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17 Abstract

18 Limited research has been done using multivariable statistical methods to assess factors 

19 associated with fish mortality in warm-water finfish aquaculture in China. We carried out a 

20 case study to test the hypothesized association between pond-level daily mortality of farmed 

21 grass carp and predisposing environmental and husbandry factors. Based on logbook data 

22 from a single farm in Guangdong province (China) in 2013, two-stage time-series regression 

23 (TSR) analyses were conducted to estimate the lagged effect of these predisposing factors on 

24 grass carp mortality. Factors assessed included temperature fluctuations, movement of fish 

25 into and out of ponds, and 3 types of treatments (antibiotics-antiparasitics, traditional Chinese 

26 medicine-probiotics, and chemicals to improve water quality). First, coefficients were 

27 estimated using a generalized linear negative-binomial model for each pond, and these 

28 coefficient estimates were combined using meta-analytic techniques. Sensitivity analyses 

29 were done to compare effects of changes in the 3 modeling components: distributional forms, 

30 number of spline knots, and types of autocorrelation terms. Model results in the case study 

31 indicated 2 risk factors might be associated with increased mortality of grass carp: (1) 

32 movements-in of new fish during the previous 14 days; and (2) increasing water temperature 

33 during the previous 7 days. Sensitivity analyses indicated good consistency of the estimates 

34 with different modeling components. Our findings highlight the utility of assessing daily farm 

35 records using TSR to develop hypotheses about potential risk factors for grass carp mortality 

36 in China.

37 Key words: Time-series regression; grass carp; mortality; risk factors; daily records.
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38 1. Introduction

39 Grass carp (Ctenopharyngodon idella) is one of the most frequently farmed warm-water 

40 species in China due to its ease of domestication and acceptance in the marketplace (Cao et 

41 al., 2007; FAO, 2016). Despite the vast size of the industry, there are few field studies 

42 dedicated to systematic analysis of routinely-collected farm data from grass carp aquaculture 

43 (Yang et al., 2013).  This is likely due to the lack of farm recording practices in this industry 

44 (Li et al., 2016; Jia et al., 2016). 

45 Acute or chronic mortality events in pond aquaculture systems are not always fully 

46 investigated, making it difficult for producers to target specific control or prevention 

47 strategies that address fish losses. Analysis of mortality patterns can be a useful tool to 

48 understand potential causes of losses (Soares et al., 2011; Alba et al., 2015). For example, 

49 analyses can identify seasonal trends in mortality or patterns that coincide with particular 

50 management strategies.  

51 In Asian aquaculture settings, where there is limited access to and use of disease diagnostic 

52 services, mortality could signal fish health problems caused by multiple factors, and analysis 

53 of mortality patterns and whether they correlate with specific events on farms can help inform 

54 potential control strategies (Tan et al., 2006; Bondad-Reantaso and Subasinghe, 2008; 

55 Serfling, 2015). For example, many agricultural production systems use all-in-all-out 

56 management to reduce the risk of introducing pathogens and/or naïve animals into existing 

57 animal populations. This is not well accepted in pond aquaculture for a number of reasons, 

58 most of which are logistical (Lin and Peter, 1991); however, the risk of mortality associated 

59 with not implementing this practice is not known, and could be determined if producers 

60 maintained information on fish movements and mortality (Boerlage et al., 2017). 
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61 Data extracted from daily records are well suited for the analysis of temporal associations by 

62 time-series regression (TSR) methods, which combine the concepts of ordinary regression 

63 and time series analysis to allow exploration of associations of outcomes with time-varying 

64 factors, such as management interventions or changes in temperature (Bhaskaran et al., 2013, 

65 Bernal et al., 2017). Although widely described, investigated analytically and applied in 

66 environmental epidemiology and public health intervention studies (Bell et al., 2004; Zeger et 

67 al., 2006; Imai et. al., 2015; Bernal et al., 2017), TSR has had limited use in animal health 

68 studies (Lloyd et al., 2000; Levine and More, 2009; Dórea et al., 2012; Lee et al., 2013). 

69 There are two recent publications involving TSR analyses in farmed aquatic animals 

70 (Gustafson et al., 2016; Piamsomboon et al., 2016), but no previous studies on warm-water 

71 finfish.

72 In this study, we examined the feasibility of using TSR methods to assess the association 

73 between time-varying risk factors and daily mortality counts of grass carp in multiple ponds 

74 from a farm in Guangdong province, China. We specifically targeted factors that may be 

75 associated with grass carp mortality: (1) ambient temperature; (2) handling (movement-in and 

76 movement-out); and (3) treatments. 

77 2. Materials and methods

78 2.1. Data source and data entry 

79 Data used in the study were daily pond-level records from 14 grass carp ponds located on the 

80 same farm, during a production cycle of grass carp in 2013. The farm was managed by a 

81 domestic aquatic feed company and used as a demonstration site for clients to learn about 

82 management practices in fish farming. All 14 ponds included in the study were in the first 

83 year of production. In addition to grass carp, these ponds held crucian carp (Carassius 
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84 carassius), silver carp (Hypophthalmichthys molitrix), and spotted silver carp (Aristichthys 

85 nobilis), but we did not include mortality data from these species. 

86 The original logbook data for each pond were recorded on paper by staff working for an 

87 aquatic feed company. The following data were entered into Microsoft Excel 2010 (Microsoft, 

88 Redmond, WA, USA) from the daily records (logbooks): (1) mortality counts (observed 

89 number of dead grass carp, but with no diagnosis or ascribed information on the cause of 

90 mortality); (2) movement-in and -out of fish (weight and size of fingerlings or new adult fish 

91 of multiple species); (3) treatment (chemical name and dose); and (4) water quality 

92 measurements (temperature, pH, and ammonia, etc.). Quality control of data entry was 

93 supervised by feed company personnel. 

94 2.2. Description of variables 

95 The outcome variable in this study was the daily mortality count of grass carp on each day for 

96 each pond. The number of grass carp on day 1, when movement-in was calculated, was based 

97 on fingerling size and total weight. After day 1, the grass carp number on any given day was 

98 obtained by subtracting the daily mortality from the total number of grass carp on the 

99 previous day. 

100 Seven predictor variables were assessed for their acute or delayed associations with fish 

101 mortality. Except for temperature, all movements and treatments of fish were coded as binary 

102 (dichotomous) variables. The 3 variables related to movement-in of new fish and movement-

103 out of fish were defined as follows. (1) mi3d: whether there was movement of fish into the 

104 pond during the previous 3 days. We expected to find an increase in mortality soon after the 

105 movement-in of fish if mortality was associated with poor environmental conditions, due to 

106 increased biomass or from a peracute infectious disease. (2) mi2w: whether there was 

107 movement-in of fish during the previous 14 days. This is the time frame we anticipated would 
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108 be required for pathogen introduction associated with a transfer of fish to influence mortality 

109 counts. (3) mo3dm: whether there was movement-out of fish during the previous 3 days, 

110 except when the pond was within 10 days of final harvest. Movement-out of fish from grow-

111 out ponds of grass carp was hypothesized to cause acute mortalities due to over-crowding and 

112 stress during the harvest procedures. 

113 Three variables related to treatments were used to estimate the change in fish mortality after 

114 treatments: (1) atbp7d, whether antibiotics or antiparasitics were used during the previous 7 

115 days; (2) ctpr7d, whether Chinese traditional medicine or probiotics were used during the 

116 previous 7 days; and (3) wimp3d, whether chemicals to improve water quality were used 

117 during the previous 3 days. The chemicals most frequently used for water quality treatment 

118 were povidone-iodine, calcium hypochlorite, copper sulfate, and chlorine dioxide.

