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Abstract 

Within a backup program for the clinical investigational agent pretomanid (PA-824), scaffold 

hopping from delamanid inspired the discovery of a novel class of potent antitubercular 

agents that unexpectedly possessed notable utility against the kinetoplastid disease visceral 

leishmaniasis (VL). Following the identification of delamanid analogue DNDI-VL-2098 as a 

VL preclinical candidate, this structurally related 7-substituted 2-nitro-5,6-

dihydroimidazo[2,1-b][1,3]oxazine class was further explored, seeking efficacious backup 

compounds with improved solubility and safety. Commencing with a biphenyl lead, 

bioisosteres formed by replacing one phenyl by pyridine or pyrimidine showed improved 

solubility and potency, whereas more hydrophilic side chains reduced VL activity. In a 

Leishmania donovani mouse model, two racemic phenylpyridines (71 and 93) were superior, 

with the former providing >99% inhibition at 12.5 mg/kg (b.i.d., orally) in the Leishmania 

infantum hamster model. Overall, the 7R enantiomer of 71 (79) displayed more optimal 

efficacy, pharmacokinetics and safety, leading to its selection as the preferred development 

candidate.  
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INTRODUCTION 

The neglected tropical disease visceral leishmaniasis (VL) is the second deadliest parasitic 

disorder (after malaria), being most prevalent in Brazil, Sudan, Ethiopia, and the Indian 

subcontinent, with an estimated 350 million people at risk of infection.1 Transmitted by sand 

flies, the disease first manifests as an irregular fever, anaemia, leukopenia, and 

hepatosplenomegaly, and is usually fatal within 2 years if left untreated.2 About 300,000 new 

cases arise annually, almost half in children, and at least 35 countries have reported the 

occurrence of HIV coinfection (with up to 34% incidence), which gives a significantly higher 

mortality rate.3,4 Unfortunately, none of the existing VL drugs (antimonials, paromomycin, 

liposomal amphotericin B, or miltefosine 1; see Figure 1) is universally effective, nor free 

from further drawbacks, such as parenteral administration (for all except 1), toxicity, high 

cost, and emerging resistance.5 Furthermore, there is no available vaccine, despite renewed 

efforts.6 Clinical investigation of the orally active aminoquinoline sitamaquine (2) has been 

abandoned due to its toxicity and less satisfactory efficacy,7 and new phase II trials of the 

repositioned oral agent fexinidazole (3)8 for VL have also been interrupted due to patient 

relapses.9 With no other candidates under clinical evaluation at present, there is a desperate 

need for the development of more effective, safe and affordable oral remedies for VL. 

We have recently reported that phenotypic screening by the Drugs for Neglected Diseases 

initiative (DNDi) of some nitroimidazole derivatives arising from our early studies with the 

TB Alliance unexpectedly led to the identification of DNDI-VL-2098 (4) as a preclinical 

candidate for VL.10,11 Our opening assignment with TB Alliance had been to prepare and 

evaluate novel nitroheterobicyclic analogues of the tuberculosis (TB) drugs delamanid (5) 

and pretomanid (PA-824, 6),12,13 seeking a possible third active scaffold for the construction 

of a backup series. However, amongst the fused 5/6 ring systems examined, only the 

metabolically labile 2-nitroimidazothiazines retained significant antitubercular potency,14 
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returning our attention to the original oxazine class where we uncovered heterobiaryl 

derivatives of 6 with better efficacy (e.g., TBA-354, 7).15,16 One important consideration in 

the design of a superior second-generation TB candidate was the potential for cleavage of the 

aromatic side chain via oxidative metabolism of the 6-oxymethylene linker; therefore, several 

alternative linker and steric protection strategies were explored, albeit, with limited 

success.17-19 A final, more innovative way to address this issue was to invoke a scaffold 

hopping approach,20 by relocating aromatic side chains from the 6-position to the 7-position 

of the 2-nitroimidazooxazine core, with attachment via the same inverted linker (CH2OR) 

that was present in 6-nitroimidazooxazole 5. This was equivalent to a one carbon expansion 

of the oxazole ring between C-2 and C-3 (Figure 2). The rationale for this design concept 

stemmed from initial evidence21 that delamanid (5) was highly stable towards metabolism, as 

well as from a report22 that 7-methyl derivatives of 6 retained excellent antitubercular 

potency, suggesting that such an approach merited investigation. 

Serendipitously, we soon discovered23 that this novel “7-substituted oxazine” class not only 

showed considerable promise for TB (as later confirmed by others24,25), it also displayed 

potent antileishmanial activity, comparable to the 6-nitroimidazooxazoles in early screening 

assays. Therefore, following the success with 4, this new series was similarly repositioned for 

VL as part of an extensive backup program, run in collaboration with DNDi. In this paper, we 

first highlight some critical VL hit to lead assessments on the original subset of compounds 

that had been prepared for TB. We then detail the findings of our lead optimisation study 

directed at developing backups to 4 having an improved physicochemical/pharmacological 

profile and better safety, which culminated in the selection of a new preclinical candidate for 

VL. Finally, in light of these encouraging results and the excellent activities of this novel 7-

substituted 2-nitroimidazooxazine class against both TB and Chagas disease, we point to 

related analogues that might be worthy of further assessment for the latter applications. 
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CHEMISTRY 

In order to rapidly access some initial examples, the racemic 7-H and 7-methyl alcohol 

intermediates, 13 and 20, were first sought (Scheme 1A). These could be obtained in very 

good overall yield (62-79%) via similar 5 step reaction sequences, starting with base 

catalysed alkylation of 2-bromo-4-nitroimidazole (8) using 4-bromobut-1-ene or 4-iodo-2-

methylbut-1-ene26 (15). Dihydroxylation of the resulting alkene (OsO4/NMO), selective TIPS 

protection of the primary hydroxyl group, sodium hydride-induced ring closure, and acid-

catalysed desilylation27 completed the synthesis of both alcohols, although in the case of 20, 

the final two steps required gentle warming. The benzyl ether targets 14, 21-23, 25, and 27-

29 were then formed by standard alkylation and Suzuki coupling methodology (Scheme 

1A/B). Next, the two enantiomers of early TB lead 29 (34 and 38) were also generated via 

preparative chiral HPLC separation of the 7R and 7S forms of acetate derivative 30, followed 

by hydrolysis to the chiral alcohols (32 and 36), and elaboration as before (Scheme 1C). 

Here, the absolute configurations of 34 and 38 were subsequently established through an 

independent chiral synthesis of the 7R enantiomer (see the Supporting Information), 

involving alkylation of 8 with the iodide derived from 2-[(2R)-2-methyl-1,4-

dioxaspiro[4.5]decan-2-yl]ethan-1-ol.28 

Mitsunobu coupling of alcohol 13 with appropriate phenols (Scheme 2A) successfully led 

to the 7-H phenyl ethers 39 and 45, together with the 4-iodo analogue 48; the latter enabled 

biphenyl derivatives 49 and 53, following Suzuki couplings. However, because Mitsunobu 

reactions were expected to be more problematic for the sterically hindered 7-methyl alcohol 

20,29 a different approach was employed to prepare compounds 44 and 47 (Scheme 2B). 

Commencing with 2-chloro-4-nitroimidazole (40), alkylation with iodide 1526 and buffered 

reaction of alkene 41 with m-CPBA provided epoxide 42 in high yield (80%). Ring opening 

of 42 with phenols (K2CO3, MEK, 82 °C) then gave alcohol intermediates that could be ring 
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closed to 7-substituted oxazines, as above. An attempt to combine the last two steps in one 

pot30 (by exposing 42 to 1.2 equivs of NaH and 4-(trifluoromethoxy)phenol in DMF at 75-86 

°C) led to markedly inferior results (27% 44, with 30% 43); equally, ring opening of 42 with 

4-iodophenol in DMF (K2CO3, 83 °C, 8 h) also gave a lower yield of 50 (60%) due to partial 

displacement of the 2-chlorine. Suzuki couplings on the ring-closed iodide 51 readily 

furnished biphenyl derivatives 52 and 54; terminal fluoropyridines 55 and 56 were similarly 

obtained from 48 and 51 through the use of a weaker base (KHCO3). 

The assembly of various biaryl side chains featuring a proximal 2-pyridine ring was 

typically quite straightforward (Scheme 2C). Bromo-2-pyridinyl ethers (58, 60, 98, and 100) 

were easily formed17 via sodium hydride-catalysed SNAr reactions of alcohols 13 and 20 with 

the fluoropyridines 57 and 97, and Suzuki couplings then supplied the phenylpyridine or 

bipyridine targets in generally high yields (62-98%). Nevertheless, it proved very challenging 

to prepare analogues 105 and 106 having a 2-pyridine terminal ring. One pot treatment of 

bromides 58 and 60 with bis(pinacolato)diboron (to generate the boronate ester), followed by 

in situ Suzuki coupling31 with 2-bromo-5-fluoropyridine, gave 105 and 106 in poor yields (8-

15%). However, a copper(I)-facilitated Suzuki approach,32 designed to mitigate facile 

protodeboronation of the required 2-pyridyl boronate, was not any better (15% yield of 106). 

For more efficient synthesis of 7-H biaryl analogues having a proximal 3-pyridine ring, an 

epoxide-opening strategy (Scheme 3A) was preferred over the Mitsunobu route described 

above. Epoxide 67 was obtained in 72% optimised yield from 2-chloro-4-nitroimidazole (40), 

via alkene 66; in this case, the slow epoxidation step was best achieved under non-buffered 

conditions at higher concentration (with initial cooling). Ring opening of 67 with 6-

bromopyridin-3-ol (68) (K2CO3, MEK, 81-82 °C) gave mainly alcohol 69 (51% using 2 equiv 

for 35 h, or 57% from 4 equiv and 14 h), together with small amounts of the oxazine 70 (6-

12%). Ring closure of purified 69 (NaH, DMF, 0-20 °C) then gave additional 70 in excellent 
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yield (91%). Comparable results were obtained for scale-up of 39 from 67 (62%), as well as 

for reaction of epoxide 42 with pyridinol 68 and ring closure, leading to oxazine 89 (Scheme 

3D). As expected, bromides 70 and 89 both proved to be excellent substrates for Suzuki 

couplings to access the remaining racemic phenylpyridine and bipyridine targets. 

By alkylating 2-chloro-4-nitroimidazole (40) with (4R)-4-(2-iodoethyl)-2,2-dimethyl-1,3-

dioxolane33 (72) (or its optical isomer, 8033), it was possible to transform the above racemic 

route into a viable chiral synthesis for delivery of both enantiomers of two advanced leads, 71 

and 93 (Scheme 3B/C). The two chiral acetal products 73 and 81 were readily converted into 

the R and S enantiomers of epoxide 67 (76 and 84) by successive hydrolysis (to diols 74 and 

82), tosylation at the primary hydroxyl, and internal substitution to form the oxirane ring 

(DBU). These chiral epoxides were then elaborated to the final products by reaction with 68, 

ring closure, and Suzuki coupling, as previously described. 

The preparation of biaryl congeners 123, 126, 129, 131-133, and 139 in which the first ring 

was pyridazine, pyrazine, or pyrimidine followed similar procedures to those developed for 

the pyridine analogues. Thus, sodium hydride-induced SNAr reactions of alcohols 13 and 20 

with haloheterocycles 121, 124, and 127 readily provided the bromoheteroaryl ether 

intermediates needed for final step Suzuki couplings (Scheme 4A). However, the remaining 

arylpyrimidine target (139) required prior assembly of the biaryl side chain. Initial protection 

of 2-chloropyrimidin-5-ol (134) as an ethoxymethyl ether derivative (135), followed by 

Suzuki coupling and acidic deprotection supplied arylpyrimidinol 137 in excellent yield (83% 

from 134; Scheme 4B). Reaction of 137 with epoxide 67 produced a 5:2 mixture of the 

alcohol 138 and the ring closed oxazine (139); treatment of 138 with sodium hydride then 

completed this synthesis. 

Scheme 5 outlines the methods used to obtain compounds 142, 144, 147, 149, 152, 154, 

157, 159-161, 170, and 178, whose side chains contained either piperazine or piperidine 
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linked to an aryl group. Ring opening of epoxides 67 and 42 with the known or commercial 

amines 140, 145, 150,34 and 155 easily generated the expected β-amino alcohols in high yield 

(Scheme 5A/B). These alcohols could be ring closed to the final products with sodium 

hydride upon mild heating; albeit, yields for the 7-methyl analogues were generally 

significantly lower, in part, due to greater purification difficulties. Chloroformylation of 

alcohols 13 and 20 (triphosgene/Et3N) and in situ reaction with arylpiperazine 140 also led to 

the O-carbamates 160 and 161 in only modest yield (33-35%; Scheme 5C) on account of 

similar purification issues; the isolation of alkyl chloride and diethyl carbamate derivatives 

under the same reaction conditions has been reported recently.35 Lastly, synthesis of the two 

O-linked arylpiperidines, 170 and 178, was eventually achieved in each case via a lengthy 7 

step route (Scheme 5D), after the failure of a more direct plan (ring opening of epoxide 67 

with piperidinol 16336 in the presence of erbium triflate37). Here, piperidinol 16336 was first 

sourced in three steps, by Buchwald amination of 1-bromo-4-fluorobenzene with 1,4-dioxa-8-

azaspiro[4.5]decane,38 ketal hydrolysis, and reduction (NaBH4). Reaction of epoxides 16239 

and 17139 with 163 (NaH, DMF, 70 °C) and TBS protection of the liberated hydroxyls 

provided the desired ethers 165 and 173 in good yield (47-68% overall). Successive benzyl 

removal (via hydrogenolysis), iodination, and alkylation of 2-chloro-4-nitroimidazole (40) 

then gave the TBS-protected adducts, 168 and 176, which were readily desilylated (TBAF) 

and ring closed to furnish the final targets.  

RESULTS AND DISCUSSION 

The structures and in vitro antiparasitic and antitubercular potencies of 75 novel 7-substituted 

2-nitroimidazooxazine derivatives prepared in two collaborative projects are provided in 

Tables 1 and 2. While compounds 14, 21-23, 25, 27-29, 34, 38, 39, 44, 45, 47, 49, and 52-54 

were initially designed and evaluated for TB, for clarity purposes, we will focus the 

discussion first on the more recent VL work with DNDi. Here, new synthesis was directed at 
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the optimisation of solubility, efficacy, and safety, primarily through the incorporation of 

heterocycles to reduce compound lipophilicity11 (estimated by CLogP data derived from 

ACD LogP/LogD software, version 12.0; Advanced Chemistry Development Inc., Toronto, 

Canada). Kinetic aqueous solubility measurements were conducted on dry powder forms of 

particular examples that were being considered for further evaluation. Target compounds 

were initially screened only once against Leishmania donovani (L. don) using a mouse 

macrophage-based luciferase assay conducted at the Central Drug Research Institute (CDRI, 

India).10 Nevertheless, in order to gain a clearer understanding of the SAR (in view of some 

unexpected in vivo outcomes), the entire set was finally re-evaluated at the University of 

Antwerp (LMPH) in replicate assays against three protozoan parasites: L. infantum (L. inf), T. 

cruzi, and T. brucei.40 Assessments of cytotoxicity were concurrently conducted on both 

human lung fibroblasts (MRC-5 cells; the host for T. cruzi) and primary peritoneal mouse 

macrophages (the host for L. inf), which revealed that the compounds were generally 

nontoxic (MRC-5 IC50s >55 µM except for 117: IC50 35 µM), as confirmed for TB (VERO 

assay41 IC50s >128 µM for 71 of 72 compounds). 

