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Abstract 
 
Background: Tuberculosis Immune Reconstitution Inflammatory Syndrome (TB-IRIS) 

remains incompletely understood. Neutrophils are implicated in tuberculosis pathology but 

detailed investigations in TB-IRIS are lacking. We sought to further explore the biology of 

TB-IRIS and in particular the role of neutrophils. 

Setting: Two observational, prospective cohort studies in HIV/TB co-infected patients 

starting antiretroviral therapy, one to analyze gene expression and subsequently one to 

explore neutrophil biology.   
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Methods: nCounter gene expression analysis was performed in TB-IRIS patients (n=17) 

versus antiretroviral-treated HIV/TB co-infected controls without IRIS (n=17) in Kampala, 

Uganda. Flow cytometry was performed in TB-IRIS patients (n=18) and controls (n=11) in 

Cape Town, South Africa to determine expression of neutrophil surface activation markers, 

intracellular cytokines and Human Neutrophil Peptides (HNP). Plasma neutrophil Elastase 

and HNP1-3 were quantified using ELISA. Lymph node immunohistochemistry was 

performed on three further TB-IRIS cases.  

Results: There was a significant increase in gene expression of S100A9 (p=0.002), NLRP12 

(p=0.018), COX-1 (p=0.025) and IL-10 (p=0.045) two weeks after ART initiation in 

Ugandan TB-IRIS patients versus controls, implicating neutrophil recruitment. IRIS patients 

in both cohorts demonstrated increases in blood neutrophil count, plasma HNP and elastase 

concentrations from ART initiation to week two. CD62L (L-selectin) expression on 

neutrophils increased over 4 weeks in South African controls while IRIS patients 

demonstrated the opposite. Intense staining for the neutrophil marker CD15 and IL-10 was 

seen in necrotic areas of TB-IRIS patients’ lymph nodes. 

Conclusion: Neutrophils in TB-IRIS are activated, recruited to sites of disease and release 

granule contents, contributing to pathology. 

 

Keywords: Tuberculosis; HIV-1; neutrophils; immune reconstitution inflammatory 

syndrome; IRIS ACCEPTED
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Introduction 1 

When patients with HIV-associated TB begin Antiretroviral Therapy (ART), approximately 18% 2 

develop Tuberculosis-associated Immune Reconstitution Inflammatory Syndrome (TB-IRIS) [1]. 3 

TB-IRIS is an exaggerated immune response to M. tuberculosis (MTB) antigens associated with 4 

reconstitution of the immune system. It is characterized by excessive inflammatory responses 5 

and deterioration in clinical status [1, 2].  6 

 7 

According to the International Network for the Study of HIV associated IRIS (INSHI) case 8 

definitions, two forms of TB-IRIS exist: ‘paradoxical’ (clinical worsening of a patient on TB 9 

treatment after starting ART) and ‘unmasking’ (undiagnosed TB becoming apparent after 10 

starting ART) [3].  11 

TB-IRIS has been associated with perturbations in both the adaptive and innate immune systems 12 

[4, 5].  These include increased secretion of neutrophil-associated mediators such as S100A8/A9 13 

and matrix metalloproteinases (MMPs) [6-8], perforin and granzyme B by CD4+ T cells [9], 14 

higher expression and imbalance of C1Q and C1-inhibitor (complement system) [10], activation 15 

of monocytes [11], inflammasome and Toll-like receptor signaling [12, 13] as well as elevated 16 

chemokine and cytokine production [14-16] with a particular role for the IL-10 family [17]. 17 

Although rapid changes in CD4+ T cell count have long been associated with all forms of IRIS, 18 

recent research has focused on these latter phenomena of inflammasome activation and release of 19 

soluble mediators from innate cells [4, 12]. However, the clinical syndromes associated with TB-20 

IRIS, especially suppurative lymphadenitis and abscess formation, implicate neutrophils as 21 

critical effector cells mobilized by these inflammatory signals.  22 

ACCEPTED

Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. 



