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EXECUTIVE SUMMARY

Randomised Controlled Trials (RCTs) are well established as the preferred method for evaluat-
ing interventions. Unlike studies based on observational data, the randomisation of patients to
interventions means that a direct causal link can be made between an intervention and its effect.

In order to measure the effect of a treatment we need, at least, a measure of each patient’s
response at the end of the trial. More commonly, a series of responses will be measured at
baseline and throughout follow-up. Inevitably, it is not possible to collect all the intended data
on each individual. Unfortunately, as one might expect, simply analysing the data that were
collected without any further reflection generally leads to misleading conclusions. Specifically,
when the data are incomplete the causal link between intervention and response is broken.

We refer to data that we intended to collect, but for one reason or another were unable to, as
missing data. Anyone with practical experience of trials knows that missing data are ubiquitous.
Nevertheless, a recent survey of 383 parallel group trials showed that 69% did not report how
attrition was handled.

This monograph reviews the issues of raised by missing data in clinical trials, and describes and
illustrates a principled approach to analyses in such settings. It is divided into three parts.

Part I gives a non-technical overview of the issues raised by missing data. We propose a sys-
tematic approach to handling missing data in clinical trials, and discuss the implications of this
for design, ‘intention to treat’ and ‘per-protocol’ analyses. This leads to a critique of the current
Committee for Proprietary Medicinal Products guidelines for missing data, together with many
of the ad-hoc statistical methods often used by statisticians for the analysis of trials with miss-
ing data. We argue that analyses should be principled, that is, follow well-defined and accepted
statistical arguments, using models and assumptions that are transparent, and hence open to
criticism and debate.

When data are missing any attempt to draw conclusions from a statistical analysis rests on
untestable assumptions concerning the relationship between the unobserved data and the rea-
sons for them being missing (the missing value mechanism). In this way, missing data introduce
ambiguity into the analysis beyond conventional sampling imprecision and the assumptions be-
hind any such analyses form a crucial part of the argument behind any conclusions drawn. We
argue that primary analyses should rest on a central assumption about this relationship, the so-
called missing at random assumption. Broadly, this is the most general assumption that allows
valid analyses to be made independently of the missing value mechanism.

Part II shows how primary analyses in a range of settings can be carried out under the so-
called missing at random assumption. This assumption has a central role in underpinning the
most important classes of primary analysis, such as those based on likelihood. However, as
its validity cannot be assessed from the data under analysis, Part III outlines practical methods
for assessing the sensitivity of conclusions drawn from the analyses in part II to the missing at
random assumption. We compare and contrast the two main approaches to this in the literature,
again giving examples and code.

In summary:

• From the design stage onwards, our principled approach to handling missing data should
be adopted, and

• This monograph outlines how this principled approach can be practically, and directly,
applied to the majority of trials with longitudinal follow-up.
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ABSTRACT

Missing data in clinical trials — a practical guide

James R. Carpenter? and Michael G. Kenward

Medical Statistics Unit, London School of Hygiene & Tropical Medicine, UK
?Corresponding author

Objective: Missing data are ubiquitous in clinical trials, yet recent research suggests many
statisticians and investigators appear uncertain how to handle them. The objective of this mono-
graph is to set out a principled approach for handling missing data in clinical trials, and provide
examples and code to facilitate its adoption.

Data sources: An asthma trial from GlaxoSmithKline, a asthma trial from AstraZeneca, and a
dental pain trial from GlaxoSmithKline.

Methods: Part I gives a non-technical review of how missing data are typically handled in the
analysis of clinical trials, and outlines the issues raised by missing data. When faced with
missing data, we show no analysis can avoid making additional untestable assumptions. This
leads to a proposal for a principled, systematic approach for handling missing data in clinical
trials, which in turn informs a critique of current Committee of Proprietary Medicinal Products
guidelines for missing data, together with many of the ad-hoc statistical methods currently
employed.

Part II shows how primary analyses in a range of settings can be carried out under the so-called
missing at random assumption. This key assumption has a central role in underpinning the
most important classes of primary analysis, such as those based on likelihood. However its
validity cannot be assessed from the data under analysis, so in Part III two main approaches are
developed and illustrated, for the assessment of the sensitivity of the primary analyses to this
assumption.

Examples: Throughout, examples are used to illustrate the arguments and analyses. Code for
the analyses (mostly in SAS) is given in Appendix C. The end of each example is indicated with
a ‘¤’.

Results: The literature review revealed missing data are often ignored, or poorly handled in the
analysis. Current guidelines, and frequently used ad-hoc statistical methods, are shown to be
flawed. A principled, yet practical, alternative approach is developed, which examples show
leads to inferences with greater validity. SAS code is given to facilitate its direct application.

Conclusions: From the design stage onwards, a principled approach to handling missing data
should be adopted. Such an approach follows well-defined and accepted statistical arguments,
using models and assumptions that are transparent, and hence open to criticism and debate. This
monograph outlines how this principled approach can be practically, and directly, applied to the
majority of trials with longitudinal follow-up.
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Chapter 1

Missing data: principles

1.1 Introduction

Randomised clinical trials are now well established as the key tool for establishing the efficacy
of new medical interventions. Their widespread use, both as part of the formal drug licensing
process and more generally, has thrown up many statistical issues relating to their scope, design,
analysis and reporting. In 1998, these resulted in the International Council on Harmonisation
of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) issuing a
guideline on statistical methodology, known as ICH E9 (ICH E9 Expert Working Group (1999);
see also www.ich.org).

Through this guideline, the ICH seeks to achieve greater international harmonisation of the
statistical aspects of clinical trials in order to (i) make more economical use of the resources
(human, animal and material) involved, and (ii) to reduce unnecessary delay in the development
and availability of products internationally. At the same time safeguards and standards to protect
public health should be maintained. The guideline quickly became a key document for medical
statisticians, setting the statistical standards for clinical trials (Lewis, 1999). By setting down
principles, not procedures, it has ensured its continuing influence on statistical methods for
clinical trials.

The discussion on data analysis contains the following section (5.3) on missing data:

Missing values represent a potential source of bias in a clinical trial. Hence,
every effort should be undertaken to fulfil all the requirements of the protocol con-
cerning the collection and management of data. In reality, however, there will al-
most always be some missing data. A trial may be regarded as valid, none the less,
provided the methods of dealing with missing values are sensible, and particularly
if those methods are predefined in the protocol. Definition of methods may be re-
fined by updating this aspect in the statistical analysis plan during the blind review.
Unfortunately, no universally applicable methods of handling missing values can
be recommended. An investigation should be made concerning the sensitivity of
the results of analysis to the method of handling missing values, especially if the
number of missing values is substantial.

This guideline recognises that there will almost always be some missing data. Further, the
CONSORT guidelines for reporting clinical trials (Moher et al., 2001) state that the number of
patients with missing data should be reported by treatment arm. Nevertheless, Chan and Altman
(2005) estimate that 65% of studies in PubMed journals do not report the handling of missing
data. Further, a recent review by Wood et al. (2004) identified serious weaknesses in both
description of missing data and in the statistical methodology adopted. Together, these findings
suggest that trialists are unsure how to handle missing data, in both analysis and reporting, and
therefore reluctant to discuss it.

