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ABSTRACT: Trypanosoma brucei, protozoan parasites that cause human African trypanosomiasis (HAT), depend on
ornithine uptake and metabolism by ornithine decarboxylase (ODC) for survival. Indeed, ODC is the target of the
WHO “essential medicine” eflornithine, which is antagonistic to another anti-HAT drug, suramin. Thus, ornithine
uptake has important consequences in T. brucei, but the transporters have not been identified. We describe these
amino acid transporters (AATs). In a heterologous expression system, TbAAT10-1 is selective for ornithine, whereas
TbAAT?2-4 transports both ornithine and histidine. These AATs are also necessary to maintain intracellular orni-
thine and polyamine levels in T. brucei, thereby decreasing sensitivity to eflornithine and increasing sensitivity to
suramin. Consistent with competition for histidine, high extracellular concentrations of this amino acid phe-
nocopied a TbAAT2-4 genetic defect. Our findings established TbAAT10-1 and TbAAT2-4 as the parasite ornithine
transporters, one of which can be modulated by histidine, but both of which affect sensitivity to important anti-HAT
drugs.—Macedo, J. P., Currier, R. B., Wirdnam, C., Horn, D., Alsford, S., Rentsch, D. Ornithine uptake and the

modulation of drug sensitivity in Trypanosoma brucei. FASEB J. 31, 000-000 (2017). www.fasebj.org
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Trypanosoma brucei is a vector-borne protozoan parasite
and the causative agent of African trypanosomiasis, which
includes human and animal diseases endemic in 37
countries in sub-Saharan Africa. The subspecies T. b.
gambiense and T. b. rhodesiense cause human African try-
panosomiasis (HAT), also known as sleeping sickness,
which is typically fatal if untreated. T. b. brucei and the
related species T. congolense and T. vivax cause nagana, a
wasting disease of cattle that is a major obstacle to the
economic development of affected rural areas (1). The
number of reported cases of HAT is currently ~4000 per
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thine decarboxylase; qPCR, quantitative PCR; RNAi, RNA interference;
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year, but it is estimated that the true figure is closer to
20,000 (1, 2). The pathology is divided into two stages. The
first stage is characterized by the proliferation of the par-
asite in the blood and lymph, whereas in the second stage
the parasites invade the cerebrospinal fluid and the brain,
causing confusion, an altered sleep—wake pattern, and
ultimately, lethal coma (3). Chemotherapy against the first
stage of HAT is based on pentamidine or suramin,
whereas the second stage can be treated with the organo-
arsenical compound melarsoprol, which is associated with
severe adverse effects, or the nifurtimox/eflornithine
combination therapy (3), which is currently the treat-
ment of choice for T. b. gambiense, but is not recommended
ininfections caused by T. b. rhodesiense because of the lower
innate susceptibility of this subspecies to eflornithine (4).
Eflornithine, taken up by the neutral amino acid trans-
porter TbAAT6 (5-8), is a well-known suicide inhibitor of
ornithine decarboxylase (ODC) (9), a key enzyme in the
polyamine biosynthetic pathway (Fig. 1). Polyamines are
small cationic molecules essential in eukaryotic cells and
most bacteria (10). In the cell, they interact with RNA and
proteins, modulating gene expression and cell growth
(11). A universal function of polyamines is, for example,
the deoxyhypusine modification of eukaryotic initia-
tion factor 5A (elF5A) (12, 13). In T. brucei, polyamines
are precursors for the synthesis of trypanothione, a
trypanosomatid-specific thiol that has an essential role in
redox regulation and defense against oxidative damage
(14) and is associated with drug extrusion in the related


http://www.fasebj.org
http://www.fasebj.org
mailto:sam.alsford@lshtm.ac.uk
mailto:sam.alsford@lshtm.ac.uk
mailto:doris.rentsch@ips.unibe.ch
mailto:doris.rentsch@ips.unibe.ch
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.fasebj.org
http://www.fasebj.org/
http://www.fasebj.org/
http://www.fasebj.org/
http://www.fasebj.org/
http://www.fasebj.org/
http://www.fasebj.org/
http://www.fasebj.org/
http://www.fasebj.org/
http://www.fasebj.org/

Polyamine
synthesis
—- - Ornithine

SAM obDc = Eflornithine
SAMdCl Putrescine
dcSAM SpSyn
Spermidine
Glutathione

Trypanothione

Figure 1. The spermidine—-trypanothione biosynthetic pathway.
Down-regulation of spermidine synthesis leads to reduced
suramin efficacy (19). ODC, ornithine decarboxylase; SAM, §
adenosylmethionine; dcSAM, decarboxylated S-adenosylme-
thionine; SAMdc, S-adenosylmethionine decarboxylase; SpSyn,
spermidine synthase.

trypanosomatid Leishmania (15). Polyamines are pre-
dominantly derived from the amino acids ornithine and
methionine. Ornithine is decarboxylated into putrescine
by ODC. Putrescine is then converted into spermidine
by addition of aminopropyl groups donated by decar-
boxylated S-adenosylmethionine. Subsequently, sper-
midine is combined with two molecules of glutathione
to form trypanothione (16). Eflornithine treatment of
bloodstream-form (BSF) T. brucei leads to reduced in-
tracellular putrescine, spermidine, and trypanothione
levels (17, 18). Suramin action, on the other hand, is po-
tentiated by the polyamine biosynthetic pathway (19);
depletion or inhibition of ODC or depletion of other
spermidine biosynthetic enzymes rendered BSF para-
sites less sensitive to this drug (19).

