
Data-Adaptive Estimation for Double-Robust Methods in Population-Based Cancer 

Epidemiology: Risk differences for lung cancer mortality by emergency presentation 

 

 

Miguel Angel Luque-Fernandez, Aurélien Belot, Linda Valeri, Giovanni Ceruli, Camille 

Maringe, and Bernard Rachet 

 

Correspondence to Dr. Miguel Angel Luque-Fernandez, Department of Non-Communicable 

Disease Epidemiology, Cancer Survival Group, London School of Hygiene and Tropical 

Medicine, Keppel Street, London, WC1E 7HT (e-mail: Miguel-angel.luque@lshtm.ac.uk) 

 

Authors affiliations: Faculty of Epidemiology and Population Health, Department of Non-

Communicable Disease Epidemiology, Cancer Survival Group, London School of Hygiene 

and Tropical Medicine, London, U.K. (Miguel Angel Luque-Fernandez, Aurélien Belot, 

Camille Maringe, and Bernard Rachet); Psychiatric Biostatistics Laboratory, MacLean 

Hospital, Belmont, U.S. (Linda Valeri); Harvard Medical School, Harvard University, Boston, 

U.S. (Linda Valeri) National Research Council of Italy, Institute for Research on Economic 

Sustainable Growth, Rome, Italy (Giovanni Ceruli). 

 

This work was funded by Cancer Research U.K. grant number C7923/A18525. 

 

Conflict of interest: none declared. 

 

Running head: Double-Robust Estimation in Observational Population-Based Cancer 

Epidemiology 

 

Abbreviations list 
AIPTW: Augmented inverse-probability of treatment weighting. 
ATE: Average treatment effect. 
DAG: Directed acyclic graph. 
IPTW-RA: Inverse-probability treatment weighted regression-adjustment. 
RMSE: Root mean squared error. 
TMLE: Targeted maximum likelihood estimation. 
  

© The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public 

Health. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted reuse, distribution, and reproduction in any 

medium, provided the original work is properly cited. 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T 

Downloaded from https://academic.oup.com/aje/article-abstract/doi/10.1093/aje/kwx317/4110407
by London School of Hygiene & Tropical Medicine user
on 14 November 2017

mailto:Miguel-angel.luque@lshtm.ac.uk


 
 

2 

ABSTRACT 

We propose a structural framework for population-based cancer epidemiology and evaluate 

the performance of double-robust estimators for a binary exposure in cancer mortality. We 

performed numerical analyses to study the bias and efficiency of these estimators. 

Furthermore, we compared two different model selection strategies based on i) the Akaike 

and Bayesian Information Criteria and ii) machine-learning algorithms, and illustrated 

double-robust estimators’ performance in a real setting. In simulations with correctly 

specified models and near-positivity violations, all but the naïve estimators presented 

relatively good performance. However, the augmented inverse-probability treatment 

weighting estimator showed the largest relative bias. Under dual model misspecification and 

near-positivity violations, all double-robust estimators were biased. Nevertheless, the 

targeted maximum likelihood estimator showed the best bias-variance trade-off, more 

precise estimates, and appropriate 95% confidence interval coverage, supporting the use of 

the data-adaptive model selection strategies based on machine-learning algorithms. We 

applied these methods to estimate adjusted one-year mortality risk differences in 183,426 

lung cancer patients diagnosed after admittance to an emergency department versus non-

emergency cancer diagnosis in England, 2006-2013. The adjusted mortality risk (for patients 

diagnosed with lung cancer after admittance to an emergency department) was 16% higher 

in men and 18% higher in women, suggesting the importance of interventions targeting early 

detection of lung cancer signs and symptoms. 

