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SUMMARY

Chagas disease is caused by infection with the insect-transmitted protozoan Trypanosoma cruzi, and is the most important
parasitic infection in Latin America. The current drugs, benznidazole and nifurtimox, are characterized by limited efficacy
and toxic side-effects, and treatment failures are frequently observed. The urgent need for new therapeutic approaches is
being met by a combined effort from the academic and commercial sectors, together with major input from not-for-profit
drug development consortia.With the disappointing outcomes of recent clinical trials against chronic Chagas disease, it has
become clear that an incomplete understanding of parasite biology and disease pathogenesis is impacting negatively on the
development of more effective drugs. In addition, technical issues, including difficulties in establishing parasitological cure
in both human patients and animal models, have greatly complicated the assessment of drug efficacy. Here, we outline the
major questions that need to be addressed and discuss technical innovations that can be exploited to accelerate the drug
development pipeline.
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INTRODUCTION

Five to eight million people in Latin America are
infected with the protozoan parasite Trypanosoma
cruzi, the aetiologic agent of Chagas disease
(Hashimoto and Yoshioka, 2012; Bern, 2015).
Infections are spread primarily by blood-sucking
triatomine bugs, although other means of transmis-
sion include the congenital route, contaminated
food and drink, organ transplantation and blood
transfusion. Chagas disease is also becoming a
global public health problem, with significant
numbers of symptomatic cases now being detected
within migrant populations, particularly in the
USA and Europe, where the estimates of those
infected are 300 000 and 100 000, respectively
(Bern et al. 2011; Pérez-Molina et al. 2012;
Requena-Méndez et al. 2015).
Chagas disease has been divided into three dis-

crete phases. The initial ‘acute’ stage, which occurs
in the first 4–6 weeks post-infection, usually mani-
fests as a mild and transient febrile condition, and
in many cases, is asymptomatic. However, in chil-
dren it can be more severe and sometimes fatal.
With the development of a vigorous adaptive

immune response, in which CD8+ IFN-γ+ T cells
play a major role (Cardillo et al. 2015; Tarleton,
2015), the infection is suppressed, but sterile
immunity is not achieved. This ‘indeterminate’ or
‘asymptomatic chronic’ stage is characterized by an
intermittent and extremely low-level parasitaemia.
However, ∼30% of infected individuals eventually
proceed to the ‘symptomatic chronic’ stage, often
decades after the primary infection. Cardiomyopathy
develops in the majority of these individuals, whilst
a minority (approximately 10% of those infected)
suffer digestive tract megasyndromes (Ribeiro et al.
2012; Cunha-Neto and Chevillard, 2014). Chagas
disease is a major cause of premature death in many
areas of South America.
The front-line drugs used to treat T. cruzi infec-

tions are the nitroheterocyclic compounds benzni-
dazole and nifurtimox (Wilkinson and Kelly, 2009;
Gaspar et al. 2015). Both have been in use for
almost 50 years, despite widespread evidence of
treatment failures (Molina et al. 2014; Morillo
et al. 2015, 2017). Other drawbacks include the
long treatment period (often 60 –90 days), the fre-
quency and severity of side-effects, and the potential
for cross-resistance, which arises from the require-
ment of these nitroheterocyclic agents to be activated
by the same parasite mitochondrial nitroreductase,
TcNTR-1 (Wilkinson et al. 2008; Mejia et al.
2012). Although benznidazole has proven to be
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effective at curing some acute and chronic T. cruzi
infections, the extent to which it can prevent or
alleviate chronic cardiac pathology remains uncer-
tain (Molina-Berríos et al. 2013; Villar et al. 2014;
Gruendling et al. 2015; Morillo et al. 2015). The
only new compound recently advanced into clinical
trials has been the anti-fungal agent posaconazole,
which blocks ergosterol biosynthesis through inhi-
bition of lanosterol 14α-demethylase (CYP51).
Unfortunately, posaconazole proved to have
limited efficacy against chronic infections (Molina
et al. 2014; Francisco et al. 2015; Morillo et al.
2017), despite some initially promising outcomes
in experimental animal models (Molina et al. 2000;
Ferraz et al. 2007).
The urgent need to develop more effective

therapy against Chagas disease is now being
tackled by large international, multidisciplinary
teams (Katsuno et al. 2015; Chatelain, 2016).
These have introduced a more systematic frame-
work to drug development by bringing together
expertise from both the academic and commercial
sectors. However, it is clear that progress is being
limited by gaps in our knowledge of parasite
biology and disease pathogenesis, and that further
technical innovations are required to accelerate
the pathway that stretches from lead compound
optimization to pre-clinical testing. Below, we
highlight these major biological questions and
discuss various approaches that could help to
streamline the drug development process.