119 Temperature was measured by tmax06, a continuous variable, indicating the 7-day average 

120 maximum daily atmospheric temperature. All historical records of atmospheric temperature 

121 for the study area were retrieved from online open-source meteorological data available on 

122 the official website of Guangzhou City Meteorological Information Centre 

123 (http://www.gz121.gov.cn/gywm/sjkf/). 

124 2.3. Exploratory descriptive analysis

125 We summarized production information for each pond, including movement-in and 

126 movement-out dates, grass carp mortality, frequencies of movements and treatments, and 

127 ambient temperature fluctuations. Frequency distributions were used to explore the 

128 association between binary predictors and to facilitate the understanding of how treatment 

129 practices were related, i.e. single methods, or combinations of 2 or 3 treatments. Group 

130 means of atmospheric temperature (tmax06) were also compared for days when the value for 

131 each binary variable was equal to 1 (atbp7d, ctpr7d and wimp3d) and days when it was equal 
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132 to 0. Sign tests and generalized estimating equations were also carried out, as detailed in 

133 supplementary materials 1 (S1). 

134 2.4. Two-stage time-series regression (TSR)

135 We used the two-stage TSR analysis (Dominici et al., 2000) to assess risk factors of grass 

136 carp mortalities. All modeling steps were implemented in Stata 13 (Stata Corp., College 

137 Station, TX, USA). In the first stage, the series of daily grass carp mortality counts for each 

138 pond were analyzed separately by generalized linear models. For these models, the 

139 distributional form, the modeling of temporal effects, and incorporation of autocorrelation 

140 were first investigated in exploratory analyses. In order to obtain the most meaningful 

141 comparison across ponds (i.e., in the second stage of the modeling) it was preferable to use 

142 the same models for all ponds. On the other hand, computationally complex models may not 

143 be equally suited for all ponds and, in extreme cases, models that are too complex may fail to 

144 produce meaningful estimates within ponds. Excluding certain ponds from analysis due to 

145 computational problems would likely lead to selection biases, so our guiding principle for 

146 selecting appropriate within-pond models was to enable sufficient flexibility to capture the 

147 most important features of the data while allowing for estimation in all ponds. The robustness 

148 and impact of different choices for among-pond modeling was explored by a sensitivity 

149 analysis. 

150 The wide variability of within-pond counts led us to consider negative binomial instead of 

151 Poisson models. We adjusted for the population-at-risk by including a logarithmic 

152 transformation of total number of fish as an offset (as implemented in the glm command in 

153 Stata). 

154 The possible fluctuations of outcome counts over time due to unmeasured factors were 

155 explored using a smooth cubic spline function with varying numbers of knots (Bhaskaran et 
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156 al., 2013). We initially evaluated between 2 and 9 knots, but due to convergence problems at 

157 the pond level when many knots were included, we restricted our models to splines with 5 

158 and 6 knots. Adjustment for autocorrelation was done by including both 1-week and 2-week 

159 lagged deviance residual terms, as described above, in the predictive part of the model 

160 (Brumback et al., 2000). 

161 In the second stage of each TSR model, the estimated coefficients and standard errors were 

162 the results of the first-stage analysis (for each predictor obtained from the analysis of each 

163 individual pond) and were combined using a random-effects meta-analysis (Borenstein et al., 

164 2009). Forest plots were used to depict the variability in predictor estimates across ponds, and 

165 their consistency was reflected in the 95% confidence intervals.

166 We compared the results of the two-stage TSR analysis to those based on different within-

167 pond models. In addition, we also compared results obtained for a multivariable analysis, 

168 including all 7 predictors simultaneously, and separate analyses including a single predictor 

169 at a time (together with other model terms). Based on descriptive and final model results, we 

170 investigated the potential for confounding by some of the predictors by comparing the results 

171 of the selected model to those without chosen combinations of the predictors involved. 

172 Details on main model selection and sensitivity analysis can be found in supplementary 

173 materials 2 and 3 (S2 & S3). 

174 3. Results

175 3.1. Exploratory descriptive analysis

176 3.1.1. Production information

177 Start and finish dates for the production cycle in the 14 ponds varied, with the earliest 

178 movement-in date in January 2013 (ponds 9 and 10), and latest movement-in date in April 

179 2013 (pond 33) (Table 1). The mortality count pattern and the frequency of non-zero 
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180 mortality days differed across ponds (Table 1). The 5 highest mortality counts were reported 

181 from ponds 10, 11, 12, 19, and 33. Between 32% and 80% of observations had zero mortality 

182 in each pond (Table 1), suggesting that at least some of the ponds had excessive zero 

183 mortality counts. 

184 3.1.2. Descriptive analysis of predictor variables. 

185 Ambient temperature was considered a proxy for water temperature because the latter data 

186 were incomplete. Based on fluctuation patterns of daily water and atmospheric temperature, 

187 we found that daily water temperatures were similar overall to atmospheric temperatures (Fig. 

188 1). 

189 Frequencies of management practices for each pond are summarized in Table 2. For 

190 movements of fish, all 14 ponds experienced multiple movements-in, but not all ponds were 

191 harvested multiple times. No movements-out of fish occurred in 3 ponds during the study 

192 period (ponds 21, 23, and 24), and movements-out of fish were recorded only once for 3 

193 other ponds (ponds 11, 22, and 33) (Table 2). For antibiotic and/or antiparasitic treatments of 

194 fish, most ponds had at least one of each of these treatments applied during the study period, 

195 with the exception of no antiparasitic treatments in ponds 13, 15, and 33. Applications of 

196 Chinese medicine, probiotics, and chemicals to improve water quality were more frequent 

197 than antibiotic and/or antiparasitic treatments across all ponds (Table 2). 

198 The simultaneous use of 2 treatment groups, traditional Chinese medicine-probiotics (ctpr7d) 

199 and water quality treatments (wimp3d), was common in all ponds. Antibiotics and 

200 antiparasitic treatments were rarely combined with traditional Chinese medicine-probiotics, 

201 except in pond 11. Both traditional Chinese medicine-probiotics and water quality treatments 

202 were likely to occur during days with higher atmospheric temperatures. We have illustrated 

203 the above results with pond-11 data in Figure 2. 
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204 3.2. TSR modeling 

205 For the first-stage analysis, we chose for the following components for the 7-predictor model: 

206 a negative binomial distribution (without zero-inflation), a 5-knot time spline, and two-lagged 

207 deviance residual terms. Pond 33 did not produce meaningful results for the first-stage TSR 

208 analysis. Exploration of the data suggested this was due to irregularly spaced missing data on 

209 fish mortality counts, so we excluded this pond from the TSR analysis. The estimates 

210 generated for each predictor, based on the chosen model, were applied to each of the 13 

211 ponds (i.e., without pond 33). We summarized meta-analyses results for each predictor in the 

212 second stage in Table 3 and Figures 3 and 4. 

213 Three predictors, movement into the pond within 3 days (mi3d), movement-out within 3 days 

214 (mo3dm), and the treatment with antibiotics-antiparasitics within 7 days (atbp7d), were not 

215 significantly associated with variations in mortality counts. Four predictors had significant or 

216 close to significant associations with the incidence of mortality across all ponds (Table 3), 

217 and the associations can be interpreted, in terms of incidence rate ration (IRRs), after 

218 adjustment for the time-varying predictors, as follows: 

219 (1) Movement-in of fish (mi2w): the overall IRR of 2.01 (95% CI, 1.50 to 2.68) indicated that 

220 the incidence rate of pond-level mortality on days with movement-in of fish during the 

221 previous 14 days was estimated to be two-fold higher than on days without preceding 

222 movements. There was some between-pond heterogeneity in the fish movement effect 

223 (association with mortality count) (p=0.035, I2=45.9%), with one pond (20) showing an 

224 apparent beneficial effect, although with wide CI and outweighed by the adverse effects in all 

225 other ponds. 

