Abstract: Allergic diseases are on the rise globally, in parallel with a decline in parasitic infection. The inverse association between parasitic infections and allergy at an ecological level suggests a causal association. Studies in humans have generated a large knowledge base on the complexity of the inter-relationship between parasitic infection and allergy. There is evidence for causal links, but the data from animal models are the most compelling: despite the strong Type 2 immune responses they induce, helminth infections can suppress allergy through regulatory pathways. Conversely, many helminths may cause allergic-type inflammation including symptoms of "classical" allergic disease. From an evolutionary perspective, individuals with an effective immune response against helminths may be more susceptible to allergy. This narrative review aims to inform readers on the most relevant up to date evidences on the relationship between parasites and allergy. Experiments in animal models have demonstrated the potential benefits of helminth infection or administration of helminth-derived molecules on chronic inflammatory diseases, but clinical trials in humans have not so far demonstrated unequivocal clinical benefits. Nevertheless, there is sufficiently strong evidence to support the continued investigation of the potential benefits of helminth-derived therapies for the prevention or treatment of allergic and other inflammatory diseases.
Journal of Allergy and Clinical Immunology Manuscript Review

In order to be eligible to receive CME credit for your review, you must read the following information.

Educational Learning Objectives
1. To update knowledge of the current literature through literature searches conducted for critique of manuscripts
2. To glean new information and understanding of specific areas of study that can impact the reviewers' research or practice
3. To exercise and expand use of critical analytical skills
4. To develop teaching skills by advising authors on study design, scientific method and analysis, and scientific writing
5. To contribute to expansion of the body of knowledge in allergy/immunology

Accreditation Statement
This activity has been planned and implemented in accordance with the Essential Areas and Policies of the Accreditation Council for Continuing Medical Education (ACCME) by the American Academy of Allergy, Asthma and Immunology (AAAAI). The AAAAI is accredited by the ACCME to provide continuing medical education for physicians.

Designation Statement
The American Academy of Allergy, Asthma and Immunology designates this educational activity for 3.0 AMA PRA Category 1 Credits™ per review, with a maximum of 15.0 credits per calendar year. Physicians should only claim credit commensurate with the extent of their participation in the activity.

Target Audience
This activity is intended for board-certified physicians and researchers in the fields of allergy and immunology.

Overall Purpose/Goal
The purpose of this activity is to affirm or modify knowledge, competence, or performance as a result of reading the manuscript.

DESIGN COMMITTEE:

Cezmi Akdis, MD FAAAAI (Co-Editor-in-Chief): Employer: Swiss Institute of Allergy and Asthma Research B) University of Zurich, Switzerland Title: A) Director (SIAF) B) Medical Faculty (University of Zurich) Competing Relationships: Advisory Board: Circassia (United Kingdom), Allergopharma (Germany), Novartis (Basel, Switzerland), Teva (Amsterdam, the Netherlands), Anergis (Lausanne, Switzerland); Shareholder (Ongoing): Alimentary Health Pharma (Davos, Switzerland); Shareholder (Ongoing): Davos Diagnostics (Davos, Switzerland) Organizational Interests: CK-CARE Christine Kühne - Center for Allergy Research and Education (Ongoing): Directorium Member; GA2LEN, Global Allergy And Asthma European
Network (Ongoing): Ex-com Member World Immune Regulation Meetings (Ongoing): Chair, Organizer.

Andrea Apter, MD MA MSc FAAAAI: Employer: University of Pennsylvania (Professor of Medicine) Competing Relationships: NHLBI: RC1 (funded-now complete) - PI, NHLBI (Ongoing): R18, PCORI (Ongoing): PI. Organizational Interests: American College of Asthma Allergy & Immunology (Ongoing): Fellow, American College of Physicians (Ongoing): Fellow, American Thoracic Society (Ongoing): Behavioral Science Assembly program committee, Associate Editor (Ongoing): Journal of Allergy & Clinical Immunology, Consultant (Ongoing): UPTODATE. Conflict Resolution: The research grant from Bristol-Myers Squibb and AstraZeneca is paid directly to my institution, and 2.5% of my salary is supported by these grant funds. The research focuses on a diabetes drug, and is not related to any of their respiratory products.

Zuhair K. Ballas, MD FAAAAI: Employer: University of Iowa Health Care (Professor of Medicine) Competing Relationships: Honorarium/Gift: Up-To-Date, Immune Deficiency Foundation, NIH (Ongoing): Received grant, Veterans Administration (Ongoing): Received Merit grant. Organizational Interests: Clinical Immunology Society (Ongoing): Member of Nominating committee, Immune Deficiency Foundation (Ongoing): immunodeficiency consultant, Medical Advisory Council.

Joshua A. Boyce, MD FAAAAI: Employer: Brigham and Women's Hospital (Albert L. Sheffer Prof of Medicine; Director, Inflammation and Allergic Disease Research Section) Organizational Interests: Consultant: Calcimedica, LPath, Inc. (Ongoing).

Robert K. Bush, MD FAAAAI: Employer: Retired: Competing Relationships: Honorarium/Gift: Section editor Current Opinion in Allergy&Clinical Immunology and Current Allergy Reports, Honorarium/Gift: Section editor Allergy & Immunology Reports
Javier Chinen, MD PhD FAAAAI: Employer: Baylor College of Medicine (Associate Professor) Nothing to disclose.

Raif S. Geha, MD FAAAAI: Employer: Children's Hospital of Boston (Chief, Div. Imm., Prof. Ped.) Nothing to disclose.

Kenji Kabashima, MD PhD: Employer: Kyoto University (Professor) Competing Relationships: A*Star (Senior Principal Investigator) Competing Relationships: Advisory Board: Chugai, Janssen, Ono Pharmaceutical (Ongoing), Daiichi Saky, Polo Pharma, Kao Co.

Carole Ober, PhD: Employer: University of Chicago (Professor) Nothing to disclose.

David B. Peden, MD MS FAAAAI: Employer: University NC School Medicine (Andrews Distinguished Professor of Pediatrics, Medicine and Microbiology/Immunology) Nothing to disclose.

Harald E. Renz, MD FAAAAI: Employer: Philipps University Marburg (Professor and Director) Organizational Interests: Deutsche Gelsellschaft fur Klinische Chemie und Laboratoriumsmedizin (DGKL) (Ongoing): Chairman Working Group Autoimmune Diagnostics Deutsche Gesellschast fur Allergologie and Klinische Immunologie (DGAKI) (Ongoing): President.

