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Introduction: Near real-time vaccine safety surveillance (NRTVSS) using electronic health records is
increasingly used to rapidly detect vaccine safety signals. NRTVSS has not been fully implemented in
the UK. We assessed the feasibility of implementing this surveillance using the UK Clinical Practice
Research Datalink (CPRD).
Methods: We selected seasonal influenza vaccine/Guillain-Barré Syndrome (GBS) as an example of a rare
outcome and measles-mumps-rubella (MMR) vaccine/febrile seizures as a positive control. For influenza/
GBS we implemented a system for the 2013/2014 and 2014/2015 influenza seasons; for MMR/seizures
the surveillance period was July 2014–June 2015. We used the continuous Poisson-based maximized
sequential probability ratio test (PMaxSPRT), comparing observed-to-expected events, for both pairs.
We calculated an age-sex-adjusted rate using 5 years of historic data and used this rate to calculate
the expected number of events in pre-specified post-vaccination risk-window (GBS: 0–42 days, seizures:
6–21 days). For MMR/seizures we also implemented the system using the Binominal-based maximized
sequential probability ratio test (BMaxSPRT). For this, we compared seizures in the risk-window
(6–21 days) to a control window (0–5 and 22–32 days). Delays in recording outcomes influence the data
available, so we adjusted the expected number of events using a historical distribution of delays in
recording GBS/febrile seizures. Analyses were run using data up to each CPRD monthly release. We also
performed power calculations for detecting increases in relative risk (RR) from 1.5 to 10.
Results: For influenza/GBS we implemented a system in both seasons with no signal. Power to detect a
signal was >80% for RR � 4. For MMR/seizures we were able to identify a signal with PMaxSPRT but
not with BMaxSPRT. Power � 80% for RR � 2.5 for both tests.
Conclusion: CPRD is a potential data source to implement NRTVSS to exclude large increases in the risk of
rare outcomes after seasonal influenza and lower increases in risk for more frequent outcomes.
� 2017 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Near real-time vaccine safety surveillance (NRTVSS) using elec-
tronic health records is amongst the tools available to perform
post-licensure vaccine safety surveillance. NRTVSS is usually
started shortly after a new vaccine is introduced and data is anal-
ysed at repeated points in time. Near real-time surveillance was
introduced in the USA in 2005 first using the sequential probability
ratio test and later its maximized version. It is now used routinely
in this country [1]. It has allowed the identification of several
safety signals [2].

In the UK, there are electronic health records available such as
the Clinical Practice Research Datalink (CPRD). NRTVSS has been
implemented in the UK using spontaneous reports to obtain the
observed number of events and CPRD to calculate the expected
number of events. This implementation inherits spontaneous
reports limitations, including underreporting [3]. A NRTVSS fully
relying on electronic health records has not been implemented to
date.

When envisaging a new data source to implement NRTVSS
timeliness is a key consideration. In CPRD, delays can happen
due to: (i) delays in making a diagnosis after an initial consulta-
tion; (ii) delays in recording diagnosis made in other levels of care
(e.g. hospital); (iii) delays in receiving data for analysis. To the best
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of our knowledge, there has been no work to explore systemati-
cally the influence of (i) on recording patterns using CPRD data.
For (ii), a previous analysis of CPRD data looking at conditions of
interest for vaccine safety has shown that recording delays exist,
but the majority of records accrue within a month after the date
of the event [4]. Researchers receive CPRD data on a monthly basis
(delay (iii)). Thus, from the evidence to date CPRD is a potential
source of data to implement NRTVSS.

In addition to delays, several questions regarding the actual
implementation of a system using CPRD data remain unaddressed,
such as which statistical method to use, how to account for delays,
and whether there is enough power to identify safety signals. To
address these we sought to trial the implementation of NRTVSS
using previously collected CPRD data.
2. Methods

2.1. Data source

We used data from CPRD, a primary health care database with
anonymised health records from a broadly representative sample
(�6.9%) of the UK population. CPRD includes information on demo-
graphics, coded diagnosis, therapies, vaccines, health-related beha-
viours, and referrals to secondary care [5]. Diagnoses recorded in
CPRD include diagnoses made both in primary care and in hospital.
Hospital diagnoses are fed back to GPs via letter, which are later
coded in the system. Diagnoses are coded using Read-codes, a hier-
archical thesaurus of clinical terms used in the UK since 1985 [6].

