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Abstract

Over the last decades, malaria has declined substantially in The Gambia but its transmis-

sion has not been interrupted. In order to better target control interventions, it is essential to

understand the dynamics of residual transmission. This prospective cohort study was con-

ducted between June 2013 and April 2014 in six pairs of villages across The Gambia. Blood

samples were collected monthly during the transmission season (June-December) from all

residents aged�6 months (4,194 individuals) and then in April (dry season). Entomological

data were collected monthly throughout the malaria transmission season. Ownership of

Long-Lasting Insecticidal Nets was 71.5% (2766/3869). Incidence of malaria infection and

clinical disease varied significantly across the country, with the highest values in eastern

(1.7/PYAR) than in central (0.2 /PYAR) and western (0.1/PYAR) Gambia. Malaria infection

at the beginning of the transmission season was significantly higher in individuals who slept

outdoors (HR = 1.51, 95% CI: 1.02–2.23, p = 0.04) and in those who had travelled outside

the village (HR = 2.47, 95% CI: 1.83–3.34, p <0.01). Sub-patent infections were more com-

mon in older children (HR = 1.35, 95% CI: 1.04–1.6, p <0.01) and adults (HR = 1.53, 95%

CI: 1.23–1.89, p<0.01) than in younger children. The risk of clinical malaria was significantly

higher in households with at least one infected individual at the beginning of the transmis-

sion season (HR = 1.76, p<0.01). Vector parity was significantly higher in the eastern part of

the country, both in the south (90.7%, 117/129, p<0.01) and the north bank (81.1%, 227/

280, p<0.01), than in the western region (41.2%, 341/826), indicating higher vector survival.

There is still significant residual malaria transmission across The Gambia, particularly in the

PLOS ONE | https://doi.org/10.1371/journal.pone.0187059 November 2, 2017 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Mwesigwa J, Achan J, Di Tanna GL,

Affara M, Jawara M, Worwui A, et al. (2017)

Residual malaria transmission dynamics varies

across The Gambia despite high coverage of

control interventions. PLoS ONE 12(11):

e0187059. https://doi.org/10.1371/journal.

pone.0187059

Editor: Luzia Helena Carvalho, Centro de Pesquisas

Rene Rachou, BRAZIL

Received: March 17, 2017

Accepted: October 12, 2017

Published: November 2, 2017

Copyright: © 2017 Mwesigwa et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The participant data

has been collected following provision of informed

consent under the prerequisite of strict participant

confidentiality (SCC reference 1318). Access to

participant data can be accessed following review

of the request by the Gambia Government/MRC

Joint Ethics Committee to protect the rights and

interests of the study participants. The review

process and release of data will be facilitated by

MRC Unit The Gambia (MRCG) and access will not

be unduly restricted. MRCG is however committed

https://doi.org/10.1371/journal.pone.0187059
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187059&domain=pdf&date_stamp=2017-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187059&domain=pdf&date_stamp=2017-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187059&domain=pdf&date_stamp=2017-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187059&domain=pdf&date_stamp=2017-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187059&domain=pdf&date_stamp=2017-11-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187059&domain=pdf&date_stamp=2017-11-02
https://doi.org/10.1371/journal.pone.0187059
https://doi.org/10.1371/journal.pone.0187059
http://creativecommons.org/licenses/by/4.0/


eastern region. Additional interventions able to target vectors escaping Long-Lasting Insec-

ticidal Nets and indoor residual spraying are needed to achieve malaria elimination.

Background

Over the last 15 years, the burden of malaria has decreased substantially worldwide, sub-Saha-

ran Africa included, thanks to the scale up of standard control interventions such as prompt

diagnosis and treatment, long-lasting insecticidal nets (LLINs), and indoor residual spraying

(IRS) [1]. The Gambia is one of the first African countries in which such decline has been doc-

umented; between 2003 to 2007 the proportion of malaria positive slides decreased by 74%, a

4-fold decline, and malaria hospital admissions decreased by 81%, a 5-fold decline [2, 3].

These trends continued over the next few years, and between 2010 to 2015 malaria incidence

and mortality declined by 60% [1]. Despite the observed improvement in malaria indicators

and relatively high coverage of malaria control interventions (65% for LLINs [1]), malaria

transmission, which is markedly seasonal (June-December), is still on-going and has become

increasingly heterogeneous [4]. Such phenomenon has already been reported in other African

countries [5, 6] at regional [7], village [8] and household level [9]. This observed heterogeneity

may be due to diversity in transmission intensity, [9] and exposure [10, 11]. Variations in the

ecology of the local vectors such as shift of biting time from late to early biting [12], increased

outdoor biting behaviour [13] and changes in species composition [14, 15] have been shown

to contribute to maintain transmission [16]. LLINs and IRS are effective against endophagic

and endophilic vectors but may also select for exophagic, exophilic vectors [12]. As transmis-

sion further declines, pockets of transmission, possibly stable over time, will become increas-

ingly important as countries target elimination [17].

In The Gambia, the observed malaria heterogeneity, i.e. increasing transmission from west

to east, has been partly attributed to the variation in the distribution of the vector An.(Anophe-
les) gambiae complex (sensu lato); An. arabiensis is found mainly in the eastern part of the

country, An. melas, a brackish water species, in the central and western regions, and An. gam-
biae s.s. (sensu stricto) across the whole country [18]. An. arabiensis is predominantly outdoor

biting and may contribute to maintaining outdoor transmission. Indeed, for individuals pro-

tected by LLINs, a small but important portion of vector feeding activity occurring at dawn

and dusk accounts for approximately half of all transmission exposure to residual vector popu-

lations [19].

As transmission is markedly seasonal, it is assumed that malaria-infected but otherwise

healthy individuals, i.e. without any clinical symptoms of malaria, have probably acquired

their infections during the transmission season. In high transmission settings, microscopy can

identify a substantial proportion of asymptomatic infections while in low transmission settings

molecular methods are needed as most infection are sub-microscopic [20, 21]. Infected indi-

viduals can carry malaria infections for weeks or months, without any clinical manifestation

[22], and restart the next malaria transmission season [23, 24].

