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Abstract

Eimeria species cause the intestinal disease coccidiosis, most notably in poultry. While

the direct impact of coccidiosis on animal health and welfare is clear, its influence on the

enteric microbiota and by-stander effects on chicken health and production remains largely

unknown, with the possible exception of Clostridium perfringens (necrotic enteritis). This

study evaluated the composition and structure of the caecal microbiome in the presence or

absence of a defined Eimeria tenella challenge infection in Cobb500 broiler chickens using

16S rRNA amplicon sequencing. The severity of clinical coccidiosis in individual chickens

was quantified by caecal lesion scoring and microbial changes associated with different

lesion scores identified. Following E. tenella infection the diversity of taxa within the caecal

microbiome remained largely stable. However, infection induced significant changes in the

abundance of some microbial taxa. The greatest changes were detected in birds displaying

severe caecal pathology; taxa belonging to the order Enterobacteriaceae were increased,

while taxa from Bacillales and Lactobacillales were decreased with the changes correlated

with lesion severity. Significantly different profiles were also detected in infected birds which

remained asymptomatic (lesion score 0), with taxa belonging to the genera Bacteroides

decreased and Lactobacillus increased. Many differential taxa from the order Clostridiales

were identified, with some increasing and others decreasing in abundance in Eimeria-

infected animals. The results support the view that caecal microbiome dysbiosis associated

with Eimeria infection contributes to disease pathology, and could be a target for intervention

to mitigate the impact of coccidiosis on poultry productivity and welfare. This work highlights

that E. tenella infection has a significant impact on the abundance of some caecal bacteria

with notable differences detected between lesion score categories emphasising the impor-

tance of accounting for differences in caecal lesions when investigating the relationship

between E. tenella and the poultry intestinal microbiome.
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Introduction

Over the last 20 years global poultry production has tripled with approximately 90 million

tonnes of chicken meat and 1.1 trillion eggs now produced every year (http://www.fao.org/

faostat/) [1]. Further global expansion is predicted, most notably in Africa and Asia [2],

emphasising the importance to food security of effective control against poultry pathogens

including the protozoan Eimeria species. Members of the phylum Apicomplexa, these para-

sites can cause the intestinal disease coccidiosis in many animals including poultry. Seven

species specifically infect the domestic chicken (Gallus gallus domesticus) causing malab-

sorptive (Eimeria acervulina, E. maxima, E. mitis, E. praecox) or haemorrhagic (E. brunetti,
E. necatrix, E. tenella) enteritis, with species-specific sites of development and foci of pathol-

ogy within the intestinal tract [3]. Three species, E. acervulina, E. maxima and E. tenella
are most frequently found in intensively reared chickens and the latter is highly pathogenic

[4–6]. Eimeria tenella specifically infect epithelial cells of the caecal crypts of Lieberkhün,

resulting in the induction of a range of pro- and anti-inflammatory cytokines including

interleukin (IL)-6, IL-17A, IL-10 and interferon (IFN)-γ [7–11]. Infection may also result

in haemorrhagic lesions of varying severity, influenced by parasite dose size and age of

the bird, as well as host genotype and previous infection history [12, 13]. The presence of

Eimeria species can also exacerbate the outcome of co-infection with bacterial pathogens

such as C. perfringens (contributing to necrotic enteritis) or Salmonella enterica serovars

Enteritidis or Typhimurium [14–16].

In the poultry industry Eimeria are controlled using a combination of husbandry, chemo-

prophylaxis and vaccination, although increasing drug resistance and consumer demand for

drug-free animal produce has led to increased exploration of alternative control measures [2,

17, 18]. Pre- and probiotics have been proposed as alternatives to improve food-animal gut

health and productivity [19–21], with several publications describing potential to limit

Eimeria-induced pathology in poultry [22–24]. Microflora resident within the gastro-intesti-

nal tract contribute to nutrient digestion, fermentation of energy substrates, the breakdown

of non-starch polysaccharides and prevention of disease by reducing or blocking pathogen

colonisation or replication [25, 26]. Disruption of the enteric microflora can compromise

some or all of these functions, hence the need to improve understanding of apparently

healthy microbiomes and the impact that pathogen exposure or pre/probiotic supplementa-

tion has on these.