1. Early hit to lead assessments for VL  

Through an agreement between TB Alliance and DNDi, 58 nitroimidazole derivatives were 

screened against L. don at the Swiss Tropical Institute. All five 7-substituted oxazines 

(including 22, 23, and 28) demonstrated excellent potencies in the in vitro mouse macrophage 

assay (IC50s 0.065-0.17 µM, similar to racemic 4), prompting the inclusion of 28 alongside 

rac-4 (and another oxazole11) in a proof-of-concept in vivo assessment at the London School 

of Hygiene and Tropical Medicine (LSHTM). However, the level of activity observed for 28 

in this L. don mouse model (49% inhibition at 50 mg/kg, dosing po daily for 5 d; Table 3) 

was not notable in comparison to the results for rac-4 (99% at 6.25 mg/kg),11 suggesting that 

further optimisation of the side chain would be necessary. Indeed, while 28 showed good 
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stability on exposure to mouse liver microsomes (MLM: 75% remaining after 1 h, Table 3) 

and gave a mouse pharmacokinetic (PK) profile comparable to rac-4 (Table 4 and Supporting 

Information, Figures S1 and S2), it was very hydrophobic (CLogP 5.14) and displayed poor 

solubility (~58 ng/mL at pH 7, Table 3; 62-fold lower than for rac-411). Such compounds 

typically exhibit high levels of plasma protein binding (PPB), which can limit efficacy.42 We 

have also observed that increased linker flexibility can be detrimental to in vivo activity.17,43 

While these mouse studies were being conducted, a further thirty 7-substituted oxazine 

derivatives were screened against L. don in the luciferase assay at CDRI.10 Based on the 

single IC50 data obtained for 14, 21-23, 25, 27-29, 34, 38, 39, 44, 45, 47, 49, and 52-54 

(Table 1), several preliminary SAR conclusions were drawn: (1) the 7-H series was generally 

5- to 10-fold more potent than the 7-methyl series; (2) 4-trifluoromethoxy and 4-benzyloxy 

substituents (forms A and C) provided equivalent potency; (3) for biaryl analogues (forms B 

and D), 4-fluoro was preferred over 4-trifluoromethoxy as the final ring substituent (as 

observed11 in the 6-nitroimidazooxazole series); (4) a shorter linker (forms C and D) was 

preferred in the majority of cases. Thus, the most active analogues appeared to be 14, 22, 25, 

39, 45, 49, and 53 (IC50s 0.01-0.06 µM, similar to 4). However, benzyl ether 14 did not 

display suitable metabolic stability (10% parent left after 1 h with MLM; Table 3), while 

evidence from the 6-substituted oxazine series17 for the more rapid metabolism of 

benzyloxybenzyl analogues dissuaded further testing of 22 and 45. Moreover, following the 

disappointing results with 28, we were not optimistic of good in vivo efficacy with close 

analogue 25, despite its improved potency. Therefore, we elected to initially investigate 39, 

49 and 53 as potential leads, together with two counterparts from the 7-methyl series, 44 and 

54, to enable a head-to-head comparison. 

The selected compounds were advanced to parallel mouse PK profiling and efficacy studies 

in the mouse VL model. Encouragingly, both phenyl ether 44 (the direct analogue of rac-4) 
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and biphenyl congener 49 showed excellent efficacy at 25 mg/kg (99.9-100% inhibition; 

Table 3 and Figure 3b). Surprisingly, the more potent 7-H counterpart of 44 (39) was slightly 

less active in this assay (87% inhibition), mimicking findings for the 2-H equivalent of rac-

4.11 Moreover, the biphenyl derivatives of 39 and 44 (53 and 54) were also less impressive 

than 49 (65% and 30% inhibition, respectively). However, while these latter results appeared 

to track well with the single determination L. don data, they did not seem to line up with the 

almost equivalent mean potencies vs L. inf (Table 1). The findings also appeared to conflict 

with the kinetic solubility and microsomal stability data (Table 3), where 49 was as poorly 

soluble as 28 (55 vs 58 ng/mL) but the more stable analogue 54 (85 vs 75% in MLM) was 

45-fold more soluble than 28 (2.6 µg/mL). Solubility is discussed further in the next section. 

Analysis of the mouse PK data (Table 4) provided greater insight, revealing that 39 had a 

4-fold higher rate of clearance than its 7-methyl derivative 44 (48 vs 12 mL/min/kg), 

resulting in a short half-life (1.1 h vs 2.8 h for 44) and quite poor oral exposure (see the 

Supporting Information, Figure S1). Interestingly, with iv administration, the PK profiles for 

44 and rac-4 were fairly similar, but 44 did not perform as well under oral dosing, with rather 

modest absorption (Cmax 1.4 µg/mL, 3-fold less than for rac-4) contributing to reduced 

exposure and moderate oral bioavailability (35% vs 79%). The oral parameters for compound 

54 were also mediocre (poor Cmax of 0.79 µg/mL and low oral bioavailability of 17% 

offsetting its lengthy 27 h half-life), potentially explaining its inferior efficacy in the mouse 

VL model. However, the findings for 49 and 53 were more puzzling, with the less efficacious 

53 demonstrating greater oral exposure (see the Supporting Information, Figure S1), superior 

oral bioavailability (100% vs 11% for 49), and an extended half-life (17 h vs 6.7 h for 49). 

Nevertheless, like 28, 53 was particularly hydrophobic (CLogP 5.03), so high PPB may be a 

major issue limiting its efficacy.42 We have previously observed that PK data is not always 

correctly predictive of in vivo efficacy ranking.43 



12 

 

These promising results prompted further appraisal of the most active compounds, 44 and 

49. In the mouse VL model, 44 provided robust dose-response data (Table 3), giving an ED50 

value of 4.2 mg/kg (cf. 3.0 mg/kg for rac-411). Unfortunately, additional studies of 49 in this 

model (using material prepared elsewhere) were unable to replicate the original result; we 

postulate that this discrepancy may be due in part to the extremely poor aqueous solubility 

and inadequate oral bioavailability of this compound, rendering oral suspension formulations 

particularly sensitive to particle size. Nevertheless, the optimal in vivo assay for assessing the 

efficacy of test compounds against VL is the chronic infection hamster model, which better 

reproduces the clinical pathology of human disease.44 In the L. don hamster model at CDRI, 

leads 44 and 49 were almost equally effective at 50 mg/kg, with 5 days of oral dosing leading 

to 53% and 51% inhibition of parasite infection in the spleen, whereas rac-4 gave 86% 

inhibition under the same dose regimen.11 

A significant factor in the suboptimal activity of 44 in the hamster model was thought to be 

its exceptionally rapid metabolism in this species, as revealed by the hamster microsomal 

stability data (only 16% remaining after 0.5 h vs 49% for rac-411). Therefore, 44 was later 

reassessed in the L. inf early curative hamster model at LMPH, comparing a twice-daily dose 

regimen (25 mg/kg b.i.d.) with a once-daily dose of 50 mg/kg. The results (Table 5) slightly 

favoured the twice-daily regimen for all 3 target organs; hence this protocol became standard 

for most test compounds. However, unlike 4, 44 was not curative at this dose level. Another 

liability with 44 was its greater inhibition of the hERG channel (IC50 3.8 µM vs 10.5 µM for 

4), with IC50 values in excess of 10 µM required to minimise QT prolongation risk.45 Hence, 

as lead compounds for VL, 44 and 49 fulfilled many suggested criteria,46 but still had key 

deficiencies, reflecting their origin as screening hits in a scarcely studied new class. 

2. SAR of 7-substituted 2-nitroimidazooxazines for VL 
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Following the identification of 4 as a preferred drug candidate and the discovery of 44 and 

49 as unoptimised new leads, a backup program was launched to develop second generation 

agents for VL having better solubility, PK-PD and safety profile.11 Due to the inferior profile 

of 44 in comparison to 4 in several key areas, we elected to centre our synthetic strategy 

mainly on bicyclic side chains, employing heterocycles to modulate lipophilicity and 

solubility. Six-membered ring nitrogen-containing variants were preferred, due to their 

greater metabolic stability;47 ortho-substitution of aryl groups and meta-linkage of rings were 

also investigated as additional options to increase solubility.48 Recognising that few orally 

active registered drugs have solubility values below 1 µM at pH 7.4 (the pH of blood),49 we 

aspired to achieve at least 10-fold higher than this for the best compounds.46 We also aimed 

to exploit the low pH of gastric fluid (~1 to 2) to improve dissolution and oral absorption of 

analogues containing pyridine and other bases.50 Hence, we set a minimum solubility 

requirement for the preferred final candidate of being non-inferior to delamanid (5) (0.31 

µg/mL at pH 7 and 116 µg/mL at pH 1),11 an approved TB drug in Europe and Japan.12 

Based on the wider in vitro screening results, it was apparent that the 7-substituted oxazines 

could not be used for African trypanosomiasis (T. brucei IC50s mostly >64 µM, none <1 µM; 

see the Supporting Information, Tables S1 and S2). However, unlike the 6-

nitroimidazooxazoles, this new oxazine class generally showed interesting potencies against 

T. cruzi (IC50s 0.03-1 µM), suggesting the possibility of dual utility to treat both VL and 

Chagas disease. Further analysis of data for the 65 racemic compounds tested indicated a 

modest trend for the best VL leads to have high potencies against T. cruzi (see the Supporting 

Information, Figure S4). Hence, for simplicity, we will focus this part of the SAR discussion 

entirely on the intended primary application (VL), emphasising the key L. inf results. 

To begin with, a reanalysis of the initial dataset (up to and including 54; Table 1) 

confirmed weak trends on L. inf for the 7-H analogues to be more potent and a shorter linker 
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length to be preferred (e.g., 39: IC50 0.047 µM), but there was no consistent preference for 4-

fluoro as the terminal ring substituent. Nevertheless, in view of the better in vivo efficacy of 

49 and similarly substituted nitroimidazooxazoles,11 we retained this latter design element in 

the majority of cases. Thus, compounds 55 and 56 first investigated the effect of replacing the 

second phenyl ring of 49 by pyridine (CLogP -1.2 units). Pleasingly, this led to a 2- to 6-

fold potency increase, with 55 (IC50 0.083 µM) also being 6.5-fold more soluble than 49 

(0.36 vs 0.055 µg/mL, Table 3). Exchange of the first phenyl ring by 2-pyridine (59 and 61; 

CLogP -0.5 units) resulted in even better activity (59: IC50 0.050 µM), and in this case 

solubility values were ~20-fold higher at low pH (2.8-13 µg/mL; calcd pKa 2.83), although 

still rather modest. Therefore, we examined the addition of an ortho fluorine in the phenyl 

ring (62 and 63), in an attempt to break up the planarity.48 However, while this change was 

well tolerated, there was no improvement in solubility and microsomal stability was reduced 

(19% vs 43% in MLM for 62 vs 59, Table 3). In an alternative approach, we tried meta-

linkage of the rings (99 and 101-103), but although the activity was generally acceptable, this 

led to inferior solubility (99: 27 ng/mL). 

Turning instead to 3-pyridine as a first ring, potency was maximised by 2,4-difluorophenyl 

substitution (91: IC50 0.030 µM), although the 4-fluoro and 4-trifluoromethoxy (7-H) 

analogues (71 and 93) were also useful (IC50s 0.093 and 0.12 µM, respectively). Importantly, 

aqueous solubility values were up to 13-fold better than for 49 at neutral pH (91: 0.72 µg/mL) 

and 3 orders of magnitude better at low pH (91: 221 µg/mL). This was consistent with a 

greater lipophilicity reduction for the 3-pyridine (CLogP -1.1 units) and a slightly higher 

basicity (e.g., 71: calcd pKa 3.76). Final assessment of the enantiomers of two examples, 71 

and 93, identified the R forms (79 and 94) as slightly preferred for both potency and 

microsomal stability (particularly in the case of 79). 
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In view of the promising results with phenylpyridines, we elected to investigate the more 

hydrophilic bipyridines (105-120). Most of these showed interesting potencies in the initial L. 

don screen and further assessments had identified 108, 112, and 113 as being of potential 

interest, based on their improved solubilities in comparison to 49 (2.3-4.5 vs 0.055 µg/mL). 

However, on retesting, almost all of the 7-H compounds displayed markedly inferior utility 

against L. inf (IC50s 2.5 to >64 µM) while the 7-methyl bipyridines retained moderate 

potencies (IC50s 0.20-1.1 µM). It is intriguing to speculate that this might indicate a 

“minimum lipophilicity” requirement for activity (e.g., CLogP ~2.5) because a similar pattern 

was noted for all of the more hydrophilic analogues (see analysis of racemic 7-H dataset, 

Figure 4). Another strategy for heterobiaryl analogues of 49 was to exchange the first phenyl 

ring with pyridazine, pyrazine, or pyrimidine (123, 126, 129, 131-133, and 139). Of these, 

pyrimidine (129, 131, and 139) provided the best activity (IC50s 0.21-0.29 µM), although 

combining this with a pyridine ring (132, 133) led to a dramatic loss of potency (21- to >220-

fold). Overall, pyrimidine 129 had the best aqueous solubility (1.8 µg/mL; 33-fold better than 

49), along with acceptable metabolic stability. 

More structurally diverse targets (142, 144, 147, 149, 152, 154, 157, 159-161, 170, and 

178; Table 2) were designed on the premise that arylated cyclic amines can be effective 

bioisosteres for biphenyls, thus facilitating substantial boosts in solubility.51,52 Several side 

chains of this type have previously shown promise for TB and/or VL,11,18 including in the 

recent development of antileishmanial aminopyrazole ureas.53 It was initially encouraging to 

see four examples (arylpiperazine 142, aryloxypiperidines 152 and 154, and arylpiperazine 

carbamate 161) exhibiting reasonable potencies in the L. don screen (IC50s 0.19-0.45 µM), 

with 142 and 152 displaying a markedly better solubility profile than 49 (10-49 µg/mL at pH 

7, 15-21 mg/mL at low pH). However, the L. inf data did not fully match the L. don results; 

instead, the 7-methyl analogues were clearly favoured over the 7-H compounds (by 3- to 7-
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fold) and the more lipophilic piperidines 149 and 154 were superior (IC50s 0.32 µM). The 

hydrophilic benzoylpiperazines 157 and 159 were particularly poor in both assays, as was the 

7-H arylpiperazine carbamate 160. In view of these SAR findings, two O-linked 

phenylpiperidines (170 and 178) were subsequently designed as structurally closer mimetics 

for the O-linked biphenyl 49. Gratifyingly, 170 demonstrated both good potency (IC50 0.24 

µM) and much better solubility than 49 (6.1 µg/mL at pH 7, 34 mg/mL at pH 1); albeit, the 

microsomal stability of this compound (17-33% in MLM and HLM) was regarded as quite 

marginal. 

Integration of the initial L. don data with the kinetic solubility and microsomal stability 

results led to the selection of 9 new racemic analogues of 49 for testing in the L. don mouse 

model (dosing at 50 mg/kg for 5 d; Table 3 and Figure 3a). Encouragingly, a first experiment 

on 3-pyridine derivative 71 (4-FPh) yielded a 100% parasite clearance from the liver in all 

mice. Following this, 4-trifluoromethoxy congener 93 was found to be equally efficacious 

(99.5%), whereas the 2,4-difluoro example 91 was slightly less effective (91% inhibition). 

However, the less potent 7-methyl derivative of 71 (90) and the more potent 2-pyridine 

analogue 59 were only moderately active (41% and 67%, respectively); it is possible that the 

higher crystallinity (larger particle size) of 59 may have contributed to poor oral 

bioavailability.42,48 Two more soluble heterobiaryl analogues, bipyridine 112 and 

phenylpyrimidine 129, also displayed lower efficacy (44% and 85% inhibition); oral PK data 

on 112 (Table 4 and Supporting Information, Figure S2) were comparable to those of 71 so 

this may be a potency issue (as suggested by the disparate L. inf and L. don IC50s of >64 vs 

0.09 µM). Finally, the inferior in vivo outcomes for two potential bioisosteres of 49, 

phenylpiperazine 142 (55%) and O-linked phenylpiperidine 170 (45%), may be attributed to 

either weaker in vitro activity on retesting (for 142: L. inf IC50 2.3 µM) or more rapid 

metabolism (for 170), as indicated above. No adverse effects were noted in any of the in vivo 
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experiments and the percentage weight changes for the mice were well within normal 

thresholds (see the Supporting Information, Table S4). 

Dose-response appraisal of 71 in this mouse model provided an ED50 value of 5.1 mg/kg 

(cf. 4.2 mg/kg for 44) whereas the trifluoromethoxy analogue 93 was unexpectedly ~3-fold 

better (50% at 1.56 mg/kg; Table 3). Therefore, the enantiomers of both 71 and 93 were 

assessed and in each case the R form (79 and 94) gave higher efficacy, with 94 (84% at 1.56 

mg/kg) outperforming the preclinical candidate 4 (49%). Meanwhile, 71 was further 

evaluated in the L. inf hamster model at LMPH. A dose regimen of 25 or 12.5 mg/kg b.i.d. for 

5 days enabled parasite burden reductions exceeding 99% for all 3 target organs (Table 5 and 

Figure 5), similar to 4 at 25 mg/kg once daily (q.d.). However, 71 was slightly less effective 

than 4 when given via the 12.5 mg/kg q.d. schedule. A final head-to-head comparison of the 

enantiomers of 71 confirmed 79 as the preferred stereoisomer, based on its superior efficacy 

at two dose levels. This result was also supported by favourable PK data e.g., a higher 

exposure than 87 in hamsters, with an acceptable half-life (3.1 h) and good oral 

bioavailability (34%) in the rat (Table 4 and Supporting Information, Figure S3). Although 

94 was not tested in the hamster model, it is thought that 79 may still offer some advantages 

as a lead candidate e.g., lower lipophilicity (by ~1 log unit) and reduced molecular weight 

(this could lessen PPB and improve safety),42 slightly better solubility (a calculated pKa value 

of 3.76 vs 3.42 for 94), and a physical form more suitable for oral administration. 