CPRD contains several relevant dates. For each patient there is
information on the patient’s current registration with the practice
(crd) and the patient left the practice (tod). Each record contains
the date when the record was entered into the system (system
date) and the date deemed to represent when the event registered
took place (event date). At the practice-level, CPRD includes the
date when the practice met certain recording quality criteria (up-
to-standard date, uts) and the date when data were last collected
from the practice before each monthly release (last collection date,
lcd) [5].

2.2. Vaccine/outcome pairs

We selected two pairs: seasonal influenza vaccine/Guillain-
Barré syndrome (GBS) and Measles-Mumps-Rubella (MMR) vac-
cine/febrile seizures. NRTVSS is of particular relevance to assess
seasonal influenza vaccine due to the short time available for
action, and GBS is a rare outcome of interest following influenza
vaccine. Influenza vaccine/GBS was thus chosen to assess the
potential of CPRD as a data source to implement NRTVSS for rare
events. Febrile seizures are a known adverse reaction seen after
MMR vaccine, so we selected this pair to represent a positive con-
trol and as an example of a somewhat less rare event with a child-
hood vaccine [7]. Appendix A presents code-lists used to identify
GBS/seizures and Appendix B the algorithms used to identify vac-
cinated individuals.
3. Analysis

3.1. Statistical tests

Choice of the statistical test to use should be guided by the test
characteristics (e.g. power and underlying assumptions), frequency
of data updates and frequency of the outcome under study. One
approach is to select first the general group of tests (continuous
or group sequential) and then choose a specific version of the test
[2]. For continuous tests, data are looked at as often as desired, and
ideally when a new event is observed, while for group sequential
tests data are interrogated at discrete points in time [2]. Previous
work has shown that continuous sequential tests perform better
than group sequential [8] and aggregate data (weekly or monthly)
can be used in a continuous way [9]. As CPRD is updated monthly,
we considered continuous sequential tests more appropriate.

Poisson-based Maximized Sequential Probability Ratio Test
(PMaxSPRT), the Binomial-based Maximized Sequential Probability
Ratio Test (BMaxSPRT), and the Conditional Maximized Sequential
Probability Ratio Test (CMaxSPRT) are the continuous sequential
tests available. PMaxSPRT involves a comparison observed-to-
expected and its use has been proposed when less than 50 events
are expected, as it is a more powerful test [2]. Disadvantages
include limited ability to adjust for confounders and potential bias
by secular or coding trends, as it relies on historical data. It also
does not allow for uncertainty in the expected count (it is taken
as a fixed expected number). BMaxSPRT compares the number of
events in exposed-to-unexposed individuals or in periods within
individuals. This allows further adjustment for potential con-
founders but lessens power. Unlike PMaxSPRT, CMaxSPRT was
designed to account for uncertainty in the historical data. The com-
parison is made in terms of the cumulative person-time it took to
observe a certain number of adverse events in the historical and
surveillance data. It assumes event rates are constant in both ver-
sions of the data.

Given the rarity of GBS we selected PMaxSPRT for influenza vac-
cine/GBS. For seizures/MMR the number of expected events was
still lower than 50 (see below), suggesting the use of PMaxSPRT.
However, previous works have also considered the simultaneous
use of PMaxSPRT and BMaxSPRT owing to their complementary
strengths [9]. We preferred this approach as it allowed us to fur-
ther identify challenges/potential solutions when using CPRD to
perform NRTVSS. It has been previously suggested that PMaxSPRT
gives biased results when a small sample is used to estimate the
number of expected events [10]. To avoid this, we used a long his-
torical period (5 years) to obtain more stable estimates and thus
reduce uncertainty to negligible levels relative to uncertainty in
the observed data. It has also been suggested as an ad hoc guideline
that an alternative test (CMaxSPRT) should be used when the num-
ber of observed events in the historical data is less than five times
the number of expected events in the surveillance data. We thus
assessed whether this ad hoc rule held in our data.

