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Abstract

Background

The world is rapidly becoming urban with the global population living in cities projected to

double by 2050. This increase in urbanization poses new challenges for the spread and con-

trol of communicable diseases such as malaria. In particular, urban environments create

highly heterogeneous socio-economic and environmental conditions that can affect the

transmission of vector-borne diseases dependent on human water storage and waste water

management. Interestingly India, as opposed to Africa, harbors a mosquito vector, Anophe-

les stephensi, which thrives in the man-made environments of cities and acts as the vector

for both Plasmodium vivax and Plasmodium falciparum, making the malaria problem a truly

urban phenomenon. Here we address the role and determinants of within-city spatial hetero-

geneity in the incidence patterns of vivax malaria, and then draw comparisons with results

for falciparum malaria.

Methodology/principal findings

Statistical analyses and a phenomenological transmission model are applied to an exten-

sive spatio-temporal dataset on cases of Plasmodium vivax in the city of Ahmedabad (Guja-

rat, India) that spans 12 years monthly at the level of wards. A spatial pattern in malaria

incidence is described that is largely stationary in time for this parasite. Malaria risk is then

shown to be associated with socioeconomic indicators and environmental parameters, tem-

perature and humidity. In a more dynamical perspective, an Inhomogeneous Markov Chain

Model is used to predict vivax malaria risk. Models that account for climate factors, socio-

economic level and population size show the highest predictive skill. A comparison to the

transmission dynamics of falciparum malaria reinforces the conclusion that the spatio-tem-

poral patterns of risk are strongly driven by extrinsic factors.

Conclusion/significance

Climate forcing and socio-economic heterogeneity act synergistically at local scales on the

population dynamics of urban malaria in this city. The stationarity of malaria risk patterns
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provides a basis for more targeted intervention, such as vector control, based on transmis-

sion ‘hotspots’. This is especially relevant for P. vivax, a more resilient parasite than P. fal-

ciparum, due to its ability to relapse and the operational shortcomings of delivering a “radical

cure”.

Author Summary

Urbanization and environmental change are the main driving forces of ecological and

social change around the globe, specifically in developing countries and for human health.

Cities in developing countries exhibit rapid and unplanned urbanization which creates

heterogeneous environmental and socio-economic conditions, which can in turn lead to

different risks of infection. Here we address the role of urban spatial heterogeneity in

infection risk by Plasmodium vivax with an extensive surveillance data set from Ahmeda-

bad, India, spanning 12 years. This parasite is one of the four malaria species in humans,

and is today the dominant cause of malaria in Indian cities. Our results show clear spatial

structure in malaria incidence within the city, dependent on wealth, population density

and the climate (temperature and humidity). Because this pattern of spatial risk is largely

stationary in time, it can be incorporated in a prediction model and it identifies target

‘hotspots’ for intervention. Similar conclusions apply to the reported cases of Plasmodium
falciparum which reinforces the importance of spatial heterogeneity in urban malaria

more generally.

Introduction

Addressing health problems associated with urban growth will be one of the major challenges

of the 21st century, especially for the developing world [1]. City life is associated with signifi-

cant variation in socioeconomic and environmental conditions of potential relevance to vec-

tor-borne diseases [2–4]. In particular, the pronounced and on-going increase in urban

population [5, 6], combined with climate change and economic disparities could act synergisti-

cally on the transmission dynamics of malaria [7–9]. Although, Indian cities harbor both

malaria parasites, Plasmodium falciparum and Plasmodium vivax, there is an increasing appre-

ciation of the latter as a threat to global health [10], in particular in urban environments where

Plasmodium vivax has become the most prevalent parasite. Plasmodium vivax has re-emerged

in areas previously cleared of malaria, and has done so with higher mortality and morbidity

than previously documented [11–13]. In Indian cities with seasonal transmission, the inci-

dence of vivax malaria starts to rise earlier than that of falciparum malaria, and also earlier

than transmission via the vector would allow. This earlier part of the vivax season is dominated

and enabled by relapses. The parasite has the ability to delay the development of a fraction of

the infectious load of sporozoites in the liver [14], which results in the relapse of the disease

after the primary infection is cleared from the bloodstream [15]. The later part of the season is

shared with P. falciparum, reflecting largely vector-borne transmission following the monsoon

rains [10]. A better understanding of the spatial heterogeneity of malaria vivax risk (defined

based on the wards’ incidence) within cities remains an open area of research in the population

dynamics of the disease, of relevance to both prediction and intervention.

Historically, urbanization has led to economic and social transformations associated with

profound improvements in sanitation and hygiene [16, 17]. For malaria, the process of
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urbanization is generally thought to reduce transmission, primarily because urban environ-

ments are largely unsuitable for malaria vectors due to a lack of breeding sites and the pollu-

tion of potential larval habitats [18]. Other explanations for reduced malaria risk include better

access to health care services and an increased ratio of humans to mosquitoes [2]. There is con-

cern however that areas with rapid unplanned urbanization and poor sanitation may not expe-

rience this marked decrease in malaria transmission [5].