 

Keywords: causality; cancer epidemiology; population-based data; statistics; machine 

learning; targeted maximum likelihood estimation 
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Data from population-based cancer registries are critical for cancer control and policy.[1-3] 

However, the scope of the information from cancer registries refers to cancer characteristics 

and basic socio-demographic factors.[1, 2, 4] Recently, linkage strategies of population-

based data sets from different sources have been implemented. This has allowed for more 

advanced modelling scenarios regarding applications in cancer policy and control.[5-10] For 

instance, comparative effectiveness approaches using medical records and linked 

population-based databases are used to evaluate the effectiveness of treatment or 

exposures concerning cancer mortality and survival.[6-10] Nevertheless, the evaluation of 

the effectiveness of treatments or exposures in a large population-based cancer 

epidemiology requires well-defined structural frameworks and modern statistical methods in 

order to overcome confounding.[9]  

The use of the Neyman-Rubin potential outcomes framework[11] allows researchers to 

make explicit the assumptions under which an observed association from observational 

studies can be interpreted causally. For a given factor to be considered causal, researchers 

must consider a set of additional assumptions (i.e., conditional exchangeability, positivity and 

consistency).[12] Directed acyclic graphs (DAGs) help to evaluate whether, under a given 

causal model, the counterfactual outcome is independent of the observed exposure given 

some sets of covariates (conditional exchangeability) selected on the basis of subject matter 

knowledge.[12-14]  

The average treatment effect (ATE) or risk difference is a commonly used parameter of 

interest.[12, 15, 16] Correct model specification is crucial to obtain unbiased estimates of the 

true ATE. Many estimators of the ATE (but not all) rely on parametric modeling assumptions, 

thereby introducing bias when the model is incorrect.[15] Researchers have developed 

double-robust estimation procedures to reduce bias due to misspecification.[17, 18] More 

recently, van der Laan has developed a targeted maximum likelihood estimation using 

machine learning algorithms to minimize the risk of model misspecification.[15, 19, 20] 

Simulations studies using targeted maximum likelihood estimation (TMLE) in finite samples 
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provide evidence of its double-robust properties and gains in performance when combined 

with machine learning algorithms.[15, 21, 22]  

However, there is no evidence evaluating the performance of TMLE compared with other 

double-robust methods in the setting of population-based cancer epidemiology. We sought 

to compare the performance of three different double-robust causal estimators of the ATE for 

cancer mortality in a simulated scenario with forced near-positivity violations (i.e., certain 

subgroups in the sample rarely or never receive treatment) and model misspecification. 

Furthermore, we studied the efficiency and bias of double-robust estimators and compared 

two different model selection strategies based on i) a combination of Akaike-Bayesian 

information criteria (AIC-BIC) and ii) machine learning algorithms and TMLE. Finally, these 

methods are illustrated with real population-based data on lung cancer patients in England. 

METHODS 

Counterfactual framework  

Based on background knowledge, we used a DAG to depict our general counterfactual 

framework (Figure 1). We considered one-year cancer mortality as a binary outcome Y and 

a generic binary exposure or treatment A, and we assumed that the following measured 

covariates were sufficient to ensure conditional exchangeability: patients’ socioeconomic 

status (W1), age (W2), cancer stage (W3), and comorbidities at diagnosis (W4) (Figure 1). 

Afterward, based on our DAG, we generated data to explore the effects of near-positivity 

violations and dual misspecification (outcome and treatment models). The set of covariates 

included in W is critical for cancer treatment decision-making.[3, 23, 24] However, cancer 

stage and patients’ comorbidities at diagnosis play a crucial role in clinical treatment choice 

and have been cited as the most important explanatory factors for cancer mortality and 

survival. [3, 23, 24] As depicted in our DAG, we highlighted the importance of patients’ 

cancer stage, socioeconomic status, and comorbidities as the minimum set needed to 

assume conditional exchangeability based on the back-door criterion. Our targeted 
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parameter was the one-year risk differences on cancer mortality for patients exposed to a 

generic exposure (A) versus non-exposed patients. 

Data generation process and Monte Carlo simulations 

We generated data based on the structural framework represented in Figure 1 by a DAG. 

