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Abstract

Background

The Americas were the last continent colonized by humans carrying malaria parasites. Plas-

modium falciparum from the New World shows very little genetic diversity and greater link-

age disequilibrium, compared with its African counterparts, and is clearly subdivided into

local, highly divergent populations. However, limited available data have revealed extensive

genetic diversity in American populations of another major human malaria parasite, P.

vivax.

Methods

We used an improved sample preparation strategy and next-generation sequencing to char-

acterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new

data were compared with publicly available sequences from recently sampled clinical P.

vivax isolates from Brazil (BRA, total n = 11 sequences), Peru (PER, n = 23), Colombia

(COL, n = 31), and Mexico (MEX, n = 19).

Principal findings/Conclusions

We found that New World populations of P. vivax are as diverse (nucleotide diversity π
between 5.2 × 10−4 and 6.2 × 10−4) as P. vivax populations from Southeast Asia, where

malaria transmission is substantially more intense. They display several non-synonymous

nucleotide substitutions (some of them previously undescribed) in genes known or sus-

pected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and

mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o) gene. Moreover, P.

vivax in the Americas is much less geographically substructured than local P. falciparum
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populations, with relatively little between-population genome-wide differentiation (pairwise

FST values ranging between 0.025 and 0.092). Finally, P. vivax populations show a rapid

decline in linkage disequilibrium with increasing distance between pairs of polymorphic

sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of

present-day P. vivax lineages in the Americas originated from successive migratory waves

and subsequent admixture between parasite lineages from geographically diverse sites.

Further genome-wide analyses are required to test the demographic scenario suggested by

our data.

Author summary

Plasmodium vivax is the most common human malaria parasite in the Americas, but how

and when this species arrived in the New World remains unclear. Here we describe high-

quality whole-genome sequence data for nine P. vivax isolates from Brazil, a country that

accounts for 37% of the malaria burden in this continent, and compare these data with

additional publicly available P. vivax genomes from Brazil, Peru, Colombia, and Mexico.

P. vivax populations from the New World were found to be as diverse as their counter-

parts from areas with substantially higher malaria transmission, such as Southeast Asia,

and to carry several non-synonymous substitutions in candidate drug-resistance genes.

Moreover, genome-wide patterns of linkage disequilibrium between pairs of polymorphic

sites are consistent with very frequent outcrossing in these populations. Interestingly,

local P. vivax is more polymorphic, with less between-population differentiation, than

sympatric populations of P. falciparum, possibly as a result of different demographic histo-

ries of these two species in the Americas. We hypothesize that local P. vivax lineages origi-

nated from successive migratory waves and subsequent admixture between parasites from

geographically diverse sites.

Introduction

Plasmodium vivax is the human malaria parasite with the widest global distribution and

accounts for nearly half of the combined malaria burden in South and Southeast Asia, Oceania,

and Central and South America. Over one-third of the world’s population is currently at risk

of infection with this species, with 16 million clinical cases recorded each year [1]. Although P.

vivax has most likely evolved from parasites that infect chimpanzees and gorillas in sub-Saha-

ran Africa [2,3], it is nowadays rare in most of this continent, where human populations lack a

key erythrocyte receptor for host cell invasion by blood-stage parasites, the Duffy antigen/

receptor for chemokines (DARC) [4]. Where both species coexist, P. vivax typically causes less

severe cases and fewer deaths than P. falciparum, the most virulent human malaria parasite,

but represents a major challenge for ongoing malaria elimination efforts worldwide [1].

The Americas were the last continent colonized by humans carrying malaria parasites, but

the dates and routes of migration of P. vivax to the New World are still debated [5–7]. Archae-

ological evidence for infection with this parasite in indigenous, pre-Columbian populations is

currently limited to a single report of P. vivax antigens being visualized by immunohistochem-

istry in the liver and spleen of South American mummies dating from 3,000 to 600 years ago

[8]. Interestingly, specific antibodies failed to detect P. falciparum antigens in these same sam-

ples [8]. These findings are consistent with the hypothesis that P. vivax, but not P. falciparum,
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was brought to the New World by early human migrations from East Asia or the Western

Pacific [5], but more specific molecular techniques are required to confirm them [9]. Never-

theless, present-day New World populations of P. vivax appear to be more closely related to

extant African and South Asian parasites and now extinct European lineages than to East

Asian and Melanesian strains [10–12], consistent with much more recent parasite migrations

with European conquerors and African slaves during the colonial era [7,13].

Clinical isolates from Brazil are underrepresented in global genomic analyses of P. vivax
[11,14]. However, this country contributes 37% of the malaria burden in the Americas, a

region with over 20 million people at high risk of infection [1]. Obtaining large amounts of

host-free P. vivaxDNA from clinical samples from Brazil has been a major challenge for

genome sequencing projects, because (a) blood-stage parasite densities are typically very low

[15], (b) clinical blood samples are heavily contaminated with human DNA from leukocytes,

and (c) methods for long-term in vitro propagation of P. vivax are neither practical nor widely

reproducible [16–18]. Here, we combined an improved sample preparation strategy, for reduc-

ing human DNA contamination and increasing target parasite’s DNA yield, with next-genera-

tion genome re-sequencing to examine a local population of P. vivax from the Amazon Basin

of Brazil. Our nine high-quality genome sequences were compared to those previously

obtained from four countries (Brazil [BRA], Peru [PER], Colombia [COL], and Mexico

[MEX]) [11,14] to reveal local and regional patterns of diversity and differentiation in extant

P. vivax populations from the New World.

Methods

Ethics statement

Study protocols were approved by the Institutional Review Board of the Institute of Biomedical

Sciences, University of São Paulo, Brazil (936/CEP, 2010 and 1183/CEPSH, 2014). Written

informed consent was obtained from all patients.

Sample collection

Parasite samples were collected between November 2012 and June 2013 in eastern Acre and

southern Amazonas, Amazon Basin of Brazil, close to the borders with Peru and Bolivia.

Malaria epidemiology in the study sites has been characterized in detail elsewhere [15,19].

Venous blood samples (10 ml) were collected from eight adult patients attending malaria clin-

ics in the town of Acrelândia, Acre (9˚43’ S, 66˚53’ W), and one adult patient living in the

farming settlement of Remansinho, Amazonas (9˚40’ S-9˚43’ S, 66˚52’ W -66˚59’ W), 120 km

east of Acrelândia (Fig 1). P. vivax infection was diagnosed by on-site microscopy and later

confirmed by qPCR as described below.