The most common hypotheses for the persistence of malaria in cities include spatial varia-

tion in: 1) environmental conditions (relative humidity, temperature, precipitation), land use,

and stored water, which create a favorable environment for Anopheles breeding in cities [7, 19,

20]; 2) socioeconomic factors (income, human movement, population density and the failure of

local malaria intervention among others), which hamper the effectiveness of case management

and the promotion of intermittent antimalarials [8, 21–24]; and 3) at more local scales, variation

in mosquito behavior and ecology which can influence transmission intensity [22, 23]. Despite

increased interest in the role of spatial heterogeneities in the population dynamics of vector-

borne diseases [25–28], malaria models typically assume spatially homogeneous transmission

and tend to aggregate temporal dynamics over space. In particular, they do not take into

account how spatial variation in environmental, climatic and socio-economic conditions affect

vector habitat, contact rates, host susceptibility and the effectiveness of control [27–29].

Importantly, these considerations are focused on Africa where endemic malaria remains a

predominantly rural problem, because the main mosquito vectors are themselves rural, and in

cities, largely peri-urban [2, 3, 5, 7, 8]. By contrast, the Indian subcontinent harbors a truly

urban vector, Anopheles stephensi, particularly thrives in man-made environments, and breeds

in various artificial containers within homes and in water collected in construction sites (catch

basins, seepage canals, wells) [30], whereas its sister (sub) species (myorensis) is associated

with rural areas. The existence of this particular vector within cities poses a unique challenge

to the elimination of malaria in India. Cities can act as a reservoir for the persistence of the dis-

ease beyond their administrative limits, and prevent elimination despite considerable gains in

the fight against rural transmission. But even beyond the Indian subcontinent, malaria can no

longer be considered only a rural problem, given the increasing proportion of the world popu-

lation living in cities and transmission of the disease in urban environments sometimes sur-

passing that of rural ones [2, 3, 9].

Here, we describe the spatial pattern of urban Plasmodium vivax risk within a large city of

India, and investigate its association with socio-economic and environmental heterogeneity.

By combining statistical analyses and adapting a probabilistic modeling framework previously

proposed for cholera [31], we show that spatial heterogeneity in population size, environmen-

tal and economic factors, modulates malaria risk, and that the temporal effect of climate vari-

ables on malaria risk interacts with this spatial heterogeneity. These findings emphasize the

importance of considering the interplay of climate forcing and socio-economic heterogeneity

in the population dynamics of urban malaria in India. They also provide a basis for more tar-

geted intervention, such as vector control, based on identifying transmission ‘hotspots’. Com-

parison to findings for Plasmodium falciparum reinforce the evidence for a role of spatial

heterogeneity in the transmission of urban malaria in this region.

Methods

Data

We take advantage of a highly disaggregated dataset of monthly malaria cases collected by the

Municipal Corporation of the city of Ahmedabad, the capital of state of Gujarat in Northwest

India (Fig 1A and 1B). In this largely semi-arid state where malaria is seasonally epidemic,

Spatial Heterogeneities in Urban Malaria Risk
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Ahmedabad reports more than 1000 cases every year. The city presents ideal conditions to

investigate malaria transmission dynamics in an urban environment, since it has experienced

rapid development, unplanned urbanization and large population growth. It is also located on

the banks of the Sabarmati River which creates environmental variation in this otherwise arid

setting. The malaria data consist of monthly cases for the dominant parasite, Plasmodium
vivax, over the last decade, confirmed through microscopy examination of blood slides from

clinical (febrile) individuals self-presenting at the health facilities (Fig 1B and 1C). The result-

ing time series span a total of 12 years (from 2002 to 2014). Because some administrative units

(known as wards) were subdivided into smaller wards in 2007, we aggregated the 64 units of

the city into 59 wards, in order to maintain the same geographical subdivision through time.

For comparison purposes, a similar data set for Plasmodium falciparum is also considered.

Apart from decadal census data, annual population data were provided by the Ahmedabad

Municipal Corporation to approximate the population of each ward. Socio-economic data

were obtained from the District Census Handbook of the concerned district for the year 2001

from the Directorate of Census Operations, Gujarat. Monthly time series (from 2002 to 2014)

for mean temperature, mean rainfall and relative humidity at 8 am are those from the meteo-

rological station of the city of Ahmedabad (and were provided by the Indian Institute of Tech-

nology in Gandhinagar).

Fig 1. Study Area. Location of study area (A), and temporal patterns of incidence of P. falciparum (red solid) and P. vivax (blue dashed) (B, C). Boxplots are

shown in B to illustrate seasonality, and time series are shown in C to illustrate interannual variation.

doi:10.1371/journal.pntd.0005155.g001
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Spatial regularities in malaria transmission

In order to investigate the existence of a spatial pattern in malaria incidence within the city of

Ahmedabad, we performed a series of statistical analyses to address whether malaria risk var-

ied within the city and what factors explained this variation. First, we analyzed the spatial and

temporal variation of malaria incidence and identified regions of high and low risk based on

incidence. Second, we performed a series of statistical analyses on the role of socioeconomic

and environmental factors in the spatial, and spatio-temporal patterns of malaria incidence.

These analyses ranged from a simple t-test comparing socio-economic factors between the two

regions of differential malaria risk, to time series models incorporating the autocorrelation in

the data and the external drivers (including climatic ones), to a full spatio-temporal general

linear mixed model with random effects. Third, based on these results a probabilistic dynam-

ical model was formulated for malaria transmission at the ward level, and predictions of this

model were evaluated at the city level.