226 (2) Use of Chinese tradition medicine and probiotics (ctpr7d): the overall IRR of 0.69 (95% 

227 CI, 0.57 to 0.85) indicated that the incidence rate of pond-level mortality on days with a 

228 treatment with traditional Chinese medicine or probiotics during the previous 7 days was 
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229 about 1.45 (1/0.69) times lower than on days without such treatments during the previous 7 

230 days. 

231 (3) Use of chemicals to improve water quality (wimp3d): the IRR of 1.24 (95% CI, 1.03 to 

232 1.48) indicated a slight increase in incidence on days with water quality treatments during the 

233 previous 3 days.

234 (4) Temperature (tmax06), the IRR of 1.17 (95% CI, 1.06 to 1.28) indicated a 1.2-fold 

235 increase in incidence for every 1 C increase in temperature during the previous 7 days. 

236 Detailed modeling options for the purpose of sensitivity analysis (Table S3) and their 

237 comparisons (Figs. S1-7) are in supplementary materials (S3). In the main model, high levels 

238 of heterogeneity across ponds, also referred to as inconsistency (Higgins et al., 2003), were 

239 found for tmax06 (I2 =78.7%). The estimates of the remaining 6 predictors had moderate 

240 heterogeneity, with I2 ranging from 45.3% to 59.8%. 

241 4. Discussion

242 To our knowledge, this is the first use of time-series regression analysis to investigate the 

243 association between common farm management strategies, such as movement of fish in and 

244 out of ponds, and mortalities of grass carp in China. Our study demonstrated the feasibility of 

245 TSR modeling of risk factors for fish mortality, which might be applicable in other warm-

246 water aquaculture species. We also evaluated the usefulness of farm-records in grass carp 

247 aquaculture for identifying trends that may be associated with commonly-used management 

248 strategies, detailed below.

249 4.1. Movement-in of fish 

250 Movement-in of fish within a 14-day period was significantly associated with increased 

251 mortality counts of grass carp on our study farm. In other words, a significant increase in 



12

252 mortality was found within 14 days of the introduction of fish, which suggested that, on 

253 average, movements had adverse impacts on fish, even though these changes might take up to 

254 two weeks to manifest. This result is what would be expected if the movement of fish into a 

255 pond introduced a pathogen and subsequent infection with an incubation period less than 2 

256 weeks or if the new fish were exposed to a pre-existing pathogen in the pond (Barton, 2002).  

257 Unfortunately, we could not tell from the records whether the fish that died were new or 

258 resident fish; however, given the association found in this study, it may be worthwhile for 

259 future researchers to investigate whether the movement-in of fish is a potential pathway of 

260 infectious pathogens to fish already in the pond. The delayed mortality, post introduction of 

261 fish, could also suggest stress-related issues. More detailed investigation of the cause of 

262 mortality would help differentiate this from an infectious disease, which is important, as the 

263 control strategies for each would differ.

264 Mortality from sudden changes in water quality might occur acutely in pond aquaculture 

265 (Boyd and Tucker, 1998). The fact that we did not observe a change in mortality with 

266 movements of fish 3 days prior (mi3d) suggests, on average, ponds on this farm did not 

267 experience short-term water quality issues associated with fish movements. 

268 Despite the issues that can arise from mixing fish populations, introductions of new fish into 

269 ponds and partial harvests of populations are common practices in carp aquaculture. All-in-

270 all-out farming strategies have been shown to be effective in several food animal production 

271 systems in reducing the likelihood of disease outbreaks (Rimstad et al., 2006; Cox and Pavic, 

272 2010), but these approaches might be difficult to apply in grass carp culture, given the 

273 industry’s practice of multiple movements-in and multiple harvests, with the purpose of 

274 maximizing energy utilization in the pond ecosystem (Lin and Peter, 1991). Our study 

275 suggests producers may need to re-evaluate the practice of frequent movement-in of fish, as it 

276 was associated with increased mortality counts.  
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277 4.2. Treatment with traditional Chinese medicine or probiotics

278 In our study, this treatment was associated with reduced carp mortality and was significant in 

279 4 of the ponds, as well as in our overall analysis. Traditional Chinese medicine treatments 

280 were usually administered together with probiotics and vitamin C in the feed, and were 

281 associated with a reduction in fish mortality. There have been studies to evaluate plant herbs 

282 as alternatives to antibiotics to treat fish disease (Pandey et al., 2012; Guo et al., 2014; Mo et 

283 al., 2016). Interestingly, the reason for the application of Chinese medicine in our study was 

284 not known, so we cannot say whether the fish had an infectious disease. However, it appeared 

285 that when these products were used on this particular site, fish mortality decreased. 

286 Unlike the use of Chinese medicine, the use of antibiotics and/or antiparasitics 7 days prior 

287 was not associated with a decrease in mortality. It is possible that this group of 

288 pharmaceuticals were used prophylactically instead of as a therapy, in which case our results 

289 would suggest they were effective. However, given that the Chinese medicine was used 

290 therapeutically (i.e. we found a reduction in mortality with these products) it seems more 

291 likely that antibiotics were also used as a therapy. 

292 According to the anecdotal note from the farm workers taking the records, antibiotics and/or 

293 antiparasitics were more likely to be used when mortalities were high. If these products were 

294 used as therapeutants, then our analysis suggests they were often ineffective at significantly 

295 reducing mortality. Antibiotics are only effective against bacterial pathogens, and not all 

296 products are broad spectrum, so if the farmer did not diagnose the specific cause of mortality 

297 prior to treatment it is possible the antibiotic was not an appropriate treatment. Given the 

298 mixed treatment results found in this analysis, farmers may benefit from investigating the 

299 specific causative pathogen responsible for mortality to identify appropriate treatment in the 

300 future.  



14

301 4.3. Use of chemicals to improve water quality

302 In our study, this treatment was associated with increased rather than a reduction in fish 

303 mortality. According to anecdotal notes from fish farmers and fish veterinarians in China 

304 during our 2014 surveys (Jia et al., 2017), treatment of water with chemicals is more 

305 commonly applied to prevent the occurrence of disease or reduce mortality than other health 

306 management practices. However, due to the lack of diagnoses, farmers’ decisions on water 

307 quality improvement relied on the guidance of fish health personnel, and treatments were 

308 usually done prophylactically, without determining whether poor water quality was an issue. 

309 Furthermore, water quality improvement may have adverse effects on pond biota (Pillay and 

310 Kutty, 2005), which might lead to degradation of the pond ecosystem and eventually result in 

311 adverse health events (Moll, 1986).

312 In general, chemotherapeutic treatments are applied to return mortality to normal baseline 

313 levels. However, treatments, in some cases, may not be effective because of misdiagnosis, 

314 resistance, improper dose usage, or other limiting factors. Endemic parasitic problems of 

315 finfish might compromise the integument of the fish and, hence, a chemical treatment of 

316 water might exacerbate mortality instead of reducing it, or may do nothing to interrupt the 

317 initial upward trend in mortality associated with the start of an infectious disease outbreak. 

318 The fact that we did not see a corresponding positive effect of water treatments suggests this 

319 producer should further investigate water quality parameters prior to applying the treatments.

320 4.4. Water temperature

321 The estimates of the association between water temperature and mortality in this study were 

322 relatively consistent regardless of the model components used, and were always statistically 

323 significant. The increasing trend in mortality associated with high daily water temperature 
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324 suggests producers should further investigate management strategies that target this 

325 environmental factor.  