Recognition of the relevance of the enteric microflora to chicken health has prompted the

application of next-generation sequencing to define microbiome structure and diversity. The

caeca of poultry are major pathogen reservoirs, known to possess the largest and most diverse

gut microbiota in these birds [25] dominated by the phyla Firmicutes, Bacteriodetes and

Proteobacteria [27]. In chickens the caeca are a pair of elongated blind sacs containing micro-

bial communities of similar composition [28] that vary between individuals, even in similar

environments [25]. Factors such as gender, age, diet, stocking density and host-genotype all

can exert a significant impact on microbial composition [29–31]. Despite the significant dam-

age that Eimeria causes to the chicken gastrointestinal tract, little is known about its influence

on the enteric microbiome, or whether the resident microflora play any role in modulating

parasite-induced pathology. The aim of this study was to define the caecal lumen microbiome

of a commercial broiler chicken line following E. tenella infection, exploring variation associ-

ated with the severity of pathology induced by exposure to a single, homogeneous parasite

challenge.

Eimeria tenella and the chicken caecal microbiome
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Materials and methods

Animal ethics statement

The work described here was conducted in accordance with UK Home Office regulations

under the Animals (Scientific Procedures) Act 1986 (ASPA), with protocols approved by the

Royal Veterinary College Animal Welfare and Ethical Review Body (AWERB). Study birds

were observed twice per day for signs of illness and/or welfare impairment and were sacrificed

under Home Office licence by cervical dislocation.

Chicken management

As part of a larger study 250 day-old, Cobb500 broiler chickens were housed in coccidia-free

conditions at a stocking density of 34 kg/m2 (anticipated end weight). Following industry stan-

dard practice chickens were vaccinated against infectious bronchitis on day of hatch (using

Nobilis IB H120, MSD Animal Health, Milton Keynes, UK). Throughout the study all chickens

had access to feed and water ad-libitum. Birds were reared on a typical starter diet supple-

mented with the anticoccidial Maxiban1 (Elanoco; Greenfield, Indiana, USA) until 10 days of

age, followed by anticoccidial-free ‘grower’ (d11-24) and ‘finisher’ (d25-29) diets (Target Feeds

Ltd, Shropshire, UK).

Parasite propagation

Sporulated E. tenella parasites of the Houghton reference strain were propagated and main-

tained as described previously [32, 33].

Experimental design

At nineteen days of age chickens were randomly assigned to either control or infected groups,

with each group housed in a separate room to prevent accidental cross-infection. At 21 days of

age, 25 birds (group 1) received a single inoculum of 1 ml of DNase/RNase-free water, while

225 broilers in group 2 were inoculated with 35,000 sporulated E. tenella oocysts in 1 ml of

water.

Sample collection and lesion scoring

Four and a half days (108 h) post infection all birds were culled (26 days old). Gender was

assigned at autopsy by identification of gonads. For this study caeca were collected from 49

female chickens and 7 male chickens. Post-mortem, caecal tissue was assessed immediately for

lesions and scored following the method described by Johnson and Reid [13] by the same

experienced operator. Lesions were scored from 0 to 4: 0 (no lesions), 1 (mild lesions), 2 (mod-

erate lesions), 3 (severe lesions), 4 (very severe lesions). Caecal contents from one caeca per

bird was collected into a sterile tube and immediately flash frozen in liquid nitrogen, including

8–10 birds per lesion score category. All samples were stored at—80˚C until further process-

ing. All birds were weighed two days before infection and immediately prior to culling.

DNA extraction and preparation

DNA was extracted from each sample of caecal contents using a QIAamp DNA Stool Kit (Qia-

gen, Hilden, Germany), with the following modifications. Briefly, following step 2 of the

QIAamp DNA Stool Kit protocol, twice the sample volume of autoclaved Ballotini beads (0.4–

0.6 mm; VWR, Bristol, UK) were added and samples were homogenized for 30 seconds at

35,000 oscillations/minute in a Mini Bead-beater 24 (Bio-Spec, Bartlesville, USA) and chilled

Eimeria tenella and the chicken caecal microbiome
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on ice. The suspension was heated for five minutes at 95˚C, vortexed for 15 seconds and centri-

fuged for two minutes at 10,000 × g. The QIAamp Stool Kit protocol was resumed from step 5,

following the manufacturer’s instructions. To elute DNA, 50 μl of DNase/RNase free dH2O