3
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This is perhaps surprising, as there is now a large literature on missing data, not only in clinical
trials but more widely (for example, see the bibliography at www.missingdata.org.uk). It sug-
gests a gap remains between clinicians and statisticians focused on running and analysing trials,
and those involved in more developmental research. The aim of this monograph is to address
this gap. We write with busy trials statisticians in mind, but also intend the early parts, which
deal with principles, will be accessible to a much wider range of those involved in trials, from
clinicians to data managers. This is because issues raised by missing data are wider than the
technical details of statistical analyses.

The aim of this Chapter is to give an accessible outline of the key principles that should be kept
in mind when considering missing data in trials. We seek to flesh out the early part of the ICH
E9 guideline, to equip readers to constructively discuss the issues raised by missing data. We
hope our examples will enable readers to relate the concepts to their own work.

We begin by discussing what we mean by ‘missing data’ and the issues it is likely to raise. We
then describe what we mean by sensible analysis with missing data, and discuss how this relates
to the ICH E9 statement that, despite missing data, ‘a trial may be regarded as valid’. As part
of this, we discuss statistical jargon which unfortunately often masks ideas that bear directly on
this.

We conclude by discussing the implications of missing data on the trial design, and on two
common analyses. In ICH E9 terms these are (i) the ‘full data analysis’ including every patient
who is randomised, to estimate the effect of intending to give patients a particular intervention,
and (ii) the ‘per-protocol’ analysis, which includes only that group of patients who comply1

with the intervention, to estimate its actual effect.

1.2 What do we mean by missing data

In a trial context, missing data are data we intended to collect, but for one reason or another did
not. By this, we do not mean ‘counter-factual’ data, e.g. the response a patient might have given
if they were randomised to the active drug instead of the placebo.

Consider a typical clinical trial, where patients are observed at the start (baseline), randomly
allocated their treatment, and then followed up at a number of visits. Data could then be missing
at baseline, and at one or more of the follow-up visits.

At baseline or follow-up visits, specific readings could be missing, perhaps because a machine
has broken down. Or it may be that all the data from a particular baseline or follow-up visit are
missing because a patient was not present. The patient may return for future follow-up visits,
or may withdraw.

We distinguish three broad occurrences:

1. If a patient missed a follow-up visit but attended at least one subsequent follow-up visit,
we refer to the resulting missing data as interim missing data.

1Strictly, who comply with the intervention to the minimum extent required by the protocol.
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2. If a patient is no longer seen after a certain follow-up visit, we say the data is missing due
to withdrawal.

(a) In some trials, when a patient stops complying with the intervention they will be
withdrawn and subsequent follow-up data will be missing.

(b) In others, follow-up will continue, at least for an initial period after compliance
stops.

When we talk about ‘missing data’, the ideas relate to all these settings. However, the details of
the statistical analyses vary. To keep the language simple below, we use the term withdrawal to
refer to situation (2a) above, and give further details when we are considering situations such as
(2b). In the literature, the terms dropout, attrition and loss to follow-up are also used, typically
fairly synonymously with withdrawal.

We begin by focusing on withdrawal, which in our experience is the source of most missing
data and most directly affects the interpretation of the trial results.

1.3 Trial validity and sensible analyses

The ICH E9 guideline says that despite missing data, a trial may still be valid, provided the
statistical methods used are sensible. On reflection, it becomes apparent that the terms ‘valid’
and ‘sensible’ should mean the same whether or not there are any missing data2. We now
consider this further.

We refer to a group of patients with a particular disease as a patient population. Suppose this
population may benefit from a new intervention. A trial is set up, and patients recruited from
this population are randomly allocated to either the new or the best existing intervention.

Suppose the trial found that average survival was one year longer with the new intervention.
Broadly speaking, if we can infer that using the new intervention in the patient population will
improve survival by 1 year, we say the trial is valid. For this to be the case, as described in the
ICH guidelines, a substantial number of conditions need to be satisfied. From our viewpoint,
the statistical analyses must be appropriate, so that

1. any variation between the intervention effect estimated from patients in the trial and that
in the population is random. In other words it is not systematically biased in one direction;

2. as we include more and more patients from the population in our trial, the variation be-
tween the intervention effect estimated from patients in the trial and that in the population
gets smaller and smaller. In other words, as the size of the trial increases, the estimated in-
tervention effect homes in on the true value in the population. Such intervention estimates
are called consistent in statistical jargon, and

2The term ‘external validity’ is often used in this context. For the results of a trial to have external validity,
the analysis must be sensible. Additionally, however, external validity may require certain conditions on the
representativeness of the patient population and those recruited into the trial.
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3. our estimate of the extent of variability between the trial intervention effect and the true
effect in the population (in statistical terms, the standard error) is accurate.

If all these conditions hold, we follow the ICH E9 guideline and call an analysis sensible3.

We assume that the trial was validly designed and run. Then, if data are missing, drawing valid
conclusions depends on sensible statistical analyses. Such analyses may well be different from
complete data analyses and will usually require additional assumptions. They may be more
difficult. Further, as data are missing, we are in effect missing information which we would
otherwise use to estimate the effect of intervention. Thus, conclusions will be less precise.
They can nevertheless be valid, in the sense described above.

1.4 How much should we bother about missing data?

This is almost the first question asked by trialists when faced with missing data. The sub-text
is usually ‘given these missing data, is the originally planned full-data analysis acceptable’?
Although it would be nice to think a universal cut-and-dried answer could be given, the variety
of trial designs, and occurrences of missing data, make this unrealistic. Consider the following
examples.

EXAMPLE 1.1 Trial with binary outcome

Imagine a trial where patients with known outcomes respond as shown in Table 1.1. The odds
ratio in favour of treatment B is 2.41 (95% CI 1.34–4.32), so the data support the hypothesis
that B is preferable.

Treatment A B

Good outcome 50 70
Poor outcome 50 29

Table 1.1: Hypothetical trial: number of patients with good/poor outcomes in treatment groups
A and B

Now suppose there are 2 further patients (one receiving treatment A and the other B) whose
outcomes are missing. Whether these outcomes are ‘Good’ or ‘Poor’ will not change the con-
clusions.

Conversely, if there are 30 further patients with missing outcomes then, depending on both the
treatment to which these 30 were allocated and their unknown outcomes, combining these with
the data in Table 1.1 could lead to very different conclusions. ¤

3 We also want our estimates of confidence intervals and p-values to have the correct properties. Thus, a 95%
confidence interval, estimated from trial data, should include the true intervention effect in the population from
which the patients are drawn in 95% of trials. Likewise, if a p-value is < 0.05, the chance of the observed trial
intervention effect occurring by coincidence if there is no intervention effect in the patient population is less than
5%. However, these usually follow if the above conditions hold.
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EXAMPLE 1.2 Asthma trial

Busse et al. (1998) report the results of randomising 473 patients with chronic asthma to either
a placebo or 200, 400, 800 or 1600 mcg of budesonide daily. The two outcome variables of
particular interest were forced expiratory volume in 1 second (FEV1) and peak expiratory flow
(PEF). FEV1 represents the maximum volume of air, in litres, an individual can exhale in one
second. It was recorded at clinic visits at baseline, 2, 4, 8 and 12 weeks after randomisation.
PEF represents the maximum rate an individual can exhale air, in litres per second. It was
recorded by individuals twice daily at home.