5 
 

To gain further understanding into the biology of TB-IRIS, we recruited and prospectively 23 

followed patients with HIV-associated tuberculosis (HIV+TB+) at risk of developing IRIS at two 24 

clinical sites, in Uganda and South Africa. First, we conducted an assessment of gene expression 25 

in putative pathways. On the basis of previous research summarized above, we chose to study the 26 

T-cell receptor, cytokine genes including the IL-10 pathway [17] and the inflammasome [12, 13]. 27 

Subsequently, in a separate cohort, we performed functional assays chosen on the basis of genes 28 

that were over-expressed in IRIS patients versus controls: these experiments focused on 29 

neutrophils which, although implicated [6], have not been extensively studied before in TB-IRIS.  30 

 31 

Materials and Methods 32 

Patient recruitment and study visits 33 

Cohort 1: Patients with a confirmed diagnosis of both HIV and TB, on TB treatment (for a 34 

median [IQR] of 40 [24-59] days) and who were eligible for ART initiation according to the July 35 

2008 Ugandan national treatment guidelines (CD4 count <250 cells/µL), were recruited in 2009 36 

at Mulago National Tuberculosis and Leprosy clinic and the Infectious Diseases Institute in 37 

Kampala for gene expression studies, as previously described [18]; see Supplementary Table 1. 38 

Patients were reviewed at week 0 (before ART initiation), week 2 and months 1-12 (after ART 39 

initiation). Patients who developed TB-IRIS (cases) were defined according to the INSHI clinical 40 

case definitions [3] and were matched by age (<10 years difference between patients), CD4 cell 41 

count before ART initiation (mean (SD) difference, 5.3 (6.8) cells/µL) and sex with those that 42 

did not develop TB-IRIS (non-IRIS controls). Sampling at the IRIS time-point was performed 43 

before patients received corticosteroids. All patients provided written informed consent. The 44 

Uganda National Council of Science and Technology, Makerere Faculty of Medicine Ethics 45 
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Committee (IRB-Makerere-05_2007), Infectious Disease Scientific Review Committee, 46 

University of Antwerp Ethics Committee and the Institute of Tropical Medicine, Antwerp, 47 

Belgium (CME_UZA_7/29/157)  approved the study.  48 

 49 

Cohort 2: Recruitment of patients for neutrophil studies took place in Cape Town, South Africa 50 

as part of the longitudinal Tissue Destruction in Tuberculosis 2 (TDTB2) study (Supplementary 51 

Table 1, http://links.lww.com/QAI/B91 ). Patients were recruited in 2013 at Ubuntu clinic, a 52 

primary care HIV treatment clinic in Site B, Khayelitsha. HIV-infected patients at high risk of 53 

developing TB-IRIS (CD4 count <200 cells/µL at enrolment) were followed up during anti-54 

tuberculosis treatment and initiation of ART until twelve weeks post ART. Samples for 55 

neutrophil studies were collected at ART initiation (week 0), week two and week four of ART. 56 

TB-IRIS diagnosis was made retrospectively after week 12 by a consensus panel using the 57 

INSHI case definition; controls (non-IRIS) were those patients who were also sampled at ART 58 

initiation and Week 2 / Week 4 follow-up visits but did not develop the syndrome [3]. At the 59 

IRIS/week 2 time point, two TB-IRIS and one non-IRIS control were receiving corticosteroids. 60 

Ethical approval was obtained from the Faculty of Health Sciences Human Research Ethics 61 

Committee, University of Cape Town (HREC REF: 516/2011); all patients provided written 62 

informed consent. 63 

 64 

Samples for detailed analysis were available from 34 patients in Cohort 1 (17 cases and 17 65 

controls) and 29 patients in Cohort 2 (18 cases and 11 controls). Supplementary Figure 1 66 

summarises the study design. 67 
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Sample collection and processing 68 

For Cohort 1, venous blood (30–40 ml) was collected in EDTA tubes (BD Pharmingen, Franklin 69 

Lakes, New Jersey, USA) at week 0 and week 2 after initiation of ART. Peripheral Blood 70 

Mononuclear Cells (PBMC) were isolated by Ficoll-Hypaque gradient centrifugation and 71 

cryopreserved for further processing (see below). For Cohort 2, blood samples (30–40 ml) were 72 

collected in sodium heparin vacutainers (BD Pharmingen) at weeks 0, 2 and 4 after initiation of 73 

ART and were processed for plasma generation within two hours of collection; an aliquot (1 ml) 74 

of blood was removed for functional assays as described below.  75 

 76 

nCounter gene expression analysis 77 

RNA was extracted from PBMC using standard techniques (Supplementary Methods, 78 

http://links.lww.com/QAI/B91 ). ProbeSet sequences for the gene sets of interest (T-cell 79 

receptors, the inflammasome, IL-10 pathway and cytokines; 148 genes in total) are shown in 80 