To consider a measure of vivax malaria risk independent from interannual variation, we

normalized malaria incidence for each ward in a given year by the total number of cases

throughout the city. We then ranked these normalized values across wards to determine if

high risk locations were consistently so over time. To examine the robustness of the patterns,

we complemented the estimation of the intensity of infection with the Slide Positivity Rate

(SPR) [32] S1 Fig 1. SPR, defined as the number of laboratory-confirmed malaria cases per 100

suspected cases examined, provides a rapid and inexpensive means of assessing the burden of

malaria in the population that relies on health care facilities. SPR provides a better estimate of

the true intensity of malaria than malaria incidence (reported cases divided by population), as

it is more robust to spatial sampling errors/biases resulting from variation in the population

size of the wards [32]. SPR is independent from incidence, although it can be prone to different

biases (as the result for example of other febrile diseases which would increase the number of

blood tests taken). Confirming that the patterns are consistent across these two measures of

malaria intensity is important because the population denominator that is relevant for the

reporting may vary in ways that are difficult to determine. Also, the local population size

might be under- or overestimated by a census carried out only once every 10 years in India.

To further characterize spatial variation in risk we applied a 2k-means cluster algorithm to

the incidence data at the wards level, and examined the existence of at least two regions differ-

ing in malaria risk. (We pre-determined two groups of wards to consider the hypothesis of dif-

ferent transmission intensity in the core and periphery of the city). Also, two groups allow us

to consider the subdivision of wards into high and low risk regions. We hypothesized that dif-

ferences in malaria risk in these two main areas are largely explained by demographic and

socio-economic factors. To test if the two regions differed significantly in those variables, we

first extracted socioeconomic indicators, including slum density (number of slums/ward area),

unemployment (number of unemployed people), number of marginal workers, literacy, popu-

lation below 6 years, total population, number of households, vulnerable and economically

deprived communities, from the 2001 Ahmedabad census and calculated the density of slums

per ward based on cartographic information on the slums’ distribution within the city S2 Fig.

A t-test was applied to evaluate if these two regions differed significantly in these covariates.

We then addressed whether the temporal variation in malaria incidence responded differ-

entially to climate variables (rainfall, temperature and humidity) across the two regions. To

determine which predictors explain the temporal variation in vivax cases, we considered mod-

els with autoregressive terms to account for serial correlation in the data. The correlation

structure in the malaria time series was assessed by inspecting the autocorrelation function

ACF. Then we applied a generalized linear model (GLM) framework. Because observed count

Spatial Heterogeneities in Urban Malaria Risk
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data, such as reported cases in infectious diseases, often exhibit significant over-dispersion

[33], a negative binomial distribution of cases was used. Backwards model selection was based

on the minimum Akaike Information Criterion (AIC) (S1 Table). Variables with coefficient

significantly different from zero were selected. Spatial correlation was incorporated by assum-

ing a conditional autoregressive (CAR) process in the random effect vi:

vivj ¼ N
P

jaijvj
P

jaij
;

s2
vP
jaij

 !

where σ2 controls the strength of the local dependence, and aij are neighborhood weights for

each ward based on distance to the river. We additionally compared the best model to a model

with a different distribution (Zero Inflated Poisson) but this model was not significantly better

(S2 Table). Finally, we considered the full spatio-temporal variation at the level of wards, by fit-

ting a generalized linear mixed model including as covariates the effects of temperature and

humidity, and a spatially-structured random effect weighted by the distance to the river

(SSRE). Parameters and their distributions were estimated with Bayesian Markov Chain

Monte Carlo (MCMC) parameter sampling implementation in WINBUGS.

Probabilistic model for malaria dynamics

To model malaria risk within the city of Ahmedabad an inhomogeneous Markov chain model

was used, following the theoretical framework developed for cholera by Reiner et al. 2012. In

this approach the monthly malaria cases are categorized into discrete states of malaria inci-

dence, which we chose as “low malaria”, “mild malaria,” and “high malaria”. The three discrete

states partitioned the distribution of monthly incidence based on the 25th, lower than 75th and

above 75th quantiles. Then, the model assigns baseline probabilities Pi,j to the transitions

between these states in a defined time step as described by the following transition probability

matrix P:

Pi;j ¼

P1;1 ð1 � P1;1 � P1;3Þ P1;3

P2;1 ð1 � P2;1 � P2;3Þ P2;3

P3;1 ð1 � P3;1 � P3;3Þ P3;3

2

6
6
4

3

7
7
5

Where the baseline probabilities depend on the state of the system only in the previous time

step. Modification of this basic matrix can introduce the effect of covariates, including the con-

sideration of different regions such as the two groups of wards, identified in previous analyses.