Marc E. Rothenberg, MD PhD FAAAAI: Employer: Cincinnati Children's Hospital Medical Center (Director of the Division of Allergy and Immunology) Competing Relationships: Consultant: Novartis, NKT Therapeutics, Celsus Pharmaceuticals (Ongoing), Immune Pharmaceuticals (Ongoing), Receptos. Organizational Interests: American Partnership for Eosinophilic Disorders (Ongoing): Member, Medical Advisory Board CEGIR (Consortium of Eosinophilic Gastrointestinal Disease Researchers) (Ongoing): Principal Investigator, International Eosinophil Society (Ongoing): Steering Committee TIGERS (Ongoing): Steering Committee. Conflict Resolution: I present unbiased information in my activities for the AAAAI, and I am not currently studying any product produced by these companies.

Hirohisa Saito, MD PhD FAAAAI: Employer: National Research Institute for Child Health & Development (Deputy Director of the Research Institute) Competing Relationships: Speaker: Teijin Pharma Ltd, Shiseido Co.,Ltd., MSD (Merck Sharp and Dohme) K.K., Ono Pharmaceutical Co., Ltd., GlaxoSmithKline K.K., Pfizer Japan Inc., Kyowa Hakko Kirin, Kyorin Pharmaceutical, DAIICHI SANKYO.

of Allergy and Clinical Immunology, ACAAI (Ongoing): Fellow, American Academy of Pediatrics (Ongoing): Fellow, American Thoracic Society (Ongoing): Member, Colorado Allergy and Asthma Society (Ongoing): Member. **Conflict Resolution:** I disclose my potential conflicts at all meetings and lectures. I focus my working relationships on research and providing advice on drug development, as well as overseeing research studies. I do not provide lectures that serve as marketing formats for specific drugs. I also disclose all of my financial relationships to University of Colorado for ongoing review.

Stephan Weidinger, MD, PhD
Employer: Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein.
Competing Relationships: Speaker: Sanofi-Aventis, Novartis, Galderma. Advisory Boards: Astellas, Novartis, Sanofi-Aventis. Research Grants: Sanofi-Aventis (ongoing), La Roche Posay (ongoing), Novartis (finished), Pfizer (finished), Biogen (finished).
Organizational Interests: EAACI (secretary dermatology section); Associate Editor for Journal of Investigative Dermatology, Allergy

Robert A. Wood, MD FAAAAI:
Employer: Johns Hopkins University School Medicine (Professor of Pediatrics)
Competing Relationships: Research Grants: NIAID (Ongoing), DBV Technologies (Ongoing), Aimmune (Ongoing), Astellas (Ongoing) Up To Date (Ongoing): Royalties.

FACULTY DISCLOSURES
Please refer to the opening pages of the assigned manuscript for the authors’ relevant funding and employment information.
Global Issues in Allergy and Immunology

Parasite infections and Allergy

Alvaro A. Cruz, MD, a,b Philip J. Cooper, MD, PhD, b,c,d Camila A. Figueiredo, PhD, b,e Neuza A. Neves, MD, PhD, b,e Laura C. Rodrigues, MD, PhD, b,f Mauricio L. Barreto, MD, PhD, b,g

a ProAR – Faculdade de Medicina da Universidade Federal da Bahia, Salvador, Brazil - cruz.proar@gmail.com
b Social Change, Asthma and Allergy in Latin America (SCAALA) Study Group
c Institute of Infection and Immunity, St George’s University of London, London, UK - pcooper@sgul.ac.uk
d Facultad de Ciencias Medicas, de la Salud y la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
e Instituto de Ciências da Saúde da Universidade Federal da Bahia, Salvador, Brazil - cavfigueiredo@gmail.com and neuzalcantara@gmail.com
f London School of Hygiene and Tropical Medicine, London, UK - Laura.Rodrigues@lshtm.ac.uk
g Centro de Pesquisa Gonçalo Muniz, Fundação Oswaldo Cruz, Salvador, Brazil - barreto.mauricio@gmail.com

Corresponding author:
Alvaro A. Cruz, Professor of Medicine
ProAR - Faculdade de Medicina da Universidade Federal da Bahia
Rua Carlos Gomes, 270 - 7º andar
40060-330 Salvador - BA, Brazil
Tel.: +55 71 991985948
cruz.proar@gmail.com

Support:
There was no specific financial support for the preparation of this manuscript. CAF, NMAN, MLB and AAC receive investigator grants from the Brazilian Research Council (CNPq).
Abstract
Allergic diseases are on the rise globally, in parallel with a decline in parasitic infection. The inverse association between parasitic infections and allergy at an ecological level suggests a causal association. Studies in humans have generated a large knowledge base on the complexity of the inter-relationship between parasitic infection and allergy. There is evidence for causal links, but the data from animal models are the most compelling: despite the strong Type 2 immune responses they induce, helminth infections can suppress allergy through regulatory pathways. Conversely, many helminths may cause allergic-type inflammation including symptoms of “classical” allergic disease. From an evolutionary perspective, individuals with an effective immune response against helminths may be more susceptible to allergy. This narrative review aims to inform readers on the most relevant up to date evidences on the relationship between parasites and allergy. Experiments in animal models have demonstrated the potential benefits of helminth infection or administration of helminth-derived molecules on chronic inflammatory diseases, but clinical trials in humans have not so far demonstrated unequivocal clinical benefits. Nevertheless, there is sufficiently strong evidence to support the continued investigation of the potential benefits of helminth-derived therapies for the prevention or treatment of allergic and other inflammatory diseases.

Keywords: Allergy, asthma, parasite infection, helminths, epidemiology, mechanisms.
Abbreviations:

AcK1 - a large family of ShK-related peptides
AAMΦs - alternatively activated macrophages
BmK1 - a large family of ShK-related peptides
CAMΦs - classically activated macrophages
CD11c_{high} DC – conventional dendritic cells
CD4+ T cells – T Helper Lymphocytes
CD4+ CD25+ FOXP3+ - regulatory T cells
CTLA-4 - inhibitory molecule cytotoxic T lymphocyte- associated antigen 4
DC – dendritic cells
ES - excretory-secretory molecules of helminths
FEV₁ - Forced expiratory volume in 1 second
HIC – high income countries
iNOS – inducible nitric oxide synthase
ILMIC – low- and middle-income countries
IL – interleukin
ILC – Innate lymphoid cells
IL2R – interleukin 2 receptor
IFNγ – interferon gama
LD - linkage disequilibrium
PBMC – peripheral blood mononuclear cells
PG – prostaglandin
SPT – skin prick test
STH – soil transmitted helminths
SWAP – Schistosoma soluble adult worm antigen
ST2 – IL33 receptor
sST2 – a soluble form of ST2
sIgE – specific IgE
tIgE – total IgE
Th – T helper cells
TLR – toll like receptors
TGFB - Transforming growth factor beta
TSLP - Thymic stromal lymphopoietin
Type 2 immune response – pattern of immune response including the Th2 cells (CD4+ cells), ILC2s and other to the cytokine milieu formerly related exclusively to Th2 activation