(Invitrogen, Paisley, UK) was used. Eluted DNA was treated with RNase A (35 μg/ml, Thermo-

Fisher Scientific, Hemel Hempstead, UK) for one hour at 37˚C. To control for experimental

error DNA was extracted from samples in triplicate, quantified using a NanoDrop 1000 Spec-

trophotometer (NanoDrop Technologies, Wilmington, USA) and corresponding samples

combined in a 1:1:1 ratio. Combined samples were adjusted to a concentration of 5 ng/μl by

dilution in DNase/RNase free dH2O.

PCR amplification and sequencing

Sequencing libraries were prepared following the Illumina 16S Metagenomic Sequencing

Library Protocol (https://support.illumina.com/content/dam/illumina-support/documents/

documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-

15044223-b.pdf). Specifically the V3-V4 hypervariable regions of 16S rRNA were PCR ampli-

fied from extracted caecal DNA (forward primer: 5’ cctacgggnggcwgcag 3’ and reverse primer:

5’ gactachvgggtatctaatcc 3’). Amplicon PCR followed by index PCR, to generate unique barcode

sequences at the 5’ end of each primer, were carried out along with the appropriate clean up

steps. Following quality control, 55 of 58 samples were taken forward for sequencing (S1 Table).

The pooled DNA library (4 nM) and PhiX control v3 (4 nM) were mixed with 0.2 N fresh

NaOH (Invitrogen, Paisley, UK) and HT1 buffer to produce a final concentration of 4 pM each.

The library was mixed with PhiX control v3 (20%, v/v) (Illumina, San Diego, USA) and 600 μl

loaded on the MiSeq reagent cartridge for Illumina sequencing. Genomic DNA from a micro-

bial mock community was included (HM-782D, Bei Resources, Virginia, USA) as a control.

Sequence read processing and quality control

Read pairs were merged using FLASH (Fast Length Adjustment of Short Reads) [34].

Sequences less than 400 bp were discarded using the program Trimomatic v1.2.11 [35]. Qiime

v1.9.1 (Quantitative Insights Into Microbial Ecology) was used to remove barcodes and to

complete data processing. Briefly, operational taxonomic units (OTUs) were taxonomically

classified via uclust [36] against the curated Greengenes database v13_8 (http://greengenes.

secondgenome.com/). Taxa were further classified using the EzBioCloud database [37]. OTUs

belonging to the phylum cyanobacteria were discarded [38] and caecal samples with less than

1000 sequences, in total, were removed. The final biom table, containing the raw sequences for

55 samples, was used for all further analyses.

Data analysis

Exploratory and differential abundance was analysed in R Studio v3.3.2 [39] and Bioconductor

v3.3.1 [40] using the packages Phyloseq v1.19.1 [41], DESeq2 v1.14.1 [42], ggplot2 v2.2.1 [43],

plyr v1.8.4 [44] and RColorBrewer v1.1–2 [45]. DESeq2 was used to identify differentially

abundant phylotypes with the P-value adjusted (padj) for multiple testing using the Benja-

mini-Hochberg method [46]. Alpha diversity indices (Richness: Observed, Chao1, ACE (abun-

dance based coverage estimator); richness and evenness: Shannon, Simpson, Inverse Simpson,

Fisher) were obtained using the plot_richness function of the Phyloseq package. A Kruskal-

Wallis test was conducted using SPSS (IBM) to assess for statistical significance. Beta diversity

was analysed in Qiime v1.9.1 following normalisation by CSS (cumulative sum scaling) [47].

The weighted (quantitative) UniFrac metric was analysed [48, 49]. The nonparametric statisti-

cal method Adonis [50] was used to compare categories in Qiime v1.9.1. Data was then
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visualised in a Principle Coordinates Analysis (PCoA) plot. Rarefaction curves were generated

in the program Calypso [51]. In all statistical tests data with an alpha value less than 0.05 was

considered significant.