326 Ambient water temperature and oxygen availability are the most influential environmental 

327 factors affecting aquatic organisms. We included temperature in our model to control for 

328 potential confounding effects on other risk factors, i.e. management practices. Absolute water 

329 temperature and changes in temperature are likely to have cumulative chronic effects on pond 

330 systems (Pickering, 1998). The upper lethal temperature range for grass carp is 33-41 C, with 

331 a mean critical thermal maximum of 39.3 C (Chilton and Muoneke, 1992). However, under 

332 intensive pond aquaculture, even within the normal range of water temperature for carp, 

333 survival rates of grass carp have been reported to be adversely associated with increased 

334 ambient temperatures (Song, 2012). Increases in water temperature may reduce the level of 

335 oxygen in the water and increase the demand for it, exacerbating the issue. High water 

336 temperatures might also alter ammonia concentrations and cause accumulations of this 

337 chemical and its metabolites in aquaculture systems (Alcaraz and Espina, 1995).  

338 4.5. Time-series analyses

339 The use of multi-series multivariable TSR models allowed us to quantify the impact of 

340 multiple time-varying management factors, while controlling for extraneous slow changes in 

341 time and important specific time-varying confounders (e.g. temperature) and also accounting 

342 for heterogeneity between individual ponds in both outcomes and management variables. The 

343 TSR analysis demonstrated consistent associations, across ponds, of fish movements into 

344 ponds and of certain treatments, even though these associations were difficult to discern from 

345 simple descriptive statistics. 

346 TSR methods could also apply to data from multiple farms, though the multi-level nature of 

347 the second-stage analysis (i.e. differences across farms) would need to be controlled. Several 
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348 extensions of TSR beyond our application have been developed, and with large, informative 

349 datasets, in particular, it is possible to infer the lag structure of an association between a 

350 predictor and outcome directly from the data within the model (Schwartz, 2000), even if the 

351 association is non-linear (Gasparini et al., 2010; Gasparrini and Armstrong, 2013), rather than 

352 by construction of moving averages of exposure variables, as was done in this paper. Despite 

353 the utility of this type of analysis, especially for time-varying predictors such as treatments, 

354 few time-series studies have been used to assess aquatic animal health management strategies 

355 or risk factors (Chang et al., 2007; Lessard et al., 2007; Connors, 2011), perhaps due to the 

356 difficulties in accurately measuring fish mortality in the aquatic environment. Although it is 

357 difficult to accurately capture all mortality counts in earthen aquaculture ponds, the patterns 

358 observed in the subset can be useful for informing producers of potential impacts of 

359 management over time.   

360 4.6. Study scope and limitations

361 First, the major limitation in this study was the quantity of data available to us. Out of more 

362 than 100 grass carp farms that we visited in China between 2013 and 2014, we only identified 

363 one farm with sufficient recorded data to conduct this type of statistical analysis, which 

364 limited the external validity of our analysis. However, the study does highlight the potential 

365 benefits of record keeping on fish farms. To deal with the limited data we had to simplify 

366 some of our predictors. For example, we used binary predictors for management strategies, 

367 which resulted in a loss of information. 

368 Second, the variable tmax06, denoting the average temperature of the previous week, was 

369 missing for the first 6 observations for each pond, so these observations were not included in 

370 the models. Since mortality immediately after the initial movement-into the ponds was not 

371 our main interest, we were not overly concerned that data for this period was missing. 



17

372 Third, correlation between treatment predictors and tmax06 was found to be high in most 

373 ponds. Traditional Chinese medicine and probiotics were often found to be used 

374 simultaneously with other treatments, and these correlations made it difficult to discern the 

375 associations of individual predictors. The simplification of our predictors and the 

376 confounding of some management practices may have affected the model estimates, so we 

377 were conservative in our inferences. However, we believe that TSR modeling will be useful 

378 for future risk factor studies in grass carp aquaculture.

379 5. Conclusions

380 To our knowledge, this is the first application of TSR to a risk factor study of daily 

381 mortalities of warm-water finfish. Our results indicate that movement of fish into ponds, use 

382 of chemicals to improve water quality, and high daily temperatures were associated with 

383 increased mortality of grass carp, while treatments using traditional Chinese medicine and 

384 probiotics were associated with low mortality. Although generalization of these findings to 

385 other small-scale farm settings should be done with caution, the methods and modeling 

386 undertaken demonstrate the utility of daily record-keeping and analysis of those records. Our 

387 analyses also suggest that producers may benefit from investigating specific causes of 

388 mortality, as some of these events were associated with management strategies, which could 

389 be subsequently modified.  
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1 Table 1 Stocking date, final date of production, and grass carp mortality counts summarized for each pond.

    All mortality counts   Non-zero mortality counts  
Pond Stocking date Final record date Min Max Mean Median SD Event frequencya Mean Median SD
9 1/14/2013 6/23/2013 0 174 11.9 1 29 0.547 21.8 3 36.4
10 1/14/2013 9/24/2013 0 295 7.2 0 28.5 0.449 16.1 3 40.9
11 1/15/2013 9/24/2013 0 1620 84.7 11 177.4 0.569 148.8 73 214.1

12 1/16/2013 9/24/2013 0 300 9.2 0 28.7 0.44 20.9 6 40.5
13 1/17/2013 8/30/2013 0 73 4.4 2 8.3 0.681 6.4 3 9.4
14 1/19/2013 9/24/2013 0 63 9 1 13.3 0.522 17.3 15.5 13.9
15 1/17/2013 8/30/2013 0 76 4.7 2 9.7 0.633 7.5 4 11.4
19 3/14/2013 8/30/2013 0 411 11.8 0 50.5 0.465 25.4 3 71.9
20 3/15/2013 9/24/2013 0 81 2.6 0 8.8 0.345 7.6 3 13.7
21 3/26/2013 8/30/2013 0 95 10 1 20.8 0.551 18.1 5 25.3
22 3/25/2013 9/24/2013 0 68 3.7 0 8.9 0.495 7.5 4 11.5
23 3/26/2013 8/30/2013 0 212 11 0 35.2 0.43 25.6 8 50.3
24 3/25/2013 9/24/2013 0 41 5.4 1 7.9 0.522 10.4 9 8.3
33 4/29/2013 9/24/2013 0 870 38.9 0 111.9 0.201 193 144 182.1
Total    0 1620 16 0 66.9  0.498 32.2 6 92.1

2 Note: a Event denoted a day with mortality of grass carp more than zero. Denominator for the calculation is the number of days between stocking 

3 date and the final record date
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4 Table 2 Frequencies of management variables: movements and treatments of fish and pond water. 

Movement of fish  Treatment of fish or using of chemicals to improve pond water quality
Pond

Stocking Harvest Antibiotics Antiparasitics Traditional Chinese Medicine Probiotics
Chemical for water 
quality improvement

9 9 5 15 2 26 14 35
10 7 3 7 3 30 24 41
11 3 1 37 2 58 15 37
12 7 9 3 3 25 15 36
13 5 3 5 0 37 17 41
14 6 5 1 6 31 19 40
15 5 4 2 0 28 17 39
19 6 6 5 3 15 18 21
20 6 3 3 2 14 19 24
21 4 0 0 2 20 17 31
22 4 1 2 2 27 21 36
23 4 0 11 3 17 14 34
24 4 0 2 2 35 26 40
33 8 1  13 0 30 14 40
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6 Table 3 Estimated means and 95% confidence intervals (CI) of incidence rate ratios for seven predictors, combined by separate random-effects 

7 meta-analyses in the second-stage of a time-series regression analysis. The regression coefficients entered into the meta-analysis were extracted 

8 from individual analyses for each of 13 ponds by multivariable negative-binomial regression models that included 5-knot cubic spline functions 

9 of time and deviance residuals lagged one and two time steps as predictors. 