Supplementary Table 2. 81 

 82 

Determination of neutrophil activation and degranulation 83 

We investigated neutrophil activation in whole blood by flow cytometry, measuring cell surface 84 

expression of CD11b, CD16, CD62L, CD66a,c,e [19] and IL-8RA. An aliquot of whole blood 85 

was stained on ice with CD11b-PE-Cy7, CD16-APC-H7, CD62L-FITC, CD66a,c,e-PE, IL-8 86 

RA-APC (BD Pharmingen) and viability dye (eFluor 450, eBiosciences; San Diego, California, 87 

USA or ViViD, Invitrogen; Carlsbad, California, USA). After washing, the stained sample was 88 
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fixed in 2% paraformaldehyde and acquired on a Becton Dickinson Fortessa flow cytometer (BD 89 

Biosciences). Data analysis was performed with FlowJo software (FlowJo 10.1r5, Tree Star, 90 

Ashland, OR) using the gating strategy in Supplementary Figure 2.  91 

 92 

Determination of neutrophil elastase and Human Neutrophil Peptides (HNP1-3) in plasma 93 

Neutrophil elastase and Human Neutrophil Peptides (HNP1-3) plasma concentrations were 94 

quantified using ELISA according to the manufacturer’s instructions (Hycult Biotech; Uden, The 95 

Netherlands). Assays were performed in duplicate. The sensitivity for neutrophil elastase was 96 

0.67 ng/ml and for HNP1-3 was 4.25 pg/ml. The elastase assay detects both free and complexed 97 

elastase.  98 

Immunohistochemistry (IHC) staining of lymph nodes 99 

Patient selection, lymph node (LN) preparation and immunohistochemistry were carried out as 100 

previously described [20] and summarized in Supplementary Methods.  101 

 102 

Statistical analysis 103 

Comparison between the two groups was performed using t tests (unpaired for IRIS vs non-IRIS 104 

comparisons, paired for within-group comparisons between ART initiation and later time points), 105 

the Mann-Whitney U test or Wilcoxon test for continuous variables and Fisher exact tests for 106 

categorical variables. Statistics were performed using GraphPad Prism Version 7.0 (La Jolla, 107 

California, USA) and Qlucore Omics explorer version 3.2. (Lund, Sweden) Significance was 108 

inferred below a two-tailed p-value of 0.05.  109 

Gene expression analysis to identify discriminating transcripts between the groups (based on p-110 

value <0.05 and q value (False Discovery Rate-adjusted p-value) <0.1) was performed using 111 
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Qlucore Omics explorer and displayed on a heatmap. The IRIS (pink) and non-IRIS (blue) 112 

patients (columns) and genes (rows) were ordered using principal component analysis (PCA) and 113 

R statistic respectively. Gene expression at the week two time point on the heatmap was 114 

classified as high or low (relative to the entire cohort) if colored red and green respectively. A 115 

PCA plot, with the projection score and variance filtering set at 0.38 and 0.43 respectively, was 116 

used to detect strong signals within the data on gene transcript abundance. Principal Component 117 

Analysis identifies the major vectors (‘components’) which differentiate multi-parameter data 118 

sets. The genes were colored according to their R statistic with green and red if higher in non-119 

IRIS controls or IRIS patients respectively, and the distance between individual genes reflects 120 

their correlation coefficient. 121 

 122 

Results 123 

Patient characteristics  124 

Supplementary Table 1 summarizes demographic and basic laboratory data for both cohorts. At 125 

ART initiation, there were no statistical differences in patient characteristics between those who 126 

subsequently developed IRIS and those who did not. The median [IQR] time to IRIS 127 

presentation across both studies was 14 [10-15] days.  128 

 129 

RNA analysis reveals higher expression of genes implicated in neutrophilic inflammation in 130 