WHO – World Health Organization
Outline

1. Introduction
2. Global trends in parasite infections and allergy
 a. Global trends
 b. Epidemiological evidence for associations between parasites and allergy
3. Host immune responses against parasites
4. Commonalities between the immune response to parasites and allergy
5. Genetic determinants of protection against helminths and risk of allergy
 a. Variants that affect Th2 immune response
 b. Variants that affect immune regulatory mechanisms
6. Immunoregulation by helminths and clinical practice
7. Exploring the immunomodulatory potential of helminths and helminth molecules
 a. Helminth infection and immunomodulation of diseases
 b. Tests with helminth molecules as immunomodulatory candidates
8. Discussion
9. Conclusions
Introduction

The frequency of allergic disease has been rising in urban and urbanizing populations, while an overall decline in rates of infections has been observed. Studies of the inverse association between parasitic infections and allergy suggest the existence of a causal link.

While humans can be infected with some 300 species of worms and over 70 species of protozoa we will focus on soil-transmitted helminths (STH). Worldwide, it is estimated 1.5 billion humans are infected with one of these species. We will also refer to Schistosoma spp. that infect humans through contact of skin with water infested with larvae and it is estimated to infect 230 million people.

For example, Figure 1 shows typical features of a rural household in a village of Conde, Northeast Brazil, from 2005, in which the prevalence of helminth infections was 83.5%. In the City of Salvador, 185 km away, the frequency of helminth infection among children was below 20%. An ecological study including all Brazilian municipalities reported hospitalization rates due to asthma were lower in those endemic for S. mansoni or for STH parasites. A typical urban underserved neighborhood of Salvador, is presented in Figure 2.
The purpose of this narrative review is to inform clinicians and researchers on the most current evidence on this topic, from epidemiological studies to mechanisms and molecules identified in helminths that are candidates for novel therapeutics.

Global trends in parasite infections and allergy

Global trends

Allergic diseases are among the most common chronic diseases\(^1\) particularly in populations undergoing urbanization.\(^8\) Individual risk of allergy is considered to reflect a complex interaction between genetic predisposition and environmental exposures over the life course.\(^9\)

Geographic differences in the prevalence of allergy between and within populations is more likely to reflect exposures to common environmental factors that may either increase or decrease risk. The most consistent environmental exposures considered to reduce risk of allergy are those associated with rural residence and include farming, animal exposures\(^10\) and infections with parasites.\(^11\)

Protective immunity against STHs is mediated through type 2 immune mechanisms\(^11\) and parasites can survive to cause chronic infections by modulating these allergic inflammatory responses. The prevalence of STH infections is declining worldwide. This reflects a combination of factors leading to reductions in transmission of these infections, including reductions in extreme poverty and improvements in the living environment (potable water and disposal of feces) and the wide availability of anthelmintic drugs. Reductions in
STH prevalence, while beneficial, might raise concerns in case of being causally associated with allergy.

Epidemiological evidence for associations between parasites and allergy

There is evidence in support of protection against allergy by STH infections, but many studies in human populations present discordant effects.

Meta-analyses of observational studies have shown differences in effects on asthma symptoms for different parasites: while *A. lumbricoides* was associated with an increased risk of asthma, hookworm infection was associated with a reduced risk. In contrast, studies that have measured the presence of *Ascaris*-specific IgE - recommended by some as a marker of infection in areas of low prevalence but perhaps more appropriately used as a marker of allergic sensitization to *Ascaris* - have shown consistently positive associations with asthma symptoms and even disease severity.

In the case of atopy, generally measured by allergen SPT reactivity, most cross-sectional studies have shown inverse associations with STH infections. A meta-analysis of cross-sectional studies showed that current STH infections were protective against atopy, an effect that was consistent for all 3 of the most common STH infections and also schistosomiasis. STH infections are not alone in their SPT attenuating effects. A cross-sectional study showed that, in addition to *A. lumbricoides*, several different childhood infections were independently and inversely associated with SPT, including visceral worm *Toxoplasma gondii*, *Herpes simplex* and Epstein-Barr virus infections. This observation raises the possibility that rather than mediating protection directly, STH infections might be markers of poor environmental conditions that mediate protection through alternative
mechanisms. Interestingly, in the study mentioned above, *T. gondii* was the only organism associated with a reduction in allergen-specific IgE in this population.\(^6\)

Few prospective studies have explored the effects of geohelminths on the development of allergy. It has been suggested that the key effects of protective environmental exposures, occur during early life during which there may be a limited window of opportunity for such exposures to mediate their effects.\(^9\) If this is the case, prospective studies of the effects of STH infections on allergy should start in early childhood, ideally before birth to measure any potential *in utero* effects of maternal STH infections. Four such prospective studies have been published to date; i) a birth cohort in Ethiopia where the prevalence of helminthiasis was considered to be too low to explore effects on wheeze and eczema to 5 years;\(^{17}\) ii) an observational analysis within a randomized-controlled trial of anthelmintic treatment during pregnancy showed that maternal and childhood hookworm and childhood *T. trichiura* were associated with a reduced risk of eczema to 5 years;\(^{18}\) iii) a prospective study showed that *T. trichiura* infections during the first 5 years of life were associated with a reduced risk of SPT in later childhood;\(^{19}\) and iv) a birth cohort in a rural area did not show an effect of maternal STH infections on SPT, wheeze, or eczema during the first 3 years of life,\(^{20}\) but follow-up of the cohort is in progress to determine if childhood infections may affect risk of allergy at school age.\(^{21}\)

Another way used to test the causal link has been the interventional studies in which the protective exposure (i.e. STH) is removed through anthelmintic treatment thus intended to reverse any existing effects. If helminths are truly protective, one might expect to observe an increase in the prevalence of allergy in the group receiving treatment. Several intervention studies have inconsistent findings.\(^{22,23,24}\) None of the studies were able to show an effect on the prevalence of asthma symptoms, one showed that a single dose of anthelmintic drugs given during the latter part of pregnancy was associated with an increased risk of eczema in
infancy, and two showed an increase in either the incidence or frequency of positive SPT after at least 1 year of treatments.

