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ABSTRACT 

Regression models are the standard approaches used in infectious disease epidemiology, but have 

limited ability to represent causality or complexity. We explore Bayesian networks (BNs) as an 

alternative approach for modelling infectious disease transmission, using leptospirosis as an 

example. Data were obtained from a leptospirosis study in Fiji in 2013. We compared the 

performance of naïve versus expert-structured BNs for modelling the relative importance of animal 

species in disease transmission in different ethnic groups and residential settings. For BNs of animal 

exposures at the individual/household level, R2 for predicted versus observed infection rates were 

0.59 for naïve and 0.75-0.93 for structured models of ethnic groups; and 0.54 for naïve and 0.93-

1.00 for structured models of residential settings. BNs provide a promising approach for modelling 

infectious disease transmission under complex scenarios. The relative importance of animal species 

varied between subgroups, with important implications for more targeted public health control 

strategies.

KEYWORDS

Bayesian Networks, Infectious Diseases Epidemiology, Leptospirosis, Zoonoses, Environmental 
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INTRODUCTION

The growing discipline of infectious disease eco-epidemiology seeks to understand the 

environmental, ecological, and socio-demographic drivers of emergence, transmission, and 

outbreaks.1-3 The drivers depend on complex interactions between humans, the natural environment 

(e.g. climate and vegetation), the anthropogenic environment (e.g. urbanisation and land use), 

vectors (e.g. insects and animals), and carriers (e.g. water, soil, and air).4 Regression models are the 

most common approaches to risk factor analysis in infectious disease epidemiology; while they are 

widely accepted and understood, there are important drawbacks when studying complex systems, 

and the need for more novel epidemiological approaches are being increasingly recognised.5-10 

Standard regression models rely on an explicit assumption of independence amongst the predictor 

variables as well as independence between units, which is often not true in the real world of disease 

transmission, and could potentially result in oversimplification of models. Standard regression 

models do not allow strongly correlated predictor variables to be retained, even if each variable 

might play crucial and distinct roles in transmission. Standard regression models therefore have 

limitations in their capacity to disentangle the intricate associations between risk factors, drivers, 

triggers, and outcomes.7 

Causal models such as Bayesian networks (BNs) have the ability to represent causality as well as 

incorporate relationships between predictor/indicator variables, and may provide an alternative 

approach to more accurately model complex systems.11,12 Other methods used to model complex 

systems and incorporate collinearity include the use of interactions in regression analysis, 

regression trees, structured equation models, path analysis and multilevel hierarchical models. 

Compared to these methods, Bayesian network models have added advantages of being both 

visually more intuitive and having interactive interfaces that can be used to assess complex 

scenarios and produce real-time outputs. In particular, the ability to define scenarios that include 

strongly correlated predictor variables is difficult to achieve with regression models. However, BNs 

also have certain limitations when modelling complex systems. BNs generally use discretised 

variables and produced outputs that are discrete outcomes or events, and discretisation of 

continuous variables is sometimes associated with loss of data resolution. Also, BNs are not 

dynamic and cannot incorporate feedback loops, a potentially important consideration for complex 

models. 

Leptospirosis is an important zoonotic disease worldwide that causes an estimated one million 

severe cases per year, with particularly high risk in tropical and subtropical regions.13,14 Humans 
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are infected through direct contact with infected mammals (including rodents, livestock, pets, and 

wildlife), or contact with water or soil contaminated by urine of infected animals. Drivers of 

transmission are complex and include individual behaviour, socio-demographics, culture, lifestyle, 

contact with animals, and the natural environment.15-17 Environmental drivers for leptospirosis 

transmission, emergence, and outbreaks are increasingly being recognised, raising concerns that 

transmission and flood-related outbreaks could intensify with global change in both natural and 

anthropogenic environments.15,18,19 In developing countries, rapid population growth often results in 

urbanisation, slums, poor sanitation, poverty, subsistence livestock and agricultural intensification � 

all of which are important drivers of zoonotic disease transmission.17,20 The Pacific Islands are 

particularly vulnerable to the health impacts of climate change because of all of the socio-

demographic, geographic, and environmental factors mentioned above,21,22 and leptospirosis causes 

significant health impact in the region.23-28

Over the past decades, Fiji has experienced increasing incidence and outbreaks of leptospirosis.27,29-

31  Two post-flooding outbreaks occurred in 2012, resulting in over 500 cases and 40 deaths. An 

eco-epidemiological study conducted in 2013 found a community leptospirosis seroprevalence (the 

percentage of a population with detectable leptospirosis antibodies in their blood) of 19·4% using 

the microscopic agglutination test (MAT), with significant variation between ethnic groups and 

residential settings. The findings of the study have been published, focusing on risk factor analysis 

using standard regression approaches.27 The study provided important insights into leptospirosis 

eco-epidemiology in Fiji, but there remain multiple unanswered questions with important public 

health implications.  Important questions regarding the reasons for the disparate risk between ethnic 

groups and residential settings have not been clearly answered, but it is possible that niche-specific 

interventions may be required for more effective public health control measures. For example, 

intervention strategies may need a different focus for each ethnic group and/or vary between urban, 

peri-urban, and rural areas. The study also raised questions about the relative importance of animal 

species in human infections, a fundamental question when prioritising public health interventions 

for leptospirosis. On univariate regression analysis, infection was associated with contact with 

multiple animal species, including rodents, mongoose, dogs, and multiple species of livestock.  

However, there were significant correlations between presence of different animals species (e.g. 

people who own pigs are also more likely to own cows), and on multivariable regression analyses, 

the only animal-related predictor variables retained in the final model were the presence of pigs in 

the community and high cattle density. Based on these results, can we assume that animal species 

other than pigs and cattle did not play an important role in human infections? Or could other 
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species be also important, but excluded from multivariable regression models because they were 

strongly correlated with exposure to pigs or cattle? Also, might the relative importance of different 

animal species differ between ethnic groups and residential settings, and therefore require more 

tailored interventions?  These questions highlight some of the limitations of using standard 

regression analysis to model infectious diseases with complex transmission dynamics and 

environmental drivers. 

In this paper, we explore the use of BNs as an alternative methodological approach for modelling 

the eco-epidemiology of infectious diseases, using leptospirosis in Fiji as a case study. Firstly, the 

study aims to improve model performance of BNs by building models that better represent and 

explain causality. Secondly, the study aims to use BNs to determine the relative importance of 

animal species in disease transmission in different ethnic groups and residential settings. 

MATERIALS and METHODS

Study location and setting

Fiji has a population of 837,217 32 living in urban, peri-urban, and rural settings in tropical islands. 

Two main ethnic groups, iTaukei (indigenous Fijian) and Indo-Fijians (Fijians of Indian descent), 

account for 57% and 35% of the population respectively.32 Subsistence livestock are common in 

backyards and communal areas, particularly in rural areas. Rodents, mongoose, dogs, and cats are 

abundant in both urban and rural areas. 

Data sources

This study used a database from a recently published study of leptospirosis in Fiji, which was 

designed to include a representative sample of the country�s population.27 Briefly, the cross-

sectional community seroprevalence study included 2,152 participants aged 1 to 90 years from 81 

communities on the three main islands of Fiji. Blood samples were collected from each participant, 

and the microscopic agglutination test (MAT) was used to determine the presence of Leptospira 

antibodies, an indicator of previous infection. Data on socio-demographics, environmental factors, 

and animal exposure were obtained from questionnaires, population census, agricultural census, 

World Bank poverty survey, and geo-referenced environmental data. Data were linked to household 

locations using geographic information systems (GIS) to generate a richly structured geospatial 

database that relates risk factors and outcome (presence of Leptospira antibodies) for each 

individual.  
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Predictor/indicator variables examined in this study

In this study, we focused on more in-depth analysis of the following predictor/indicator variables, 

and built scenarios related to animal exposure in different ethnic groups and residential settings:

§ Ethnic group: 

o iTaukei, Indo-Fijian (other ethnic groups were excluded because they accounted for 

only 2% of the study population)

§ Residential setting:

o Urban, peri-urban, rural

§ Exposure to animals at the individual/household levels:

o Physical contact with rodents and/or mongoose

o Dogs, cats, chickens, pigs, cows, goats, horses 

§ Exposure to animals at the community level:

o Pigs, cows, goats, horses 

Table 1 provides a summary of the distribution of ethnic groups and residential settings in the study 

population, and the variations in Leptospira seroprevalence found in the 2013 study.