Treatment efficacy was assessed using FEV1 and PEF. Table 1.2 shows the number of patients
randomised to each treatment group, and how many remained in the trial at each scheduled
visit. Amongst patients who completed, in the placebo arm the average FEV1 was 2.072 litres,

Treatment Number Number Number Number Number
group: Randomised at week 2 at week 4 at week 8 at week 12

Placebo 92 82 57 42 34
200 mcg 91 91 81 75 68
400 mcg 93 92 91 86 80
800 mcg 99 97 94 91 84
1600 mcg 98 97 94 90 88

Table 1.2: Number of patients randomised to each treatment group, and number remaining in
the trial at each scheduled clinic visit

while in the 1600 mcg dose arm it was 2.324 litres. Comparing these two arms, the baseline
adjusted estimate of treatment difference is 0.377 litres (s.e. 0.0974) which is highly significant
(p = 0.0002).

Is the intention to treat patients with 1600 mcg beneficial? It depends on what happened to
those who withdrew. If we assume patients who withdrew in the placebo arm would, had they
continued, all have had FEV1 lower than their last one, while those who withdrew in the 1600
mcg arm would all have had higher FEV1 than their last one, then treatment is beneficial. More
plausibly, patients’ missing data could be closely related to their responses prior to withdrawal.
In this case one cannot be confident the treatment is beneficial without a more detailed analysis.

Suppose we are instead interested in the ‘per-protocol’ treatment effect, that is the effect of
treatment had all patients complied with the protocol throughout the trial. Should we only
include in the analysis those who did not withdraw, or is this likely to be over optimistic? ¤
Both examples illustrate the same points. The number, or proportion, of missing observations
alone is not sufficient to indicate whether missing data are an issue or not. Rather their impact
is determined by

1. the question;

2. the information in the observed data, and

3. the reason for the missing data.
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The question usually focuses on estimating the effect of intending to give patients a particular
intervention, or estimating the ‘per-protocol’ (loosely, actual) effect of an intervention. As the
examples illustrate, the information in the observed data depends not only on the question, but
also crucially on the reason for the missing data. As one would expect, this point turns out to
be at the heart of statistical analyses for partially observed data.

All who have been faced with missing data know that the uncomfortable truth is that, while
we may have some knowledge about why data are missing we do not usually know for certain.
So missing data bring a fundamental ambiguity into the analysis of an RCT. This ambiguity is
different from the imprecise estimate of intervention effects due to sampling variation. We are
in control of how many patients enter the trial and we randomly allocate them to intervention.
We are not usually in control of when and why data are missing.

The above discussion also shows that one cannot make universal recommendations on how
to proceed based on the proportion of missing data. The error induced by a given proportion
of missing data depends critically on the context. For example, if an event (e.g. death or a
serious side effect) is rare, missing data on very few patients can markedly alter estimated event
rates. Also, if the proportion of patients withdrawing varies by intervention arm, estimated
intervention effects are more likely to be affected than if patients withdraw independently of
intervention. Missing data also cause errors in estimation of the standard error. Often, patients
who remain are too similar, resulting in an overly precise estimate of the intervention effect.
Thus, missing data on even relatively few patients may alter the conclusions.

In summary, errors arise when the intended full data analyses are carried out and interpreted as
if there were no missing data. It is not possible to give any general rule relating the proportion of
missing data to the size of these errors. Instead of adopting ad-hoc rules for various situations,
a systematic approach is needed. The following example emphasises this.

EXAMPLE 1.3 Stent vs Angioplasty trial

Savage et al. (1997) randomised 220 patients, whose coronary bypass graft had become ob-
structed, to either balloon angioplasty or stent insertion. Table 1.3 summarises the results;
restenosis (re-obstruction of the artery) is the poor outcome. Among those whose outcome is
known, the odds ratio in favour of stent insertion is 0.69 (95% CI 0.37–1.28). However, the
outcome is unknown for 54 patients.

The ambiguity introduced by the patients whose outcome is unknown is illustrated in Table 1.4.
This shows the results that would be seen if

1. in each treatment group, unknown outcomes had the same proportion of a good results as
the known outcomes;

2. all unknown outcomes were poor;

3. all unknown outcomes were good, and

4. in the stent group, unknown outcomes were 30% more likely to be good than known
outcomes, whereas in the angioplasty group, unknown outcomes had the same proportion
of good results as known outcomes.
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Stent Angioplasty

No 54 43
Restenosis

Yes 32 37
Unknown 24 30

Total randomised 110 110

Table 1.3: Results of RCT comparing angioplasty with inserting a stent among patients whose
coronary bypass graft has become obstructed. Restinosis is a poor outcome

Assumption 1
Stent A’plasty

Good 69 59
Poor 41 51

Total 110 110

Odds ratio: 0.69
95% CI: 0.40–1.18

Assumption 2
Stent A’plasty

54 43
56 67

110 110

Odds ratio: 0.67
95% CI: 0.39–1.14

Assumption 3
Stent A’plasty

78 73
32 37

110 110

Odds ratio: 0.81
95% CI: 0.46–1.43

Assumption 4
Stent A’plasty

74 59
36 51

110 110

Odds ratio: 0.56
95% CI: 0.32–0.97

Table 1.4: Trial results under assumptions 1–4 above

Table 1.4. underlines how the missing outcomes have limited the the extent to which the trial can
inform clinical practice. In fact, depending on the actual outcomes of the unobserved patients
the results could decisively favour either treatment.

This example also shows how, with missing data, extra assumptions about the reasons for the
missing data underpin all analyses. We might feel the reason we have lost track of the patients is
down to chance and has nothing to do with the outcome. Thus, in each treatment arm we might
follow assumption (1) above. In this case, the estimated treatment effect remains unchanged.
However, the effect of our assumption is that we obtain a narrower confidence interval.

On the other hand, if we feel pessimistic, we might assume the reason we have lost track of
patients is because they have died. Thus we treat all unknown outcomes as poor (assumption
(2)). Perhaps unexpectedly, the odds ratio in favour of stent is now 0.67, less than that using the
observed data alone. This illustrates how assumptions about missing data may have unexpected
effects. The opposite ‘optimistic’ assumption (3) — that all patients with unknown outcomes
are better and so have not bothered to return to hospital — reduces the evidence in favour
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of stent. Then again, experience might lead us to believe that the reason a patient’s outcome is
unknown is more likely to be good for those patients who have had a stent inserted. Assumption
(4) is an example of this. Under this assumption the data are consistent with preferring stent.

In the light of the wide range of conclusions it is possible to draw from this trial under various
assumptions, it may be tempting to conclude that trials with non-trivial degrees of missing data
must be discarded. However, although some information is irretrievably lost, we can salvage
something. The success of the salvage operation depends on (i) the extent to which we can
identify a set of plausible reasons, or mechanisms for the data being missing and (ii) the degree
to which conclusions are robust to these different reasons/mechanisms. For example, suppose
data could be missing for reasons A, B and C. If, under assumptions A, B and C in turn, sensible
analyses always show a significant treatment effect, then we can be confident of the treatment
efficacy, despite the missing data.

As we shall see below, often the data themselves indicate why information is missing. Thought-
ful design maximises the chance of this. Though such information is never definitive, it can
nevertheless be very useful. In other cases, there may be a degree of consensus amongst inves-
tigators or other experts about why data are missing, which will allow conclusions to be drawn.
Ideally, both sources of information are present.