In line with our initial objective to develop improved drug candidates as backups to 4, it 

was pertinent to examine some additional properties of 79 (Table 6). Compared to 4, 79 had a 

very similar molecular weight (370 vs 359 Da) and provided thermodynamic solubility values 

that were clearly superior to 4 as the pH approached the measured pKa value of 3.95. It also 

had a lower experimental LogD value (2.45 vs 3.10), close to that of pretomanid (6).18 

Furthermore, like 4,54 79 displayed high permeability (without being a substrate for P-gp 
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mediated efflux), although it did show a slightly greater binding to human plasma proteins 

(96.5 vs 93.9%). In terms of safety, 79 gave a low inhibition of hERG (IC50 >30 µM), did not 

inhibit CYP3A4 (IC50 >100 µM), and was not mutagenic (Ames test). These characteristics 

broadly match the suggested criteria for clinical development of a new entity for VL,55 so 

following a belated concern with 4, 79 has now been selected as a new preclinical candidate. 

3. SAR of 7-substituted 2-nitroimidazooxazines for TB 

Although the primary goal of our work with DNDi was a new drug for VL, the series was 

originally designed and exemplified for TB, seeking a novel second-generation backup to 6 

(now in phase II/III clinical trials13). Hence, the antitubercular activities of the 7-substituted 

oxazine derivatives have remained an aspect of significant ongoing interest. The work began 

with the preparation of an exploratory set of four compounds (14, 22, 39, and 45; Table 1). 

Growth inhibitory effects against Mycobacterium tuberculosis (M. tb, strain H37Rv) were 

studied under both aerobic (replicating) and hypoxic (non-replicating) conditions (MABA41 

and LORA56 assays, respectively), in recognition of the varying modes of action of 6 under 

each state,57 and the suggestion that optimising for hypoxic activity may lead to agents with 

better sterilizing ability against persistent bacteria;56 recorded MIC data (for at least 90% 

inhibition) represent the mean of 2-5 independent measurements. Compared with racemic 6 

(MICs of 1.1 and 4.4 µM in MABA and LORA, respectively),14 compounds 14 and 22 

showed potencies of similar magnitude, stimulating further interest and the synthesis of more 

than 30 new analogues, including 21, 23, 25, 27-29, 44, 47, 49, and 52-54 (Table 1). These 

featured two design elements that had proven most advantageous for enhancing in vivo 

efficacy in early studies of 4 and 6, namely, biaryl extension, and methylation adjacent to the 

ring oxygen.11,30,58 

From this larger dataset, it was observed that 7-methyl congeners (e.g., 21, 23, 44, and 47) 

were generally slightly more effective than 7-H counterparts, and that biphenyl side chains 
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(e.g., 25, 27-29, 49, and 52-54) provided roughly an order of magnitude further improvement 

in MABA MIC values (whereas LORA data were less responsive to these changes). The 

phenylbenzyl derivative 29 was earmarked as a potential early lead, based on its better MIC 

profile (0.093 and 1.4 µM in MABA and LORA) and good stability toward MLM and HLM 

(77-85% parent remaining after a 1 h exposure, Table 3). Thus, for preliminary proof of 

principle, the enantiomers of 29 (34 and 38) were prepared and assessed in the acute TB 

infection mouse model alongside 6, dosing orally at 100 mg/kg daily (5 days/week) for 3 

weeks. In this experiment, the R enantiomer 34 displayed equivalent efficacy to 6, but the S 

form 38 was 5-fold less active (Figure 6), in accordance with its weaker potency and MLM 

stability data. Nevertheless, the very high lipophilicity of 34 (CLogP 5.52) and its inferior PK 

profile in comparison to the shorter linked analogue 53 (Table 4) imply that far better in vivo 

effects might be achievable with optimised compounds (as shown for VL; cf., 94 vs 28). 

The early preference for 7-methyl substitution was not a consistent pattern across 

heterobiaryl derivatives, where the most potent examples, notably phenylpyridines 59, 64, 93 

and 94, as well as phenylpyrimidine 129 (MABA MICs 0.02-0.04 µM) were 7-H compounds. 

As found for the 6-substituted series,16 bipyridine and other heterobiaryl analogues were 

generally less impressive (except the 4-CF3 congener 111), particularly when the rings were 

meta-linked (corresponding phenylpyridines 99 and 101-103 also displayed markedly 

reduced activity). Finally, arylated cyclic amine bioisosteres (Table 2) showed moderate to 

weak potencies overall, with the hydrophilic benzoylpiperazines 157 and 159 being 

especially poor. For side chains A-C, 7-methyl compounds exhibited an order of magnitude 

better aerobic activity than their 7-H counterparts, although LORA results were disappointing 

for these and the related O-linked phenylpiperidines (170 and 178). Nevertheless, it was 

recognised that most of these new 7-substituted oxazines possessed a 4-fluoro substituted 

terminal ring, whereas more lipophilic 4-trifluoromethoxyphenyl (or 4-CF3pyridine) termini 



20 

 

were favoured for TB16-18,43,58 (as seen for phenylpyridines 93-95 vs 71, 79, and 87). 

Therefore, a few additional examples of the latter type (189-194 and 198: Supporting 

Information, Table S3) were also made and evaluated. Here, 191 and 198 (4-OCF3) were 10- 

to 16-fold more effective than 123 and 139 (4-F) in both TB assays (192-194 were also 2- to 

8-fold better than 126, 129, and 131 in MABA), confirming this same SAR pattern. Overall, 

taking into account potency46 (needing to be superior to 511), solubility and metabolism 

effects, it is considered that phenylpyridine 94 is the most promising lead for TB. 

CONCLUSIONS 

Through a scaffold hopping design strategy, 7-substituted 2-nitroimidazooxazines were 

identified as a third, highly active nitroimidazole-based class of antitubercular agents, having 

a remarkable similarity in properties to 2-substituted 6-nitroimidazooxazoles. Phenotypic 

screening of some unoptimised early examples against kinetoplastid diseases led to the 

detection of two compounds (44 and 49) having significant efficacy against VL in mouse and 

hamster models, although these proved to be inferior to preclinical lead 4 as potential drug 

candidates. Based on our experiences in the original two classes (with 4 and 6), we then 

sought to develop more suitable second-generation agents for VL by systematically exploring 

heterocyclic side chain variants of biphenyl lead 49. Replacement of one or both phenyl rings 

by pyridine (or pyrimidine etc.) enabled large modulations in lipophilicity (CLogP -0.5 

to -2.7 units), with concomitant improvements in aqueous solubility (2- to 71-fold at pH 7 

and ~4000-fold at pH 1 for phenyl-3-pyridines). In a complementary bioisostere approach, 

the incorporation of piperazine or piperidine for the first ring produced even greater solubility 

enhancements (e.g., 170: 34 mg/mL at low pH). However, more subtle strategies (viz. ortho-

substitution of aryl groups and meta-linkage of aryl rings) proved less beneficial overall. 

Interestingly, potency against L. inf appeared to show some dependence on lipophilicity, 

with the most effective 7-H compounds falling in a CLogP range of 2.9-4.0, and compounds 
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of CLogP <2.5 having weak or negligible activity. This was aptly demonstrated by the 

improved potency of fluorinated phenylpyridines (5- to 16-fold over 49), in which the 

pyridine could be either terminal or proximal to the linker, whereas the combination of two 

pyridine rings was strongly deactivating, except in the presence of a 7-methyl substituent. 

Phenylpyrimidine and phenylpiperidine were the only other side chains to provide substantial 

activity in this assay. It has recently been shown59 that a novel nitroreductase (NTR2) in 

Leishmania is responsible for the activation of nitroimidazooxazoles such as 4; therefore, 

differential nitroreductase binding may be a major factor behind the in vitro SARs for both 

VL and TB.57 Evaluation of a representative set of nine racemic compounds in the VL mouse 

model pinpointed phenylpyridines 71 and 93 as the most efficacious, with 93 being as 

impressive as 4 (50% inhibition at 1.56 mg/kg). In the chronic infection L. inf hamster model, 

71 (at 12.5 mg/kg b.i.d.) achieved >99% reductions in parasite burden for all 3 target organs. 

Subsequent synthesis and assessment of the enantiomers of both leads identified the R forms 

(79 and 94) as superior, and in the case of 79 this outcome was reinforced by excellent results 

in the L. inf hamster model and favourable PK data in the hamster and rat. Importantly, 79 

(DNDI-0690) also provided a better safety profile than 4 and has now been selected as a new 

preclinical candidate for VL. 

Finally, as found for the nitroimidazooxazole series,11 it was intriguing to note that some of 

the best VL leads (e.g., 59, 79, 93, 94, and 129) showed highly potent in vitro effects against 

TB, with both R enantiomers and 4-trifluoromethoxy analogues most preferred, pointing to 

94 (MABA MIC 0.024 µM) as the favoured TB candidate for further evaluation. The S form 

of 93 (95) also displayed interesting activity against T. cruzi (IC50 0.13 µM), indicating a 

possible application for treating Chagas disease. This investigation has therefore revealed that 

the 7-substituted 2-nitroimidazooxazine class has exciting potential to treat up to 3 neglected 

diseases and can deliver drug candidates that are worthy of examination in ongoing studies. 
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EXPERIMENTAL SECTION 

Combustion analyses were performed by the Campbell Microanalytical Laboratory, 

University of Otago, Dunedin, New Zealand. Melting points were determined using an 

Electrothermal IA9100 melting point apparatus, and are as read. NMR spectra were measured 

on a Bruker Avance 400 spectrometer at 400 MHz for 1H and 100 MHz for 13C and are 

referenced to Me4Si or solvent resonances. Chemical shifts and coupling constants are recorded 

in units of ppm and hertz, respectively. High-resolution fast atom bombardment (HRFABMS) 

mass spectra were determined on a VG-70SE mass spectrometer at nominal 5000 resolution. 

High-resolution electrospray ionisation (HRESIMS) mass spectra were determined on a 

Bruker micrOTOF-Q II mass spectrometer. Low-resolution atmospheric pressure chemical 

ionisation (APCI) mass spectra were obtained for organic solutions using a ThermoFinnigan 

Surveyor MSQ mass spectrometer, connected to a Gilson autosampler. Optical rotations were 

measured on a Schmidt + Haensch Polartronic NH8 polarimeter. Column chromatography 

was performed on silica gel (Merck 230-400 mesh). Thin-layer chromatography was carried out 

on aluminium-backed silica gel plates (Merck 60 F254), with visualization of components by UV 

light (254 nm), I2, or KMnO4 staining. Tested compounds (including batches screened in vivo) 

were ≥95% pure, as determined by combustion analysis (results within 0.4% of theoretical 

values) and/or by HPLC conducted on an Agilent 1100 system, using a 150 mm x 3.2 mm 

Altima 5 µm reversed phase C18 column with diode array detection. Preparative reversed 

phase HPLC was performed using a Gilson Unipoint system (322-H pump, 156 UV/vis 

detector) with 250 mm x 21 mm Synergi Max-RP 4 µm C12 or Zorbax 7 µm SB-C18 

columns. Finally, preparative chiral HPLC was carried out on similar equipment by 

employing a 250 mm x 20 mm CHIRALPAK IA 5 µm semi-preparative column, while chiral 

purity was assessed using 250 mm x 4.6 mm CHIRALPAK IA or CHIRALPAK AS-H 5 µm 

analytical columns. 



23 

 

Compounds of Table 1. The following section details the syntheses of compounds 14, 25, 

34, 44, 55, 59, and 79 of Table 1, via representative procedures and key intermediates, as 

described in Schemes 1-3. For the syntheses of all of the other compounds in Table 1, please 

refer to the Supporting Information. 

Synthesis of 14 (Scheme 1A): 

Procedure A: 2-Bromo-1-(but-3-en-1-yl)-4-nitro-1H-imidazole (9). A mixture of 2-

bromo-4-nitro-1H-imidazole (8) (2.50 g, 13.0 mmol), 4-bromobut-1-ene (2.00 mL, 19.7 

mmol), and powdered K2CO3 (5.39 g, 39.0 mmol) in anhydrous DMF (25 mL) under N2 was 

stirred at 73 °C for 4.5 h. The resulting cooled mixture was added to ice/aqueous NaHCO3 

(200 mL) and extracted with EtOAc (4 x 200 mL). The extracts were washed with water (200 

mL) and then evaporated to dryness under reduced pressure (at 30 C) and the residue was 

chromatographed on silica gel. Elution with 0-10% EtOAc/petroleum ether first gave foreruns, 

and then further elution with 20% EtOAc/petroleum ether gave 9 (2.96 g, 92%) as a pale 

yellow oil that solidified on cooling: mp 28-30 C; 1H NMR (CDCl3)  7.77 (s, 1 H), 5.75 

(ddt, J = 17.1, 10.2, 6.9 Hz, 1 H), 5.18 (dq, J = 10.2, 1.1 Hz, 1 H), 5.12 (dq, J = 17.1, 1.4 Hz, 

1 H), 4.09 (t, J = 7.0 Hz, 2 H), 2.58 (qt, J = 6.9, 1.2 Hz, 2 H); HRFABMS calcd for 

C7H9BrN3O2 m/z [M + H]+ 247.9858, 245.9878, found 247.9860, 245.9882. 

Procedure B: 4-(2-Bromo-4-nitro-1H-imidazol-1-yl)butane-1,2-diol (10). Osmium 

tetroxide (3.20 mL of a 4% aqueous solution, 0.524 mmol) was added to a solution of alkene 

9 (2.56 g, 10.4 mmol) and 4-methylmorpholine 4-oxide (1.83 g, 15.6 mmol) in CH2Cl2 (65 

mL). The mixture was stirred at 20 C for 4 h and the resulting precipitate was collected by 

filtration, washing with CH2Cl2 and water, to give 10 (2.29 g, 79%) as a cream solid: mp 

(THF/Et2O/pentane) 99-101 C; 1H NMR [(CD3)2SO]  8.55 (s, 1 H), 4.77 (br d, J = 5.0 Hz, 

1 H), 4.58 (br t, J = 5.6 Hz, 1 H), 4.20-4.07 (m, 2 H), 3.47-3.37 (m, 1 H), 3.34 (dt, J = 10.7, 
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5.4 Hz, 1 H), 3.24 (dt, J = 10.7, 5.9 Hz, 1 H), 2.03-1.92 (m, 1 H), 1.76-1.63 (m, 1 H). Anal. 

(C7H10BrN3O4) C, H, N. 

The remaining filtrate above was added to an ice-cold aqueous solution of sodium sulphite 

(100 mL), and the aqueous portion was saturated with salt and extracted with EtOAc (10 x 

100 mL). The combined organic portions were evaporated to dryness under reduced pressure 

(at 30 C), and the residue was chromatographed on silica gel. Elution with 0-50% 

EtOAc/petroleum ether first gave foreruns, and then further elution with EtOAc gave 

additional 10 (572 mg, 20%). 

Procedure C: 4-(2-Bromo-4-nitro-1H-imidazol-1-yl)-1-[(triisopropylsilyl)oxy]butan-2-

ol (11). Chlorotriisopropylsilane (2.35 mL, 11.0 mmol) was slowly added to a solution of diol 

10 (2.86 g, 10.2 mmol) and imidazole (1.54 g, 22.6 mmol) in anhydrous DMF (25 mL) under 

N2, and then the mixture was stirred at 20 C for 2 d. The resulting mixture was added to ice-

water (150 mL) and extracted with 50% EtOAc/petroleum ether (4 x 100 mL). The extracts 

were washed with water (100 mL) and then concentrated under reduced pressure (at 30 C) 

and the remaining oil was chromatographed on silica gel. Elution with 0-20% 

EtOAc/petroleum ether first gave foreruns, and then further elution with 33% 

EtOAc/petroleum ether gave 11 (4.19 g, 94%) as a white solid: mp (CH2Cl2/pentane) 90-91 

C; 1H NMR (CDCl3)  7.89 (s, 1 H), 4.24 (dd, J = 7.7, 6.2 Hz, 2 H), 3.74 (dd, J = 9.6, 3.5 

Hz, 1 H), 3.67-3.58 (m, 1 H), 3.53 (dd, J = 9.6, 6.8 Hz, 1 H), 2.59 (d, J = 3.8 Hz, 1 H), 1.95-

1.82 (m, 2 H), 1.18-1.02 (m, 21 H). Anal. (C16H30BrN3O4Si) C, H, N. 

