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Abstract 

The emerging discipline of evolutionary medicine is breaking new ground in understanding 

why people get sick. However, the value of evolutionary analyses of human physiology and 

behaviour is only beginning to be recognized in the field of public health. Core principles 

come from life history theory, which analyses the allocation of finite amounts of energy 

among four competing functions – maintenance, growth, reproduction and defence. A 

central tenet of evolutionary theory is that organisms are selected to allocate energy and 

time to maximize reproductive success, rather than health or longevity. Ecological 

interactions that influence mortality risk, nutrient availability and pathogen burden shape 

energy-allocation strategies throughout the life-course, thereby impacting diverse health 

outcomes. Public health interventions could improve their efficacy by incorporating an 

evolutionary perspective. In particular, evolutionary approaches offer new opportunities to 

address the complex challenges of global health, where populations are differentially 

exposed to the metabolic consequences of poverty, high fertility, infectious diseases, and 

rapid changes in nutrition and lifestyle. The impact of specific interventions may depend on 

broader factors shaping life expectancy. Amongst the important tools in this approach are 

mathematical models, which can explore likely benefits and limitations of interventions in 

silico, prior to their implementation in human populations. 
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Introduction 

 

Public health aims to prevent disease, promote health and prolong life among human 

populations through the organized efforts of society.1 It is intuitive that improving living 

conditions should benefit health, but from an evolutionary perspective this assumption is 

simplistic. Natural selection has not shaped organisms for maximum health, but rather to 

maximize their reproductive success (‘genetic fitness’, see supplementary online glossary). 

Consequently, public health interventions may not always achieve exactly what they 

intended. 

 

Consider an example from rural Ethiopia, where a water development scheme aimed to 

decrease the daily energy burden on women who carried water up to 30 km in clay pots.2 By 

reducing this stress, while energy supply remained unchanged, one might anticipate 

improved maternal nutritional status, transmitting health benefits to the next generation. 

But the outcome was different: a pioneering evolutionary analysis by Gibson and Mace 

concluded that the ‘energy saved’ by the installation of village water taps enhanced 

maternal fertility, which was associated with worsening childhood malnutrition. They 

suggested that the outcome might have been better if the intervention had included a family 

planning component. 

 

This example highlights the potential benefits of an evolutionary perspective in public health. 

Human physiology and behaviour have been selected to transmit genes to future 

generations. Health is sometimes compromised in favour of immediate survival or 

reproduction, and particularly so under conditions of deprivation and environmental 
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harshness. Public health has benefitted substantially from incorporating a life-course 

perspective, capable of integrating the impacts of physical, biological and societal stresses or 

stimuli at different life stages.3-6 Evolutionary approaches could extend these benefits, 

providing new insight into the health-consequences of efforts to change behaviour patterns 

or the environment.  

 

In 1973, Dobzhansky observed that ‘nothing in biology makes sense except in the light of 

evolution’.7 Through the 20th century, evolutionary approaches permeated most areas of 

biological enquiry, and are increasingly employed by policy makers in agriculture and 

fisheries management.8,9 Surprisingly, however, an evolutionary perspective on medicine 

only emerged recently. 

 

A key benefit is the availability of solid overarching theory. Most natural sciences have a 

strong theoretical basis, e.g. quantum theory in physics, molecular theory in chemistry.10 

Evolution is also a ‘basic science’,11 and it is no exaggeration to suggest that its application in 

medicine could revolutionize the discipline. In the 19th century, for example, pre-Darwinian 

biology was mainly descriptive. Variability was well documented, but poorly understood.  

 

Medicine remains largely pre-evolutionary - excelling in description and mechanistic 

explanations, but only beginning to explain variability in disease vulnerability across 

individuals and populations. Evolutionary theory generates testable hypotheses regarding 

how organisms should respond to environmental stimuli, and these hypotheses are widely 

supported in diverse species including humans.12-14  
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To date, evolutionary medicine has primarily aimed to go beyond understanding how people 

get sick by considering why bodies are vulnerable to disease. This helps understand why 

people present at clinics, but may not help prevent illness from developing. Building on 

earlier work,15 we argue that evolutionary approaches could benefit outcomes most directly 

in the arena of public health.  