TB-IRIS patients compared to controls 131 

We used NanoString nCounter technology to ascertain gene expression in PBMC of IRIS and 132 

non-IRIS patients at the IRIS time-point (median of 14 days) or after 2 weeks of ART in 133 

controls. The nCounter gene expression values obtained were log 2 transformed pre-analysis to 134 
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normalize data as per standard transcriptomic analytical pathways; a false discovery rate (q-135 

value) of 0.1 was applied to account for multiple comparisons. A heatmap to visualize the pattern 136 

of transcript abundance in IRIS patients and non-IRIS controls revealed over 70 discriminating 137 

transcripts with modest clustering of IRIS cases (pink) and non-IRIS controls (blue); there was 138 

generally lower gene expression (green) in the IRIS patients compared to the non-IRIS controls 139 

(Figure 1A). On the contrary, Cyclooxygenase-1 (COX-1), Interleukin-10 (IL-10), Nucleotide-140 

binding domain, leucine rich repeat containing receptor (NLR) Family Pyrin Domain Containing 141 

12 (NLRP12 / Pypaf-7), and S100 calcium-binding protein A9 (S100A9) were significantly more 142 

abundant in the IRIS cases than in the non-IRIS controls at two weeks of ART.  143 

 144 

PCA was then used to detect correlation patterns within the discriminating transcripts. The four 145 

genes (COX-1, δ=0.96, fc=1.9, R=0.38, p=0.025, q=0.051; IL-10, δ=0.75, fc=1.7, R=0.35, 146 

p=0.045, q=0.077; NLRP12, δ=1.27, fc=2.4, R=0.40, p=0.018, q=0.042; and S100A9, δ=1.10, 147 

fc=2.1, R=0.52, p=0.002, q=0.018) which were more abundant in IRIS cases versus non-IRIS 148 

controls clearly correlated with each other and separated from the other transcripts (Figure 1B).  149 

 150 

Next, we quantitatively analyzed these four transcripts using the log2 transformed nCounter gene 151 

expression values. As shown in Supplementary Figure 3, S100A9 expression significantly 152 

increased at the two-week time point in the IRIS patients (median log2 expression, 16.07; IQR, 153 

15.15–16.35) from ART initiation (median, 14.59; IQR, 14.06–15.22) and was higher at 2 weeks 154 

compared to the controls (median, 15.05; IQR, 14.12–15.50; p=0.002). NLRP-12 expression also 155 

significantly increased from ART initiation (median, 5.66; IQR, 4.12–6.77) to the two-week time 156 

point in TB-IRIS patients (median, 6.94; IQR, 6.23–7.68), when it was higher compared to the 157 
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controls (median, 6.15; IQR, 5.44–6.93;  p=0.016). IL-10 significantly decreased in controls 158 

from ART initiation (median, 7.56; IQR, 6.42–7.73) to two weeks (median, 6.41; IQR, 5.38–159 

7.02; p=0.005), and significantly greater IL-10 expression was seen in the IRIS cases (median, 160 

6.83; IQR, 6.33–8.02) versus controls (median, 6.41; IQR, 5.38–7.02; p=0.049) at two weeks. 161 

Significantly higher COX-1 expression was also seen in the IRIS group (median, 8.93; IQR, 162 

7.87-9.51) versus the non-IRIS controls (median, 7.94; IQR, 6.95-8.81; p=0.049) at the two-163 

week time point. 164 

 165 

TB-IRIS is characterized by neutrophilia  166 

The most up-regulated gene in TB-IRIS identified in our expression analysis was S100A9, which 167 

is implicated in neutrophil accumulation in tuberculosis [21]. Similarly, NLRP12 (Pypaf-7) is 168 

crucial for neutrophil recruitment in other models of infection [22], including to the lungs [23], 169 

while (among its other actions) COX-1 generates eicosanoids which activate neutrophils [24]. 170 

We have also shown that neutrophil markers strongly co-localise with IL-10 in human 171 

tuberculous granulomas [20]. Our gene expression data therefore suggested a role for neutrophils 172 

in TB-IRIS pathogenesis and we examined this in another patient cohort, subsequently recruited 173 

in Cape Town. Supplementary Table 1 details participant characteristics. 174 

 175 

The IRIS cases in both cohorts demonstrated an increase in peripheral neutrophil counts from 176 

ART initiation to the IRIS time-point / week 2 (Cohort 1 median [IQR] 1.77 [1.04–2.37] x109/L 177 

to 2.91 [2.29–5.56] x109/L, p=0.049, Figure 2A; Cohort 2 median [IQR] 2.45 [1.48–4.00] x109/L 178 

to 5.00 [3.35–7.23] x109/L, p=0.001, Figure 2B). There were no changes in non-IRIS controls 179 

from ART initiation to two weeks. At two weeks, IRIS patients in Cohort 1 had significantly 180 
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higher neutrophil counts versus the controls (median [IQR] 2.91 [2.29–5.56] x109/L) and median 181 