The polyamine biosynthetic pathway is ubiquitous
and shows a high degree of conservation across the
Eukarya; however there are some notable variations (20).
For example, Leishmania can use arginase for the de novo
production of ornithine from arginine (21). This trypa-
nosomatid also has the capacity for high-affinity putres-
cine and spermidine uptake (22). Trypanosoma cruzilacks a
functional ODC (23, 24) and relies on high-affinity
putrescine/cadaverine uptake or the spermidine trans-
port system for polyamine acquisition (25, 26). In contrast,
ODC activity in T. brucei is essential, as indicated by the
parasite’s susceptibility to eflornithine and ODC knock-
down experiments (3, 27, 28); however, supplementation
with putrescine renders ODC dispensable, suggesting a
putrescine uptake system in T. brucei (29). Unlike T. cruzi,
T. brucei is unable to take up sufficient spermidine from its
environment when polyamine biosynthesis is disrupted,
indicating that the African trypanosome lacks an efficient
spermidine transporter (30). Finally, T. brucei lacks a ca-
nonical arginase; instead, it possesses an arginase-like
protein that is unable to convert arginine into ornithine (31,
32). A recent metabolomic analysis revealed that T. brucei s
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capable of converting arginine to ornithine by an unknown
mechanism, but its principal source of ornithine comes via
uptake from the environment (33), supporting the hypoth-
esis that T. brucei is auxotrophic for ornithine, and therefore,
is reliant on ornithine import for polyamine biosynthesis.

In this study, we report the functional characterization
of two members of the amino acid transporter (AAT)
family, one of which has been implicated in suramin ac-
tion. These AAT family members are novel high-affinity
ornithine transporters, playing an essential role in the
mammalian life-cycle stage of T. brucei and therefore rep-
resent the key uptake systems for polyamine precursors.
Notably, reduction in ornithine transport renders BSF
T. brucei hypersensitive to eflornithine.

MATERIALS AND METHODS
T. brucei lines

BSF T. brucei MITat1.2/2T1 (34) and New York single-marker
(NY-SM) (35) coexpressing T7 RNA polymerase and a tetra-
cycline (tet) repressor were cultured at 37°C in HMI-11 con-
taining 10% (v/v) heat-inactivated fetal bovine serum (FBS).
Creek’s minimal medium (CMM) was prepared (36) with
slight modifications: containing 10% (v/v) heat-inactivated
FBS and 0.1 mM tyrosine, phenylalanine, tryptophan, leucine,
methionine, arginine, and hypoxanthine. Ornithine comes
exclusively from FBS and was described to be 25-45 uM in
HMI-11 and 15-20 pM in CMM (37).

RNA interference constructs

RNA interference (RNAi) target fragments were designed
using the RNAit primer design tool (38), and PCR amplified
from T. brucei genomic DNA with the following primers:
TbAAT10-1xb, 5'-GATCTCTAGAGGATCCTCGTGTCTAA-
ATGGGCTTCC-3’, and TbAAT10-1ba, 5'-GATCGGGCCC-
GGTACCCTTTGGGATGAAGAGACCCA-3' (spanning nt
691-1206 of Tb427.08.8290 for pRPa'**-AAT10-1); TbAAT10-
1RNAIF 5'-GGCCAAGCTTGGATCCGGATGATGGCATT-
AAAAACTATG-3" and 5'-GGCCTCTAGACTCGAGCA
CGTAGGCAATACAACTCG-3" (spanning nt 75-477 of
Tb427.08.8290 for pALC14-AAT10-1) for selective down-
regulation of TbAAT10-1; TbAAT2-4RNAIF 5'-GGCCAAG-
CTTGGATCCATTITGCTGCATTCATCCCTC-3’ and TbAAT2-
4RNAIR 5-GGCCTCTAGACTCGAGGCATAAAACATGCC-
CAAACC-3’ (spanning nt 168-592 of Tb427.04.4020 for pMS14-
AAT2-4); and TbAAT10-2RNAJF 5-GCCCAAGCTTGGATC-
CAGGTGAGTTTATGCATCGCC-3" and TbAAT10-2RNAiIR 5'-
TGGCTCTAGACTCGAGCAAGACGCGGTTACCTGATT-
3’ (spanning nt 155-565 of Tb427.08.8300 for pMS14-AAT10-2).
Appropriate restriction sites (underlined) were incorporated
into the primers to enable 2-step cloning into the stem-loop RNAi
plasmids pRPa™" (TbAAT10-1) (39), pALC14 (TbAAT10-1), and
pMS14 (TbAAT10-2 and TbAAT2-4) (35, 40). pRPa*““TbAAT10-1
was linearized with Ascl to enable targeted integration into the
landing pad locus in 2T1 strain T. brucei (34, 39). pALC14 and
PpMS14 stem-loop RNAi plasmids were linearized with NotI before
transfection.

Stable transfection

2T1and NY-SM T. brucei were transfected as described elsewhere
(7, 34). In brief, trypanosomes were harvested at mid log phase
and washed once in PBS (pH 7). 2T1 and NY-SM T. brucei were
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respectively resuspended in 100 pl cytomix or Tb-BSF buffer (7)
containing ~10 pg of DNA. Electroporation was performed
in 0.2-mm-gap cuvettes with a Nucleofector (2T1 T. brucei) or
4D Nucleofector System (NY-SM T. brucei; Lonza, Basel,
Switzerland), using program X-001 and FI-115, respectively.
Transfected cells were immediately inoculated in culture
medium and distributed across multiwell plates. After
atleast 5 h, the appropriate selective antibiotics were added
[ie, 2.5 pg/ml hygromycin (pRPaISL), 2.5 pg/ml phleomycin
(pMS14), or 0.1 ug/ml puromycin (pALC14)]. Clonal trans-
formants were identified after at least 5 d in culture, and 2T1/
pRPa’*"landing pad integration was confirmed by assessing
puromycin sensitivity (34).