Below we detail how we obtained the observed and expected
numbers of events to implement PMaxSPRT for each pair. We
start with an explanation for seasonal influenza/GBS followed by
MMR/seizures. For the latter we emphasize aspects that differ from
the first pair. For BMaxSPRT we used a case-only design and
compared the number of cases during the exposed-to-unexposed
periods, also detailed below. Analyses were performed using R
package Sequential 2.3.1 [11].

3.2. Influenza/GBS

We studied the 2013/14 and 2014/15 seasons (1st September–
31st March), using data released in July 2015 and 2016, respec-
tively. Using these data releases allowed at least a year from the
event date for them to be recorded. In all analyses we did not con-
sider the small proportion of events that are recorded with a delay
>1 year [4].

3.2.1. Historical rates, expected and observed number of events
(PMaxSPRT)

For the historical comparison, we used the general background
rate of GBS among individuals aged �65 years as this is the age in
which seasonal influenza vaccine is routinely recommended and
given in GP practices. For each study season, we calculated GBS
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historical rates stratified by age (65–74, 75–84, �85 years old) and
gender for the 5 previous seasons (2008/09–2012/13 and 2009/10–
2013/14, respectively). Numerators were first-ever GBS cases for
active patients. We have previously demonstrated that when GP
systems are updated the system date (the date a record is added
to a patient’s file, assigned automatically by the general practice
software) of some records can be altered to a later date [4]. For
those records, it is not possible to estimate accurately the delay
in recording the outcome. Hence, these records were identified
using the approach proposed in [4] and were excluded. Active
patients were defined as contributing follow-up time during each
season. Start of follow-up was the latest of uts, crd (plus 1 year
to exclude retrospective recording of previous diagnoses when reg-
istering with a new practice [12]), or 1st September 2008–13. End
of follow-up was the earliest of date of tod, lcd, or 31st March
2009–14. We averaged seasonal GBS rates over the five historical
seasons and applied this rate to the vaccine-exposed follow-up
time in the study seasons, to obtain an expected number of events
(adjusted by age and gender). For the study seasons end of follow-
up was the earliest of tod, lcd or 42 days after vaccination
(Appendix C) [13]. The observed number of events was the total
number recorded in the vaccine risk-window at the time of each
analysis.

3.2.2. Delays
For each patient we calculated the time between the risk-

window midpoint and lcd (time = d) and then used the previously
generated delay distribution [4] to calculate the probability (rd)
that an event that did occur within a year would be recorded by
delay d. This was used to adjust the follow-up to obtain an adjusted
follow-up. For example, if a patient had 30 days between the risk-
window mid-point and lcd and rd = 75%, then only 75% of this
patient follow-up time was considered (Fig. 2 in Appendix D).
We assumed no delays in vaccination data.

3.3. MMR/Seizures

The system was implemented for one year (July 2014–June
2015) using data released in July 2016.

3.3.1. Historical rates, expected and observed number of events
(PMaxSPRT)

We calculated febrile seizures rates during the second year of
life (12–23 months, timing of MMR 1st dose [13]), stratified by
age (two weeks periods) and gender, for the five years previous
to the study period (July 2009–June 2014). We first identified all
febrile seizures events for eligible patients and excluded records
likely to be duplicated (Appendix E).

We calculated follow-up time and the expected and observed
number of events as described above (Appendix C) for the histori-
cal period July 2009–June 2014 and the study period July 2014–
June 2015. A previous study looking at the risk of febrile seizures
following MMR and using hospital data identified a risk-window
of 6–11 days [7]. In this work, we used primary care data, which
are likely to capture febrile seizures with some delay. This can hap-
pen if parents seek care outside primary care (e.g. emergency ser-
vices) and GPs only receive and register the information regarding
the seizure a few days after it has occurred. We thus allowed extra
time, by using a risk window of 6–21 days to capture such events.