[IQR] 1.70 [0.97–2.52] x109/L respectively, p=0.003, Figure 2A).  182 

There were no differences between IRIS patients and controls’ total lymphocyte and monocyte 183 

counts at either baseline or at the two week / IRIS time point. 184 

 185 

TB-IRIS patients demonstrate activation of neutrophils, as defined by surface marker 186 

expression  187 

Neutrophil cell surface activation markers (CD11b, CD16, CD62L and CD66a,c,e) were 188 

analyzed in whole blood from a subset of patients in Cohort 2 (n=6 per group) using flow 189 

cytometry. There was a significant linear trend towards decreased expression of CD62L, as 190 

defined by median fluorescence intensity, on TB-IRIS patients’ neutrophils over the first four 191 

weeks from ART initiation (p=0.014), with a significant difference between neutrophil CD62L 192 

expression at ART initiation (mean, 3881; SD, 2746) versus four weeks (mean, 1229; SD, 483; 193 

p=0.042; Figure 3A). Significantly higher expression of CD62L was observed in non-IRIS 194 

controls (mean, 3422; SD, 1196) compared to TB-IRIS cases (mean, 1269; SD, 483; p=0.005; 195 

Figure 3A) at week four, consistent with significantly increased CD62L expression on non-IRIS 196 

controls’ neutrophils from ART initiation (mean, 1596; SD, 427) to two weeks (mean, 2387; SD, 197 

517; p=0.003) and further to four weeks (mean, 3422; SD, 1196; p=0.009; Figure 3A). 198 

Supplementary Figure 2B presents representative CD62L MFI at the Week 2 / IRIS time point. 199 

 200 

A similar pattern was seen for CD16 expression (Figure 3B) although comparisons did not reach 201 

statistical significance. Median fluorescence intensity of CD11b decreased in the control group 202 

from ART initiation (mean, 12130; SD, 4253) to Week 4 (mean, 5562; SD, 2584; p=0.047; 203 
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Figure 3C) but no difference was seen in the IRIS group. No differences were seen in CD66a,c,e 204 

expression (Figure 3D), nor in IL-8 RA (data not shown). 205 

 206 

TB-IRIS patients exhibit increased Neutrophil Elastase and Human Neutrophil Peptide 1-3 207 

plasma concentrations 208 

Neutrophil elastase is implicated in inflammation and tissue damage [25], and we measured this 209 

marker in plasma samples from Cohort 2. Neutrophil elastase concentration increased 210 

significantly in TB-IRIS patients between ART initiation (median 154 ng/mL; IQR, 122.5–211 

191.3) and week two (median 274 ng/mL; IQR, 228–324; p=0.0004; Figure 4A). At two weeks 212 

after ART initiation, there was a significantly higher plasma neutrophil elastase concentration in 213 

TB-IRIS patients compared to non-IRIS controls (median, 274 ng/mL; IQR, 228–324 versus 214 

median, 175 ng/mL; IQR, 119–253 p=0.005; Figure 4A).  215 

 216 

Analysis of plasma Human Neutrophil Peptide (HNP) 1-3 concentrations in Cohort 2 revealed an 217 

increase in TB-IRIS patients from ART initiation (median, 0 pg/mL; IQR, 0–1775) to the week 218 

two-time point (median, 2675 pg/mL; IQR, 990–11353; p=0.005; Figure 4B). In Cohort 1, 219 

HNP1-3 concentrations also increased from week 0 (median, 7153 pg/mL; IQR, 5998–8896) to 220 

week two (median, 13821 pg/mL; IQR, 7271–22975; p=0.001), when they were higher 221 

compared to controls (median, 7510 pg/mL; IQR, 6007–8751; p=0.038; Figure 4C).  222 

 223 

Analysis of a wider cohort recruited identically in Uganda confirmed significant differences in 224 

HNP concentration between TB-IRIS patients and non-IRIS controls at the IRIS time-point / 225 

Week 2, with resolution of these differences by later time points (Supplementary Figure 4, 226 
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http://links.lww.com/QAI/B91 ). 227 