For the TbAAT2-4/TbAAT10-1 double-RNAi line, TbAAT2-4
RNAIi BSF was transfected with Notl-linearized TbAAT10-1-
PALC14 construct and selected in 0.1 pg/ml puromycin. All
subsequent growth and drug sensitivity assays were performed
in the absence of selective antibiotics.

Drug sensitivity assay

Susceptibility of BSF T. brucei to eflornithine and suramin was
assessed in 96-well plates (41). In brief, serial dilutions (1:2) of
eflornithine or suramin were prepared in HMI-11 medium con-
taining 10% (v/v) FBS. An equal volume of parasite suspension
was added to each well to a final density of 1 X 10* cells/ml;
RNAi was preinduced for at least 24 h in tet, and then induction
was maintained throughout the assay. After 70 h incubation at
37°C, 125 wg/ml resazurin in PBS (pH 7) was added to a final
concentration of 12.5 pg/ml, and incubation was continued for
another 2 h at 37°C. Fluorescence was measured with a M200
plate reader (Tecan, Mannedorf, Switzerland) at 544 nm excita-
tion and 590 nm emission, with gain optimization. ECs, values
were derived from dose-response curves (variable slope) in
Prism 6.0 software (GraphPad, La Jolla, CA, USA).

Quantitative RT-PCR

Total RNA was isolated with the SV RNA isolation system
(Promega, Madison, W1, USA) according to the manufacturer’s
instructions. RNA samples were treated with DNase I (Roche,
Basel, Switzerland) for 25 min at 37°C, followed by phenol/
chloroform extraction and ethanol precipitation. Absence of
genomic DNA contamination was confirmed by PCR. DNase I-
treated RNA (0.5 pg) was used for cDNA synthesis with Pri-
meScript reverse transcriptase (Takara, Shiga, Japan). Real-time
quantitative PCR (qPCR) was performed with a LightCycler 480
System (Roche). The reaction mixtures consisted of 1X Sybr
green premix, Ex Taq (RR420L; Takara), and 0.2 uM primers
(TbAAT10-1gPCR_F, 5-TTCAGTGGGAGATATTTICTCTT-
CT-3', and TbAAT10-1qPCR_R, 5-CCATAGAAGCGCGGT-
CAAAAG-3'; TbAAT2-4qPCR_F, 5'-CAGGTAATCGTCTT-#9;
CTCACG-3', and TbAAT2-4qPCR_R, 5'-GGCAAAAGTGGA-
GACGTAC-3'; and TbAAT10-2qPCR_F, 5'-ATCTTTGGGG-
GATATTATGTCTTCT-3', and TbAAT10-2qPCR_R, 5-ATTA-
#9,CCGTCAAGACGCGGTT-3’). Real-time PCR analyses were
performed with 3 different cDNA dilutions. Telomerase reverse
transcriptase (Tb927.11.10190) was used as the reference gene (42).

Saccharomyces cerevisiae transformation

For expression of TbAAT2-4, TbAAT10-1, and TbAAT10-2 in
Saccharomyces cerevisiae, the open reading frames were PCR
amplified from T. brucei strain 427 genomic DNA and cloned into
the yeast expression vector, pDR197 (43), using the primers:
TbAAT2-40RF_F, 5'-CGGAATTCATGTGTATTGCCAGAGA-
AAATACAAGC-3’, and TbAAT2-4ORF_R, 5'-CGCGGAT-
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CCTTAACCAGTTATAGTGCCCCATATAC-3'; TbAATI10-
10RF_F, 5'-CGGAATTCATGAGTAATGTCCGTGGAAATA-
TAACCC-3’, and TbAAT10-10RF_R, 5-CGCGGATCCTTA-
GCCAACAATTGTGCCCCAAATG-3'; and TbAAT10-20RE_F,
5'-CGGAATTCATGGACAGATCTGGCAGTCAATCCGC-3/,
and TbAAT10-20RF_R, 5'-CGCGGATCCTCAACCCACAG-
CAGCGCCCC-3'. Appropriate restriction sites (underlined)
were included in the primer sequences. Independently ampli-
fied open reading frames were confirmed by sequencing and
compared with predicted open reading frames in TritrypDB
(http:/ftritrypdb.org/tritrypdb/). Transformation of S. cerevisiae
was performed according to Dohmen et al. (44). The S. cerevisiae
mutant JT16 (Mata, hip1-614, his4-401, can1, inol, ura3-52 (45) is
auxotrophic for histidine and has reduced histidine transport
rates provided the general amino acid permease is down-
regulated in the presence of ammonium; 22A8AA (MATe,
gap1-1, putd-1, uga4-1, lypl/alpl:hisG, canl:hisG, hipl:hisG,
dipb::hisG, ura3-1 (46) carries mutations in the major uptake
systems for proline, GABA, citrulline, arginine, lysine, histi-
dine, and glutamate/aspartate; 22A6 AAL (Mata, ura3-1, gap1-
1, put4-1, uga4-1, canl:hisG, lypl/alpl:hisG, lys2:hisG (46) is
lacking the major uptake systems for proline, GABA, citrulline,
arginine, and lysine, and is auxotrophic for lysine. Additional
strains and media for selective and nonselective growth were
as described in Mathieu et al. (8). For transport experiments
using strain 22A8AA, transformed cells were grown in syn-
thetic dextrose minimal medium [sp: 1.7 g/L yeast nitrogen
base without amino acids and without ammonium sulfate
(Difco; Becton Dickinson, Sparks, MD, USA), 5 g/L ammonium
sulfate, and 20 g/L glucose].