The covariates (W) were drawn using a set of random uniform and binomial variables. The 

propensity score for the binary exposure (A) and the outcome variable (Y) were derived from 

a binomial logit model that included the interaction between age (W2) and comorbidities (W4) 

for the generation of Y. 

Afterward, we drew 1,000 replications from the data-generation process with sample sizes of 

1,000 and 10,000. In each replication, we estimated the binary ATE and recorded the point 

estimates and standard errors based on the influence curve in order to calculate the ATE 

standard deviations, bias, 95% confidence interval coverage and root mean squared error 

(RMSE).[25] 

Model estimation scenarios and performance evaluation 

We set two different modeling scenarios aiming to assess the performance of double-robust 

estimators of the ATE using: i) correctly specified models for the treatment and the outcome, 

and ii) misspecified models for both treatment and outcome. Correctly specified models for 

the treatment and outcome models included socioeconomic status (W1), age (W2), cancer 

stage (W3), and comorbidities (W4) as covariates. Model misspecification for the treatment 

and the outcome was forced omitting the interaction between comorbidities (W4) and age 

(W2). Data-adaptive approaches were used to estimate the treatment and outcome for 

misspecified models (Web Appendix 1 describes in more detail the model specifications for 

the data generation). For both scenarios, we included near-positivity violations that forced 

some values of the propensity score distribution close to zero. Near-positivity violations were 

evaluated visually based on the summary of the propensity score distribution. Figure 2 
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illustrates the overlap of the distribution of the potential outcomes for one simulated sample 

in the first scenario (Figure 2A), and second scenario (Figure 2B).  

In the first scenario, which uses correctly specified models, we evaluated the performance of 

a classical multivariate regression adjustment with treatment (A) and covariates (W1-W4) as 

predictors of the outcome (Y), namely the naïve approach, and of three different double-

robust estimators of the ATE: i) inverse-probability treatment weighted regression-

adjustment (IPTW-RA),[26] ii) augmented inverse-probability treatment weighting (AIPTW) 

[17, 27, 28] and iii) TMLE.[15, 29] IPTW-RA is a regression model weighted by the inverse 

probability of treatment whereas AIPTW is a two-step procedure with two estimating 

equations for the treatment and mean outcome, respectively.[27]  

For the second scenario, using misspecified models, we evaluated two different data-

adaptive model selection strategies in combination with the above described double-robust 

estimators. Models for the treatment and outcome included the above-described covariates 

for the first scenario but omitted the interaction between comorbidities and age used to 

generate the data in the second scenario. (Web Appendix 1 describes in more detail the 

model specifications for the data generation.) As data-adaptive strategies, we used AIC-BIC 

approaches for the IPTW-RA and AIPTW estimators, and ensemble-learning for the TMLE 

estimator. For the IPTW-RA, we used the AIC-BIC based approach implemented in the Stata 

user-written command “bfit” (best fit).[30] The bfit algorithm sorts a set of fitted candidate 

regression models using the Akaike and Bayesian Information Criteria and displays a table 

showing the ranking of the models. Each linear predictor of the candidate models is defined 

as a linear combination of functional forms of the variables. The smallest of the candidate 

models includes only one variable. The largest of the candidate models includes all the 

variables in a fully interacted polynomial of the order prespecified by the user. We set the 

order to “2” for comparative purposes with TMLE. For simulations and analysis of the IPTW-

RA and AIPTW estimators, we used Stata v.14.1 (StataCorp, College Station, TX, U.S.) and 

the teffects ipwra and teffects aipw commands.[26] 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T 

Downloaded from https://academic.oup.com/aje/article-abstract/doi/10.1093/aje/kwx317/4110407
by London School of Hygiene & Tropical Medicine user
on 14 November 2017



 
 

7 

The TMLE estimator has not been implemented in Stata statistical software yet, so we used 

the package tmle (version 1.2.0-4) [29] from the statistical software R version 3.0.2 (R 

