
Optimal design of clinical trials in early stage manifest Huntington’s disease 

Statistical Appendix: 

1. Analysis of non-imaging outcome variables  

a) Basic linear mixed model for repeated measures in a single group 

The model is a standard random slopes model relating the outcome to time since 

randomization, with the addition of random site and site-by-visit interactions. Site 

effects were incorporated in this fashion since plots of the means by site and visit 

suggested that such parameters, rather than site specific random slopes, best describe 

the data.    

𝑦𝑖𝑗 = (𝛼 + 𝑎𝑖) + (𝛽 + 𝑏𝑖)𝑡𝑖𝑗 + 𝑐𝑠(𝑖) + 𝑑𝑠(𝑖)𝑗 + 𝑒𝑖𝑗       (1) 
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where 𝑦𝑖𝑗 is the value of the outcome variable for the 𝑖th person at the 𝑗th visit,  

𝑡𝑖𝑗  is the time of that visit relative to randomization (in years) and 𝑠(𝑖) 𝑖s the  

subject's site (𝑠(𝑖) = 1,2,3,4).   

Implied variance of a single outcome measure: 
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Implied covariance between two measures on the same person (𝑗 not equal to 𝑘): 
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Implied variance of difference between two measures on the same person: 
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Implied variance of a rate of change derived from a difference between two measures 

on the same person: 
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Implied covariance between two measures on different people from the same site at 

the same/different visits (𝑗 not equal to 𝑘): 



Optimal design of clinical trials in early stage manifest Huntington’s disease 

 Cov(𝑦𝑖1𝑗, 𝑦𝑖2𝑗)= 𝜎𝑐
2 + 𝜎𝑑

2        (5)     Cov(𝑦𝑖1𝑗 , 𝑦𝑖2𝑘)= 𝜎𝑐
2        (6) 

b) Adjustment for covariates  and other modelling details  

To improve the extent to which normality assumptions were satisfied UHDRS-TMS was 

square root transformed, UHDRS-TFC was square root transformed after values were 

subtracted from 13 (the maximum value) and the speeded tapping inter-onset interval 

standard deviation was log transformed. For the SDMT and speeded tapping 

outcomes frequent convergence problems were encountered with the bootstrap (see 

below) and so the centre by visit interaction terms ( 𝑑𝑠(𝑖)𝑗),  whose variance was 

usually estimated to be zero, was omitted from all models.  

Models which that allow the intercept and slope to depend upon a vector of covariates 

(𝒙) were also fitted to permit investigation of the effect of stratification on such 

covariates on required sample sizes. These involve adding appropriate fixed effects 

(𝜸𝑇𝒙𝑖 + 𝝏𝑇𝒙𝑖𝑡𝑖𝑗) to the model to give the following.  

 

𝑦𝑖𝑗 = (𝛼 + 𝜸𝑇𝒙𝑖 + 𝑎𝑖) + (𝛽 + 𝝏𝑇𝒙𝑖 + 𝑏𝑖)𝑡𝑖𝑗 + 𝑐𝑠(𝑖) + 𝑑𝑠(𝑖)𝑗 + 𝑒𝑖𝑗   (7) 

 

In the early-HD group covariates that were investigated were age at baseline, CAG 

repeat length, disease burden, gender, stage (I or II) and education (measured on a 

standardized seven-point scale as in earlier TRACK-HD publications5-8). Of these there 

were statistically significant effects of age, CAG repeat length, disease burden and 

stage on the slope in the early-HD group for at least one of the four non-imaging 

variables considered here and so these four factors were included in the models from 

which required sample sizes were estimated.  In the control group covariates that 

were investigated were age, gender and education. Of these there were only 

statistically significant effects of age on slopes and so only age was included in the 

models from which required sample sizes were estimated.   

 

  



Optimal design of clinical trials in early stage manifest Huntington’s disease 

2. Analysis of imaging variables 

a) Basic linear mixed model for repeated “direct” measures of change in a single group 

The general formula for a measured difference between two visits is as follows. This 

is the model proposed by Frost and colleagues25 with the addition of random site-by-

visit interaction terms.     