Procedure D: 2-Nitro-7-{[(triisopropylsilyl)oxy]methyl}-6,7-dihydro-5H-imidazo[2,1-

b][1,3]oxazine (12). A solution of alcohol 11 (1.89 g, 4.33 mmol) in anhydrous DMF (35 

mL) under N2 at 0 C was treated with 60% NaH (262 mg, 6.55 mmol) and then quickly 

degassed and resealed under N2. The mixture was stirred at 0 C for 25 min and at 20 C for 3 
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h, then cooled (CO2/acetone), quenched with ice/aqueous NaHCO3 (10 mL), added to brine 

(100 mL), and extracted with CH2Cl2 (6 x 100 mL). The combined extracts were evaporated 

to dryness under reduced pressure (at 30 C) and the residue was chromatographed on silica 

gel. Elution with 0-20% EtOAc/petroleum ether first gave foreruns, and then further elution 

with 0-4% EtOAc/CH2Cl2 gave 12 (1.48 g, 96%) as a pale yellow solid: mp (CH2Cl2/pentane) 

121-123 C; 1H NMR (CDCl3)  7.42 (s, 1 H), 4.49-4.40 (m, 1 H), 4.17 (ddd, J = 12.3, 5.8, 

3.7 Hz, 1 H), 4.06 (ddd, J = 12.3, 10.3, 5.4 Hz, 1 H), 4.03 (dd, J = 10.7, 4.1 Hz, 1 H), 3.95 

(dd, J = 10.7, 5.8 Hz, 1 H), 2.42-2.33 (m, 1 H), 2.33-2.20 (m, 1 H), 1.18-1.03 (m, 21 H). 

Anal. (C16H29N3O4Si) C, H, N. 

Procedure E: (2-Nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-7-yl)methanol (13). 

Silyl ether 12 (1.48 g, 4.16 mmol) was treated with a solution of 1% HCl in 95% EtOH27 (63 

mL, 15.1 mmol). The mixture was stirred at 20 C for 36 h and then cooled (CO2/acetone) 

and neutralised with a solution of NH3 in MeOH (8.0 mL of 2 M). The resulting mixture was 

evaporated to dryness under reduced pressure (at 30 C) and the residue was 

chromatographed on silica gel. Elution with 0-2% MeOH/CH2Cl2 first gave foreruns and then 

further elution with 2-4% MeOH/CH2Cl2 gave 13 (804 mg, 97%) as a light yellow solid: mp 

(THF/MeOH/CH2Cl2/hexane) 179-181 C; 1H NMR [(CD3)2SO]  8.04 (s, 1 H), 5.12 (t, J = 

5.8 Hz, 1 H), 4.53-4.43 (m, 1 H), 4.13 (ddd, J = 12.5, 5.8, 3.0 Hz, 1 H), 4.04 (ddd, J = 12.4, 

11.0, 5.1 Hz, 1 H), 3.70-3.59 (m, 2 H), 2.23-2.13 (m, 1 H), 2.10-1.96 (m, 1 H). Anal. 

(C7H9N3O4) C, H, N. 

Procedure F: 2-Nitro-7-({[4-(trifluoromethoxy)benzyl]oxy}methyl)-6,7-dihydro-5H-

imidazo[2,1-b][1,3]oxazine (14). A solution of alcohol 13 (40.2 mg, 0.202 mmol) in 

anhydrous DMF (2 mL) under N2 at 0 C was treated with 60% NaH (13.7 mg, 0.343 mmol) 

and then quickly degassed and resealed under N2. 4-(Trifluoromethoxy)benzyl bromide (60 
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µL, 0.375 mmol) was added, and the mixture was stirred at 20 C for 165 min, then cooled 

(CO2/acetone), quenched with ice/aqueous NaHCO3 (10 mL), added to brine (40 mL), and 

extracted with CH2Cl2 (6 x 50 mL). The combined extracts were evaporated to dryness under 

reduced pressure (at 30 C) and the residue was chromatographed on silica gel. Elution with 

0-0.5% MeOH/CH2Cl2 first gave foreruns, and then further elution with 0.5% MeOH/CH2Cl2 

gave 14 (52 mg, 69%) as a cream solid: mp (CH2Cl2/hexane) 158-160 C; 1H NMR 

[(CD3)2SO]  8.06 (s, 1 H), 7.47 (br d, J = 8.7 Hz, 2 H), 7.35 (br d, J = 7.9 Hz, 2 H), 4.77-

4.69 (m, 1 H), 4.60 (s, 2 H), 4.13 (ddd, J = 12.5, 5.8, 3.0 Hz, 1 H), 4.05 (ddd, J = 12.5, 10.8, 

5.2 Hz, 1 H), 3.76 (dd, J = 11.1, 3.9 Hz, 1 H), 3.73 (dd, J = 11.1, 5.1 Hz, 1 H), 2.27-2.17 (m, 

1 H), 2.17-2.03 (m, 1 H); 13C NMR [(CD3)2SO]  147.9, 147.6 (q, JC-F = 1.4 Hz), 142.0, 

137.6, 129.2 (2 C), 120.9 (2 C), 120.1 (q, JC-F = 256.0 Hz), 117.7, 76.7, 71.4, 70.9, 41.8, 22.6. 

Anal. (C15H14F3N3O5) C, H, N. 

Synthesis of 25 (Scheme 1B): 

Procedure G: 7-{[(4-Iodobenzyl)oxy]methyl}-2-nitro-6,7-dihydro-5H-imidazo[2,1-

b][1,3]oxazine (24). A mixture of alcohol 13 (130 mg, 0.653 mmol) and 4-iodobenzyl 

bromide (262 mg, 0.882 mmol) in anhydrous DMF (5 mL) under N2 at 0 C was treated with 

60% NaH (40 mg, 1.00 mmol) and then quickly degassed and resealed under N2. The mixture 

was stirred at 20 C for 2.5 h, then cooled (CO2/acetone), quenched with ice/aqueous 

NaHCO3 (10 mL), added to brine (40 mL), and extracted with CH2Cl2 (5 x 50 mL). The 

combined extracts were evaporated to dryness under reduced pressure (at 30 C) and the 

residue was chromatographed on silica gel. Elution with CH2Cl2 first gave foreruns, and then 

further elution with 1-1.5% EtOAc/CH2Cl2 gave 24 (165 mg, 61%) as a cream solid: mp 

(CH2Cl2/hexane) 169-171 C; 1H NMR (CDCl3)  7.68 (br d, J = 8.3 Hz, 2 H), 7.41 (s, 1 H), 

7.05 (br d, J = 8.2 Hz, 2 H), 4.59-4.52 (m, 3 H), 4.14 (ddd, J = 12.3, 5.7, 3.8 Hz, 1 H), 4.05 
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(ddd, J = 12.3, 10.0, 5.6 Hz, 1 H), 3.80 (dd, J = 10.6, 4.3 Hz, 1 H), 3.75 (dd, J = 10.6, 5.0 

Hz, 1 H), 2.37-2.20 (m, 2 H); HRFABMS calcd for C14H15IN3O4 m/z [M + H]+ 416.0107, 

found 416.0105. 

Procedure H: 7-{[(4'-Fluoro[1,1'-biphenyl]-4-yl)methoxy]methyl}-2-nitro-6,7-dihydro-

5H-imidazo[2,1-b][1,3]oxazine (25). A stirred mixture of iodide 24 (35 mg, 0.084 mmol), 4-

fluorophenylboronic acid (15.8 mg, 0.113 mmol), and Pd(dppf)Cl2 (2.1 mg, 0.003 mmol) in 

toluene (1.8 mL) and EtOH (0.7 mL) was degassed for 5 min (vacuum pump) and then N2 

was added. An aqueous solution of Na2CO3 (0.35 mL of 2 M, 0.70 mmol) was added by 

syringe and the mixture was stirred at 90 C for 20 min, and then cooled, diluted with 

aqueous NaHCO3 (50 mL), and extracted with CH2Cl2 (4 x 50 mL). The extracts were 

evaporated to dryness under reduced pressure (at 30 C) and the residue was 

chromatographed on silica gel. Elution with 0-1% EtOAc/CH2Cl2 first gave foreruns, and 

then further elution with 1-1.5% EtOAc/CH2Cl2 gave 25 (30.5 mg, 94%) as a cream solid: mp 

(CH2Cl2/pentane) 147-149 C; 1H NMR [(CD3)2SO]  8.07 (s, 1 H), 7.71 (br dd, J = 8.9, 5.4 

Hz, 2 H), 7.64 (br d, J = 8.2 Hz, 2 H), 7.43 (br d, J = 8.3 Hz, 2 H), 7.29 (br t, J = 8.9 Hz, 2 

H), 4.77-4.69 (m, 1 H), 4.61 (s, 2 H), 4.13 (ddd, J = 12.5, 5.8, 3.0 Hz, 1 H), 4.05 (ddd, J = 

12.4, 10.9, 5.2 Hz, 1 H), 3.77 (dd, J = 11.0, 3.9 Hz, 1 H), 3.74 (dd, J = 11.1, 5.1 Hz, 1 H), 

2.28-2.17 (m, 1 H), 2.17-2.03 (m, 1 H); 13C NMR [(CD3)2SO]  161.9 (d, JC-F = 244.4 Hz), 

148.0, 142.0, 138.4, 137.2, 136.3 (d, JC-F = 3.0 Hz), 128.6 (d, JC-F = 8.1 Hz, 2 C), 128.1 (2 C), 

126.6 (2 C), 117.7, 115.7 (d, JC-F = 21.2 Hz, 2 C), 76.8, 72.0, 70.8, 41.8, 22.6. Anal. 

(C20H18FN3O4) C, H, N. 

Synthesis of 34 (Scheme 1C): 

(7-Methyl-2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-7-yl)methyl acetate (30). 

Acetic anhydride (3.60 mL, 38.1 mmol) was added to a suspension of alcohol 20 (see 
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Supporting Information) (807 mg, 3.79 mmol) in anhydrous pyridine (7.0 mL). The mixture 

was stirred at 20 C for 38 h and then added to ice-water (150 mL) and extracted with CH2Cl2 

(5 x 100 mL). The extracts were evaporated to dryness under reduced pressure (at 30 C) and 

the residue was chromatographed on silica gel. Elution with CH2Cl2 first gave foreruns, and 

then further elution with 1-6% EtOAc/CH2Cl2 gave 30 (962 mg, 100%) as a cream solid: mp 

(CH2Cl2/pentane) 145-147 C; 1H NMR (CDCl3)  7.44 (s, 1 H), 4.27 (d, J = 11.9 Hz, 1 H), 

4.20 (d, J = 11.9 Hz, 1 H), 4.14 (dt, J = 12.7, 5.9 Hz, 1 H), 4.08 (ddd, J = 12.7, 8.3, 5.6 Hz, 1 

H), 2.32 (ddd, J = 14.5, 8.3, 6.1 Hz, 1 H), 2.10 (dt, J = 14.5, 5.7 Hz, 1 H), 2.09 (s, 3 H), 1.50 

(s, 3 H); HRFABMS calcd for C10H14N3O5 m/z [M + H]+ 256.0934, found 256.0941. 

[(7R)-7-Methyl-2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-7-yl]methyl acetate 

(31) and [(7S)-7-methyl-2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-7-yl]methyl 

acetate (35). Racemic acetate 30 (990 mg) was separated into pure enantiomers by preparative 

chiral HPLC, using a CHIRALPAK IA column and an isocratic solvent system of 40% EtOH 

in hexane at a flow rate of 6 mL/min, to firstly give 35 (427 mg, 43%) as a cream solid, 

having identical 1H NMR data to 30, that was used directly in the next step; [α]26
D -6.0 (c 

1.00, CHCl3). 

Further elution of the HPLC column gave 31 (428 mg, 43%) as a cream solid that was used 

directly in the next step; 1H NMR (CDCl3)  7.44 (s, 1 H), 4.27 (d, J = 11.9 Hz, 1 H), 4.20 

(d, J = 11.8 Hz, 1 H), 4.14 (dt, J = 12.7, 5.9 Hz, 1 H), 4.08 (ddd, J = 12.7, 8.3, 5.6 Hz, 1 H), 

2.32 (ddd, J = 14.5, 8.3, 6.1 Hz, 1 H), 2.10 (dt, J = 14.5, 5.7 Hz, 1 H), 2.09 (s, 3 H), 1.50 (s, 

3 H); [α]26
D 6.0 (c 1.00, CHCl3). 

Chiral HPLC (using a CHIRALPAK IA analytical column and eluting with 40% EtOH in 

hexane at 0.5 mL/min) determined that the ee of each enantiomer was 100%. 

Procedure I: [(7R)-7-Methyl-2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-7-

yl]methanol (32). A stirred solution of ester 31 (427 mg, 1.67 mmol) in MeOH (36 mL) was 
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treated with K2CO3 (256 mg, 1.85 mmol) and then water (4 mL) was added dropwise. The 

mixture was stirred at 20 C for 4 h and then cooled in ice and neutralised with 0.1 M HCl 

(37 mL). The resulting mixture was evaporated to dryness under reduced pressure (at 30 C) 

and the residue was chromatographed on silica gel. Elution with 0-1% MeOH/CH2Cl2 first 

gave foreruns and then further elution with 1-2.5% MeOH/CH2Cl2 gave 32 (343 mg, 96%) as 

a light yellow solid that was used directly in the next step; 1H NMR [(CD3)2SO]  8.03 (s, 1 

H), 5.23 (br t, J = 5.4 Hz, 1 H), 4.13 (dt, J = 13.0, 6.0 Hz, 1 H), 4.05 (ddd, J = 12.9, 8.1, 5.6 

Hz, 1 H), 3.54 (dd, J = 11.6, 4.9 Hz, 1 H), 3.48 (dd, J = 11.6, 5.2 Hz, 1 H), 2.21 (ddd, J = 

14.4, 8.1, 5.9 Hz, 1 H), 2.00 (dt, J = 14.4, 5.8 Hz, 1 H), 1.32 (s, 3 H); [α]27
D -18.0 (c 1.00, 

DMF). 

(7R)-7-{[(4-Bromobenzyl)oxy]methyl}-7-methyl-2-nitro-6,7-dihydro-5H-imidazo[2,1-

b][1,3]oxazine (33). Reaction of alcohol 32 with 4-bromobenzyl bromide (1.3 equiv) and 

NaH, using procedure G for 3 h, followed by chromatography of the product on silica gel, 

eluting with CH2Cl2 (foreruns) and then with 1% EtOAc/CH2Cl2, gave 33 (57%) as a white 

solid: mp (CH2Cl2/hexane) 157-159 C; 1H NMR (CDCl3)  7.46 (br d, J = 8.3 Hz, 2 H), 

7.39 (s, 1 H), 7.12 (br d, J = 8.3 Hz, 2 H), 4.50 (s, 2 H), 4.09 (ddd, J = 12.5, 6.9, 6.0 Hz, 1 

H), 4.01 (ddd, J = 12.5, 7.0, 6.0 Hz, 1 H), 3.62 (d, J = 10.2 Hz, 1 H), 3.58 (d, J = 10.2 Hz, 1 

H), 2.37 (ddd, J = 14.4, 7.0, 6.0 Hz, 1 H), 2.10 (ddd, J = 14.4, 6.9, 6.1 Hz, 1 H), 1.46 (s, 3 

H); [α]27
D 31.0 (c 1.00, CHCl3); HRFABMS calcd for C15H17BrN3O4 m/z [M + H]+ 384.0382, 

382.0402, found 384.0385, 382.0398. 

(7R)-7-Methyl-2-nitro-7-({[4'-(trifluoromethoxy)[1,1'-biphenyl]-4-

yl]methoxy}methyl)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (34). Reaction of 

bromide 33 with 4-(trifluoromethoxy)phenylboronic acid (1.5 equiv) and Pd(dppf)Cl2 (0.15 

equiv), using procedure H at 88 C for 75 min, followed by chromatography of the product 

on silica gel, eluting with 0-0.5% EtOAc/CH2Cl2 (foreruns) and then with 0.5-1.5% 
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EtOAc/CH2Cl2, gave 34 (90%) as a cream solid: mp (CH2Cl2/hexane) 165-167 C; 1H NMR 

(CDCl3)  7.58 (br d, J = 8.7 Hz, 2 H), 7.52 (br d, J = 8.2 Hz, 2 H), 7.38 (s, 1 H), 7.32 (br d, 

J = 8.1 Hz, 2 H), 7.28 (br d, J = 8.1 Hz, 2 H), 4.61 (d, J = 12.1 Hz, 1 H), 4.58 (d, J = 12.1 

Hz, 1 H), 4.11 (ddd, J = 12.4, 7.2, 5.8 Hz, 1 H), 4.01 (ddd, J = 12.6, 6.5, 6.1 Hz, 1 H), 3.67 

(d, J = 10.2 Hz, 1 H), 3.63 (d, J = 10.2 Hz, 1 H), 2.40 (ddd, J = 14.4, 6.6, 6.1 Hz, 1 H), 2.13 

(ddd, J = 14.5, 7.3, 6.0 Hz, 1 H), 1.48 (s, 3 H); [α]27
D 37.0 (c 1.00, CHCl3). Anal. 