Table 1.  Summary of distribution of ethnic groups and residential settings in dataset, and differences in 

observed seroprevalence in each subgroup.

Variable Number of 

subjects

% of total subjects Observed 

seroprevalence

Univariate odds 

ratio (regression 

analysis)

p value

Total sampled 2152 100% 19.4%

Ethnic groups

  Indo-Fijian  

  iTaukei

  Other

459

1651

39

21.3%

76.7%

2.0%

7.4%

22.7%

20.5%

1

3.66

3.23

<0.001

0.114

Residential settings

  Urban

  Peri-urban

  Rural

579

287

1286

26.9%

13.3%

59.8%

11.1%

15.3%

24.0%

1

1.46

2.54

0.074

<0.001

Adapted from Lau et al 2016 (27)

The frequency of exposure to animal species in each ethnic group and residential setting were 

summarised. For individual/household-level analyses, physical contact with rodents or mongoose 

were included in the analyses but mere sighting of these species around the home were not included 
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because 85.9% and 77.1% of participants reported sighting of rodents and mongoose respectively; 

these variables therefore did not provide good discriminatory power and were not statistically 

associated with the presence of Leptospira antibodies at a univariate level. Similarly, the presence 

of rodents, mongoose, dogs, cats and chickens were not assessed at the community level because 

these species were ubiquitous.  

Bayesian Networks

BNs are probabilistic models based on Bayes� theorem of conditional probability, composed of: i) 

directed acyclic graphs (DAGs) with nodes that represent variables and outcomes and arrows that 

define dependency between nodes, and ii) node probability tables (NPT).33 BNs were constructed 

using Netica software.34  Figure 1 shows a simple BN, where �presence of Leptospira antibodies� 

(child node) is dependent on �pigs in community� and �residential setting� (parent nodes). �Pigs in 

community� is in turn dependent on �residential setting�. For child nodes that conditionally depend 

on their parent nodes, the NPT is called a conditional probability table (CPT) that defines the 

probabilistic relationship between the nodes. The CPT for �Presence of Leptospira antibodies� 

(Table 2) shows that for a rural setting with pigs, there is a 27.5% probability of the presence of 

antibodies. For parentless nodes, e.g. �residential setting�, an unconditional probability table stores 

the prior probabilities of each state: e.g. Figure 1a shows that 59.8% of the population live in rural 

areas.

Presence of Leptospira antibodies

Yes

No

19.4

80.6

Residential setting

Rural

Urban

Peri-urban

59.8

26.9

13.3

Pigs in community

Yes

No

26.1

73.9

Presence of Leptospira antibodies

Yes

No

27.5

72.5

Residential setting

Rural

Urban

Peri-urban

100

0

0

Pigs in community

Yes

No

100

0

(a) (b)

Figure 1. A simple Bayesian network for estimating the probability of the �Presence of Leptospira antibodies� based on 

the presence/absence of pigs in the community and type of residential setting.  The network has two predictor or 

�parent� nodes (�Pigs in community� and �Residential setting�) linked to the outcome or child node (�Presence of 

Leptospira antibodies�).  The presence/absence of �Pigs in community� is also dependent on �Residential setting�. The 

�Pigs in community� node includes two categories or �states�: Yes or No. The �Residential setting� variable includes 

three states: Rural, Urban, and Peri-urban.  In Figure 1a), the nodes were set to show the �default probabilities� in the 

belief bars, which provide a reflection of the data, i.e. approximately 26.1% of the study population had pigs in their 

community, 59.8% lived in rural areas, and Leptospira antibodies were present in 19.4%. In Figure 1b), a scenario was 

defined by selecting belief bars to show that in a rural residential setting where pigs were present, the probability of 

Leptospira!antibodies being present was 27.5%.
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Table 2. Conditional probabilities table (CPT) for the �Presence of Leptospira antibodies� node, showing the 

probabilities of the presence/absence of Leptospira antibodies for all combinations of states in the parent nodes 

(�Residential setting� and �Pigs in community�)

In naïve BNs, predictor/indicator variables are assumed to be independent. In structured BNs, 

causal dependencies between nodes can be defined using arrows, and each node can be used as 

predictor or indicator depending on the direction of the arrow. The graphical interface of BNs 

allows users to define scenarios by selecting states for each node (e.g. a rural community with pigs). 

When a node state is selected (referred to as inserting findings or evidence), the probabilities in all 

other nodes are updated using Bayes� Theorem of conditional probabilities according to the causal 

dependencies among nodes (probability propagation). NPTs and causal dependency can be learnt 

directly from data via parameter and structural learning algorithms, or derived from expert opinion. 

Model structure and parameterisation

Three groups of BNs, one naïve and two expert-structured, were built and used to analyse scenarios 

of animal exposure for the two ethnic groups (iTaukei and Indo-Fijian) and three residential settings 

(urban, peri-urban, rural). Group A BNs were naïve networks, which assumed that all 

predictor/indicator variables were independent. Group B and C BNs were structured networks 

designed specifically to examine the role of each animal species in disease transmission in different 

ethnic groups and residential settings. BNs in Groups A, B, and C were compiled based on the 

influence diagrams in Figure 2. Table 3 shows the codes of the three groups of BNs for ease of 

reference. 

States of parent nodes Probability of the Presence of 

Leptospira antibodies (%)

Residential 

setting

Pigs in 

community

Yes No

Rural Yes 27.5 72.5

Rural No 22.3 77.7

Urban Yes 23.8 76.2

Urban No 8.9 91.1

Peri-urban Yes 25.9 24.1

Peri-urban No 12.9 87.1
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Figure 2. Frameworks for influence diagrams for a) Group A BNs were naïve networks and assume that all indicator 

variables were independent, with each variable individually linked to the outcome; b) Group B BNs were structured 

networks, and reflect that the broad scenario is a predictor (parent node) of the presence of each animal species (blue 

arrows), and each animal species is in turn an indicator (child node) of the outcome (green arrows); c) Group C were 

structured to also take into account interdependence between nodes related to animal exposure by creating links from 

species A to species B, C and D (red arrows). The broad scenario was also directly linked to the outcome (black arrow) 

to take into account the alternate exposure pathways (other than animal exposure) through which ethnicity and 

residential setting could influence infection risk (e.g. behaviour, occupation).

The influence diagram for Group A BNs (Figure 2a) assumes that all indicator variables were 

independent, and each variable was individually linked to the outcome (presence of Leptospira 

antibodies). The influence diagram for Group B BNs (Figure 2b) was structured to reflect that the 

broad scenario (ethnic group or residential status) is a predictor (parent node) of the presence of 

each animal species in the community (blue arrows), and each animal species is in turn an indicator 

(child node) of the presence of Leptospira antibodies (green arrows). Animal species nodes were 

not used as predictors of the outcome because this structure would have resulted in a very large 

conditional probability table for the outcome node, and undefined probabilities for a significant 

number of scenarios. It is more logical to have arrows pointing from cause to effect, but in some 

cases, the directions of arrows are reversed to avoid large conditional probability tables that are 

difficult to parameterise with available data. Reversing the direction of arrows is possible in a BN 

because inference can work both directions.35 However, biological plausibility needs to be 

considered when determining the direction of causation, which is not necessarily the same as the 

direction of the arrows. For example, in our models, exposure to animals �causes� an increased risk 

of leptospirosis, and not vice versa.  