Predictor variables and effects evaluated Incidence rate ratio     95% CI P-value

Movement of fish within previous 3 days (mi3d=1) 0.83 (0.57, 1.35) 0.46

Movement in of fish within previous 14 days (mi2w=1) 2.01 (1.50, 2.68) <0.001

Movement out of fish within previous 3 days (mo3d=1) 1.37 (0.83, 2.26) 0.22

Treatment with antibiotics or antiparasitics within previous 7 days (atbp7d=1) 1.28 (0.97, 1.69) 0.08

Treatment with CTM or probiotics within previous 7 day (ctpr7d=1) 0.69 (0.57, 0.85) <0.001

Water quality treatment within previous 3 day (wimp3d=1) 1.21 (0.99, 1.48) 0.06

Temperature of previous week increase by 1 C (tmax06) 1.17 (1.06, 1.28) <0.001
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10 Figure legends (Figs. 1- 4)

11 Fig 1 Fluctuation of atmosphere temperature and recorded water temperature. 

12 Note: 1. temp denoted water temperature measurement records in the data. Variation of water temperature among different ponds was assumed   
13 to be negligible. 2. max_temp denoted atmosphere temperature from online weather historical records for the study area  3. Weather denotes 
14 sunny with the value of 3, cloudy with the value of 2 and rain with the value of 1.   

15 Fig 2  Occurrence of the daily observed mortality and the management practices recorded for that day in Pond 11.

16 Note: 1. Mort denotes the observed mortality of the corresponding day (shown as circles); 2. The codes for the 5 interventions are as follows: 1) 
17 move-in: movements-in of fish; 2) move-out: movements-out of fish; 3) atbp: treatment of antibiotics or antiparasitics; 4) ctpr: treatment of 
18 traditional Chinese medicine or probiotics; 5) wimp: using chemicals to improve water quality. 

19 Fig 3 Forest plot for the random-effect estimates of movement-in of fish in the previous 2 weeks (mi2w) for the negative-binomial regression 
20 model across the 13 ponds a. 

21 Note: a  The 13 ponds are ponds 9, 10, 11, 12, 13, 14, 15, 19, 20, 21, 22, 23, and 24 which are listed in ascending order. Pond 33 was omitted.       
22 b IRR = incidence rate ratio.  c Overall I-square was reported as 45.9% with p-value of 0.035. 

23 Fig 4 Forest plot for the random-effect estimates of treatment with CTM or antibiotics (ctpr7d) for the negative-binomial regression model 
24 across the 13 pondsa.

25 Note: a  The 13 ponds are ponds 9, 10, 11, 12, 13, 14, 15, 19, 20, 21, 22, 23, and 24 which are listed in ascending order. Pond 33 was omitted.      
26 b  IRR = incidence rate ratio.  c Overall I-square was reported as 45.3% with p-value of 0.038. 
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19 S1. Other tests used in exploratory descriptive analysis

20 The sign test was applied to compare median mortality values of those matched-pair time 

21 windows of each pond. In order to compare the median differences in pond-level mortality 

22 before and after each intervention (e.g. movement and treatment of fish), we defined the 

23 following time windows for each management practice: (1) 3 days before and after 

24 movement-in of fish, movement-out of fish, and water improvement; (2) 7 days before and 

25 after treatment with antibiotics/antiparasitics and treatment with Chinese traditional medicine; 

26 and (3) 14 days before and after movement-in of fish. Based on sign tests carried out for each 

27 pond, there was almost no difference between the before-event mortalities and after-event 

28 mortalities, when each of the 6 management practices was individually evaluated for each 

29 time window (Tables S1a and 1b).

30 Generalized estimating equations (GEE) with an exchangeable correlation structure within 

31 ponds were used to test whether the mean mortality before exposure was equal to the mean 

32 after exposure, using data across all ponds. Because GEE were applied for marginal mean 

33 estimations with imbalanced clusters of fish mortalities in different ponds during the study 

34 period, we used an exchangeable correlation instead of independent, autoregressive, or 

35 unstructured correlation structures (Bergsma et al., 2009). All comparisons of GEE tests were 

36 not significant for both datasets with or without pond 33 (P > 0.05), indicating that after-

37 intervention mortality was, in most cases, similar to before-intervention mortality (Table S2).

38 S2. Main model selection

39 Zero-inflated negative-binomial models with a constant zero-inflation proportion were 

40 compared to the negative-binomial models by Vuong's test (Hilbe, 2011). The zero-inflated 

41 models require a more complex estimation procedure and do not allow for deviance residuals. 

42 Hence, Pearson residuals (simple residuals divided by the standard deviation of observed 
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43 counts) were used instead, although deviance residuals are generally preferable (Bhaskaran et 

44 al., 2013). 

45 The Vuong test suggested an improvement in fit with a zero-inflated model over an ordinary 

46 negative-binomial model, for only two ponds (9 and 14) out of 13. A 5-knot spline was found 

47 to be the maximum number of knots for which negative-binomial models converged for all 

48 pond analyses. Including more knots caused the models to not converge for some ponds. Five 

49 knots has also been used in other TSR studies on mortality counts (Bhaskaran et al., 2013). In 

50 summary, we chose for our final model the following components: a negative binomial 

51 distribution (without zero-inflation), a 5-knot time spline, and two-lagged deviance residual 

52 terms. The robustness of our results with this model, in comparison with alternative model 

53 settings, was explored by a sensitivity analysis, as discussed in S3.

54 S3. Sensitivity analysis

55 In the first part of our sensitivity analysis, we compared the results of our selected model to 7 

56 alternative models with slightly different features, as shown in Table S3. Two negative 

57 binomial models explored alternative ways of dealing with autocorrelation, by omitting the 2 

58 deviance residual terms or by replacing them with a single lagged outcome term (settings 2-3). 

59 One negative-binomial model explored the impact of increasing the number of spline knots 

60 from 5 to 6, thereby excluding results from pond 23 (setting 4). Two zero-inflated negative-

61 binomial models were explored, with either 5 or 6 spline knots and Pearson residual terms 

62 (settings 5-6), or replaced with a single lagged outcome term (setting 7). Finally, for the 5-

63 spline knot model, with or without zero-inflation, estimation for each predictor on its own, 

64 instead of in a multivariable model with 7 predictors, was explored (settings 8-9). 

65 The results of the sensitivity analysis are shown for each of the 7 predictors individually in 

66 Figures S1-7. For most predictors, the sensitivity analyses agreed on the direction, 
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67 approximate confidence interval range, and overall significance (at P<0.05) of the coefficient. 

68 Exceptions were the univariable models for mi3d and cpr7d, the 2 models based on 6 spline 

69 knots for atbp7d, and the model unadjusted for autocorrelation for tmax06. These findings are 

70 discussed in the following paragraphs. Additionally, most I2-values of different all-predictor 

71 models were within the range of 25-75%, indicating low to moderate levels of among-pond 

72 heterogeneity (Figs. S1-7).

73 The two predictors, mi3d and mi2w, had overlapping time intervals for the entry of fish 

74 because the 3 days of mi3d were also included in the 2-week interval of mi2w. In the 

75 univariable analysis, mi3d captured total mortality in the 3 days following movement, 

76 whereas in a multivariable model it captured additional mortality in those 3 days, relative to 

77 the general change in mortality during the 2 weeks after movement. The data showed that the 

78 2-week effect was much stronger than the 3-day effect, explaining the difference between 

79 univariable and multivariable effects for mi3d and indicating that the former was the most 

80 relevant (Figs. S1 and 2).