 

In particular, they may help understand the health-impact of ecological change, whether this 

relates to non-human or societal factors.  Traditionally, public health efforts targeted risk 

factors related to pathogens. To prevent disease transmission hygiene and sanitation were 

improved, as were nutrition and living conditions to promote resilience. Although pathogens 

remain a major disease source, the global burden of ill-health is shifting towards non-

communicable diseases (NCDs), where individuals’ constitution and behaviour are key to 

susceptibility and prevention.16 Whilst some overt risk factors have been identified (e.g. 

tobacco, dietary trans-fats, carcinogens), many lie nested within ‘normal lifestyles’ (e.g. 

enjoyable behaviours) or the ‘normal range’ of physiological variability (e.g. patterns of 

growth and maturation). In turn, our lifestyles are shaped by broader societal phenomena, 

connecting health with cultural and political factors.17 By shedding more light on how 

physiology and behaviour respond to such compound stresses, evolutionary approaches 

could improve societal efforts to prevent NCDs, just as they already help reduce the burden 

of infectious disease.18  

 

This article has three objectives. First, we describe two primary components of evolutionary 

theory – natural selection and population genetics, and life history theory which provides a 

predictive framework for investigating plasticity. Second, we briefly discuss the physiological 
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and behavioural mechanisms that underpin plasticity, to elucidate how our evolved biology 

responds to environmental change. Third, we show how mathematical models could help 

predict the effects of interventions prior to their implementation. Three other papers in this 

series focus in more detail on reproduction, human-microbe interactions and nutrition.19-21 

 

Evolution, heritability and genetics 

 

Darwin’s and Wallace’s theory of natural selection provided new insight into how ancestral 

environments shape contemporary biological variability.22 The theory proposed that traits 

varied, that this variability had a heritable component, and that organisms producing more 

offspring transmitted their traits with greater frequency to subsequent generations. Over 

time, a lineage acquires the genes and phenotypes of those reproducing most successfully.23 

Though simply a ‘purposeless algorithm’,24 natural selection shapes traits to enhance genetic 

fitness.25 In Darwin’s time, scientific understanding of the mechanisms of heredity was 

rudimentary. Modern genetics emerged from the rediscovery of Mendel’s work in the late 

19th century, laying the foundation of the modern evolutionary synthesis.26 

 

That genetic variants influence disease risk is now well-established,27 prompting interest in 

gene-based ‘personalized medicine’. Concerning treatment, ethnic differences in the 

frequency of genes that influence drug metabolism have attracted attention.28 Looking at 

pathogens in combination with their human hosts, most clinicians will be familiar with the 

evolutionary emergence of new infectious diseases, such as HIV, Hantaviruses, SARS and 

Ebola;29 with the possibility that imperfect vaccines can make pathogens more virulent;30 
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and with the striking threats posed by the evolution of drug- or antibiotic-resistant strains of 

some pathogens.31  

 

Genetic variability is also relevant to public health, in particular for understanding 

population variability in physiology. For example, where malaria is prevalent it has selected 

for protective haemoglobin variations, though these may also generate health penalties such 

as high prevalences of haemoglobinopathies deriving from autosomal recessive genes in 

malaria-exposed populations.32 Importantly, high-fitness genotypes do not maximize 

pathogen defence, but rather optimize trade-offs with other biological functions,33 as 

described below. Several evolutionary theories have been proposed for ethnic genetic 

differences in NCD susceptibility (Supplementary Table 1), though the supporting evidence 

is variable. 

 

However, ~85% of human genetic variation occurs within rather than between populations. 

34 Pedigree and twin studies indicate that NCDs cluster within families,35,36 and a key aim of 

the Human Genome Project was to identify individual contributing alleles.37 As yet, the 

additive effect of common alleles, potentially favoured though selection, explains little 

variance in NCD risk. Instead, rare deleterious alleles that evolved too recently to have been 

selected out of the gene pool seem better genetic predictors of ill health.38 It is often 

suggested that natural selection has ceased in humans, but a more realistic scenario is that it 

has accelerated in concert with the population boom of the last 10,000 years, increasing the 

number of new mutations.39 
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Our genes clearly contribute to individual variability in disease susceptibility, while genetic 

analyses can help identify biological pathways to be targeted by pharmaceutical treatment.40 

Nevertheless, the significance of genotypes for public health is limited by our inability to 

target them directly for interventions. Genes do not change within generations, and with 

few exceptions, such as the use of pre-implantation diagnosis in assisted reproduction to 

screen out rare deleterious alleles, efforts to influence allele frequencies across generations 

are ethically unacceptable.41 We therefore turn to a second component of biological 

variability that is highly amenable to intervention: plasticity. 