The main focus of this book is on using information in the trial data, although we discuss the
use of expert opinion in §6.4. However, as this example illustrates, in order to arrive at useful
conclusions a more systematic approach needs to be adopted. ¤

1.5 Towards a systematic approach

We propose that a systematic approach begins with considering the reason, or mechanism,
which caused the data to be missing. As this plays a central role in our discussion, we refer
to it more succinctly as the missingness mechanism. We may think of the missingness mecha-
nism as a second stage of sampling. It samples from the data we intended to collect leaving us
with the data we actually observe. Now, if we do not know how individuals came to be included
in a study, or selected for intervention, we cannot draw definite conclusions from the study. Sim-
ilarly, as discussed above, unless we know the ‘missingness mechanism’, we generally cannot
draw definitive conclusions.

However, in discussion with investigators and/or regulators, and by examining the observed
data, we can often come up with one or more likely missingness mechanisms. In an asthma
study, for example, it may be those with additional complications at baseline are more likely to
withdraw.

Then, it turns out that there are two broad approaches for incorporating into the analysis the
necessary extra assumptions that must be made when data are missing. We outline these below,
and illustrate them by considering a trial with no missing data up to and including the penul-
timate follow-up visit, but some missing data at the final follow-up visit. We suppose interest
focuses on the estimated intervention effect at the final visit.

The first approach focuses on the details of the missingness mechanism. Specifically, after
taking account of all the information about the missingness mechanism in the observed data, it
considers how the missingness mechanism depends on the unseen data. This then informs the
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probability distribution of the missing data, and thus the analysis. The focus on the mechanism
by which the data become missing (or alternatively are selected for observation) leads to the
term selection modelling for this approach. Taking the example from the previous paragraph,
we would first consider how the reason for missing the final visit depended on previous visits
and baseline data. Then we would consider how, in addition to this, the missingness mechanism
might depend on the unseen measurement. This then affects the probability distribution of the
missing data, and thus the estimated intervention effect at the final visit.

The second approach focuses on the possible distribution of the missing data given the observed
data. In the example, this means focusing on whether the distribution of patients’ unseen ob-
servations at the final visit, given their observations at previous visits and baseline, is different
from that seen among the patients who have no missing data. In other words the focus is on
whether the ‘pattern’ of the data is the same in patients who do, and do not, have missing data.
To estimate the intervention effect at the end of the trial, we have to make an assumption about
how the patterns differ in the two groups of patients. This leads to an estimated intervention ef-
fect amongst those who do, and do not have, missing data, which has to be averaged, or mixed,
to arrive at the overall estimate of the effect of intervention. Hence the name for this is a pattern
mixture approach. Example 1.4 illustrates this in a simple setting.

Although both approaches appear different, we can actually go from one to the other, although
this is usually not straightforward (Molenberghs et al., 2003). Whichever approach we adopt,
we need to make assumptions about either (i) the missingness mechanism, or (ii) how the distri-
bution, or pattern, of missing data differs between patients we actually observed and those we
intended to observe, but did not. Note that (i) implies things about (ii) and vice versa. We term
these assumptions the missing data model.

If we adopt a missing data model, we can then determine a sensible analysis and draw conclu-
sions. These conclusions will be correct if our adopted missing data model is correct. However,
if it is not correct, the conclusions will generally be wrong. We can then adopt another missing
data model, and re-analyse the data. In fact, we can repeat this process as often as we wish.

A more systematic, and informative, approach is as follows. Either before the trial is conducted,
or during a blind review of the data, the trialists meet and discuss various missing data models
that may be appropriate. Ideally, there will be agreement on the relative plausibility of these
missing data models. Then, under each missing data model, the statistician can plan a sensible
analysis. After the blinding is broken, these analyses are performed. The results reflect the
range of conclusions that are consistent with the observed data and the assumed models.

Taking these conclusions and the relative plausibility of the missing data models together, the
trial can be interpreted as follows:

1. Under the most plausible missing data model, a, we conclude A.

2. Under a range of similar missing data models, b,c,d, we conclude B, C, D.

3. Under slightly different missing data models, e, f ,g, which cannot be ruled out, we con-
clude E, F, G.

In line with ICH E9, a valid interpretation of the trial, which explores the sensitivity of the
conclusions to the missing data models, presents all these analyses. Hopefully, and quite often
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in our experience, the conclusions will not be too sensitive to the more plausible missing data
models. A valid interpretation of the trial would then be to act on the basis of the common
themes running through conclusions A–D, possibly in a way that minimises the risk to patients
if E–G turn out to be correct.

Investigators discuss possible missingnesss mechanisms,

informed by the information available in the data. 

They rank their plausibility. 

Under most plausible missingness Under similar missingness Under least plausible missingness

Draw conclusions

Perform sensible statistical analysis

Draw conclusions

Perform sensible statistical analysis

Draw conclusions

Perform sensible statistical analysis

Investigators discuss conlcusions

Arrive at valid interpretation of the trial

model, say models, say b, c, da models, say e, f, g

Figure 1.1: A systematic approach for analysing a trial with missing data

Figure 1.1 shows this approach. As discussed above, although the observed data usually cannot
definitively identify the missing data model, they can often provide useful guidance about what
is and is not plausible, in the given trial context. Thus, careful analysis of the data should play
an important role in formulating missing data models. At the design stage, data from similar
previous studies may be used. Data from blind reviews may also provide useful information.
We consider design issues and interactions with the regulatory authorities further at the end of
this Chapter.

As the missing data model is only ever a working proposition under which the analysis is per-
formed, we regard considering the effect of several missing data models on the conclusions
of the analysis as an essential part of the analysis process. Following ICH E9, we call this
sensitivity analysis.

This approach is fundamentally different from common practice where the analyst regards miss-
ing data as a ‘problem’ and casts around for a ‘solution’, usually a computationally simple
procedure. Once the data have been analysed using this procedure the problem is regarded as
having been ‘solved’. Such an approach is contrary to ICH E9, and may well lead to misleading
conclusions.

Statisticians and programmers will notice we have deliberately avoided discussing what is com-
putationally feasible. This is because we believe that the principles of the analysis should be
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laid down before turning to computational and methodological issues. Although at first sight
our approach might appear much harder work for the statistician, often analyses under slightly
different missingness mechanisms are quite similar from one trial to another, allowing programs
to be reused with relatively minor changes.

Our proposed approach may give sharper conclusions than the practice of replacing each miss-
ing observation with either a best or worst value, seeking that combination which gives the
smallest estimated intervention effect. We do not believe this makes it misleading, though.
Rather, best/worst values, which often represent extremely implausible, degenerate4 probability
distributions for the missing data, are more likely to mislead.

When analysing a trial without missing data, we do not cycle through a series of analyses
presenting only the one giving the strongest or weakest estimated intervention effect. Instead,
at the design stage we plan the analysis which will hopefully give the most sensible estimate of
the intervention effect. After the trial, we report the results of this analysis.

In the same way, when anticipating missing data (preferably at the design stage but possibly at
a blind review of the data) we believe it is sensible to discuss possible missingness mechanisms
and missing data models. These should take into account any information present in the data.
Such information very often shows that the best/worst value approach (two paragraphs above)
gives rise to extremely implausible results for individual patients. Once missing data mecha-
nisms and models have been identified, sensible analyses can be planned to give estimates of
the intervention effect, and valid conclusions drawn.