National Malaria Control Programs (NMCP) in collaboration with academic institutions

should estimate the magnitude of the problem of residual transmission, including information

on human and vector behavior, and intervention effectiveness [25]. As the Gambia NMCP

aims at achieving the pre-elimination status, i.e. slide positivity rate<5%, by 2020 [26], it is

essential to understand the local residual transmission and the factors maintaining it, and to

identify targets for new interventions.
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Methods

Study sites

This cohort study was carried out in six sites across The Gambia, in the western, central and

eastern part of the country, further subdivided into the north and south banks. This division

corresponded roughly to five of the seven administrative regions, namely West Coast (WCR),

North Bank (NBR), Lower River (LRR), Central River (CRR) and Upper River (URR) Regions,

with the latter further divided in the north (URR-N) and south (URR-S) bank. In each of the

study sites, we carried out a cross-sectional survey in November 2012, at the peak of the trans-

mission season [4], in six villages located around the primary school with the highest preva-

lence of antimalarial antibodies as established by a nationwide school survey carried out in

May 2012 [7]. In each site, the village with the lowest and the one with the highest malaria

prevalence were selected with the aim of investigating local heterogeneity of transmission.

This resulted in six village pairs; each pair of villages were approximately 1–3 km apart, with

populations ranging between 100 and 700 individuals.

Recruitment and follow-up

In April 2013, following village sensitization meetings, all residents (as confirmed by house-

hold heads), aged�6 months were recruited after provision of individual informed consent

(parents for children) and assent for children�12 years old. Individuals with chronic medical

conditions were also included. Recruitment lasted three months (May-July 2013) to maximize

coverage. Case record forms (CRFs) were pre-tested in March 2013, prior to starting the study,

to evaluate the logical flow of the questions and correct interpretation of each question into the

local language by the field coordinator and the understanding of the questions by the inter-

viewees S1 File Case record form. The pre-testing was conducted in three rounds in a village

near the study site in the western region. During each round, the senior study field coordina-

tors and a nurse administered the questionnaire to ten residents. The CRFs were also reviewed

by the data manager. The lessons learnt from the pre-test were used to change the CRFs prior

the finalization of the data base and field work implementation. Demographic data and LLIN

household coverage were collected at baseline.

Monthly surveys, in which all residents present in the villages were included, were carried

out during the last 2 weeks of each month, between June and December 2013; an additional

survey was done in April 2014, during the dry season. At each survey, information on the use

of LLIN, sleeping habits (outdoors), malaria symptoms, antimalarial treatment, and travel his-

tory was collected. Village health workers, one per village, helped the study nurses by providing

information on participants who travelled, or migrated out of the village or had died. Axillary

temperature was measured using a digital thermometer. A blood sample was collected by fin-

ger prick for haemoglobin measurement, malaria diagnosis by microscopy and molecular

analysis on dry blood spots filter paper, (Whatman 3 Corporation, Florham Park, NJ, USA).

Clinical malaria patients were identified by passive case detection at local health facilities or in

villages by study nurses, and were treated with artemether-lumefantrine. Clinical malaria was

defined as a history of fever in the previous 24 hours and / or axillary temperature� 37.5˚C

with a positive Rapid Diagnostic Test (RDT) (Paracheck Pf, Orchid Biomedical System, India).

Human behaviour was assessed by asking about travel history outside the village and sleeping

outdoors at night in the previous 30 days. A household was defined as a group of individuals

living in the same building and eating from the same pot. The structure of each house was

defined as traditional or modern based on the following characteristics; type of roof (metal/

cement or grass thatched), type of wall (mud or cement), open or closed eaves, presence of
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windows and presence or absence of screens on the windows. The proportion of houses with

each of these variables was defined as the number of houses with that specific variable divided

by the total number of houses in each village. LLIN use, sleeping outdoors at night, travel out-

side the village were defined as the number of individuals that reported LLIN use the previous

night, sleeping outdoors and travelling any time during the month by the total number of indi-

viduals surveyed, respectively. P. falciparum infections were detected by diagnostic nested

PCR from the collected dry blood spots. Asymptomatic malaria infections were defined as pos-

itive nested PCR in individuals without fever (or other acute symptoms), and no history of

recent antimalarial treatment [27]. Sub-patent infections were infections detected by nested

PCR but negative by microscopy in asymptomatic individuals.

Molecular diagnostics and parasitology

For diagnostic nested PCR, three 6mm dried filter paper blood spots (DBS) were punched into

a 96-well plate. DNA was extracted from the dry blood spots using the automated QIAxtractor

robot (Qiagen). Negative and positive (3D7) controls were included to control for cross-con-

tamination and DNA extraction efficiency, respectively. The blood spots were lysed by incu-

bating them in tissue digest buffer at 60˚C for 1 hour and digested eluates were applied onto

capture plates, washed, and the DNA eluted into 80μl.The extracted DNA (4μl) was used in a

nested PCR amplifying the multi-copy Plasmodium ribosomal RNA gene sequences using

genus and species specific primers [28, 29]. All PCR products were run using the QIAxcel cap-

illary electrophoresis system (Qiagen), using the screening cartridge and 15–1000 bp-align-

ment markers. Results were exported and double scored using both the QIAxcel binary

scoring function and manually by visualization of the gel images; discrepancies were scored by

a third independent reader [30]. Positive nested PCR samples (1,864) were selected for micros-

copy and a random sample of them (1,442) for gametocyte detection by mRNA Quantitative

Nucleic Acid Sequence based Amplification (QT-NASBA) [31].

Thick blood smears were stained with 2% Giemsa for 30 minutes and examined by two

independent microscopists. Discrepancies were settled by a third reader. Parasite density was

estimated by counting the number of parasites per 200 WBC, and assuming 8,000 WBC/μL of

blood. Blood smears were considered negative if no parasites were found after reading 100

high power fields.

Entomological surveys

Monthly entomological sampling was done from 7pm to 7am by human landing catches

(HLCs) and CDC light trap catches (LTC). Indoor and outdoor HLCs were conducted in two

houses per village for three consecutive nights (n = 6). Upon completion of the HLCs, LTCs

were set up in six houses per village on alternative nights for two nights (n = 12). Each morn-

ing, mosquitoes were counted and species identified morphologically. The An. gambiae sensu
lato (s.l) mosquitoes were separated from An. funestus and stored in separate tubes with silica

gel. Other anophelines and culicine mosquitoes were counted and discarded. An. gambiae s.l.
females captured by HLCs were dissected to extract the ovaries and determine parity [32, 33].

An. gambiae s.l. head and thorax samples were used for the detection of P. falciparum circum-

sporozoite protein (CSP) by ELISA [34].