 

Evolution and plasticity 

 

Plasticity refers to the range of phenotypes potentially elicited by the environment from a 

single genotype. Plasticity has several different dimensions including behaviour, physiology 

and development, and responses that range from the momentary to the trans-generational. 

The primary evolutionary approach to plasticity is ‘life history theory’, which aims to predict 

how developing organisms respond to environments to maximize chances of survival and 

reproduction.42  

 

Life history theory provides a framework for understanding how organisms make 

physiological and behavioural ‘decisions’ – though behavioural decisions need have no basis 

in conscious deliberation. Patterns of growth, maturation, reproduction and metabolism 

account for substantial variation in the risk of NCDs and diverse cancers, but the very 

‘normality’ of these traits has hindered deeper understanding of how they contribute to the 

aetiology of ill-health, and how they might be targeted by public health programmes. 
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Crucially, their associations with health outcomes may also differ substantially between 

high-income and low-/middle-income settings. Life history theory can help explain this 

complexity, and offers a holistic framework that can integrate different components of 

human health.  

 

Life history theory 

 

Life history theory was developed to predict the coordinated evolution of the traits 

contributing directly to fitness: age/size at maturation, number/size of offspring, number of 

reproductive events per life, and aging and lifespan.  It views the evolution of these traits as 

the product of interactions between (a) ‘intrinsic constraints’ and ‘trade-offs’ – features 

inherited or acquired during development – and (b) ‘extrinsic factors’ in the environment 

that affect mortality risk and resource availability.  It then considers how extrinsic factors 

shape the combination of intrinsic traits to maximize fitness.42,43 

  

Life history theory models phenotypic evolution in general. Everything in biology has both a 

mechanistic explanation that answers the question, how does this work?, and an 

evolutionary explanation that answers the questions, how did this get here and what 

maintains its state? While these questions can be considered over the long-term, to 

understand why a species has particular traits, they can also be considered within the life-

course, to understand why individual organisms respond to environmental factors in 

particular ways. Plastic responses to environmental stimuli include physiological adaptations 

implemented by homeostatic feedback loops that can react in seconds or minutes; 

acclimations (e.g. adjustments to altitude) that can react in days to weeks through changes 
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in the set-points of feedback loops; and finally, developmental plasticity, where reactions 

usually last a lifetime.44,45 

 

The medical significance of plasticity is most apparent in the ‘developmental origins of adult 

health and disease’.4,46 Variation in early-life experience has many consequences, for 

example under-nutrition in utero increases risk of NCDs in late life,4,46 delivery by C-section 

increases risk of asthma and obesity,47,48 and receiving more antibiotic treatments before 

two years increases risk of obesity and allergies.49,50  

 

While consistent with genetic theories of evolution, the predictions of life history theory 

explain much more phenotypic variation, thus justifying its simplifications. Because 

physicians and public health professionals deal with phenotypes, they can gain substantially 

from a theory that predicts phenotypic states and how they are expected to change over an 

individual’s life-course. Going beyond ‘standard care’, understanding of each individual’s on-

going life history could guide personalized decisions concerning the prevention, diagnosis, 

and treatment of disease. 

 

Trade-offs and reaction norms 

 

Two key concepts in life history theory are trade-offs and reaction norms. A trade-off occurs 

whenever a change in one trait that increases fitness is connected to a change in another 

trait that decreases fitness. The major functions involved in trade-offs are maintenance, 

growth, reproduction, and defence, in each of which energy can be invested (Supplementary 

online Figure 1). Differential investment between these functions is shaped both by 
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resource availability, and by extrinsic mortality risk, of which key components in humans 

include infectious disease, poverty/deprivation and violence/conflict. In general, organisms 

with high mortality risk invest in rapid growth and reproduction at the expense of 

maintenance and defence, in which organisms with low mortality risk invest more.  Thus the 

life histories of species occupying contrasting environments diverge, creating a continuum 

from small, ‘fast-living’ short-lived species to large, ‘slow-living’ long-lived species (Figure 1).  