Overall, the evidence suggests that *A. lumbricoides* infection and particularly *Ascaris*-specific IgE is associated with an increased risk of asthma symptoms in endemic areas but that STH infections may reduce the prevalence of positive SPT, but not specific IgE (sIgE) to aeroallergens. There is still very limited evidence that STH infections protect against allergic symptoms in human populations, and the effects of early life exposures to STH infections on the development of allergy in childhood, either through maternal or childhood infections, is still insufficiently studied.

In case of schistosomiasis, all published studies have been cross-sectional showing an inverse association between *Schistosoma mansoni* infection and SPT reactivity to common aeroallergens in most cases. A recent study in Uganda was unable to demonstrate an association between *S. mansoni* infection and wheeze but an earlier study in Brazil showed that *S. mansoni* infection was associated with a milder form of asthma.

Host immune response against parasites

Helminths are the largest organisms to infect vertebrate hosts, leading to the release of large quantities of parasite molecules that interact with the immune system. It might be expected that helminth infections should induce an overwhelming immune response, resulting in the elimination of the parasites, while causing potentially damaging inflammation. However, co-evolution of hosts and parasites over millennia has allowed both host and parasite to survive through the development of mechanisms that dampen the host inflammatory response to the parasite or even allow the parasite to evade the host immune response, resulting in infections
that are often asymptomatic. For example, *Schistosoma spp* adults, that live within the human vascular system, can survive for many years without inducing strong host inflammatory responses.

Although the most widely studied host immune response against helminths is the acquired Th2-type response, we shall discuss both innate and adaptive host immune responses to helminth parasites. The Th2 type response is characterized by the production of high levels of the cytokines IL4, IL5, IL9, IL10, IL13, IL21, IL33. These cytokines orchestrate immediate hypersensitivity that involves B cell class switching to IgG4 and IgE, eosinophilia, goblet cell hyperplasia and mastocytosis, alternative activation of macrophages, and the influx of inflammatory cells such as eosinophils that contribute to parasite killing. Such a response may control parasite numbers by killing them in tissues or expelling them from the intestinal lumen. The host response to helminth infections is associated with allergic phenomena that are a consequence of killing or an attempt to kill or expel these parasites. Examples are shown in Table 1.

Although helminth parasites are universal in inducing all or most of these Th2 effector pathways in the host, the specific effector pathway mediating protection varies between different parasites, life cycle stages, and site of infestation. For example, the intestinal helminths, *Heligmosomoides polygyrus* and *Trichinella spiralis*, are expelled from the intestinal lumen by several Th2 effector pathways such as IgE-mediated activation of mucosal mast cells. Th1 responses may also have a role in protective immunity against some helminth parasites such as *S. mansoni* infection, while the control of parasite burden in strongyloidiasis is highly dependent on type 2 responses.

The parasite’s first contact with the host’s immune system is through CD11c\textsubscript{high} DC which undergo alternative activation for example, in response to excretory-secretory (ES)
molecules from the murine intestinal helminth parasites *Heligmosomoides polygyrus* and *Nippostrongylus brasiliensis*. Helminth molecules bind to TLR2, 3, 4 receptors on the dendritic cell membrane driving the acquired immune response from naive Th0 to a Th2 profile.

An important group of innate immunity cells, the innate lymphocyte (ILCs), which lack B or T cells antigen specific receptors, and do not express myeloid or dendritic cell markers, has been shown to comprise three sub-sets: ILC1 (related to T1 profile), ILC2 (related to T2) and ILC3 (related to Th17). ILC2 produce a large set of T2 cytokines (IL4, IL5, IL9, IL13 and IL21) in response to stimulation with IL25, IL33 and TSLP and play an important role in protection against helminths. However, unlike Th2 cells, ILC2 are stimulated by alternatively activated macrophages (AAMΦs), express MHC-II, and are able to endocytose and process antigen. AAMΦs are phenotypically distinct from classically activated macrophages (CAMΦs) that are typical of Th1 type responses. AAMΦs do not produce IFNγ and instead of inducible nitric oxide synthase (iNOS), have upregulated expression of Arginase-1 that has higher affinity for arginine, competing with iNOS present in CAMΦs. AAMΦs are induced during infections with several helminth parasites. Interestingly, an interaction between ILC2 and Th2 cells for maintaining AAMΦs in lungs of hookworm-infected mice has been reported.

Other immune cells reported to play a role in immunity against helminth infection are the Th17, derived from CD4(+) T cells after antigen maturation. Th17 cells are important for the clearance of several extracellular pathogens, such as bacteria and helminths. In *S. japonicum*-infected mice, there was an increase in Th17 cells following granuloma development, attributed to the presence of induced factors (e.g. TGFβ, IL23 and IL21) in greater amounts than inhibitory factors (e.g. Treg and T2 cells, and IL-4).
Helminths have developed several mechanisms to suppress or avoid host anti-parasite responses. For example, *S. mansoni* has developed parasite stage-specific evasion strategies. Entry of cercariae through the skin is followed by the release of larval ES products (e.g. PGD2) that cause host cells to release PGE2. Both host and parasite-derived prostaglandins induce the production of IL10 in the skin that inhibits the migration of epidermal Langerhans cells to the invasion site.

The most remarkable evasion strategy used by helminths, particularly those dwelling within host tissues and in blood and lymphatic systems, is the down-modulation of the host immune system leading to a form of immunologic tolerance that, itself, may have effects on host responses to other infections and allergy. The cells mediating this effect are the Treg subset of the CD4+ T lymphocytes that produce the immune modulatory cytokines IL10 and TGFβ. The presence of regulatory cells is associated with a reduction in Th2 cells and the development of a modified type 2 immune response. Other cells involved are alternatively activated macrophages and B-regulatory cells.

Commonalities between the immune response to parasites and allergy

The host immune response to helminth parasites has many features in common with allergy. Bronchial inflammation of atopic asthma is coordinated by cells of the adaptive immune system, but also by ILC2 of the innate response, which together induce a type 2 response.
During helminth infections type 2 immunity is initiated at the site of parasite invasion by epithelial cells, which release the alarmins IL25 and IL33 to prompt ILCs to produce IL13 and other cytokines that are also involved in the pathoetiology of asthma. In the absence of either IL25 or IL33, resistance to helminth infections is severely impaired. Tregs cells have a dual role in helminth infections: they protect the host from excessive inflammatory responses during infection, but they also may decrease protective immunity and, thereby, permit parasite persistence. In the case of asthma, several studies have shown allergic patients to have lower numbers of Tregs in both the bronchoalveolar lavage and peripheral blood monocytes cells (PBMC). Thus, there are notable parallels between the immune responses associated with allergy and those observed in response to helminth infection.

