Supplementary Web Annexes

Title: How to do (or not to do)... Measuring health worker motivation in surveys in Low and Middle Income Countries
ANNEX 1: Review of available tools for measuring health worker motivation in surveys

The most widely used tool to measure health worker motivation in LMICs is that developed and explained in (Bennett et al. 2001), which were first applied in Georgia and Jordan. Table 2 in (Franco et al. 2004) shows the survey tools that were used to inform that tool presented in Bennett. The tool has since been adapted for use and validated in Kenya at hospital level (Mbindyo et al. 2009), in Zambia (Mutale et al. 2013); and for use among auxiliary nurse midwives in Nepal (Morrison et al. 2013), and among primary care workers in Tanzania, South Africa and Malawi (Blaauw et al. 2013). A tool developed and applied to primary care providers in Tanzania, Ghana and South Africa, is set out in Pyreach et al. including a commentary on the performance of each of the items contained (Prytherch et al. 2012).

The Healthcare Provider Work Index (Aiken et al. 1997), a tool developed for use in the US to examine nurse motivation, was adapted for use used in Malawi (McAuliffe et al. 2009).

Edward L. Deci and Richard M. Ryan, authors of the Self-Determination Theory (SDT), have published a collection of SDT-based tools, which are publicly available at http://selfdeterminationtheory.org/. These tools were used and adapted for the studies in Afghanistan (Dale 2014) and Burkina Faso (Lohmann et al. 2017).
Annex 2: Dealing with Clustering

While clustering is always taken into consideration in the analysis of household survey data, often this is not done within the analysis of health worker motivation data, although health workers are typically sampled from facilities, and are clustered at this level. We recommend that researchers adjust for clustering at the facility level within their analysis where appropriate as would be done routinely in other studies. In the Afghanistan study carried out by ED, standard error computations used a sandwich estimator in order to account for non-independence of observations due to cluster sampling at the facility level (Muthén & Muthén 2012) (Dale 2014).
ANNEX 3: Measurement invariance testing in detail

Measurement invariance testing is done for CFA models after good model fit has been demonstrated for the overall sample (2.1). Conceptually, invariance testing is done by simultaneously estimating the model in all subgroups, and by making it gradually more equal by fixing parameters such as factor loadings to equality in the subgroups. In three steps, more and more parameter constraints are introduced. If model fit does not become significantly worse in relation to the next less constrained model, the motivation scale can be assumed to measure at same in all subgroups.

<table>
<thead>
<tr>
<th>Test for</th>
<th>Interpretation</th>
<th>Model constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configural invariance</td>
<td>Tests for the assumption of the same underlying factor structure in all subgroups, i.e. whether the overall model fits similarly well in all subgroups (e.g., does the scale measure the same five motivation factors in Dari and Pashtu?)</td>
<td>No specific constraints are imposed on the estimated parameters.</td>
</tr>
<tr>
<td>Metric invariance</td>
<td>Tests whether the same constructs are measured across subgroups, i.e. whether respondents in different subgroups attribute the same meaning to the respective factors (e.g., are the five factors interpreted in the same way in Dari and Pashtu?)</td>
<td>• Factor loadings estimated freely, but constrained to equality in the subgroups</td>
</tr>
<tr>
<td>Scalar invariance</td>
<td>Tests whether subgroups can be compared on their mean scores, or if subgroups score systematically different (at same level of underlying factor) for certain items (e.g., at the same underlying level of intrinsic motivation, do Dari respondents score the same as Pashtu respondents?)</td>
<td>• Factor loadings estimated freely, but constrained to equality in the subgroups • Item intercepts estimated freely, but constrained to equality in the subgroups</td>
</tr>
<tr>
<td>Residual variance invariance</td>
<td>Tests whether the proportion of contamination by other constructs as measured by the different items (i.e. variance that is not explained by the intended factors) is equal across groups, and whether measurements are thus fully comparable across groups (e.g., is item 1, intending to measure intrinsic motivation, contaminated by other constructs to the same extent in Dari and Pashtu?)</td>
<td>• Factor loadings estimated freely, but constrained to equality in the subgroups • Item intercepts estimated freely, but constrained to equality in the subgroups • Item residual variances estimated freely, but constrained to equality in subgroups</td>
</tr>
</tbody>
</table>

For a description of how to do measurement invariance testing in Stata, see the help file for estat ginvariant in the Stata Manual (Stata.) and (Gregorich). For a description in Mplus, see (Hoffman) and the references listed here.
References