 228 

Lymph node granulomas from IRIS patients show significant neutrophil infiltration and IL-229 

10 production.   230 

We proceeded to characterize neutrophil infiltration and accumulation in lymph nodes of TB-231 

IRIS patients in situ, using immunohistochemistry. There was intense staining in the centre of the 232 

biopsies for the neutrophil marker CD15, correlating with areas of significant necrosis (Figure 233 

5). Lymph nodes from patients with TB-IRIS also stained strongly for IL-10, largely correlating 234 

with neutrophils, as previously shown [20].  235 

 236 

 237 

Discussion 238 

TB-IRIS immunopathogenesis remains incompletely defined and a lack of predictive markers 239 

makes its diagnosis and treatment complex. Given the temporal association of IRIS with 240 

reconstitution of CD4+ T lymphocyte numbers on antiretroviral therapy, many studies have 241 

focused on Th1 cells [26, 27]. However, TB-IRIS is not explained simply by a change in CD4 242 

numbers, and innate cells are also implicated in the syndrome [5, 12]. Neutrophils are 243 

increasingly recognised in tuberculosis pathology [28-30], as we have previously described in 244 

TB-meningitis IRIS [6], but they had not previously been studied in this detail. 245 

 246 

We recruited HIV+TB+ patients at risk of developing IRIS (Cohort 1) and investigated transcript 247 

abundance of genes relating to inflammasome, T-cell receptor, cytokines and their receptors. The 248 

gene transcripts that were most abundant in IRIS patients versus non-IRIS controls, and clearly 249 
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discriminatory on a PCA plot, were S100A9, IL-10, NLRP-12 and COX-1. Increased expression 250 

of inflammasome and neutrophil-associated genes in TB-IRIS is consistent with previous results 251 

[12, 31], but the lower abundance of TCR-associated genes in TB-IRIS patients was unexpected 252 

and deserves further analysis. This may reflect poor reconstitution of normal T cell function in 253 

TB-IRIS and again supports the concept that the phenomenon is driven by innate inflammation 254 

without an orchestrated acquired immune response. 255 

 256 

Among the more abundant transcripts, S100A9 contributes to inflammation in tuberculosis due 257 

to its role in neutrophil recruitment [6, 21, 32] and it has been proposed as a promising 258 

biomarker for TB diagnosis [33, 34]. NLRP-12 also plays an important role in neutrophil 259 

recruitment [22, 23]. We have reported increased levels of the IL-10 cytokine family in IRIS [17] 260 

and observed significant IL-10 staining in tuberculous granulomas where it associates with 261 

neutrophil markers and necrosis [20]. The source of IL-10 in TB-IRIS remains unclear, with 262 

conflicting data on whether regulatory T cell populations are expanded (reviewed in [4]). Again, 263 

it may be that innate cells are responsible for the production of immunosuppressive cytokines. 264 

Gene expression data therefore suggested a role of neutrophils in the development of TB-IRIS 265 

and we recruited a further cohort to perform neutrophil functional assays. 266 

 267 

In both cohorts, we first demonstrated that patients meeting INSHI criteria for IRIS exhibited an 268 

increase in neutrophil count from ART initiation. We observed that neutrophils accumulate 269 

intensely at sites of pathology in TB-IRIS and associate with areas of necrosis.  IRIS patients’ 270 

neutrophils were activated, shedding their CD62L/L-Selectin over time with a significant drop 271 

from ART initiation to four weeks (despite the initiation of corticosteroids in three patients); the 272 
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reverse pattern being observed in controls. A similar trend to CD62L was seen for CD16. We 273 

have previously shown that at ART initiation, neutrophils in antiretroviral-naïve HIV-infected 274 

patients are activated, rapidly undergo cell death and their ability to kill M. tuberculosis is 275 

impaired compared to HIV-uninfected controls [18]. Our data confirms that abnormal activation 276 

is reversed on ART in patients with an uncomplicated clinical course (undergoing protective 277 

immune reconstitution), while in IRIS the neutrophil dysfunction becomes exaggerated (these 278 

patients undergo pathogenic immune reconstitution).  279 

 280 

We did not see differences between the groups in other activation markers, including CD11b and 281 