Host type 2 immune responses to parasites and allergens are induced by a limited number of protein families that contain allergens such as tropomyosins. There is extensive structural homology between allergens from helminths and other environmental sources. Further, allergen homologues derived from parasites and aeroallergens do not just exhibit IgE cross-reactivity but can also induce cross-sensitization in murine models. Cross-reactivity between helminths and aerollergens has a number of important consequences including false-positive reactions for specific IgE when used in the diagnosis of allergy and also a potential increase in morbidity caused by inflammatory reactions directed against cross-reactive allergens. In the case of the latter, cross-reactivity could help drive the exaggerated responses associated with inflammatory syndromes that have been reported in human helminth infections such as tropical pulmonary eosinophilia in the case of lymphatic filariasis and Loeffler’s syndrome in ascariasis. Likewise, it has been suggested that immune modulation during chronic helminth infections, which subvert Th2-mediated inflammation permitting parasite survival, could affect atopic responses to common aeroallergens through either bystander effects or immunological cross-reactivity.
Genetic determinants of protection against helminths and risk of allergy

Characterization of parasite genomes and subsequent comparison of parasites to more complex species such as mammalian hosts have contributed to our understanding of the mechanisms of parasite evolution and have provided evidence for the role of host–parasite interaction in genetic adaptation. An understanding of that genetic adaptation has elucidated candidate genes, which may drive susceptibility to other diseases of the immune system, including atopy and asthma. Thus, genetic variants affecting any of the classical key-roles in inflammation inducing factors as well as proteins related to controlling inflammation through immune regulatory mechanisms such as T_{reg} may play a role on both helminth resistance and allergic conditions. Genetic studies have highlighted common variants (MAF >10-30%) that affect allergy in many different ways. In Figure 5, an analysis using PANTHER version 11 is presented showing different pathways related to the main genes described in GWAS to date, in which one may observe 3 out of the top 4 pathways linked to asthma are related to interleukin signaling and inflammation.

The genetic variants that affect protection against helminths and risk of allergy, can be organized in two main groups: those affecting Th2 immune response and those affecting regulatory mechanisms.
Insert Figure 5:

Pathway analysis using Panther 11 version for the top SNPs associated in GWAS for asthma to date.

Variants that affect Th2 immune response

Common genetic variants of type 2 immune signaling relating to allergy and asthma provide credence to the hypothesis that the origin of these allergy-promoting variants derives from evolutionary mechanisms and their selection occurred in the presence of widespread, endemic helminth infection. A region on chromosome 5, 5q31-q33, for example, has been associated with resistance to *S. mansoni* through the presence of genes such as those of granulocyte-macrophage factor (*CSF2*), *IL3*, *IL4*, *IL5* and *IL13*, that are important in protective immunity against *S. mansoni*. The same locus (5q31-q33) has been linked to asthma and atopy. Other relevant loci that are also linked to asthma are 7q and 21q.

In terms of asthma susceptibility, several immune molecules have been associated with asthma/allergy. In both GWAS and candidate genes studies some 200 genes have been associated with asthma or related phenotypes. Among these genes, there are those related to a possible modulation of plasma IgE levels. Association studies of genes encoding the epithelial cell-derived cytokines, *IL33* and *TSLP*, and the *IL1RL1* gene encoding the IL33 receptor, ST2, highlight the central roles for innate immune response pathways that promote
the activation and differentiation of Th2 cells. These genes are the most consistent variants associated with asthma, allergy and helminth infections across ethnically diverse populations.55

In this context, GWAS studies for allergic diseases have pinpointed \textit{IL33} and \textit{IL1RL1} as key susceptibility genes for allergic asthma, underscoring the pivotal role of this pathway in the pathophysiology of this diseases.56 Studies involving the genes codifying the \textit{IL33}/\textit{ST2} route have been widely replicated in different populations,57 confirming their association with asthma58 and blood eosinophilia.59 The mechanism whereby the \textit{IL33}/\textit{ST2} axis induces Th2-inflammation was demonstrated recently.60 Local airway soluble ST2 (sST2) levels, as well as circulating plasma sST2 levels, contribute to neutralization of IL33 in the tissues.

The role of human genetic determinants of \textit{IL33}/\textit{ST2} in helminth infection is poorly understood. Using a generalized estimating equation model, three SNPs associated with higher SWAP specific IgE/IgG4 (a measure of resistance to \textit{S. mansoni}) were found.61 The most significant SNP mapped to intron 1, and the allele, which has been shown to confer asthma risk in an African-American population, also conferred protection against schistosomiasis.

Major polymorphisms within the 5q31-q33 genomic region, previously associated with resistance to \textit{S. mansoni} infection have been studied.52,53 The region includes several genes related to immune function including IL-4, IL-5, and IL-13 genes in the Th2 cluster. Resistance to \textit{S. haematobium} was associated with the \textit{IL13}-1055T/T genotype62 which has also been implicated in asthma exacerbations.63 Further, a functional \textit{IL13} polymorphism, rs1800925T, was shown to contribute to the risk of late-stage schistosomiasis caused by \textit{S. japonicum}.64 In another study, two quantitative traits, tIgE levels (representing Th2 pathway activation) and \textit{S. mansoni} egg counts, that reflect host immunity to helminths were
investigated, providing a unique opportunity for the genetic dissection of the Th2 pathway in
the context of schistosomiasis. Significant associations were seen between two functional
variants on the IL13 gene and *S. mansoni* egg counts, indicating IL13 to be protective, but no
associations of IL13 gene variants with tIgE levels. Since the functional effect of both
variants on the gene product, IL13, is to increase its amount or activity, this finding suggests
IL13 functions to increase anti-helminth immunity, and functional variants may be an
evolutionary vestige of selective forces that may now favor atopic phenotypes.5

Variants that affect immune regulatory mechanisms

Alterations in regulatory cytokine levels are believed to play an important role in mediating
immune suppression in helminth immune response. Genetic variants affecting *IL10* and
TGFBI may be associated with both asthma/allergy and heminthisis. We described a variant
(rs3024496, G allele) in the IL-10 gene associated with the suppression of IL-10 production
in *A. lumbricoides* antigen-stimulated cultures of peripheral blood leukocytes, and also, other
variants within the same gene, were both positively associated with atopy and asthma and
negatively associated with helminth co-infections.65

