the environment, staff and 179 patients as sources for these hospital acquisitions to improve infection control.

180

181 The results of this study suggest that recurrence with the same strain may be related to time. 182 Episodes of recurrence with the same strain were only identified up to 108 days apart, which 183 concurs with findings by Baran et al. based on E. faecalis and E. faecium from a total of three 184 patients (13). In contrast to our findings for same-strain recurrence, our study showed that 185 bacteremic episodes due to reinfections with a distinct strain were roughly equally likely to 186 occur within and after 108 days of each other, and as early as 57 days apart. Further work will 187 be required using larger sample sizes from multiple centers to determine whether there is a 188 true relationship between the relatedness of *E. faecium* strains causing recurrence and the time 189 between episodes.

191 We also identified that the majority of patients with mixed VREfm and VSEfm bacteremia were 192 infected with two genetically distinct strains. This differs from the finding by Cardenas et al. that 193 four patients had closely related VREfm and VSEfm strains associated with bacteremia based on 194 MLST (16). The true mixed infections in our study frequently varied in antibiotic resistance 195 profiles. Whilst most cases of mixed VREfm and VSEfm would be detected during routine disc 196 susceptibility testing, this variation in antibiotic resistance profiles could complicate treatment 197 in cases that go undetected. Although the numbers are low in our study, it was interesting to 198 note that true mixed VREfm and VSEfm infections were commonly suspected to originate from 199 an intravascular source, suggesting that central venous catheters may become colonized with 200 multiple strains of *E. faecium*.

201

The results of our study suggest that antibiogram lacks accuracy in predicting the genetic relatedness of strains. The utility of antibiograms for determining the relatedness of *E. faecium* has not previously been evaluated, but our finding that a pair of identical strains could vary in their resistance to antibiotics is consistent with the fact that *E. faecium* has a highly mobile genome, with many resistance genes carried on mobile genetic elements.

207

Our study may have implications on future evaluation of VREfm treatment efficacy. There are currently no randomized controlled trials to define the optimal antibiotic for the treatment of VREfm bacteremia. Current knowledge is based on retrospective observational studies comparing linezolid to daptomycin, where recurrent infection is often defined as one of the outcome measures in the absence of bacterial typing results (6, 8, 25). These studies imply that

early recurrence (often assessed at 30 or 60 days after treatment completion) is caused by true relapse (6, 8), or rely on phenotype such as identical antibiograms to infer relapse (25). Our results show that in the absence of prospective randomized studies or bacterial genotyping, one needs to question whether a recurrent infection is indeed due to ineffective therapy as opposed to underlying confounding from patient related factors conferring increased susceptibility to reinfection. Future studies should address this issue.

219

220 This study has several limitations. We did not sequence multiple colonies from the same sample 221 to assess diversity, meaning that apparent reinfections could have been mixed infections at the 222 outset. The study samples were retrieved from frozen stock and it is not possible to know 223 whether these were originally created from a single or multiple colonies. It is not possible to 224 differentiate between relapse and reinfection by the same strain, introducing an element of 225 uncertainty into our classification. The true level of mixed infection will be higher than we 226 report here, since we only assessed patients with a VREfm and VSEfm mixed infection and 227 analysed one colony of each from every bacteremic episode. Finally, the rate of recurrence 228 identified here may be an underestimate since repeat cultures were not taken systematically.

229

In conclusion, the findings of this study show that the majority of VREfm recurrences and mixed VREfm and VSEfm infections are due to different strains, and that antibiogram lacks accuracy in determining genetic relatedness. This has important implications for infection control as it highlights the importance of reducing cross-transmission in vulnerable patient groups.

234

235 MATERIALS AND METHODS

A retrospective study was conducted at the Cambridge University Hospitals NHS Foundation Trust (CUH), a tertiary referral center in the United Kingdom with 1,170 beds and 350,000 occupied-bed-days per year. The rate of vancomycin resistance in *E. faecium* bacteremia isolates at CUH is high (>60%), approaching rates reported in the US (2) and historical data from 2001 suggests that 32.6% of patients at CUH in high-risk wards carry VRE (either *E. faecium* or *E. faecalis*) (26).