Thus, the resulting Markov chain model can be made inhomogeneous by allowing transition

probabilities to depend on temporal and spatial environmental drivers; here seasonality, the

state of the neighboring wards, temperature, Relative humidity and socioeconomic heteroge-

neity (summarized by the two groups of wards):

Pi;j;k;t ¼ Pi;j;d � Seasi;j;t;d � Neighi;j;v;d � tempt;d � RHt;d

Where Pi,j,k,t is the probability that ward k goes from state i to j from time t to time t+1. This

probability is dependent on: (1) Pi,j,d, the baseline transition probabilities of moving from state

i to state j for a ward in risk region d; (2) a seasonal factor Seasi;j;t;d ¼ ð1þ bi;j;dÞ
Seðt;dÞ , where the

seasonality exponent Se(t,d) is periodic over the 12 months of the year and each group d has its

own seasonality; (3) a neighborhood effect Neighi;j;v;d ¼ ð1þ/i;j;dÞ
v
t;d, where v corresponds to

the malaria state (0,1,2) of the neighboring ward with the highest value. This function reduces

to 1 when none of the neighboring wards have malaria reported. The parameters of these

Spatial Heterogeneities in Urban Malaria Risk
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functions, βi,j,d and/i,j,d are estimated. Finally, the effects of temperature and humidity are

included as sigmoidal functions, similar to the formulation for ENSO and its effect on cholera

in Reiner et al 2012: temp=Rhi;j;t;d ¼ Adtan hd
Temp=RHt� g

ð2MdÞ

� �
tan hd

2

� �� �
where Temp=Rht i;j;d is the

temperature or humidity with temporal lag γ, in this case 2 months for the humidity and 1

month for the temperature, A is the maximal amplitude, M controls the scale (normalization

by the maximum values allowed for the climate factors), and h is shape factor varying between

0 and ~ π to go from a linear to a nonlinear effect (S3 Fig).

We considered different models obtained by including or neglecting the effect of a subset of

the following factors: temperature, relative humidity, the state of the neighboring wards and

the two different risk regions. We compared each of the models to a null model) employing a

likelihood ratio test. The most complex model has 78 parameters (S3 Table). Under Markovian

assumptions, the transitions for the different time steps (months) are independent from each

other [31, 34], which allows us to explicitly write a likelihood. The constraint that each transi-

tion probability must be between 0 and 1 was imposed by a barrier method (i.e. by setting the

probability to 0 whenever its estimated value falls outside these limits) [31]. Each model was

fitted by maximizing the likelihood with a Nelder-Meade simplex algorithm, which allows for

the incorporation of such constraints.

Finally, to assess prediction performance, a cross-validation approach was implemented by

sequentially removing the epidemic months (August-November) that follow the monsoon in a

given year, refitting the model to the remaining data, and simulating it four months ahead

starting from August to predict the course of the seasonal outbreak for the omitted period.

Forecasting accuracy was estimated by computing the likelihood of the observed state. To that

end, we inferred the probability distribution of the predicted state by performing 5000 inde-

pendent simulations. This procedure is then sequentially repeated removing, one at a time, all

the epidemic seasons available. To quantify the accuracy of our predictions, we calculate the

percentage mean absolute error in our predictions, as well as a second quantity more practical

and possibly relevant to public health, based on the definition of a ‘large’ outbreak. We defined

such as event as one where the peak of the epidemic at the whole city level exceeds the 75%

quantile of the distribution of this quantity. We quantify the fraction of times the model cor-

rectly predicts the observed malaria incidence state (above the 75% quantile). Then, to exam-

ine and illustrate the importance of the climate covariates to the predictions, we simulated the

model using different combinations of humidity and temperature ‘data’. In particular, predic-

tions for the epidemic months in the anomalous, low incidence years, were obtained using: 1)

monthly observed temperature and average humidity 2) monthly average temperature and

observed humidity 3) monthly average humidity and average temperature. Monthly averages

were computed based on the mean of all previous years for a given month. We also examined

the performance of the model by obtaining a one-step ahead prediction, where we removed 1

month of data at a time for all the wards (S4 Fig).

Results

We initially addressed whether the spatial distribution of normalized Plasmodium vivax risk is

heterogeneous throughout the city, and how the ranking of risk varies in time. The top left

panel of Fig 2 shows that several locations systematically rank high or low based on their P.

vivax incidence through time. The top right panel in this figure reveals a stable spatial regular-

ity of the locations with the highest malaria burden through time. This remarkable temporal

stability of the spatial pattern suggests the existence of strong underlying determinants that are

largely stationary at the temporal scales of malaria transmission within the city.

Spatial Heterogeneities in Urban Malaria Risk
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The spatial pattern observed in Fig 2 also indicates the existence of two distinct malaria risk

regions within Ahmedabad: one comprised of the wards close to the Sabarmati River and the

core of the city (region 1), and the other, of those in the newer urban periphery (region 2). Fig

3 shows the results of the cluster analysis using the rankings data, demonstrating that the

group of wards that are close to the river and in the inner part of the city (referred to as high

risk region hereafter) have a different malaria risk than those in the in the periphery (low risk

region). Plasmodium vivax cases in the region defined as high risk are significantly (p<0.001)

higher than those in the region defined as low risk, whereas the seasonal pattern remains the

same for both areas. This results hold for both parasites S5 Fig.

We then asked whether the differences in malaria risk between the low and high malaria

risk regions are associated with differences in population density (number of slums, popula-

tion size, number of households) or economic level (income, unemployment, literacy). Table 1

summarizes the results from statistical comparisons (t-test) between the high and low risk

regions (for P. vivax) based on socioeconomic indicators from the 2001 census. We found that

the high risk region has significantly higher unemployment, slum density, total population

and number of households. In addition, we did not find significant differences in the mean

area of the wards. The differences in slum density, unemployment, literacy, economically dis-

advantaged people and vulnerable communities (both Scheduled Castes, SC, and Scheduled

Tribes, ST, the official designations given to two different groups of historically disadvantaged

Fig 2. Analysis of spatio-temporal patterns of malaria vivax incidence in the city of Ahmedabad. The panels show the distribution of the cases

normalized by population, with the intensity of the color (from low yellows to high reds) corresponding to the ranking of incidence. There is striking

consistency from one year to the next in the places exhibiting the highest burden of the disease. Some of this regularity also extends to the two parasites.