Several *IL10* promoter polymorphisms have been extensively studied. Some variants
were significantly associated with high PBMC proliferative responses to *Onchocerca
volvulus* antigen.66 One of these promoter variants, the G-1082A was also associated with
immune-related diseases including type 2 diabetes, multiple sclerosis, and asthma.67
Moreover, the same variant was associated with pediatric asthma.68 In an endemic area for *S.
mansoni* alleles at the three promoter SNPs were associated with high tIgE levels in the same
direction as in atopic individuals, but not with egg counts. IL10 promoter polymorphisms
appear to influence non-specific tIgE levels, but not schistosomiasis-specific immunity.7
Genetic polymorphisms in \textit{TGFB1} are associated with airway responsiveness and exacerbations in children with asthma.69 Common variants in \textit{TGFB1} gene affect both asthma/allergy and helminth infections. We demonstrated a negative association between rs1800470 (C allele), atopic wheezing and markers of allergy. In contrast, a positive association was observed between the haplotype ACCA and \textit{T. trichiura} and \textit{A. lumbricoides} infection. This later haplotype was also associated with increased IL10 production.70

The main cellular source of both IL10 and TGFB1 are T\textsubscript{regs}, critical for the maintenance of immune homeostasis. The activation of FOXP3 transcriptional factor is pivotal for T\textsubscript{regs} function. The human FOXP3 gene is located on the X-chromosome (Xp11.23) and because of sex differences among X-variants, insufficient efforts have been made to include X variants in GWAS. Polymorphisms in the FOXP3 gene have been evaluated in association studies for allergy71 but only a few studies on asthma have been reported. A study reported a significant interaction between SNPs in FOXP3-IL2R genes and sIgE for worm eggs and asthma.72 The SNPs rs2294019 and rs5906761 were associated with the risk of egg sensitization only in females.71 The heterozygote genotype for rs3761547 was a risk factor for allergic rhinitis, and this association was reproduced in gene-gene interaction analysis with rs3761548.72

The immune regulation of allergic disease results not only from protective environmental factors including helminths, but also from genetic factors relating to \textit{IL10} production or hyperactivation of type 2 immune responses. From an evolutionary perspective, the selective advantage acquired by humans able to mount an efficient protective immune response to helminth infections may make them more vulnerable to atopy and asthma.
Examples of helminth infections and the allergic-type inflammatory responses with which they are associated.

Treatment of allergic diseases with systemic corticosteroids at immunosuppressive doses increase the risk of opportunistic infections. The helminth reported to affect immune suppressed hosts most frequently is *Strongyloides stercoralis*, occasionally resulting in uncontrolled dissemination of the parasite in the potentially fatal hyper-infection syndrome. *Strongyloides* hyperinfection has been associated also with other immunosuppressive drugs, lymphomas, and infection with HTLV-1 virus. Because of the presumed central role of IgE in protective immunity against helminth parasites, treatment of severe asthma with anti-IgE antibody raised concerns about risk of severe or disseminated helminth infections. A multicentre randomized controlled trial of omalizumab for the treatment of asthma and rhinitis was safe in a population at risk of STH infections, although there was a modest increase in geohelminth infection. The same safety concerns will be present in populations at risk of helminthiasis for other immunomodulatory compounds for treatment of allergic diseases, particularly those targeting specific type 2 effector pathways such as anti-IL5 and anti-IL13/IL4.

Helminth infections induce cellular immune hyporesponsiveness. Such hyporesponsiveness has been associated with suboptimal vaccine responses. Among pregnant women, soluble parasite antigens cross the placenta and modify fetal immune responses in such a way as to possibly affect vaccine responses in childhood. Modification of the host immune response to helminths affects how humans respond immunologically to other pathogens such as those causing malaria and tuberculosis, however, effects on clinically measurable outcomes are less clear.
Insert Clinical Notes I.
Notes of relevance for clinical allergy practice on immunopathology of helminth infections.

Reports have indicated possible benefits of helminth infections on autoimmune diseases, inflammatory bowel disease, and even in the metabolic syndrome. For example, an inverse association between lymphatic filariasis and type II Diabetes was reported, and past infection with *S. japonicum* was associated with a lower prevalence of metabolic syndrome. Intestinal helminth infections were inversely associated with risk factors for cardiovascular diseases, such as body mass index and lipid levels.

Insert Clinical Notes II.
Notes of relevance on protection against allergy and other chronic diseases.

Exploring the immunomodulatory potential of helminths and helminth molecules

Helminth infection and immunomodulation of diseases

An observational study of patients with multiple sclerosis, who had acquired gastrointestinal helminth infections, reported remission of multiple sclerosis for over 4 years. Patients infected with parasites had reduced inflammatory cytokine responses and enhanced production of *IL10* as well as *TGF*β. Six of these subjects were followed up and remission continued into the sixth year, when four patients were offered anthelmintic treatment due to gastrointestinal problems. Subsequently their multiple sclerosis activity resumed while *IL10* and *TGF*β levels declined.
Experimental infections of humans with live parasites employing either the pig whipworm, *T. suis*, or the human hookworm, *N. americanus* have been reported. The premise is that the immune system can be modulated with amelioration or remission of the inflammatory disease. In the case of treatment with *T. suis*, parasite eggs are administered orally. Initial studies reported a beneficial effect on Crohn’s disease and ulcerative colitis. *T. suis* eggs have been used to treat other immune disorders. A randomized controlled trial tested the efficacy of *T. suis* for the treatment allergic rhinitis in Denmark but showed no efficacy. Although *T. suis* infection generated a measurable anti-parasite response, infection did not affect allergen-specific responses. Patients with Crohn’s patients were infected with *N. americanus*, with the majority showing improvements in symptom scores. A trial of *N. americanus* in patients with coeliac disease was unable to demonstrate clinical benefit. A small randomized control trial in patients with asthma showed no significant benefit of hookworm infection on clinical symptoms, bronchial responsiveness or SPT reactivity.