 

This continuum also characterises individual variation within species, including humans. 

Natural selection has shaped individuals to respond to cues of extrinsic mortality risk and 

resource availability with phenotypic change that maximize fitness. Specific responses 

include variation in age and size at maturity, the interval between births, and investment in 

offspring.  The quality of the external environment therefore shapes the entire schedule of 

growth, maturation, reproduction and aging. This helps explain the profound variability in 

‘life tables’, describing age-specific mortality rates and life expectancies among human 

populations, highlighting ‘slower’ and ‘faster’ life history trajectories within our species 

(Supplementary online Table 2).  

 

Each individual represents a ‘bundle’ of many trade-offs. For example, the trade-off between 

reproduction and survival (maintenance/defence) shapes the rate of aging and NCD risk. 

Trade-offs are crucial for physicians and public health planners because they force us to 

recognize that we cannot change one trait without also changing others, sometimes for the 

worse. Two trade-offs especially relevant to public health, namely immune function versus 

growth, and reproduction versus longevity, are summarized in Panel 1.  
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The second key concept, the reaction norm, describes the spectrum of phenotypes produced 

by a single genotype across a range of environmental conditions. Life history theory predicts 

the evolution of reaction norms themselves, as well as the state of traits expressed in 

specific environments. This approach clarifies how nature always interacts with nurture 

during development to produce the state of the observed organism. Examples of human 

reaction norms include age and size at maturity51 and variation in inter-birth interval 

induced by changes in nutritional status (Panel 2, Figure 2). 

 

Several issues are important when applying life history theory to humans. First, our sociality 

connects the life histories of multiple individuals. Humans demonstrate ‘cooperative 

breeding’, whereby several individuals may contribute to a ‘pooled energy budget’ for 

investment in offspring.52 Sociality can also expose individuals to stresses, such as social 

hierarchy and inter-group conflict.18 Second, cultural values that influence behaviour may 

themselves evolve over time, examples including attitudes to wealth, risk, or the costs and 

benefits of raising children.53,54 ‘Cultural’ goals may be pursued at the expense of genetic 

fitness. Third, evolved behaviour need not necessarily benefit health or fitness, an example 

being the use of narcotic substances that trigger ‘reward centres’ in the brain whilst 

compromising physiological function.55  

 

One might question whether humans in affluent environments still experience trade-offs. 

Energy can be stored outside the body in material form or social relationships, or in adipose 

tissue.56 Yet although wealthy humans acquire energy to invest in each of growth, health 

and reproduction, subtle trade-offs are both predicted57 and observed, for example between 

family size and the growth rate of individual children.58 Similarly, while obesity might suggest 
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a surfeit of calories, it is better considered a state of ‘metabolic perturbation’, where 

perturbed insulin dynamics provoke ‘cellular starvation’.59 Finally, some trade-offs involve 

conflicts in signalling among immune cells or in gene expression networks, and are mediated 

not by energy but by information.  These exist regardless of nutritional status. 

 

The specific ‘decisions’ that constitute each individual’s life history trajectory are enacted at 

levels that include physiology and behaviour. Many of the relevant mechanisms are already 

well understood to shape disease risk. What we emphasize here is that these are the same 

mechanisms that permit adaptation through plasticity to ecological stresses. Both hormonal 

and behavioural plasticity represent mechanisms of ‘risk management’ that are inherently 

sensitive to physical and societal stimuli.56 

 

Life history plasticity and hormones 

 

Hormones allow organisms to respond to both endogenous and exogenous environmental 

factors by modifying cell functions variably across tissues and organs.60 Hormones are now 

recognized to generate multiple physiological effects, a scenario known as pleiotropy.60  

 