1.6 Missing data mechanisms

We now discuss possible missingness mechanisms in more detail. In terms of their implication
for the analysis, we shall see they fall into three broad classes. This is encouraging, as it suggests
that the approach outlined in Figure 1.1 is practical. In the statistical literature, these classes are
given names like ‘missing completely at random’, ‘missing at random’ ‘missing not at random’
and ‘(un)ignorable’. These are supposed to be succinct summaries of the analysis implications
of a missingness mechanism belonging to one of these classes, and were introduced by Rubin
(1976). We discuss these classes in a trials context.

1.6.1 Missing completely at random

Suppose the missingness mechanism is unrelated to any inference we wish to draw about the
intervention effect. For example, some observations may be missing because of equipment
failure in the clinic, or because a member of staff was ill, or because a patient was unable to
attend for some reason not related to his/her illness or its intervention (e.g. his/her child was
unwell).

Such events are as likely to occur for one patient as for another, whatever their disease severity
or intervention. Thus the average effect of intervention will be the same among those who do,
and do not, have missing data. This means that estimating the effect of intervention from those

4A probability distribution which says a single particular value is certain to occur is termed degenerate. With
missing data, all we can estimate is the distribution of the missing data given the observed data, under certain as-
sumptions. Imputing a single, worst/best value, usually therefore implicitly assumes a very implausible degenerate
distribution for the missing data given the observed data.
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who do not have missing data will give a sensible estimate of intervention effect. It is as if, after
randomising the patients to intervention, we further randomly decide who to observe.

Data that are missing for reasons unrelated to any inference we wish to draw about the interven-
tion are called missing completely at random or MCAR. As we argued above, with data MCAR,
analysing only those with fully observed data gives sensible results. Of course, the results are
inevitably less precise than if the full data had been observed.

EXAMPLE 1.2 Asthma trial (ctd)

Table 1.5 shows the mean and standard error at week 2 of the 91 patients randomised to 200
mcg of budesonide. It also shows the mean and standard error in 5 situations when 10 of these
91 observations are MCAR. In each of these 5 cases, the data consists of 81 observations drawn
randomly from the full set of 91. In all cases, the mean is close to 2.170 litres, the value in
the full data. This illustrates that if data are MCAR, analysing only the observed data gives
sensible results. However, notice that in all cases, the estimated variability of our intervention
estimate (the standard error of the mean) is larger than that for the full data. This illustrates that
information is lost if data are MCAR.

Lastly, the right hand column shows the mean and standard error when the 10 largest observa-
tions are omitted. Here the bias is obvious, and the standard error decreases. This shows what
happens when, despite missing data, only the planned full data analysis is carried out. This
implicitly assumes missing data are MCAR. If they are not, results may be misleading. ¤

Full data 10 obs MCAR Missing 10
91 obs case 1 case 2 case 3 case 4 case 5 largest obs

mean (litres) 2.170 2.196 2.167 2.154 2.160 2.137 2.002
standard error: 0.078 0.081 0.085 0.085 0.083 0.081 0.066

Table 1.5: Illustration of the effect of data missing completely at random. Data from week 2
follow-up of the 200 mcg arm of the asthma trial. As in Example 1.2, the outcome is patient
FEV1

1.6.2 Is MCAR likely in practice?

We have seen that when data are MCAR, we can set the details of the missingness mechanism to
one side and analyse the observed data. That is to say, a sensible analysis simply includes only
those patients who have complete data on the variables needed for that analysis. All we have
lost is some information.5 We therefore need to consider whether MCAR is likely in practice,
and how we might detect it. Recall that the definition of MCAR data is that the missingness
mechanism is unrelated to anything we wish to infer from the data. Assuming that reasonably

5As discussed in later chapters, depending on whether covariates or outcomes are MCAR, it may be possible
to use partial observations and recover some of this information.
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careful follow up arrangements are in place, it follows that the proportion of patients with data
MCAR is likely to be small. Further, this proportion will not vary with any of the observed
covariates (e.g. intervention group, sex, age, illness severity).

Unfortunately, these points are only consistent with MCAR, they are not sufficient to show
that data are definitely MCAR. For example, there could be a variable related to intervention,
associated with the chance of a patient withdrawing, which was not measured. In the asthma
study, withdrawal of hayfever sufferers might depend on the local pollen count. Withdrawal
may be unassociated with any of the data recorded. Thus, if local pollen count is not recorded,
data may appear MCAR. But they are not MCAR. Rather, as high local pollen count exacerbates
a patient’s asthma, we are left with data from patients who either do not have hayfever, or whose
hayfever is better controlled. This is a non-random sample of those enrolled in the study.

An extreme example of this would be if withdrawal depended on a sudden, unpredicted, change
in the response, e.g. a sudden deterioration in FEV1. Again, looking at the observed data,
patients may appear to be MCAR, but in fact patients who withdraw are systematically different
from those who do not — just in an unobserved way.

The last two paragraphs underline how the extra assumptions required for an analysis when data
are missing cannot be verified from the data. In spite of what our observed data may suggest,
we can never be sure that data are MCAR. Nevertheless, the observed data can rule out MCAR.
We can investigate whether there is any relationship between observed data and the occurrence
of missing data. If there is, data are not MCAR. We can investigate this more formally. For an
example in a longitudinal context, see Diggle (1989).

EXAMPLE 1.2 Asthma trial (ctd)

Are patients MCAR in the asthma trial?6 From Table 1.2 the chance of a patient staying in
the trial to the end clearly depends on treatment; those in the placebo or lowest dose arm are
much less likely to complete. A chi-square test confirms this, p < 0.001. Patients are clearly not
MCAR. Of course, patient withdrawal may also depend on other factors besides treatment. ¤

1.6.3 Missing at random

In practice trial data are rarely MCAR. Usually there is an association between the chance
of patient withdrawal and observations — typically intervention, baseline and (in longitudinal
follow-up) measurements prior to withdrawal. In this case, it is not sensible to include in the
analysis only those with complete data.

For example, suppose that worse health at baseline is associated both with increased risk of
withdrawal and poor response to intervention. Analysing data from the patients who remain to
the end of the trial will thus give an over optimistic view of the intervention effect. However, if
we can identify those variables which are associated with an increased risk of withdrawal, we
can carry out a sensible analysis. We illustrate this key idea with the asthma trial.

EXAMPLE 1.2 Asthma trial (ctd)

In the placebo arm, only 35 out of 92 patients completed the trial. The average FEV1 of the 92
patients at the start of the trial was 2.050 litres. Suppose we are interested in the FEV1 at 12

6This is a minor abuse of our definitions: more strictly, is the reason for patients’ withdrawal (and hence their
unseen responses) in the ‘MCAR’ class — i.e. independent of anything we wish to make inferences about.
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weeks, and whether there is any evidence of a ‘placebo effect’ whereby patients taking a drug
improve, even though their drug contains no active ingredients.

If we believe the patients are MCAR at 12 weeks, then a valid estimate of the average FEV1 at
12 weeks is obtained from the 35 who complete. Their average is 2.072 litres, suggesting no
placebo effect.

However, we need to check if MCAR is plausible. So we need to look to see if any variables
in the data are associated with withdrawal. As one suspects that patients with worse asthma
initially are more likely to withdraw, an obvious place to look is baseline FEV1. Suppose we
classify baseline FEV1 as ‘low’ if it is below 2.015 litres and ‘high’ otherwise. Table 1.6 shows
how patients with low FEV1 at baseline are much more likely to have withdrawn by 12 weeks.
An analysis that assumes MCAR is not sensible.