What may be the reasons for the disappointing findings of clinical trials to date? Experimental animal models have demonstrated helminth parasites reduce allergic reactivity, but most studies have been designed to prevent the development of allergic reactivity rather than treat established disease. Only a handful of studies have reported the effects of these infections on already established allergic reactivity. Most of the experimental data available suggest that once the allergic reaction is established, helminth infections can do little to revert the disease process, raising the question whether there is any reasonable possibility of obtaining benefit through infections of individuals with active disease. Nonetheless, there are sufficient doubts with respect to optimal timing of treatment, the dose and systemic versus non-systemic infections, to justify future well-designed and justified randomized-controlled trials of helminth therapy for inflammatory conditions.
Tests with helminth molecules as immunomodulatory candidates

Recombinant proteins can reproduce the biological effects observed in infections with live worms. In experimental models of inflammatory disease, recombinant proteins derived from helminth molecules induce anti-inflammatory and inhibit pro-inflammatory cytokine production, promote regulatory cell recruitment and immune deviation.\(^{92}\)

In mouse models, helminth ES molecules, and helminth-derived synthetic molecules have shown usefulness in treating or preventing the development of inflammatory diseases such as inflammatory bowel diseases, type 1 Diabetes, multiple sclerosis, rheumatoid arthritis and asthma. The synthetic production of ES-derived immune modulators avoids concerns raised by the use of live organisms.\(^{93}\) Further, the molecule-based helminth treatment offers the advantage of delivery directly to the site of pathology.

We present in Table 2 a summary of pre-clinical and clinical studies of helminth molecules for the treatment of chronic inflammatory conditions affecting humans.

<table>
<thead>
<tr>
<th>Insert Table 2.</th>
</tr>
</thead>
</table>

Helminth molecule candidates for the treatment of inflammatory diseases.

Discussion

There is conflicting evidence of an inverse association between exposure to helminth infections and human chronic inflammatory diseases including allergic conditions. A possible causal relationship is supported largely by the findings from experimental animal models, while evidence from human studies has been equivocal. Evidence from clinical trials of live helminth parasites has been disappointing.
One explanation for the associations between allergy and helminths in epidemiological studies is the genetic evolutionary advantage of mounting strong type 2 responses protective against helminth infection although increasing the risk of allergy.65 Alternatively, the sort of environmental and unhygienic living conditions where parasite infections are likely to occur also expose populations to multiple other microorganisms which may contribute to the modulation of inflammatory responses.94,95 Moreover, there is evidence that several other contextual factors not always controlled for in observational studies might contribute to the inverse association between helminthes and allergy. Such factors include diet, nutrition, obesity, gut microbiome, physical activity, exposure to air pollution, stress and use of vaccines and antibiotics, all of which are related to an urbanized lifestyle, which has clearly been an important risk factor for allergy.96,97

How do we interpret the negative results of clinical trials of live helminth infections when helminth infections or helminth-derived molecules have proved so effective in controlling animal models of inflammatory diseases? The effects of helminth infections in humans are related to parasite burden and duration of infection. Clearly, there are safety and ethical concerns with treating humans with large infectious doses and maintaining infections for period of years that may be required to induce clinically relevant immune modulatory effects. Further, trials in humans have attempted to modify preexisting disease while most animal models have studied the ability of helminths to prevent disease.

Conclusions

There is consolidated evidence from studies in humans for a negative association of helminth infection with allergy, although the effect seems to vary by helminth species, parasite burden, and age of infection. Helminth infections may also provoke symptoms of allergy, although
such allergic inflammation tends to be modulated during chronic infections. Experiments in animal models of chronic inflammatory diseases have demonstrated the potential benefits of helminth infection or the use of helminth-derived molecules against allergic disease, but clinical trials in humans have been disappointing. We still have an inadequate understanding of the complex interplay between helminths and allergy and there is a need for more studies in humans and experimental studies in animal models to understand these interactions more fully. Certainly, the exploitation of helminth-derived molecules for the treatment of inflammatory conditions offers promising new avenues for research and development.

References

2. Ashford RW and W Crewe. 1998. The parasites of Homo sapiens. Liverpool School of Tropical Medicine, Liverpool, United Kingdom.

lymphatic filariasis among diabetic subjects associated with a diminished pro-

Clinical Notes Box I

Notes of relevance for clinical allergy practice on immunopathology of helminth infections.

- **Accuracy of allergy testing**
 when dealing with patients from endemic areas for helminth infections, an allergy workup including specific IgE may be more sensitive than SPT, but in subjects with a very high total IgE, *in vitro* tests may be false positive

- **Interpretation of total IgE and blood eosinophilia**
 elevated total IgE and peripheral blood eosinophilia may indicate helminth infection

- **Potential reduction in efficacy of vaccines for prevention of infectious diseases**
 it is important children and adults are free of worms for optimal efficacy of vaccines

- **Risks of prolonged use of systemic corticosteroids and immunobiological suppressors of T2 inflammation mediators (Anti-IgE, Anti-IL5, Anti-IL4/13)**
treatment of severe asthma with continuous oral corticosteroids, Anti-IgE, Anti-IL5 or Anti-IL4/13 poses risk of helminth superinfection. It is advisable to observe the patient closely, investigate and treat if necessary, when living or coming from a region that is endemic for worms.

Clinical Notes Box II.

Note of relevance on protection against allergy and other chronic diseases

- Inverse association between helminth infection and allergy and other chronic diseases: there is compelling evidence of a strong inverse association between infection by various helminths and biomarkers of chronic inflammatory diseases and allergy.
- A causal association is plausible: a direct causality is plausible, taking into consideration experimental studies in animal models and humans.
- No robust association between helminth infection and protection against diseases: we found no robust evidence for causal associations between helminth infection and clinically relevant protection against disease, however.
- Exposure to helminths occur in a diverse environment that may be itself protective: in the real world, exposure to helminths often occur in a markedly different environmental, ethnical and lifestyle context, including contrasts in ancestry, physical activity, diet, nutrition, stress, exposure to air pollution and to microorganisms.
- A protective environment may overshadow the effects of helminth infection: the potential influence of multiple factors in the health and diseases balance may overshadow the impact of exposure to parasites.
- The inverse associations may not be directly causal: the inverse associations between helminth infections and biomarkers of chronic inflammatory diseases and allergy may not be directly causal, but linked to conditions related to parasite infections.

FIGURE LEGEND
Figure 1. Typical features of a rural household in a village in the municipality of Conde, Brazil, in which the prevalence of helminth infections was 83.5% (Grant et al., 2008) (picture taken in 2005).

Figure 2. Typical urban underserved neighborhood of Salvador, Brazil, in which the prevalence of helminth infection among children was below 20% (Alcantara-Neves et al., 2011).

Figure 3. Schematic representation summarizing the findings from epidemiological studies on the relationships between helminth parasites, atopy and asthma.

Figure 4. Helminths suppress autoimmunity and allergy via type 2 or regulatory immune response. Immunomodulatory molecules (IMs) of parasites activate innate immune cells that promote either Th2 or T_{reg} responses. IMs that induce TGFβ, IL10 by dendritic cells (DCs) or macrophages (MΦ) prime IL10 or TGFβ-producing T_{reg} cells suppress Th2 responses, Th1 or Th17 responses. A separate set of helminth-derived IMs activate type 2 innate cells, including basophils, M2 macrophages, and type 2 innate lymphoid cells (ILC2) and induce innate IL-4 production, which drives differentiation of Th2 cells. Th2 cells and type 2 innate immune cells can suppress Th1 and Th17 responses (modified from Finlay et al., 2014).