See S2 Fig, for comparison with the patterns obtained with SPR (Slide Positivity Rate) as an alternative measure of malaria intensity see S1 Fig.

doi:10.1371/journal.pntd.0005155.g002

Spatial Heterogeneities in Urban Malaria Risk

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0005155 December 1, 2016 8 / 18



people) are pronounced, with the high risk region encompassing for example a density of

slums that is at least 1.2 higher than that of the low risk region (Table 1).

Moreover, the temporal variation in malaria incidence between the two regions could be

influenced differentially by the environmental covariates. Table 2 show the results of the step-

wise multiple linear regression between Plasmodium vivax cases and climate covariates (tem-

perature, humidity and rainfall) and S6 Fig show the residuals of our best model for each

region. The temporal variation in the low risk region responds predominantly to changes in

temperature and humidity, whereas that of the high risk region is explained predominantly by

humidity, although both parameters are seasonally associated with rainfall. Humidity would

act in both the temporal and spatial dimensions, as the water table and associated ground

Fig 3. Map depicting the two groups of wards (administrative units). Map depicting the two groups of wards

(administrative units), with high and low malaria risk respectively, P. vivax (left) and P. falciparum (right). There are

significant differences in the annual malaria incidence between the two regions (p<0.001), for both parasites.

doi:10.1371/journal.pntd.0005155.g003

Table 1. Statistical analysis of differences between the two regions for P. vivax, based on the socioeconomic information of the 2001 census.

variable statistic.t parameter.df p.value log(mean of High risk) log(mean of low risk)

Slum density 1.834 54.99 0.042 3.261 2.747

Unemployment 3.059 29.21 0.004 10.82 8.828

Marginal workers 3.197 30.56 0.003 6.967 5.592

Literacy 3.217 29.18 0.003 10.884 8.566

pop_below_6years 3.275 29.43 0.002 9.095 7.120

Total population 3.237 29.18 0.003 11.20 8.808

Area 0.336 45.51 0.737 1.379 1.438

Number of Households 3.178 29.29 0.003 9.565 7.544

Vulnerable communities 3.210 40.75 0.002 6.207 4.825

Economically deprive communities 3.934 36.14 0.000 8.841 6.682

doi:10.1371/journal.pntd.0005155.t001

Spatial Heterogeneities in Urban Malaria Risk
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moisture should be higher in the high risk region closer to the river, and this parameter is

known to affect survival of the adult mosquitoes [35]. Thus, increased humidity (through

changes in the water table) can lead to an earlier onset of the Plasmodium vivax season and to

higher incidence S7 Fig. Finally, results for the general linear mixed model show that the best

model includes the effects of temperature and humidity, and the random spatial variation in

the data weighted by the distance to the river (S4 Table and S5 Table).

Interestingly, Plasmodium falciparum also exhibits stable regularities in risk levels within

the city S8 Fig. We find the existence of two different regions with contrasting incidence,

largely consistent with those for Plasmodium vivax Fig 3, and a significant difference in socio-

economic level and environmental conditions for these two regions (S6 Table and S7 Table).

For a more dynamical perspective, we used an inhomogeneous Markov chain model that

incorporates the effect of spatial and temporal variation on malaria risk. Results are also con-

sistent for both parasites. Specifically, the comparison of the different models analyzed (S3

Table and S8 Table), shows that the best model is the one that accounts for the effects of sea-

sonality, neighbors, temperature, humidity, and includes the two different risk regions identi-

fied above (model 5 Table 3). To test the significance of the individual components of each

model (alternative hypothesis) against a model including seasonality only (model number 1,

null hypothesis) we employed a likelihood ratio test. Improvements in likelihood for models 3

to 8 are significant, and so are the effects of seasonality, temperature, neighbors and the two

regions (p<0.05). Improvements in likelihood for model 2 (seasonal effect + neighborhood

effect) are not significant at p = 0.05. Moreover, models that account for the effect of spatial

heterogeneity, represented by including the two risk regions, tend to perform better than those

that do not incorporate this effect (S3 Table and S8 Table).

Table 2. Results of the best model for monthly cases as a function of environmental covariates for Plasmodium vivax.

Low risk region

Estimate Std. Error z value Pr(>|z|) 2.50% 97.50%

ar1 0.63891 0.064 9.917 0 0.448 0.718

intercept -1.257 2.126 -0.591 0.554 -13.702 9.159

temp 0.140 0.069 2.006 0.044 -0.035 0.725

RH 0.034 0.025 1.329 0.0183 0.027 0.258

High risk region

Estimate Std. Error z value Pr(>|z|) 2.50% 97.50%

ar1 0.5835 0.0689 8.4637 0.0000 0.4483 0.7186

intercept -2.2716 5.8323 -0.3895 0.6969 -13.7027 9.1594

RH 0.1775 0.0235 3.2948 0.0010 0.1332 0.3952

doi:10.1371/journal.pntd.0005155.t002

Table 3. Likelihood comparison of the models showing the covariates included in each model. The best likelihood is for the model that incorporates

seasonality, temperature, two regions and neighbors. The last column shows the result of a likelihood ratio test between the null model (model 1) and each of

the other models.