242

243 All patients with VREfm bloodstream infection between November 2006 and December 2012 244 were identified using the diagnostic microbiology laboratory database. These cases were 245 evaluated to identify all patients with (i) recurrence of VREfm bloodstream infection, and/or (ii) 246 putative mixed VREfm and VSEfm bloodstream infection. Recurrence was defined as a blood 247 culture that was positive for VREfm taken >30 days after the index culture from a patient with 248 intervening negative blood cultures and/or resolution of clinical signs of infection. Putative 249 mixed VREfm and VSEfm infection was defined as the isolation of VREfm and VSEfm from the 250 same blood culture or different cultures taken within 48 h of the index sample.

251

Fourteen patients fulfilled the criterion for recurrence and 10 patients fulfilled the criterion for putative mixed VREfm and VSEfm infection, with no overlap of cases between the two. Seven of the patients had mixed infection with other bacterial species, as shown in Dataset S1. Crossreferencing these 24 patients with the bacterial freezer archive identified 44 isolates from 21 patients (12 patients with recurrence and 9 patients with mixed VREfm and VSEfm infection),

257 who were the basis for this study. Clinical data for the 21 cases were collected from paper and 258 computerized medical records using a standardized proforma, including the suspected focus of 259 infection, underlying comorbidities, and dates of positive and negative blood cultures. 260 Neutropenia was defined as a polymorphonuclear leukocyte count of less than 500/µl within 24 261 hours of the onset of bacteremia. The focus of infection was defined based on clinical, radiological and microbiological features. Bacteremia was determined to be secondary to an 262 263 intravascular device if i) a positive intravascular catheter tip semi-quantitative culture yielded 264 more than 15 cfu of *E. faecium* with identical antibiogram as the blood culture isolate (definite), 265 or ii) if no other focus of infection was identified in the presence of an intravascular catheter, 266 and/or clinical signs of sepsis improved after line removal (probable). For neutropenic patients 267 with no definite clinical focus, mucosal translocation was presumed to be the origin of the 268 bacteremia based on the Centers for Disease Control and Prevention definition 269 (http://www.cdc.gov/nhsn/pdfs/pscmanual/4psc_clabscurrent.pdf). In cases of recurrent 270 infection, a focus was considered persistent if there was an unresolved deep source of infection 271 or if a potentially infected intravascular catheter was not removed between episodes of 272 bacteremia. Ethical approval for the study was obtained from the local Research Ethics 273 Committee (reference no. 13/EE/0044) and the need for informed consent was waived.

274

Twenty-one of the 44 isolates had been sequenced previously (27). For the 23 new *E. faecium* isolates sequenced here, bacteria were cultured on Columbia Blood Agar (CBA, Oxoid) for 48 hours at 37°C in air. Phenotypic antimicrobial susceptibility testing for all 44 isolates was performed using the Vitek2 instrument (bioMérieux, Marcy l'Etoile, France) with the AST-P607

279 card. DNA was extracted using the QIAxtractor (QIAgen) and sequencing performed on an 280 Illumina HiSeq2000. Sequence reads were assembled using Velvet and annotated using Prokka. 281 The pangenome was estimated using Roary (28) with a 98% ID cut-off. The van gene in the two 282 patients with genetically related VREfm and VSEfm was extracted from the Roary pan genome 283 and compared to the vanA gene extracted from a vanA transposon (accession number M97297) 284 and the vanB gene extracted from Aus0004 (accession number CP003351) using BLAST. The 285 presence of antibiotic resistance genes was determined using an in-house curated version of the 286 ResFinder database (genes listed in Dataset S3) (29) and ARIBA (https://github.com/sanger-287 pathogens/ariba/wiki).