(C22H20F3N3O5) C, H, N. 

Synthesis of 44 (Scheme 2B): 

2-Chloro-1-(3-methylbut-3-en-1-yl)-4-nitro-1H-imidazole (41). Reaction of 2-chloro-4-

nitro-1H-imidazole (40) with 4-iodo-2-methylbut-1-ene26 (15) (1.1 equiv) and powdered 

K2CO3 (2.0 equiv), using procedure A for 14 h, gave 41 (84%) as a white solid: mp 

(CH2Cl2/petroleum ether) 70-72 C; 1H NMR (CDCl3)  7.72 (s, 1 H), 4.93-4.87 (m, 1 H), 

4.72-4.66 (m, 1 H), 4.13 (t, J = 7.1 Hz, 2 H), 2.52 (br t, J = 7.0 Hz, 2 H), 1.80 (br s, 3 H). 

Anal. (C8H10ClN3O2) C, H, N. 

2-Chloro-1-[2-(2-methyloxiran-2-yl)ethyl]-4-nitro-1H-imidazole (42). 3-

Chloroperoxybenzoic acid (14.4 g of 70%, 58.4 mmol) was added to a mixture of alkene 41 

(10.4 g, 48.2 mmol) and disodium hydrogen phosphate (10.4 g, 73.3 mmol) in CH2Cl2 (300 

mL) at 0 C. The mixture was stirred at 20 C for 4 h and then additional m-CPBA (2.40 g, 

9.74 mmol) and CH2Cl2 (50 mL) were added. The resulting mixture was stirred at 20 C for a 

further 14 h, and then cooled to -20 C and washed with an ice-cold aqueous solution of 

sodium sulphite (200 mL of 10%), back-extracting with CH2Cl2 (2 x 200 mL). The organic 

portions were sequentially washed with aqueous NaHCO3 (200 mL) and brine (100 mL), and 

then combined and concentrated under reduced pressure, and the remaining oil was 

chromatographed on silica gel. Elution with 3:1 CH2Cl2/petroleum ether first gave foreruns, 
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and then further elution with 3:1 CH2Cl2/petroleum ether and 0-2.5% EtOAc/CH2Cl2 gave 42 

(10.6 g, 95%) as a cream solid: mp (CH2Cl2/petroleum ether) 87-89 C; 1H NMR (CDCl3)  

7.79 (s, 1 H), 4.13 (t, J = 7.6 Hz, 2 H), 2.67 (br d, J = 4.4 Hz, 1 H), 2.62 (br d, J = 4.3 Hz, 1 

H), 2.19 (dt, J = 14.3, 7.7 Hz, 1 H), 2.04 (dt, J = 14.3, 7.4 Hz, 1 H), 1.40 (s, 3 H). Anal. 

(C8H10ClN3O3) C, H, N. 

Procedure J: 4-(2-Chloro-4-nitro-1H-imidazol-1-yl)-2-methyl-1-[4-

(trifluoromethoxy)phenoxy]butan-2-ol (43). 4-(Trifluoromethoxy)phenol (0.280 mL, 2.16 

mmol) was added to a mixture of epoxide 42 (200 mg, 0.863 mmol) and powdered K2CO3 

(422 mg, 3.05 mmol) in anhydrous MEK (2.0 mL) under N2, and then the mixture was stirred 

at 82 C for 10 h. The resulting cooled mixture was diluted with water (50 mL) and extracted 

with CH2Cl2 (4 x 50 mL). The combined extracts were evaporated to dryness under reduced 

pressure (at 30 C) and the residue was chromatographed on silica gel. Elution with CH2Cl2 

first gave foreruns, and then further elution with 0-2% EtOAc/CH2Cl2 gave 43 (272 mg, 77%) 

as a pale yellow oil; 1H NMR (CDCl3)  7.81 (s, 1 H), 7.17 (br d, J = 9.1 Hz, 2 H), 6.90 (br d, 

J = 9.2 Hz, 2 H), 4.33-4.20 (m, 2 H), 3.85 (d, J = 9.0 Hz, 1 H), 3.82 (d, J = 9.0 Hz, 1 H), 

2.23 (ddd, J = 13.8, 9.3, 6.5 Hz, 1 H), 2.21 (s, 1 H), 2.04 (ddd, J = 13.8, 9.6, 6.6 Hz, 1 H), 

1.40 (s, 3 H); HRESIMS calcd for C15H16ClF3N3O5 m/z [M + H]+ 412.0697, 410.0725, found 

412.0700, 410.0722. 

7-Methyl-2-nitro-7-{[4-(trifluoromethoxy)phenoxy]methyl}-6,7-dihydro-5H-

imidazo[2,1-b][1,3]oxazine (44). Reaction of alcohol 43 with NaH (1.7 equiv), using 

procedure D for 2 h, followed by chromatography of the product on silica gel, eluting with 

CH2Cl2, gave 44 (61%) as a cream solid: mp (CH2Cl2/pentane) 134-136 C; 1H NMR 

[(CD3)2SO]  8.10 (s, 1 H), 7.31 (br d, J = 9.0 Hz, 2 H), 7.07 (br d, J = 9.2 Hz, 2 H), 4.20 (s, 2 

H), 4.19 (dt, J = 13.3, 6.1 Hz, 1 H), 4.13 (ddd, J = 13.2, 8.1, 5.6 Hz, 1 H), 2.38 (ddd, J = 
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14.4, 7.9, 6.2 Hz, 1 H), 2.18 (dt, J = 14.4, 5.8 Hz, 1 H), 1.49 (s, 3 H); 13C NMR [(CD3)2SO]  

157.0, 147.2, 142.2, 142.1 (q, JC-F = 1.6 Hz), 122.5 (2 C), 120.1 (q, JC-F = 255.2 Hz), 117.7, 

115.9 (2 C), 80.4, 72.4, 39.5, 27.0, 21.3. Anal. (C15H14F3N3O5) C, H, N. 

Synthesis of 55 (Scheme 2A): 

Procedure K: 7-[(4-Iodophenoxy)methyl]-2-nitro-6,7-dihydro-5H-imidazo[2,1-

b][1,3]oxazine (48). DEAD (0.270 mL, 1.74 mmol) was added dropwise to a stirred solution 

of alcohol 13 (251 mg, 1.26 mmol), 4-iodophenol (377 mg, 1.71 mmol), and PPh3 (448 mg, 

1.71 mmol) in anhydrous THF (3 mL) under N2 at 0 C. After being stirred at 20 C for 32 h, 

the mixture was concentrated under reduced pressure to give an oil, which was 

chromatographed on silica gel. Elution with CH2Cl2 first gave foreruns, and then further 

elution with 0-2% EtOAc/CH2Cl2 gave the crude product, which was further purified by 

chromatography on silica gel. Elution with 33-50% EtOAc/petroleum ether first gave 

foreruns, and then further elution with 10% MeOH/CH2Cl2 gave 48 (433 mg, 86%) as a cream 

solid: mp (MeOH/CH2Cl2/hexane) 224-227 C; 1H NMR [(CD3)2SO]  8.08 (s, 1 H), 7.62 (br 

d, J = 9.0 Hz, 2 H), 6.86 (br d, J = 9.0 Hz, 2 H), 4.94-4.85 (m, 1 H), 4.31 (dd, J = 11.1, 3.4 

Hz, 1 H), 4.25 (dd, J = 11.1, 5.8 Hz, 1 H), 4.18 (ddd, J = 12.6, 5.8, 3.0 Hz, 1 H), 4.09 (ddd, J 

= 12.5, 10.8, 5.2 Hz, 1 H), 2.35-2.26 (m, 1 H), 2.25-2.12 (m, 1 H). Anal. (C13H12IN3O4) C, H, 

N. 

Procedure L: 7-{[4-(6-Fluoropyridin-3-yl)phenoxy]methyl}-2-nitro-6,7-dihydro-5H-

imidazo[2,1-b][1,3]oxazine (55). A stirred mixture of iodide 48 (70.3 mg, 0.175 mmol), (6-

fluoropyridin-3-yl)boronic acid (42.3 mg, 0.300 mmol), and Pd(dppf)Cl2 (19.5 mg, 0.0266 

mmol) in DMF (2.3 mL), toluene (1.5 mL), and EtOH (1.0 mL) was degassed for 8 min 

(vacuum pump) and then N2 was added. An aqueous solution of KHCO3 (0.40 mL of 2 M, 

0.80 mmol) was added by syringe and the stirred mixture was again degassed for 9 min, and 



33 

 

then N2 was added. The resulting mixture was stirred at 85 C for 2 h, and then cooled, 

diluted with aqueous NaHCO3 (50 mL), and extracted with CH2Cl2 (6 x 50 mL). The extracts 

were evaporated to dryness under reduced pressure (at 30 C) and the residue was 

chromatographed on silica gel. Elution with 0-4% EtOAc/CH2Cl2 first gave foreruns, and 

then further elution with 4-7% EtOAc/CH2Cl2 gave 55 (61 mg, 94%) as a cream solid: mp 

(MeOH/CH2Cl2/hexane) 197-198 C; 1H NMR [(CD3)2SO]  8.51 (br d, J = 2.6 Hz, 1 H), 

8.24 (td, J = 8.2, 2.6 Hz, 1 H), 8.10 (s, 1 H), 7.69 (br d, J = 8.8 Hz, 2 H), 7.24 (dd, J = 8.6, 

2.6 Hz, 1 H), 7.13 (br d, J = 8.8 Hz, 2 H), 4.99-4.88 (m, 1 H), 4.39 (dd, J = 11.1, 3.3 Hz, 1 

H), 4.33 (dd, J = 11.1, 5.8 Hz, 1 H), 4.20 (ddd, J = 12.5, 5.7, 2.9 Hz, 1 H), 4.11 (ddd, J = 

12.4, 10.9, 5.2 Hz, 1 H), 2.39-2.29 (m, 1 H), 2.29-2.15 (m, 1 H); 13C NMR [(CD3)2SO]  

162.2 (d, JC-F = 235.1 Hz), 158.2, 147.8, 144.8 (d, JC-F = 15.1 Hz), 142.1, 139.8 (d, JC-F = 8.0 

Hz), 133.7 (d, JC-F = 4.6 Hz), 128.7, 128.1 (2 C), 117.8, 115.3 (2 C), 109.5 (d, JC-F = 37.7 

Hz), 76.0, 68.8, 41.7, 22.4. Anal. (C18H15FN4O4) C, H, N. 

Synthesis of 59 (Scheme 2C): 

Procedure M: 7-{[(5-Bromopyridin-2-yl)oxy]methyl}-2-nitro-6,7-dihydro-5H-

imidazo[2,1-b][1,3]oxazine (58). A mixture of alcohol 13 (500 mg, 2.51 mmol) and 5-

bromo-2-fluoropyridine (57) (0.52 mL, 5.05 mmol) in anhydrous DMF (10 mL) under N2 at 0 

C was treated with 60% NaH (151 mg, 3.78 mmol) and then quickly degassed and resealed 

under N2. Further 57 (0.52 mL, 5.05 mmol) was added and the mixture was stirred at 20 C 

for 2.5 h. The resulting mixture was cooled (CO2/acetone), quenched with ice/aqueous 

NaHCO3 (20 mL), and then added to brine (100 mL) and extracted with CH2Cl2 (8 x 100 

mL). The combined extracts were evaporated to dryness under reduced pressure (at 30 C) 

and the residue was chromatographed on silica gel. Elution with 0-1% EtOAc/CH2Cl2 first 

gave foreruns, and then further elution with 2-4% EtOAc/CH2Cl2 gave 58 (778 mg, 87%) as a 
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white solid: mp (MeOH/CH2Cl2/hexane) 182-184 C; 1H NMR [(CD3)2SO]  8.30 (br d, J = 

2.6 Hz, 1 H), 8.07 (s, 1 H), 7.94 (dd, J = 8.8, 2.6 Hz, 1 H), 6.91 (br d, J = 8.8 Hz, 1 H), 4.95-

4.86 (m, 1 H), 4.58 (dd, J = 12.0, 3.3 Hz, 1 H), 4.52 (dd, J = 12.0, 6.0 Hz, 1 H), 4.17 (ddd, J 

= 12.6, 5.8, 2.8 Hz, 1 H), 4.09 (ddd, J = 12.5, 11.0, 5.2 Hz, 1 H), 2.35-2.25 (m, 1 H), 2.24-

2.10 (m, 1 H). Anal. (C12H11BrN4O4) C, H, N. 

Procedure N: 7-({[5-(4-Fluorophenyl)pyridin-2-yl]oxy}methyl)-2-nitro-6,7-dihydro-

5H-imidazo[2,1-b][1,3]oxazine (59). A stirred mixture of bromide 58 (150 mg, 0.422 

mmol), 4-fluorophenylboronic acid (117 mg, 0.836 mmol), and Pd(dppf)Cl2 (83.1 mg, 0.114 

mmol) in DMF (4.5 mL), toluene (3 mL), and EtOH (2 mL) was degassed for 10 min 

(vacuum pump) and then N2 was added. An aqueous solution of Na2CO3 (1.05 mL of 2 M, 

2.1 mmol) was added by syringe, the stirred mixture was again degassed for 10 min, and then 

N2 was added. The resulting mixture was stirred at 89 C for 2.5 h and then cooled, diluted 

with aqueous NaHCO3 (50 mL), and extracted with CH2Cl2 (6 x 50 mL). The combined 

extracts were evaporated to dryness under reduced pressure (at 30 C), and the residue was 

chromatographed on silica gel. Elution with 0-3% EtOAc/CH2Cl2 first gave foreruns, and 

then further elution with 3% EtOAc/CH2Cl2 gave 59 (143 mg, 91%) as a cream solid: mp 

(MeOH/CH2Cl2/hexane) 180-181 C; 1H NMR [(CD3)2SO]  8.47 (br d, J = 2.6 Hz, 1 H), 

8.09 (s, 1 H), 8.05 (dd, J = 8.6, 2.6 Hz, 1 H), 7.71 (br dd, J = 8.9, 5.4 Hz, 2 H), 7.30 (br t, J = 

8.9 Hz, 2 H), 6.98 (br d, J = 8.6 Hz, 1 H), 4.99-4.90 (m, 1 H), 4.64 (dd, J = 12.0, 3.4 Hz, 1 

H), 4.58 (dd, J = 12.0, 6.0 Hz, 1 H), 4.19 (ddd, J = 12.5, 5.8, 2.7 Hz, 1 H), 4.10 (ddd, J = 

12.5, 11.1, 5.1 Hz, 1 H), 2.38-2.28 (m, 1 H), 2.27-2.13 (m, 1 H); 13C NMR [(CD3)2SO]  

162.1, 161.9 (d, JC-F = 244.4 Hz), 147.8, 144.5, 142.0, 137.9, 133.3 (d, JC-F = 3.1 Hz), 128.9, 

128.4 (d, JC-F = 8.1 Hz, 2 C), 117.8, 115.8 (d, JC-F = 21.5 Hz, 2 C), 110.8, 76.0, 66.3, 41.7, 

22.5. Anal. (C18H15FN4O4) C, H, N. 
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Synthesis of 79 (Scheme 3B): 

2-Chloro-1-{2-[(4R)-2,2-dimethyl-1,3-dioxolan-4-yl]ethyl}-4-nitro-1H-imidazole (73). 

Reaction of 2-chloro-4-nitro-1H-imidazole (40) with (4R)-4-(2-iodoethyl)-2,2-dimethyl-1,3-

dioxolane33 (72) (0.96 equiv) and powdered K2CO3 (1.03 equiv), using procedure A for 3 d, 

followed by chromatography of the product on silica gel, eluting with 0-33% Et2O/petroleum 

ether (foreruns) and then with 33-50% Et2O/petroleum ether, gave 73 (74%) as a light yellow 

solid: mp (Et2O/pentane) 73-75 C; 1H NMR (CDCl3)  7.81 (s, 1 H), 4.23 (ddd, J = 14.2, 7.7, 

5.3 Hz, 1 H), 4.18 (ddd, J = 14.2, 8.0, 7.1 Hz, 1 H), 4.10 (dd, J = 7.9, 6.1 Hz, 1 H), 4.09-4.01 

(m, 1 H), 3.60 (dd, J = 7.8, 5.7 Hz, 1 H), 2.12-2.01 (m, 1 H), 2.01-1.90 (m, 1 H), 1.43 (s, 3 

H), 1.36 (s, 3 H); [α]26
D 39.2 (c 1.020, CHCl3). Anal. (C10H14ClN3O4) C, H, N. 