3.3.2. BMaxSPRT
To apply BMaxSPRT we used the same risk-window of 6–

21 days post-vaccination and used a control period of 1–5 (c1)
and 22–32 (c2) days post-vaccination, selected to be a period of
the same length and close to the risk period.
3.3.3. Delays (BMaxSPRT)
For BMaxSPRT it was necessary to adjust for delays for each of

the post-vaccination periods (the risk period and c1, c2). This was
done by calculating an adjusted follow-up period for each of these
intervals as shown in Fig. 3 in Appendix D. For each individual we
then calculated a ratio of the corrected follow-up for control period
compared to the risk period (see Appendix D for an example) and
then obtained an average ratio across individuals. This average
ratio was included in the calculations for the BMaxSPRT method
as the matching ratio [9]. This final adjustment simultaneously
accounted for delays in practices uploading data and partially
accrued period.

3.4. Implementation

To mimic a NRTVSS using pre-existing data we first recreated
how data accrued. To determine whether a record of interest
would have been in each data release we used: release date; lcd
(practice-level); event date of the record; and system date of the
record. CPRD is released on a monthly basis, on the first Monday
of each month. For a particular release we considered the outcome
would be captured if the event date, system date, and last
collection date all happened before the date of release. For exam-
ple, an event taking place (event date) on 9/10/2014, with a system
date of 10/11/2014, and lcd 28/10/2014 for the November release
would not appear in the November. If lcd for the December release
was 25/11/2014 then the event would appear in December.

As no signal was expected for influenza/GBS we further tested
NRTVSS implementation by adding cases to generate an increase
in risk of approximately 4 and 5-fold, which power calculations
suggested should be detectable.

Implementation was done graphically by calculating the log-
likelihood ratio test at the time of each data release. For PMaxSPRT
the log-likelihood is based on the number of observed and
expected events while for BMaxSPRT it considers the number of
observed events occurring in the control and risk periods. The
results from the log-likelihood ratio test were compared with the
critical limit. For each vaccine/outcome pair and study period we
calculated critical limits considering a minimum number of
observed events to reject the null hypothesis of 1, 2, and 4.

3.5. Power and expected time to signal

Post-licensure vaccine safety surveillance aims at detecting sig-
nals that might have been missed before vaccine approval, due to
the lack of power in the analyses conducted. When considering
NRTVSS we thus need to assess power. The R package Sequential
includes system performance tools, allowing calculating of power
and expected time to signal [11].

Power is affected by several factors: incidence of the outcome
(both background incidence and incidence following vaccination),
vaccine uptake, vaccine risk-window length, length of the study
period, delays in receiving the data, relative risk (RR) to be
detected, events in the first look at the data, minimum number
of events before rejecting the null, and level of significance. Calcu-
lations were performed for a plausible range of RR (1.5–10), con-
sidered no events in the first look at the data, and a level of
significance of 5% (a = 0.05). For PMaxSPRT we also required 1, 2
or 4 events before rejecting the null [14] and the remaining factors
were integrated through the expected number of events at the end
of the surveillance period. For BMaxSPRT we considered the total
number of events at the end of the surveillance period (both from
risk-window and control periods).

Expected time to signal is conditional on having identified a sig-
nal and is obtained in the units of expected number of events. As
CPRD data do not accrue at a constant rate, to know at which
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release we would expect a signal we evaluated at which release the
number of expected events would have been achieved.
4. Results

Table 1 presents the number of doses identified and the main
characteristics of individuals receiving the vaccine of interest.

4.1. Seasonal influenza/GBS

We identified 1.89 and 1.66 expected events for season 2013–
14 and 2014–15, respectively. The historical rates used were based
on 33 observed events for each season. Hence, the use of
Table 1
Main characteristics of individuals receiving the vaccine of interest for the pairs included.