models seasonality Neighbors Temperature RH Regions Log lik DF AIC LRT

Model 5 + + + + + -4821.559 78 9799.119 *

Model 6 + + + + -4903.554 72 9951.107 *

Model 7 + + + -5670.935 66 11473.87 *

Model 4 + + + + -5894.961 39 11867.92 *

Model 8 + + -5932.35 54 11972.7 *

Model 3 + + + -6573.846 36 13219.69 *

Model 2 + + -6648.966 33 13363.93

Model 1 + -6656.621 27 13367.24 –

doi:10.1371/journal.pntd.0005155.t003
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Finally, Fig 4 shows the predictions for the epidemic months for Plasmodium vivax, gener-

ated with the cross-validation procedure described above and the best model, which includes

seasonality, temperature, the state of the neighboring wards, and spatial heterogeneity. The

predicted rate of cases for the peak of the season is coherent with the observed rate. Further

explorations of the model show the importance of temperature and humidity in the prediction

of malaria risk Fig 4B. For example, the pronounced dip in the cases for years 2009 and 2010 is

captured by the dependencies of the model on temperature and humidity, as those two years

are dryer, warmer and less humid Fig 4C and 4D. Although our best model exhibits a tendency

to under-predict the size of the peaks which we discuss below, it is able to capture the seasonal-

ity and to a reasonable extent, the interannual variation in the data. The anomalous decrease

in the number of cases in 2009 and 2010 seasons can be explained by the variation in the cli-

mate covariates.

Fig 4. Comparison of observed and predicted cases with the best model. In (A), the red line corresponds to the average number of cases per 1000 for

the 59 wards. The blue dots correspond to predictions given by the median of 5000 simulations, and the gray bars correspond to the 5th and 95th

percentiles. In (B-D), simulations of the model predict the seasonal epidemics of 2009 and 2010 starting from the end of the monsoons (August) under

modifications of the observed climate covariates. The different panels show the effect of fixing temperature and/or humidity at their mean monthly values, to

remove their effect on the interannual variation of these anomalous years. When the interannual effect of both is removed (B), the model clearly over-

estimates the cases. Individual effects are less pronounced (C, D) although predictions are also higher than observations. Our best model has a mean

absolute error of 68% for predicting the peak of the epidemic in a year with a high number of cases (2013). Fig 4 (E, left), shows the distribution of model

forecasts from 5000 runs for October 2003 based on October 2002 data. Although the mean prediction differs from the observation, almost all (~84%) model

simulations resulted in large events for 2003. The figure on the right repeats this hindcast analysis for October 2013 (using data from 2012). Here, we find a

reduced but still large (*87%) probability of a large outbreak.

doi:10.1371/journal.pntd.0005155.g004
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Because the model is stochastic and it considers discrete states (no malaria, low and high),

we simulated repeatedly, and from these ensemble of simulations computed the mean number

of cases in a given month for a given ward. Our simulations generate realizations of the sto-

chastic process and therefore, configurations of the discrete states. To convert the discrete

states to cases, we used the mean number of cases for each class. The red line corresponds to

the wards mean observed cases of the city. The blue dots show the median of the simulated val-

ues and the blue shaded regions correspond to the 5th– 95th percentile range over 5000

simulations.

Discussion

Most transmission models of vector-borne diseases tend to aggregate the data at large scales

and treat transmission homogeneously in space [27–29]. However, at local scales spatial het-

erogeneity can significantly influence the risk of infection. In particular, urban environments

can exhibit pronounced heterogeneity from rapid and unplanned urbanization. Spatial hetero-

geneity in the environmental conditions such as temperature and humidity or in socioeco-

nomic level can affect mosquito ecology, such as habitat distribution, vector longevity, biting

rate or host finding ability [36], and in factors related to human exposure and susceptibility

respectively [8, 16, 37].

For Plasmodium vivax in Ahmedabad, we found defined heterogeneity in malaria risk that

is slow-changing and therefore largely ‘stationary’ in time, relative to the characteristic tempo-

ral scales of the population dynamics of the disease. The presence of such stable pattern sug-

gests strong and spatially-structured determinants of malaria risk. In particular, the existence

of two main regions with different risk was shown to be associated with socioeconomic level.

Higher risk is largely concentrated in the inner part of the city where socio-economic indica-

tors reveal higher poverty on average (Fig 3 and Table 1). These results are consistent with the

previously described negative associations between malaria and socioeconomic status [38–41].

Disease persistence decreases with increasing employment, literacy and income S1 Fig 9, with

poor people more vulnerable to ineffective diagnosis and treatment for financial and cultural

reasons, and less able to access antimalarial and anti-mosquito protection [42]. Consistent

results for Plasmodium falciparum emphasize the driven nature of the patterns.

The two different risk regions within the city were also shown to exhibit differential tempo-

ral responses to climate forcing. This finding underscores the importance of humidity to

malaria transmission, with a higher water table in the high risk region possibly increasing rela-

tive humidity and affecting vector ecology. The spread of malaria requires favorable conditions

for the survival of both the mosquito and the parasite. Temperatures in the approximate range

of 21˚-32˚C and a relative humidity of at least 60% are most conducive to transmission [38].