Study outcomes

The primary outcome was incidence of P. falciparum infection (malaria infection) as deter-

mined by nested PCR.
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Secondary outcomes included; incidence and prevalence of clinical malaria, prevalence of

asymptomatic malaria infections, gametocytes, and sub-patent infections.

Entomological outcomes included; entomological inoculation rate (EIR) and vector parity.

Statistical analysis

Data were double entered into a Microsoft Access1 database and analysed using Stata 14 (Col-

lege Station, Texas, USA). Recurrent episodes of P. falciparum infection were categorized as 1,

2, and� 3 episodes per individual. Anaemia was categorized as mild, moderate or severe

according the WHO age-specific criteria [35]. Binary variables were summarized into propor-

tions with the 95% confidence intervals. The two sample test of proportions was used to com-

pare proportions of secondary outcomes between the WCR and each of the other regions

(NBR, LRR, CRR, URR-S, and URR-N) and between July and each of the other months

(August, September, October, November and December). The Benjamin-Hochberg procedure

was used to correct for multiple testing because several tests for proportions were carried out.

Pearson’s chi-squared test was used to determine outcomes’ trends during the transmission

season.

Monthly incidence rates of P. falciparum infection were calculated by dividing the number

of new infections (positive individuals who were nested PCR negative the previous monthly

survey) by person-years. Incidence rate ratios (IRRs) compared the incidence of P. falciparum
infection and clinical malaria between WCR and the other regions (NBR, LRR, CRR, URR-S,

and URR-N). A Cox proportional hazards model and Kaplan-Meier survival curves were used

to estimate the risk of clinical malaria among members within the same household with or

without at least a malaria-infected individual at the start of the transmission season (June-

July). Cox proportional hazards models with a shared frailty at region level and controlled for

changes in variables (e.g. LLIN use) over time were used to predict the factors associated with

P. falciparum infection at the start of the transmission season (June-July) and factors associated

with sub-patent infection. A Poisson model was used to predict individual’s and household’s

risk factors of recurrent malaria infections. Confidence intervals for gametocyte prevalence

were calculated by the Wilson Score method with continuity correction. The sporozoite rate

was the proportion of P. falciparum CSP positive mosquitoes divided by the total number of

mosquitoes caught. The human-biting rate (HBR) was expressed as the number of bites per

person per night (b/p/n) determined by dividing the number of mosquitoes collected by the

number of volunteers per night. The entomological inoculation rate (EIR) was estimated by

multiplying the sporozoite rate by the human-biting rate [33]. Vector densities by HLC were

weighed according to the proportion of individuals sleeping both indoors and outdoors and

estimated by month and region. The weighted proportions were then compared between

WCR and the other regions, and across the transmission season.

Parity was defined as the proportion (p) of parous vectors divided by the total collected by

HLC and LTC (p/np+p), by region. Pairwise Binary data between vector parity and incidence

of malaria infection were compared using a Pearson chi-squared test and the correlations were

based on the Spearman rank based approach.

Ethical approval

Verbal consent from the study communities was obtained at village meetings prior to field

activities. Written informed consent was obtained from all participants� 18 years old and

assent from children aged 11–17 years. Parents/guardians provided written consent for chil-

dren<18 years. All households selected for LTCs and volunteers for HLCs provided additional

written informed consent. The study was approved by the Scientific Coordinating Committee
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of the Medical Research Council Unit The Gambia (SCC 1318), and the Gambia Government/

MRC Joint Ethics Committee.

Results

In June 2013, a total of 4,194 residents were enrolled from 426 households across the twelve

study villages (Fig 1)

Sleeping outdoors was high in July (42.11%, 1540/3657) but declined significantly in Sep-

tember (3.15%, 89/2826, p<0.01) and November (1.55%, 52/3355, p<0.01) (Table 1).

At the start of the transmission season, in June and July, the overall malaria prevalence was

4.94% (76/1537, 95% CI: 4.26–6.62) and 4.86% (181/3723, 95% CI: 4.57–6.07), respectively. At

this time, the risk of malaria infections was significantly lower in females (Hazard Ratio

(HR) = 0.72, 95% CI: 0.54–0.97, p = 0.03) than males, among LLIN owners (HR = 0.49, 95%

CI: 0.34–0.69, p<0.01), than in individuals without LLINs and lower in individuals sleeping

under an LLIN (HR = 0.32, 95% CI: 0.19–0.54, p<0.01); it was significantly higher among

those who had travelled outside the village (HR = 2.48, 95% CI: 1.83–3.34, p<0.01) and in

those who slept outdoors (HR = 1.51, 95% CI: 1.02–2.23, p = 0.04). (Table 2)

During the entire transmission season, about a third (34.98%, 644/1841) of infections were

sub-patent, the highest proportion found in June (55.26%, 42/76) and July (43.09%, 78/181), at

the beginning of the transmission season, while the lowest was in October (19.15%, 68/355)

(Fig 2). Sub-patent infections were significantly more frequent in June than September

(40.26%, 62/154 p = 0.03), October (19.15%, p<0.01) and November (24.38%, 127/521

p<0.01). Older children (HR = 1.35, 95% CI: 1.04–1.6, p = 0.01) and adults (HR = 1.53, 95%

CI: 1.23–1.89, p<0.01) had a higher risk of sub-patent infections compared to younger chil-

dren. Similarly, individuals with mild anaemia (HR = 1.4, 95% CI: 1.23–1.6, p = 0.01) had a

higher risk of having sub-patent infections compared to those with normal haemoglobin levels.

(Table 3)

Malaria prevalence during the dry season (April 2014) was 6.68% (212/3173), and 60.37%

(128/212) of these infections were sub-patent. Most infected individuals in April (74.53%,

158/212) were negative in December 2013.

The overall incidence rate of malaria infections was 1.01 infections/PYAR (95% CI: 0.94–

1.17) and that of clinical malaria was 0.38 infections/PYAR (95% CI: 0.36–0.43). Incidence of

malaria infections was low in July (0.73/PYAR; 95% CI: 0.62–0.86), decreased significantly in

August (0.49/PYAR; 95% CI: 0.24–0.57) and September (0.39/PYAR; 95% CI: 0.32–0.46),

p<0.01, and increased steadily in October (0.99/PYAR; 95%CI: 0.89–1.11), November (1.60/

PYAR; 95%CI: 1.46–1.76) and December (2.47/PYAR; 95% CI: 2.21–2.77) (p<0.01).