Baseline FEV1

low high

present 15 20
At 12 weeks

absent 31 26

Table 1.6: Proportion of placebo patients who have withdrawn by 12 weeks, by baseline FEV1

However, suppose the 15 patients with low baseline FEV1 who we see at 12 weeks are drawn
randomly from the 46 patients with low baseline. In other words, within the group of patients
with low baseline FEV1, patients are MCAR. Then, for those patients with low baseline, a
sensible estimate of the average 12 week FEV1 is given by averaging the 12 week values for the
15 patients who we see. This is 1.861 litres.

Likewise, suppose the 20 patients with high baseline FEV1 who we see at 12 weeks are drawn
randomly from the 46 patients with high baseline. Arguing in the same way, for those patients
with high baseline, a sensible estimate of the average 12 week FEV1 is given by averaging the
12 week FEV1 for these 20 patients who we see. This is 2.230 litres.

Figure 1.2 shows this graphically. At 12 weeks, we assume that we observe a random selection
of the patients in the ‘low’ and ‘high’ group. A sensible estimate of FEV1 at 12 weeks within
these groups is therefore the average of the observed values in these groups.

The overall average 12 week FEV1 can thus be sensibly estimated by averaging the estimates
from the ‘low’ and ‘high’ groups, allowing for there being 46 patients in the low group and 46
in the high group. This is

46×1.861+46×2.230
92

= 2.046 litres.

Comparing this with the average baseline FEV1 of 2.050 litres, confirms that there is no evi-
dence of a ‘placebo effect’. ¤
The key steps in the above example are:
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Figure 1.2: Graphical illustration: within the two groups defined by ‘low’ and ‘high’ baseline
FEV1, we assume that we observe a random selection of patients at 12 weeks

1. identify a fully observed variable whose values predict the occurrence of missing data;

2. within groups defined by this variable, assume data are MCAR;

3. within these groups, sensible estimates can thus be obtained from the observed data, and

4. to obtain a sensible estimates overall, average the estimates from the groups in (3), allow-
ing for there being different numbers of patients in the different groups.

When we can find fully observed variables which define groups within which the data are
MCAR, we say data are missing at random (MAR). In the asthma trial, within the two base-
line FEV1 groups, response at 12 weeks is MCAR. The expression ‘MAR’ is thus a convenient
shorthand. Instead of saying ‘assume there exists a variable, say baseline FEV1, and that among
those with the same baseline FEV1, the FEV1 at 12 weeks is MCAR’ we can just write ‘assume
FEV1 at 12 weeks is MAR’.

The asthma example also enables us to introduce the term conditional, common in missing data
literature. Instead of saying ‘among those with the same baseline FEV1, the FEV1 at 12 weeks
is MCAR’ we say conditional on baseline FEV1, the FEV1 at 12 weeks is MCAR.

Before going on, we underline an aspect of MAR data implicit in what has gone before. In
the asthma study, we wanted an overall average 12 week FEV1, not an average in the ‘low’
and ‘high’ baseline group. We call this overall average marginal. If no patients withdrew, the
marginal average is simply the average of the values for the 92 patients.

With MAR data, averaging the values of the 35 patients who do not withdraw is wrong. We can
no longer go directly to the marginal average. Instead we have to calculate averages conditional
on baseline, and then take a further step to estimate the marginal average.
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We repeat the previous paragraph more abstractly. If values of a variable Y are MAR, then
statistics calculated using only observed values of Y, (e.g. mean, standard deviation, confidence
intervals, p-values) are wrong. As values are MAR we cannot go directly to marginal statis-
tics. Suppose that conditional on the fully observed variable X , Y is MCAR. Then we have
to calculate statistics conditional on X , and then take a further step to estimate the marginal
statistics.

Generally, variables that we condition on do not have to take on discrete values (as baseline
FEV1 was forced to in the example above). When we are interested in averages, and have
quantitative variables, we can condition using regression. The regression of Y on X estimates
the average of Y conditional on X . To do this it estimates the numbers α and β so that

average value of Y = α +β ×X . (1.1)

For example, if α = 1 and β = 2, then the average value of Y conditional on X = 5 is 1+2×5 =
11.

We now use the same idea from the asthma example again. Recall that Y is partially observed, X
fully observed, and conditional on X , Y is MCAR. We estimate α and β by fitting the regression
to the subset of individuals on whom both Y and X are observed. Once we have α and β we can
use (1.1) to get the conditional average of Y for each value of X for which Y is missing. Then
we average these conditional values with the observed Y values to give the marginal average of
Y.

EXAMPLE 1.2 Asthma trial (ctd)

Above, we split baseline FEV1 into two groups to introduce the ideas. However this is not
necessary. Suppose 12 week FEV1 is MAR; specifically that conditional on baseline FEV1, 12
week FEV1 is MCAR. Then we can estimate the average 12 week FEV1 conditional on a value
of baseline FEV1 by fitting the regression model

Average 12 week FEV1 = α +β ×baseline FEV1

to the 35 patients on whom we observe both. Doing this, we find that

Average 12 week FEV1 = 0.923+0.535×baseline FEV1 (1.2)

Thus, conditional on a baseline FEV1 of 2.0 litres the average 12 week FEV1 is 0.923+0.535×
2 = 1.993 litres

The average 12 week FEV1 is obtained by (i) calculating the conditional 12 week FEV1 for
each of the 57 patients with missing 12 week FEV1, and (ii) averaging these 57 values and the
35 observed values. Numerically, this gives:

1
92
{(0.923+0.535×baseline FEV1 of 1st patient with missing 12 week FEV1)

+(0.923+0.535×baseline FEV1 of 2nd patient with missing 12 week FEV1)+ · · ·
+(0.923+0.535×baseline FEV1 of 57th patient with missing 12 week FEV1)
+12 week FEV1 of 1st patient with observed 12 week FEV1 + · · ·
+12 week FEV1 of 35th patient with observed 12 week FEV1}

= 2.109 litres.
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So, assuming 12 week FEV1 is MCAR given baseline FEV1, a sensible estimate of average 12
week FEV1 is 2.019 litres, down from the baseline mean of 2.050 litres. This is more accu-
rate than the estimate obtained before, when we lost information by splitting the quantitative
variable, baseline FEV1 into two groups, ‘high’ and ‘low’. ¤

Notice that if we say a partially observed variable is MAR, then that means that we have fully
observed variables, conditional on which the partially observed variable is MCAR. In other
words, conditional on these fully observed variables, the reason for the missing values does not
depend on the unobserved values themselves. This is the aspect of MAR that is usually men-
tioned in quick descriptions in the literature. We emphasise that this is a conditional statement.
If data are MAR, the reason for the missing values will often depend on the unseen values.
However, conditional on other fully observed values this association will be broken.

EXAMPLE 1.2 Asthma study (ctd)

Consider again the placebo arm of the asthma study. It is plausible that the probability of the 12
week FEV1 being missing is higher the lower the value of that (unseen) observation. Assuming
MAR though, conditional on a patient’s baseline FEV1, the probability of them being missing
at 12 weeks no longer depends on their FEV1 at 12 weeks. ¤

In summary, if we have a fully observed variable whose values affect the chance of seeing
missing data, those missing data are not MCAR. But, if conditional on this fully observed
variable, we assume the chance of seeing the partially observed variable does not depend on its
values, the data are MAR. The important word is assume. Usually we do not know whether
MAR is actually true or not.