Foundation for Statistical Computing, Vienna, Austria). The implementation of TMLE in R 

calls the Super-Learner package. The Super-Learner uses V-fold (10-fold by default) cross-

validation to assess the performance of the prediction of the outcome and the propensity 

score models as weighted averages (ensemble-learning) of a set of machine learning 

algorithms.[29, 31] We used the default specifications of the tmle package, which included 

the following machine-learning algorithms: i) stepwise forward and backward selection; ii) 

generalized linear modeling (glm) with the covariates (W) and the treatment (A) as main 

terms; iii) a glm variant that included second order polynomials and two-by-two interactions 

of the main terms included in the model. In Web Appendix 2, we provide a basic 

implementation of the TMLE algorithm in both Stata and R statistical software as well as the 

link to a testing version of TMLE implemented in Stata. 

Monte Carlo simulation results 

First Scenario:  correctly specified models and near-positivity violation. 

The true risk difference of the ATE estimate from the 1,000 simulation repetitions was -18%. 

The naïve approach showed a biased estimate of the ATE with an overestimation of the 

treatment effect by 23% (relative bias). All double-robust estimators were nearly unbiased 

showing smaller RMSE with increasing sample size, but the TMLE presented higher 

precision (based on the difference in variances between estimators), the smallest RMSE, 

and the best coverage (95%) (Table 1, first scenario: correctly specified models).  

Second scenario: misspecification, near-positivity violation and adaptive model selection.  

The true risk difference of the ATE from the 1,000 simulation repetitions was -12%. The 

naïve approach was heavily biased, showing the highest RMSE with an underestimation of 

the treatment effect by approximately 90% (Table 1, second scenario: adaptive estimation 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T 

Downloaded from https://academic.oup.com/aje/article-abstract/doi/10.1093/aje/kwx317/4110407
by London School of Hygiene & Tropical Medicine user
on 14 November 2017



 
 

8 

approach). The model selection strategy based on AIC-BIC did not show either bias 

reduction or coverage improvement. The double-robust TMLE estimator presented the best 

performance with more precise estimates (1% bias for a sample size of 1,000 and less than 

0.5% for a sample size of 10,000 patients)  and the highest coverage. By contrast, the 

relative bias increased with larger sample size for the AIPTW estimator using the AIC-BIC 

approach. The relative bias ranged from 1.5% (n= 1,000) to 11.7% (n= 10,000). (Table 1, 

second scenario: adaptive estimation approach) 

ILLUSTRATION 

Under the structural framework (DAG, Figure 1) described above for population-based 

cancer epidemiology, we estimated one-year adjusted mortality risk differences for cancer 

diagnosed after admittance to a hospital emergency department versus a non-emergency 

cancer diagnosis. The high proportion of lung cancer diagnosed after admittance to an 

emergency department observed in the UK (emergency presentation) has been 

hypothesized to be mainly due to multiple steps that patients undergo between the 

identification of the first symptoms and the final diagnosis by the healthcare system.  

In addition to age and socioeconomic status, we included comorbidities and cancer stage as 

confounders. Evidence shows that the presence of patient comorbidity increases the odds of 

being diagnosed with distant metastases (advanced cancer stage), and it does not lead to 

an earlier cancer diagnosis.[32] Socioeconomic status was measured using quintiles of the 

income domain of the Index of Multiple Deprivation in England,[33] comorbidities were 

measured based on the Charlson comorbidity index, [34] and stage was based on the tumor, 

node, and metastases classification of malignant tumors.[35] In England, a cancer diagnosis 

after emergency presentation correlates closely with poor one-year survival. However, the 

strength of the evidence comes from observational data and is weak, owing to 

confounding.[36] 
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It is of public health interest to estimate the one-year adjusted mortality risk differences of 

cancer diagnosed after an emergency presentation, given the potential impact of a 

preventive intervention aiming to improve earlier cancer diagnosis. Quantifying the gender-

specific adjusted risk differences for one-year mortality for lung cancer patients will reinforce 

the current evidence and help to promote the policy actions required for improving early 

cancer diagnoses.  