Transport assays

Transport assays using the S. cerevisiae strain 22A8AA were
performed as described (47), with slight modification. Cells
were grown to a density of ODggo 0.6, washed twice with
water, and resuspended in buffer A [1:10 initial volume;
0.6 M sorbitol and 50 mM potassium phosphate, (pH 5.5)
adjusted with KOH]. Before the transport assay, cells were
preincubated at 30°C for 5 min in the presence of 100 mM
glucose. To start the transport assay, cells (130 pl) were
added to an equal volume of buffer with different concen-
trations of L-ornithine or L-histidine and 7.2 kBq L-[*H]orni-
thine or L-[*H]histidine (2.2 and 1.7 TBq/mmol; Hartmann
Analytic, Braunschweig, Germany) per assay. In some ex-
periments, competitors were added, as specified in the Re-
sults section.

Samples (48 wl) were transferred after 30 s and 1, 2, 3, and
5 min to 4 ml ice-cold buffer A, filtrated on glass fiber filters and
washed twice with 4 ml ice-cold buffer A. The uptake of tritium-
labeled substrates was determined by liquid scintillation spec-
trometry, and transport rates were calculated. Uptake rates by
S. cerevisiae transformed with empty vector were subtracted as
background. Kinetic parameters were calculated with the
Michaelis-Menten equation, V = V. X [S] X (K + [S)7L in
Prism 6.0 (GraphPad).

Amino acid and polyamine analysis

Parasites (~3 X 107 cells) collected from cultures grown to mid
log phase were harvested, and metabolites were extracted in
200 pl of chloroform:methanol:water (1:3:1) (48). Analysis of
amino acids was based on a method described elsewhere (49).
The free amino acids were labeled with phenylisothiocyanate.
The resulting phenylthiocarbamoyl amino acids were separated
by RP-HPLC on a Nova Pak C18 column (3.9 X 150 mm 4 pm;
Waters, Milford, MA, USA) in a Summit liquid chromatograph
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Figure 2. TbAAT10-1 RNAi im-
pacts growth and suramin sen-
sitivity of BSF T. brucei. A)
Cumulative growth of BSF
T. brucei after TbAAT10-1 RNAi
in the presence of 1 wg/ml tet;
mean of 2 independent clones.
Error bars denote sp. Inset:
real-time qPCR analysis showing
TbAAT mRNA depletion after
24 h induction in 1 wg/ml tet.
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Data from at least 2 independent clones per target are shown. Error bars denote sem. B) Representative quadruplicate ECs assay
showing the effect of TbAAT10-1 depletion on suramin efficacy against 7. brucei. RNAi was induced in 2.5 ng/ml tet 24 h before
drugs were added and throughout the experiment. Error bars denote sb. Inset: summary statistics from 3 independent clones.

P values obtained by paired Student’s ¢ test.

(Dionex, Sunnyvale, CA, USA) and monitored by UV detection
at 247 nm. A gradient of 2-60% acetonitrile (60% v/v) from
0-13 min and 60-100% from 13 to 26 min was applied. For the
elution of polyamines, the gradient was extended to 26 min.

RESULTS

The putative amino acid transporter TbAAT10-1
(Thb427.08.8290) shows opposing effects on
suramin and eflornithine efficacy

Suramin selection of the BSF T. brucei RNAI library and
subsequent RIT-seq mapping against the genome of T.

Figure 3. TbAAT10-1/2-4 RNAi
phenotypes are complemented
by supplementation with the
spermidine pathway intermedi-
ate putrescine (Put), whereas
down-regulation increases eflor-
nithine sensitivity. A) The effect
of putrescine supplementation
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brucei strain TREU927 (19, 50) identified not only proteins
involved in drug uptake, endolysosomal function, and
polyamine biosynthesis, but also several putative AATSs
belonging to the amino acid/auxin permease family (51).
The only amino acid transporter to fulfill our established
stringency criteria [>99 reads and 2 or more independent
RNAI target fragments (50)] was Tb427.08.8290 (TbAAT10-1),
a member of the AAT10 subgroup (19, 52). To validate
this finding, we generated 2T1 T. brucei stem-loop RNAi
strains targeting TbAAT10-1.

TbAAT10-1 depletion by RNAiin 1 wg/ml tet led to a
growth defect under culture conditions (Fig. 2A), whereas
partial induction in 2.5 ng/ml tet [to minimize the impact

w

1004 - - tet
-+ - tet + Put
- +tet

-4+ tet + Put

- - tet 501

& + tet

Growth [%]

on growth after RNAi against 0 ’
TbAAT10-1/2-4; RNAi induced 1
in 1 pg/ml tet for 72 h in the
presence of putrescine (2 pM-1
mM). The assay was performed
in quadruplicate and visual-
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as a percentage of cell growth
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TbAAT10-1/2-4 knockdown. RNAi was induced in 2.5 ng/ml tet 24 h before addition of suramin and throughout the experiment.
C) Pooled ECs data for 3 independent clones showing the impact of putrescine supplementation on suramin efficacy after
TbAAT10/2-4 RNAi. Error bars denote sb. P value (+tet vs. +tet+put) derived by paired Student’s ¢ test. D) Representative
quadruplicate EC5( assay showing the effect of TbAAT10-1/2-4 RNAIi on eflornithine efficacy against T. brucei; RNAi induced in 2.5
ng/ml tet 24 h before drug addition and throughout the experiment. Error bars denote sb. Inset: summary statistics from 3
independent clones. P values derived by paired Student’s ¢ test.
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Figure 4. Decreased suramin and increased eflornithine efficacy are also observed upon specific knockdown of TbAAT10-1 in