(Table 4)

Similarly, the incidence of clinical malaria increased significantly from August (0.09/PYAR,

95% CI: 0.06–0.13) to December (0.37/PYAR, 95% CI: 0.28–0.49) with the peak in November

(1.09/PYAR; 95% CI: 0.98–1.20) (p<0.01), when compared to July. (Table 5 and Fig 2).

Malaria prevalence in July was similar and not statistically different across the regions

(2.84% in WCR, 3.41% in NBR, 4.70% in LRR, 3.53% in CRR), with the exception of the

URR-S (5.83%, 95% CI: 4.45–7.20, p = 0.05) and URR-N (8.85%, 37/418, 95%CI: 6.31–11.39,

p<0.01) where it was significantly higher than in the WCR.

The pattern of both P. falciparum infection and clinical malaria incidence during the trans-

mission season differed substantially between regions (Fig 3)

The proportion of sub-patent infections varied substantially across regions, and with the

highest values in CRR (74.23%, 72/97) and NBR (62.86%, 88/140) and the lowest in URR-N

(35.39%, 200/565) and URR-S (24.47%, 195/797) (Fig 3). Sub-patent infections occurred
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Fig 1. Study flow chart. The total follow-up time was 1,592.5 person years at risk (PYAR). The median age was 13

years (Inter-quartile range (IQR) 5, 28; range 6 months-90 years). LLINs ownership was high (71.49%, 2766/3869)

and their use varied significantly by month, with July, at the start of the transmission season, having the lowest

proportion (52.22%, 1916/3669), and increasing significantly from August (87.05%, 2811/3229) to October (94.04%,

2809/2987), p<0.01 (Fig 2).

https://doi.org/10.1371/journal.pone.0187059.g001
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significantly less in the WCR (22.28%, 85/184) (p<0.01) than in the other regions, with the

exception of URR-S (p = 0.53).

None of the infections identified in June carried gametocytes; however, the proportion of

infections with gametocytes increased significantly, from 9.39% (17/181) in July, to 21.69%

Table 1. Study participant and house structural characteristics in the study sites.

Variable Frequency (%)

Gender (N = 4,193)

Male 1,932 (46.08)

Female 2,261 (53.92)

Age categories (N = 4,171)

6 months to 5 years 834 (19.99)

> 5 to 15 years 1388 (33.27)

>15 to 30 years 928 (22.24)

> 30 years 1021 (24.47)

Anaemia (Hb<10 g/dl) July 2013

Children� 5 years (N = 931) 218 (23.41)

Children 5 to <15 years (N = 1048) 150 (14.31)

Women 15 to 45 years (N = 759) 231 (30.43)

LLIN ownership (N = 3,869) 2,766 (71.49)

Slept under LLIN the previous night

June (N = 1,514)* 781 (51.58)

July (N = 3,669) 1,916 (52.22)

August (N = 3,229) 2,811 (87.05)

September (N = 2,860) 2,457 (85.91)

October (N = 2,987) 2,809 (94.04)

November (N = 3,374) 2,625 (77.80)

December (N = 3,290) 1,988 (60.43)

Sleep outdoors at night

June (N = 1,486)* 211 (14.19)

July (N = 3,658) 1,540 (42.09)

August (N = 3,288) 132 (4.0)

September (N = 2,826) 89 (3.15)

October (N = 3,211) 223 (6.94)

November (N = 3,355) 52 (1.55)

December (N = 3,286) 728 (22.15)

Travel outside the village (N = 20,768) 2,569 (12.36)

Roof structure (N = 426)

Cement/concrete 5 (1.17)

Metallic/corrugates iron sheets 315 (73.94)

Grass thatched 106 (24.88)

Wall structure (N = 423)

Cement plastered 79 (18.67)

Mud bricks 344 (81.32)

Eaves present (N = 423) 349 (82.51)

Window screens (N = 347) 16 (4.61)

*URR-S and URR-N not sampled in June

https://doi.org/10.1371/journal.pone.0187059.t001
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(113/521 p<0.01) in November (Fig 2) (S1 Table). During the dry season, the overall propor-

tion of infections with gametocytes was 14.1% (31/220).

Most individuals (17.99%, 752/4179) had a single episode of P. falciparum infection; 5.36%

(224/4179) had two and 2.46% (103/4179) had three or more episodes. Multiple episodes of

malaria infections were significantly more frequent in the URR-N (25.54%, 118/462) and

URR-S (10.65%, 123/1154) than in WCR (2.01%, 15/747) (p<0.01). Older children (5 to 14.9

years) (IRR = 1.42, 95%CI: 1.21–1.59, p<0.01) had a higher risk of multiple episodes and

adults�30years a lower risk (IRR = 0.75, 95% CI: 0.63–0.89, p = 0.002) than younger children.

Similarly, females (IRR 0.87, 95% CI: 0.78–0.97, p = 0.02) and LLIN owners (IRR = 0.84, 95%

CI: 0.74–0.94, p = 0.003) had a lower risk of multiple episodes of infection (Table 7).

In households with at least one malaria-infected individual at the beginning of the transmis-

sion season, the household risk of clinical malaria for other household members was signifi-

cantly higher (HR = 1.76, p<0.01) than in the rest of the population, regardless of their

infection status (uninfected: HR = 1.43, p<0.01; infected: HR = 1.76, p<0.01) (Fig 4)

A total of 10,184 anopheles mosquitoes were captured, almost half (45.24%, 4607/10184) by

HLC. An. gambiae s.l. was the main vector in all regions, with the exception of CRR where An.

funestus was the most predominant one (53.77%, 1865/3468). Indoor biting, after weighing for

sleeping indoors or outdoors, was higher than outdoors biting, in all regions. Indoor biting

was significantly higher in the WCR than in other regions (p<0.01) except in the CRR

(p = 0.74) (Table 8).

Indoor biting was significantly lower in July than in each of the following months, with

more than 90% of indoor biting between August and November (Table 9).

A substantial proportion of biting occurred between 4-6am in all regions (Fig 5)

Table 2. Risk factors of P. falciparum infection at the start of the transmission season.