288

289 Sequence data for an additional 263 E. faecium associated with bloodstream infection in 263 290 patients at CUH between November 2006 and December 2012 and belonging to the hospital-291 adapted clone of Clade A based on whole genome sequence analysis were taken from Raven et 292 al. (27). These 263 genomes together with the 44 study genomes were mapped to E. faecium 293 Aus0004 (ENA accession number CP003351) using SMALT 294 (http://www.sanger.ac.uk/science/tools/smalt-0). Mobile genetic elements (identified based 295 on annotation and PHAST (30)) and recombination events (identified using Gubbins (31)) were 296 removed to identify the core genome. A maximum likelihood tree was created using RAxML 297 based on single nucleotide polymorphisms (SNPs) in the core genome. Pairwise SNP differences 298 were calculated based on SNPs in the core genome.

299

300 Accession numbers are listed in Dataset S1.

302 Acknowledgements

We thank the Wellcome Trust Sanger Institute library construction, sequence and core informatics teams, the staff at the Cambridge Public Health England Clinical Microbiology and Public Health Laboratory, Hayley Brodrick, Kim Judge and Elizabeth Blane for technical support, and Estee Török for support with the ethical approval. We thank Dr Nick Brown (Cambridge Clinical Microbiology and Public Health Laboratory) for generous provision of isolates. This study was supported by grants from the Health Innovation Challenge Fund (WT098600, HICF-T5-342), a parallel funding partnership between the Department of Health and Wellcome Trust. The views expressed in this publication are those of the author(s) and not necessarily those of the Department of Health or Wellcome Trust. This project was also funded by a grant awarded to the Wellcome Trust Sanger Institute (098051). TG is a Wellcome Trust Clinical Research Training Fellow (103387/Z/13/Z). JP and SJP are paid consultants to Specific Technologies.

323 **REFERENCES**

324	1.	Arias CA, Murray BE. 2013. The rise of the <i>Enterococcus</i> : beyond vancomycin resistance.
325		Nat Rev Microbiol 10:266–278.

- 326 2. Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, Kallen A, Limbago B,
- 327 Fridkin S. 2013. Antimicrobial-resistant pathogens associated with healthcare-associated
- 328 infections: summary of data reported to the National Healthcare Safety Network at the
- 329 Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol
- **330 34:1–14**.
- Salgado CD, Farr BM. 2003. Outcomes associated with vancomycin-resistant enterococci:
 a meta-analysis. Infect Control Hosp Epidemiol 24:690–698.
- 333 4. Prematunge C, MacDougall C, Johnstone J, Adomako K, Lam F, Robertson J, Garber G.
- 334 2015. VRE and VSE bacteremia outcomes in the era of effective VRE therapy: a systematic

review and meta-analysis. Infect Control Hosp Epidemiol 37:26–35.

- 336 5. Linden PK, Pasculle AW, Manez R, Kramer DJ, Fung JJ, Pinna AD, Kusne S. 1996.
- 337 Differences in outcomes for patients with bacteremia due to vancomycin-resistant
- 338 *Enterococcus faecium* or vancomycin-susceptible *E. faecium*. Clin Infect Dis 22:663–670.
- 339 6. Britt NS, Potter EM, Patel N, Steed ME. 2015. Comparison of the effectiveness and safety
- 340 of linezolid and daptomycin in vancomycin-resistant enterococcal bloodstream infection:
- a national cohort study of veterans affairs patients. Clin Infect Dis 61:871–878.
- 342 7. Shukla BS, Shelburne S, Reyes K, Kamboj M, Lewis JD, Rincon SL, Reyes J, Carvajal LP,
- Panesso D, Sifri CD, Zervos MJ, Pamer EG, Tran TT, Adachi J, Munita JM, Hasbun R, Arias
- 344 CA. 2016. Influence of minimum inhibitory concentration in clinical outcomes of