𝑐𝑖𝑗𝑘 = (𝛽 + 𝑏𝑖)(𝑡𝑖𝑘 − 𝑡𝑖𝑗) − 𝑢𝑖𝑗 + 𝑢𝑖𝑘 − 𝑣𝑠(𝑖)𝑗 + 𝑣𝑠(𝑖)𝑘 + 𝑤𝑖𝑗𝑘         (8) 
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where 𝑐𝑖𝑗𝑘 is the measured change in the outcome variable for the ith person between 

the jth and the kth visits, other notation as above. 

However for the data considered here all changes were measured from visit 1 at time 

0, so the suffix j can be dropped from equation (7) giving  

𝑐𝑖𝑘 = (𝛽 + 𝑏𝑖)𝑡𝑖𝑘  − 𝑢𝑖 + 𝑢𝑖𝑘  − 𝑣𝑠(𝑖) + 𝑣𝑠(𝑖)𝑘 + 𝑤𝑖𝑘                               (9) 
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Model (9) can be written using more standard notation by defining  𝑚𝑠(𝑖) = −𝑣𝑠(𝑖) , 

 𝑛𝑠(𝑖)𝑘 =  𝑣𝑠(𝑖)𝑘 ,  𝑝𝑖 = − 𝑢𝑖  and 𝑞𝑖𝑘 = 𝑢𝑖𝑘 +  𝑤𝑖𝑘. 

𝑐𝑖𝑘 = (𝛽 + 𝑏𝑖)𝑡𝑖𝑘 + 𝑚𝑠(𝑖) + 𝑛𝑠(𝑖)𝑘 + 𝑝𝑖 + 𝑞𝑖𝑘                (10) 
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For strict equality between equations (9) and (10)  𝜎𝑞
2 should be constrained to be 

larger than 𝜎𝑝
2. However, in practice when model (10) was fitted it was frequently 

found that parameter estimates did not satisfy this constraint, so this was not 

enforced.  For convenience we also did not constrain 𝜎𝑚
2  and 𝜎𝑛

2 to be equal, as strict 

agreement between models (9) and (10) would imply.  

Implied variance of a single direct measure of change: 

 Var(𝑐𝑖𝑘)= 𝑡𝑖𝑘
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Implied variance of a rate derived from a single direct measure of change: 

 Var(𝑐𝑖𝑘 𝑡𝑖𝑘⁄ )= 𝜎𝑏
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Implied covariance between two direct measures of change on the same person (𝑘 not 

equal to 𝑙): 

 Cov(𝑐𝑖𝑘, 𝑐𝑖𝑙)=  𝑡𝑖𝑘𝑡𝑖𝑙𝜎𝑏
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Implied covariance between two direct measures of change on different people from 

the same site at the same/different visits (𝑗 not equal to 𝑘): 

 Cov(𝑐𝑖1𝑘, 𝑐𝑖2𝑘)= 𝜎𝑚
2 + 𝜎𝑛
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b) Adjustment for covariates and other modelling details  

Both whole brain and caudate volumes were analysed on three different scales: i) 

absolute changes in volume (in mls), ii) percentage changes using the logarithmic 

approach described by Frost and colleagues25 where the outcome variable is defined 

to be log(1 + (direct measure of change/baseline volume))and iii) changes as a 

percentage of total intra-cranial volume (ICV) where (for consistency with ii)) the 

outcome variable is defined to be log(1 + (direct measure of change/ICV)). 

 Models that allow the slope to depend upon a vector of covariates (𝒙) were also fitted 

to permit investigation of the effect of stratification on such covariates on required 

sample sizes. These involve adding appropriate fixed effects (𝝏𝑇𝒙𝑖(𝑡𝑖𝑘 − 𝑡𝑖𝑗)) to the 

model. The same covariates as for the non-imaging variables together with the 

baseline measure of the respective volume were investigated. Of these there were 

statistically significant effects of age, CAG repeat length, disease burden and baseline 

volume on the slope in the early HD group for at least one of the six imaging variables 

considered here and so these four factors were included in the models for which 

required sample sizes were estimated. In controls age and baseline brain volume were 

included in such models. 
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3. Sample sizes for designs of interest  

A number of authors including Dawson39 and Frost and colleagues16 have shown how 

required sample sizes for a particular clinical trial design can be computed provided 

that there are postulated values for the parameters in the model that is to be used for 

the trial analysis. We explain this using (slightly revised) material from Frost and 

colleagues16.    