The final implication of MAR is that the statistical distribution of potentially missing data is
the same (conditionally) for all patients who share the same observed data, whether or not they
withdraw. This is implicit in the example above, where in the placebo group we:

1. estimated the conditional distribution of week 12 FEV1 given baseline FEV1 from the 35
patients on whom both was observed;

2. assumed this distribution was identical in the 57 patients whose week 12 FEV1 was not
observed, and

3. then used this distribution to estimate the mean week 12 FEV1 for these 57 patients.

Or, more generally in a longitudinal study design, under MAR subjects who withdraw share the
same conditional statistical behaviour in their (unobserved) future, given their observed past, as
those who do not withdraw. It is this property that allows principled methods of analysis, like
those based on likelihood, to make the appropriate adjustments for withdrawal under MAR.

EXAMPLE 1.2 Asthma study (ctd)

In the previous example, we fitted the regression relating average 12 week FEV1 to baseline
FEV1, equation (1.2). Implicit in this is that, amongst the 35 patients with both 12 week and
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baseline observations, the conditional distribution of a patient’s 12 week FEV1 given their base-
line FEV1 is x, say, is normal, with estimated mean 0.923 + 0.535x, and estimated variance
0.213.

The MAR assumption means that the distribution of 12 week FEV1 given baseline FEV1 for the
57 patients with missing 12 week FEV1 is the same, and that its parameters are consistently7

estimated by values given above, which are calculated using the data from the 35 patients on
whom both are observed. ¤

This facet of MAR means that (assuming data are MAR) joint modelling of complete and par-
tially observed response data, conditional on fully observed data, is a natural way to approach
the analysis. This motivates the approach we develop in Chapter 3.

1.6.4 Missing not at random

If data are neither MCAR nor MAR, then they are missing not at random (MNAR). Such data
are also often referred to as not missing at random (NMAR) or informatively missing (IM) or
non-ignorable. This means that, even given the information about the missingness mechanism
in the fully observed data, the reason for an observation being missing still depends on the
unseen value of that observation.

EXAMPLE 1.2 Asthma trial (ctd)

Patients are MNAR from the placebo arm at 12 weeks if conditional on their baseline FEV1,
the chance of their being present at 12 weeks still depends on their FEV1 at 12 weeks. ¤

Estimating effects when data are MNAR is much more difficult. This is because we now need
to either (i) describe the statistical relationship between the chance of seeing a variable and
its (unseen) value or (ii) describe how the distribution of the data differs among patients with
missing observations. Clearly the observed data can tell us nothing definitive about either of
these. As mentioned above, when data are missing there can be no definitive analysis. It is
important therefore to remember that the move from an MAR to MNAR analysis does not
necessarily bring us nearer the “truth”. One is not searching for the “correct” MNAR model;
it will never be identifiable. Rather, such models are a vehicle for expressing in a formal, and
ideally transparent way, possible departures from the MAR assumptions which can be used to
underpin a principled sensitivity analysis. The choice of MNAR model(s) may well be informed
by expert opinion, or other information from the substantive setting. While these can be used to
help delineate meaningful directions of departure for the assessment of sensitivity, they cannot
be substitutes for the sensitivity analysis itself.

Usually in clinical trials data are MNAR, at least to some degree. However, that does not mean
that methods valid under MAR are of little use; quite the contrary. First, it quite often happens
that after accounting for the information about the missingness mechanism in the observed
data, there is relatively little information remaining in the unseen data (Rubin et al., 1995).
There may be additional measurements that predict withdrawal and can be used in the analysis
to reduce still further the dependence of missingness on the unseen data. In this case, the MAR
model may well give quite accurate answers. Second, because there is a sense in which the

7Informally, consistent means that as the data set gets larger, the parameter estimate ‘homes in’ on the true
value.
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MAR assumptions are the weakest required to justify an analysis that ignores the missing value
mechanism, they provide a very sensible starting point for sensitivity analysis. All MNAR
models represent departures in one way or another from this crucial set of assumptions.

EXAMPLE 1.4 Asthma study

In §1.6.3 we assumed 12 week FEV1 was MCAR conditional on baseline FEV1. Now suppose
that even conditional on baseline the chance of seeing FEV1 at 12 weeks depends on the value
at 12 weeks — i.e. 12 week FEV1 is MNAR.

We have to make further assumptions in order get an estimate of the average FEV1 at 12 weeks.
Taking the pattern mixture approach (see p. 11), suppose that the average FEV1 of those who
withdraw at 12 weeks is 10% less than MAR would predict. Assuming this is correct, we can
obtain sensible estimates for the 12 week FEV1. We need to (i) assume MAR and calculate the
expected 12 week FEV1 for the 57 patients who are missing at 12 weeks; (ii) reduce this by
10% and (iii) average these values with the 35 observed 12 week FEV1’s.

Under our MAR model above, the average 12 week FEV1 for the 57 patients who are missing
at 12 weeks is

1
57
{(0.923+0.535×baseline FEV1 of first missing patient)

+(0.923+0.535×baseline FEV1 of 2nd missing patient)+ · · ·
+(0.923+0.535×baseline FEV1 of 57th missing patient)}

= 0.923+0.535× average baseline FEV1 of 57 missing patients
= 0.923+0.535×1.988 = 1.987 litres.

However, as these patients dropped out, under our model we now reduce this by 10% on average
to 0.9×1.987 = 1.788 litres. Finally we combine this figure with the data from the 35 patients
who completed the trial; their average 12 week FEV1 is 2.072 litres. Our estimate of 12 week
FEV1 is thus

1
92

(57×1.788+35×2.072) = 1.896 litres.

As expected given our assumptions, our MNAR estimate of 12 week FEV1 is below that ob-
tained from our MAR analysis. Both analyses are sensible if their respective assumptions are
true. However, the conclusion of the MAR analysis, that FEV1 remains unchanged in the
placebo arm, is sensitive to the assumed MAR mechanism. The more we assume patients who
withdraw have a worse FEV1, the lower the average FEV1 at 12 weeks. ¤

1.7 Some other terms that may confuse

As mentioned above, the word ‘ignorable’ is often used in connection with missing data, al-
though strictly it refers to the probability model (likelihood) for the data. It summarises whether
a joint model for the observed data and the missingness mechanism is necessary for a valid anal-
ysis (as it is under MNAR), or whether the model for the missingness mechanism can be ig-
nored. More loosely, ‘ignorable missing data’ means that the missing data mechanism is either
MCAR or MAR. It does not mean that that missing data can be ignored, and sensible marginal
results obtained from just analysing the subset of patients with no missing data.

Another term that sometimes occurs is covariate dependent missing completely at random.
This just denotes data that are MAR, or MCAR given covariates. However, in a trials context
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the ‘covariates’ referred to are measured at baseline. The term is thus used to distinguish (i)
MAR data where the reason for withdrawal depends on baseline data alone from (ii) MAR data
where the reason for withdrawal depends on baseline data and post-randomisation data prior
to withdrawal. Our modelling approach in part II encompasses both these situations naturally
within the same framework, so we do not consider this distinction further.