Results

Caecal microbiota

Following quality filtering 4,858,824 sequences were obtained in total from 55 samples. The

number of assembled sequences ranged from 6,742 to 249,620 per sample, with an average of

88,067 (S2 Table). All sequences have been submitted to the Sequence Read Archive and are

available under the accession number SRP111033. The average assembled 16S (V3-V4) length

was 448 nucleotides, ranging from 400 bp to 467 bp (S1 Fig). Rarefaction curves (S2 Fig) sug-

gested that asymptotes were nearly reached for most samples, indicating that deeper sequenc-

ing would only reveal rare additional taxa. Using the Greengenes database these sequences

were found to represent 11 bacterial phyla (Fig 1). Considerable bird to bird variation was

detected, although the phyla Firmicutes, Bacteroides, Proteobacteria and Verrucomicrobia

were consistently represented in both uninfected and infected groups, with Firmicutes repre-

senting over 50% of all taxa in most birds. In total 2,206 Operational Taxonomic Units

(OTUs) were observed (per caecum mean 294; 115–499; S2 Table). Sequences belonging to the

class Clostridia were found to dominate the caeca in all groups.

Diversity of the caecal microflora

Consideration of alpha diversity within the sequence datasets using the number of observed

OTUs, Chao1, ACE, Shannon and Simpson indices, showed no significant variation associated

with E. tenella -induced lesion score (Fig 2, S3 Table).

Fig 1. Bar chart showing relative abundance of bacterial phyla in each broiler, sorted by severity of pathology. Data were compiled using

8–10 individual caecal samples per infection status: LS 0 (n = 8, no lesions), LS 1 (n = 9, mild lesions), LS 2 (n = 10, moderate lesions), LS 3

(n = 10, severe lesions), LS 4 (n = 8, very severe lesions) and uninfected controls (n = 10). In each group there were three or four dominant phyla,

as indicated in bold in the accompanying legend. In both infected (LS 0 –LS 4) and uninfected samples the phylum Firmicutes represented over

50% of all taxa in most birds.

https://doi.org/10.1371/journal.pone.0184890.g001
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Weighted (quantitative) UniFrac was used to investigate beta diversity between lesion score

groups. Analysis with Adonis revealed no statistical significance between uninfected and all

infected groups (P = 0.062) but a significant relationship with individual lesion score group

(Controls, LS 1–4) (R2 = 0.15, P = 0.025). When individual lesion score (LS) groups were com-

pared, PCoA plots showed definitive clustering for specific comparisons (Fig 3) and signifi-

cance was observed between the following groups: uninfected versus LS 4 (R2 = 0.19, P =

0.007), LS 0 versus LS 3 (R2 = 0.17, P = 0.031) and LS 0 versus LS 4 (R2 = 0.25, P = 0.004) (S4

Table). An R value equal to 1 shows the samples are completely different, while R equal to 0

means they are identical.

Differentially abundant phylotypes

DESeq2 was used to identify differentially abundant phylotypes following E. tenella infection.

All possible comparisons were evaluated for changes in abundance (Table 1, S5–S18 Tables).

In additional to individual comparisons, all samples from lesion score groups zero to four

were merged to create an infected (all LS) group which was compared to the uninfected con-

trol group. All samples from lesion score groups one to four were merged to generate a symp-

tomatic sample group, which was compared to the asymptomatic LS 0 samples (S18 Table).

The number of differentially abundant OTUs was most evident when the most disparate lesion

score groups were compared. The greatest number of differentially abundant OTUs was

observed between the uninfected control group and the LS 4 group. Eight differentially abun-

dant phylotypes were common across all LS groups when compared to the uninfected control

group. Differentially abundant OTUs generally belonged to the following five orders: Bacil-

lales, Clostridiales, Lactobacillales, Enterobacteriales and Bacteroidales. A graphic represen-

tation of differentially abundant OTUs for four group comparisons can be seen in Fig 4,

Fig 2. Alpha-diversity plots for each treatment group. Plot of bacterial species richness (Observed) and

alpha diversity measures for each treatment group using; Chao1, ACE (Abundance-based Coverage

Estimator), Shannon and Simpson tests. Circles represent individual samples, grouped by colour according to

lesion score and uninfected (UN) samples. No significant differences were observed between any of the

treatment groups using Kruskal-Wallis tests (P > 0.05).

https://doi.org/10.1371/journal.pone.0184890.g002
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Fig 3. Weighted UniFrac PCoA. (A) All samples, LS 0 to LS 4 and uninfected (B) Uninfected versus lesion

score (LS) 4 (C) Lesion score 0 versus lesion score 3 (D) Lesion score 0 versus lesion score 4. Each point

represents a single chicken caecal microbiome. Individual groups are represented by a unique symbol and

colour combination. The comparisons shown were significant according to Adonis in Qiime (P < 0.05). Lesion

scores 0 to 4 indicate increasing lesion severity.

https://doi.org/10.1371/journal.pone.0184890.g003

Table 1. Number of significant differentially abundant OTUs identified using DESeq2 (padj < 0.05), for all group comparisons.