Procedure O: (2R)-4-(2-Chloro-4-nitro-1H-imidazol-1-yl)butane-1,2-diol (74). Dilute 

HCl (13 mL of a 1 M solution, 13.0 mmol) was added dropwise to a stirred solution of acetonide 

73 (2.86 g, 10.4 mmol) in MeOH (39 mL) at 0 C. The mixture was stirred at 20 C for 6 h and 

then cooled in ice, treated with K2CO3 (0.90 g, 6.51 mmol), and stirred until the neutralisation 

was complete. Following filtration to remove inorganic material (washing with MeOH), the 

solvents were removed under reduced pressure (at 30 C), and the residue was 

chromatographed on silica gel. Elution with 0-67% EtOAc/petroleum ether first gave 

foreruns, and then further elution with EtOAc gave 74 (2.39 g, 98%) as a cream solid: mp 

(MeOH/CH2Cl2/hexane) 115-117 C; 1H NMR [(CD3)2SO]  8.55 (s, 1 H), 4.79 (d, J = 5.0 

Hz, 1 H), 4.60 (t, J = 5.6 Hz, 1 H), 4.21-4.08 (m, 2 H), 3.45-3.36 (m, 1 H), 3.36-3.29 (m, 1 

H), 3.22 (dt, J = 10.7, 5.9 Hz, 1 H), 2.03-1.91 (m, 1 H), 1.75-1.62 (m, 1 H); [α]24
D 29.4 (c 

2.008, DMF). Anal. (C7H10ClN3O4) C, H, N. 

Procedure P: (2R)-4-(2-Chloro-4-nitro-1H-imidazol-1-yl)-2-hydroxybutyl 4-

methylbenzenesulfonate (75). A solution of tosyl chloride (2.28 g, 12.0 mmol) in anhydrous 

pyridine (3 mL, then 2 x 1.5 mL to rinse) was added dropwise to a stirred solution of diol 74 
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(2.35 g, 9.97 mmol) in anhydrous pyridine (5 mL) under N2 at -10 C. The mixture was 

stirred at -10 to 0 C for 2 h and then at 20 C for 13 h. The resulting solution was cooled in 

ice and then added to ice-water (100 mL) and extracted with CH2Cl2 (4 x 100 mL). The 

combined extracts were concentrated to dryness under reduced pressure (at 30 C) and the 

remaining oil was chromatographed on silica gel. Elution with 0-2% EtOAc/CH2Cl2 first gave 

foreruns, and then further elution with 2-50% EtOAc/CH2Cl2 gave 75 (3.38 g, 87%) as a 

cream foam that was used directly in the next step; 1H NMR (CDCl3)  7.78 (s, 1 H), 7.78 (br 

d, J = 8.3 Hz, 2 H), 7.37 (br d, J = 8.0 Hz, 2 H), 4.22 (dd, J = 7.7, 6.0 Hz, 2 H), 4.04 (dd, J = 

10.5, 3.4 Hz, 1 H), 3.95 (dd, J = 10.5, 6.6 Hz, 1 H), 3.87-3.78 (m, 1 H), 2.62 (br d, J = 4.3 

Hz, 1 H), 2.47 (s, 3 H), 1.99-1.83 (m, 2 H); APCI MS m/z 392, 390 [M + H]+. 

Procedure Q: 2-Chloro-4-nitro-1-{2-[(2R)-oxiran-2-yl]ethyl}-1H-imidazole (76). 1,8-

Diazabicyclo[5.4.0]undec-7-ene (1.45 mL, 9.70 mmol) was added dropwise to a stirred 

solution of tosylate 75 (3.38 g, 8.67 mmol) in anhydrous CH2Cl2 (32 mL) under N2 at 0 C. 

The mixture was stirred at 0 C for 3 h, at 0-20 C for 2 h, and then at 20 C for 3 h. The 

resulting solution was added to a mixture of ice and brine (100 mL) and extracted with 

CH2Cl2 (4 x 100 mL). The combined extracts were concentrated to dryness under reduced 

pressure (at 30 C) and the remaining oil was chromatographed on silica gel. Elution with 

CH2Cl2 first gave foreruns, and then further elution with CH2Cl2 gave 76 (1.78 g, 94%) as a 

cream solid (after freezing): mp (CH2Cl2/pentane) 59-61 C; 1H NMR (CDCl3)  7.81 (s, 1 

H), 4.29-4.15 (m, 2 H), 2.99-2.91 (m, 1 H), 2.86 (dd, J = 4.7, 4.0 Hz, 1 H), 2.54 (dd, J = 4.8, 

2.6 Hz, 1 H), 2.36-2.25 (m, 1 H), 1.87-1.76 (m, 1 H); [α]25
D 43.6 (c 1.009, CHCl3). Anal. 

(C7H8ClN3O3) C, H, N. 

Procedure R: (2R)-1-[(6-Bromopyridin-3-yl)oxy]-4-(2-chloro-4-nitro-1H-imidazol-1-

yl)butan-2-ol (77). A mixture of epoxide 76 (1.76 g, 8.07 mmol), 6-bromopyridin-3-ol (68) 
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(2.82 g, 16.2 mmol), and powdered K2CO3 (2.23 g, 16.1 mmol) in anhydrous MEK (21 mL) 

under N2 was stirred at 80-82 C for 42 h. The resulting cooled mixture was added to water 

(100 mL), washing in residues with MeOH/CH2Cl2, and then extracted with 10% 

MeOH/CH2Cl2 (3 x 100 mL) and 25% EtOAc/CH2Cl2 (3 x 100 mL). The combined extracts 

were concentrated to dryness under reduced pressure and the remaining oil was 

chromatographed on silica gel. Elution with 0-40% EtOAc/petroleum ether first gave 

foreruns, and then further elution with 50% EtOAc/petroleum ether gave 77 (1.71 g, 54%) as 

a cream solid: mp (MeOH/CH2Cl2/hexane) 134-135 C; 1H NMR [(CD3)2SO]  8.58 (s, 1 H), 

8.12 (d, J = 3.1 Hz, 1 H), 7.54 (d, J = 8.7 Hz, 1 H), 7.39 (dd, J = 8.8, 3.2 Hz, 1 H), 5.30 (d, J 

= 4.9 Hz, 1 H), 4.27-4.14 (m, 2 H), 3.99 (dd, J = 10.0, 4.8 Hz, 1 H), 3.95 (dd, J = 10.0, 5.5 

Hz, 1 H), 3.86-3.77 (m, 1 H), 2.11-2.00 (m, 1 H), 1.95-1.83 (m, 1 H); [α]24
D 7.95 (c 1.006, 

DMF). Anal. (C12H12BrClN4O4) C, H, N. 

Further elution of the above column with 4:1 EtOAc/petroleum ether gave impurities and 

then elution with EtOAc gave crude oxazine 78 (0.46 g), which was chromatographed again 

on silica gel. Elution with 0-0.4% MeOH/CH2Cl2 first gave foreruns, and then elution with 

0.5% MeOH/CH2Cl2 gave purified 78 (305 mg, 11%) as a cream solid (see data below). 

(7R)-7-{[(6-Bromopyridin-3-yl)oxy]methyl}-2-nitro-6,7-dihydro-5H-imidazo[2,1-

b][1,3]oxazine (78). Reaction of alcohol 77 with NaH (1.4 equiv), using procedure D (but 

extracting the product four times with 10% MeOH/CH2Cl2 and then four times with CH2Cl2), 

followed by chromatography of the product on silica gel, eluting with 0-0.5% MeOH/CH2Cl2 

(foreruns) and then with additional 0.5% MeOH/CH2Cl2, gave 78 (94%) as a cream solid: mp 

(MeOH/CH2Cl2/hexane) 211-212 C; 1H NMR [(CD3)2SO]  8.19 (d, J = 3.1 Hz, 1 H), 8.10 

(s, 1 H), 7.59 (br d, J = 8.7 Hz, 1 H), 7.47 (dd, J = 8.8, 3.2 Hz, 1 H), 4.96-4.89 (m, 1 H), 4.43 

(dd, J = 11.2, 3.2 Hz, 1 H), 4.37 (dd, J = 11.2, 5.8 Hz, 1 H), 4.18 (ddd, J = 12.5, 5.8, 2.9 Hz, 
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1 H), 4.09 (ddd, J = 12.5, 10.9, 5.2 Hz, 1 H), 2.35-2.26 (m, 1 H), 2.25-2.13 (m, 1 H); [α]24
D -

61.9 (c 1.002, DMF). Anal. (C12H11BrN4O4) C, H, N. 

(7R)-7-({[6-(4-Fluorophenyl)pyridin-3-yl]oxy}methyl)-2-nitro-6,7-dihydro-5H-

imidazo[2,1-b][1,3]oxazine (79). Reaction of bromide 78 with 4-fluorophenylboronic acid 

(1.9 equiv) and Pd(dppf)Cl2 (0.25 equiv), using procedure N at 87 C for 200 min (but 

extracting the product three times with 10% MeOH/CH2Cl2 and then three times with 

CH2Cl2), followed by chromatography of the product on silica gel, eluting with 0-0.5% 

MeOH/CH2Cl2 (foreruns) and then with 0.5-0.67% MeOH/CH2Cl2, gave 79 (87%) as a cream 

solid: mp (MeOH/CH2Cl2/hexane) 205-208 C; 1H NMR [(CD3)2SO]  8.43 (d, J = 2.9 Hz, 1 

H), 8.11 (s, 1 H), 8.07 (br dd, J = 8.9, 5.5 Hz, 2 H), 7.94 (d, J = 8.8 Hz, 1 H), 7.56 (dd, J = 

8.8, 3.0 Hz, 1 H), 7.28 (br t, J = 8.9 Hz, 2 H), 5.00-4.91 (m, 1 H), 4.47 (dd, J = 11.2, 3.2 Hz, 

1 H), 4.41 (dd, J = 11.2, 5.8 Hz, 1 H), 4.20 (ddd, J = 12.5, 5.7, 2.9 Hz, 1 H), 4.11 (ddd, J = 

12.4, 11.0, 5.2 Hz, 1 H), 2.39-2.29 (m, 1 H), 2.29-2.16 (m, 1 H); [α]23
D -62.6 (c 1.006, DMF). 

Anal. (C18H15FN4O4) C, H, N. 

Compounds of Table 2. The following section details the syntheses of compounds 142 

and 160 of Table 2, via representative procedures and key intermediates, as described in 

Scheme 5. For the syntheses of all of the other compounds in Table 2, please refer to the 

Supporting Information. 

Synthesis of 142 (Scheme 5A): 

Procedure S: 4-(2-Chloro-4-nitro-1H-imidazol-1-yl)-1-[4-(4-fluorophenyl)piperazin-1-

yl]butan-2-ol (141). A mixture of epoxide 67 (see the Supporting Information) (150 mg, 

0.689 mmol) and 1-(4-fluorophenyl)piperazine (140) (186 mg, 1.03 mmol) in MEK (3 mL) in 

a sealed vial was stirred at 70 C for 51 h. The resulting cooled mixture was transferred to a 

flask (in CH2Cl2) and evaporated to dryness under reduced pressure (at 30 C), and then the 
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residue was chromatographed on silica gel. Elution with 0-0.3% MeOH/CH2Cl2 first gave 

foreruns, and then further elution with 1-2% MeOH/CH2Cl2 gave 141 (225 mg, 82%) as a 

pale yellow oil; 1H NMR (CDCl3)  7.87 (s, 1 H), 6.97 (br dd, J = 9.2, 8.3 Hz, 2 H), 6.87 (br 

dd, J = 9.2, 4.6 Hz, 2 H), 4.27 (dd, J = 8.2, 5.7 Hz, 2 H), 3.67-3.58 (m, 1 H), 3.57 (v br s, 1 

H), 3.19-3.07 (m, 4 H), 2.85-2.77 (m, 2 H), 2.59-2.51 (m, 2 H), 2.41 (dd, J = 12.3, 4.0 Hz, 1 

H), 2.37 (dd, J = 12.3, 9.5 Hz, 1 H), 1.98-1.87 (m, 1 H), 1.82-1.70 (m, 1 H); HRESIMS calcd 

for C17H22ClFN5O3 m/z [M + H]+ 400.1366, 398.1390, found 400.1370, 398.1397. 

7-{[4-(4-Fluorophenyl)piperazin-1-yl]methyl}-2-nitro-6,7-dihydro-5H-imidazo[2,1-

b][1,3]oxazine (142). Reaction of alcohol 141 with NaH, using procedure D at 40 C for 2 h, 

followed by chromatography of the product on silica gel, eluting with 0-0.5% MeOH/CH2Cl2 

(foreruns) and then with 1% MeOH/CH2Cl2, gave 142 (67%) as a pale yellow solid: mp 

(CH2Cl2/hexane) 213-215 C; 1H NMR [(CD3)2SO]  8.07 (s, 1 H), 7.04 (br dd, J = 9.2, 8.6 

Hz, 2 H), 6.94 (br dd, J = 9.3, 4.7 Hz, 2 H), 4.79-4.68 (m, 1 H), 4.13 (ddd, J = 12.6, 5.9, 2.9 

Hz, 1 H), 4.05 (ddd, J = 12.5, 10.8, 5.1 Hz, 1 H), 3.13-3.03 (m, 4 H), 2.73 (dd, J = 13.5, 6.6 

Hz, 1 H), 2.70-2.60 (m, 5 H), 2.29-2.19 (m, 1 H), 2.09-1.95 (m, 1 H); 13C NMR [(CD3)2SO]  

156.0 (d, JC-F = 235.6 Hz), 148.0, 147.9 (d, JC-F = 1.6 Hz), 142.1, 117.7, 117.1 (d, JC-F = 7.6 

Hz, 2 C), 115.2 (d, JC-F = 21.7 Hz, 2 C), 76.0, 60.5, 53.2 (2 C), 49.0 (2 C), 41.8, 24.3. Anal. 

(C17H20FN5O3) C, H, N. 

Synthesis of 160 (Scheme 5C): 

Procedure T: (2-Nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazin-7-yl)methyl 4-(4-

fluorophenyl)piperazine-1-carboxylate (160). Triphosgene (145 mg, 0.489 mmol) was 

added to a mixture of alcohol 13 (192 mg, 0.964 mmol) and triethylamine (0.40 mL, 2.87 

mmol) in anhydrous THF (15 mL). The mixture was stirred at 20 C for 30 min and then a 

solution of 1-(4-fluorophenyl)piperazine (140) (347 mg, 1.93 mmol) in anhydrous THF (5 
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mL) was added. The resulting mixture was stirred at 20 C for 2 h and then quenched with 

saturated NH4Cl (100 mL) and extracted with EtOAc (2 x 100 mL). The combined extracts 

were evaporated to dryness under reduced pressure and the residue was chromatographed on 

silica gel. Elution with 0-2% MeOH/CH2Cl2 gave crude material, which was successively 

recrystallized from CH2Cl2/hexane and EtOAc/hexane, to give 160 (130 mg, 33%) as a cream 

solid: mp 177-180 C; 1H NMR [(CD3)2SO]  8.08 (s, 1 H), 7.06 (br dd, J = 9.1, 8.7 Hz, 2 H), 

6.97 (br dd, J = 9.2, 4.7 Hz, 2 H), 4.84-4.73 (m, 1 H), 4.37 (dd, J = 12.2, 3.2 Hz, 1 H), 4.29 

(dd, J = 12.2, 5.8 Hz, 1 H), 4.15 (ddd, J = 12.5, 5.8, 2.7 Hz, 1 H), 4.06 (ddd, J = 12.4, 11.3, 

5.1 Hz, 1 H), 3.61-3.45 (m, 4 H), 3.14-2.98 (m, 4 H), 2.30-2.20 (m, 1 H), 2.17-2.03 (m, 1 H); 

13C NMR [(CD3)2SO]  156.3 (d, JC-F = 236.3 Hz), 154.1, 147.8, 147.7 (d, JC-F = 1.6 Hz), 

142.0, 117.9 (d, JC-F = 7.5 Hz, 2 C), 117.7, 115.3 (d, JC-F = 22.0 Hz, 2 C), 75.8, 65.5, 49.1 (2 

C), 43.4 (2 C), 41.7, 22.3. Anal. (C18H20FN5O5) C, H, N. 

Minimum Inhibitory Concentration Assays (MABA and LORA). These were carried 

out according to the published protocols.41,56 

In Vitro Parasite Growth Inhibition Assays. The activity of test compounds against the 

amastigote stage of the L. don parasite was assessed at CDRI using a mouse macrophage-

based luciferase assay, performed according to the reported procedures.10 Further assays 

measuring the growth inhibitory action of compounds against L. inf, T. cruzi, and T. brucei, 

and determining any cytotoxic effects on human lung fibroblasts (MRC-5 cells), were 

conducted at the University of Antwerp (LMPH), as detailed in a recent article.40 

Solubility Determinations. Method A. The solid compound sample was mixed with water 

or 0.1 M HCl (enough to make a 2 mM solution) in an Eppendorf tube, and the suspension 

was sonicated for 15 min and then centrifuged at 13000 rpm for 6 min. An aliquot of the clear 

supernatant was diluted 2-fold with water (or 0.1 M HCl), and then HPLC was conducted. 