Univariate analysis Multivariate analysis

Hazard ratio

(95% CI)

P value Hazard ratio

(95% CI)

P value

Age groups

< 4.9 years 1 1

5–14.9 years 1.32 (0.81–2.15) 0.26 1.25 (0.77–1.99) 0.36

15–29.9 years 0.91 (0.75–1.10) 0.32 0.82 (0.60–1.12) 0.21

� 30 years 0.83 (0.57–1.11) 0.21 0.73 (0.49–1.07) 0.11

Gender

Males 1 1

Females 0.69 (0.57–0.84) <0.01 0.72 (0.54–0.97) 0.03

LLIN ownership at the start of season

No 1

Yes 0.43 (0.30–0.61) <0.01 0.49 (0.34–0.69) < 0.01

Slept under LLIN during the transmission season

No 1

Yes 0.22 (0.1–0.5) <0.01 0.32 (0.19–0.54) <0.01

Travelled outside the village

No 1

Yes 5.59 (2.4–12.9) <0.01 2.48 (1.83–3.34) <0.01

Sleep outdoors

No 1

Yes 4.42 (1.7–11.3) 0.002 1.51 (1.02–2.23) 0.04

https://doi.org/10.1371/journal.pone.0187059.t002
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Similarly for each vector species, substantial proportion of indoor and outdoor biting

occurred between 4am-6am (Fig 6)

Speciation by PCR was successful for 65.43% (1963/3000) of the An. gambiae s.l. An. coluzzii
was the predominant species in western (WCR and NBR) and eastern (URR-S and URR-N)

Gambia while An. gambiae s.s. was most common in the other two regions, LRR and CRR, in

the centre of The Gambia. An arabiensis was mainly found in the central and eastern regions

(Table 10).

The species composition varied substantially during the transmission season (Fig 7)

The unadjusted vector parity was correlated (Spearman) with the incidence of malaria

infection (r2 0.7, p<0.01) but not with that of clinical malaria (r2 0.4, p = 0.3) (Fig 8)

Discussion

The prevalence and incidence of malaria infection and clinical disease during the 2013 trans-

mission season were significantly different across the six study sites, despite similar high cover-

age of control interventions. Mass distribution of LLINs was carried out in 2009, 2011 and

2014, and annual indoor residual spraying (IRS) with DDT since 2009; the last cycle was

Fig 2. Overall prevalence and incidence of malaria infection, clinical malaria, gametocytaemia and proportion of LLIN use by month.

https://doi.org/10.1371/journal.pone.0187059.g002
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implemented in August 2013 in all rural regions [36]. The most striking difference between

regions, possibly explaining the higher endemicity in the eastern part of the country, was the

high vector parous rate in URR, indicating high survival rate which would increase the vector’s

probability of becoming infectious. Such high vector survival is surprising when considering

the high coverage of LLINs and IRS. In 2008, DDT and permethrin resistance was reported in

western but not eastern Gambia [37]. However, a few years later, high resistance to pyrethroids

and DDT was observed in one village in URR-S.[38] In 2013, it was confirmed that phenotypic

resistance to DDT (mortality-An. gambiae s.s. 6%; An. arabiensis 9%; An. coluzzii 67%) and

deltametrin (mortality-An. gambiae s.s. 41%; An. arabiensis: 97%; An. coluzzii: 89%) was more

Table 3. Risk factors of sub-patent P. falciparum infections*.

Univariate analysis Multivariate analysis

Variable HR (95% CI) p value HR (95% CI) p value

Age category

< 4.9 years 1 1

5–15 years 1.39 (1.07–1.81) 0.01 1.35 (1.04–1.6) 0.01

16–30 years 1.49 (1.25–1.78) < 0.01 1.53 (1.23–1.89) < 0.01

�30 years 1.3 (0.9–1.89) 0.07 1.47 (0.9–1.91) 0.1

Gender

Males 1 1

Female 0.78 (0.7–1.15) 0.31 0.79 (0.56–1.13) 0.1

Anaemia

Normal 1 1

Mild 1.4 (1.2–1.6) < 0.01 1.4 (1.23–1.6) < 0.01

Moderate 1.3 (0.9–1.7) 0.1 1.3 (0.9–1.7) 0.1

Severe 1.2 (0.8–1.9) 0.3 1.3 (0.8–2.0) 0.2

LLIN use at night

No 1

Yes 0.9 (0.6–1.6) 0.21 - -

Sleep outdoors

No 1

Yes 0.9 (0.5–0.80) 0.8 - -

Travelled outside the village

No 1

Yes 1.4 (0.7–2.9) 0.38 - -

* Sub-patent infections: positive by nested PCR and negative by microscopy in asymptomatic individuals

https://doi.org/10.1371/journal.pone.0187059.t003

Table 4. Incidence rates of P. falciparum infections by month (95%CI).

Month P. falciparum episodes Person-years (PYAR) Incidence rates Incidence rate ratio p value

July 151 206.76 0.73 (0.62–0.86) 1

August 156 320.71 0.49 (0.42–0.57) 0.67 (0.53–0.84) <0.01

September 121 312.19 0.39 (0.32–0.46) 0.53 (0.42–0.68) <0.01

October 314 316.11 0.99 (0.89–1.11) 1.36 (1.12–1.67) 0.01

November 453 282.48 1.60 (1.46–1.76) 2.20 (1.83–2.67) <0.01

December 300 121.41 2.47 (2.21–2.77) 3.39 (2.79–4.16) <0.01

* Incidence rate ratios comparing incidence in July with the other months during the transmission season

https://doi.org/10.1371/journal.pone.0187059.t004
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Table 5. Incidence rate of clinical malaria by month (95%CI)*.

Month Clinical malaria episodes Person-years (PYAR) Incidence rates Incidence rate ratio p value

July 8 206.76 0.04 (0.02–0.08) 1

August 29 320.71 0.09 (0.06–0.13) 2.34 (1.05–5.94) 0.003

September 60 312.19 0.19 (0.15–0.25) 4.98 (0.37–12.05) <0.01

October 180 316.11 0.57 (0.49–0.66) 14.74 (7.32–34.66) <0.01

November 308 282.48 1.09 (0.98–1.20) 28.26 (14.16–66.05) <0.01

December 45 121.41 0.37 (0.28–0.49) 9.62 (4.49–23.64) <0.01

* Incidence rate ratios comparing incidence rates in July to other months during the transmission season

https://doi.org/10.1371/journal.pone.0187059.t005

Fig 3. Prevalence and incidence of malaria infection and clinical malaria by month and region. The incidence rates were significantly higher in

three regions compared to the WCR; URR-N (P. falciparum infection = 2.82/PYAR, 95% CI: 2.57–3.10; and clinical malaria = 1.0/PYAR, 95%CI: 0.82–

1.11, p<0.01) and URR-S (P. falciparum infection = 1.42/PYAR, 95% CI: 1.31–1.54; and clinical malaria = 0.8/PYAR, 95%CI: 0.68–0.85; p<0.01) had the

highest incidence, followed by LRR (P. falciparum infection = 0.98/PYAR, 95% CI:0.86–1.12; clinical malaria = 0.36/PYAR, 95%CI: 0.29–0.455; p<0.01).