BNs in Group C (Figure 2c) were structured to also take into account dependence between the 

variables related to animal exposure. Links were created between the most common animal species 

and all other species (red arrows), resulting in conditional probabilities that take into account 
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dependence between the animal variables, e.g. the presence of cows is correlated with the presence 

of goats, pigs, and horses. For BNs related to individual/household-level animal exposure, animal 

species were categorised into three groups: feral (rodents and mongoose), pets (dogs and cats) and 

livestock (goats, pigs, horses and cows). Dependencies were modelled only within each of the three 

animal groups. The broad scenario node was also directly linked to the outcome node (black arrow) 

to take into account the alternate exposure pathways (other than animal exposure) through which 

ethnicity or residential setting could influence infection risk (for example behaviour, occupation, 

poverty or sanitation).

Conceptually, Group A BNs are similar to standard regression models, where all predictor/indicator 

variables are independent. Group B BNs were structured to provide a better representation of the 

causal relationships between variables. Group C also considered interdependence between the 

animal variables. Unlike standard regression models, BNs are capable of incorporating and 

retaining strongly correlated variables in the final models, such as exposure to multiple animal 

species.

Model training and testing

Bayesian networks are driven by the Bayes theorem of conditional probability and allows prior 

knowledge to be incorporated into model predictions. Bayes theorem (Equation 1) states that the 

conditional probability of a hypothesis (H) occurring given evidence (E), can be calculated as the 

product of the probability of H and the conditional probability of E given H, divided by the 

probability of E. 

P(H | E) = P(H) x P(E | H) / P(E) Equation 1

In a BN, this formula is used to calculate and update conditional probabilities of all node states 

when evidence is inserted into one or more nodes. Probabilities for NPTs (including CPTs) can be 

either learnt from the data during model training, or defined by experts. 

Networks were trained using the Expectation Maximisation algorithm36 in Netica, and tested using 

two methods: 

1. Model discrimination ability was measured using the area under the curve of the receiver 

operating characteristic (AUC).  The AUC for each BN was calculated using trials, where 50% of 

the data were used to train the BN and populate the CPTs, and the other 50% used to test the BN (to 
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determine the accuracy of the predicted prevalence values). For each BN, repeated random 

subsampling was used to conduct 30 trials, and the average AUC reported.

2. Model calibration (measure of how well the model fits the data, or model goodness-of-fit) was 

measured by comparing predicted and observed probabilities for each set of BNs. For this purpose, 

BNs were trained using 100% of the dataset. The agreement between predicted probabilities of the 

presence of Leptospira antibodies under different scenarios and the observed probabilities 

(empirical data from the 2013 field study) were measured using R2 and mean squared error (MSE). 

We examined scenarios based on ethnicity, residential location, and exposure to animal species. 

After defining a broad scenario of ethnicity or residential location, more specific scenarios of 

animal exposure were examined. We analysed the influence of each animal species individually, 

and also combinations of two and three animal species if these scenarios were reported by >3% of 

at least one ethnic or residential subgroup. Less common scenarios were not assessed because of 

insufficient data for robust predictions, and their low relevance for understanding disease 

transmission and informing public health interventions. Nodes that were not included in a scenario 

were left in their default state. Each trio of Group A, B, and C BNs were compared to determine 

whether predictive performance of models improved by structures that better represented causality.

Relative importance of animal species under different scenarios

The relative importance of each animal species in leptospirosis transmission for each ethnic group 

and residential setting were examined using the Group C BNs. To ascertain whether exposure to 

one or more animal species had a significant effect on seroprevalence, a test of proportions was 

used to determine if differences in predicted seroprevalence between exposed and unexposed 

groups were statistically significant at p!< 0.05.
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RESULTS

Bayesian network models

Based on the influence diagrams in Figure 2, 12 BNs were compiled. Differences between the BNs 

are summarised in Table 3, and each of the BNs were assigned a code for ease of reference. The 

structures and variables included in each set of BNs are shown in Figure 3A to 3D. The �belief bars� 

in the figures show the probability distributions for the states of each node captured by the dataset, 

and reflect conditional probabilities between all connected nodes, e.g. Figure 3B shows that 76.8% 

of the study population are of iTaukei ethnicity, 26.1% reported the presence of pigs in the 

community, and 19.4% were seropositive for leptospirosis.
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Table 3. Summary of the three groups of BNs used to examine the role of animal species in different ethnic groups and residential settings, and the codes used for each BN 

for ease of reference.

Group A Group B Group C

Influence diagram Figure 2a Figure 2b Figure 2c

Model type Naïve Bayesian network Structured Bayesian network Structured Bayesian network

Assumptions about 

predictor/indicator variables

All predictor/indicator 

variables independent 

Variables related to animal exposure were independent, e.g. 

presence of cows was not correlated with presence of other 

animal species.

Considered dependence between variables related to animal exposure, e.g. 

presence of cows was associated with the presence of other animal species.

Model structure Each predictor/indicator 

variable individually 

linked to the outcome.

Conceptually similar to 

regression models.

The broad scenario (ethnic group or residential status) was 

used as a predictor (parent node) of the presence of each 

animal species (blue arrows), and each animal species was 

in turn used as an indicator (child node) of the presence of 

Leptospira antibodies (green arrows).

The broad scenario also directly linked to the outcome node 

(black arrow) to take into account the alternate exposure 

pathways (other than animal exposure) through which 

ethnicity or residential setting could influence infection risk 

(for example behaviour, occupation, poverty or sanitation).

In addition to the model structures for Group B BNs, Group C BNs also 

considered dependence between the variables related to animal exposure. 

Links were created between the most common animal species and all other 

species (red arrows), resulting in conditional probabilities that take into 

account dependence between animal variables, e.g. the presence of cows is 

correlated with the presence of other animal species.

For BNs related to individual/household-level animal exposure, animal 

species were categorised into three groups: feral (rodents and mongoose), 

pets (dogs and cats) and livestock (goats, pigs, horses and cows). 

Dependencies were modelled only within each of the three animal groups. 

Codes for BNs used to examine 

Ethnicity and 

Individual/household-level 

animal exposure (Figure 3A)

EI-A EI-B EI-C

Codes for BNs used to examine 

Ethnicity and Community-

level animal exposure (Figure 

3B)

EC-A EC-B EC-C

Codes for BNs used to examine 

Residential setting and 

Individual/household-level animal 

exposure (Figure 3C)

RI-A RI-B RI-C

Codes for BNs used to examine 

Residential setting and Community-

level animal exposure (Figure 3D)

RC-A RC-B RC-C
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Figure 3A. BNs used to model the probability of the presence of Leptospira antibodies based on ethnicity and individual/household-level exposure to livestock animal species. a) BN 

EI-A, a naïve network assuming that all variables were independent, b) BN EI-B, a structured network that provides a better representation of interrelationships between variables, 

but assuming that animal variables were independent, and c) BN EI-C, structured network taking into account interdependence between animal variables.
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Figure 3B.  BNs used to model the probability of the presence of Leptospira antibodies based on ethnicity and the presence of livestock animal species in the community: a) BN EC-

A, a naïve network assuming that all variables were independent, b) BN EC-B, a structured network that provides a better representation of interrelationships between variables, but 

assuming that animal variables were independent, and c) BN EC-C, structured network taking into account interdependence between animal variables.
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Figure 3C. BNs used to model the probability of the presence of Leptospira antibodies based on residential setting and individual/household level exposure to livestock animal 

species. a) BN RI-A, a naïve network assuming that all variables were independent, b) BN RI-B, a structured network that provides a better representation of interrelationships 

between variables, but assuming that animal variables were independent, and c) BN RI-C, structured network taking into account interdependence between animal variables.
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No 80.6 No 80.6 No 80.6

Figure 3D. BNs used to model the probability of the presence of Leptospira antibodies based on residential setting and the presence of livestock animal species in the community. a) 

BN RC-A, a naïve network assuming that all variables were independent, b) BN RC-B, a structured network that provides a better representation of interrelationships between 

variables, but assuming that animal variables were independent, and c) BN RC-C, structured network taking into account interdependence between animal variables.
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Model testing

a)!Model!discrimination!ability!�!AUC!