CD66a,c,e. However, loss of CD16 and CD62L occurs preferentially as neutrophils progress to 282 

cell death [35]. Collectively, these data suggest that neutrophil activation and presumably early 283 

cell death is a hallmark of TB-IRIS [28, 30]. Increased neutrophil influx and death at disease 284 

sites will lead to release of cytotoxic granule contents causing local tissue damage and 285 

amplifying inflammatory responses [29, 36], consistent with necrotic abscesses and 286 

lymphadenopathy often observed in TB-IRIS.  287 

 288 

Compatible with this conclusion, we found an increased neutrophil elastase concentration in the 289 

plasma of TB-IRIS patients versus non-IRIS controls two weeks after initiation of ART in cohort 290 

2. There was also an increase from ART initiation in the South African TB-IRIS patients’ 291 

elastase concentration, and an increase in HNP 1-3 in both cohorts. The difference in neutrophil 292 

elastase concentration between IRIS patients and controls was seen despite no significant 293 

difference in absolute neutrophil count in Cohort 2, suggesting that plasma concentrations of this 294 

granule product might represent more than simply a higher number of circulating neutrophils.   295 
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 296 

Notably, some activation parameters in the patients developing IRIS tended to be less abnormal 297 

at ART initiation. This is consistent with observations by others [14, 37, 38] that TB-IRIS may 298 

be heralded by lower cytokine concentrations at ART initiation but subsequent large magnitude 299 

changes.  300 

 301 

Limitations of our study include relatively small group sizes. We were unable to perform 302 

neutrophil functional assays including phagocytosis, mycobacterial killing and cell death in 303 

sufficient numbers, as few samples met our stringent pre-specified neutrophil purity and viability 304 

criteria of >90%. Differences in HNP concentrations between the cohorts might be due to 305 

differences in pre-analytical handling; in Cohort 1 blood was collected in Uganda and assays 306 

performed in Belgium, whereas South African samples were analysed locally. We also note a 307 

difference in neutrophil and CD4 counts between the two cohorts, likely to reflect the clinical 308 

realities of treating HIV-TB co-infection in Uganda in 2009 compared to South Africa in 2013, 309 

as well as differences in analysis platforms and racial background. However, the fact that we 310 

could demonstrate a role for neutrophils in two geographically different cohorts increases the 311 

generalizability of our findings.  312 

A strength of our analysis was the inclusion of both peripheral blood and lymph node samples, 313 

although longitudinal analyses were conducted exclusively in peripheral blood which may not be 314 

representative of the tissue environment. However, as peripheral blood does exhibit significant 315 

perturbations in TB-IRIS, is easily accessible for serial measurements and contains many 316 

components of both the innate and acquired immune systems, we believe that analysis of this 317 

compartment is informative.  318 
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 319 

In conclusion, our data suggest that TB-IRIS is characterized by aberrant immunological 320 

recovery with inflammasome activation and neutrophil recruitment instead of reconstitution of 321 

normal T cell receptor function. Within the context of local and systemic inflammation, recruited 322 

neutrophils are activated, are likely to undergo rapid cell death and will release cytotoxic granule 323 

contents. This drives tissue damage and further inflammation, paradoxically associated with 324 

immunosuppressive IL-10 release which may compromise host control of any remaining viable 325 

mycobacteria. As neutrophils are likely to be key effector cells mediating pathological damage in 326 

TB-IRIS, it seems logical to consider host-directed therapies to reduce neutrophil recruitment (eg 327 

CXCR2 inhibitors [39] and anti-C5a inhibitors [40]) or to promote neutrophil apoptosis (eg 328 

statins [41]): these questions require further research.  329 
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Figure legends 

 

Figure 1: Gene expression analysis in PBMCs from patients with HIV-associated TB-IRIS 

and HIV/TB co-infected controls without clinical IRIS: A. 100 ng of total RNA was used to 

obtain values for gene expression analysis using nCounter technology. Unsupervised hierarchical 

clustering of transcript abundance data from TB-IRIS (pink) (n = 17) and non-IRIS (blue) (n = 

17) patients at week two/IRIS-time point was performed using a heatmap in Qlucore Omics 

explorer v3.2. The columns represent patients while the rows are genes identified as 

discriminatory (p<0.05, q<0.1). Relative gene expression compared to the entire cohort was 

classified as low (green) and high (red) respectively. Genes were ordered according to their R 

statistic between IRIS and non-IRIS patients. B. Discriminatory genes were visualized on a PCA 

plot. The genes (variables) were colored according to their R statistic; green for the lowest 

(implying greater abundance in non-IRIS vs IRIS) and red if the highest (implying greater 

abundance in IRIS vs non-IRIS). The genes with the highest expression in IRIS were COX-1, IL-

10, NLRP-12 and S100A9. 