Characteristic Vaccine/outcome pair

Influenza/GBS season 2013–14

Number of doses (n) 533,110

Sex – n (%)
Male 240,884 (45.2)
Female 292,226 (54.8)

Age (years) – n (%)
65–74 270,690 (50.8)
75–84 188,423 (35.3)
�85 73,997 (13.9)

Age (months) – n (%)
12 –a

13 –a

14 –a

�15 –a

GBS – Guillain-Barre syndrome.
MMR – Measles-mumps-rubella.

a Age (at time of vaccination) is expressed in years for seasonal influenza/GBS and m

Fig. 1. Implementation of a system for influenza vaccine/GBS for season 2013–1
CMaxSPRT was not deemed necessary. Fig. 1 presents system
implementation. No signal was identified for both seasons. When
we added cases to generate an increase in risk of 4- and 5-fold
we found, for an increase in risk of 4, the signal would be identified
at the beginning of January and February for the season 2013/14
and 2014/15, respectively, if a minimum of 4 events was stipu-
lated. For an increase of 5 times the risk the signals would be
detected a month before (Fig. 2).

Table 2 presents power and expected time to signal for sea-
sonal influenza/GBS and both seasons. In general, there was
power � 80% to detect RR � 4. If there was a signal this would
be detected at the beginning of December for large increases
in risk (6–8 times) and at the beginning of January for lower
increases (4–5 times).
Influenza/GBS season 2014–15 MMR/Febrile seizures

477,454 28,249

216,224 (45.3) 14,474 (51.2)
261,230 (54.7) 13,775 (48.8)

242,168 (50.7) –a

168,160 (35.2) –a

67,126 (14.1) –a

–a 11,460 (40.6)
–a 10,049 (35.6)
–a 3320 (11.8)
–a 3420 (12.1)

onths for MMR/febrile seizures.

4 (A) and season 2014–15 (B). No signal is detected in any of the seasons.



Fig. 2. Implementation of a system for influenza vaccine/GBS for season 2013–14 (A) and season 2014–15 (B), assuming an increase in risk of 4 and 5 times. A signal is
detected at different points in time depending on critical limits considered.

Table 2
Power and expected time to signal for seasonal influenza/GBS (seasons 2013–14 and 2014–15) using Poisson-based Maximized Sequential Probability Ratio.

Minimum events Season Data available at Power (time to signal in months from beginning of surveillance)a

Relative risk

1.5 2 2.5 3 4 5 6 8 10

1 2013–14 07–04-2014 13 25 40 55 (4) 78 (4) 91 (3) 97 (3) 100 (3) 100 (3)
2014–15 06–04-2015 12 23 37 51 (4) 74 (4) 88 (4) 95 (4) 99 (3) 100 (3)

2 2013–14 07–04-2014 14 28 44 60 (4) 82 (4) 93 (3) 98 (3) 100 (3) 100 (3)
2014–15 06–04-2015 14 26 41 55 (4) 77 (4) 90 (4) 96 (4) 100 (3) 100 (3)

4 2013–14 07–04-2014 16 33 50 65 (4) 86 (4) 95 (4) 98 (4) 100 (3) 100 (3)
2014–15 06–04-2015 16 31 47 62 (4) 83 (4) 93 (4) 98 (4) 100 (4) 100 (4)

Cells in bold refer to power �80%.
PMaxSPRT - Poisson-based Maximized Sequential Probability Ratio.

a Time to signal is only displayed for cells where equivalent power�50%.
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4.2. MMR/seizures

After investigation of duplicated records of febrile seizures we
decided to exclude those occurring with three days of one another
(Appendix E). We identified 11.3 expected episodes in the study
period and the historical rates were based on 2693 observed
events. Fig. 3 presents NRTVSS implementation. We identified a
signal using PMaxSPRT. For BMaxSPRT the signal was just missed.

Table 3 presents power and expected time to signal for febrile
seizures/MMR based on a one-year surveillance period. We
observed power � 80% to detect RR � 2.5. If there was a signal this
would be detected at the beginning of September (2 months after
beginning of surveillance) using PMaxSPRT for RR of �5, and in
subsequent months for lower increases in risk. Power for
BMaxSPRT was lower but would still allow detection of an RR of
�2.5.
5. Discussion

We systematically assessed the feasibility of implementing a
NRTVSS using data from CPRD. Our study shows that it is feasible
to use CPRD and it would enable detection of medium/large
increases in risk of GBS following seasonal influenza vaccine
among individuals aged �65 years, and smaller increases in the
risk of febrile seizures following first dose of MMR.