The median AUC results over the 30 trials for each of the 12 BNs ranged from 0.59-0.61 (Table 4), 

and indicate poor (but better than random) model discriminatory ability. There were no significant 

differences in AUCs between Groups A, B and C BNs.

Table 4.  AUC results over 30 trials for Group A, B, and C BNs. 

Bayesian Network Code Median AUC Interquartile Range

Ethnicity and Individual/household-

level exposure to animals:

EI-A

EI-B

EI-C

0.61

0.60

0.59

0.60-0.61

0.59-0.61

0.58-0.60

Ethnicity and Community-level 

exposure to animals:

EC-A

EC-B

EC-C

0.61

0.61

0.60

0.60-0.62

0.60-0.62

0.61-0.63

Residential setting and 

Individual/household-level exposure 

to animals:

RI-A

RI-B

RI-C

0.61

0.60

0.59

0.60-0.61

0.58-0.60

0.58-0.60

Residential setting and Community-

level exposure to animals:

RC-A

RC-B

RC-C

0.61

0.60

0.60

0.61-0.62

0.60-0.61

0.59-0.61

b)!Model!calibration!�!predicted!versus!observed!seroprevalence 

Tables 5 to 8 show the scenarios of animal exposure for ethnic group and residential setting where 

at least 3% of one or more subgroups reported the exposure scenarios; these scenarios were 

included in further analyses. The tables also show the percentage of each subgroup that reported the 

animal exposures. For example, Table 6 shows the most common scenarios of community-level 

animal exposure(s) for each ethnic group, where at least 3% of one or more ethnic group reported 

that combination of animal exposure. Sections A, B, and C list the scenarios related to exposure to 
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each animal species, combinations of two animal species, and combinations of three animal species 

respectively. If a scenario was reported by <3% of a subgroup, the predicted seroprevalence is not 

reported. 

For each scenario of animal exposure shown in Tables 5 to 8, the predicted seroprevalence were 

calculated using the associated BNs and compared to the observed seroprevalence. For example, 

BNs EC-A, EC-B, and EC-C were used to predict seroprevalence for each of the scenarios of 

ethnicity and community-level animal exposure(s) shown in Table 6. Section B of Table 6 shows 

that 16.7% of iTaukei and 4·4% of Indo-Fijians reported the presence of both cows and horses in 

their community. And in iTaukei who reported exposure to both cows and horses, the observed 

seroprevalence was 25.5%, while the predicted seroprevalence using EC-A, EC-B, and EC-C were 

36.3%, 29.4%, and 27.3% respectively.

Agreement between predicted and observed seroprevalence were measured using R2 and MSE, and 

the correlations for each trio of Group A, B, and C models are shown in Figures 4 and 5. The 

figures show that R2 values improved from 0.59 for EI-A to 0.93 for EI-C; 0.78 for EC-A to 0.93 

for EC-C; 0.54 for RI-A to 1.00 for RI-C; and 0 for RC-A to 0.75 for RC-C.  Similarly, MSE 

showed that Group C models produced the best agreement between predicted and observed 

seroprevalence. MSE were 67.1, 22.6 and 3.6 for EI-A, EI-B, and EI-C; 95.0, 67.2, and 7.1 for EC-

A, EC-B, and EC-C; 46.8, 6.3, and 0.3 for RI-A, RI-B, and RI-C; and 144.8, 364.3, and 16.6 for 

RC-A, RC-B, and RC-C respectively. For each trio of BNs, the best predictive accuracy (highest R2 

and lowest MSE) was seen with Group C models.
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Table 5. The most common individual/household-level exposure to animal species in each ethnic group. For rodents and mongoose, exposure was defined as physical contact with 

these animals. For other animal species, exposure was defined as presence of the animal species at the individual�s household.  BNs EI-A, EI-B and EI-C were used to predict 

seroprevalence under each of the scenarios shown below, and summarised in Figure 4a. 

Section Physical 

contact

Animal species present at household % of population exposed 

to animal species

Observed seroprevalence*

(%)

Predicted seroprevalence 

using EI-A (%)

Predicted seroprevalence 

using EI-B (%)

Predicted seroprevalence 

using EI-C (%)

R
o
d

en
ts

M
o
n

g
o
o
se

D
o
g

C
a
t

C
o
w

G
o
a
t

H
o
rs

e

P
ig iTaukei 

n=1651

Indo-

Fijian 

n=459

iTaukei Indo-Fijian iTaukei Indo-Fijian iTaukei Indo-Fijian iTaukei Indo-Fijian

X 17.3 6.3 27.3 6.9 30.0 10.5 27.8 7.1 27.9 7.1

X 7.5 2.0 30.1 0.0 33.7 - 30.5 - 30.6 -

X 26.0 43.6 24.0 9.5 22.7 7.42 24.1 9.5 24.1 9.5

X 14.4 23.3 19.4 9.4 19.3 6.11 19.4 9.3 19.4 9.3

X 14.1 10.7 27.0 18.4 29.7 10.3 27.1 18.4 27.1 18.4

X 3.1 12.2 23.5 17.9 24.0 7.95 23.5 17.8 23.5 17.8

X 10.5 5.7 27.0 19.2 30.0 10.5 27.0 19.2 27.0 19.2

A. Exposure 

scenarios 

related to 

EACH 

animal 

species

X 13.7 0.4 25.7 - 30.1 - 25.7 - 25.7 -

X X 4.6 1.1 29.0 0.0 42.6 - 36.6 - 29.7 -

X X 6.8 17.2 19.5 11.4 19.3 6.12 20.7 11.9 19.5 11.4

X X 1.5 8.1 24.0 21.6 - 7.95 - 22.2 - 22.2

X X 6.2 7.8 31.1 19.4 29.7 10.4 28.7 22.8 28.7 22.8

B. Exposure 

scenarios 

related to 

combinations 

of TWO 

animal 

species

X X 7.2 2.6 28.6 16.7 38.2 - 31.9 - 28.6 -

X X X 0.7 4.8 8.3 18.2 - 6.56 - 26.9 - 25.8

X X X 1.8 3.9 13.8 27.8 - 8.58 - 27.5 - 26.5

X X X 1.3 4.4 18.2 25.0 - 11.1 - 44.5 - 28.2

C. Exposure 

scenarios 

related to 

combinations 

of THREE 

animal 

species X X X 3.5 2.6 29.3 16.7 38.2 - 33.7 - 30.3 -

*Overall observed seroprevalence in 2013 field study was 22.7% in iTaukei and 7.4% in Indo-Fijians.  Predicted seroprevalence were only calculated for animal exposure scenarios reported 

by >3% of at least one subgroup; �-� indicates scenarios where predicted seroprevalence were not calculated.
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Table 6. The most common community-level exposure to animal species in each ethnic group. Exposure was defined as the presence of the animal species at the individual�s 

community.  BNs EC-A, EC-B and EC-C were used to predict seroprevalence under each of the scenarios shown below, and summarised in Figure 4b.