Leukocyte depletion and sample cryopreservation

We adapted BioR 01 Plus leukocyte-depletion filters (Fresenius Kabi, Bad Homburg, Ger-

many; S1A Fig) to process 10 to 50-ml volumes of venous blood in our field laboratory in the

Amazon [20]. The per-unit cost of these filters in Brazil is around US$ 25. We first cut off

under sterile conditions, with a scissor, the tubing that connects the filtering device to the

400-ml blood storage bag and to the adapter (S1B and S1C Fig). S1D Fig shows how the filter-

ing device was used in a laminar flow hood; briefly, a 10-ml syringe was used to apply blood

treated with acid citrate dextrose anticoagulant, while a second 10-ml syringe was adapted to

the end of the remaining tubing to recover the filtered, leucocyte-depleted material, which was

transferred to 50-ml sterile centrifuge tubes. No priming with saline was required. After the
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filtration process, the leukocyte depletion device was washed through with at least twice the

volume of RPMI medium as the original blood sample to recover red blood cells (RBCs) that

had been retained in the filter and tubing. Next, the mixture of filtered blood and RPMI

medium recovered in 50-ml tubes was centrifuged at 800 g for 5 minutes and the supernatant

(plasma plus RPMI medium) was removed with a sterile Pasteur pipette.

For cryopreservation, the RBC pellet was resuspended dropwise in Glycerolyte-57 solution

(Fenwall, Fresenius Kabi), at the proportion of 1.66 ml of Glycerolyte for each 1 ml of cell

pellet, under gentle agitation. One ml aliquots of the RBC-Glycerolyte mixture were trans-

ferred to screw-capped cryovials and placed in a Nalgene Mr. Frosty freezing container

Fig 1. Map showing the sampling locations of the New World P. vivax isolates analyzed in this study, comprising Brazil, Peru,

Colombia, and Mexico. The insert shows the study sites in northwestern Brazil (Acrelândia and Remansinho, 120 km apart), close to the

border with Bolivia and Peru. Adapted from [15] and https://commons.wikimedia.org/wiki/Atlas_of_the_world#/media/File:BlankMap-

World6.svg.

https://doi.org/10.1371/journal.pntd.0005824.g001
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(ThermoFisher Scientific, Waltham, MA) that was kept at -80˚C for 24 hours. The next day,

cryovials were plunged in liquid nitrogen for long-term storage. Samples were shipped to São

Paulo in liquid nitrogen, for subsequent schizont maturation.

Short-term in vitro culture for P. vivax schizont maturation and

chloroquine resistance testing

For sample thawing, cryovials were removed from the liquid nitrogen and maintained for 1

min at room temperature (20–25˚C) and 1 min at 37˚C. The 1-ml samples were then trans-

ferred to 50-ml centrifuge tubes, gently mixed with 200 μl of 12% NaCl solution, and let stand

for 1 minute. Next, 10 ml of 1.6% NaCl were gently added, the mixture was gently agitated,

and centrifuged at 180 g for 8 min [21]. After removing the supernatant, the RBC pellet was

washed twice in incomplete McCoy’s 5A medium supplemented with glucose (0.5% w/v),

HEPES (25 mM), and hypoxantine (0.005% w/v), and resuspended in complete McCoy

medium (as above but supplemented with 25% AB+ heat-inactivated human serum) to a final

hematocrit of 2%. Short-term culture in vitro was carried in flat-bottomed dishes placed in a

gas chamber with controlled O2 and CO2 levels that was kept at 37˚C for up to 48 hours. Para-

site growth and maturation were monitored as described [17].

Chloroquine resistance (CQR) was evaluated using an ex-vivo schizont maturation assay in

selected P. vivax samples with> 1,000 parasites/μl of blood and> 50% ring stages at the time

of thawing [22]. There is no consensus regarding the 50% inhibitory concentration (IC50)

indicative of CQR in P. vivax; suggested cut off values range between 100 nM [23] and 220 nM

[24], but all IC50 values in our samples were < 50 nM (Table 1).

DNA isolation and quantification of human and P. vivax DNA with real-

time PCR

DNA templates were isolated from 200-μl aliquots of either whole venous blood (before leuko-

cyte removal) or RBC pellet (after leukocyte removal) using QIAamp DNA blood kits (Qiagen,

Table 1. Field-collected Plasmodium vivax isolates from Brazil with nuclear genomes newly sequenced in this study and summary of sequencing

statistics.

Isolate Sitea Date of

collection

IC50 for

CQb(mM)

No. reads (×
106)

Percent reads

mapped to Sal-Ic
Average sequence

depth

Percent Sal-I

genome covered

No.

SNPsd

17 Acrelândia Jun/13 11.3 17.85 95% 49.79× 84% 6445

18 Acrelândia Dec/12 - -e 23.40 93% 59.35× 85% 6232

19 Acrelândia Nov/12 11.1 23.87 95% 71.93× 86% 5524

20 Acrelândia Apr/13 14.5 18.80 93% 58.91× 89% 6188

32 Acrelândia Jun/13 20.5 22.51 92% 69.09× 93% 5528

51 Acrelândia Jun/13 - - 20.93 94% 58.24× 83% 5819

52 Acrelândia Jun/13 - - 21.43 94% 62.90× 89% 6158

207 Remansinho Apr/13 46.7 21.08 95% 70.13× 89% 6041

ACR Acrelândia Nov/12 20.9 21.04 93% 78.65× 92% 5414

Average 21.21 94% 64.33× 88% 5927.7

aSample collection sites are shown in Fig 1.
b50% inhibitory concentration for chloroquine (CQ) determined by ex-vivo schizont maturation test.
cSal I = reference assembled genome, P. vivax monkey-adapted strain Sal 1 [61]
dNumber of remaining high-quality single-nucleotide polymorphisms (SNPs) after applying the quality filters described in the main text.
e--not determined.

https://doi.org/10.1371/journal.pntd.0005824.t001
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Hilden, Germany). To estimate the relative proportion of human and parasite DNA, we used

SYBR Green qPCR targeting single-copy genes coding for human topoisomerase III and P.

vivax aldolase. Each 15 μl qPCR mixture contained 2 μl of template DNA, 7.5 μl of 2× Maxima

SYBR Green qPCR master mixture (Fermentas, Burlington, Canada) and 0.3 μM of each of the

primer pairs, Pvaldo-F (GAC AGT GCC ACC ATC CTT ACC) plus Pvaldo-R (CCT TCT

CAA CAT TCT CCT TCT TTC C) and Top3-F (CAT GTT TGA GCT GAG CCT GA) plus

Top3-R (CCA CAC CAC ACC CCT AAC TT). Standard curves were prepared with serial ten-

fold dilutions of a plasmid containing both target sequences to allow for copy number quanti-

tation (number of amplicons/μl of blood). We used a Step One Plus Real-Time PCR System

(Applied Biosystems, Foster City, CA) for PCR amplification with a template denaturation

step at 95˚C for 10 min, followed by 40 cycles of 15 sec at 95˚C and 1 minute at 60˚C, with

fluorescence acquisition at the end of each extension step. Amplification was followed by a

melting program consisting of 15 sec at 95˚C, 15 sec at 60˚C, and a stepwise temperature

increase of 0.2˚C/sec until 95˚C, with fluorescence acquisition at each temperature transition.