The kinetic solubility was calculated by comparing the peak area obtained with that from a 
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standard solution of the compound in DMSO (after allowing for varying dilution factors and 

injection volumes). 

Method B. The thermodynamic solubility of compound 4 at pH 7.4 was measured by 

Drugabilis, 5 rue Jean-Baptiste Clément, 92290 Châtenay-Malabry, France. The dry powder 

was stirred with 0.12 M phosphate buffer (pH 7.4) at 20 C for 24 h. After filtration using a 

0.22 μm PVDF membrane filter, the concentration of 4 was determined by HPLC with 

reference to a standard solution; the final value is the mean from two independent assays. 

Method C. The thermodynamic solubility of compound 79 at pH 6.5 and 5.0 was measured 

by WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe ZhongLu, WaiGaoQiao Free Trade Zone, 

Shanghai 200131, China. Aliquots of the compound DMSO stock (10 mM) were transferred 

to fasted state simulated intestinal fluid buffer (pH 6.5) or fed state simulated intestinal fluid 

buffer (pH 5.0) and the mixtures were shaken for 24 h at room temperature. Following 

sampling by a Whatman filter device, the compound concentrations were determined by UV 

spectroscopy with reference to three calibration standards (2, 100, and 200 μM). 

Method D. The thermodynamic solubility of compound 79 at pH 7.4 was measured by 

Syngene International Ltd., Plot No. 2 & 3 Biocon Park, Jigani Link Rd, Bangalore 560099, 

India. The dry powder was equilibrated with 0.1 M phosphate buffer (pH 7.4) in a glass vial 

at 25 C (water bath), shaking for 24 h. After filtration using a 0.45 μm PVDF membrane 

filter, the concentration of 79 was determined by HPLC, comparing the peak area obtained 

with that from a standard solution (0.86 μM) in 1:1:2 EtOH/water/CH3CN. 

Microsomal Stability Assays. Tests on initial compounds 14, 29, 34, 38, and 39 (Table 3) 

were run by MDS Pharma Services, 22011 30th Drive SE, Bothell, WA 98021-4444, as 

previously described.58 Compounds 39, 44, 49, 53, 54, 59, 61, 71, 107, 108, 111-113, and 116 

were evaluated by Advinus Therapeutics Ltd., 21 & 22 Phase II, Peenya Industrial Area, 

Bangalore 560058, India, using a published procedure54 in which the compound 
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concentration was 0.5 µM and the incubation time was 30 min. Additional analyses on 

compounds 28, 44, 59, 62, 71, 79, 87, 90, 91, 93-95, 129, 142, 152, 170, and 178 were 

performed by WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe ZhongLu, WaiGaoQiao Free 

Trade Zone, Shanghai 200131, China, via a reported method.11 

Distribution Coefficient and pKa Measurements. The octanol-water partition coefficient 

(LogP) of 4 at 20 °C was measured in duplicate by Advinus Therapeutics Ltd., Bangalore, 

India, using the shake-flask method with HPLC analysis. LogD and pKa data for 79 were 

measured by WuXi AppTec (Shanghai) Co., Ltd. The LogD value was found by assessing the 

distribution of 79 between 100 mM phosphate buffer of pH 7.4 and octanol at room 

temperature (final matrix contained 1% DMSO), using the shake-flask method and LC-

MS/MS analysis. The pKa value was obtained by UV spectroscopy, employing 80% MeOH 

as the initial cosolvent. 

Plasma Protein Binding Assay. Studies of 4 and 79 were conducted by WuXi AppTec 

(Shanghai) Co., Ltd., using equilibrium dialysis across a semi-permeable membrane. Briefly, 

a 2 μM compound solution in plasma (0.5% DMSO) was dialyzed against 100 mM phosphate 

buffered saline (pH 7.4) on a rotating plate incubated for 4 or 6 h at 37 C. Following 

precipitation of protein with CH3CN, the amount of compound present in each compartment 

was quantified by LC-MS/MS; values are the mean of triplicate determinations. 

Permeability Assay. This was performed by WuXi AppTec (Shanghai) Co., Ltd. MDCK-

MDR1 cells were seeded onto polyethylene membranes in 96-well plates at 2 x 105 cells/cm2, 

giving confluent cell monolayer formation over 4-7 d. A solution of 79 (2 µM in 0.4% 

DMSO/HBSS buffer) was applied to the apical or basolateral side of the cell monolayer. 

Permeation of the compound from A to B direction or B to A direction was determined in 

triplicate over a 150 min incubation at 37 °C and 5% CO2 (95% humidity). In addition, the 



43 

 

efflux ratio of 79 was also determined. Test and reference compounds were quantified by LC-

MS/MS analysis based on the peak area ratio of analyte/internal standard. 

Ames Test. Compound 71 (at doses of 1.5, 4, 10, 25, 64, 160, 400, and 1000 µg/well) was 

evaluated in the Mini-Ames reverse mutation screen conducted by WuXi AppTec (Suzhou) 

Co., Ltd., 1318 Wuzhong Avenue, Wuzhong District, Suzhou 215104, China. Two 

Salmonella strains (TA98 and TA100) were employed, both in the presence and absence of 

metabolic activation (rat liver S9). Positive controls (2-aminoanthracene, 2-nitrofluorene and 

sodium azide) and a negative (DMSO solvent) control were included. 

hERG Assay. The effects of compounds 44 and 79 on cloned hERG potassium channels 

expressed in Chinese hamster ovary cells were assessed by WuXi AppTec (Shanghai) Co., 

Ltd., using the automated patch clamp method. Six concentrations (0.12, 0.37, 1.11, 3.33, 10, 

and 30 µM) were tested (at room temperature) and at least three replicates were obtained for 

each. 

CYP3A4 Inhibition Assay. The study was performed by WuXi AppTec (Shanghai) Co., 

Ltd. Compound 79 (at concentrations of 1 and 10 µM) was incubated with NADPH-fortified 

pooled HLM (0.2 mg/mL) and testosterone (50 µM) in phosphate buffer (100 mM) at 37 C 

for 10 min. Following quenching with CH3CN, samples were analysed for the formation of 

6β-hydroxytestosterone by LC-MS/MS and the percentage inhibition was determined 

(ketoconazole was the positive control and tolbutamide was used as an internal standard). 

In Vivo Experiments. All animal experiments were performed according to institutional 

ethical guidelines for animal care. Antitubercular efficacy studies in mice were approved by 

the UIC IACUC (UIC AWA no. A3460-01; ACC application no. 12-183). For VL, mouse 

model studies (LSHTM) were conducted under license from the UK Home Office (license 

no. PIL 70/6997), hamster studies at CDRI were approved by the CSIR-CDRI animal ethics 
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committee (license no. 19/2009/PARA/IAEC), and hamster studies at LMPH were approved 

by the ethical committee of the University of Antwerp (UA-ECD 2010-17). 

Acute TB Infection Assay. Each compound (including 6, which was employed as an 

internal reference standard) was administered orally to a group of 7 M. tb-infected BALB/c 

mice at 100 mg/kg daily for 5 days a week for 3 weeks, beginning on day 11 postinfection, in 

accordance with published protocols.41,58 The results were typically recorded as the ratio of 

the average reduction in colony forming units (CFUs) in the compound-treated mice/the 

average CFU reduction in the mice treated with 6. 

Acute VL Infection Assay (Mouse Model, LSHTM). Test compounds were orally dosed 

once per day for 5 days consecutively to groups of 5 female BALB/c mice infected with 2 x 

107 L. donovani amastigotes, with treatment commencing one week postinfection, as 

described.10 Miltefosine (1) and AmBisome were positive controls, and parasite burdens were 

determined from impression smears of liver sections. Efficacy was expressed as the mean 

percentage reduction in parasite load for treated mice in comparison to untreated (vehicle-

only) controls. 

Chronic VL Infection Assay 1 (Hamster Model, CDRI). Golden hamsters (weighing 40-

45 g) were infected intracardially with 1 x 107 L. donovani amastigotes, and then, 15 days 

later, all animals were subjected to splenic biopsy to assess the level of infection. Groups of 

hamsters having an appropriate infection grading (5-15 amastigotes/100 spleen cell nuclei) 

were treated with test compounds, starting on day 17 and dosing orally once per day for 5 

days, according to the usual procedure.10 Post-treatment splenic biopsies taken 12 days after 

the first dose were employed to determine the intensity of infection, as previously reported.10 

Chronic VL Infection Assay 2 (Hamster Model, LMPH). Golden hamsters (weighing 

75-80 g) were infected with 2 x 107 L. infantum amastigotes, and 21 days post-infection, 

treatment groups of 6 animals each were dosed orally once or twice per day with test 



45 

 

compounds (formulated in PEG-400) for 5 days consecutively. Parasite burdens in three 

target organs (liver, spleen, and bone marrow) were determined by microscopic evaluation of 

impression smears (stained with Giemsa), and efficacy was expressed as the mean percentage 

load reduction for treated hamsters in comparison to untreated (vehicle-only) controls. 

Miltefosine (1) was included as a reference drug in all experiments. 

Mouse Pharmacokinetics. Compound 28 was evaluated by UNT Health Science Center, 

3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699 (using a method approved by the 

UNTHSC IACUC; AWA no. A3711-01). Following oral administration to female BALB/c 

mice at 40 mg/kg as a suspension in 0.5% carboxymethylcellulose/water, blood samples were 

collected (at time intervals of 0.5, 1, 1.5, 2, 4, 6, 8, and 24 h), centrifuged, and analyzed by 

LC-MS/MS to generate the required PK parameters. Compound 34 was assessed by MDS 

Pharma Services, 22002 26th Avenue SE, Suite 104, Bothell, WA 98021-4444, via a similar 

procedure (but employing mixed gender CD-1 mice and an oral formulation of 0.5% 

carboxymethylcellulose and 0.08% Tween 80 in water). Studies of compounds 39, 44, 49, 53, 

54, and 112 were conducted by Advinus Therapeutics Ltd., 21 and 22 Phase II, Peenya 

Industrial Area, Bangalore 560058, India, according to a published protocol.54 Briefly, 

compounds were administered to groups of male Swiss Albino mice; intravenous dosing (at 1 

mg/kg) employed a solution vehicle comprising 20% NMP and 40% PEG-400 in 100mM 

citrate buffer, pH 3, while oral dosing (at 25 mg/kg) was as a suspension in 0.5% 

carboxymethylcellulose and 0.08% Tween 80 in water (except for 112, where the iv solution 

was 10% NMP, 10% cremophor EL and 10% propylene glycol in saline, and oral dosing at 

12.5 mg/kg was as a suspension in 7% Tween 80 and 3% EtOH in water). Samples derived 

from plasma (at 0.083 for iv only, 0.25, 0.5, 1, 2, 4, 6, 8, 10, 24 and 48 h) were centrifuged 

prior to analysis by LC-MS/MS and the PK parameters were determined using WinNonlin 

software (version 5.2). Finally, 71 was examined by WuXi AppTec (Shanghai) Co., Ltd.; in 
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this case, oral dosing of female BALB/c mice was at 25 mg/kg in PEG-400 (sampling at 0.25, 

1, 2, 4, 8, and 24 h), and the PK data were derived following similar LC-MS/MS analysis. 

Rat and Hamster Pharmacokinetics. Compounds 71, 79, and 87 were assessed in male 

Sprague-Dawley rats and female Golden Syrian hamsters by WuXi AppTec (Shanghai) Co., 

Ltd. Intravenous dosing (at 1 mg/kg for rats and 2 mg/kg for hamsters) utilised a solution 

formulation of 20% NMP and 40% PEG-400 in citrate buffer, pH 3. In rats, oral dosing (at 5 

mg/kg) was as a suspension in 0.08% Tween 80 and 0.5% carboxymethylcellulose in water, 

whereas PEG-400 was the vehicle employed for oral dosing in hamsters (at 12.5 mg/kg). 

Plasma samples (at 0.083 for iv only, 0.25, 0.5, 1, 2, 4, 8, and 24 h) were analysed by LC-

MS/MS and the PK parameters were calculated using WinNonlin software (version 6.3). 
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Table 1. In vitro antiparasitic and antitubercular activities and calculated lipophilicities of 7-

substituted 2-nitroimidazooxazines 

 

      IC50
a,b (µM) MICc,b (µM) 

 compd Fm X aza R CLogP L. don L. inf T. cruzi MRC-5 MABA LORA 

4d     3.47 0.03 0.17 2.6 >64 0.046 5.9 

14 A H  4-OCF3 3.30 0.03 0.12 1.2 >64 1.0 7.5 

21 A Me  4-OCF3 3.68 0.31 0.30 0.75 >64 0.55 3.3 

22 A H  4-OBn 3.55 0.05    0.46 3.0 

23 A Me  4-OBn 3.93 0.28    0.20 1.4 

25 B H  4-F 4.21 0.02 0.17 0.53 >64 0.08 1.3 

27 B Me  4-F 4.59 0.22 1.8 0.84 >64 0.085 0.61 

28 B H  4-OCF3 5.14 0.19 0.40 2.1 >64 0.055 1.5 

29 B Me  4-OCF3 5.52 1.1 1.1 0.54 >64 0.093 1.4 

34 Be Me  4-OCF3 5.52 0.24 1.3 0.57 >64 0.063 1.1 

38 Bf Me  4-OCF3 5.52 1.3 1.3 0.77 >64 0.74 6.8 

39 C H  4-OCF3 3.37 0.04 0.047 0.061 >64 5.2 4.7 

44 C Me  4-OCF3 3.75 0.10 0.13 0.14 >64 0.94 6.8 

45 C H  4-OBn 3.62 0.02    >128 >128 

47 C Me  4-OBn 4.00 0.12    0.44 >128 

49 D H  4-F 4.11 0.01 0.47 0.063 >64 0.18 >128 

52 D Me  4-F 4.49 0.20 0.34 0.35 >64 0.085 1.4 
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53 D H  4-OCF3 5.03 0.06 0.28 0.24 >64 0.08 0.73 

54 D Me  4-OCF3 5.41 0.52 0.36 0.72 >64 0.11 1.3 

Phenylpyridines 

55 D H 3 4-F 2.94 >10 0.083 0.027 >64 0.24 3.5 

56 D Me 3 4-F 3.32 0.12 0.16 0.30 >64 0.29 2.7 

59 D H 2’ 4-F 3.66 0.01 0.050 0.027 >64 0.025 <0.25 

61 D Me 2’ 4-F 4.04 0.09 0.097 0.23 >64 0.17 1.0 

62 D H 2’ 2,4-diF 3.65 0.07 0.037 0.030 >64 0.10 2.4 

63 D Me 2’ 2,4-diF 4.03  0.11 0.21 >64 0.089 2.5 

64 D H 2’ 4-OCF3 4.58 0.05 0.35 0.12 >64 0.027 0.47 

65 D Me 2’ 4-OCF3 4.96 0.26 3.8 1.0 >64 0.13 5.3 

71 D H 3’ 4-F 3.03 0.06 0.093 0.27 >64 0.23 2.4 

79 De H 3’ 4-F 3.03 (0.03)g 0.080 0.35 >64 0.11 3.2 

87 Df H 3’ 4-F 3.03 (0.08)g 0.22 0.29 >64 1.1 3.9 

90 D Me 3’ 4-F 3.41 0.65 0.59 0.26 >64 0.35 3.9 

91 D H 3’ 2,4-diF 3.03 0.02 0.030 0.13 >64 0.36 8.9 

92 D Me 3’ 2,4-diF 3.41 0.31 0.17 0.27 >64 0.40 4.9 

93 D H 3’ 4-OCF3 3.96 0.05 0.12 0.17 >64 0.032 0.86 

94 De H 3’ 4-OCF3 3.96  0.11 0.26 >64 0.024 1.5 

95 Df H 3’ 4-OCF3 3.96  0.13 0.13 >64 0.34 1.6 

96 D Me 3’ 4-OCF3 4.34 0.65 4.0 0.25 >64 0.05 0.88 

99 E H 2’ 4-F 3.55 0.31 0.14 0.16 59 1.7 3.0 

101 E Me 2’ 4-F 3.93  0.18 0.35 >64 0.94 5.0 

102 E H 2’ 2,4-diF 3.55 0.25 4.0 0.23 >64 >128 >128 

103 E Me 2’ 2,4-diF 3.93  0.24 0.22 >64 0.69 4.8 

Bipyridines 

105 D H 2’,2 4-F 2.55 0.06 50 0.34 >64 0.15 11 

106 D Me 2’,2 4-F 2.93 0.15 0.34 0.25 >64 0.40 9.5 
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107 D H 2’,3 4-F 2.49 0.27 47 0.54 >64 0.074 15 