DOES PARASITE DIVERSITY IMPACT ON DRUG

EFFICACY?

Trypanosoma cruzi is a highly diverse species with
genetic distances between major lineages greater
than those between members of the Trypanosoma
brucei species complex (Franzén et al. 2011). Our
understanding of parasite taxonomy has been com-
plicated further by evidence of genetic exchange
and widespread detection of putative hybrid strains
(Machado and Ayala, 2001; Brisse et al. 2003;
Gaunt et al. 2003; Lewis et al. 2011). The geograph-
ical range of T. cruzi extends from southern Chile
and Argentina, through Central America, into wide
areas of the southern USA (Brenière et al. 2016).
The parasite can be transmitted by more than 100
species of triatomine vector and is capable of infect-
ing most, if not all, mammalian species that it
encounters (Messenger et al. 2015). The taxonomic
categorization of T. cruzi has been subject to long,
and at times vigorous, debate. Currently, the
species is divided into six discrete typing units
(DTUs) designated TcI–TcVI (Zingales et al.
2012) (Fig. 1), although a seventh, Tcbat, has
recently been proposed (Marcili et al. 2009; Pinto
et al. 2012). TcI is the most geographically dispersed
DTU, with a range stretching from the USA to

Argentina, and although the other lineages are
more localized, there is considerable overlap (for
review, Miles et al. 2009; Brenière et al. 2016).
This extensive diversity has prompted speculation
as to whether there are correlations between parasite
lineage, host preference, disease pathology and drug
sensitivity.
All six DTUs are capable of infecting humans

(Fig. 1); overall TcI and TcV infections are the
most commonly identified, although other lineages
predominate in some specific endogenous areas,
such as TcII in parts of Brazil. Despite some circum-
stantial data, there has been no unequivocal evidence
of a causative link between parasite diversity and
disease outcome in humans. For example, sugges-
tions that the absence of gastrointestinal megasyn-
dromes in Venezuela compared with Brazil might
be associated with genetic differences in the popula-
tions of circulating parasites have yet to be validated
(Messenger et al. 2015). There is substantial intra-
lineage genetic diversity, particularly within TcI,
II, III and IV (Lewis et al. 2011); however, this
has rarely been taken into account, because in most
studies, genotyping is only conducted at the
lineage level. Studies using experimental animal
models do show that there can be important differ-
ences in virulence between individual strains
(Schlemper et al. 1983; Postan et al. 1987;
Espinoza et al. 2010; Rodriguez et al. 2014; Lewis
et al. 2016), although no candidate genetic factors
have been identified. The increasing availability of
genomic technologies should enable progress to
be made in delineating the extent to which parasite
genetics contributes to disease outcome.
There have been multiple reports of wide diver-

gence in the drug susceptibility of different T. cruzi
strains. In a survey which encompassed representa-
tives of DTUs I–VI, significant differences in benz-
nidazole sensitivity were identified, but there was
no correlation with parasite lineage (Villarreal et al.
2004). These results were consistent with data
obtained from a panel of 28 parasite isolates from
Colombia, where in vitro EC50 values against benzni-
dazole ranged from 1 to 35 µM (Mejia et al. 2012).
Again, there was no obvious correlation between sen-
sitivity and lineage (the panel contained DTU I and
II strains), or with the biological origin of the para-
sites, either insect vector, small mammal or human.
This extensive natural variation in benznidazole sen-
sitivity was independent of TcNTR-1 sequence,
implying that it must be associated with additional
factors. In another report, parasites belonging to
each of the DTUs were tested in vitro against
several nitroheterocylic drugs and other lead com-
pounds (Moraes et al. 2014). Although parasite
strains exhibited a range of susceptibilities to individ-
ual drugs (e.g. up to 8-fold in the case of nifurtimox),
there was no evidence that any of the lineages were
intrinsically more resistant to drugs in general. In
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vivo studies have been inconsistent in terms of
linking drug susceptibility to parasite lineage. For
example, while Toledo et al. (2003) found that
TcI-infected mice were less frequently cured by
benznidazole or itraconazole than TcII- or TcV-
infected mice, they also observed extensive hetero-
geneity in drug sensitivity between strains within
these lineages. Similar intra-lineage variations were
also reported when the curative potential of benzni-
dazole was assessed with a number of Brazilian
strains (Teston et al. 2013). In a study with the
other front line drug nifurtimox, no association was
found between therapeutic effectiveness and parasite
lineage (Oliveira et al. 2017).
In summary, although natural T. cruzi isolates