BSF T. brucei. A) Cumulative growth of BSF

T. brucei after depletion of TbAAT2-4, TbAAT10-1, or TbAAT10-2. RNAi induced in

1 wg/ml tet. Data points are means * sp from 3 technical replicates. Insets: transcript levels determined by qPCR, shown as a
percentage of uninduced cells and normalized to telomerase reverse transcriptase expression. Means * sEM from at least 2
technical replicates. B, C) Representative triplicate ECs( assays showing the impact of TbAAT2-4, TbAAT10-1, and TbAAT10-2
RNAi on BSF T. brucei sensitivity to suramin (B) and eflornithine (C). RNAi induced in 1 pg/ml tet 24 h before drug addition and
throughout the experiment. Data points are means = SEM of a representative experiment performed in triplicate. Insets, ECgy *
sp from 3 independent experiments. P values derived by paired Student’s ¢ test.

on parasite growth during the 4 d assay (19, 53)]
resulted in an ~2-fold increase in suramin ECs, (Fig.
2B), supporting a role for TbAAT10-1 in determining
suramin efficacy. However, real-time qPCR analysis
revealed that the expression of the related transporter
Tb427.04.4020 (TbAAT2-4) was down-regulated by
~50% (subsequently referred to as TbAAT10-1/2-4
RNAi; Fig. 2A inset). TbAAT2-4, a member of the
TbAAT?2 locus, is a close homolog of TbAAT10-1, as is
Tb427.08.8300 (TbAAT10-2; Supplemental Tables 1 and
2). In fact, although the TbAATI0 locus contains 2
members, TbAAT10-1 and TbAAT10-2, the closest ho-
molog of TbAAT10-1 is TbAAT2-4 (Supplemental Ta-
ble 2). The sequences of the 3 AATs were confirmed by
sequencing and alignment with the genome sequences
of T. brucei TREU 927 and Lister 427, the latter including
several unresolved nucleotides in Tb427.4.4020 and
Tb427.08.8290 (data not shown; the resolved sequences
have been uploaded to www.TriTrypDB.org and as-
sociated with the corresponding gene pages). All
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subsequent sequence analysis in the present article is
based on these confirmed sequences from Lister 427,
our experimental strain.

The small, though significant, shift in suramin ECsg
seemed unlikely to be related to a direct interaction with
suramin, but instead pointed to an indirect effect, possibly
resulting from an impact on lysosomal function, spermi-
dine synthesis, or both. As has been demonstrated, down-
regulation of key enzymes in the spermidine biosynthetic
pathway, including ornithine decarboxylase, spermidine
synthase, and S-adenosylmethionine decarboxylase (see
Fig. 1) also reduces suramin efficacy (19). We therefore
hypothesized that TbAAT10-1 transports an amino acid
that feeds into the spermidine biosynthetic pathway.
Supplementation of the culture medium with putrescine
progressively reduced the growth phenotype associated
with TbAAT10-1/2-4 RNAi (Fig. 3A), and supplementa-
tion with 250 uM putrescine partially complemented the
suramin resistance phenotype (Fig. 3B, C). The high pu-
trescine concentrations necessary for complementation
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experlments

indicate that putrescine uptake by T. brucei is not efficient,
further emphasizing the importance of polyamine bio-
synthesis and the fundamental role of ODC in these par-
asites (27, 28). The connection to the spermidine
biosynthetic pathway, as well as the absence of a canonical
arginase in T. brucei (31, 33), supports a role in ornithine
import. Consistent with this hypothesis, induction of
TbAAT10-1/2-4 RNAi led to an ~10-fold increase in
parasite sensitivity to eflornithine compared to that of
noninduced cells (Fig. 3D).

Suramin selection of the BSF T. brucei RNAI library
implicated TbAAT10-1 knockdown in eliciting the ob-
served growth defect and changes in suramin and
eflornithine efficacy, but TbAAT2-4 was also knocked
down in these experiments (Fig. 2A). To assess the
contributions of each transporter individually, we used
distinct regions to generate BSF T. brucei RNAi lines
showing specific down-regulation of TbAAT10-1,
TbAAT2-4, or TbAAT10-2 (Supplemental Fig. 1). Spe-
cificdown-regulation of TbAAT10-1in1 wg/ml tet only
marginally impaired growth (Fig. 4A). However, this
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TbAAT10-1 specific knockdown reduced sensitivity to
suramin ~2-fold (Fig. 4B) and increased sensitivity to
eflornithine ~10-fold (Fig. 4C). In contrast, specific
down-regulation of TbAAT2-4 or TbAAT10-2 had no
effect on growth (Fig. 4A), suramin sensitivity (Fig. 4B),
or eflornithine efficacy (Fig. 4C). These data indicate
that down-regulation of TbAAT10-1 alone in BSF
T. brucei is sufficient to confer reduced sensitivity to
suramin and to enhance eflornithine efficacy, whereas
the growth defect is more pronounced when both
TbAAT10-1 and TbAAT2-4 are down-regulated (com-
pare Figs. 2A and 4A). To determine whether the
growth phenotype observed in Fig. 2A was related to
down-regulation of TbAAT10-1 combined with sub-
stantial down-regulation of TbAAT2-4, we transfected
the TbAAT2-4-specific RNAi cell line with the
TbAAT10-1-specific stem-loop RNAi construct. This
double RNAI cell line exhibited similar TbAAT10-1/2-4
down-regulation efficiency and a similar growth defect
(Supplemental Fig. 2) when compared to the original
TbAAT10-1/2-4 RNAI cell line (Fig. 2A). Furthermore,
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Figure 6. TbAAT2-4 and TbAAT10-1 are high-affinity ornithine transporters. A, B) Ornithine transport kinetics of TbAAT2-4 (A)
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apparent affinities (K,,) are means * sp from 4 independent experiments. C, D) Transport rates of S. cerevisiae expressing
TbAAT2-4 (C) or TbAAT10-1 (D) in the presence of 50 wM ornithine and 500 uM of different compounds. Ornithine uptake
rates were determined at 5 time points: 30 s and 1, 2, 3, and 5 min. The data set was normalized to control uptake rate and are

means * sb from 4 independent experiments.

the growth arrest observed following specific TbAAT2-
4/TbAAT10-1 double RNAi could be rescued by the
addition of high (nonphysiologic) concentrations of or-
nithine, supporting the hypothesis that ornithine import
is compromised in these cells, but that there are addi-
tional low-affinity ornithine uptake systems (Supple-
mental Fig. 2).