To illustrate the estimation of the adjusted risk differences for one-year mortality, we 

extracted the data from the National Cancer Data Repository for 183,426 incident cases of 

lung cancer diagnosed between 2006 and 2013 in England, which consisted of 102,535 men 

and 80,891 women. All patients had a minimum potential follow-up of one year since the vital 

status was not assessed until December 31st, 2014. Data were restricted to cases with 

complete information on sex, age at diagnosis, comorbidities, cancer stage, socioeconomic 

deprivation, and type of cancer diagnosis. The strategy for the assessment of cancer 

diagnosis after an emergency presentation has been previously described elsewhere.[37] 

Overall, more than 80% of the patients who died within one year after a cancer diagnosis 

had been diagnosed after an emergency presentation, and only 96 (representing 0.05%) 

were lost to follow-up before one year (Web Table 1). The average age at diagnosis was 72 

years in men and 73 in women. One-year mortality after diagnosis presented a balanced 

distribution across the different age and socioeconomic groups and by quartiles of the 

Charlson comorbidity index.[34] However, stages IV and III presented with 4- and 3-fold 

higher probabilities for one-year mortality, respectively, than stage I (Table 2). 

To estimate the adjusted mortality risk difference, we used the same approaches and 

commands used for the simulation study. We provide commented code for the illustration in 

Web Appendix 2. Overall, based on double-robust estimators, we estimated that the 

adjusted risk of one-year mortality between cancer diagnosed after admittance to an 

emergency department versus non-emergency diagnosis based on double-robust estimators 
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was 16% higher in men and 18% higher in women than it was after non-emergency 

diagnosis. However, the naïve approach showed the largest risk difference with 29% and 

32% adjusted risk differences for women and men, respectively (Figure 3: 3A women; 3B 

men).  

We also used the observed covariates from the illustration to run 100 Monte Carlo 

simulations to estimate the adjusted mortality risk difference for one-year cancer mortality 

after admittance to an emergency department. Using the information on baseline covariates 

from the observed data, we simulated only the outcome and treatment models. To evaluate 

the performance of the different estimators under strong near-positivity violations, we forced 

some values of the propensity scores close to zero (Web Figure 1). However, the estimation 

models for the treatment and outcome were correctly specified during simulations to include 

the interaction between age and comorbidities (we provide the model specifications and the 

variables included for the simulations in Web Appendix 1). The propensity score distributions 

among the exposed and unexposed overlapped considerably in the real setting (Web Figure 

1A) while the overlap in the simulated scenario was poor given the strong near-positivity 

violation (Web Figure 1B). Table 3 presents the results of the simulations, which validate the 

previous results with similar findings, but with a larger sample size and fixed covariates 

coming from a real scenario, thus reproducing reality much better. TMLE presented the best 

precision and coverage and outperformed all other double-robust estimators. By contrast, 

AIPTW showed high sensitivity to the violation of the positivity assumption with a relative 

bias of 8% (Table 3). 

 

DISCUSSION 

Given the increasing availability of a different range and variety of data in population-based 

cancer epidemiology, the proposed structural framework (DAG, Figure 1) constitutes a basis 

for further development of comparative effectiveness research in population-based cancer 
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epidemiology. Developed for a binary treatment and outcome, the framework can be easily 

extended to handle time-to-event outcomes, and might be adapted to specific comparative 

effectiveness scenarios. For instance, we considered cancer patients’ comorbidities and 

stage as confounders, but it might not be the case in other comparative effectiveness 

research questions. We have recently published an article where we argue that multivariate 

adjustment for cancer-related comorbidities (those with onset date close before or after the 

date of cancer diagnosis), to evaluate the effectiveness of cancer treatment, might be 

inappropriate as it could induce collider stratification bias.[38] 