All reactions were made in triplicate. We measured parasite DNA enrichment as the parasite:

human copy-number ratio after filtering divided by parasite:human copy-number ratio before

filtering. To estimate the proportion of host and parasite DNA in each sample, we considered

the amplicon copy numbers and the genome size of humans (3.2 Gb) and P. vivax (26.8 Mb;

Sal-I assembly); the DNA content in each copy of the human genome corresponds approxi-

mately to that of 119 copies of the P. vivax genome.

DNA library preparation and whole-genome sequencing

Parasite DNA templates were quantified by fluorometry using a Qubit 3.0 fluorometer (Invi-

trogen, Carlsbad, CA) and sequenced using Ion Torrent Personal Genome Machine (PGM)

and Ion Proton platforms (Life Technologies, Foster City, CA) at the Unit of Computational

Genomics, Laboratory of Bioinformatics, National Laboratory of Scientific Computation, Bra-

zil. Separate libraries were prepared for each sequencing platform, using 1 μg of template DNA

per isolate. DNA samples were sheared using the Bioruptor UCD-200 TS (Diagenode, Liege,

Belgium) sonication system until fragment sizes of 200 bp (for Ion PGM libraries) or 150 bp

(for Ion Proton libraries) were obtained. Libraries were prepared using the Ion Xpress Plus

Fragment Library kit, with Ion Xpress Barcode adapters according to the Ion Xpress Plus

gDNA Fragment Library Preparation protocol (Life Technologies). Size selection was per-

formed on E-Gel SizeSelect 2% agarose gels using the E-Gel iBase Power System (Thermo-

Fisher Scientific). Emulsion PCR was done on the Ion OneTouch 2 system (Life Technologies)

with the Ion PGM Template OT2 200 kit or the Ion PI Template OT2 200 kit version 2 for Ion

PGM and Ion Proton, respectively, following the manufacturer’s instructions (Life Technolo-

gies). Ion PGM libraries were loaded on Ion318 chips v2 and sequenced using the Ion PGM

Sequencing 200 kit v2; Ion Proton libraries were loaded on Ion PI chips v2 and sequenced

using the Ion PI Sequencing 200 kit v2 (Life Technologies). All samples were sequenced on

both platforms; sequence reads (150–200 bp) from two runs in each platform were merged

into a single fastq file per sample.

Additional genomic data sets

To place our genomic data in a regional context, we reanalyzed raw paired-end Illumina reads

from 107 additional P. vivax clinical isolates from the Americas. Fastq files were downloaded

from the Sequence Read Archive (SRA) of the National Center for Biotechnology Information,

United States, and processed in the same way as our newly obtained sequences. Three clinical

isolates from Brazil had sequence data generated on an Illumina Genome Analyzer II platform
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PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005824 July 31, 2017 6 / 24

https://doi.org/10.1371/journal.pntd.0005824


at the Welcome Trust Sanger Institute (Hinxton, Cambridge, UK), as part of the P. vivax
genome variation project coordinated by the MalariaGEN network [14]. Other isolates—20

from Brazil, 34 from Peru, 31 from Colombia, and 19 from Mexico—had whole-genome

sequence data generated on an Illumina HiSeq 2000 platform at the Broad Institute of MIT

and Harvard (Cambridge, MA, USA), as part of the International Centers of Excellence for

Malaria Research (ICEMR) program [11]. All isolates from Brazil sequenced in these two pre-

vious studies were collected in endemic areas surrounding Acrelândia, Acre State, between

2008 and 2011.

Single-nucleotide polymorphism (SNP) calling

Fastq files were first filtered for quality; 8 SRA samples were excluded from further analysis

because of mean quality scores� 30 (expected base call accuracy� 99.9%). We next mapped

the high quality reads onto the PlasmoDB version 10.0 of the Sal-1 reference (http://plasmodb.

org/common/downloads/release-10.0/PvivaxSal1/fasta/data/PlasmoDB-10.0_PvivaxSal1_

Genome.fasta) [25], using Bowtie2 version 2.2.6 [26] with the “very sensitive” preset, allowing

one mismatch per seed region; 11 SRA samples were excluded at this stage because of< 60%

mapping over the reference. The resulting alignments were merged into BAM files with SAM-

tools [27], duplicate reads were identified and marked using the Picard version 2.0.1 MarkDu-

plicates tool, and files were indexed with SAMtools.

We used GATK version 2.0 [28] for SNP calling following the GATK Best Practices

(https://software.broadinstitute.org/gatk/best-practices/). GATK UnifiedGenotyper with the

BaseAlignmentQuality option was used to obtain high-confidence SNPs by applying stringent

VariantFiltration criteria: (a) coverage > 20×, (b) mapping quality > 30, (c) base quality > 30,

read depth and allelic fraction by sample� 1, and (d) haplotype score� 3. We removed all

SNPs with> 2 alleles and those with minor allele frequency < 0.01 (reads counted across all

sequenced samples).

SnpEff [29] was used to identify SNPs mapping to coding sequences (further classified as

synonymous or nonsynonymous), introns, and intergenic regions of the Sal-I reference

genome. The resulting catalogue of 94,122 high-confidence SNPs was used to genotype each

individual sample using GATK UnifiedGenotyper with default parameters except for the mini-

mum phred-scaled confidence threshold, with a calling variant = 50 and emitting variant = 10.

Heterozygote calls were converted to the majority allele if�75% of the reads in that sample

were the majority allele; otherwise, the allele was undetermined. Sites with < 5× coverage in a

given sample were filtered out at this stage.

The final data set of P. vivax nuclear genome sequences from the New World comprised

our 9 newly sequenced samples from BRA and 75 high-quality SRA samples (2 from BRA, 23

from PER, 31 from COL, and 19 from MEX); 13 SRA samples were removed during the geno-

typing process because the number of SNPs identified (range: 13 to 2,889) was below the pre-

defined minimum of 3,000 nucleotide differences compared to the Sal-I reference, consistent

with poor sequencing coverage. Overall, we excluded 21 (out of 23) SRA samples from BRA

and 11 (out of 34) SRA samples from PER at different stages of this analysis. Isolate codes and

SRA accession numbers of samples used in this analysis are given in S1 Table.