 

The analysis model for early HD patients is extended to a “treatment trial” model 

appropriate when there are two groups of patients receiving different treatments, 

with the slope allowed to differ between the two groups. For example, extending the 

model specified in equation (1) in this way gives the following.  

 

𝑦𝑖𝑗 = (𝛼 + 𝑎𝑖) + (𝛽 + 𝜏𝑔𝑖 + 𝑏𝑖)𝑡𝑖𝑗 + 𝑐𝑠(𝑖) + 𝑑𝑠(𝑖)𝑗 + 𝑒𝑖𝑗      (15) 

where 𝑔𝑖 takes the values 0 and 1 in placebo and intervention groups respectively. 

Once the analysis model is specified sample size requirements follow from the theory 

of linear mixed models as follows.  

A general formulation for a linear mixed model is 

𝒀|𝒖~𝑵[𝑿𝜷 + 𝒁𝒖 ; 𝑹] for 𝒖~𝑵[𝟎 ; 𝑮].      (16) 

This implies, marginally, that  

𝒀~𝑵[𝑿𝜷 ;  𝚺] where 𝚺 = 𝑹 + 𝒁𝑮𝒁𝑻.      (17) 

Here Y is the vector of outcome variables, X is the design matrix,  is the vector of 

fixed effects and Σ is the variance-covariance matrix for the residuals. If a linear mixed 

model is to be used to analyse a randomised controlled trial then one of the elements 

of  will correspond to a treatment effect (τ in equation (15)). Without loss of 

generality consider this to be β1.  

Provided that there is a postulated fixed value for the variance-covariance matrix then  

𝜷̂ = (𝑿𝑻𝚺−𝟏𝑿)−1𝑿𝑻𝚺−𝟏𝒀       (18) 
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and 

V(𝜷̂) = (𝑿𝑻𝚺−𝟏𝑿)−1.        (19) 

Equation (19) defines a covariance matrix that permits calculation of the standard 

error of the treatment effect (𝑠 = √[𝑉(𝛽̂)]
11

) for any design matrix and postulated 

Σ. To determine sample size requirements for a complex design a computationally 

convenient approach is to first use equation (19) to estimate the standard error of the 

treatment effect for a hypothetical ‘two subject trial’ involving one person in each of 

two arms (𝑠𝑡𝑤𝑜 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑟𝑖𝑎𝑙). Since the standard error for a trial with N subjects in each 

arm is 𝑠𝑡𝑤𝑜 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑟𝑖𝑎𝑙 √𝑁⁄   it follows from standard theory that the necessary sample 

size to identify a postulated treatment difference τ with 90% statistical power, using a 

two-sided 5% significance level is  

𝑁 = [
(1.96+1.282)𝑠𝑡𝑤𝑜 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑟𝑖𝑎𝑙

𝜏
]

2

.     (20) 

The sample size formula depends upon the design matrix X (which is dependent upon 

the number and spacing of the trial visits), and also on the various components of 

variance and covariance which are assumed to be the same in the treatment trial 

model and analogous analysis model (for the early HD patients).   

The ratio of the treatment effect to its standard error for the two subject trial         

(τ/stwo subject trial) can be thought of as a unit-free effect size, easily convertible to a 

sample size using equation (20). 

To switch to 80% statistical power the 90th percentile of the N(0,1) distribution (1.282) 

should be replaced in equation (20) by the 80th percentile (0.842), multiplying the 

required sample size by 0.747 (0.747 = (1.960 + 0.842)2 (1.960 + 1.282)2)⁄ . 

For each of our basic models (without adjustment for covariates such as age) we 

considered ‘two subject trials’ where each person is from the same site, hence giving 

sample sizes that relate to a trial that is stratified by site. For imaging outcomes we 

consider designs where “direct” measures of change are only available from baseline 

to each follow-up visit (as in TRACK-HD). “Direct” measures of change between other 
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pairs of visits could also calculated, and incorporated in the design matrix and 

statistical analysis, but gains in efficiency are likely to be small and we did not pursue 

this here.  

This basic approach was extended to compute sample size requirements for stratified 

randomized controlled trials with covariate adjustment for the stratification factors. 

Extending the model specified in equation (15) to allow intercepts and slopes to 

depend upon a vector of covariates (𝒙) gives the following model.  