TbAAT10-1 and TbAAT2-4 are high-affinity
transporters for ornithine and ornithine/
histidine, respectively

The role of these amino acid transporters in the uptake
of ornithine and other amino acids was tested by het-
erologous expression in S. cerevisiae mutants. Although
the S. cerevisine mutants tested did not allow us to assess
the transporters’ ability to support growth on ornithine,
these experiments revealed that TbAAT10-1 is able to
support growth of S. cerevisiae strain JT16 on histidine,
whereas TbAAT2-4 supported growth on histidine and
lysine (strains JT16 and 22A6AAL, respectively, Fig.
5A). TbAAT10-1 and TbAAT2-4 were not able to sup-
port growth on any of the other amino acids tested (data
not shown), and no substrate was identified for
TbAAT10-2 using this approach (Fig. 5A). Transport
assays using L-[’H]histidine revealed significant histi-
dine uptake in S. cerevisiae cells expressing TbAAT2-4
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(up to 6 min; Fig. 5B). In contrast, no significant uptake
of L-[*H]histidine (up to 200 M) was observed in
TbAAT10-1-expressing cells, indicating that although
TbAAT10-1is able to transport histidine, as revealed by
the growth assay (Fig. 5A), this amino acid is unlikely to
be its preferred substrate and may be recognized only
with low affinity. Analysis of histidine transport ki-
netics showed that TbAAT2-4 is a high-affinity histi-
dine transporter with an apparent affinity of 20.5 *
8.6 uM (Fig. 5C). Competition studies showed that
TbAAT2-4-mediated histidine uptake was inhibited by
several amino acids, including arginine and lysine (Fig.
5D). Notably, the most potent inhibitor of histidine
uptake was ornithine.

In contrast to the S. cerevisine complementation
studies, transport assays allowed the analysis of the
ornithine uptake kinetics of TbAAT2-4 and TbAAT10-
1. S. cerevisiae expressing either TbAAT2-4 or TbAAT10-
1 mediated ornithine uptake with apparent affinities of
4.0=x1.9puMand 4.3 £ 1.5 pM, respectively (Fig. 6A, B);
no ornithine uptake was detected for TbAAT10-2 (data
not shown). Competition assays demonstrated that
ornithine uptake by TbAAT2-4-expressing S. cerevisiae
was inhibited in the presence of a 10-fold excess of
histidine, consistent with its high affinity for this amino
acid, whereas no significant inhibition was seen after
the addition of putrescine, arginine, lysine, or other
amino acids (Fig. 6C). In contrast, ornithine transport by
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Figure 7. Down-regulation of ThbAAT2-4 and TbAAT10-1 affects ornithine, putrescine, and spermidine levels. Amino acid and
polyamine levels were determined after down-regulation of TbAAT2-4 (A), TbAAT10-1 (B), TbAAT10-2 (C), or TbAAT2-4/
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putrescine after TbAAT10-1 or TbAAT2-4/TbAAT10-1 down-regulation.

TbAAT10-1 was not reduced in the presence of histi-
dine, putrescine, or any other compound tested (Fig.
6D). Together, these results show that ThAAT10-1 is a
selective, high-affinity ornithine transporter, whereas
TbAAT2-4 transports both ornithine and histidine
with high affinity. The ornithine transport activity of
TbAAT10-1 explained the identification of this trans-
porter after suramin selection of the BSF T. brucei RNAi
library. Although TbAAT2-4 was not identified by sur-
amin selection of the BSF T. brucei RNAI library, our re-
sults indicate that it may also play a role in ornithine
uptake by these parasites.

TbAAT10-1 and TbAAT2-4 affect ornithine and
polyamine levels in trypanosomes

The comparable affinity for ornithine of the 2 transporters
when expressed in S. cerevisize implies a level of re-
dundancy for ornithine uptake in T. brucei, consistent with
the importance of polyamine biosynthesis to the parasite.
RNAi depletion of TboAAT2-4 or TbAAT10-2 had no effect
on intracellular amino acid and polyamine levels (Fig. 7A,
C), whereas specific down-regulation of TbAAT10-1 led
to a significant reduction in intracellular ornithine and
putrescine levels (Fig. 7B). Simultaneous depletion of
TbAAT10-1 and TbAAT2-4 led to a similar reduction in
intracellular ornithine and putrescine, but also resulted in
a significant reduction in intracellular spermidine (Fig.
7D). No differences were found in the concentrations of the
other amino acids tested (Supplemental Fig. 3). Together
with the data on growth rates, these data support the
view that TbAAT10-1 and TbAAT2-4 are the main orni-
thine transporters in T. brucei, and further highlight the
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reliance of T. brucei on exogenous ornithine for polyamine
biosynthesis.

Exogenous histidine influences ThAAT2-4-
mediated ornithine uptake in BSF T. brucei

The data above indicate that TbAAT10-1 and TbAAT2-4
play redundant roles in maintaining growth (compare the
growth defects in Figs. 2A and 4A and Supplemental Fig.
2). Given the affinity of TbAAT2-4 for histidine, we spec-
ulated that increasing the histidine concentration in the
growth medium would reduce ornithine transport by
TbAAT2-4, rendering the cells more sensitive to
TbAAT10-1 knockdown. We tested this hypothesis by
down-regulating TbAAT10-1 in the presence of 5 mM
histidine. As predicted, growth was substantially im-
paired after specific TbAAT10-1 knockdown in the pres-
ence of excess histidine (Fig. 8A). In contrast, excess
histidine had no effect on parasite growth after depletion
of TbAAT2-4 (Fig. 8B).