Malaria vectors need to live at least 8 days in order to transmit malaria, and higher humidity

increases both survival rate and activity rate [43, 44]. These relationships explain why Anophe-
les stephensi is more active and prefers feeding during the night when relative humidity is

higher. The low risk region should have lower humidity (ground moisture) given its distance

from the Sabarmati river and other water bodies. It has been established that if the average

monthly relative humidity (measured at 8 am) is below 60%, then the lifespan of the mosquito

is too short leading to very low or no malaria transmission [4, 45, 46]. The effect of humidity is

also evident in the estimated regression coefficients (Table 2), where the value corresponding

to humidity is one order of magnitude higher for the high than the low risk region. This means

that a typical annual change of 10% in humidity with the rest of the covariates kept the same

for both regions, will result in an increase of 403 to 1030 additional malaria cases (or 15% to

39% relative to the mean) in the high-risk region, and 70 to 411 additional cases (or 7% to 33%

Spatial Heterogeneities in Urban Malaria Risk
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relative to the mean) in the low risk region. Rainfall itself, which is closely related to both

humidity and temperature, is not retained in the regression as a significant explanatory vari-

able probably because of its collinear effects with the other climatic factors. Our results from

the mixed model indicate however that while climate factors (temperature and humidity) play

an important role in disease transmission, it is their combined effect with spatial heterogeneity

in the risk weighted by the distance to the Sabarmati river that better explains the spatio-tem-

poral variation in the malaria incidence. More mechanistic models informed by time series

data on disease incidence and vector abundance, will provide further insight on the role and

interplay of climate covariates through their effects on parasite mortality, as well as on vector

breeding and longevity.

Social and economic elements such as the quality of housing can also favor the biological

development of mosquitoes [47]. It is common in urban areas of India for water to be supplied

irregularly; this leads to water storage within houses which creates multiple breeding sites for the

mosquito in overhead tanks, cisterns and cement tanks [48]. Higher population density would

result in higher water storage concentrations in close proximity to people. At the local scale spa-

tial heterogeneity in urban malaria risk would follow from high density, especially where coexist-

ing with poverty, as well as environmental microclimates from the proximity of water bodies.

Our dynamical and stochastic model captures the seasonal pattern and the main trends in

the interannual variation of the malaria cases. Interestingly, most of the models that incorpo-

rate spatial structure, namely the two regions, perform better than the models that do not. This

conclusion is consistent with the results for diarrheal diseases in Dhaka, where consideration

of different parts of the city also improved model performance [31, 48]. Our best model identi-

fies significant spatial effects at two different scales: (1) that of neighboring wards (p<0.01),

where the probability of transitioning to a higher risk level depends of the level of the sur-

rounding wards, and (2) that of the two regions (p<0.001) influenced socioeconomic and

demographic level. Although our model under-predicts the size of outbreaks, this tendency is

expected from the discretization of the cases into a small number of levels, which preserves the

rankings of the cases over time but tends to reduce the magnitude of the peaks. Predictions in

that scale can still be useful when evaluating the risk of an outbreak larger than a given selected

threshold [31]. Although additional classes could be incorporated in the formulation of the

model, this would rapidly increase the number of parameters.

The model is able to capture the interannual trends and in particular, the lower outbreaks of

years like 2009 and 2010, based on the effect of climate covariates. These two years exhibit anom-

alous high temperature and low humidity (associated with low monsoon rainfall), only compa-

rable to values in 2002, another year with low incidence S10 Fig. The predictions of Fig 4B, for

temperature and humidity kept at monthly averages, show that the model over-predicts the

number of cases Fig 4. Thus, the anomalous incidence is explained by the lower temperature

and higher humidity. Fig 4C and 4D isolate the effect of each climate covariate on the prediction,

showing a stronger effect of temperature on the temporal reduction of cases of those two years.

Besides prediction, the phenomenological modeling framework applied here is also useful

to address the spatial scale at which to aggregate the data to consider process-based epidemio-

logical models, in a way that balances reducing the noise with representing dominant spatial

heterogeneity. Questions on the spatial scale of aggregation are specifically relevant to address-

ing climate forcing in the context of socio-economic heterogeneity. Given that pronounced

changes in urbanization will co-occur with those in climate, these are fundamental questions

for infectious disease dynamics within cities.

Although our approach is able to capture the interannual variation in the data and predict

the peak of the epidemic, it could be improved in several directions. For example, one could

incorporate in the model: (1) mobility fluxes derived from the spatial distribution of the

Spatial Heterogeneities in Urban Malaria Risk
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population with movement models, to replace the near-neighbor effects on transition proba-

bilities; (2) the explicit effect of population density on group-dependent parameters explicitly;

(3) further analysis of the local effect of environmental heterogeneities such as river discharge

and soil moisture on malaria incidence at higher resolution by increasing the number of

groups in the model. Moreover, temporal changes of the city itself would be of interest, includ-

ing changes in the local speed of urbanization, and their implications for mobility, population

distribution and economic level.

The region has experienced strong malaria interventions in the last three decades reflected

in the pronounced negative trends in the number of reported cases from the 1980s and 19990s

to the 2000s. From 2000 onwards, malaria prevalence in the city of Ahmedabad has remained

however fairly stationary. Although the spatio-temporal variation in intervention efforts could

influence the results of our models. This is unlikely given that the interventions within the city

are largely homogeneous in space (S11 Fig), with small differences between the high and low

risk regions.