can display large variations in drug susceptibility,
there is little evidence to link this with their taxo-
nomic designation at the DTU level. As a general
observation, intra-lineage differences seem to be
as extensive as those between lineages. This high-
lights that assessment of the ability of lead com-
pounds to display in vivo activity against a wide
panel of isolates, reflecting the diverse phylogeny
and geographical range of T. cruzi, must be consid-
ered an integral step in the drug development
pathway. The importance of this is emphasized
further by the commonality of mixed infections
(Bontempi et al. 2016).

ARE ALL PARASITE LIFE-CYCLE STAGES

EQUALLY SUSCEPTIBLE TO CHEMOTHERAPY?

From the drug development perspective, there are
a number of important questions relating to the
T. cruzi life-cycle that need to be addressed: (i) Is
it necessary to kill all developmental forms to
produce a curative outcome? (ii) Are all developmen-
tal forms equally susceptible to trypanocidal com-
pounds? (iii) Is there a point in the life-cycle
during chronic stage infections where the parasites
enter a biochemically quiescent or dormant phase?
The T. cruzi life-cycle involves a series of differen-
tiation steps, in which the parasite passes through
both replicative and non-replicative stages. In the
classical text-book version of the mammalian life-
cycle, which has been established for more than a
century, insect-transmitted non-replicating meta-
cyclic trypomastigotes invade host cells, differentiate
into small round-shaped, non-flagellated intracellu-
lar amastigotes, and then divide by binary fission
in the cytosol. When they reach a threshold level,
which may be several hundred per infected cell,
they differentiate into non-dividing flagellated
trypomastigotes, which are released following lysis
of the host cell. The trypomastigotes can then re-
invade other cells, or be taken up in a bloodmeal
by a feeding triatomine bug.

Fig. 1. Key features of the Trypanosoma cruzi major genetic lineages. The phylogenetic tree was reconstructed using
multi-locus microsatellite genotype data, adapted from Lewis et al. (2011). Haplotype diversity is based on mitochondrial
gene sequences for COII and ND1 reported in Lewis et al. (2011), and the values shown indicate the probability that two
randomly selected haplotypes will be different. The percentage of human infections is estimated from metadata compiled
by Brenière et al. (2016), which encompass all isolates derived from human infections (n= 1902) and typed to each lineage.
These values may reflect historical variation in sampling intensities between endemic areas.

1873Chagas disease pathogenesis and drug development

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0031182017001469
Downloaded from https://www.cambridge.org/core. London School of Hygiene & Tropical Medicine, on 24 Jan 2018 at 16:24:34, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0031182017001469
https://www.cambridge.org/core


Further research has revealed that this established
view of the life-cycle is rather superficial and that in
reality, the process is almost certainly more complex
(Fig. 2). For example, evidence for an intracellular
epimastigote-like stage has been intermittently
reported (for review, Tyler and Engman, 2001),
although it is unclear whether this enigmatic form
is simply an intermediate in the amastigote to trypo-
mastigote transition, or represents an obligate intra-
cellular stage of the life-cycle, with a distinct role
in vivo. Similarly, amastigote-like forms with short
flagella, termed sphaeromastigotes, have also been
widely reported, although these probably represent
intermediate forms in the transition to epimasti-
gotes, rather than distinct life-cycle stages (Tyler
and Engman, 2001). Recently, trypomastigotes
have also been shown to have the capacity to differ-
entiate into an epimastigote-like morphological
form, after transition through an amastigote-like