The relationship of TboAAT10-1, TbAAT2-4, and histi-
dine was further investigated in light of parasite sensitivity
to eflornithine. We reasoned that eflornithine hypersensi-
tivity observed after TbAAT10-1 depletion in BSF T. brucei
(Fig. 4C) should be further enhanced by the addition of
histidine, which would inhibit ornithine uptake by
TbAAT2-4. Because CMM contains histidine at a concen-
tration below that typically found in blood and in HMI-11
[~50 pM compared with 80-130 and ~240 puM, re-
spectively (36, 54)], we used this medium to test our hy-
pothesis. TbAAT10-1 down-regulation in CMM led to a
significant reduction in eflornithine ECs (Fig. 8C) that was
potentiated by addition of histidine, in a dose-dependent
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Figure 8. Histidine inhibits ornithine uptake by TbAAT2-4, but not by TbAAT10-1 in BSF T. brucei. A, B) Cumulative growth of
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manner (Fig. 8D). These data demonstrate that ornithine
uptake by TbAAT2-4 is dependent on the histidine con-
centration in the extracellular medium and that ornithine
uptake by both TbAAT10-1 and TbAAT2-4 reduce the
potency of eflornithine.

DISCUSSION

T. brucei is highly sensitive to perturbations in its spermi-
dine biosynthetic pathway and to subsequent changes in
polyamine and trypanothione levels. In parasitic trypa-
nosomatids, different approaches have evolved to address
their polyamine needs. These strategies reflect the levels of
available metabolites in their environments. In the in-
tracellular milieu which Leishmania and T. cruzi encounter
in the mammalian host, polyamines are abundant, al-
though most are bound to nucleic acids and proteins (16,
55). In contrast, extracellular T. brucei is in contact with
marginal concentrations of polyamines [0.3 uM (54, 56)]
and low levels of ornithine [50-100 and 4-6 pM in human
plasma and cerebrospinal fluid, respectively (54)]. Unlike
Leishmania and T. cruzi, T. brucei is not capable of high-
affinity transport of polyamines, although an uncharac-
terized low-affinity putrescine-uptake system is present in
T. brucei, as shown by our complementation experiments

ORNITHINE UPTAKE AND DRUG ACTION lPJ T. BRUC
Downloaded from www.fas

ebj.orgto ﬁ£ 194.80.229.244. The FASEB Journal Vol., No., pp:, August, 2017

(Fig. 3) and the dispensability of ODC in the presence of
exogenous putrescine (29). The absence of a high-affinity
polyamine uptake system but high intracellular levels of
polyamines in T. brucei [~1.1 mM putrescine and
~3.5 mM spermidine (37)], necessitates a highly active
biosynthetic pathway coupled with the efficient uptake of
polyamine precursors. Arginine is the precursor of poly-
amines in many prokaryotes and eukaryotes, but arginase
activity has not been detected in T. brucei by conventional
methods, instead metabolomic analyses provided evi-
dence that labeled arginine is metabolized into ornithine
via an unknown pathway (33). A growth defect observed
after down-regulation of TbAAT10-1 in the presence of
exogenous histidine (Fig. 8A), as well as a growth defect
after simultaneous RNAi depletion of TbAAT10-1 and
TbAAT2-4 (Fig. 2A and Supplemental Fig. 2), demonstrate
that neither direct uptake of polyamines nor noncanonical
arginase activities are sufficient to sustain growth of
ornithine-depleted T. brucei. Thus, high-affinity ornithine
uptake is crucial for this parasite.

In contrast to T. brucei, human cells are able to synthe-
size ornithine from arginine. Arginine is also a substrate
for nitric oxide synthase-2, an enzyme responsible for NO
production during microbial infections. In fact, pathogenic
trypanosomatids are known for their ability to induce host
arginase activity to evade the toxic effects of NO (57-60). In
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the case of T. brucei, evading NO does not seem the main
benefit, instead, a detailed investigation of this mechanism
suggested that the parasites induce arginase activity in
host myeloid cells to increase ornithine availability and
promote proliferation in vivo (61). Thus, ornithine uptake
and metabolism may play a crucial role in T. brucei
infections.

The high-affinity ornithine transporters described in
this study show how T. brucei is able to fulfill its high
demand for ornithine, even in environments where this
amino acid is scarce. To our knowledge, TbAAT10-1 and
TbAAT2-4 are the first high-affinity ornithine transporters
to be described in a parasite. Extracellular histidine levels
influence ornithine transport by TbAAT2-4 (but not
TbAAT10-1). At a high ratio of ornithine:histidine, orni-
thine enters the cell through both TbAAT10-1 and
TbAAT2-4, whereas ornithine import via TbAAT2-4 is
reduced at elevated histidine concentrations (Fig. 9).
Whether this reflects a bona fide regulatory mechanism
is unclear. Concentrations of ornithine and histidine in
the blood are comparable (50-100 and 80-130 uM, re-
spectively (54)), whereas, in cerebrospinal fluid, the orni-
thine concentration is lower than that of histidine [~5 and
20 pM, respectively (54)]. In both environments, TbAAT2-
4 is expected to contribute to ornithine uptake, although
the negative impact of histidine may be slightly more
pronounced in cerebrospinal fluid.