Within-population genetic diversity and recombination

The average pairwise nucleotide diversity (π, average number of nucleotide differences per site

between pairs of DNA sequences) was calculated within each geographic population using

VCFtools [30]. Values were plotted, using R version 3.3.0, as moving averages within 1-kb slid-

ing windows across each chromosome. We recalculated π after masking out subtelomeric
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regions and three hypervariable internal chromosome regions (containing sera, msp-3, and

msp-7 gene families) that were more prone to sequence misalignments and poor read mapping

in a previous analysis [14]. The coordinates of these regions are given in the Supplementary

Table 2 of Pearson et al. [14].

Similarly, Tajima’s D values [31] were calculated using VCFtools; mean Tajima’s D across

1-kb windows were plotted for each population. Frequency distributions of π and Tajima’s D
values within 1-kb windows were plotted for each population. We defined windows with the

top 50 π values within each population as highly variable genomic regions. We defined as outli-

ers the 1-kb windows with the 50 highest and 50 lowest mean Tajima’s D values within each

population. We also examined the minor allele frequency (MAF) spectrum separately in each

population.

We next estimated, for each population, the rate at which pairwise linkage disequilibrium

(LD) decreased with increasing physical distance between SNPs due to meiotic recombination.

The squared correlation coefficient r2 between pairs of SNPs of varying distance across the

same chromosome was measured using VCFtools; r2 values were binned by distance (50-bp

windows) and medians within each window were plotted against physical distance between

SNPs. The level of background LD between unlinked markers within each population was esti-

mated by calculating median r2 between all pairs of SNPs on different chromosomes.

Between-population genetic differentiation and population structure

The Wright’s fixation index FST, a measure of population differentiation due to genetic struc-

ture [32], was calculated with VCFtools for each SNP in every pairwise comparison of popula-

tions. Values were averaged across all SNPs to estimate overall pairwise differentiation

between populations. The 100 SNPs with the highest average FST values across all populations

were further characterized.

To assess population structure, we first used the PLINK software (https://www.cog-

genomics.org/plink2 [33]) to carry out principal component analysis (PCA); up to 10 compo-

nents were analyzed. For phylogenetic analysis, a neighbor-joining tree was constructed via

the maximum composite likelihood substitution model with 1,000 bootstrap pseudoreplicates

using MEGA 7.0 (http://www.megasoftware.net/). To estimate the ancestry shared between

individual isolates, we used the ADMIXTURE software package [34] with either all 94,122

high-quality SNPs or a curtailed set of 12,762 SNPs that are not linked. To this end, we

removed each SNP that had an r2 value > 0.1 with any other SNP within a 60-SNP sliding win-

dow advanced by 10 SNPs each time. The optimal number of clusters (K) was determined by

performing multiple runs of the software under different K values (2–10) and selecting the K
values (K = 2 and K = 3) associated with the lowest cross-validation error compared to other K
values (S2 Fig).

Data availability

The sequence data supporting the conclusions of this article are available in the Sequence Read

Archive of the National Center for Biotechnology Information, United States; accession num-

bers are provided in S1 Table.

Results and discussion

Sample preparation and genome sequencing

We designed a single-step procedure to reduce human DNA content in P. vivax-infected

blood using commercially available leukocyte-depletion filters (S1 Fig). Leucocyte depletion in
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17 clinical samples, with initial parasitemias ranging between 854 and 43,177 (median: 7,566)

parasites/μl, decreased the percent human DNA content from a median of 99.2% (range: 82.7–

99.9%) to 23.3% (range: 0–97.6%). No human DNA could be detected by quantitative real-

time polymerase chain reaction (qPCR) in three filtered samples (i.e., 0% host DNA contami-

nation). The residual human DNA content in our leukocyte-depleted samples was similar to

the median of 33.9% (range: 1.6–68.6%) found in blood samples from Indonesia after double

filtration through CF-11 cellulose columns [17]. The increase in parasite:human DNA ratio

after leukocyte depletion ranged between 1.7 and 3,060-fold (median: 227-fold) and appeared

to be inversely proportional to the initial, pre-treatment parasite:human DNA ratio (Spearman

correlation coefficient rs = -0.512, P = 0.061; S3 Fig), but did not correlate with the initial para-

sitemia (rs = 0.165, P = 0.412).

The next challenge consisted in selectively increasing parasite DNA yield for genome

sequencing. To this end, leukocyte-depleted P. vivax samples were cultured in vitro for up to

44 h to allow uninucleate trophozoites to mature to multinucleate blood-stage schizonts,

increasing parasite DNA content by�4-fold [17]. We obtained enough template DNA for

library preparation and sequencing from 9 cultured samples, achieving 49.8–78.6× average

genome sequencing depth; 91.8–94.7% of the reads mapped to reference Sal-I genome

(Table 1). These results compared favorably with the coverage and percentage of reads map-

ping onto the reference P. vivax genome obtained with other different methods for clinical

sample preparation: (a) single CF-11 column filtration (0.8–42.1× depth and 0.4–27.8% map-

ping in 8 isolates from Colombia [35] and 4.2–28.1× depth and 18.3–55.4% mapping in 11 iso-

lates from Peru [36,37]), (b) double CF-11 column filtration (70–407× depth and 15.0–46.2%

mapping in 5 isolates from Cambodia and Madagascar [38]), (c) double CF-11 column filtra-

tion followed by in vitro schizont maturation (18–116× depth and 11.0–89.1% mapping in 22

isolates from Thailand and returning travelers [17]), and (d) in-situ hybridization for P. vivax
whole-genome capture in unfiltered samples (21.9–160.4× depth and 20.2–80.1% mapping in

5 isolates from Peru [16] and 34.8–118.2× depth and 19.6–39.7% mapping in 3 isolates from

East Asia [39]). Therefore, the sample preparation strategy described here allowed for high

sequence coverage and depth, but further comparisons are limited by the use of different next-

generation sequencing platforms across studies (Ion PGM and Ion Proton here and Illumina

in other studies).