intermediate. These recently differentiated epimasti-
gotes (rdEpi) display a distinct proteomic finger-
print, are complement-resistant, able to invade
phagocytic and cardiac cells (but not fibroblasts or
epithelial cells), and can initiate an infection in
mice (Kessler et al. 2017). It has also been demon-
strated that the initial differentiation from the meta-
cyclic trypomastigote involves an asymmetric cell
division (Fig. 2), which results in one amastigote
and one ‘zoid’ – a cell with a kinetoplast, but no
nucleus. The zoid quickly dies and is degraded by
the host cell machinery with some of its antigens
being presented on the infected cell surface
(Kurup and Tarleton, 2014). The role(s) of the
intermediate in vivo forms are not well defined,
and it is unclear whether their sensitivity (or other-
wise) to test compounds is adequately captured
using current in vitro screening systems. Efficacy
testing against trypomastigotes is now routinely
incorporated into drug screening protocols
(Cortes et al. 2015; Guedes-da-Silva et al. 2016).
However, the sensitivity of other intracellular
and/or intermediate stages is intrinsically difficult
to establish, and it is unknown whether it is neces-
sary to target each of these morphological forms to
eradicate an infection.
The importance of understanding the interplay

between drug activity and the parasite life-cycle
has been highlighted by studies with CYP51 inhi-
bitors, such as posaconazole and ravuconazole.
Although these drugs have low nanomolar EC50

values against a range of T. cruzi strains, they seem
unable to completely clear parasites from infected
mammalian cells in culture (Moraes et al. 2014).
Consistent with this, studies in murine models
have shown that although posaconazole is highly
effective at reducing the parasite burden when admi-
nistered at 10 mg kg−1 day−1 for 25 days, it does not
eliminate the infection, even when the dose is
increased 10-fold, or when the treatment period
extended to 40 days (Khare et al. 2015). One possi-
bility is that treatment could induce resistance by
promoting higher level expression of the lanosterol
14α-demethylase target. Alternatively, there could
be a sub-population of dormant, metabolically qui-
escent parasites within infected host cells, which
have a reduced requirement for ergosterol biosyn-
thesis. Addressing if this is the case, must be consid-
ered a major research goal, particularly because
the existence of such parasites might have broader
relevance for many other classes of drug.
In addition to the above, it could be that metabo-

lically dormant parasites exist in some tissue niches
during chronic infections. Investigating this is a
major technical challenge, since parasites are
present in extremely low numbers during the
chronic stage. As outlined below, bioluminescence
imaging allows parasites to be localized to specific
organs and tissues in murine models, with the

Fig. 2. Overview of the intracellular life cycle of
Trypanosoma cruzi in the mammalian host. (1) The
metacyclic trypomastigote binds to receptors on the host
cell surface resulting in the parasite being taken up into a
parasitophorous vacuole. This occurs regardless of
whether or not the host cell is phagocytic. (2) The parasite
undergoes an asymmetric cell division following
replication of the kinetoplast (red circle) and flagellum, but
not the nucleus (Kurup and Tarleton, 2014). (3) This
results in one daughter cell being a replication competent
amastigote with a short flagellum, and the other being a
dysnuclear flagellated cytoplasmic fragment. (4) The
amastigote escapes into the cytoplasm and begins
replication by binary fission. (5) The remaining parasite
component is degraded by the proteasome and its antigens
are presented on the surface. (6) Some amastigotes may
become metabolically quiescent, although this is yet to be
proven. Such amastigotes could reside long term in
chronically infected tissue. (7) The amastigotes continue to
replicate. (8) Amastigotes differentiate into an intracellular
epimastigote-like form. It is not clear whether this is an
obligate stage, or if they can go straight from amastigotes
to trypomastigotes (dashed arrow). (9) The parasites
finally differentiate into the flagellated bloodstream
trypomastigotes, lyse the host cell and escape into the
bloodstream or tissue fluids (10).
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colon and/or stomach identified as the major reser-
voirs during the chronic stage (Fig. 3) (Lewis et al.
2014,2016). However, the technology is not
sufficiently sensitive or applicable to allow the
microscopic detection of individual infected cells.
One strategy currently being developed involves
the generation of parasites that express dual bio-
luminescence:fluorescence reporters, so that infected
foci in tissues can be pinpointed, excised and sec-
tioned, and then intracellular parasites visualized
by fluorescence microscopy (Taylor et al. unpub-
lished). This type of approach will be essential if
the phenotype of the reservoir host cells is to be
determined, the metabolic and replicative status of
the residual parasites defined, and their response to
trypanocidal drugs assessed.