Section Animal species present in 

community

% of population exposed 

to animal species

Observed seroprevalence*

(%)

Predicted seroprevalence 

using EC-A (%)

Predicted seroprevalence 

using EC-B (%)

Predicted seroprevalence 

using EC-C (%)

C
o
w

G
o
a
t

H
o
rs

e

P
ig

iTaukei 

n=1651

Indo-

Fijian 

n=459

iTaukei Indo-Fijian iTaukei Indo-Fijian iTaukei Indo-Fijian iTaukei Indo-Fijian

X 24.8 12.6 25.6 12.1 28.6 9.88 25.6 12.1 25.6 12.1

X 11.3 11.3 28.9 11.5 29.2 10.1 28.9 11.5 28.9 11.5

X 21.1 5.4 26.2 16.0 29.4 10.2 26.2 16.0 26.2 16.0

A. Exposure scenarios 

related to EACH animal 

species

X 32.7 1.3 25.9 16.7 30.8 - 26.1 - 26.1 -

X X 10.7 6.8 30.7 9.7 36.0 13.3 32.3 18.3 29.7 14.0

X X 16.7 4.4 25.5 10.0 36.3 13.5 29.4 24.6 27.3 18.5

X X 18.6 0.9 26.4 0.0 37.9 - 29.3 - 26.4 -

X X 9.6 4.1 29.1 15.8 36.9 13.8 32.9 23.7 30.3 17.8

X X 9.5 0.7 29.3 33.3 38.5 - 32.8 - 29.3 -

B. Exposure scenarios 

related to combinations of 

TWO animal species

X X 15.9 0.4 27.0 0.0 38.8 - 29.9 - 27.0 -

X X X 9.4 3.5 29.5 6.3 44.5 18.0 36.6 34.7 30.7 13.0

X X X 9.1 0.4 30.5 0.0 46.1 - 36.5 - 29.7 -

X X X 13.4 0.4 26.2 0.0 46.5 - 33.4 - 27.3 -

C. Exposure scenarios 

related to combinations of 

THREE animal species

X X X 8.4 0.4 29.7 0.0 47.1 - 37.1 - 30.3 -

*Overall observed seroprevalence in 2013 field study was 22.7% in iTaukei and 7.4% in Indo-Fijians. Predicted seroprevalence were only calculated for animal exposure scenarios reported 

by >3% of at least one subgroup; �-� indicates scenarios where predicted seroprevalence were not calculated.
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Table 7. The most common individual/household-level exposure to animal species in each residential setting.  For rodents and mongoose, exposure was defined as physical 

contact with these animals. For other animal species, exposure was defined as presence of the animal species at the individual�s household. BNs RI-A, RI-B and RI-C were used 

to predict seroprevalence under each of the scenarios shown below, and summarised in Figure 5a.

Section Physical 

contact

Animal species present at 

household

% of population

exposed to animal species

Observed seroprevalence*

(%)

Predicted seroprevalence 

using RI-A (%)

Predicted seroprevalence 

using RI-B (%)

Predicted seroprevalence 

using RI-C (%)

R
o
d

en
ts

M
o
n

g
o
o
se

D
o
g

C
a
t

C
o
w

G
o
a
t

H
o
rs

e

P
ig Urban 

n=579

Peri-

urban 

n=287

Rural 

n=1286 Urban
Peri-

urban
Rural Urban

Peri-

urban
Rural Urban

Peri-

urban
Rural Urban

Peri-

urban
Rural

X 13.6 12.9 16.1 16.5 27.0 29.0 15.4 20.9 31.6 16.3 26.9 29.5 16.3 26.9 29.5

X 4.0 4.2 7.8 17.4 25.0 32.0 17.7 23.9 35.4 17.1 25.4 32.6 17.2 24.9 32.6

X 26.6 33.4 30.7 12.3 13.5 23.5 11.1 15.3 24.0 12.3 13.5 23.6 12.3 13.5 23.6

X 15.2 22.3 15.8 5.7 14.1 21.7 9.2 12.8 20.5 5.7 14.0 21.7 5.7 14.0 21.7

X 3.5 5.2 19.4 25.0 6.7 26.9 15.2 20.7 31.3 25.0 6.6 27.0 25.0 6.6 27.0

X 0.9 1.0 7.7 22.0 0.0 21.2 - - 25.4 - - 21.2 - - 21.2

X 1.4 2.1 14.5 0.0 16.7 27.4 - - 31.6 - - 27.5 - - 27.5

A. Exposure 

scenarios 

related to 

EACH animal 

species

X 3.6 6.6 14.8 33.3 26.3 25.3 15.4 21.0 31.7 33.3 26.2 25.3 33.3 26.2 25.3

X X 2.8 3.1 4.6 18.8 33.3 30.5 - 31.5 44.5 - 40.8 39.0 - 33.2 31.4

X X 5.4 14.3 9.8 3.2 17.1 19.1 9.2 12.8 20.5 6.4 12.3 21.3 3.2 17.0 19.1

X X 0.7 2.4 10.0 50.0 0.0 28.9 - - 31.3 - - 26.5 - - 26.5

B. Exposure 

scenarios 

related to 

combinations 

of TWO animal 

species

X X 0.7 1.7 9.5 0.0 0.0 29.5 - - 40.0 - - 30.6 - - 29.6

C. Exposure 

scenarios 

related to 

combinations 

of THREE 

animal species

X X X 0.2 1.0 5.1 0.0 - 28.8 - - 40.0 - - 30.1 - - 29.0

*Overall observed seroprevalence in 2013 field study was 11.1% in urban, 15.3% in peri-urban, and 24.0% in rural areas.  Predicted seroprevalence were only calculated for animal 

exposure scenarios reported by >3% of at least one subgroup; �-� indicates scenarios where predicted seroprevalence were not calculated.
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Table 8. The most common community-level exposure to animal species in each residential setting.  Exposure was defined as the presence of the animal species at the individual�s 

community. BNs RC-A, RC-B and RC-C were used to predict seroprevalence under each of the scenarios shown below, and summarised in Figure 5b.

Section Animal species present in 

community

% of population exposed 

to animal species

Observed seroprevalence*

(%)

Predicted seroprevalence using 

RC-A (%)

Predicted seroprevalence using 

RC-B (%)

Predicted seroprevalence using 

RC-C (%)

C
o
w

G
o
at

H
o
rs

e

P
ig

Urban 

n=579

Peri-

urban 

n=287

Rural 

n=1286 Urban
Peri-

urban
Rural Urban

Peri-

urban
Rural Urban

Peri-

urban
Rural Urban

Peri-

urban
Rural

X 9.3 14.3 30.0 24.1 22.0 25.1 14.5 19.9 30.2 24.0 21.9 25.2 24.0 21.9 25.2

X 7.1 8.0 13.8 29.3 17.4 25.3 14.8 20.3 30.7 29.2 17.3 25.3 29.2 17.3 25.3

X 8.1 7.0 24.1 25.5 30.0 25.2 15.0 20.5 31.0 25.5 29.9 25.2 25.5 29.9 25.2

A. Exposure 

scenarios 

related to 

EACH 

animal 

species
X 14.5 18.8 32.9 23.8 25.9 27.4 15.9 21.6 32.5 23.8 25.8 27.5 23.8 25.8 27.5