Local and regional patterns of genome-wide diversity

We used the Ion PGM and Ion Proton platforms to generate between 17.8 and 23.9 million

sequence reads from 9 clinical samples of P. vivax from Brazil (Table 1). To explore local levels

of genomic diversity, our sequence data were combined with those from two P. vivax clinical

samples from Brazil that were previously obtained with Illumina platforms [11,14]. Sequence

reads from these additional samples (PV4 and Brazil32) covered 86.2% and 95.0% of the refer-

ence genome, respectively (S1 Table). Since all isolates from Brazil (n = 11) were collected

from sites within a radius of 120 km in the Amazon Basin (Fig 1), we define BRA as a local,

nearly sympatric P. vivax population. After applying stringent quality control filters to raw

sequence reads (see Methods), we uncovered 27,360 high-confidence single-nucleotide poly-

morphisms (SNPs) in the BRA population. The overall nucleotide diversity π was estimated at

5.6 x 10−4).

We next compared BRA sequence data with those from three other New World populations

of P. vivax: PER (n = 23), COL (n = 31), and MEX (n = 19) [11], from clinical isolates sampled

in sites shown in Fig 1. Two populations were geographically heterogeneous: PER samples

were collected in three departments (Loreto and Madre de Dios, both in the Amazon Basin,
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and Piura, on the northwestern Pacific coast), while COL samples came from four depart-

ments (Nariño, Valle del Cauca, and Chocó along the Pacific Coast, and Córdoba, on the

Caribbean coast). MEX samples were from five different sites, but all in the southern state of

Chiapas (S1 Table). We characterized 94,122 biallelic SNPs passing our high-quality filters in

84 samples; 55.0% of them are located in intergenic regions, 8.8% in introns, and 36.2% in cod-

ing regions. Most (61.2%) coding SNPs were non-synonymous (nsSNPs), as previously found

in other regional P. vivax populations [14,38]. Unsurprisingly, the number of SNPs found in

each population was directly proportional to sample size, being lowest in BRA (n = 27,360)

and highest in COL (n = 57,262; Fig 2). Overall, 49,598 (52.3%) SNPs were unique to a popula-

tion (i.e., private) and 8,529 (9.1%) were shared by all populations (Fig 2). Of the 6,891 private

SNPs found in BRA, 40.0% mapped to coding sequences; 65.2% of the coding SNPs were non-

synonymous. PER and COL shared the highest number of SNPs (n = 28,667), followed by

COL and MEX (n = 24,107) (Fig 2).

Nucleotide diversity in PER (π = 5.2 x 10−4), COL (π = 5.5 x 10−4), and MEX (π = 6.2 x

10−4) was similar to that in BRA (π = 5.6 x 10−4), showing that the local BRA population was as

diverse as geographically heterogeneous sample sets from other American countries. Similar

levels of genome-wide nucleotide diversity were recently reported in P. vivax populations from

Colombia (π = 6.8 x 10−4; n = 8) [35], Thailand (π = 5.3 x 10−4; n = 88), Cambodia (π = 5.0 x

10−4; n = 19), and Indonesia (π = 5.0 x 10−4; n = 41) [14], but the differences across studies in

genome sequencing depth and criteria for defining high-quality SNPs limit such comparisons.

The frequency distribution of π values within 1-kb sequence windows across the genome

was quite similar in all countries (S4 Fig); the interquartile ranges (IQR) were 1.7 x 10−4 to 6.9

x 10−4 in BRA, 1.7 x 10−4 to 6.5 x 10−4 in PER, 1.3 x 10−4 to 6.6 x 10−4 in COL, and 1.9 x 10−4 to

Fig 2. Venn diagram showing the number of SNPs shared by P. vivax samples from Brazil (n = 11 isolates), Peru

(n = 23), Colombia (n = 31), and Mexico (n = 19).

https://doi.org/10.1371/journal.pntd.0005824.g002
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7.5 x 10−4 in MEX. All distributions were right-skewed, with asymmetry coefficients ranging

between 3.37 (BRA) and 3.84 (MEX).

We defined domains with the top 50 π values in a population as highly variable genomic

regions. They comprised, in addition to numerous sequences coding for hypothetical proteins,

gene families such as pst-a, fam-b, fam-d, and fam-e [40] and those coding for major parasite

antigens, such as the vir family (>300 genes, mostly in subtelomeric domains, on several chro-

mosomes), the serine repeat antigen (sera) family (13 genes on chromosome 4), the merozoite

surface protein (msp)-7 family (11 genes on chromosome 12), and the msp-3 family (11 genes

on chromosome 10) (S2 Table) (see also [11,14,36]).

These findings are not unexpected, since natural selection favors increased diversity in anti-

gen-coding genes to evade host immunity, but must be interpreted with caution because mis-

alignments of paralogous sequences may have inflated nucleotide diversity estimates in gene

families. We thus recalculated genome-wide π values after masking out subtelomeric domains

and the internal chromosomal regions comprising the sera, msp-3 and msp-7 gene families

[14], but this procedure affected our overall estimates very little; recalculated values were: BRA

(π = 5.5 × 10−4), PER (π = 5.2 × 10−4), COL (π = 4.7 × 10−4), and MEX (π = 5.2 × 10−4). The sin-

gle-copy msp-1 gene [41] also mapped to a highly variable genomic region in BRA. However,

our nucleotide diversity estimates for msp-1may have been affected by likely sequence mis-

alignments in the numerous repetitive domains across this locus [42,43].

Signatures of selection and population expansion

The expected value for Tajima’s D is zero under a neutral model that assumes random mating,

no recombination, mutation-drift equilibrium, infinite sites, and constant population size.

High Tajima’s D values are usually due to balancing selection or recent population size

reduction, while negative D values are consistent with population size expansion or purifying

selection [44]. Although the P. vivax genomes from COL and PER were not part of a single

population (while BRA and MEX genomes are), the Tajima’s D distribution provides informa-

tion on how the pattern of mutations changes across the genome. All distributions of Tajima’s

D values in our populations were right-skewed, with asymmetry coefficients of 0.477 (BRA),

0.841 (PER), 0.902 (COL), and 0.412 (MEX) (Fig 3). Negative D values predominated in PER

(median: -0.439; IQR: -0.959 to -0.003) and COL (median: -0.466; IQR: -0.959 to 0.039), but

not in BRA (median: 0.026; IQR: -0.571 to 0.595) and MEX (median: 0.039; IQR: -0.724 to

0.748).

Interestingly, the genomic regions with the 50 lowest Tajima’s D values within each popula-

tion (threshold D values: -1.096 in BRA, -1.622 in PER, -1.724 in COL, and -1.376 in MEX)

comprised several hypothetical and housekeeping genes, but also members of gene families

such as vir, sera, msp-3, pst-a, and fam-a (S3 Table). Only two regions with low Tajima’s D val-

ues were shared by two populations; one had no annotated gene and the other had a gene cod-

ing for a hypothetical protein (S3 Table).