DOES PARASITE TROPISM DURING CHRONIC

INFECTIONS HAVE THERAPEUTIC

IMPLICATIONS?

In humans, infections withT. cruzi are considered to
be life-long (Álvarez et al. 2014; Cardoso et al. 2016).
However, during the chronic phase, parasites are
highly focal, present at extremely low levels, and
only sporadically detectable in the bloodstream.
This can limit the accurate diagnosis of on-going
infections, even with PCR-based methodology
(Schijman et al. 2011), and is an important compli-
cating factor in clinical trials. By necessity, most
studies on parasite tropism and persistence during

human chronic infections have focused on tissue
samples retrieved at autopsy, or following organ
transplantation. The degree to which these findings
are relevant to the majority of infected people is
uncertain, and as a result, parasite tropism in asymp-
tomatic individuals is poorly understood.
Intracellular amastigotes have been detected in

some chagasic heart samples using histology
(Benvenuti et al. 2014; Kransdorf et al. 2016), and
more frequently using PCR or antibody-based tech-
niques (Bellotti et al. 1996; Schijman et al. 2004;
Burgos et al. 2010). Evidence from transplantation-
linked transmission, in both endemic and non-
endemic regions (Kun et al. 2009; Huprikar et al.
2013), suggests that parasites can be present in a
number of organs, with infections more common
after heart transplants, than those involving kidney
or liver. Parasite DNA has also been detected in
the oesophagus (Vago et al. 1996; Lages-Silva et al.
2001) and adipose tissue (Ferreira et al. 2011)
during chronic infections, and parasites can
become widely disseminated following reactivation
of Chagas disease in immunosuppressed patients
(see Fig. 3, as an example in a murine model), or
those co-infected with HIV (for review, Lattes and
Lasala, 2014). CNS involvement leading to meningo-
encephalitis is a common outcome in these situations
(Cordova et al. 2008; Diazgranados, et al. 2009;
Yasukawa et al. 2014).
Current knowledge on infection dynamics and

parasite tropism during chronic T. cruzi infections

Fig. 3. Parasite tropism during Trypanosoma cruzi infections in a mouse model. BALB/c mice infected with
bioluminescent T. cruzi strain CL Brener (Lewis et al. 2014) were imaged at various stages post-infection, as indicated.
Upper; ex vivo imaging of organs/tissues removed from mice and soaked in D-luciferin. The identity of each organ/tissue
is indicated (right). Lower; in vivo imaging of infected mice. The bioluminescence images on the right-hand side are of a
chronically infected mouse which has been immunosuppressed by cyclophosphamide treatment (Lewis et al. 2014). Heat-
maps are on log10 scales and indicate intensity of bioluminescence from low (blue) to high (red). Inset: summary of the
major unanswered questions.
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in humans is insufficient to identify which tissue sites
are important in terms of drug targeting and bioavai-
lablity, or to determine if specific organs or tissues
have a role in recrudescence. Given the practical
difficulties in addressing these questions in infected
patients, predictive experimental models have been
at the forefront of the research effort. Animal
models include dogs (Santos et al. 2016), primates
(Vitelli-Avelar et al. 2017), chickens (Teixeira et al.
2011) and most commonly, mice, where several
model systems are available which mimic aspects of
disease pathology in humans (Eickhoff et al. 2010;
Olivieri et al. 2010; Molina-Berríos et al. 2013;
Sbaraglini et al. 2016). However, even in experimen-
tal models, difficulties in monitoring parasite burden
and location during chronic infections have been a
limiting step. With mice, these issues have been par-
tially resolved by the development of highly sensitive
bioluminescence imaging procedures, which for the
first time enable chronic infections to be assessed in
real time (Lewis et al. 2014, 2015). The system,
which utilizes genetically modified parasites that
express red-shifted luciferase (Branchini et al.
2010), has a limit of detection close to 100 parasites
in inoculated mice and allows infections to be moni-
tored in individual animals for more than a year
(Lewis et al. 2014). In the BALB/c mouse -T. cruzi
CL Brener (DTU VI) model, the infection peaks on
day 14 post-inoculation (Fig. 3). Following induction
of an adaptive immune response, the parasite burden
then decreases by two to three orders of magnitude
over the next 30–40 days, as the infection progresses
to the chronic stage. Long-term infections are charac-
terized by a dynamic profile, in which biolumines-
cence foci appear and disappear over a period of
hours, in an apparently stochastic manner (Lewis
et al. 2014). Similar patterns of infection occur with
other parasite lineages and mouse strains, although
with some differences in the precise timing of pro-
gression, presumably reflecting the influence of host
and parasite genetics (Taylor et al. 2015; Lewis
et al. 2016).
In the murine acute stage, the infection is pan-