For example, insulin plays a key role in allocating energy across competing physiological 

functions. Conventionally, clinicians think of insulin as responsible for regulating blood 

glucose, and variability in its production or activity is central to the constellation of diseases 

grouped as diabetes.61 However, its total metabolic profile is far more complex, and it 

affects diverse functions in tissue-specific ways.62 Via receptors in the brain, insulin 

modulates the regulation of peripheral metabolism, including appetite, reproductive 
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function, thermoregulation and adiposity.62,63 Within the brain, insulin also regulates 

cognitive functions such as learning and memory.64 While muscle insulin resistance increases 

risk of diabetes, it also allows the diversion of fuel to other tissues.62 

 

Leptin, secreted by adipose tissue, signals the magnitude of energy stores to the brain but 

also has broader functions, contributing to the regulation of reproduction, cognitive function 

and immune function.65,66 For example, leptin influences the functions of T-cells, monocytes, 

macrophages and natural killer cells, as well as the release and expression of cytokines and 

other inflammatory markers, while these molecules likewise contribute to the regulation of 

energy balance.66 While early linear growth benefits long-term health and human capital,67 

the association between low leptin and mortality in malnourished children indicates the 

short-term survival value of body fat.68 

 

Another influential hormone is cortisol, produced by the adrenal glands in response to 

diverse types of stress including illness, trauma, fear, pain and psychosocial stress. It too 

impacts diverse metabolic activities, for example suppressing immune function while 

increasing blood pressure and blood glucose.69  

 

In each case, therefore, these hormones implement the allocation of energy between life 

history functions. Whilst such plasticity may be adaptive, especially in the context of 

reproduction (see paper 3) it may also impose metabolic costs, accelerating the rate of aging 

(see Paper 4). Furthermore, human societies generate stresses for which their biology is 

unprepared or ‘mismatched’,70 such as pollutants, processed foods and sedentary 

environments.  
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Many trade-offs pertain to individual organisms. However, mammalian reproduction 

inherently brings the life history strategies of two generations together, through placental 

nutrition and lactation. This interaction may be characterized as a ‘tug-of-war’ over maternal 

metabolic resources,71 for the energy allocation ‘decisions’ optimal for maternal fitness may 

not be those that maximize offspring fitness. In such ‘parent-offspring conflict’ 

(Supplementary online Panel 1),72 the hormones reviewed above now function as signals 

between individuals, and each party can not only ‘read’ signals of the other, but also 

potentially manipulate them through their own hormonal secretions.73 The consequences of 

this ‘tug-of-war’ are expressed in several outcomes relevant to public health, including the 

prevalence of low birth weight, the incidence of colic, the duration of breast-feeding, and 

the management of infant sleep.73-75 The tug-of-war can itself be targeted by interventions, 

for example a randomized trial showed that promoting relaxation in breast-feeding mothers 

was associated with faster growth in their offspring.76  

 

Life history theory and behaviour 

 

Conventionally, public health models of behaviour emphasize ‘purpose’ and ‘individual 

autonomy’, in other words ‘how a person thinks rather than … what he or she does’,77 hence 

campaigns often target conscious deliberation. In contrast, life history theory makes 

predictions about behaviour itself, and makes no assumptions about whether decisions are 

made consciously or unconsciously. In other species, this question does not arise. Some 

conscious thought may simply provide post-hoc rationalization - more consequence of 

behaviour than cause.  
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Particularly in high-income low-fertility populations, contemporary behaviour is not 

maximizing fitness. This is partly because of cultural preferences (for wealth, social status, 

health, hedonic pleasure) that evolve independently of genes, and partly because of 

‘adaptive lag’ whereby environments change more rapidly than human biology.78 But we can 

still use evolutionary principles to understand associations between behaviour and health 

outcomes. 

 

In long-lived species such as humans, which produce offspring at regular intervals, the value 

of investing in somatic maintenance and future reproduction is expected to vary with 

ecological conditions. Higher extrinsic mortality risk favours diverting energy from 

maintenance to earlier reproductive effort. Why stint on reproduction if one is likely to die 

soon? Conversely, lower mortality risk favours higher investment in somatic maintenance, 

which may benefit future reproduction as well as longevity. Variation in mortality risk can 

therefore help explain both within- and between-population variation in behaviours relevant 

to public health, including reproductive ‘decisions’ and engagement in ‘risky’ behaviours 

(Supplementary online Panel 2).  