Similarly, the genomic regions with the 50 highest Tajima’s D values within each population

(cut-off values: 2.024 in BRA, 1.890 in PER, 2.078 in COL, and 2.407 in MEX) also comprised

several hypothetical and housekeeping genes and a few surface antigen genes (sera, circum-

sporozoite protein [csp], and msp-3) that may be under balancing selection (S4 Table). How-

ever, different genomic regions giving top 50 Tajima’s D values were typically found in each

population and only 11 of them (none comprising antigen-coding genes) were shared by two

or more populations. Whether the high Tajima’s D values found in certain domains are due

to random effects of the parasite’s demographic history or to balancing selection on specific

genes remains to be further examined in larger population samples.

Plasmodium vivax genomes from the New World

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005824 July 31, 2017 11 / 24

https://doi.org/10.1371/journal.pntd.0005824


MAF distributions were L-shaped in all New World P. vivax populations (S5 Fig), similar

to patterns described for P. falciparum populations from sub-Saharan Africa [45,46]. The pro-

portion of SNPs with allele frequencies� 0.1 were 51.6% in BRA, 66.3% in PER, 71.5% in

COL, and 55.1% in MEX. Despite the relatively small sample sizes, we interpret the clear pre-

dominance of negative Tajima’s D values in PER and COL and of rare alleles in all populations,

but mainly in PER and COL, as suggestive of a recent P. vivax population expansion in the

Americas. Data from an extensive mitochondrial genome analysis of local parasites are also

consistent with the demographic expansion hypothesis [47].

Genetic differentiation and population structure

P. vivax genomic sequences from the New World were previously shown to cluster mostly

according to their geographic origins, with the majority of MEX samples (that show more

extensive evidence of identity by descent) clustering together in PCA plots [11]. These findings

are particularly relevant to malaria-eliminating countries in the continent; if parasites can be

assigned by molecular genotyping to their countries of origin, locally acquired and imported

Fig 3. Frequency distribution of Tajima’s D values calculated within 1-kb windows of genomic sequence

in four New World populations of P. vivax. BRA = Brazil (n = 11 isolates), PER = Peru (n = 23),

COL = Colombia (n = 31), and MEX = Mexico (n = 19).

https://doi.org/10.1371/journal.pntd.0005824.g003
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infections can theoretically be easily distinguished. Moreover, genetic analysis can also help to

determine the likely origin of imported infections [10,48]. Accordingly, our PCA data revealed

a clear clustering of BRA samples, which were separated from other populations by principal

components C1 and C3 when the complete SNP data set was used. MEX was separated from

other populations mostly by C1 and C2, while PER and COL were less clearly differentiated

(Fig 4A).

Fig 4. Principal component analysis of the population structure of P. vivax in the New World. Panel A shows results using the

complete data set of 94,122 SNPs; panel B shows results obtained with a set of 37 segregating SNPs included in a previously described P.

vivax barcode [49]; and panel C shows results obtained with a hypothetical barcode comprising the 100 SNPs yielding the highest average

Wright’s fixation index FST values in pairwise comparisons of New World P. vivax populations. The SNPs used in the analysis shown in panel

C are listed in S5 Table. Samples are colored according to their geographic origin as shown in Fig 1. The percentage contributions of each

principal component (C1, C2, and C3) to overall variance were as follows: panel A, C1 = 22.27%, C2 = 14.15%, and C3 = 8.15%; panel B,

C1 = 19.93%, C2 = 12.03%, and C3 = 11.42%; and panel C, C1 = 21.36%, C2 = 10.93%, and C3 = 9.33%.

https://doi.org/10.1371/journal.pntd.0005824.g004
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Moreover, a rather similar sample clustering pattern was revealed by a standard, neighbor-

joining phylogenetic analysis (Fig 5). All BRA samples and most (16 of 19) MEX samples

formed well-supported clades, while PER and COL isolates spread across single- and multiple-

country clades.

Similar to PCA and phylogenetic analysis, the model-based clustering approach imple-

mented in ADMIXTURE software [33] also defined BRA and MEX as distinct populations

(S6A Fig, number of clusters K = 3) based on the whole genomic data set. PER and COL were

nearly indistinguishable. A similar analysis with 2 clusters did not differentiate MEX from

Fig 5. A neighbor-joining phylogenetic tree with 1,000 bootstrap pseudoreplicates obtained with genomic sequences of P. vivax

isolates from Brazil (n = 11 isolates), Peru (n = 23), Colombia (= 31), and Mexico (n = 19). Branch tips were colored according to the

geographic origin of samples, as shown in Fig 1. Grey circles indicate internal nodes with > 70% bootstrap support.

https://doi.org/10.1371/journal.pntd.0005824.g005
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COL (S6A Fig, number of clusters K = 2). ADMIXTURE analysis using a curtailed data set

(12,762 unlinked SNPs) allowed a poor differentiation between populations (S6B Fig, number

of clusters K = 2 or 3). Not surprisingly, the most geographically homogeneous samples (BRA

and MEX) formed well-defined clusters.

We next tested whether a recently described P. vivax SNP barcode [49] would be able

to correctly assign New World isolates to their countries of origin. Of the 42 SNPs

originally included in the barcode, five did not segregate in our populations. PCA with

the remaining 37 SNPs was unable to cluster our parasite populations by their countries

of origin (Fig 4B).

The overall pairwise differentiation between populations, estimated using FST averaged

across the entire genome, was directly proportional to the geographic distance between sites,

being lowest between COL and PER and highest between BRA and MEX (Table 2). Among

the 100 SNPs with the highest average pairwise FST estimates, only two mapped to antigen-

coding genes (both to sera gene paralogs on chromosome 4); all others were either noncoding

SNPs or mapped to genes encoding hypothetical or housekeeping proteins (S5 Table). We

next tested whether these 100 SNPs with the top FST values could separate New World popula-

tions more efficiently than the complete genome-wide SNP set (compare Fig 4A and 4C) and

the currently available 42-SNP P. vivax barcode [49] (compare Fig 4B and 4C). These results

suggest that regional SNP barcodes could be further explored to track the geographic origin of

P. vivax samples in the Americas.

Nucleotide substitutions and antimalarial drug resistance

Our genomic sequence data enabled the identification of SNPs mapping to several P. vivax
genes known or suspected to be involved in antimalarial drug resistance (Table 3). We found

nonsynonymous mutations at the dihydrofolate reductase-thymidylate synthase (dhfr) locus

previously associated with pyrimethamine resistance (S58R and S117N) almost exclusively in

COL (see also [35]) and PER (see also [37]), whereas antifolates are no longer recommended

in these countries; two previously undescribed SNPs (H99N and H99R) were also found in

COL. The dihydropteroate synthase (dhps) SNP A383G, associated with sulfadoxine resistance,

was also observed in COL and PER (see also [35]), with the M205I change being found only in

PER (see also [36]). Little or no polymorphism in dhfr and dhps genes was observed in BRA

and MEX, likely reflecting differences in sulfadoxine-pyrimethamine use across countries in

the region. Although pyrimethamine and sulfadoxine has never been recommended as a treat-

ment for P. vivax infection, they may have been used to treat patients co-infected with P. falcip-
arum and P. vivax, exposing the latter parasite to these drugs and likely selecting for resistant

phenotypes. Moreover, the frequent use of sulfonamides to treat co-occurring, unrelated

(mostly bacterial) infections may have selected sulfa-resistant strains in malaria parasite carri-

ers from some of these countries.