We also applied the proposed structural framework (DAG, Figure 1) to a real data scenario 

and highlighted the critical importance of considering cancer stage and patients’ 

comorbidities in the structural framework to satisfy the conditional exchangeability 

assumption in population-based cancer epidemiology. Conventional methods control for 

confounding by assuming that the effect measure of the exposure of interest is constant 

across all levels of the covariates included in the model.[39] We provided evidence of highly 

imprecise estimates of ATE in the classical naïve regression method, underestimating the 

effect of the treatment, particularly for the misspecified model in the simulation setting.  

Model misspecification with parametric modelling is always a concern in epidemiologic 

research. ATE estimators based on the propensity score or regression adjustment are 

unbiased only if estimation models are correctly specified.[17, 27, 40] Double-robust 

estimation combines these two approaches so that only one of the two models needs to be 

correctly specified to obtain an unbiased estimate of the ATE.[17, 27, 40] Previous 

simulation studies have shown that double-robust methods, including TMLE, consistently 

provide almost unbiased estimates when either the propensity score or the outcome model 

is misspecified but the other is correct.[41-43]  However, more evidence is needed to 

evaluate TMLE statistical properties under different modeling scenarios.  
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TMLE is a general algorithm that can estimate the g-formula[44] as a generalization of 

standardization defining the parameters of interest semi-parametrically as a function of the 

data-generating distribution. TMLE evaluates the target parameter (ATE) by using a double-

robust semi-parametric substitution estimation based on machine learning algorithms to 

avoid misspecification and reduce bias.[22] 

Our results showed that, when the models were correctly specified, standardization 

implemented through the IPTW-RA, AIPTW, and TMLE provided nearly unbiased estimates 

of ATE, despite near-positivity violations. TMLE, however, was the most efficient estimator. 

Nevertheless, dual misspecification is the likely scenario in population-based cancer 

epidemiology; thus, attempting to obtain the best possible estimates is paramount for policy 

recommendations. Under dual misspecification and near-positivity violations, both in 

simulations and a real-life illustration, AIPTW showed poorer performance than IPTW-RA 

and TMLE, illustrating the instability of the AIPTW to estimate values of the propensity score 

close to zero (near-positivity violations) as previously reported by Kang and Shafer.[27] 

However, basic machine-learning algorithms and ensemble-learning techniques 

implemented in the tmle and Super-Learner R-packages avoid misspecification of the 

models (either for the treatment or the outcome) used to estimate the ATE.  

To the best of our knowledge, the performance of double-robust methods using different 

model selection strategies has not been evaluated in the context of adverse estimation 

situations with a near-violations of the positivity assumption and misspecified models. Based 

on a simulated scenario, we compared the Stata user-written program bfit,[30] with machine 

and ensemble-learning algorithms implemented in the R package tmle based on the Super-

Learner.[29, 45] TMLE outperformed model selection strategies based on AIC-BIC for the 

IPTW-RA and the AIPTW estimators. By default, TMLE implementation in R sets a bounded 

distribution of the propensity score to 0.025 and 0.975, and the adaptive estimation respects 

the limits of the possible range of the targeted parameter, but AIPTW does not. So, AIPTW 
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could, for instance, produce estimates that are outside the range of the targeted parameter. 

Moreover, the default AIPTW implementation in Stata will not converge for very small values 

of the propensity score with a tolerance set by default to 10-5. We had to increase the 

tolerance of the weights for the propensity score to 10-8 when using the AIC-BIC adaptive 

approach (Stata bfit) for the AIPTW estimator, given convergence problems associated with 

the near-positivity violations. The relative bias using an adaptive approach based on AIC-

BIC for the estimation of the AIPTW under difficult scenarios increases with a larger sample 

size (from 1,000 to 10,000 in our simulations setting). Hence, using AIC-BIC for the AIPTW 

estimator might not be a good option when there is a strong suspicion of model 

misspecification and near-violation of the positivity assumption. Further evidence is needed 

to evaluate our findings.  