For influenza/GBS, CPRD would only enable detection of large
increases in risk. In addition, the signal would only be detected
around mid-season (beginning of January) which might be late,
as the vaccine is recommended early in the season [15]. Despite
limited power to detect an increased risk, our finding of no
increased risk of GBS following seasonal influenza vaccine seems
consistent with the existing literature. For example, a recent work
assessing GBS following influenza vaccine in the USA between
2010/11 and 2013/14 found no signal for the season 2013/14, the
season we also assessed as part of our work [16]. Overall, we
believe the system now proposed addresses some of the limita-
tions of the existing system, which is based on spontaneous reports
and thus is limited by underreporting [3].

We were able to replicate a known signal for febrile seizures fol-
lowing MMR based a one-year surveillance period. This signal was
identified only with PMaxSPRT (after 3 months of surveillance, if a
minimum events of 2 events was stipulated). Although BMaxSPRT
did not quite signal as it is a less powerful test, it has the advantage



Table 3
Power and expected time to signal for MMR/febrile seizures after, using Poisson and Binomial-based Maximized Sequential Probability Ratio.

Minimum events Test Data available at Power (time to signal in months from beginning of surveillance)a

Relative risk

1.5 2 2.5 3 4 5 6 8 10

1 PMaxSPRT 06–07-2015 30 73 (5) 95 (4) 99 (3) 100 (2) 100 (1) 100 (1) 100 (1) 100 (1)
BMaxSPRT 06–07-2015 28 63 (6) 85 (6) 95 (5) 99 (5) 100 (4) 100 (3) 100 (3) 100 (3)

2 PMaxSPRT 06–07-2015 33 76 (5) 96 (4) 100 (3) 100 (2) 100 (1) 100 (1) 100 (1) 100 (1)
4 PMaxSPRT 06–07-2015 36 79 (5) 96 (4) 100 (3) 100 (2) 100 (1) 100 (1) 100 (1) 100 (1)

Cells in bold refer to power�80%.
BMaxSPRT - Binomial-based Maximized Sequential Probability Ratio.
PMaxSPRT - Poisson-based Maximized Sequential Probability Ratio Test.

a Time to signal is only displayed for cells where equivalent power�50%.

Fig. 3. Implementation of a system for MMR/febrile seizures using PMaxSPRT (right) and BMaxSPRT (left). Only for PMaxSPRT a signal is detected.
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of having a much more relevant comparator period that should be
less prone to bias and would likely have signalled with an extended
surveillance period. We would therefore suggest that despite the
low number of expected events (11) it is still worthwhile using this
method in addition to PMaxSPRT to make the signal more robust.
Others have suggested a minimum number of expected events of
50 [2].

A further aspect is the minimum number of events required to
reject the null hypothesis. As previous work has suggested, reject-
ing the null hypothesis only after a certain number of events
increases power [14]. Given we have limited power for seasonal
influenza/GBS we would recommend implementing a system with
a requirement of 4 events before rejecting the null.

Vaccine safety studies require careful specification of risk-
windows and, if applicable, comparator windows. This includes
not only knowledge of the characteristics of the vaccine/outcome
pair under study but also the data available for analysis. In the case
of MMR/seizures we decided to use a longer risk-window than pre-
viously suggested (6–21 days instead of 6–11 days) to account for
delayed recording of seizures in the primary care data. If our choice
resulted in an unduly long risk-window the result would be an
underestimation of the risk and thus a reduction in the power to
detect a signal. In practice, a way to address uncertainty in the
specification of risk-windows is to conduct a sensitivity analysis
using an alternative risk/comparator window. Alternatively, this
uncertainty can be addressed at the confirmatory stage by looking
at the distribution of cases within the risk-window.

Data quality should also be considered. Our previous assess-
ment of completeness of records first diagnosed in hospital showed
that CPRD had low sensitivity to capture GBS. However, if this sub-
optimal sensitivity is constant over time, for the purposes of the
current system the effect would be a decrease in power to detect
an event [2]. We know of no studies assessing the positive predic-
tive value of the outcomes included. As for the vaccination data,
the vaccines we selected are administered in general practices
and GPs are financially incentivised to achieve certain thresholds
of vaccine uptake. It is thus expected that individuals classified
as vaccinated are indeed so.