- 345 *Enterococcus faecium* bacteremia treated with daptomycin: is it time to change the
 346 breakpoint? Clin Infect Dis 62:1514–1520.
- 347 8. Twilla JD, Finch CK, Usery JB, Gelfand MS, Hudson JQ, Broyles JE. 2012. Vancomycin-
- 348 resistant *Enterococcus* bacteremia: An evaluation of treatment with linezolid or
- daptomycin. J Hosp Med 7:243–248.
- Bisner H., Drews D, Burdelski M, Kaulfers PM. 1997. Recurrent septicemias with
 Enterococcus faecium. Infection 25:127–128.
- 352 10. Papp L, McNeeley DF, Projan SJ, Bradford PA, Frost A, Nesin M. 2003. Recurrent episodes
- 353 of shock-like syndrome caused by the same strain of vancomycin-resistant *Enterococcus*
- 354 *faecium* in a pediatric patient. Microb Drug Resist 9:307–312.
- 355 11. Roghmann M-C, Qaiyumi S, Johnson JA, Schwalbe R, Morris JG. 1997. Recurrent
- 356 vancomycin-resistant *Enterococcus faecium* bacteremia in a leukemia patient who was
- 357 persistently colonized with vancomycin-resistant enterococci for two years. Clin Infect Dis
- 35824:514–515.
- 359 12. Cheng AC, Murdoch DR, Harrell LJ, Barth Reller L. 2005. Clinical profile and strain
- 360 relatedness of recurrent enterococcal bacteremia. Scand J Infect Dis 37:642–646.
- 361 13. Baran J, Riederer KM, Ramanathan J, Khatib R. 2001. Recurrent vancomycin-resistant
- 362 *Enterococcus* bacteremia: prevalence, predisposing factors, and strain relatedness. Clin
 363 Infect Dis 32:1381–1383.
- 364 14. Cheah ALY, Spelman T, Liew D, Peel T, Howden BP, Spelman D, Grayson ML, Nation RL,
- 365 Kong DCM. 2013. Enterococcal bacteraemia: factors influencing mortality, length of stay
- and costs of hospitalization. Clin Microbiol Infect 19:E181-9.

- 367 15. Reuter S, Ellington MJ, Cartwright EJP, Köser CU, Török ME, Gouliouris T, Harris SR, Brown
- 368 NM, Holden MTG, Quail M, Parkhill J, Smith GP, Bentley SD, Peacock SJ. 2014. Rapid
- 369 bacterial whole-genome sequencing to enhance diagnostic and public health
- 370 microbiology. JAMA Intern Med 173:1397–1404.
- 371 16. Cárdenas AM, Andreacchio KA, Edelstein PH. 2014. Prevalence and detection of mixed-

372 population enterococcal bacteremia. J Clin Microbiol 52:2604–2608.

- 373 17. Arias CA, Torres HA, Singh K V, Panesso D, Moore J, Wanger A, Murray BE. 2007. Failure
- 374 of daptomycin monotherapy for endocarditis caused by an *Enterococcus faecium* strain
- 375 with vancomycin-resistant and vancomycin-susceptible subpopulations and evidence of
- *in vivo* loss of the *vanA* gene cluster. Clin Infect Dis 45:1343–1346.
- 377 18. Bonten MJM, Hayden MK, Nathan C, Rice TW, Weinstein RA. 1998. Stability of
- 378 vancomycin-resistant enterococcal genotypes isolated from long-term-colonized patients.
- 379 J Infect Dis 177:378–382.
- 380 19. Tremlett CH, Brown DFJ, Woodford N. 1999. Variation in structure and location of vanA
- 381 glycopeptide resistance elements among enterococci from a single patient variation in
- 382 structure and location of *vanA* glycopeptide resistance elements among enterococci from
- a single patient. J Clin Microbiol 37:37–40.
- 384 20. Howden BP, Holt KE, Lam MMC, Seemann T, Ballard S, Coombs GW, Tong SYC, Grayson
- 385 ML, Johnson PDR, Stinear TP. 2013. Genomic insights to control the emergence of
 386 vancomycin-resistant enterococci. MBio 4:1–9.
- 387 21. van Hal SJ, Ip CLC, Ansari MA, Wilson DJ, Espedido BA, Jensen SO, Bowden R. 2016.
- 388 Evolutionary dynamics of *Enterococcus faecium* reveals complex genomic relationships