However, AIPTW performance is similar to IPTW-RA and TMLE under certain scenarios 

(correct specification and without near-positivity violations). TMLE is computationally 

demanding, manifesting in slow run times for large cancer population data (e.g. using a 

computer with 4 cores and 16 GB of memory, the R-package tmle took 5.4 minutes to 

estimate the ATE for 10,000 patients using more advanced machine learning algorithms 

such as generalized additive models, random forests, and boosting). 

Under an adverse estimation scenario, with near-positivity violations and dual 

misspecification, the TMLE estimator of the ATE for a binary treatment and outcome 

performs better than other double-robust estimators. Its reductions in bias and gains in 

efficiency supporting the use of TMLE for a binary treatment and outcome in population-

based cancer epidemiology research. Results from the illustration provide quantitative 

evidence of an increased one-year mortality risk in patients diagnosed with lung cancer after 

attending a hospital emergency department, which should boost calls for policy interventions 

such as the implementation of the multidisciplinary diagnosis centers to improve early cancer 

diagnosis and management. 
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Figure 1. Directed acyclic graph for the proposed structural causal framework in population-

based cancer research.Conditional exchangeability of the treatment effect or exposure (A) 

on one-year cancer mortality (Y) is obtained through conditioning on a set of available 

covariates (Y1,Y0 ⊥ A|W). The minimum sufficient set, based on the back-door criterion, is 

obtained through conditioning on only W1, W3, and W4. The average treatment effect for the 

structural framework is estimated as the average risk difference between the expected effect 

of the treatment conditional on W among those treated (E(Y|A=1; W)) and the expected 

effect of the treatment conditional on W among those untreated (E(Y|A=0; W)). W: W1: 

socioeconomic status; W2: age; W3: cancer stage; W4: comorbidities 

 

Figure 2. Overlap of the propensity score for correctly specified (first scenario) and 

misspecified models (second scenario).  

 

Figure 3. Gender-specific adjusted risk difference of one-year lung cancer mortality by 

different double-robust estimators between 2006 and 2013 in England. Risk difference in 

183,426 lung cancer patients diagnosed after admittance to an emergency department 

versus non-emergency cancer diagnosis in England, 2006-2013. A: Women; B: Men; A-

IPTW: Augmented inverse-probability of treatment weighting; BF-AIPTW: Best fit augmented 

inverse-probability treatment weighting (data-adaptive estimation based on AIC-BIC); IPTW-

RA: Inverse-probability treatment weighted regression-adjustment; BF-IPTW-RA: Best fit 

inverse-probability treatment weighted regression-adjustment (data-adaptive estimation 

based on AIC-BIC); TMLE: Targeted maximum likelihood estimation (data adaptive 

estimation based on ensemble learning and k-fold cross-validation) 
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Table 1. Monte Carlo simulations (10,000) of the ATE for correctly specified models (first 

scenario) and misspecified models using adaptive approaches (second scenario) for 

different double-robust estimators. 

  ATE Absolute BIAS Relative BIAS (%) RMSE SD-ATE 95%CI coverage (%) 

First 
scenario

a
  

N=1,000 N=10,000 N=1,000 N=10,000 N=1,000 N=10,000 N=1,000 N=10,000 N=1,000 N=10,000 N=1,000 N=10,000 

 True 
ATE 

-0.1813                       

Naïve -0.2234 -0.2218 0.0421 0.0405 23.2 22.3 0.0575 0.0423 0.0391 0.0123 77 89 

AIPTW -0.1843 -0.1848 0.0030 0.0035 1.6 1.9 0.0534 0.0180 0.0533 0.0177 93 94 

IPTW-RA -0.1831 -0.1838 0.0018 0.0025 1.0 1.4 0.0500 0.0174 0.0500 0.0172 91 95 

TMLE -0.1832 -0.1821 0.0019 0.0008 1.0 0.4 0.0482 0.0158 0.0482 0.0158 95 95 

Second 
scenario

b 
 

                    