Our study presents several limitations. The use of PMaxSPRT is
susceptible to uncertainty in historical rates and a conditional test
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was proposed to address this issue. We tried to minimize this by
using data from the 5 previous seasons/years to estimate historical
rates. Given the amount of observed events in the historical data is
substantial larger (more than five times) than the number of
expected events in the study period we considered that the use
of a conditional test was not necessary. Secondly, for our study per-
iod we considered only vaccinated individuals while for historical
rates we included both vaccinated and non-vaccinated. Including
vaccinated individuals in historical periods could have led to a
slight overestimate of the background rate and underestimate of
the RR and thus miss a signal. However, even if there were
increases in risk in the historical periods due to the vaccine, the
increase in the attributable risk would be small, thus minimizing
this issue. Nevertheless, we were able to detect a signal for sei-
zures/MMR, which is reassuring. Finally, our study is limited by
assumptions of the method used, including homogenous distribu-
tion of a potential risk during the risk-window and throughout the
study period and that if there is an increase in risk these additional
cases would be also recorded in CPRD.

We proposed a new adjustment for delays but it might still not
fully capture existing delays [17]. We only considered a mid-point
for adjustment, which simplifies the data accrual process. Further-
more, we considered a delay distribution based on historical data
and recording patterns might have changed, although previous
work looking at ten years’ worth of data shows consistent record-
ing patterns [4]. Overall, we believe our adjustment reduces bias
due to data availability and enables an earlier start of surveillance.

As previously pointed out there are few strategies available to
deal with potential confounding factors [2]. For influenza/GBS we
were able to account for gender and partially for age. If there is a
signal, further adjustment for confounders is one of the initial steps
[1], potentially including more detailed adjustment for age (we
only considered 10-year age groups) and for other potential con-
founders. Influenza incidence may be one of these potential con-
founders, as GBS is known to be associated with influenza-like
illness [18]. Rapid yearly estimates are provided for influenza inci-
dence and could potentially be used in this context. For seizures/
MMR, we were able to account for age and gender in the PMaxSPRT
analysis but we did not explicitly account for age in the BMaxSPRT.
Febrile seizure rates are known to change rapidly with age [19] but
the use of a control period before and after the risk period should
have helped to limit potential confounding due to age.

Our study made use of previously collected data to mimic a new
system. However, CPRD is expanding, to include practices using
different softwares [20]. While this can be seen as an opportunity
to increase power to detect lower increases in risk for rare out-
comes, there might be differences in coding systems and behaviour
that could limit the applicability of the results of our previous stud-
ies. Alternatively, these new practices could be used for signal con-
firmation should a signal be identified. This strategy would be a
way to avoid using the same data for signal identification and
confirmation.

As we have further knowledge on NRTVSS and its application
using CPRD next steps include application to new vaccines. In addi-
tion, there is the need to define which steps to undertake if a signal
is detected. Yih et al. [1] proposed a series of steps in case a signal
is found, broadly including: to check data and code, to examine
descriptive statistics for patterns in time between the exposure
and outcome, to adjust for additional confounders, to conduct a
non-sequential analysis with a different comparator, to conduct a
review of records, to compare the results with similar outcomes
or other existing data, to analyse new data or to design a new
study. All steps can be conducted using CPRD data. However, there
is limited ability to perform a timely confirmation of the patient’s
recorded diagnoses. Currently, when GPs are asked to validate
diagnoses identified from coded information this process may take
several months. Future discussions with data providers and
medicines regulatory authorities may help to facilitate the process
of data validation. An in-depth presentation of the steps required
following a signal is beyond the scope of this work.

In conclusion, our results suggest the implementation of
NRTVSS using CPRD as a way to complement existing methods,
by allowing timely identification of signals for more frequent out-
comes and by excluding large increases in risk for less frequent
outcomes.
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