X X 6.7 7.3 11.7 30.8 19.1 28.0 19.3 25.8 37.8 51.3 24.5 26.5 35.5 13.8 28.8

X X 7.8 6.3 18.4 26.7 22.2 24.2 19.5 26.1 38.1 46.6 39.8 26.4 32.2 23.7 26.3

X X 7.6 7.3 20.1 27.3 23.8 27.5 20.5 27.4 39.7 44.3 35.0 28.7 27.2 23.7 27.6

X X 6.6 5.2 9.8 31.6 26.7 27.0 19.9 26.5 38.7 53.2 33.1 26.5 37.0 17.9 28.6

X X 6.6 3.8 8.9 31.6 9.1 30.7 20.9 27.9 40.3 50.9 28.8 28.9 31.5 9.06 30.7

B. Exposure 

scenarios 

related to 

combinations 

of TWO 

animal 

species

X X 7.3 3.8 16.7 28.6 18.2 27.0 21.2 28.1 40.6 46.2 45.1 28.7 28.5 18.1 27.0

X X X 6.6 5.2 9.4 31.6 26.7 26.5 25.3 33.1 46.4 74.3 43.3 27.8 41.4 10.2 29.9

X X X 6.6 3.5 8.4 31.6 10.0 31.5 26.6 34.6 48.0 72.5 38.4 30.2 35.6 8.2 30.9

X X X 7.1 3.5 13.6 29.3 10.0 26.3 26.9 34.9 48.3 68.6 56.0 30.0 32.4 16.5 27.1

C. Exposure 

scenarios 

related to 

combinations 

of THREE 

animal 

species X X X 6.4 3.1 7.5 32.4 11.1 30.2 27.4 35.4 49.0 74.1 48.8 30.2 37.1 6.0 30.3

*Overall observed seroprevalence in 2013 field study was 11.1% in urban, 15.3% in peri-urban, and 24.0% in rural areas.  Predicted seroprevalence were only calculated for animal 

exposure scenarios reported by >3% of at least one subgroup; �-� indicates scenarios where predicted seroprevalence were not calculated.
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Figure 4. a) Comparison between observed and predicted seroprevalence using Bayesian networks EI-A, EI-B, and EI-

C models for individual/household-level exposure for each ethnic group. b) Comparison between observed and 

predicted seroprevalence using Bayesian networks EC-A, EC-B, and EC-C models for community-level exposure for 

each ethnic group.  

Figure 5. a) Comparison between observed and predicted seroprevalence using Bayesian networks RI-A, RI-B, and RI-

C models for individual/household-level exposure and each residential setting. b) Comparison between observed and 

predicted seroprevalence using Bayesian networks RC-A, RC-B, and RC-C models for community-level exposure and 

each residential setting.
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Relative importance of animal species under different exposure scenarios

Group C BNs showed the best predictive performance, and were used to determine the relative 

importance of animal species under different scenarios of ethnicity and residential setting. Table 9 

shows results of scenario analyses for individual/household-level exposures in ethnic groups (BN 

EI-C). The prevalence of animal exposures differed markedly between the two ethnic groups, and 

the animal species associated with higher seroprevalence also varied. For example, 12.2% of Indo-

Fijians owned goats, and this scenario was associated with a higher seroprevalence of 17.8% 

compared to Indo-Fijians who do not own goats (6.0%, p=0.002). Only 3.1% of iTaukei owned 

goats, but this ethnic group was more likely to report physical contact with rodents (17.3%), and 

this exposure was associated with higher seroprevalence (27.9%) compared to those who do not 

have contact with rodents (21.6%, p=0.021). Figure 6a highlights differences in 

individual/household animal exposure between ethnic groups, and relative importance of each 

species on seroprevalence. Triangles and circles represent statistically significant or insignificant 

differences in seroprevalence between exposed and un-exposed groups.

Table 10 shows the results of scenario analyses for community-level exposures in ethnic groups 

(BN EC-C). The most common livestock animals found in iTaukei communities were pigs (32.7%) 

and cows (24.8%). Many communities had multiple livestock species, e.g.13.4% of iTaukei 

communities reported the presence of cows and!pigs and horses, and this scenario was associated 

with a higher predicted seroprevalence of 27.3% compared to communities without any of those 

animal species (20.6%, p=0.030). In contrast, the most common livestock in Indo-Fijian 

communities were cows (12.6%) and goats (11.3%). Although only 8.7% of Indo-Fijian 

communities reported the presence of two or more livestock species, the presence of cows and 

horses (reported by 4.4% of Indo-Fijians) was associated with a higher predicted seroprevalence of 

18.5% compared to 6.3% in those who were not exposed to these species (p=0.036). Figure 6b 

highlights the differences in exposure and relative importance of animal exposures between ethnic 

groups.
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Table 9. Difference in seroprevalence based on ethnicity and individual/household-level exposure to animal species or combinations of species.  BN EI-C was used to 

predict seroprevalence in exposed and unexposed groups. Results for individual species are summarized in Figure 6a.

Physical 

contact

Animal species present at household % of population exposed 

to animal species

Predicted seroprevalence 

in exposed (%)

Predicted seroprevalence 

in unexposed (%)

 p value for statistical difference in 

seroprevalence between exposed and 

unexposed# 

R
o
d

en
ts

M
o
n

g
o
o
se

D
o
g

C
a
t

C
o
w

G
o
a
t

H
o
rs

e

P
ig iTaukei 

n=1651

Indo-

Fijian 

n=459

iTaukei Indo-Fijian iTaukei Indo-Fijian iTaukei
Indo-Fijian

X 17.3 6.3 27.9 7.1 21.6 7.4 0.021 0.953

X 7.5 2.0 30.6 - 22.0 - 0.029 -

X 26.0 43.6 24.1 9.5 22.2 5.8 0.419 0.135

X 14.4 23.3 19.4 9.3 23.2 6.9 0.196 0.408

X 14.1 10.7 27.1 18.4 22.0 6.1 0.085 0.002

X 3.1 12.2 23.5 17.8 22.7 6.0 0.893 0.002

X 10.5 5.7 27.0 19.2 22.2 6.7 0.153 0.018

X 13.7 0.4 25.7 - 22.2 - 0.243 -

X X 4.6 1.1 29.7 - 21.2 - 0.081 -

X X 6.8 17.2 19.5 11.4 22.5 6.1 0.465 0.122

X X 1.5 8.1 - 22.2 - 4.6 - <0.001

X X 6.2 7.8 28.7 22.8 21.5 4.8 0.092 <0.001

X X 7.2 2.6 28.6 - 21.9 - 0.093 -

X X X 0.7 4.8 - 25.8 - 4.9 - <0.001

X X X 1.8 3.9 - 26.5 - 5.0 - <0.001

X X X 1.3 4.4 - 28.2 - 4.3 - <0.001

X X X 3.5 2.6 30.3 - 21.4 - 0.110 -

*Overall observed seroprevalence in 2013 field study was 22.7% in iTaukei and 7.4% in Indo-Fijians.  #Using test of difference between proportions, statistically significant results 

(p<0.05) in bold.
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Table 10. Difference in seroprevalence based on ethnicity and community-level exposure to animal species or combinations of species.  BN EC-C was used to predict 

seroprevalence in exposed and unexposed groups. Results for individual species are summarized in Figure 6b.

Animal species present in 

community

% of population exposed 

to animal species

Predicted seroprevalence in 

exposed (%)

Predicted seroprevalence in 

unexposed (%)

p value for statistical difference in 

seroprevalence between exposed and 

unexposed#

C
o
w

G
o
a
t

H
o
rs

e

P
ig

iTaukei 

n=1651

Indo-

Fijian 

n=459

iTaukei Indo-Fijian iTaukei Indo-Fijian iTaukei Indo-Fijian

X 24.8 12.6 25.6 12.1 21.7 6.7 0.102 0.142

X 11.3 11.3 28.9 11.5 21.9 6.9 0.031 0.233

X 21.1 5.4 26.2 16.0 21.7 6.9 0.075 0.091

X 32.7 1.3 26.1 - 21.0 - 0.020 -

X X 10.7 6.8 29.7 14.0 21.2 6.2 0.011 0.097

X X 16.7 4.4 27.3 18.5 21.1 6.3 0.026 0.036

X X 18.6 0.9 26.4 - 20.8 - 0.038 -

X X 9.6 4.1 30.3 17.8 21.2 6.4 0.009 0.056

X X 9.5 0.7 29.3 - 20.9 - 0.018 -

X X 15.9 0.4 27.0 - 20.8 - 0.031 -

X X X 9.4 3.5 30.7 13.0 20.7 5.7 0.005 0.228

X X X 9.1 0.4 29.7 - 20.6 - 0.012 -

X X X 13.4 0.4 27.3 - 20.6 - 0.030 -

X X X 8.4 0.4 30.3 - 20.7 - 0.010 -

*Overall observed seroprevalence in 2013 field study was 22.7% in iTaukei and 7.4% in Indo-Fijians. 