81 The predictor atbp7d showed significant association in the 2 models with 6 spline knots, with 

82 the IRR estimates of 1.61 (setting 4) and 1.62 (setting 7), respectively, in contrast with the 

83 non-significant effect of atbp7d estimated by models with 5 spline knots (Fig. S4). This 

84 difference was essentially due to the exclusion of ponds 19 and 23 in the former models. In 

85 the 5-spline knot models without ponds 19 and 23, atbp7d was not significant (P>0.05), and 

86 its estimate was 1.36, which was different from IRRs estimated from all-variable models 

87 using 5 spline knots that ranged from 1.17-1.62 (Fig. S4). Because there was no objective 

88 reason to exclude ponds 19 and 23 from our analysis, we consider the results for the 5-spline 

89 knot model preferable. 

90 The predictor ctpr7d was protective and significant in a multivariable model but showed no 

91 effect on its own (Fig. S5), and its inclusion strongly affected the coefficient for ctpr7d; 
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92 hence, the result of the multivariable analysis was the appropriate one to consider for ctpr7d. 

93 The different results can be explained as a confounding effect of temperature (tmax06), which 

94 was strongly associated with ctpr7d in some ponds where the treatments were confined to 

95 high temperature ranges.

96 The impact of wimp3d varied substantially across the sensitivity analyses, ranging in its 

97 estimated IRRs from 0.998 to 1.21, with the lowest estimates from the univariable analyses 

98 (Fig. S6). This appeared to be due less to a confounding effect of temperature (tmax06) than 

99 to a correlation with ctpr7d. Comparison of the group mean of tmax06 indicated that water 

100 quality improvement was likely to happen on days with higher temperatures. Analyses with 

101 one or both of these predictors present showed that the overall significant conclusion for 

102 ctpr7d was not affected by the presence of wimp3d, while the reverse was not true. 

103 Additionally, among the multivariable analyses, both the number of spline knots and the 

104 distribution type appeared to impact the estimate to some degree. Because all changes in 

105 inference, relative to the final model, were towards the null, there may also be some selection 

106 bias from omitting ponds 19 and 23. A cautious conclusion would be that the results for the 

107 5-spline knot model with all ponds are preferable. Considering these findings, we think it is 

108 fair to say that the results for wimp3d were inconclusive, but possibly suggestive of an 

109 increased risk.

110 There were some differences in estimates for tmax06 across the models in our sensitivity 

111 analysis, although the range of estimates was relatively narrow, with IRRs from 1.11 to 1.19 

112 (Fig. S7). This was not unexpected because this predictor was strongly time-varying, and 

113 model choices for time modeling (number of spline knots, adjustment for autocorrelation) 

114 would affect its estimate. The role of tmax06 was to account for the biologically important 

115 impact of temperature and control for potential confounding effects on management factors 
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116 of primary interest, so the differences in its estimate and standard error are not necessarily of 

117 concern.  

118 Consistency of the 3 modeling components of the first-stage analysis was as follows: 

119 (1) Distributional forms. We proposed a negative-binomial distribution as the main model for 

120 the among-pond analysis, and outcomes from different model options showed the robustness 

121 of our findings. Except for the univariable models, the estimated coefficients were fairly 

122 consistent for most predictors between the zero-inflated and negative-binomial models, after 

123 controlling for other modeling components. For modeling count data with excess zeros, 

124 distribution form would influence the standard errors more than the estimated associations ( 

125 Lee et al., 2011; Imai et al., 2015). In our study, the estimated coefficients for tmax06 and 

126 ctpr7d from the negative binomial and zero-inflated full models were generally consistent, 

127 but the confidence intervals varied slightly. However, this was not the case for the mi2w 

128 coefficient, for which the estimates and confidence interval were more similar when the 

129 estimation processes used the same combination of autocorrelation terms and spline functions 

130 under different distribution forms. In other studies, it might be worthwhile to explore whether 

131 the more elaborate model, i.e. zero-inflated model, would be helpful to improve model fit 

132 (Hilbe, 2011).

133 (2) Smooth function of time. The cubic spline used in this study is one of natural smoothing 

134 spline functions, which are useful to model non-linear association and capture autocorrelation 

135 in a TSR analysis (Armstrong, 2006). One needs to choose the number of knots as “a 

136 reasonable compromise between controlling for confounding bias by unmeasured risk factors 

137 changing smoothly over time (compromised by too few knots) and retaining enough exposure 

138 contrast from which to estimate an association (compromised by too many knots)” (personal 

139 comment by Ben Armstrong). Hence, the number of knots for this study (nk=5) might be 
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140 acknowledged as a reasonable choice. However, for one predictor (atbp7d), we found that 

141 models using 6 knots instead of 5 changed the estimates from non-significant to significant. 

142 It is well-known that the number of knots (also called as the degrees of freedom of splines) 

143 and placement might influence the flexibility of fit and the estimated variances of the models 

144 (Katsouyanni et al., 2003; Bhaskaran et al., 2013). There are no uniform criteria to inform 

145 choices of the number of knots (Bhaskaran et al., 2013), and the decision could be data-

146 driven or related to the specific data context targeted by the TSR method (Carder et al., 2005; 

147 Imai et al., 2015). It is still controversial whether the spline function can cause over-

148 adjustment bias (Imai et al., 2015). In our study, the shift of the estimates of atbp7d could be 

149 due to either the model choices or the removal of the ponds 19 and 23 for the model with 6 

150 knots. Compared with other estimates generated by the full models, interpretation of the 

151 association between  mortality and water quality improvement might be less certain than 

152 those between mortality and of all other predictors. Furthermore, the model with 5 knots was 

153 able to avoid exclusion of ponds 19 and 23 data from the data analysis because of 

154 convergence problems that occurred when 6 knots were used.

155 (3) Autocorrelation. One of the autocorrelation terms used in this study was the log of the 

156 mortality count of the previous day (Peng et al., 2006; Imai et al., 2015), which is less 

157 commonly used than lagged residuals in TSR. However, it can be justified mathematically for 

158 infectious diseases, and might help with non-convergence (Imai and Hashizume, 2015). In 

159 our study, this autocorrelation approach was found to have a limited effect on the results. 
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188 Table S1 Nonparametric paired comparison between the median mortalities (x10-4) of 3 or 14 days pre-movement and those of 3 or 14 days 

189 post-movement in each pond.

  3-day window of movement-in   14-day window of movement-in    3-day window of movement-out  
Before After Sign test Before After Sign test Before After Sign test

Pond N mort3db N mort3da p1a p2b N mort14db N mort14da p1 p2 N mort3db N mort3da p1 p2
9 7 0 9 1.09 1 0.03 5 10.88 6 11.96 0.5 0.81 5 161.63 2 230.29 0.75 0.75
10 5 0 7 0 0.75 0.75 4 4.12 5 31.38 0.69 0.69 3 73.51 3 264.23 1 1
11 2 10.18 3 0.29 0.75 0.75 2 93.43 2 441.74 0.75 0.75 1 0 1 0 1 1
12 4 0 7 0 1 0.5 2 0.38 4 0.75 1 0.25 9 1.13 9 19.43 0.91 0.25
13 4 6.13 5 6.65 0.94 0.31 3 27.86 4 28.38 0.5 0.88 3 77.68 3 69.14 0.13 1
14 4 0 6 0 0.88 0.5 2 1.8 4 1.11 0.25 1 5 0 4 20.26 1 0.13
15 4 6.99 5 2.87 0.5 0.88 3 25.96 4 29.29 0.88 0.5 4 34.1 4 65.93 0.94 0.31
19 4 0 6 30.94 0.75 0.75 3 52.22 3 0 0.5 0.88 6 24.36 6 7.35 1 0.13
20 4 1.67 6 19.87 0.69 0.69 3 73.14 3 3.33 0.5 0.88 3 3.53 3 29 1 0.5
21 3 1.85 4 0.93 0.88 0.5 2 149.86 3 4.33 1 0.25 0
22 3 3.84 4 1.28 0.5 0.88 1 93.32 3 3.84 1 0.5 1 66.42 1 86.22 1 0.5
23 3 2.05 4 1.36 0.75 0.75 2 24.62 3 1.37 1 0.5 0
24 3 6.13 4 2.68 0.5 0.88 1 122.31 3 5.36 1 0.5 0
33 6 0  8 0  1 0.5  5 0  5 0  0.88 0.5  1 509.76   0  1 1