Figure 5. Pathway analysis using Panther 11 version for the top SNPs associated in GWAS for asthma to date.
<table>
<thead>
<tr>
<th>Helminth infection</th>
<th>Allergic-type reactions and syndromes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intestinal helminths</td>
<td></td>
</tr>
<tr>
<td>Ascaris lumbricoides</td>
<td>‘Asthma-like’ syndrome</td>
</tr>
<tr>
<td>Trichiura trichiura</td>
<td>Tropical dysentery syndrome</td>
</tr>
<tr>
<td>Hookworm</td>
<td>Ground itch/allergic enteritis</td>
</tr>
<tr>
<td>Strongyloides stercoralis</td>
<td>Larva currens/urticaria/‘asthma-like’ syndrome</td>
</tr>
<tr>
<td>Enterobius vermicularis</td>
<td>Itchy anus</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td></td>
</tr>
<tr>
<td>S. mansoni</td>
<td>Cercarial dermatitis/acute schistosomiasis/urticaria/ ‘asthma-like’ syndrome</td>
</tr>
<tr>
<td>S. haematobium</td>
<td></td>
</tr>
<tr>
<td>S. japonicum</td>
<td></td>
</tr>
<tr>
<td>Filariasis</td>
<td></td>
</tr>
<tr>
<td>Wuchereria bancrofti</td>
<td>Tropical pulmonary eosinophilia/acute lymphangitis</td>
</tr>
<tr>
<td>Onchocerca volvulus</td>
<td>Sowda/acute popular onchodermatitis/punctate keratitis</td>
</tr>
<tr>
<td>Loa loa</td>
<td>Calabar swellings</td>
</tr>
<tr>
<td>Others</td>
<td></td>
</tr>
<tr>
<td>Toxocara spp.*</td>
<td>Visceral larva migrans/‘asthma-like’ syndrome</td>
</tr>
<tr>
<td>Anisakis spp.</td>
<td>‘gastroallergic’/asthma-like syndrome/urticara/anaphylaxis</td>
</tr>
<tr>
<td>Paragonimus spp.</td>
<td>Asthma-like syndrome</td>
</tr>
<tr>
<td>Trichinella spiralis</td>
<td>Acute trichinosis</td>
</tr>
<tr>
<td>Echinococcus granulosus</td>
<td>Acute anaphylaxis associated with rupture of cyst</td>
</tr>
<tr>
<td>Ancylostoma braziliense</td>
<td>Cutaneous larva migrans</td>
</tr>
</tbody>
</table>

Table 1. Examples of helminth infections and the allergic-type inflammatory responses with which they are associated.
<table>
<thead>
<tr>
<th>Molecule</th>
<th>Study phase</th>
<th>Treatment</th>
<th>Results</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excretory/secretory-62</td>
<td>animal models</td>
<td>rheumatoid arthritis and systemic lupus erythematosus</td>
<td>reduce disease severity and progression</td>
<td>Rodgers et al, 2015 [159]</td>
</tr>
<tr>
<td>Neutrophil inhibitory Factor</td>
<td>animal models and humans (Phase I/II)</td>
<td>acute stroke, allergen induced lung inflammation and diabetic retinopathy</td>
<td>no benefit in human stroke, favourable results in mouse models of lung inflammation and retinopathy</td>
<td>Krams et al, 2003 [160]; Schnyder-Candrian et al, 2012 [161]; Veenstra et al, 2013 [162]</td>
</tr>
<tr>
<td>(NiF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migration inhibitory Factor</td>
<td>animal models</td>
<td>colitis and allergic airway inflammation</td>
<td>favorable</td>
<td>Cho et al, 2011 [163]; Park et al, 2009 [164]</td>
</tr>
<tr>
<td>(MiF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystatins</td>
<td>animal models</td>
<td>colitis and allergic airway inflammation</td>
<td>favorable</td>
<td>Whelan et al, 2014 [165]</td>
</tr>
<tr>
<td>Helminth defense molecules</td>
<td>animal models</td>
<td>LPS-induced inflammation</td>
<td>favorable</td>
<td>Alvarado et al, 2017 [166]</td>
</tr>
<tr>
<td>Anti-inflammatory protein-2</td>
<td>animal models</td>
<td>model of asthma</td>
<td>favorable</td>
<td>Navarro et al, 2016 [167]</td>
</tr>
<tr>
<td>(AIP-2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGFB Pathway Manipulation</td>
<td>studies in vitro</td>
<td>molecular biology stage</td>
<td>promising</td>
<td>Freitas et al, 2009 [168]</td>
</tr>
<tr>
<td>Prostaglandin E2 (PGE2)</td>
<td>studies in vitro</td>
<td>molecular biology stage</td>
<td>promising</td>
<td>Liu et al, 2013 [169]</td>
</tr>
<tr>
<td>ShkT domains</td>
<td>animal models and humans (Phase I and II)</td>
<td>human psoriasis</td>
<td>unknown results</td>
<td>Beeton et al, 2006 [170] and NCT02435342</td>
</tr>
<tr>
<td>AcK1 and BmK1</td>
<td>studies in vitro</td>
<td>immunology stage</td>
<td>promising</td>
<td>Steinfelder et al, 2016 [171]</td>
</tr>
</tbody>
</table>
Asthma

IgE–allergen

SPT–allergen skin prick test reactivity

slgE – allergen IgE

A. lumbricoides

T. trichiura

Ancylostoma spp.

Schistosoma spp.

interaction

positive association

negative association, or inhibition

Figure No. 3

Click here to download Figure No.: Figure 3.pptx
Figure No. 4

Helminth Parasites

Regulatory IMs

Type2 IMs
S. mansoni SEA

MΦ/DC

TGF-β
IL-10

Treg cell

IL-10
TGF-β

Th2 cell

IL-4, IL-5, IL-13

Allergy/asthma

Th2 cell

IL-4
IL-5
IL-13

Th1/Th17 cell

IL-17, GMCSF, IFN-γ, TNF-α

Autoimmune/inflammatory diseases

Innate cells

DC, Basophils, M2 macrophages, ILC2

IL-4

Th2 cell

IL-4
IL-5
IL-13
Figure No. 5
Click here to download Figure No.: Figure 5..docx