#Using test of difference between proportions, statistically significant results (p<0.05) in bold.
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iTaukei: n = 1651 Indo-Fijian: n = 459
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Animal species
Cat
Cow
Dog
Goat
Horse
Mongoose
Pig
Rodent

Signifcant at p < 0.05
No
Yes

Figure 6. a) Individual/household-level exposure to animals � differences in exposure and predicted seroprevalence 

between ethnic groups.  Exposure is defined as physical contact with rodents or mongoose, or presence of other animal 

species at the individual�s household. b) Community-level exposure to animals � differences in exposure and predicted 

seroprevalence between ethnic groups.  Exposure is defined as the presence of animal species at the individual�s 

community.  Horizontal black lines indicate mean seroprevalence for each subgroup. Triangles/circles indicate 

statistically significant/insignificant difference in seroprevalence between exposed and un-exposed groups.

Table 11 shows the results of scenario analyses for individual/household-level exposures in 

different residential settings (BN RI-C). In urban areas, the most common animal exposures were to 

dogs (26.6%), cats (15.2%), and rodents (13.6%). Few urban residents reported exposure to cows 

(3.5%) or pigs (3.6%), but their presence at households was associated with a higher predicted 

seroprevalences of 25.0% (vs 10.6%, p=0.044) and 33.3% (vs 10.2%, p<0.001) compared to those 

without these exposures. In rural areas, physical contact with rodents (16.1%) and mongoose (7.8%) 

were more common than in urban or peri-urban areas, and associated with higher seroprevalence of 

29.5% (vs 22.9%, p=0.042) and 32.6% (vs 23.3%, p=0.037). Figure 7a highlights the differences in 

exposure and relative importance of individual/household-level animal exposures between urban, 

peri-urban, and rural areas.
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Table 12 provides results of scenario analyses for community-level exposures in residential settings 

(BN RC-C). Pigs were the most common livestock species in all community types, present in 

14.5% of urban, 18.8% of peri-urban, and 32.9% of rural communities. Pigs were associated with 

higher seroprevalence in all community types, but particularly striking in urban areas where 

exposure was associated with a seroprevalence of 23.8%, compared to 8.9% in urban dwellers who 

were not exposed to pigs (p<0.001). Multiple livestock species in urban areas was associated with 

very high predicted seroprevalence, e.g. 35.6% in urban communities with cows and goats and pigs 

(p<0.001). Figure 7b highlights the relative importance of animal species in each residential setting.
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Table 11. Difference in seroprevalence based on residential setting and individual/household-level exposure to animal species or combinations of species.  

BN RI-C was used to predict seroprevalence in exposed and unexposed groups. Results for individual species are summarized in Figure 7a.

Physical 

contact

Animal species present at 

household

% of population exposed to 

animal species

Predicted seroprevalence in 

exposed

(%)

Predicted seroprevalence in 

unexposed

(%)

p!value for statistical difference in 

seroprevalence between exposed and 

unexposed#

R
o
d

en
ts

M
o
n

g
o
o
se

D
o
g

C
a
t

C
o
w

G
o
a
t

H
o
rs

e

P
ig

Urban 

n=579

Peri-urban 

n=287

Rural 

n=1286 Urban
Peri-

urban
Rural Urban

Peri-

urban
Rural Urban Peri-urban Rural

X 13.6 12.9 16.1 16.3 26.9 29.5 10.2 13.6 22.9 0.108 0.036 0.042

X 4.0 4.2 7.8 17.2 24.9 32.6 10.8 14.9 23.3 0.338 0.347 0.037

X 26.6 33.4 30.7 12.3 13.5 23.6 10.6 16.3 24.2 0.564 0.535 0.816

X 15.2 22.3 15.8 5.7 14.0 21.7 12.0 15.7 24.5 0.083 0.739 0.392

X 3.5 5.2 19.4 25.0 6.6 27.0 10.6 15.8 23.3 0.044 0.336 0.220

X 0.9 1.0 7.7 - - 21.2 - - 24.3 - - 0.488

X 1.4 2.1 14.5 - - 27.5 - - 23.4 - - 0.226

X 3.6 6.6 14.8 33.3 26.2 25.3 10.2 14.6 23.8 <0.001 0.176 0.655

X X 2.8 3.1 4.6 - 33.2 31.4 - 0 22.5 - <0.001 0.115

X X 5.4 14.3 9.8 3.2 17.0 19.1 11.2 17.3 24.1 0.164 0.964 0.218

X X 0.7 2.4 10.0 - - 26.5 - - 23.5 - - 0.461

X X 0.7 1.7 9.5 - - 29.6 - - 23.3 - - 0.125

X X X 0.2 1.0 5.1 - - 29.0 - - 23.5 - - 0.316

*Overall observed seroprevalence in 2013 field study was 11.1% in urban, 15.3% in peri-urban, and 24.0% in rural areas. 

#Using test of difference between proportions, statistically significant results (p<0.05) in bold.
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Table 12. Difference in seroprevalence based on residential setting and community-level exposure to animal species or combinations of species.  

BN RC-C was used to predict seroprevalence in exposed and unexposed groups. Results for individual species are summarized in Figure 7b.

Animal species present in 

community

% of population exposed 

to animal species

Predicted seroprevalence in 

exposed

(%)

Predicted seroprevalence in 

unexposed

(%)

p!value for statistical difference in 

seroprevalence between exposed and 

unexposed#

C
o
w

G
o
at

H
o
rs

e

P
ig Urban 

n=579

Peri-urban 

n=287

Rural 

n=1286
Urban

Peri-

urban
Rural Urban Peri-urban Rural Urban Peri-urban Rural

X 9.3 14.3 30.0 24.0 21.9 25.2 9.7 14.2 23.5 0.001 0.205 0.513

X 7.1 8.0 13.8 29.2 17.3 25.3 9.7 15.2 23.8 0.001 0.789 0.664

X 8.1 7.0 24.1 25.5 29.9 25.2 9.8 14.2 23.7 0.001 0.060 0.590

X 14.5 18.8 32.9 23.8 25.8 27.5 8.9 12.9 22.3 <0.001 0.018 0.040

X X 6.7 7.3 11.7 35.5 13.8 28.8 9.2 13.9 23.7 <0.001 0.990 0.180

X X 7.8 6.3 18.4 32.2 23.7 26.3 9.2 13.1 23.4 <0.001 0.209 0.358

X X 7.6 7.3 20.1 27.2 23.7 27.6 8.9 12.2 22.7 <0.001 0.138 0.113

X X 6.6 5.2 9.8 37.0 17.9 28.6 9.3 14.0 23.7 <0.001 0.674 0.229

X X 6.6 3.8 8.9 31.5 9.06 30.7 9.0 12.2 22.9 <0.001 0.755 0.068

X X 7.3 3.8 16.7 28.5 18.1 27.0 9.0 11.6 22.5 <0.001 0.516 0.169

X X X 6.6 5.2 9.4 41.4 10.2 29.9 9.1 12.7 23.7 <0.001 0.777 0.139

X X X 6.6 3.5 8.4 35.6 8.2 30.9 8.9 11.6 23.2 <0.001 0.741 0.082

X X X 7.1 3.5 13.6 32.4 16.5 27.1 9.0 11.0 22.8 <0.001 0.591 0.231

X X X 6.4 3.1 7.5 37.1 6.0 30.3 9.0 11.0 23.0 <0.001 0.636 0.115

*Overall observed seroprevalence in 2013 field study was 11.1% in urban, 15.3% in peri-urban, and 24.0% in rural areas. 