- between isolates with independent emergence of vancomycin resistance. MicrobGenomics 2.
- 391 22. Raven KE, Reuter S, Reynolds R, Brodrick HJ, Russell JE, Török ME, Parkhill J, Peacock SJ.
- 392 2016. A decade of genomic history for healthcare-associated *Enterococcus faecium* in the
- 393 United Kingdom and Ireland. Genome Res 26:1388–1396.
- 394 23. Pinholt M, Larner-Svensson H, Littauer P, Moser CE, Pedersen M, Lemming LE, Ejlertsen T,
- 395 Søndergaard TS, Holzknecht BJ, Justesen US, Dzajic E, Olsen SS, Nielsen JB, Worning P,
- 396 Hammerum AM, Westh H, Jakobsen L. 2015. Multiple hospital outbreaks of vanA
- 397 Enterococcus faecium in Denmark, 2012–13, investigated by WGS, MLST and PFGE. J
- 398 Antimicrob Chemother 70:2474–82.
- 399 24. Brodrick HJ, Raven KE, Harrison EM, Blane B, Reuter S, Török ME, Parkhill J, Peacock SJ.
- 400 2016. Whole-genome sequencing reveals transmission of vancomycin-resistant
- 401 *Enterococcus faecium* in a healthcare network. Genome Med 8:4.
- 402 25. Mave V, Garcia-diaz J, Islam T, Hasbun R. 2009. Vancomycin-resistant enterococcal
- 403 bacteraemia: is daptomycin as effective as linezolid? J Antimicrob Chemother 64:175–
- 404 180.
- 405 26. Goossens H, Jabes D, Rossi R, Lammens C, Privitera G, Courvalin P. 2003. European survey
- 406 of vancomycin-resistant enterococci in at-risk hospital wards and in vitro susceptibility
- 407 testing of ramoplanin against these isolates. J Antimicrob Chemother 51 Suppl 3:iii5-12.
- 408 27. Raven KE, Gouliouris T, Brodrick H, Coll F, Brown NM, Reynolds R, Reuter S, Török ME,
- 409 Parkhill J, Peacock SJ. 2017. Complex routes of nosocomial vancomycin-resistant
- 410 Enterococcus faecium transmission revealed by genome sequencing. Clin Infect Dis

411 64:15–17.

- 412 28. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D,
- 413 Keane JA, Parkhill J. 2015. Roary: Rapid large-scale prokaryote pan genome analysis.
- 414 Bioinformatics 31:3691–3.
- 415 29. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM,
- 416 Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob
 417 Chemother 67:2640–4.
- 418 30. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. 2011. PHAST: a fast phage search tool.
- 419 Nucleic Acids Res 39:W347-52.
- 420 31. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, Parkhill J, Harris SR.
- 421 2014. Rapid phylogenetic analysis of large samples of recombinant bacterial whole
- 422 genome sequences using Gubbins. Nucleic Acids Res 43:e15.
- 423
- 424
- 425

426 **FIGURE LEGENDS**

Figure 1. Genetic relatedness of isolates from the same patient with recurrent bacteremia (A), or mixed infection with VREfm and VSEfm (B). A) Right hand side: Graph showing the pairwise core genome SNP difference between *E. faecium* isolates cultured from the same patient more than 30 days apart, and timing of episodes. Red indicates isolate pairs that were closely related (1-7 SNPs) based on genome sequence data. Left hand side: expansion of the area of the graph under 100 SNPs. B) Graph showing the pairwise core genome SNP difference between VREfm and VSEfm isolates cultured from the same patient within 48 hours.