190 Note: a, b One-sided sign test, with alternative hypotheses that probability of post-movement mortality was larger a (or smaller b) than pre-

191 movement mortality, respectively. For example, if p1<0.05, the null hypothesis of equal probability of larger and smaller post-movement 

192 probability would be rejected in favour of a larger post-movement probability. 
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193 Table S1b Nonparametric paired comparison between the median mortalities (x10-4) of 3 or 7 days pre-treatment and those of 3 or 7 days post-

194 treatment in each pond.

 Antibiotics-antiparasitics     Chinese traditional medicine-probiotics  Water quality improvement    
 Before After Sign test Before After Sign test Before After  Sign test
Pond N mort7db N mort7da p1a p2b N mort7db N mort7da p1 p2 N mort3db N mort3da p1 p2
9 17 141.83 17 341.72 0.99 0.02 37 15.29 37 14.25 0.95 0.09 35 8.74 35 6.59 0.7 0.43
10 10 189.07 10 1692.9 0.83 0.38 44 15.77 44 11.47 0.56 0.56 41 5.11 41 5.09 0.1 0.97
11 39 341.55 39 233.96 0.09 0.95 63 69.95 63 85.77 0.05 0.97 37 4.41 37 3.88 0.4 0.78
12 6 35.62 6 42.89 0.98 0.11 37 41.55 37 121.91 1 0 36 12.51 36 19.44 1 0.02
13 3 8.9 5 11.13 1 0.13 38 27.29 39 21.5 0.01 1 41 8.92 40 6.79 0.6 0.56
14 7 134.62 7 109.78 0.77 0.5 40 83.1 40 86.63 0.68 0.44 40 18.65 40 24.26 0.7 0.44
15 0 2 1.91 1 1 32 24.78 33 25.45 0.93 0.14 39 7.92 38 6.38 0.3 0.84
19 8 18.32 8 12.95 0.36 0.86 26 19.39 25 16.22 0.34 0.8 21 8.08 20 9.72 0.9 0.23
20 5 46.73 5 484.02 1 0.03 26 42.55 26 46.74 0.92 0.15 24 8.83 24 1.76 0.1 0.95
21 2 232.23 2 76.85 0.25 1 29 24.79 31 16.71 0.64 0.5 31 9.28 31 9.9 0.6 0.57
22 4 93.1 4 96.17 0.94 0.31 35 21.87 36 23.18 0.09 0.96 36 7.73 36 9.66 0.2 0.91
23 13 53.47 13 44.52 0.5 0.71 23 3.41 25 1.37 <0.01 1 34 11.58 34 9.58 0 0.99
24 4 52.14 4 79.81 0.69 0.69 39 59.26 40 40.71 0.05 0.97 40 23.05 40 14.2 0.2 0.9
33 13 1268.2  13 1164.1  0.5 0.71  35 6.12  35 0  0.41 0.75  40 0  40 0  0.4 0.77

195 Note: a, b One-sided sign test, with alternative hypotheses that probability of post-treatment mortality was larger a (or smaller b) than pre-

196 treatment mortality, respectively. For example, if p1<0.05, the null hypothesis of equal probability of larger and smaller post-treatment 

197 probability would be rejected in favour of a larger post-treatment probability. 
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198 Table S2 Summary of generalized estimation equation results applied to the partial dataset with the pond 33 excluded when one of the following 

199 interventions took place.

 Interventions and time window Estimated oddsa 95% Confidence interval  P value 

3 days before and after movement-in of fish 0.86 (0.68, 1.10) 0.23

14 days before and after movement-in of fish 0.94 (0.61, 1.44) 0.77

3 days before and after movement-out of fish 1.98 (0.63, 6.25) 0.24

7 days before and after treatment with antibiotics or antiparasitics 1.48 (0.86, 2.56) 0.16

7 days before and after treatment with CTM or probiotics 0.93 (0.65, 1.33) 0.69

7 days before and after treatment with water improvement chemicals 0.86 (0.68, 1.10) 0.23
200 Note: a Odds referred to the probability of after-intervention mortality being larger than before-intervention mortality within the given time 

201 window divided by the probability of after-intervention mortality not being larger than before-intervention mortality within the given time 

202 window. CTM = traditional Chinese medicine. 
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203 Table S3 Sensitivity analyses. TSR models for full- and univariable- models substituted with different distributional forms, number of knots (nk) 

204 in spline, and autocorrelation options.

 TSR Model abbreviation Distributional form Number of knots Auto correlation term Predictors included Ponds analyzed

1. nb nk5  lag2 allvar negative binomial 5 Deviance residual All predictors all 13 pondsa

2. nb nk5 noAC allvar negative binomial 5 No residual All predictors all 13 ponds

3. nb nk5  logpre allvar negative binomial 5 Logpregcdeathb All predictors all 13 ponds

4. nb nk6  lag2 allvar negative binomial 6 Deviance residual All predictors all 13 ponds except pond 23

5. zinb nk5  lag2 allvar zero-inflated negative binomial 5 Pearson residual All predictors all 13 ponds

6. zinb nk5  logpre allvar zero-inflated negative binomial 5 Logpregcdeath All predictors all 13 ponds

7. zinb nk6  lag2 allvar zero-inflated negative binomial 6 Pearson residual All predictors all 13 ponds except pond 23

8. nb nk5 lag2 univar negative binomial 5 Deviance residual Univariable all 13 ponds

9. zinb nk5 lag2 univar zero-inflated negative binomial 5 Pearson residual Univariable all 13 ponds
205 Note: a Among the originally recorded 14 ponds, all the other 13ponds were included in the time series analysis except pond 33. 

206            b Logpregcdeath denoted as the previous day logarithmic transformed count of mortalities. 
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207 Figure legends (Figs. S1-7)

208 Fig. S1. Sensitivity analysis for estimation of incidence rate ratio (IRR) of movement-in of fish in the previous 3 days (mi3d) using all-predictor 

209 and univariable models.

210 Fig. S2. Sensitivity analysis for estimation of incidence rate ratio (IRR) of movement-in of fish in the previous 2 weeks (mi2w) using all-

211 predictor and univariable models.

212 Fig. S3. Sensitivity analysis for estimation of incidence rate ratio (IRR) of movement-in of fish in the previous 3days (mo3dm) using all-

213 predictor and univariable models. 

214 Fig. S4. Sensitivity analysis for estimation of incidence rate ratio (IRR) of treatment with antibiotics or antiparasitics during the previous 7 days 

215 (atpbp7d) using all-predictor and univariable models. 

216 Fig. S5. Sensitivity analysis for estimation of incidence rate ratio (IRR) of treatment with CTM or probiotics during the previous 7 days (ctpr7d) 

217 using all-predictor and univariable models.

218 Fig. S6. Sensitivity analysis for estimation of incidence rate ratio (IRR) of water quality treatment during the previous 3 days (wimp3d) using 

219 all-predictor and univariable models.