Studies on ornithine uptake in BSF T. brucei have sug-
gested an apparent affinity for ornithine of 310 pM (33),
different from the high-affinity transport mediated by
TbAAT10-1 and TbAAT2-4 when expressed in S.
cerevisige. Although we cannot exclude an influence of
the heterologous expression system, this discrepancy may
also be explained by the presence of both high- and low-
affinity ornithine transporters. Depending on the range of
ornithine concentrations used for kinetic studies in T.
brucei, the low-affinity transport system(s) may mask
detection of high-affinity uptake systems. Our data on
growth rates and intracellular concentrations of orni-
thine and polyamines suggest that the TbAAT10-1 and
TbAAT2-4 high-affinity systems are the main ornithine
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transporters in T. brucei. Only high (nonphysiologic)
concentrations of ornithine are capable of restoring par-
asite growth when both transporters are down-regulated,
supporting the presence of transport system(s) that me-
diate low-affinity ornithine uptake. In T. cruzi, an arginine
transporter (K, for arginine of 85 wM) was shown to
transport ornithine with low-affinity (K, of 1.7 mM) (62).
A contribution of such a low-affinity ornithine uptake
activity to parasite growth under physiologic conditions
is, however, very unlikely.

Our results demonstrate the importance of AAT10-1
and AAT2-4 to T. brucei polyamine homeostasis. Indeed,
the loss of these transporters and the resultant impaired
ornithine uptake resulted in reduced intracellular orni-
thine, putrescine, and spermidine levels and rendered the
parasite resistant to suramin and hypersensitive to eflor-
nithine. This result is consistent with roles for polyamine
biosynthesis in suramin efficacy (19) and for ornithine
supply in countering ODC inhibition and underscores the
complex interplay among transport, metabolism, and
drug action. Our findings not only increase knowledge on
parasite physiology, but also raise the possibility that tar-
geting ornithine uptake in T. brucei is a means of potenti-
ating the therapeutic efficacy of eflornithine.
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Supplementary Figure 1. Comparison of sequences of RNAi fragments with (A) TbAAT2-4
(Tb427.04.4020), (B) TbAAT10-1 (Tb427.08.8290) and (C) TbAAT10-2 (Tb427.08.8300). TbAAT10-
1_RNAi_1, RNAI fragment showing both down-regulation of TbDAAT10-1 and partial down-regulation of
TbAAT2-4; AAT10-1_RNAi 2, RNAi fragment resulting in selective down-regulation of ThbAAT10-1.
The latter has a lower overall identity to TbAAT2-4 (78% instead of 82%) and shorter conserved regions.
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Supplementary Figure 2. Simultaneous down-regulation of TbAAT2-4 and TbAAT10-1
leads to a growth arrest of BSF 7. brucei that can be rescued by ornithine. Cumulative
growth of BSF T. brucei following down-regulation of TbAAT2-4 and TbAAT10-1 (double
RNAI) in the presence or absence of 1 mM ornithine (Orn); RNAI induced in 1 pg ml!
tetracycline. Data points are mean values = SD from two independent clones. Inset,
transcript levels determined by qRT-PCR, shown as percentage of uninduced cells and
normalized to telomerase reverse transcriptase expression. Mean values + SEM from two

independent clones are shown.
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Supplementary Figure 3. Amino acid levels are comparable in induced and non-induced
TbAAT2-4, TbAAT10-1, TbAAT10-2 and TbAAT2-4/TbAAT10-1 T. brucei BSF RNAi
lines. Amino acid levels were determined one day following down-regulation of TbAAT2-
4 (A), TbAAT10-1 (B), TbAAT10-2 (C), or TbAAT2-4/TbAAT10-1 (D) in BSF RNAI lines
(1 pg ml! tetracycline). Mean values = SD from three technical replicates are shown,
except for TbAAT10-2 (one replicate shown). Comparable results were found when
samples were analysed using the polyamine quantification method and a representative

amino acid (arginine) is shown in Fig. 7. Pro-OH, hydroxyproline; C-C, cystine.



Supplementary Table S1. Closest homologs of TDAAT10-1. BLAST analysis of TbAAT10-1
(Tb927.8.8290) amino acid sequence revealed higher identity to a member of the TbDAAT2 subgroup,
Tb427.04.4020 (TbAAT2-4).

Gene ID AAT nomenclature [52] | Score | % Identity | % Similarity E value
Tb927.8.8290 AATI10 950 100 100 0
Tb927.4.4020 AAT2 705 73.461 83.65 0
Tb927.8.8300 AATI10 615 69.655 83.91 0
Tb927.8.7670 AAT7 607 63.341 78.96 0
Tb927.8.7600 AAT7 603 62.208 78.56 0
Tb927.8.7650 AAT7 603 64.502 79.87 0
Tb927.4.4010 AAT2 594 59.789 77.26 0
Tb927.4.3990 AAT2 593 59.789 77.26 0
Tb927.4.4000 AAT2 593 59.789 77.26 0
Tb927.4.4870 AAT4 586 64.444 80.89 0
Tb927.8.7630 AAT7 584 62.801 75.93 0
Tb927.8.7620 AAT7 583 62.582 75.93 0
Tb927.4.4830 AAT4 573 63.616 79.91 0
Tb927.4.4850 AAT4 573 63.616 79.91 0
Tb927.8.7610 AAT7 568 61.688 75.54 0
Tb927.8.7640 AAT7 568 60.934 74.73 0
Tb927.8.7680 AAT7 469 50.955 68.79 1.31E-162
Tb927.8.7700 AAT7 463 50.531 68.37 2.19E-160

Supplementary Table S2. Nucleotide identity of TbAAT10-1 (Tb427.08.8290) to the closest
T. brucei homologs identified by BLAST and ClustalO analysis.

Gene ID AAT nomenclature [52] % Identity to TbAAT10-1

Tb927.8.8290 TbAATI10-1 100

Tb927.4.4020 TbAAT2-4 74.72

Tb927.8.8300 TbAATI10-2 70.68