The incidence of P. falciparum infections in the WCR (0.47/PYAR, 95% CI: 0.40–0.56) was 2 times higher than in the CRR (0.29/PYAR, 95%CI: 0.22–

0.37) (p<0.01) where not a single clinical malaria case was detected (Table 6 and Fig 3).

https://doi.org/10.1371/journal.pone.0187059.g003
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common in eastern Gambia [39]. However, a recent multi-country study did not find any

association between malaria incidence and insecticide resistance [40].

Differences in species composition between and within the different regions may further

explain the observed residual transmission and high endemicity in the eastern region. An. ara-
biensis and An. coluzzii represented together about 80% of the vector population in URR,

where the incidence of infection and clinical malaria was the highest. These two species are

well adapted to the semi-arid conditions found in the eastern region and are highly efficient at

transmitting infection during the short transmission season. An. coluzzii is anthropophilic,

endophilic, endophagic, and late-night biting [18] while An. arabiensis is more zoophilic,

exophily, exophaghic, and early-night biting [12], though in our study these two species had

similar biting patterns. The low presence of An. gambiae s.s in the URR may be the result of

out-competition from other species. Entomological surveys in Gambia have shown heteroge-

neity in An. gambiae s.l species composition [41, 42] with the more recent survey showing het-

erogeneity between and within the village pairs [43]. Therefore, the presence of outdoor biting

Table 6. Incidence of infection and clinical malaria per person-years, by month and region (95%CI).

P. falciparum infection

Regions WCR NBR LRR CRR URR-S URR-N

July 0.23 0.24 0.56 0.62 - -

(0.13–0.39) (0.13–0.42) (0.37–0.85) (0.39–1.01)

August 0.38 0.55 0.60 0.24 0.56 0.62

(0.25–0.57) (0.38–0.80) (0.41–0.89) (0.13–0.43) (0.42–0.74) (0.44–0.96)

September 0.11 0.21 0.41 0.16 0.54 1.03

(0.05–0.24) (0.11–0.38) (0.26–0.67) (0.13–0.43) (0.40–0.72) (0.74–1.44)

October 0.37 0.20 0.91 0.04 1.81 2.30

(0.24–0.57) (0.11–0.38) (0.66–1.26) (0.01–0.18) (1.55–2.12) (1.85–2.87)

November 0.65 0.26 2.0 0.05 2.11 5.35

(0.47–0.92) (0.15–0.46) (1.58–2.53) (0.01–0.21) (1.81–2.47) (4.61–6.22)

December 0.67 1.13 2.17 0.93 2.87 6.77

(0.40–1.13) (0.73–1.76) (1.59–2.96) (0.51–1.67) (2.36–3.50) (5.63–8.14)

IRR compared to WCR 0.4 0.6 2.1 0.4 0.2

(0.3–0.5) (0.5–0.7) (1.7–2.7) (0.3–0.5) (0.15–0.24)

p<0.01 p<0.01 p<0.01 p<0.01 p<0.01

Clinical malaria

July 0.08 0 0 0 0.13 -

(0.04–0.21) (0.04–0.39)

August 0.21 0 0.14 0 0.08 0.12

(0.11–0.36) (0.02–0.22) (0.04–1.65) (0.05–0.33)

September 0.16 0.06 0.15 0 0.26 0.61

(0.08–0.31) (0.02–0.18) (0.07–0.33) (0.16–0.38) (0.37–0.92)

October 0.35 0.14 0.27 0 1.32 0.72

(0.23–0.55) (0.07–0.29) (0.13–0.47) (1.11–1.62) (0.42–0.98)

November 0.50 0.19 1.01 0 1.89 2.88

(0.34–0.73) (0.09–0.35) (0.67–1.36) (1.42–2.07) (2.36–3.68)

December 0.14 0.45 0.98 0 0.21 0.47

(0.04–0.44) (0.27–0.99) (0.61–1.64) (0.10–0.51) (0.23–1.14)

IRR compared to WCR 2.3 0.7 0 0.4 0.25

(1.8–3.0) (0.5–0.7) (0.3–0.5) (0.2–0.3)

p<0.01 p = 0.002 p<0.01 p<0.01

https://doi.org/10.1371/journal.pone.0187059.t006
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species or indoor feeding species with exophilic behavior suggests that, despite high coverage

of vector control interventions, they can still escape the insecticides’ killing or excito-repellent

action [12]. The higher risk for infection associated with sleeping outdoors and with traveling

outside the village, when people are less likely to use protective measures, suggests outdoor bit-

ing probably contributes to the on-going transmission. Besides physiological insecticide resis-

tance, behavioural resistance should also be considered. In LRR, URR north and south there is

still substantial biting activity early morning, between 4am and 6am. As substantial early

morning biting, both indoor and outdoor, had already been described in 1992 in central Gam-

bia,[44] a behaviour change in response to the high LLIN coverage is unlikely. The higher

malaria burden in eastern Gambia compared to the rest of the country had previously been

observed in the early 1990s. This region also had also the lowest vector densities and it was

hypothesized that the higher malaria prevalence was due to the low mosquito nuisance which

in turn resulted in low LLIN use [10, 45]. Such hypothesis does not seem plausible given the

current high LLIN coverage. Other unidentified factors may be responsible for the observed

heterogeneity of transmission and the decreasing gradient of malaria transmission, from east

to west, such as differences in human behaviour leading to higher exposure; for example, in

URR the large majority of people who slept outdoors did not use LLINs while in the other

regions LLINs were used also outdoors.

Malaria prevalence in the dry season was similar to that observed at the beginning of the

2013 transmission season. However, considering that most individuals infected in April 2014

Table 7. Risk factors for� 2 episodes of malaria infection.