Our probabilistic model tends to underpredict the size of outbreaks. This bias results from

the transformation of the incidence data into discrete malaria levels, which smooth’s out

extreme events. The effect of this bias can be assessed and corrected by lowering the threshold

probability (the proportion of simulations with large outbreaks) below 50% using ROC

(Receiver-Operating-Curves) (Reiner et al., 2012). The number of discrete classes describing

the malaria levels could also be increased or estimated to balance complexity and accuracy. At

the limit, one could move to stochastic models that do not require such discretization,

although their parameterization would present challenges related to model complexity.

A better understanding of urbanization and malaria is needed, since urban environments

can contribute to the persistence of the disease and frustrate elimination efforts more broadly

at a regional level, by creating a reservoir for the disease in cities that contributes to transmis-

sion in rural areas. In India, the earlier National Eradication Programs focused on rural areas,

with urban malaria contributing to the resurgence of disease in the 1970s [48]. Urbanization

and growing populations also exacerbate inequalities in access to water, and in so doing intro-

duce variation in another fundamental but poorly understood environmental factor for vec-

tor-transmitted infections. In concert these two dimensions, environmental and socio-

economic, define the relevant spatial scales at which to address transmission dynamics. They

also define the existence of spatial ’hotspots’ of high disease risk in urban environments, espe-

cially those of the developing world where economic inequality and variation in disease vul-

nerability can be pronounced. Identifying these hotspots for targeted intervention in urban

environments, can contribute to the control of vector-transmitted diseases, and eventually to

the elimination of malaria in India.
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S1 Fig. Analysis of spatio-temporal patterns of malaria slide positivity rate in the city of

Ahmedabad. The panels show the distribution of SPR with the intensity of the color (from

low yellows to high reds for P. vivax and from light yellow to blue for P. falciparum) corre-

sponding to the ranking based on the intensity of the transmission.

(TIF)

S2 Fig. Slum distribution in the city (left) and slum density calculation (right). The latter

was generated by overlaying the slum distribution map with the wards map provided by the

municipal corporation, and calculating the number of slums per ward divided by the ward

area.

(TIF)

Spatial Heterogeneities in Urban Malaria Risk

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0005155 December 1, 2016 14 / 18

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0005155.s001
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0005155.s002


S3 Fig. Functional forms of the humidity (bottom) and temperature (top) effects illustrat-

ing the flexibility of the formulation, with different values of parameter h leading to differ-

ent shapes. (Here we show these functional forms for an arbitrary amplitude A and scale M,

and different shape values: h = 0 (black line), h = 7/8pi (red line) and h = pi (green line).

(TIF)

S4 Fig. Comparison of predictions and observations. The red line corresponds to the average

monthly cases per 10000 for the 59 wards. The blue dotted line corresponds to one-month

ahead predictions for the median of the 5000 simulations values, and the light brown shaded

region corresponds to the interval between the 5th and 95th percentiles for these simulations.

(TIF)

S5 Fig. Malaria seasonal pattern for the two risk regions. The top panels represent the sea-

sonal pattern for Plasmodium falciparum, for the high risk region in the left and the low risk

region in the right. The bottom panel shows the corresponding patterns for Plasmodium vivax.

(TIF)

S6 Fig. The figure shows a time plot and ACF of the residuals for the fitted models.

Although most of the autocorrelations fall within the confidence intervals, there is a small

autocorrelation at lags of 11 and 12 months (seen in the significant spike of the ACF plot).

This suggests that the model can be slightly improved by capturing the remaining seasonal var-

iation.

(TIF)

S7 Fig. The top panels show scatterplots of humidity vs cases for P. vivax (left panels) and

P. falciparum (right panels), and the bottom ones, the time series for the cases (in red for

vivax and in blue for falciparum) together with those for humidity (in black).

(TIF)

S8 Fig. Analysis of spatio-temporal patterns of malaria incidence in the city of Ahmedabad

(from low yellow to high blue). The panels show the distribution of the cases normalized by

population, with the intensity of the color corresponding to the ranking of incidence.

(TIF)

S9 Fig. Scatterplot of socioeconomic indicators (number of households, literacy and unem-

ployment) and the number of cases of P. falciparum and P. vivax per ward.

(TIF)

S10 Fig. From left to right, scatterplots of the annual mean temperature, humidity and

rainfall vs annual Plasmodium vivax incidence.

(TIF)

S11 Fig. The map depicts the mean number of containers treated with larvicide throughout

the city. Red dots represent wards in the high risk regions, and yellow dots, those in the low

risk region.

(TIF)

S1 Table. Comparisons of nested models based on the likelihood ratio test (where asterisks

indicate significance relative to the previous model).
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S2 Table. The table shows comparisons of the zero inflated Poisson and negative binomial

models fitted to the data.
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S3 Table. Different parameterizations of the probabilistic model. The table shows the effects

included in the model formulation and the corresponding total number of parameters.
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S4 Table. Model comparisons highlight the best model which incorporates the random

effects, as well as the effect of temperature and humidity.
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S5 Table. Estimated parameters for the best model which includes the effects of tempera-

ture relative and relative humidity, and the random effects, whose values are significantly

different from zero. Confidence intervals (CI) from posterior distributions (from two chains
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