True ATE -0.1172                       

Naïve  -0.0127 -0.0121 0.1045 0.1051 89.2 89.7 0.1470 0.1100 0.1034 0.0326 0 0 

BFit 
AIPTW  

-0.1155 -0.0920 0.0017 0.0252 1.5 11.7 0.0928 0.0773 0.0928 0.0731 65 65 

BFit 
IPTW-RA  

-0.1268 -0.1192 0.0096 0.0020 8.2 1.7 0.0442 0.0305 0.0431 0.0305 52 73 

TMLE -0.1181 -0.1177 0.0009 0.0005 0.8 0.4 0.0281 0.0107 0.0281 0.0107 93 95 

a: First scenario: correctly specified models and near-positivity violation 

b: Second scenario: misspecification, near-positivity violation and adaptive model selection 

AIPTW: Augmented Inverse-Probability Treatment Weights; ATE: Average treatment effect across 1,000 simulated data sets; BFit IPTW-RA: Best 
fit based on AIC and BIC criteria inverse-Probability treatment weighted regression-adjustment; BFit AIPTW: Best fit based on AIC and BIC 
criteria augmented Inverse-Probability Treatment Weights; IPTW-RA: Inverse-Probability treatment weighted regression-adjustment; RMSE: Root 
mean square error; SD: Standard deviation; TMLE: Targeted Maximum Likelihood Estimation calling basic Super-Learner libraries (SL): SL. Step; 
SL.glm; SL.glm.interaction 
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Table 2. One-year mortality in lung cancer patients (incident cases) by stage, comorbidities, 

age, socioeconomic status, and cancer diagnosis after admittance to an emergency 

department versus non-emergency in England between 2006 and 2013, n = 183,426 (males: 

102,535; females: 80,891). 

    Mortality one year after diagnosis 

Variables Female, deaths (%) Male, deaths (%) 

Emergency presentation     

  No 53.4 59.9 

  Yes 83.7 86.4 

Stage       

  I 18.1 24.2 

  II 35.1 37.6 

  III 58.6 62.4 

  IV 82.2 85.8 

Quartiles Charlson index     

  Q1 62.8 67.6 

  Q2 64.1 68.3 

  Q3 67.2 71.4 

  Q4 72.4 75.5 

Socioeconomic Status     

  Q1 62.6 66.7 

  Q2 63.3 68.1 

  Q3 64 69.5 

  Q4 64.2 69.6 

  Q5 64.1 68.2 

Age at diagnosis (mean, sd) 73.0 (10.8) 72.6 (10.3) 
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Table 3. Monte Carlo simulation of the risk differences of one-year mortality in lung cancer 

patients (incident cases) diagnosed after admittance to an emergency department between 

2006 and 2013 in England, n = 183,426. 

Estimators ATE 
Absolute 

BIAS 
Relative 
BIAS (%) RMSE SD-ATE 

95%CI 
Coverage (%) 

 True ATE 0.1621           

AIPTW 0.1493 0.0128 7.9 0.0165 0.0104 79 

IPTW-RA 0.1587 0.0034 2.1 0.0072 0.0063 92 

TMLE 0.1620 0.0001 0.1 0.0034 0.0034 92 
 
AIPTW: Augmented Inverse-Probability Treatment Weights; ATE: Average treatment effect across 1,000 
simulated data sets; IPTW-RA: Inverse-Probability treatment weighted regression-adjustment; RMSE: Root mean 
square error; SD: Standard deviation; TMLE: Targeted Maximum Likelihood Estimation calling basic Super-
Learner libraries (SL): SL. Step; SL.glm; SL.glm.interaction 
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