Poisson model Multilevel Poisson model (random intercept for

regions)

IRR* p value IRR* p value

Age groups

< 4.9years 1 1

5–14.9years 1.42 (1.31–1.53) <0.01 1.39 (1.21–1.59) < 0.01

15–29.9years 1.01 (0.85–1.21) 0.9 0.89 (0.76–1.06) 0.21

�30years 0.73 (0.58–0.91) 0.01 0.75 (0.63–0.89) 0.002

Gender

Males 1 1

Females 0.81 (0.75–0.88) < 0.01 0.87 (0.78–0.97) 0.02

Hb

Normal 1 1

Mild anaemia 1.16 (1.05–1.28) 0.004 1.12 (0.98–1.29) 0.09

Moderate anaemia 1.01 (0.90–1.13) 0.84 1.02 (0.87–1.19) 0.85

Severe anaemia 1.12 (0.76–1.64) 0.58 0.90 (0.64–1.28) 0.57

LLIN ownership

No 1 1

Yes 0.62 (0.42–0.91) 0.01 0.84 (0.74–0.94) 0.003

Sleep outdoors

No 1 1

Yes 1.28 (0.94–1.74) 0.12 1.02 (0.83–1.24) 0.88

Travelled outside the village

No 1 1

Yes 1.33 (0.9–1.89) 0.10 0.92 (0.75–1.14) 0.46

*IRR: Incidence Rate Ratio

https://doi.org/10.1371/journal.pone.0187059.t007
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were malaria negative in December 2013, their infection was probably acquired at the very end

of the transmission season, when incidence of infection was the highest; thus most infections

identified in December were either cleared over the next 2–3 months or under the detection

threshold in April [46]. Individuals infected at the very end of the transmission season carry

their infections for six months during the dry season [22, 24, 47], and re-start transmission by

infecting the vector after the onset of rains.

Though malaria prevalence was strikingly similar in June 2013 (5.0%) and April 2014

(6.7%), gametocyte carriage at these two time points was extremely different, 0% and 14%,

respectively. It is unclear whether individuals infected in April 2014, who possibly restart

malaria transmission at the onset of rains, would gradually clear gametocytes. In the 2003 dry

season, in Farafenni, about half of the 37 infections detected carried gametocytes; interestingly

the proportion of infections with gametocytes did not vary by season though infectivity to

Fig 4. Kaplan Meier survival curves comparing the time to clinical malaria among household members with or

without at least a malaria-infected individual at the start of the transmission season. After adjusting for age, gender,

travel, LLIN use and sleeping outdoors, the risk remained significantly higher only for WCR (HR = 4.0, 95% CI: 2.1–7.5,

p<0.01) and URR-N (HR 1.5, 95% CI: 1.1–2.1, p = 0.02).

https://doi.org/10.1371/journal.pone.0187059.g004

Residual malaria transmission dynamics varies across The Gambia despite high coverage of control interventions

PLOS ONE | https://doi.org/10.1371/journal.pone.0187059 November 2, 2017 15 / 24

https://doi.org/10.1371/journal.pone.0187059.g004
https://doi.org/10.1371/journal.pone.0187059


Table 8. An. gambiae s.l. indoor and outdoor biting estimated by HLC, by region*.

Region An. gambiae s.l

indoor densities

An. gambiae s.l

outdoor densities

Weighted proportion

indoor biting

Weighted proportion

outdoor biting

Indoor/outdoor

biting

p value (compared

to WCR)

WCR 532 817 87.72 12.28 7.14

NBR 109 95 80.95 19.05 4.25 0.01

LRR 635 589 81.11 18.89 4.29 <0.01

CRR 327 329 88.20 11.80 7.48 0.74

URR-S 201 163 82.64 17.36 4.76 0.01

URR-N 214 202 76.61 23.39 3.28 <0.01

* Weighted proportions in indoor densities and outdoor densities adjusted for using the proportion of individuals sleeping indoors and outdoors

https://doi.org/10.1371/journal.pone.0187059.t008

Table 9. An. gambiae s.l. indoor and outdoor biting by month*.

Month Indoor HLC

densities

Outdoor HLC

densities

Weighted proportion

indoors

Weighted proportion

outdoor

Indoor/outdoor

ratio

p value (compared to

July)

July 223 227 57.45 42.55 1.35

August 226 322 94.20 5.80 16.25 <0.01

September 1230 1255 96.79 3.21 30.17 <0.01

October 271 334 90.85 9.15 9.93 <0.01

November 167 211 98.05 1.95 50.33 <0.01

December 81 59 82.85 17.15 4.83 0.02

* No vectors were captured by HLC in June

https://doi.org/10.1371/journal.pone.0187059.t009

Fig 5. An. gambiae s.l. indoor and outdoor biting patterns across study sites.

https://doi.org/10.1371/journal.pone.0187059.g005
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mosquitoes varied [48]. Seasonal variation of infectiousness has been recently confirmed; in

Burkina Faso, infectiousness was the highest (48.1%) at the onset of the transmissions season

and declined steadily to 15.5%, just at the beginning of the dry season. This may indicate some

stimulation for the production of gametocytes in asymptomatic individuals or an immunity-

related phenomenon favouring transmission to mosquitoes [49]. Higher infectiousness at the

beginning of the transmission season fits with the trends of incidence and prevalence observed

in most of our villages, particularly in eastern Gambia.

The risk of malaria infection at the start of the transmission season was higher among indi-

viduals who had travelled outside the study villages. This highlights the importance of human

mobility in maintaining transmission, especially in settings aiming at achieving pre-elimina-

tion [50]. Women had a lower risk of infection than men, an observation that may be due to

the use of control interventions as females are more likely to use LLINs than males as previ-

ously reported in Uganda, Tanzania and Angola [51].

The risk of clinical malaria was higher in households with at least one malaria-infected indi-

vidual at the beginning of the transmission season. Though this association, after adjusting for

Fig 6. Indoor and outdoor biting patterns on An. gambiae s.s, An. melas, An. coluzzii and An.

arabiensis during the 2013 transmission season.

https://doi.org/10.1371/journal.pone.0187059.g006

Table 10. Entomological inoculation rates (EIR) and species composition by region.