Non-synonymous substitutions were also characterized in the multidrug resistance 1 pro-

tein (mdr1) gene, including two previously undescribed (L186W and F1070L) and six

Table 2. Pairwise differentiation between populations, estimated using the Wright’s fixation index FST averaged across all loci, in Plasmodium

vivax populations from Brazil, Peru, Colombia, and Mexico.

Country Brazil Peru Colombia Mexico

Brazil 0.037 0.055 0.092

Peru 0.030 0.047

Colombia 0.025

https://doi.org/10.1371/journal.pntd.0005824.t002
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previously reported SNPs (V221L, M908L, T958M, Y976F, and F1076L [50]). The Y976F

change, originally believed to confer chloroquine resistance (CQR) in Southeast Asia and Mel-

anesia [24], occurred in a single BRA sample whose CQR phenotype could not be determined

(Table 2). Interestingly, we found no coding changes in the chloroquine resistance transporter

Table 3. Nonsynonymous single-nucleotide polymorphism (SNPs) detected in drug resistance genes by whole-genome sequencing in Plasmo-

dium vivax isolates from Brazil, Peru, Colombia, and Mexico.

Gene Chromosome Amino acid change No. (%) samples with SNP per country

Brazil Peru Colombia Mexico

dhfr (PVX_089950) 5 S58R 0 (0.0%) 2 (8.7%) 5 (16.1%) 0 (0.0%)

H99N 0 (0.0%) 0 (0.0%) 2 (6.4%) 0 (0.0%)

H99R 0 (0.0%) 0 (0.0%) 2 (6.4%) 0 (0.0%)

S117N 1 (9.1%) 4 (17.4%) 17 (54.8%) 0 (0.0%)

dhps (PVX_123230) 14 M205I 0 (0.0%) 1 (4.3%) 0 (0.0%) 0 (0.0%)

A383G 0 (0.0%) 1 (4.3%) 1 (3.2%) 0 (0.0%)

mdr1 (PVX_080100) 10 L186W 0 (0.0%) 1 (4.3%) 0 (0.0%) 0 (0.0%)

V221L 0 (0.0%) 2 (8.7%) 0 (0.0%) 0 (0.0%)

M908L 0 (0.0%) 8 (34.8%) 3 (9.7%) 0 (0.0%)

T958M 0 (0.0%) 9 (39.1%) 6 (19.3%) 4 (21.0%)

Y976F 1 (9.1%)a 0 (0.0%) 0 (0.0%) 0 (0.0%)

F1070L 0 (0.0%) 2 (8.7%) 0 (0.0%) 0 (0.0%)

F1076L 1 (9.1%)a 1 (4.3%) 0 (0.0%) 0 (0.0%)

mrp1 (PVX_097025) 2 T259R 0 (0.0%) 1 (4.3%) 13 (56.5%) 12 (63.2%)

T282M 0 (0.0%) 0 (0.0%) 5 (16.1%) 0 (0.0%)

K542E 0 (0.0%) 0 (0.0%) 1 (3.2%) 0 (0.0%)

Q906E 0 (0.0%) 7 (30.4%) 9 (29.0%) 0 (0.0%)

L1282I 0 (0.0%) 0 (0.0%) 2 (6.4%) 0 (0.0%)

Y1393D 3 (27.3%)b 8 (34.8%) 0 (0.0%) 2 (10.5%)

G1419A 1 (9.1%)c 5 (21.8%) 2 (6.4%) 1 (5.3%)

V1478I 2 (18.2%)d 4 (17.4%) 1 (3.2%) 1 (5.3%)

I1480V 0 (0.0%) 0 (0.0%) 1 (3.2%) 0 (0.0%)

T1525I 0 (0.0%) 0 (0.0%) 1 (3.2%) 0 (0.0%)

H1586I 0 (0.0%) 4 (17.4%) 0 (0.0%) 0 (0.0%)

mrp2 (PVX_124085) 14 S1701L 0 (0.0%) 1 (4.3%) 0 (0.0%) 0 (0.0%)

T1698K 0 (0.0%) 2 (8.7%) 0 (0.0%) 5 (26.5%)

P1600H 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (5.3%)

Q1419E 0 (0.0%) 2 (8.7%) 3 (9.7%) 3 (6.9%)

N1263Y 0 (0.0%) 2 (8.7%) 1 (3.2%) 0 (0.0%)

P1196S 0 (0.0%) 0 (0.0%) 1 (3.2%) 4 (21.0%)

G1166E 0 (0.0%) 0 (0.0%) 0 (0.0%) 5 (26.5%)

A1106S 0 (0.0%) 0 (0.0%) 3 (9.7%) 7 (37.1%)

V1022M 1 (9.1%) 4 (17.4%) 2 (6.4%) 0 (0.0%)

S681I 0 (0.0%) 0 (0.0%) 5 (16.1%) 0 (0.0%)

R294M 1 (9.1%) 3 (12.9%) 16 (51.2%) 12 (63.6%)

aThe sample from Brazil carrying these two mutations (#18) was not tested for chloroquine resistance.
bTwo of three samples (#20 and #207) carrying this mutation were characterized as chloroquine-sensitive using an ex-vivo schizont maturation test (IC50 =

14.5 and 46.7 mM, respectively); the third sample (#Brazil32) [11] was not tested for chloroquine resistance.
cThe sample from Brazil carrying this mutation (#207) was characterized as chloroquine-sensitive (IC50 = 46.7 mM)
dOne sample from Brazil carrying this mutation (#32) was characterized as chloroquine-sensitive (IC50 = 20.5 mM); the second sample (#Brazil32) [11] was

not tested for chloroquine resistance.

https://doi.org/10.1371/journal.pntd.0005824.t003
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ortholog (crt-o) gene (PVX 087980), whose ortholog in P. falciparum displays a key non-syn-

onymous substitution leading to CQR [51].