220 Fig. S7. Sensitivity analysis for estimation of incidence rate ratio (IRR) of temperature of previous week increase by 1 C (tmax06) using all-

221 predictor and univariable models.
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222 Fig. S1.

Model P IRR 95% CI Heterogeneity P I2

1. nb nk5  lag2 allvar 0.46 0.83 (0.52, 1.35) 0.003 59.8%

2. nb nk5 noAC allvar 0.25 0.79 (0.52, 1.18) 0.050 42.9%

3. nb nk5  logpre allvar 0.68 0.99 (0.57, 1.72) <0.001 71.0%

4. nb nk6  lag2 allvar 0.47 0.83 (0.51, 1.37) 0.013 55.2%

5. zinb nk5  lag2  allvar 0.36 0.79 (0.48, 1.30) <0.001 67.8%

6. zinb nk5  logpre allvar 0.83 1.07 (0.58, 1.98) <0.001 79.6%

7. zinb nk6  lag2  all var 0.43 0.80 (0.46, 1.39) <0.001 68.7%

8. nb nk5 lag2 univar 0.16 1.53 (0.84, 2.78) <0.001 79.6%

9. zinb nk5 lag2 univar 0.12 1.48 (0.90, 2.44) <0.001 72.5%
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223 Fig. S2.

Model P IRR 95% CI Heterogeneity P I2

1. nb nk5  lag2 allvar <0.001 2.01 (1.50, 2.67) 0.04 45.9%

2. nb nk5 noAC allvar <0.001 2.00 (1.55, 2.59) 0.15 29.3%

3. nb nk5  logpre allvar 0.001 1.63 (1.24, 2.16) 0.07 39.6%

4. nb nk6  lag2 allvar <0.001 1.87 (1.36, 2.58) 0.03 49.4%

5. zinb nk5  lag2  allvar <0.001 1.97 (1.65, 2.35) 0.49 0

6. zinb nk5  logpre allvar 0.003 1.55 (1.16, 2.05) 0.02 49.6%

7. zinb nk6  lag2  all var <0.001 1.96 (1.42, 2.70) 0.01 56.7%

8. nb nk5 lag2 univar <0.001 2.24 (1.49, 3.37) <0.001 76.9%

9. zinb nk5 lag2 univar <0.001 2.54 (1.66, 3.89) <0.001 81.6%
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224 Fig. S3. 

Model P IRR 95% CI Heterogeneity P I2

1. nb nk5  lag2 allvar 0.22 1.37 (0.83, 2.26) 0.05 48.70%

2. nb nk5 noAC allvar 0.15 1.37 (0.90, 2.09) 0.21 26.00%

3. nb nk5  logpre allvar 0.08 1.45 (0.96, 2.18) 0.21 25.90%

4. nb nk6  lag2 allvar 0.26 1.34 (0.81, 2.23) 0.11 40.70%

5. zinb nk5  lag2  allvar 0.20 1.42 (0.84, 2.42) 0.02 56.90%

6. zinb nk5  logpre allvar 0.08 1.46 (0.96, 2.23) 0.15 34.00%

7. zinb nk6  lag2  all var 0.27 1.37 (0.78, 2.42) 0.03 55.90%

8. nb nk5 lag2 univar 0.16 1.46 (0.87, 2.45) 0.05 48.80%

9. zinb nk5 lag2 univar 0.14 1.53 (0.87, 2.67) 0.01 58.70%
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225 Fig. S4. 

Model P IRR 95% CI Heterogeneity P I2

1. nb nk5  lag2 allvar 0.08 1.28 (0.97, 1.69) 0.04 46.00%

2. nb nk5 noAC allvar 0.07 1.26 (0.98, 1.61) 0.16 28.30%

3. nb nk5  logpre allvar 0.21 1.17 (0.92, 1.50) 0.13 32.00%

4. nb nk6  lag2 allvar 0.003 1.61 (1.18, 2.20) 0.04 47.30%

5. zinb nk5  lag2  allvar 0.07 1.34 (0.97, 1.85) < 0.001 70.00%

6. zinb nk5  logpre allvar 0.17 1.20 (0.93, 1.56) 0.01 53.30%

7. zinb nk6  lag2  all var 0.02 1.62 (1.10, 2.39) < 0.001 74.90%

8. nb nk5 lag2 univar 0.69 1.08 (0.73, 1.61) < 0.001 82.80%

9. zinb nk5 lag2 univar 0.73 1.07 (0.73, 1.59) < 0.001 86.70%
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226 Fig. S5.

Model P IRR 95% CI Heterogeneity P I2

1. nb nk5  lag2 allvar < 0.001 0.69 (0.57, 0.85) 0.04 45.3%

2. nb nk5 noAC allvar 0.001 0.69 (0.56, 0.85) 0.04 44.0%

3. nb nk5  logpre allvar 0.01 0.76 (0.62, 0.94) 0.04 45.0%

4. nb nk6  lag2 allvar 0.003 0.69 (0.54, 0.89) 0.01 57.3%

5. zinb nk5  lag2  allvar 0.003 0.73 (0.59, 0.90) 0.01 56.8%

6. zinb nk5  logpre allvar 0.03 0.81 (0.67, 0.97) 0.03 47.6%

7. zinb nk6  lag2  all var 0.02 0.75 (0.59, 0.95) 0.002 63.5%

8. nb nk5 lag2 univar 0.42 0.91 (0.73, 1.14) < 0.001 74.6%

9. zinb nk5 lag2 univar 0.56 0.94 (0.76, 1.16) < 0.001 78.1%
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227 Fig. S6.

Model P IRR 95% CI Heterogeneity P I2

1. nb nk5  lag2 allvar 0.06 1.21 (0.99, 1.48) 0.04 45.80%

2. nb nk5 noAC allvar 0.06 1.21 (0.99, 1.48) 0.06 40.80%

3. nb nk5  logpre allvar 0.08 1.14 (0.99, 1.31) 0.44 0.10%

4. nb nk6  lag2 allvar 0.15 1.19 (0.94, 1.51) 0.01 57.00%

5. zinb nk5  lag2  allvar 0.34 1.11 (0.90, 1.37) 0.001 63.30%

6. zinb nk5  logpre allvar 0.29 1.09 (0.93, 1.26) 0.16 28.30%

7. zinb nk6  lag2  all var 0.50 1.09 (0.85, 1.39) < 0.001 70.60%

8. nb nk5 lag2 univar 0.73 1.03 (0.87, 1.23) 0.01 56.70%

9. zinb nk5 lag2 univar 0.98 1.00 (0.83, 1.19) < 0.001 68.10%
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228 Fig. S7.

Model P IRR 95% CI Heterogeneity P I2

1. nb nk5  lag2 allvar 0.001 1.17 (1.06, 1.28) <0.001 78.7%

2. nb nk5 noAC allvar 0.001 1.17 (1.07, 1.28) <0.001 76.3%

3. nb nk5  logpre allvar < 0.001 1.12 (1.05, 1.19) 0.02 49.7%

4. nb nk6  lag2 allvar 0.003 1.16 (1.05, 1.27) <0.001 75.7%

5. zinb nk5  lag2  allvar < 0.001 1.16 (1.07, 1.25) <0.001 76.8%

6. zinb nk5  logpre allvar 0.002 1.11 (1.04, 1.18) 0.002 60.6%

7. zinb nk6  lag2  all var 0.001 1.17 (1.07, 1.27) <0.001 77.2%

8. nb nk5 lag2 univar 0.002 1.18 (1.06, 1.31) <0.001 86.0%

9. zinb nk5 lag2 univar 0.001 1.19 (1.08, 1.32) <0.001 88.0%