tropic, with parasites easily detectable by ex vivo
imaging in all organs and tissues (Fig. 3).
However, in the chronic stage, the colon and/or
stomach are the primary sites of infection. Other
organs, including the heart, are infected only sporad-
ically, with the extent of this varying in different
host:parasite strain combinations (Lewis et al.
2016). Myocarditis and heart fibrosis can develop
in the absence of end-point cardiac infection, imply-
ing that the continuous presence of the parasite in
the heart is not a pre-requisite for chagasic path-
ology. These data suggest a model where the gut is
a permissive immunological niche that tolerates con-
tinuous low-level infection, with periodic trafficking
of parasites, or more likely, parasite-infected cells,
from this reservoir to other sites, including the

heart. This leads to the generation of intermittent
inflammatory immune responses that eliminate the
transient infections in non-gut sites, but can result
in collateral damage to surrounding tissue (Lewis
and Kelly, 2016). It is implicit in this model that
drug-mediated elimination of parasites from the
gut reservoir sites should lead to parasitological
cure in asymptomatic, immunocompetent indivi-
duals, with the immune system eradicating the
remaining parasites from non-gut sites. While this
model has yet to be proven, it does generate a
number of questions with implications for drug
development. First, what is the nature of the host
cells in which parasites persist within the gut reser-
voir sites, and what is their immunological andmeta-
bolic status? Second, do parasites in these sites
display dormancy, and if so, does this affect their
sensitivity to therapeutic treatment? Third, do the
transient bioluminescent foci in chronically infected
mice represent infected cells undergoing trafficking,
and what is their fate in an immunocompetent
individual? Finally, can these insights into parasite
tropism and persistence be extended from murine
models to human patients?
The current inability to reliably cure chronic

T. cruzi infections has led to speculation that the
parasite might be able to survive in organs/tissues
where drug access is limited. However, this appears
not to be the case with nitroheterocyclic drugs, at
least in mice. Treatment failures, in both acute and
chronic infections, are not linked to a single or pre-
dominant site of recrudescence (Francisco et al.
2015, 2016). Consistent with this, a detailed study
of benznidazole pharmacokinetics has revealed that
inadequate bio-distribution is unlikely to be respon-
sible for therapeutic failure during chronic phase
murine infections (Perin et al. 2017). With posacon-
azole, the situation is less clear-cut. Although
adipose tissue has been identified as a frequent site
of cyclophosphamide-induced relapse after non-cura-
tive treatment of acute stage infections (Francisco
et al. 2015), this was not observed in all mice.
Adipose tissue has been implicated as a possible reser-
voir of recrudescence in other parasitic infections,
including African trypanosomiasis (Trindade et al.
2016; Tanowitz et al. 2017); however, further work
will be required before definitive conclusions can be
drawn about the situation in T. cruzi.

DOES DRUG TREATMENT PREVENT OR

ALLEVIATE CHRONIC DISEASE PATHOLOGY?