EIR Species composition (%)

Region An.arabiensis An. gambiae s.s M/S Hybrid An. melas An. coluzzii total

WCR 0.14 90 (14.54) 89 (14.38) 98 (15.83) 39 (6.30) 303 (48.95) 619

NBR 0 26 (19.70) 18 (13.64) 10 (7.58) 8 (6.06) 70 (53.03) 132

LRR 4.73 206 (36.08) 272 (47.64) 10 (1.75) 63 (11.03) 20 (3.50) 571

CRR 2.33 132 (29.07) 313 (68.94) 6 (1.32) 1 (0.22) 2 (0.44) 454

URR-S 3.66 27 (28.13) 6 (6.25) 10 (10.42) 0 53 (55.21) 96

URR-N 3.26 35 (38.46) 10 (10.99) 9 (9.89) 0 37 (40.66) 91

https://doi.org/10.1371/journal.pone.0187059.t010
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several confounding factors, remained significant only in two regions, it probably indicates the

higher risk of exposure to malaria in these households, possibly because of their location in

relation to breeding sites or their structure. Such clustering of malaria cases has been previ-

ously reported in a pooled analysis, showing that household members of index malaria cases

were overall five-times more likely to have malaria than members of other households [52]. In

Kenya, there was clustering of febrile malaria cases at individual household level [50]. Identify-

ing such infected individuals and treating the whole household before the transmission season

could be an alternative approach to mass drug administration. Pending the availability of diag-

nostic tests able to detect low density infections, this could delay the spread of infection across

the communities during the transmissions season and thus reduce the number of infected

individuals at the end of the season.

Fig 7. Variation An. gambiae s.l species composition across the transmission season. Vector parity was significantly higher in URR-S

and URR-N than in the other 4 regions (Table 11).

https://doi.org/10.1371/journal.pone.0187059.g007

Table 11. Vector parity by region.

Region Parous/Parous+ Nulliparous Parity(95% CI) p value

WCR 341/826 41.28 (37.93–44.64) -

NBR 47/173 27.16 (20.54–33.79) 0.03

LRR 383/788 48.60 (45.11–52.09) 0.01

CRR 338/479 70.56 (66.48–74.65) <0.01

URR-S 117/129 90.69 (85.68–95.71) <0.01

URR-N 227/280 81.07 (76.48–85.65) <0.01

*Comparison of parity between the WCR and other regions

https://doi.org/10.1371/journal.pone.0187059.t011
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Older children were at higher risk of multiple episodes of malaria infections, an observation

already made in settings with low malaria transmission. [53, 54] Studies in southern Africa

also report higher odds of asymptomatic infections in school-age children compared to youn-

ger children [53]. As transmission decreases, exposure to infection in the early years of life also

decreases, delaying the acquisition of antimalarial immunity [55, 56]. In addition, older chil-

dren have a larger body surface area and tend to stay out at night longer than younger children

and are thus more likely to be exposed to infection [12]. The short and long term consequences

of multiple infections in older children cannot be understated. Indeed chronic asymptomatic

malaria infections are associated with recurrent episodes of mild to moderate anaemia, co-

infection with invasive bacterial disease especially non-typhoid salmonellae, [57] and on-going

malaria transmission [54]. In such settings, targeting school-age children with malaria control

interventions may reduce substantially the human reservoir of infection.

The EIR is considered a standard metric of malaria transmission. [58] However, its preci-

sion and accuracy are usually low because of the intrinsic difficulties of obtaining robust mea-

sures of human biting rate and particularly sporozoite rate, due largely to the highly variable

nature of the mosquito population, particularly where vector density is low [58] as in eastern

Gambia. Indeed, EIR was particularly low in NBR and WCR, but varied only between 3 to 4/

person/year in all other regions despite marked differences in the force of infection. This was

expected as EIR estimates the rate of human exposure to infectious bites and does not directly

translate into population measures of incidence of infection or clinical disease. [58] Though

Fig 8. Relationship between parous rate (X axis) and incidence of infection and clinical malaria (Y axis).

This was confirmed by a multivariate analysis (vector parity, EIR, and species variation) in which a percentage

increase in vector parity was significantly associated with the incidence of infections (IRR: 7.11; 95%CI: 6.32–

8.00) (p<0.01). Sporozoite prevalence was 0.14% (14/10184), with no positive samples in NBR. The EIR was

similar in LRR (4.73/person/year), URR-S (3.66/person/year) and URR-N (3.26/person/year), the regions with

the highest incidence of malaria infections though CRR, with the lowest incidence of infection, had an EIR of

2.33; EIR was extremely low in WCR (0.14/person/year) and NBR (0/person/year) (Table 10).

https://doi.org/10.1371/journal.pone.0187059.g008
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HLC can be used to determine human biting frequency and biting time by vector species [59],

the method has important limitations because it can be performed in a limited number of

houses, in our study two houses per village were selected, which may not be representative of

the whole village, and collections are carried out by unprotected volunteers, which provide fig-

ures of vector biting that do not reflect the level of exposure of individuals protected by LLIN.

Comparisons of the indoors and outdoors biting rates is limited as the study did not collect

information on the actual time study subjects went to bed or woke up. Previous studies have

adjusted the hourly vector densities by the hourly proportions of individuals who slept

indoors.[60, 61] However, in our study, more than 65% of individuals who reported sleeping

outdoors used a LLIN while almost 20% of those who reported sleeping indoors did not use a

LLIN. Therefore, exposure to infective bites in the early morning and late evening should be

interpreted with caution. Indoor and outdoor biting rates were adjusted on the basis of sleep-

ing habits (indoors-outdoors) and results should be considered as grossly indicative of the risk

of infection.

The follow up of the study population was intense (monthly bleeding of all inhabitants in

the study villages for seven consecutive months) and challenging. Some groups were more dif-

ficult to follow up than others, for example adult males were more often traveling than females

and children, and this could have affected some risk estimates. However, the overall loss to fol-

low up was relatively low (11.0%) given the study design and unlikely to significantly affect the

study outcomes.

In conclusion, there is still significant residual malaria transmission across The Gambia,

particularly in the eastern region. This is maintained by a low-density vector population with

high survival, despite the high coverage of conventional vector control interventions. Even in

sites where transmission is significantly lower than in eastern Gambia, a non-negligible pro-

portion of individuals maintain malaria infections, from the previous transmission season to

the next one. Such individuals should be identified and targeted with additional interventions

aiming at reducing the human reservoir of infection. Additionally, new interventions able to

target vectors escaping LLIN and IRS are needed.
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