 

For example, reproductive timing varies in association with environmental harshness. In 

high-income countries, lower socio-economic position (SEP) correlates with earlier 

reproduction, and poorer health status may be an important explanatory variable. In 

England (2009-2011), living in areas with the highest deprivation (measured in deciles) was 

associated with 7 and 9 years shorter life expectancy for women and men respectively, 

compared with those in the least-deprived areas. Equivalent differences in healthy life 
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expectancy were twice as large.79 Early reproduction in low SEP women may therefore 

reflect both their lower expectancy of healthy life and the absence of benefits of waiting, for 

they typically have fewer opportunities to capitalize on educational and career opportunities. 

A link between deprivation and early age at first birth also holds across populations.80 

Greater energy investment in reproduction indicates lower investment in homeostasis 

(Panel 1), and may contribute to elevated NCD risk in low SEP populations.18 

 

In behavioural terms, lack of investment in self-preservation may be mediated by ‘time 

preferences’, where short-term gains are favoured over long-term rewards.81 For example, 

individuals unable to assume a long, healthy life lies ahead are expected to ‘discount the 

future’ and prioritize immediate rewards, whether through conscious or subconscious 

mechanisms (Supplementary online Panel 2). Individuals more oriented to the present 

report more risk-prone attitudes than those oriented to the future.82 However, the trade-off 

between longevity and reproduction can also be exploited for health benefit by 

interventions designed to appeal to personal ‘attractiveness’, as demonstrated for diet and 

cancer risk.83,84 

 

Extrinsic mortality risk therefore predicts many ‘unhealthy behaviours’ (smoking, drug 

consumption, poor diet, risky sexual behaviours) as well as lower commitment to healthy 

behaviours such as physical activity. Such unhealthy behaviours are consistently linked with 

lower SEP in high income countries,85 and this relationship appears to be mediated through 

higher perceptions of extrinsic mortality risk experienced by lower SEP individuals.86 Note 

that though such behaviours contribute to socio-economic health inequalities, they are not 

sufficient to entirely explain observed differences in life expectancy by SEP, indicating that 
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structural and economic constraints are also important. Public health campaigns targeting 

such unhealthy behaviours might therefore have greater success if supported by efforts to 

reduce deprivation and increase access to health-care. Currently, however, medical 

treatment in some countries may be withheld from those who smoke or are obese. 

 

Mathematical modelling 

 

A strength of life history theory is that it can be expressed in terms of equations, enabling 

mathematical modelling. This may allow potential benefits and costs of interventions to be 

considered before their implementation in vivo. While models inevitably have limitations 

related to the assumptions involved, they may flag up in advance issues meriting more 

attention. While applicable to many contexts – e.g. predicting reaction norms or examining 

host-pathogen dynamics – they are particularly valuable for understanding parent-offspring 

dynamics, where life histories interact. 

 

To illustrate this we briefly consider the challenge of reducing child malnutrition, a major 

global health problem.87 Logic suggests a simple solution: increased energy supply. Since low 

birth weight contributes to subsequent malnutrition, logic also suggests that interventions 

should target pregnant mothers. Protein-energy supplementation programmes have thus 

been provided for pregnant mothers in several countries.88 

 

As the Ethiopian example demonstrated, however, mothers face a trade-off between 

investing in current versus potential future offspring.89 Additional energy might either 

support growth and survival of the former, or accelerate production of the latter. Assuming 
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that maternal metabolism has been selected to optimize lifetime reproductive fitness, 

models can predict the optimal energy allocation (Panel 3, Figure 3). Even simple models can 

clarify the issues and suggest qualitative predictions. 

 

Our model suggests that maternal supplementation can lead both to improved offspring 

survival and to a shorter period of dependency, increasing maternal fecundity. The balance 

between these effects, however, differs markedly according to the duration of the 

intervention. A short-term boost in resources promotes offspring growth and survival, 

whereas a long-term improvement primarily benefits maternal fecundity with little benefit 

for the size of individual offspring. 