Lesion score groups Uninfected LS 0 LS 1 LS 2 LS 3 LS 4

Infected (All LS) 37

Uninfected 26 23 16 31 41

LS 0 1 3 29 32

LS 1 0 1 10

LS 2 0 1

LS 3 0

LS 4

Caecal samples were grouped either as uninfected or infected, with samples split according to lesion score (LS) group: 0 (no lesions), 1 (mild lesions), 2

(moderate lesions), 3 (severe lesions), 4 (very severe lesions). Each group was compared to every other group using DESeq2 in R Studio, to determine

differential abundance. Comparison of all infected samples (All LS) compared to uninfected controls was also carried out. Corresponding information for all

comparisons can be found in the, S5–S18 Tables.

https://doi.org/10.1371/journal.pone.0184890.t001
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categorised by genus and order. A full list of significant phylotypes can be found in the S5–S18

Tables.

Discussion

The enteric microflora has been shown to play an important role in the health, welfare and

productivity of commercially reared chickens [52–54]. One possible variable is infection with

protozoan parasites such as the Eimeria species. Each Eimeria species present a distinct patho-

gnomonic profile [3] and is likely to cause varied impacts in different sections of the intestine.

Changes in the enteric microbiome which associate with Eimeria exposure may be relevant to

animal welfare, food security and safety [2, 55].

Fig 4. Plots of OTUs that were significantly differentially abundant (padj < 0.05) according to DESeq2 analysis. Significant OTUs

are represented by single data points (with some data points overlapping), grouped by genus on the x-axis and by colour according to

which taxonomic order the OTU originates. (A) Uninfected controls versus all infected samples (LS0 –LS 4), (B) uninfected controls versus

lesion score 4, (C) lesion score 0 versus lesion score 3, (D) lesion score 0 versus lesion score 4.

https://doi.org/10.1371/journal.pone.0184890.g004
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Research investigating the effect that Eimeria has on the caecal microbiome of poultry is

sparse, and to our knowledge this study is the first to specifically analyse the microbiome

according to severity of caecal lesions, following exposure to a defined high dose of a single

Eimeria species. No changes in alpha-diversity were found following infection, even in samples

from birds with severe or extremely severe lesions (LS 3, LS 4). Others have also concluded

that microbial community richness was not significantly affected by E. tenella [56], or mixed

infection (E. acervulina, E. maxima, E. tenella) [57], but did not assess disease severity. Con-

versely, a combination of Eimeria vaccine strains (E. acervulina, E. maxima, E. brunetti, mixed

suspension) induced significant changes in alpha-diversity [58] and combined Eimeria (mixed

species)/C. perfringens infection had an even greater effect [59]. There are a number of factors

that could explain the disparity in results; diet, stocking densities, host-genotype, age and gen-

der have all been shown to influence microbiome composition [29–31, 60]. Both Eimeria stud-

ies reporting significant changes in alpha-diversity [58, 59] used male birds only, while the

majority of birds used in the current study were female (49/56). Furthermore, the study of

Boulton et al. from which samples in this study originate, suggest females are inherently more

tolerant to Eimeria infection than males, as infected females had significantly more lesions

than males without an associated change in body weight gain [12]. Additionally, differences in

species, strain and level of Eimeria parasite infection may explain between study variations in

alpha diversity [56].

Eimeria infection per se also did not produce a significant impact on caecal microbiome

beta-diversity (P = 0.062) compared to uninfected controls. Instead, there was significant cor-

relation between disease pathology and microbiome diversity, with the greatest differences

between severely effected birds and controls. This finding raises the question of whether

microbiome variation is a consequence or a potential cause of the caecal lesions. If the latter

contributes, manipulation of the microbiome could have therapeutic or prophylactic benefit.