𝑦𝑖𝑗 = (𝛼 + 𝑎𝑖 + 𝜸𝑇𝒙𝑖) + (𝛽 + 𝜏𝑔𝑖 + 𝑏𝑖 + 𝝏𝑇𝒙𝑖)𝑡𝑖𝑗 + 𝑐𝑠(𝑖) + 𝑑𝑠(𝑖)𝑗 + 𝑒𝑖𝑗    (21) 

 

Again the standard theory of linear mixed models gives a formula for the variance of 

the treatment effect (𝜏) in the treatment trial model for the particular design being 

considered here. Provided it is assumed that covariates are perfectly balanced by 

randomisation arm the estimates of ( 𝜸𝑇 ,  𝝏𝑇 ) are orthogonal to those for the 

treatment effect (𝜏 ) and hence neither these estimates, nor their variances and 

covariances, need be formally computed. The ‘two subject trial’ method of computing 

the variance of the treatment effect referred to above can simply be amended such 

that the two people in question now have with identical values of all stratification 

factors, with all variances and covariances taken from the model (equation (7)) that 

adjusts for these factors.   

 For UHDRS-TMS and UHDRS-TFC the anticipated treatment effect for a randomised 

controlled trial without stratification for any factor other than site was 20 or 40% of 

the estimated mean rate of change in early HD (𝛽̂) whilst for SDMT, speeded tapping 

and the imaging variables the treatment effects were estimated after first subtracting 

the analogous estimated mean rate of change in controls from that in early HD.  

Defining the anticipated treatment effect for a stratified analyses is slightly more 

complex because the analysis model (equation (16)) allows the rates of change 

(although not the treatment effect) to depend upon the stratification factors. Our 

approach for UHDRS-TFC and UHDRS-TMS was to take the anticipated treatment 

effects to be 20 or 40% of the mean fitted rates of change (∑ (𝛽̂ + 𝝏𝑇̂𝒙𝑖)
𝑛
𝑖=1 /𝑛)  using 
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the notation in equation (7)). For SDMT, speeded tapping and the imaging variables 

the treatment effects were 20 or 40% of the difference in the mean fitted rates of 

change in the early HD and control groups. This necessitated (particularly for 

calculating bootstrap confidence intervals) jointly fitting the models for early HD and 

controls. Ideally this would have been done allowing all the parameters to be 

estimated separately in the two groups. However, in practice to avoid frequent non-

convergence, the site effects (but not the site-by-visit interaction effects) were 

assumed to be the same in both groups. This had little impact on the other parameter 

estimates in the model.  

 

4. Confidence intervals for sample sizes  

We constructed non-parametric bias-corrected and accelerated (BCa) confidence 

intervals from 2000 bootstrap samples for each of our sample size estimates. The 

confidence intervals were constructed on the “effect sizes” described in the previous 

section (see Tabrizi and colleagues7 for further details). The distribution of estimated 

effect sizes is likely to be more symmetric than that of estimated sample sizes and so 

confidence intervals calculated on this scale are likely to have better coverage 

properties. 

An extension of previously published work is that confidence intervals were 

constructed around estimated sample sizes to provide a guide to the precision of the 

estimates. As in previous applications22, 26 the Bootstrap27 was used to do this since 

the sampling distribution of sample size estimates is complex and not readily 

amenable to approximation with explicit algebraic formulae. The other advantage of 

utilising bootstrap confidence intervals is that they provide additional robustness if 

the assumptions of the linear mixed models used in the analysis do not hold exactly.  

 

5. Adjusting sample sizes for dropout.  

To assess the impact of dropouts we adopt a Pattern-Mixture approach as advocated 

by Dawson and Lagakos28, 29 and described by Frost and colleagues16. In brief, it is 
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assumed that subjects will be separated into strata according to missing data patterns, 

with each stratum first analysed separately. The overall treatment effect is a weighted 

mean of the stratum specific effects, with the weights equal to the reciprocals of the 

stratum specific variances. Based on what was observed in TRACK-HD we assumed 5% 

dropouts in the first year, 5% in the second year and 15% in the third year for the non-

imaging outcomes. For the imaging outcomes analogous assumed rates were 15%, 

10% and 10%. For simplicity we do not allow for missing data other than that resulting 

from dropout, i.e. we do not make allowance for individuals who might have 

intermittent missing values during follow-up.  