Abbreviations: ASC; Apoptosis-associated speck-like protein containing a Caspase Recruitment 

Domain (CARD); CD, Cluster of Differentiation; COX-1/PTGS, Cyclooxygenase-

1/prostaglandin-endoperoxide synthase; CTLA4, Cytotoxic T Lymphocyte-associated protein 4 

(CD152); GATA3, Glycine, Alanine, Thymine, Alanine binding protein 3; ICOS, Inducible T-

cell costimulator; IFN-ϒ, Interferon gamma; IL, Interleukin; IL-7R, Interleukin-7 receptor; ITK, 

Interleukin-2-inducible T-cell kinase; pypaf-7, PYRIN-containing Apaf-1-like proteins; S100A9,  

S100 calcium-binding protein A9; Tbet, T-box transcription factor; TRAC, T-cell Receptor alpha 
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constant;  TRAV, T-cell Receptor  alpha variable; TRBC, T-cell Receptor beta constant; TRBV, 

T-cell Receptor  beta variable; TRDV, T-cell Receptor  delta variable; TRGC, T-cell Receptor 

gamma constant; TRGV; T-cell Receptor gamma variable. 

 

Figure 2: TB-IRIS patients exhibit a rise in neutrophil count after two weeks of ART. A: 

Neutrophil counts from TB-IRIS (n = 10 at ART initiation, n = 17 at Week 2 (W2)) and non-

IRIS (n=12 at ART initiation, n = 17 at W2) patients (Cohort 1) are presented at ART initiation 

and at the Week 2 (W2) time point. B: Neutrophil counts from TB-IRIS (n =18 at ART initiation, 

n = 16 at W2) and non-IRIS (n =11 at ART initiation, n = 10 at W2) patients (Cohort 2) are 

presented at initiation of ART and at Week 2 (W2). Mann Whitney and Wilcoxon tests were 

used (* p < 0.05, ** p < 0.01).  

 

 

Figure 3: Neutrophil activation in TB-IRIS patients and Non-IRIS controls: The Median 

Fluorescence Intensity of CD62L (A), CD16 (B), CD11b (C) and CD66a,c,e (D) on neutrophils 

in fresh whole blood is shown for TB-IRIS patients (red, n=6) and non-IRIS controls (black, n=6 

at ART initiation (Week (W) 0), n = 4 at W2, n = 3 at W4). Lines represent means and p-values 

(* p < 0.05, ** p < 0.01) were derived from unpaired and paired t tests. 

 

Figure 4: Analysis of plasma levels of neutrophil elastase and HNP1-3 in patients with TB-

IRIS and non-IRIS controls. A. Neutrophil Elastase (TB-IRIS patients (red, n = 18 at ART 

initiation, n = 15 at W2) and non-IRIS controls (black n = 11)) plasma concentrations were 

quantified using ELISA in Cohort 2.  B. Human Neutrophil Peptide (HNP) 1-3 (TB-IRIS patients 
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(red, n = 18 at ART initiation, n = 16 at W2) and non-IRIS controls (black n = 11)) plasma 

concentrations were quantified using ELISA in Cohort 2.  C. Human Neutrophil Peptide (HNP) 

1-3 plasma concentrations were quantified using ELISA in Cohort 1 (TB-IRIS patients (n =15 at 

ART initiation, n = 16 at W2) and non-IRIS controls (n = 8)). Lines represent medians and p-

values (** p < 0.01, *** p < 0.001) were derived from Mann-Whitney and Wilcoxon tests.    

 

Figure 5: Neutrophil infiltration in the lymph nodes of TB-IRIS patients. Caseous 

granulomas from consecutive cross-sectional lymph node sections of TB-IRIS patients (n = 3) 

that were stained with Hematoxylin and Eosin (H&E) (A), CD15 (neutrophils, B), or IL-10 (C). 

Intense neutrophil staining localizes within most of these caseous granulomas. IL-10 staining 

was diffuse but did localize within and near caseous granulomas. Black bars represent 200 µm.  
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