These results highlight the importance of considering Eimeria parasite induced pathology

when analysing caecal microbial diversity.

Numbers of differentially abundant taxa identified following infection were similar to pre-

vious reports investigating the influence of Eimeria on the caecal microbiome [58] [56].

Assessment of differential abundance was correlated to OTU/species level where possible, as it

is known that analysis at higher taxonomic levels can lead to inaccuracies, however where nec-

essary abundance at higher taxonomic levels is discussed [60]. All differential OTUs belonging

to the family Enterobacteriaceae increased post-infection. Based upon analysis using EzBio-

Cloud [37], these OTUs were most similar to either Escherichia coli, E. fergusonii, Shigella flex-
neri or Shigella sonnei. Avian Pathogenic E. coli (APEC) is of great concern within the poultry

industry resulting in significant economic loss [61]. The increased abundance of OTUs associ-

ated with Escherichia and Shigella may enhance pathogenic potential, leading to opportunistic

outbreaks due to immunosuppression and stress following E. tenella infection.

Following asymptomatic (LS 0) infection a relative increase in three OTUs classified as Lac-
tobacillus johnsonii (EzBioCloud) was observed. More severe damage to the caeca (LS 3)

resulted in a significant decrease in three different OTUs belonging to the genus Lactobacillus:
L. reuteri × 2 (EzBioCloud) and L. pontis (EzBioCloud). Differential taxa belonging to the

genus Lactobacillus decreased in abundance in severe and extremely severe lesion score sam-

ples (LS 3 & LS 4) compared to those collected from asymptomatic (LS 0) chickens; these

phyla were found in asymptomatic samples at similar levels to uninfected samples. Changes in

abundance of Lactobacillus may contribute to the variation in caecal tissue damage. Lactobacil-
lus based probiotics can modulate the innate and acquired immune system of poultry and

have been correlated with improved outcomes in relation to bacterial and parasitic infection

[23]. The anticoccidial properties of various Lactobacilli have been investigated with studies

Eimeria tenella and the chicken caecal microbiome
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reporting improved body weight gain, decreased lesion scores, inhibition of cellular invasion

and enhanced mucosal immunity [22, 62–64]. In conjunction with some of these anticoccidial

properties, Lactobacilli have been shown to stimulate immune factors including IFN-γ, IL-2,

IL-1β, IL-6 [22, 65] and intestinal intraepithelial lymphocytes (IEL) [62]. The elevated Lactoba-
cillus in asymptomatic birds may contribute to an early immune response, reducing E. tenella
invasion of epithelial cells, and mitigating development of caecal lesions. Intervention studies

with various probiotic supplements have provided some support for this view [22, 64, 66].

Various probiotic formulations including PoultryStar1, Aviguard1 and Broilact1 have pro-

vided promising results, in laboratory testing, against a number of important poultry patho-

gens including C. perfringens, S. enterica serovar Enteritidis, Campylobacter jejuni, extended-

spectrum β-lactamase producing E. coli and several Eimeria species parasites [24, 64, 67–72].

Furthermore, a small but significant increase in an OTU, classified as B. animalis (EzBio-

Cloud), was observed in this study in asymptomatic samples compared to birds with extremely

severe lesions (LS 4). Assessment of probiotic supplementation in chickens infected with E.

tenella by Giannenas et al. (2012) found that B. animalis individually did not improve any of

the tested parameters, however this species was included in the mixed probiotic, PoultryS-

tar1, that showed great promise and may have synergistic properties [64].

The order Clostridiales accounted for over 50% of all taxa within the microbiome and sev-

eral OTUs within this order were found to be differentially abundant following infection.

Birds with the most damaged caeca (LS 4) contained the largest percentage (41.5%) of differen-

tial OTUs belonging to Clostridiales, highlighting that E. tenella induced caecal damage has a

strong association with this order. Similarly, Zhou et al. (2017) reported the vast majority of

differential OTUs (22/23) following E. tenella infection belonged to the order Clostridiales

[56]. The differential OTUs belonged to several families, Lachnospiraceae, Ruminococcacea,

Clostridiaceae and Peptostreptococcaceae. Classification at both genus and species levels of

differential OTUs from the order Clostridiales was extremely limited and prevented detailed

analysis at species level. At genus level Clostridium increased following infection in the all LS

group, LS 0 and LS 4, conversely the genus Ruminococcus decreased only in LS 4 samples; simi-

lar changes were induced by mixed Eimeria infection in a previous study [58].