434

Figure 2. Comparison between strain similarity by genome sequence data and antibiogram. Left hand side indicates the strain relatedness based on genome sequence data, and the patient. Two patients with both relapse and reinfection occur twice in the list. Middle block indicates changes in antibiotic resistance (red, defined as a change from susceptible to resistant; green, defined as a change from resistant to susceptible; white, no change) between isolates from the same patient.

441	Table 1. Clinical and isolate details for the patient cohort.
-----	---

	Pt	Age **	Gender	Co-morbidities ***	Number of	Presumptive source of infection			Year of	Numbo day		Number of SNPs#			Interpretation
					isolates	1 st	2 nd	3 rd	first	1 st to	2 nd	1 st	2 nd	1 st	
									isola te	2 nd	to 3 rd	to 2 nd	to 3 rd	to 3 rd	
	1	67	Male	SOM	3	Urinary	Urinary	Urinary	2010	54	36	25	2	25	Reinfection/Relapse
	2	50	Male	HM, SCT	2	MT/IV	MT/IV	-	2007	1578	-	234	-	-	Reinfection
	3*	56	Male	HM	2	MT/IV	MT/IV	-	2009	61	-	268	-	-	Reinfection
	4*	24	Female	Congenital neutropenia	3	IV	MT/IV	MT/IV	2012	108	168	7	311	309	Relapse/Reinfection
Recurrence	5	44	Female	SOT, ESRD, DM	2	IV	Unknown	-	2009	777	-	299	-	-	Reinfection
rer	6	42	Female	Alcoholic liver disease	2	IV	IV	-	2009	215	-	282	-	-	Reinfection
cur	7	13	Male	HM, SCT, ESRD	2	MT/IV	IV	-	2007	1484	-	232	-	-	Reinfection
Re	8	41	Female	HM, SCT, ESRD	2	MT/IV	MT/IV	-	2011	57	-	64	-	-	Reinfection
	9	10	Female	НМ	2	IV	MT/IV	-	2010	80	-	1	-	-	Relapse
	10	0	Male	HM	2	IV	MT/IV	-	2010	59	-	348	-	-	Reinfection
	11	15	Female	НМ	2	MT/IV	MT/IV	-	2010	39	-	1	-	-	Relapse
	12	39	Male	HM	2	MT/IV	MT/IV	-	2012	104	-	282	-	-	Reinfection
n	13	59	Female	SOM, HM	2	IV	-	-	2012	2	-	329	-	-	Genetically distinct
VSEfm	14	72	Male	SOM, HM	2	MT	-	-	2012	0	-	119	-	-	Genetically distinct
	15	62	Male	HM, SCT	2	IV	-	-	2011	0	-	217	-	-	Genetically distinct
ı &	16	50	Male	HM, SCT	2	MT/IV	-	-	2009	0	-	0	-	-	Genetically related
Efn	17	56	Male	HM	2	IV	-	-	2008	0	-	18	-	-	Genetically distinct
VREfm	18	59	Male	SOM	2	IA - biliary	-	-	2008	0	-	381	-	-	Genetically distinct
	19	63	Male	HM, SOT	2	IV	-	-	2009	1	-	203	-	-	Genetically distinct
Mixed	20	19	Male	HM, SCT	2	MT/IV	-	-	2010	0	-	154	-	-	Genetically distinct
	21	48	Female	ESRD, LC	2	Lung and IA	-	-	2010	0	-	0	-	-	Genetically related

442 * Patients with recurrence with a different strain for whom a central venous catheter was retained between episodes of bacteremia.

443 ** Age at time of first bacteremia

444 *** Co-morbidities identified across all episodes of bacteremia in the study (breakdown by bacteremic episode in Dataset S1)

445 # Number of SNPs based on mapping to a reference genome (*E. faecium* Aus0004)

446 Abbreviations: Pt = patient, SOM = solid organ malignancy, HM = hematological malignancy, SCT = stem cell transplant, SOT = solid organ transplant, ESRD =

447 end stage renal disease, DM = diabetes mellitus, LC = liver cirrhosis, MT = mucosal translocation, IV = intravascular, IA = intra-abdominal