Five of 12 mutations found at the multidrug resistance associated protein 1 (mrp1 [PVX

097025]) locus, which codes for an ATP-cassette binding (ABC) transporter putatively

involved in antimalarial drug efflux [52], had been described in a clinical sample from Peru

(L1282I, Y1393D, G1419A, V1478I, and H1586I [36]). Similarly, six of 11 had been previously

described in Colombia (Q1419E, P1196S, A1106S, V1022M, S681I, R294M [35]) and six in

Peru (S1701L, T1698K, Q1419E, A1106S, V1022M, and R294M [37]), in multidrug resistance

associated protein 2 gene (PVX_124085). The antimalarial drug-resistance phenotype (if any)

associated with these mutations remains undetermined.

Linkage disequilibrium

Here we found a sharp LD decline within 100 bp of distance between pairs of SNPs in BRA

and MEX, with very low LD in COL and negligible LD in PER (Fig 6). Interestingly, the LD

decay in BRA and MEX populations, originating from the sites with the lowest malaria trans-

mission [53], was even faster than that described for P. vivax populations from Southeast Asia,

where P. vivax endemicity is substantially higher [14], and that described for P. falciparum
populations from areas of much higher endemicity in Sub-Saharan Africa [54, 55, 56] and

Southeast Asia [56]. These results are consistent with a very high outcrossing rate in P. vivax
populations and imply that SNP array-based genome-wide association studies (GWAS) would

require a very high marker density (inter-marker distance < 100 bp) to help find genetic loci

that determine phenotypes of interest, such as drug resistance and virulence, in BRA and MEX

populations. SNP-based association studies are unlikely to be successful in PER and COL pop-

ulations, given the negligible LD. In contrast, P. falciparum populations from the Pacific Coast

Fig 6. Linkage disequilibrium (LD) decay with increasing distance between SNPs on the same

chromosome. Solid lines show median r2 estimates for SNPs along the same chromosome plotted against

the inter-marker physical distance for Brazil (pink), Peru (green), Colombia (blue), and Mexico (orange).

Dotted lines show the background genome-wide LD (median r2 estimates for unlinked SNPs—those mapping

to different chromosomes).

https://doi.org/10.1371/journal.pntd.0005824.g006
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of Colombia showed a much more gradual LD decline, reaching background LD levels only at

an inter-marker distance of 240 kb [57].

Conclusions

We found high genome-wide diversity and relatively little geographic structure in P. vivax
populations from areas of relatively low malaria transmission in the Americas. These find-

ings contrast with the low genetic diversity and clear subdivision into local, highly divergent

populations that is typical of New World populations of P. falciparum [57–61]. Interestingly,

local P. vivax populations are nearly as polymorphic as their P. falciparum counterparts

from Africa [45,46,54] and their P. vivax counterparts from Southeast Asia [11,14]. More-

over, the low levels of between-population differentiation in P. vivax from the Americas are

reminiscent of those in P. falciparum populations from hyperendemic sub-Saharan Africa

[45,46,59, 62].

Demographic history might explain, at least in part, the observed differences between P.

vivax and P. falciparum populations from the New World. The original diversity of the ances-

tral P. falciparum population may have been partially lost during (a) its migration to the Amer-

icas in post-Columbian times [63] followed by the adaptation to entirely different local vectors

[64], (b) recent selective sweeps driven by antimalarial drugs, such as chloroquine [65] and

pyrimethamine [66], and (c) local extinctions and clonal expansions following eradication

attempts in the Americas between the mid-1950s and late 1960s [53,60]. These events would

have resulted in small and fragmented, mostly inbred P. falciparum populations being scat-

tered throughout the region. The significantly greater genome-wide diversity currently found

in P. vivax populations worldwide, compared with P. falciparum [11,67], suggests that (a) this

species retained more ancestral diversity than P. falciparum when transferred from apes to

humans and following subsequent spread out of Africa and/or (b) P. vivax is simply older than

P. falciparum and therefore has accumulated more mutations over time. Moreover, these spe-

cies might also differ in the ways they colonized the New World. The high diversity of present-

day P. vivax lineages across this continent is consistent with an admixture of parasite lineages

originating from geographically diverse regions [5, 7, 47], including now extinct European lin-

eages [12]. The success of colonization events and the recombination between these intro-

duced strains may have been favored by the ability of P. vivax to stay dormant in the liver as

hypnozoites, prolonging the duration of parasite carriage in human hosts and increasing the

probability of superinfections leading to the co-occurrence of genetically diverse clones that

may recombine once transmitted to mosquito vectors. Moreover, genome-wide P. vivax diver-

sity in the region appears to have been little affected by recent selective sweeps driven by pyri-

methamine [35,37] in Brazil and Colombia. Interestingly, P. vivax resistance to chloroquine

remains relatively infrequent in the New World [68] and is unlikely to have induced a major

selective sweep in local parasites.

Improved methods for clinical sample preparation and next-generation sequencing now

enable further genome-wide analyses of additional P. vivax isolates from the New World, to

test the demographic scenarios suggested by our data.
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S1 Fig. Single-step filtering procedure used to remove leukocytes from clinical blood sam-

ples in a field laboratory. A, BioR 01 Plus leukocyte depletion filter (Fresenius Kabi, Bad

Homburg, Germany). B and C, cutting off with a scissor, under sterile conditions, the tubing

connecting the filtering device to the 400-ml blood storage bag and the adapter. D, use of filter-

ing device in a laminar flow hood, indicating how the blood sample is introduced and
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lates), PER = Peru (n = 23), COL = Colombia (n = 31), and MEX = Mexico (n = 19).

(PDF)
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S6 Fig. Population structure evaluated using a model-based clustering approach imple-

mented in the software Admixture [34]. We show Admixture plots obtained with K = 2 and

K = 3 clusters with all 94,122 high-quality SNPs (panel A) or a curtailed set of 12,762 SNPs that

are not linked (panel B). Although K = 2 was associated with the lowest cross-validation error

(S4 Fig), the analysis of all high-quality SNPs under K = 3 appeared more able to separate BRA

and MEX from the other populations. The analysis with the curtailed SNP set yielded less clear
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Berná, Jody Phelan, Carlos Robello, Ana Tereza R. de Vasconcelos, João Marcelo P. Alves,

Marcelo U. Ferreira.

Funding acquisition: Marcelo U. Ferreira.

Investigation: Priscila T. Rodrigues, Maria José Menezes, Raquel M. Gonçalves-Lopes, Melissa
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