 

The underlying reason is that mothers must balance the benefit of prolonged care for the 

current offspring against the risk that she will die and lose the opportunity to produce 

additional children. A short-term energy windfall increases the benefit of extending care for 

the current offspring, while leaving the mother’s long-term prospects unchanged. By 

contrast, a long-term improvement in resources increases the chances of future 

reproductive success, devaluing investment in the current offspring. Once again, this 

highlights how reproductive fitness may take priority over the health of individuals. 

 
The emerging field of evolutionary public health 

 

Life history theory improves understanding of human variability in disease susceptibility, and 

of how the organized efforts of societies to change behaviour or environments may impact 

health outcomes. Both physiology and behaviour respond to ecological stimuli through the 
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medium of trade-offs and reaction norms that favour survival and reproduction over health. 

Both physiology and behaviour have been selected to ‘discount the future’ in high-risk 

environments. One key insight is that we should not expect a given intervention to produce 

identical consequences in populations that contrast in resource availability and extrinsic 

mortality risk. 

 

This helps understand why poverty and deprivation have such powerful impacts on health 

and lifespan, and should themselves be a key target for interventions. Experience in early life 

may impact the entire trajectory of maturation and aging, generating trade-offs between 

reproduction and homeostasis.18 Consequently, programmes targeting individual behaviour 

might have greater health benefits if linked with broader efforts to combat poverty, 

deprivation and extrinsic mortality risks. Another key insight is that every individual 

phenotype reflects an accumulated history of trade-offs. This information could potentially 

improve the personalization of disease prevention, diagnosis and management. 

 

Evolutionary approaches are likely to be particularly valuable for addressing the challenges 

of global health, where populations are differentially exposed to multiple metabolic costs 

deriving from high fertility, diverse infectious diseases, and rapid changes in nutrition and 

lifestyle. Given such heterogeneity, mathematical modelling could be used to explore the 

likely costs and benefits of local interventions in silico, before their implementation in vivo. 

More broadly, evolutionary approaches offer a unique predictive framework with which to 

understand the basis of human disease and improve the efficacy of public health 

interventions. 
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Key messages 

What we know 

• Evolutionary theory is likely to improve the efficacy and integration of public health 

interventions, given its utility in other areas of public policy  

• Evolutionary life history theory is integrative, and can inform both physiological and 

behavioural components of public health interventions 

• Based on optimization principles, life history theory allows potential interventions to 

be modelled using mathematical techniques, identifying likely consequences before 

implementation in vivo  

 

What we need to know 

• How do predictions from life history theory change when populations occupy 

affluent and benign environments, and many individuals choose not to produce 

offspring? 

• How should we balance benefits versus costs that appear in different parts of the 

life-course, such as when interventions promoting early health affect long-term 

health adversely? 

• How can we integrate the insights generated by applying life history theory to 

plasticity into ‘personalized medicine’? 

• How can we use life history theory to improve public health campaigns promoting 

‘behaviour change’? 
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Panel 1. Life history theory predicts trade-offs relevant to public health 

 

• Immune function is metabolically costly,90 and in children each degree temperature 

rise from fever increases metabolic rate by 11.3%,91 hence the costs of fighting 

infections impair child growth.92  

• This can account for epidemiological associations linking secular declines in infant 

mortality rate (a proxy for the energy costs of immune function in the survivors) with 

secular increases in adult height and longevity.93 Developmental exposure to 

infectious diseases shapes the entire life history strategy, and may propagate effects 

to subsequent generations. 94 

• Another key trade-off is between reproduction and longevity, with several studies 

showing that parental survivorship declined in proportion to the number of children 

produced, more strongly in mothers than fathers.95 However, the magnitude of this 

effect varies by living standards, and reproduction may protect against some cancers 

(see Paper 2).96  

• Such trade-offs also apply across generations: across 27 sub-Saharan African 

countries, the odds of child survival fell in relation to the number of offspring 

produced by the mother.97  

• Public health programmes targeting infant infections or adult reproduction are thus 

expected to shape long-term health outcomes and disease susceptibility through 

influencing these trade-offs. For example, nutritional interventions to resolve 

stunting may be ineffective unless also reducing the burden of infections and 

parasites.98 
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Panel 2. Reaction norms and the trade-offs that shape them 

 

• Maternal age and size at first birth vary with conditions encountered during growth 

and development. This plasticity maximizes the potential for reproductive success 

across the range of environments frequently encountered.  Life history theory 

predicts optimal reaction norms consistent with shifts caused by recent changes in 

nutrition and mortality risk. 