While it is unsurprising that changes in abundance of bacteria occur following E. tenella
infection, of particular interest was the examination of differential taxa according to caecal

lesion score. Differential OTUs were most abundant comparing samples at either end of the

lesion score scale. DESeq2 analysis found 25 and 35 differential OTUs when comparing LS 0

to LS 3 and 4, respectively and ten differential OTUs between LS 1 and LS 4. Beta diversity

between these groups was significant according to Adonis. Taxa belonging to the genera Bac-
teroides were among those most effected and these differential OTUs were classified as either

B. vulgatus or B. dorei (EzBioCloud). Intriguingly, OTUs belonging to the genus Bacteroides
were reduced in infected but asymptomatic chickens (LS 0) when compared with LS 3 and LS

4 samples, as well as with samples from uninfected controls. Indeed, following asymptomatic

infection, OTUs belonging to the genus Bacteroides either completely disappeared or were

present at very low levels. Overall, this genus accounted for less than 0.1% of the microflora

within asymptomatic samples compared to 4.8%, 5.8%, 13.7%, 2.0% and 9.9% in LS 1, LS 2, LS

3, LS 4 and uninfected birds, respectively. Previously, Bacteroides were found to be abundant

in the caecal microflora of chickens [28, 73] and are known to provide nutrients for the host

by metabolising carbohydrates [74]. Conversely, some species of Bacteroides have been impli-

cated in the pathogenesis of severe ulcerative diseases in humans and animals including ulcera-

tive colitis and Crohn’s disease [74–77]. Bacteroides species have been reported to aid in the

survival of some (facultative) anaerobic bacteria including E. coli, protecting against phagocy-

tosis [78, 79]. In the most severely affected caecal samples in this study many OTUs associated
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with facultative anaerobes, including all differential OTUs belonging to the family Enterobac-

teriaceae which were increased in abundance following infection. Bacteroides species, as part

of the commensal microflora, could protect some anaerobic bacteria in symptomatic birds,

prolonging survival of pathogenic bacteria and possibly resulting in more severe tissue dam-

age. Using DeSeq2, comparison of asymptomatic LS 0 samples to symptomatic samples,

(LS1 –LS4) merged together, revealed eight OTUs belonging to the genus Bacteroides were

decreased in asymptomatic samples while six OTUs belonging to the genus Lactobacillus were

increased. Similar results were obtained when each individual symptomatic group was com-

pared to LS 0 samples, with increasing numbers of differential OTUs as lesion score severity

increased. These results indicate that OTUs belonging to these two genera may play a pivotal

role in susceptibility or resistance to E. tenella infection. The reasons why some birds remained

asymptomatic following E. tenella infection, while others were severely affected remains

unknown. Host immune parameters such as the magnitude of interferon gamma and interleu-

kin-10 responses have been implicated in the outcome of infection [12]. It is now hypothesised

that a combination of factors are involved and results from this study suggest either a func-

tional role for the enteric microbiome, or microbial variation as a consequence of infection.

The importance of the enteric microbiome to fermentation and effective use of dietary

resources underlines the significance of these changes [80].

Conclusion

The current study has demonstrated that E. tenella infection of Cobb500 broilers elicited sig-

nificant changes in the abundance of a number of microbial taxa in the caecal microbiome

that were correlated with the most severe caecal pathology. Increases in taxa belonging to the

order Enterobacteriaceae were common, as were decreases in taxa from Bacillales and Lactoba-

cillales. These results provide new information regarding the effect that E. tenella has on the

caecal microbiome of poultry and indicate the importance of accounting for differences in

lesions when investigating the relationship between Eimeria and the poultry microbiome. A

greater understanding of caecal microbiome dysbiosis associated with Eimeria induced caecal

tissue damage could aid in the development of in-feed probiotics with the ultimate aim of

reducing the most severe effects of this ubiquitous parasite. Consideration of the variation

induced by infection with other Eimeria species is also likely to be important.
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