At a population level, the major health and economic
burdens associated with Chagas disease result from
chronic cardiac pathology. However, chronic stage
studies, particularly on drug efficacy and disease
pathogenesis, are made difficult by the scarce and
highly focal nature of T. cruzi infection. As a
result, the major research effort has focussed on the
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acute stage, where the monitoring of parasite load
and the assessment of tissue tropism are more
straightforward. There has been much discussion
within the community on the underlying causes of
chronic Chagas disease pathology (Gironès et al.
2005; Kierszenbaum, 2005; Gutierrez et al. 2009;
Bonney and Engman, 2015). The context for this
debate has been the inability to routinely detect
parasites in the hearts of patients with cardiac
damage and the non-specific (and sometimes auto-
reactive) polyclonal B-cell and T-cell responses
that are characteristic of T. cruzi infection (Iwai
et al. 2005; Bermejo et al. 2011). The central ques-
tion has been: does chronic stage cardiac pathology
develop as a consequence of autoimmunity, or does
it result from parasite persistence and the generation
of aberrant inflammatory responses within target
organs? There is now a strong consensus that the
presence of the parasite is a pre-requisite for heart
pathology (for review, Bonney and Engman, 2015),
although as mentioned above, the mode of cardiac
infection may be one of episodic re-invasion rather
than continuous persistence (Lewis and Kelly,
2016).
Cardiomyopathy develops in 20–30% of T. cruzi-

infected patients. Progressive heart failure,
thromboembolism, ventricular arrhythmia, stroke
and sudden death are common outcomes (Rossi
et al. 2003; Carod-Artal, 2010; Carod-Artal and
Gascon, 2010). Patient management is based on
standard protocols for treating progressive cardiac
failure (Ribeiro et al. 2012), despite the lack of
robust randomized clinical trials to validate their
use in cases of chagasic heart disease. The ability of
drug treatment to prevent or alleviate the develop-
ment of cardiac pathology is unresolved, and contro-
versial. Despite this, the consensus view is that
treatment should be offered to patients infected
with T. cruzi, irrespective of their disease status.
The validity of this approach is one of the central
debates in the Chagas disease field. There is reason-
able evidence from experimental models that cura-
tive treatment of acute stage infections results in
reduced disease pathology in the longer term
(Davies et al. 2010; Molina-Berríos et al. 2013;
Assíria Fontes Martins et al. 2015; Gruendling
et al. 2015). With chronic stage infections, the data
are less clear-cut (Villar et al. 2014). For example,
in a recent large multi-centre, randomized clinical
trial, no significant improvements in terms of cardio-
myopathy were observed 5 years after benznidazole
treatment (BENEFIT trial; Morillo et al. 2015).
However, because evidence of cardiomyopathy was
a pre-requisite for enrolment in this trial, it has not
been possible to draw conclusions about the type
of outcomes that might be achievable by treating
asymptomatic individuals.
Clinical trials to assess the link between anti-

parasitic treatment and reductions in pathology

present numerous challenges. These include the
long-term and diverse nature of the human disease,
the toxicity of current drugs, the resulting compli-
ance issues, and difficulties in demonstrating para-
sitological cure. This is complicated further by
other variables such as the severity or otherwise of
the acute stage infection, the possibility of re-infec-
tion/co-infection, host and parasite genetics, envir-
onmental factors and immune status. With
advances in imaging technology, which allow real-
time monitoring of chronic stage infections, it
should be feasible to better exploit predictive
animal models to investigate the rationale for using
anti-parasitic drugs to prevent or alleviate symptom-
atic Chagas disease. Data from such experiments will
be invaluable for informing the design of clinical
trials aimed at establishing, for example, if there is
a post-infection time limit within which curative
therapy has to be administered to significantly
impact on the development of cardiac pathology.
The outcome of such studies should have major
implications for the 5–8 million people infected
with T. cruzi. However, it should be noted that cur-
rently, only 1% of those infected have access to diag-
nosis and treatment (DNDi, 2015).

Concluding remarks

The development of more effective drugs against
Chagas disease is a major challenge for the biomedical
research community. The complexity of the infec-
tion, combined with our limited understanding of
parasite biology and disease pathogenesis are major
factors that inhibit progress in this area. Addressing
these problems will require a twin track strategy;
basic research to address the questions outlined in
this review, and applied research, with input from
the not-for-profit consortia and the commercial
sector, to exploit the resulting opportunities and
fast-forward the drug development pipeline.
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