• Figure 2a distinguishes between the plastic developmental reaction to environmental 

change and the genetic evolution of that reaction (i.e. between nurture and nature).   

• The upper curve shows the optimal response to environmental improvement: the 

reproduction event slides up the reaction norm to the left, occurring earlier.  While 

this represents a developmental response, the shape and position of the reaction 

norm itself have evolved and are genetically determined.  

• The lower curve shows the evolution of that reaction norm.  Through demographic 

and epidemiological transition, infant mortality rates fell as public health and medical 

efforts decreased the impact of infectious disease.99  This drove the entire reaction 

norm down and to the left, resulting in a further decrease in age at first birth and a 

modest decrease in maternal size.   

• Why does the reaction norm change in this way? One major trade-off affecting 

human maturation relates infant mortality to maternal age (Figure 2b). As infant 

mortality declines, mothers are selected to have their first baby earlier.  

• Here, cultural evolution (improved health care) is interacting with biological 

evolution. It is important to understand that efforts of physicians and public health 

workers in the interest of promoting health may also shape human evolution itself.   
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Panel 3. An optimization model of maternal nutritional supplementation programmes 

 

• To assess the consequences of supplementing mothers to improve the growth of 

their offspring, we consider a mother producing single offspring sequentially.  

• The mother accrues resources (energy) to invest in offspring growth at a rate r per 

unit time. She is also exposed to a mortality risk m per unit time. The decision she 

faces is how long to support each offspring before producing the next. Longer 

support means more resources for the offspring, but greater risk the mother will die 

before the offspring reaches independence.  

• We assume that maternal death prior to independence leads to offspring death, 

whereas there is no risk of offspring death while the mother survives to care for it.  

• Following independence, the offspring survival depends upon the resources it 

received. We assume that some minimum level of resources is required for viability; 

beyond this, survival prospects increase with resources, but at an ever-diminishing 

rate (see supplementary online material).  

• Given these assumptions, we can determine the optimal duration of support that 

maximizes the mother’s expected lifetime fitness, and the resulting size and viability 

of her offspring (Figure 3). We can also ask how these outcomes change if we alter 

the level of resources available, either during the period of dependency of the 

current offspring, or throughout the remainder of the mother’s life. 

• The results show that whereas a short-term increase in maternal resources improves 

offspring growth and survival, a long-term increase in resource availability serves 

chiefly to promote greater fecundity in the mother, with little benefit for the size of 

individual offspring.  
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Figure 1. Schematic diagram illustrating life history trajectories across a fast-slow continuum. 

Fast life histories are favoured in environments with high mortality risk, while slow life 

histories can evolve when mortality risk reduces. These strategies may evolve under natural 

selection, but physiology can also respond to cues during the life-course through plasticity. 

The size of the circles is proportional to adult body size, and filled circles indicate individuals 

that survive to reproduce. 

 

Figure 2. (a) The reaction norm for the age at maturity in relation to body weight in adult 

females. In any population, the reaction norm allows variability in the response, but the 

norm itself can also evolve genetically over generations. Reproduced with permission from 

Stearns and Koella 1986.100 (b) The key trade-off that shapes the evolution of this reaction 

norm: the relationship between maternal age and infant mortality. Reproduced with 

permission from Stearns 1992.42 (See Panel 1).  

 
Figure 3. Results of a model predicting how maternal and offspring traits vary in accordance 

with ecological conditions, if the goal is to maximize maternal reproductive fitness. A short-

term intervention increasing energy availability increases maternal investment in the current 

offspring, leading to larger offspring size, and higher chance of offspring survival but has 

negligible effect on maternal fecundity. In contrast, the benefits of a long-term intervention 

are primarily captured by the mother through increased fecundity, whereas there is little 

effect on offspring investment, growth or chance of survival.  
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