#Using test of difference between proportions, statistically significant results (p<0.05) in bold. 
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Animal species
Cat
Cow
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Goat
Horse
Mongoose
Pig
Rodent

Signifcant at p < 0.05
No
Yes

Figure 7. a) Individual/household-level exposure to animals � differences in exposure and predicted seroprevalence 

between residential settings.  Exposure is defined as the presence of animal species at the individual�s household. b) 

Community-level exposure to animals � differences in exposure and predicted seroprevalence between residential 

settings.  Exposure is defined as the presence of animal species at the individual�s community. Horizontal black lines 

indicate mean seroprevalence for each subgroup. Triangles/circles indicate a statistically significant/insignificant 

difference in seroprevalence between exposed and un-exposed groups.

DISCUSSION

Our study showed that model performance of BNs can be significantly improved by building 

models that better represent causality and account for dependencies among predictor and indicator 

variables. Group C BNs were structured to better represent causality and complex 

interdependencies between nodes, and performed better than the naïve BNs in Group A that were 

conceptually similar to standard regression models (i.e. predictor/indicator variables were 

independent). Our study demonstrated some useful features of BNs, including the ability to refine 

model structure, include strongly correlated predictor and indicator variables, and predict outcomes 

under complex scenarios. We used leptospirosis as a case study, but the approaches presented here 

could potentially be used to model other diseases or health outcomes.

We determined AUC for our models and obtained values between 0.58 and 0.63 for 25th and 75th 

percentile limits (Table 8), indicating poor model discrimination power. This means the 
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probability distributions for true positives and true negatives overlapped significantly, which can 

occur in situations of low prevalence, where the model never predicts a high probability for true 

cases. This could explain the poor AUC results for our models.37 Also, AUC does not take into 

account the predicted probability values and model goodness-of-fit.37 There are many other metrics 

that are commonly used to assess the performance of presence/absence models such as the ones 

presented in this paper. These include sensitivity (true positive rate), specificity (true negative rate), 

the True Skill Statistic (TSS) and Kappa Statistic. We chose to use AUC in our study because it 

measures performance across multiple cutoffs, while TSS and Kappa Statistic use the most probable 

outcome as the cutoff.  The limitation of using the most probable outcome as the cutoff is that the 

metric becomes less reliable when prevalence rates (true positive rates) for the outcome being 

predicted are low, because in these situations a model trained on data containing low prevalence 

rates will rarely predict a high probability of presence for any scenario. In our study, the predicted 

and actual seroprevalence of Leptospira for any scenario were mostly below 30%, indicating low 

prevalence rates. 

We compared predicted versus observed seroprevalence to assess the predictive performance of our 

BNs and found that Group C models (with the most complex structures) had the best performance, 

with R2 values of 0.75 to 1.00, and lower MSE compared to Group A and B models. Using the 

Group C models, we found that scenario analyses provided important insights into the relative 

importance of animal species in leptospirosis transmission in different ethnic groups and residential 

settings. These insights were gained by predicting outcomes under complex scenarios that included 

multiple correlated predictor/indicator variables, which would have been more difficult to achieve 

with regression methods. A central challenge in leptospirosis control is to identify specific points in 

exposure pathways where public health and environmental health interventions are likely to be most 

effective. Because of the complex and variable transmission dynamics of leptospirosis, scenario 

analyses using BNs could be useful for providing insights to inform more targeted prevention and 

control strategies for subpopulations.

In the Pacific Islands, leptospirosis has been identified in many animal species including rodents 

and livestock,38 and is considered as one of the most important livestock diseases in the region in 

terms of impact on human health.39  However, the relative importance of each animal disease in 

human infections is currently poorly understood.  Our results provide epidemiological evidence that 

multiple animal species are likely to be important in leptospirosis transmission in Fiji, and that the 

intensity of exposure to animals as well as the relative importance of each animal species vary 
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significantly between ethnic groups and residential settings, i.e. the prevalence of risk factors vary 

significantly between subgroups. For iTaukei, contact with rodents and mongoose and community-

level exposure to livestock were strongly associated with infection. In contrast, very few Indo-

Fijians reported contact with rodents or mongoose, but household exposure to livestock was 

important. In rural areas, physical contact with rodents and mongoose were important. Community-

level exposure to pigs was important in all residential settings. Importantly, in urban settings, 

exposure to livestock was associated with a very high risk of infection, possibly because animals are 

kept closer to homes compared to rural areas.  This finding is concerning, because the combination 

of population growth, urbanisation, and agricultural intensification (including subsistence farming) 

might fuel future urban outbreaks in this setting.  

Detailed insights about the role of different animal species in different socio-ecological niches 

could potentially be useful for designing interventions that are specifically relevant for subgroups, 

e.g. health promotion messages related to contact with rodents and mongoose should be particularly 

strengthened in iTaukei communities, but improving management of livestock animals is important 

for all communities in Fiji. Animal and anthropological studies will be required to confirm the 

epidemiological associations identified by our study. Our findings provide important baseline data 

for developing future studies to assess the impact of interventions in Fiji, e.g. evaluating specific 

strategies for each ethnic group and residential setting. 

Our results should be interpreted in light of the study�s limitations. The study�s outcome measure 

was the presence of Leptospira antibodies, which is an indication of prior infection. However, many 

leptospirosis infections are asymptomatic and the severity of clinical infections depends on many 

factors including age, comorbidities, and pathogen virulence. Our study used animal data at the 

place of residence, but it is possible for infections to occur elsewhere. The database was obtained 

from a cross-sectional study conducted in 2013, and it is possible for risk factors to evolve over 

time. 

The application of BNs in infectious disease epidemiology has recently been increasing. A recent 

study used BNs to model meningitis outbreaks in the Niger using historical epidemiological 

databases, and concluded that BNs provide a promising approach for understanding the dynamics of 

epidemics, estimating the risk of outbreaks, and providing information to target control 

interventions.40 BNs have also been used to model seasonal and population influences on 

pneumonic plague,41 the impact of demographics and vaccination on influenza,42 hierarchical 
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relationships of risk factors associated with infectious diarrhoea in children,43 and household factors 

that influence the risk of malaria in sub-Saharan Africa.44  

There are other advantages of Bayesian networks that were not fully explored in this study, 

including their graphical user interface that allow models to be more easily understood and 

interpreted; the interactive and dynamic setup that allows users to define complex scenarios and see 

updated predictions almost immediately; the ability to incorporate different sources and types of 

knowledge including empirical data and expert opinion; the ease with which new data can be 

incorporated into models to update probabilistic relationships between variables; the ability to 

model causal pathways; and the ability to use the models in predictive or diagnostic modes, or a 

combination of both as shown in the BNs used in this study.11,12,33 BNs have therefore been used in 

many disciplines including medicine, ecology, environmental sciences, engineering, gaming, and 

artificial intelligence. 

Future work on the use of BNs in infectious disease epidemiology should explore the development 

of more complex models that incorporate a wider range or predictor/indicator variables, including 

variables that operate at different ecological scales.  Integrating BNs with other types of models that 

include spatial, temporal or dynamic components will also help improve understanding of disease 

transmission.

CONCLUSIONS

We demonstrated that BNs provide a promising alternative approach to modelling infectious disease 

epidemiology and unravelling the complex drivers of transmission. Using BNs, our study provided 

important information on the role of different animal species in leptospirosis transmission in Fiji. 

We showed that the drivers of leptospirosis transmission are likely to vary between socio-ecological 

niches, with important implications for targeted prevention and control strategies. Although our 

study focused on leptospirosis in Fiji, the analytical approaches could be used to model other 

diseases or health outcomes.
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