108 D Me 2’,3 4-F 2.87 0.22 0.40 0.82 >64 1.9 6.2 

109 D H 2’,3 2,4-diF 2.60 >10 0.19 0.29 >64 0.25 4.2 

110 D Me 2’,3 2,4-diF 2.98  0.20 0.43 >64 1.0 6.6 

111 D H 2’,3 4-CF3 2.89 0.13 2.5 0.68 >64 0.09 2.5 

112 D H 3’,3 4-F 1.87 0.09 >64 0.55 >64 2.3 21 

113 D Me 3’,3 4-F 2.25 0.09 0.67 0.57 >64 2.7 43 

114 D H 3’,3 2,4-diF 1.98 0.08 52 0.35 >64 1.2 41 

115 D Me 3’,3 2,4-diF 2.36 0.11 0.28 0.38 >64 0.94 18 

116 D H 3’,3 4-CF3 2.61 0.07 7.3 0.46 >64 0.12 58 

117 E H 2’,3 4-F 2.38 >10 44 0.13 35 >128 >128 

118 E Me 2’,3 4-F 2.76  1.1 0.52 >64 11 7.8 

119 E H 2’,3 2,4-diF 2.50 0.25 6.7 0.13 >64 4.3 10 

120 E Me 2’,3 2,4-diF 2.88  0.59 0.49 >64 9.3 7.9 

Other heterobiaryls 

123 D H 2’,3’ 4-F 2.73 0.07 8.4 0.67 >64 0.35 23 

126 D H 2’,5’ 4-F 3.09 0.15 0.71 4.7 >64 0.15 >128 

129 D H 2’,6’ 4-F 2.58 0.10 0.29 0.17 >64 0.04 1.7 

131 D Me 2’,6’ 4-F 2.96 0.32 0.29 0.43 57 0.44 6.3 

132 D H 2’,6’,3 4-F 1.41 0.53 >64 3.3 >64 0.24 21 

133 D Me 2’,6’,3 4-F 1.79 1.3 6.1 2.9 >64 23 54 

139 D H 3’,5’ 4-F 2.79 0.07 0.21 0.26 62 0.27 20 

aIC50 values for inhibition of the growth of Leishmania donovani and Leishmania infantum 

(in mouse macrophages) and Trypanosoma cruzi (on MRC-5 cells), or for cytotoxicity 

toward human lung fibroblasts (MRC-5 cells). bEach value (except the single test L. don data) 

is the mean of at least two independent determinations. For complete results (mean  SD) 

please refer to the Supporting Information. cMinimum inhibitory concentration against M. tb, 

determined under aerobic (MABA)41 or hypoxic (LORA)56 conditions. dData from reference 

11. e(R)-Enantiomer. f(S)-Enantiomer. gLMPH data (mean of 2 values).  
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Table 2. In vitro antiparasitic and antitubercular activities and calculated lipophilicities of 

cyclic amine-based analogues 

 

    IC50
a,b (µM) MICc,b (µM) 

compd Fm X CLogP L. don L. inf T. cruzi MRC-5 MABA LORA 

142 A H 2.16 0.19 2.3 1.7 >64 1.8 9.9 

144 A Me 2.54 0.70 0.73 1.3 >64 0.34 6.8 

147 B H 3.36 0.88 0.87 2.9 >64 2.1 11 

149 B Me 3.74 1.0 0.32 0.87 >64 0.22 8.3 

152 C H 2.84 0.45 0.84 2.4 >64 2.0 22 

154 C Me 3.22 0.22 0.32 0.59 >64 0.23 48 

157 D H 1.17 4.8 45 11 >64 46 >128 

159 D Me 1.55 2.8 6.5 2.8 >64 93 >128 

160 E H 2.42 >100 >64 1.5 >64 2.5 22 

161 E Me 2.80 0.29 0.72 3.9 >64 3.4 8.4 

170 F H 3.50  0.24 0.22 >64 0.78 20 

178 F Me 3.88  0.35 0.51 >64 0.37 19 

aIC50 values for inhibition of the growth of Leishmania donovani and Leishmania infantum 

(in mouse macrophages) and Trypanosoma cruzi (on MRC-5 cells), or for cytotoxicity 

toward human lung fibroblasts (MRC-5 cells). bEach value (except the single test L. don data) 

is the mean of at least two independent determinations. For complete results (mean  SD) 

please refer to the Supporting Information. cMinimum inhibitory concentration against M. tb, 

determined under aerobic (MABA)41 or hypoxic (LORA)56 conditions.  
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Table 3. Aqueous solubility, microsomal stability, and in vivo antileishmanial efficacy data 

for selected analogues 

 aq solubilitya 

(µg/mL) 

microsomal stabilityb 

[% remaining at 1 (0.5) h] 

in vivo efficacy against L. don (mouse) 

(% inhibition at dose in mg/kg)c 

compd pH 7 pH 1 H M Ham 50 25 12.5 6.25 3.13 1.56 

4d 2.4  (92) (89) 18 (54)   >99 >99 83 49 

14 4.8  57 10        

28 0.058  73 75 46 49      

29 0.39  85 77        

34   86 79        

38   86 59        

39 4.0  85 (96) 57 (70) (23)  87     

44 2.3  58 (86) 50 (61) 2.1 (16)  100 100 83 25  

49 0.055  (88) (75) (45)  >99     

53 0.13  (97) (94) (94)  65     

54 2.6  (89) (85) (81)  30     

55 0.36           

59 0.13 2.8 41 43 (60) 12 (16) 67      

61 0.69 13  (33) (2.6)       

62 0.13 1.5 25 19 2.7       

71 0.32 164 44 34 (63) 14 (52) 100 98 76 59   

79 0.45 237 58 69 34    93   

87 0.47 234 63 41 5    85   

90 0.19 74 50 28 32 41      

91 0.72 221 45 31 8.6 91      

93 0.15 92 53 41 37 >99   >99 97 50 

94 0.37 110 50 53      >99 84 

95 0.40 141 52 46      52 57 
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99 0.027 0.56          

107 0.87   (81) (51)       

108 4.5   (68) (39)       

111 0.36   (72) (70)       

112 3.9  (93) (87) (70) 44      

113 2.3   (82) (43)       

116 0.30   (82) (81)       

129 1.8  61 56 13 85      

139 0.59           

142 10 14900 85 77 15 55      

152 49 21100 57 58 0       

170 6.1 34300 33 17 0.7 45      

178 2.2 9970 11 1.2 0.2       

aKinetic solubility (µg/mL) in water (pH 7) or 0.1 M HCl (pH 1) at 20 °C, determined by 

HPLC (see the Experimental Section, Method A). bPooled human (H), CD-1 mouse (M), or 

hamster (Ham) liver microsomes; data in parentheses are the percentage parent compound 

remaining following a 30 min incubation. cDosing was orally, once daily for 5 days 

consecutively; data are the mean percentage reduction of parasite burden in the liver. dData 

from reference 11.  
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Table 4. Pharmacokinetic parameters for selected compounds in various species 

 

compd 

intravenous (1-2 mg/kg)a  oral (5-40 mg/kg)a 

C0 

(µg/mL) 

CL 

(mL/ 

min/kg) 

Vdss 

(L/kg) 

t1/2 

(h) 

AUClast
b 

(µgh/mL) 
 

Cmax 

(µg/mL) 

Tmax 

(h) 

t1/2 

(h) 

AUClast
b 

(µgh/mL) 

Fc 

(%) 

Mice 

Rac-4d 0.88 9.5 1.7 2.2 1.69  4.1 4.0  33.5 79 

28       3.3 8.0 5.2 47.1e  

34       2.0 6.0 8.1 31.9e  

39 0.36 48 3.2 1.1 0.341  1.3 0.5  3.86 45 

44 0.79 12 2.5 2.8 1.31  1.4 3.0  11.5 35 

49 2.9 0.52 0.40 6.7 31.6  4.2 6.0  84.7 11 

53 0.66 1.3 1.9 17 11.2  14 8.0  376 100 

54 0.43 2.3 5.0 27 5.26  0.79 10  22.7 17 

71       13 4.0 3.4 112  

112 14 0.70 0.12 2.1 24.7  14 2.0  95.3 31 

Rats 

71 1.3 3.9 0.94 3.0 4.36  0.49 3.3 6.7 4.27 22 

79 1.5 6.3 0.86 1.7 2.65  0.79 3.3 3.1 4.08 34 

87 1.1 5.5 1.4 3.2 3.14  0.71 3.3 3.7 5.64 41 

Hamsters 

71 2.5 11 1.0 1.2 3.12  0.94 2.7 4.7 4.83 26 

79       1.4 2.0 4.2 6.82  

87       0.73 2.7 10 3.68  

aThe intravenous dose was 1 mg/kg for mice and rats and 2 mg/kg for hamsters. The oral 

dose in mice was 25 mg/kg, except for 28 and 34 (40 mg/kg) and 112 (12.5 mg/kg); in other 

species, the oral doses were 5 mg/kg (rats) or 12.5 mg/kg (hamsters). bArea under the curve 

calculated to the last time point (10, 24, or 48 h). cOral bioavailability, determined using dose 

normalised AUClast values. dData for racemic 4 from reference 11. eExtrapolated AUCinf 

value.  
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Table 5. In vivo efficacy data for selected lead compounds in the L. inf hamster model 

 

compd 

 

dose regimena 

% inhibition in target organsb 

liver spleen bone marrow 

1 40 mg/kg, q.d. 92.6 99.5 89.0 

4c 25 mg/kg, q.d. 100 99.9 99.7 

 12.5 mg/kg, q.d. 99.0 98.7 94.0 

44 25 mg/kg, b.i.d. 92.2 91.1 82.5 

 50 mg/kg, q.d. 88.6 89.5 73.0 

71 25 mg/kg, b.i.d. 99.9 99.4 99.6 

 12.5 mg/kg, b.i.d. 99.9 99.5 99.4 

 6.25 mg/kg, b.i.d. 98.0 95.7 96.3 

 3.13 mg/kg, b.i.d. 68.3 69.8 64.5 

 12.5 mg/kg, q.d. 95.2 87.5 92.8 

79 12.5 mg/kg, b.i.d. 99.5 99.4 96.8 

 6.25 mg/kg, b.i.d. 91.0 91.6 73.3 

87 12.5 mg/kg, b.i.d. 88.2 80.8 82.3 

 6.25 mg/kg, b.i.d. 53.1 46.7 35.0 

aAll compounds were dosed orally, once or twice daily for 5 days consecutively. bData are 

the mean percentage reduction of parasite burden in target organs. cData from reference 11.  
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Table 6. Additional comparative data for lead compounds 4 and 79 

property 4 79 

Molecular weight (Da) 359.3 370.3 

LogD (measured) 3.10 2.45a 

pKa (measured)  3.95a 

Thermodynamic solubility (µM): 

pH 7.4 

pH 6.5/5.0 

 

2.8 

 

5.4b 

3.1/18 

Permeability:  

Papp (x10-6 cm/s) A to B/B to A 

 

22.6/24.7c 

 

29.2/26.2d 

Human plasma protein binding (%) 93.9 96.5 

Mutagenic effect (Ames test) No Noa,e 

hERG IC50 (µM) 10.5 >30 

CYP3A4 IC50 (µM) >25 >100 

aFor racemate (71). bPreclinical batch. cCaco-2 data from reference 54. dMDCK-MDR1 

data; no P-gp mediated efflux. eNot mutagenic in strains TA98 and TA100, either in the 

presence or absence of metabolic activation (S9 fraction). 
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Figure 1. Structures of antitubercular or antileishmanial agents 
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Figure 2. Scaffold hopping to 7-substituted 2-nitroimidazooxazines 
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Figure 3. Comparative in vivo efficacy against L. don in the mouse model: (a) 50 mg/kg, (b) 

25 mg/kg and (c) 6.25 mg/kg 
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Figure 4. Effect of lipophilicity on potency against L. inf for 35 racemic 7-H analogues 
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Figure 5. Comparative in vivo efficacy against L. inf in the hamster model (LMPH) 
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Figure 6. Comparison of 6, 34, and 38 in the acute TB infection mouse model 
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Scheme 1a 

 

 a Reagents and conditions: (i) Br(CH2)2CH=CH2 or 15, K2CO3, DMF, 60-73 °C, 4.5-11 h; 

(ii) OsO4, NMO, CH2Cl2, 20 °C, 4 h; (iii) TIPSCl, imidazole, DMF, 20 °C, 2-3 d; (iv) NaH, 

DMF, 0-20 °C, 3.4 h (for 12), or 0-20 °C, 2.5 h then 46 °C, 3 h (for 19); (v) 1% HCl in 95% 

EtOH, 20 or 44 °C, 1.5-3 d; (vi) ArCH2Br or 4-BnOBnCl, NaH, DMF, 0-20 °C, 2.5-7 h; (vii) 

ArB(OH)2, toluene, EtOH, 2 M Na2CO3, Pd(dppf)Cl2 under N2, 86-90 °C, 20-75 min; (viii) 

Ac2O, pyridine, 20 °C, 38 h; (ix) preparative chiral HPLC (see text); (x) K2CO3, aq MeOH, 

20 °C, 4 h. 
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Scheme 2a 

 

a Reagents and conditions: (i) ArOH, DEAD, PPh3, THF, 0-20 °C, 15-51 h; (ii) ArB(OH)2, 

DMF, (toluene, EtOH), 2 M Na2CO3 or 2 M KHCO3, Pd(dppf)Cl2 under N2, 70-91 °C, 1.5-5 

h; (iii) 15, K2CO3, DMF, 73 °C, 14 h; (iv) m-CPBA, Na2HPO4, CH2Cl2, 0-20 °C, 18 h; (v) 

ArOH, K2CO3, MEK, 82-83 °C, 8-10 h; (vi) NaH, DMF, 0-20 °C, 2-2.5 h; (vii) 57 or 97, 

NaH, DMF, 0-20 °C, 2.3-3 h; (viii) bis(pinacolato)diboron, KOAc, DMF, Pd(dppf)Cl2 under 

N2, 84-90 °C, 3.5 h, then 104, 2 M Na2CO3, Pd(dppf)Cl2 under N2, 85-90 °C, 2.5-3.5 h.  
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Scheme 3a 

 

a Reagents and conditions: (i) Br(CH2)2CH=CH2 or 72 or 80, K2CO3, DMF, 70-74 °C, 19-

72 h; (ii) m-CPBA, CH2Cl2, 0-20 °C, 34 h; (iii) 68, K2CO3, MEK, 81-84 °C, 19-42 h; (iv) 

NaH, DMF, 0-20 °C, 2.5-3.5 h; (v) ArB(OH)2, DMF, (toluene, EtOH), 2 M Na2CO3 or 2 M 

KHCO3, Pd(dppf)Cl2 under N2, 70-90 °C, 2-4 h; (vi) 1 M HCl, MeOH, 0-20 °C, 6 h; (vii) 

TsCl, pyridine, -10 to 20 °C, 13-15 h; (viii) DBU, CH2Cl2, 0-20 °C, 8-9 h. 
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Scheme 4a 

 

a Reagents and conditions: (i) 121 or 124 or 127, NaH, DMF, 0-20 °C, 2.5-3 h; (ii) 

ArB(OH)2, DMF, toluene, EtOH, 2 M Na2CO3 or 2 M KHCO3, Pd(dppf)Cl2 under N2, 80-90 

°C, 2.3-3.5 h; (iii) EtOCH2Cl, K2CO3, DMF, 20 °C, 16 h; (iv) 1.25 M HCl in MeOH, 53 °C, 

4 h; (v) 137, K2CO3, MEK, 83 °C, 24 h; (vi) NaH, DMF, 0-20 °C, 3 h.  
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Scheme 5a 

 

a Reagents and conditions: (i) amine (140, 145, 150, or 155), MEK (or DME), 70-85 °C, 

16-84 h; (ii) NaH, DMF, 40-60 °C or 0-20 °C (for 170) or 20-39 °C (for 178), 1.5-5 h; (iii) 

triphosgene, Et3N, THF, 20 °C, 30 min, then 140, THF, 20 °C, 2 h; (iv) 163, NaH, DMF, 70 

°C, 14-28 h; (v) TBSOTf, 2,6-lutidine, CH2Cl2, 0-20 °C, 1-2.5 d; (vi) H2 (60 psi), 10% Pd-C, 

EtOH, EtOAc, 20 °C, 45-51 h; (vii) I2, PPh3, imidazole, CH2Cl2, 20 °C, 17-19 h; (viii) 2-

chloro-4-nitroimidazole, K2CO3, DMF, 63-75 °C, 70-72 h; (ix) TBAF, THF, 20 °C, 5-25 h.  
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