1.8 Implications

Hopefully, the importance of clarifying possible missingness mechanisms is clear. Once this is
done, each mechanism can be classed as either MCAR, MAR or MNAR, sensible analyses per-
formed, and conclusions drawn. It is important to know whether these conclusions are sensitive
to the missingness mechanisms as this implies how precise the implications of the trial are.

Further, our discussion has explained why the CONSORT guidelines say authors ‘should report
the number of patients with missing data by treatment arm: imbalance is likely to cause bias
when the outcome of interest is associated with the reason for patient withdrawal.’ If patient
withdrawal is truly MCAR conditional on intervention alone, most statistical analyses are sen-
sible, as they condition on intervention to estimate its effect. But readers should be aware of
such imbalance, to alert them to the fact that withdrawal may be MNAR, and enable them to
consider the direction and extent of any resulting biases. Imbalance in patient withdrawal by
intervention arm is not itself a problem, but is a possible indicator of other problems.

1.8.1 Design

Good design is the key to minimising the ambiguity introduced by the inevitable missing data.
At the design stage, the statistician should stress the ambiguity that missing data can cause, and
convey to the investigators the extent to which the trial conclusions can become ambiguous even
with a fairly small number of missing observations. Then protocol modifications that can reduce
the chance of missing data occurring can be considered. As part of this, plausible missingness
mechanisms should be considered.

The more confident we are that data are MAR, the less ambiguity is introduced into the analysis.
Thus, it may be that slight modifications to the proposed observations, or slight changes to the
information collected prior to patient withdrawal, can make the missingness mechanism MAR.
Obviously, much can be learned from missingness mechanisms in previous trials in similar ar-
eas. The measurements that are likely to prove useful will depend on the postulated missingness
mechanisms. However, measurements that correspond exactly with withdrawal are of little help,
as they cannot be used as part of an MAR analysis. Thus recording ‘patient withdrawal due to
intervention failure’ for all patients who withdraw is not helpful. Instead, prior to withdrawal,
we need variables recorded on all patients (e.g. at baseline or during follow-up), some of whom
subsequently withdraw. Sometimes, the withdrawal process can be triggered by values of these
variables, forcing data to be MAR.

EXAMPLE 1.2 Asthma study (ctd)

In the asthma study, we could require patients whose FEV1 falls 10% below their baseline to
withdraw. Their subsequent data would be missing, but given their observed data, the miss-
ingness mechanism would by definition not depend on their missing data. Thus data would be
MAR.
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As in this set-up we know the missingness mechanism, the ambiguity introduced by the missing
data is reduced, although we still have to make a distributional assumption about data we have
not seen. This approach is described in the context of hypertension trials by Murray and Findlay
(1988). ¤

For the same reasons that complete data analyses are pre-specified, it is very helpful to pre-
specify analyses for the most plausible missingness mechanisms in consultation with the regu-
lators. Figure 1.1 provides a possible structure for doing this.

1.8.2 Missing data and per-protocol analyses

Broadly speaking, a per-protocol analysis seeks to estimate the intervention effect that would
be seen if all patients undertook the intervention as per the protocol. Thus in a per-protocol
analysis, when a patient withdraws we want to estimate the distribution of their response(s) had
they continued to adhere to the protocol. Assuming the data are MAR, sensible estimates of
intervention effect address precisely this hypothesis. To see this, consider the MAR asthma
example again (see p. 15). Given ‘low’ or ‘high’ baseline FEV1, we assume the chance of
observing 12 week FEV1 is random. In other words, within each baseline group, the distribution
of 12 week FEV1 values is the same for observed and unobserved patients. This assumes that
the unobserved patients continued with treatment per-protocol, as the observed patients did.
Under MAR, the estimated treatment effect is thus the per-protocol treatment effect.

This applies quite generally, and there is an analogy with the rationale for trials. Patients en-
rolled in a trial are representative of a wider patient population. The trial provides information
about that wider population because we assume the distribution of patients’ response to inter-
vention is representative of patients not included in the trial. Similarly, the MAR assumption
says that if a group of patients have similar observations until some withdraw, the distribution
of response to the intervention for the whole group is represented by those who complete. Thus,
the hypothesis of a per-protocol analysis can be directly addressed if the missing data are MAR
and the observed data are from those who adhered to the protocol.

Nevertheless, we should still carry out sensitivity analyses to the MAR assumption. For exam-
ple, this assumption is likely to be

(a) implausible if patients’ missing data are due to some unobserved deterioration, but

(b) much more plausible if patients’ missing data are simply due to loss to follow-up.

Sensitivity analyses (through either a selection or pattern mixture approach) should use any
information bearing on (a) and (b) above to frame possible departures from MAR. For per-
protocol analyses, the question turns on how the distribution of the unseen response data of
patients who withdrew differs from those who did not, under the assumption that the former
continued with the intervention.8 There are clear links here with the literature on randomisation
based estimates of causal intervention effects. See for example, White et al. (1999); Peduzzi
et al. (1993); White et al. (2003) and references therein.

8to the minimum extent required by the protocol.
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1.8.3 Missing data and intention to treat (ITT) analyses

With no missing data, ‘Intention To Treat’ (ITT) analyses include every patient who was ran-
domised, regardless of adherence to the protocol, to estimate the effect of intending to give an
intervention. Thus if we continue to follow up patients after they cease to adhere to the in-
tervention protocol, whatever intervention or treatment they then receive, we have the data we
need for a ITT analysis. By contrast, the per-protocol analysis would regard a patient’s data as
effectively missing from the time they ceased to adhere to the protocol.

However, if the post-protocol adherence data are missing, then—because of the different hy-
potheses underlying per-protocol and ITT analyses—there must be a difference in the way
missing data are handled. In other words there must be a difference between the conditional dis-
tribution of the missing data given the observed when addressing the ITT and the per-protocol
hypotheses. Moreover, as we argued above, a MAR analysis directly addresses the per-protocol
hypotheses9. Thus the ITT interpretation cannot be directly adopted when outcome data are
missing (Hollis and Campbell, 1999), a fact that appears to remain quite widely misunderstood
(Wood et al., 2004).

To address the ITT hypothesis when data are missing, we need to consider plausible models
for the distribution of unseen responses when patients cease to comply with the protocol. Such
distributions should, as usual, condition on the observed responses. Assume for now that patient
responses are observed if, and only if, they are complying with the protocol. Then an ITT
analysis implicitly assumes a MNAR mechanism, as the pattern of responses is different for
those who do and do not continue with intervention per-protocol. Mathematically, this can be
shown to be equivalent to the reason for withdrawal depending on the unseen responses, even
after taking into account the information in the observed data. We have already noted that, under
MNAR, a range of missingness mechanisms, all equally consistent with the data, can operate.
Thus, under MNAR there can be no definitive estimate of intervention effect. So, if there are
missing values, there can no longer be an unequivocal ITT analysis (Brown, 2003).

However, if we are careful at the design stage, we may be able to ensure the collection of valu-
able information to inform ITT analyses. For instance, consider an asthma study comparing
placebo and two active drugs: the standard treatment and a new treatment. Suppose that, fol-
lowing withdrawal, we note the treatment patients switch to. Suppose further that most of them
go onto the standard treatment. From the trial, we have information about how patients assigned
to the standard treatment respond over time. We can use this information to inform estimates of
the distribution of responses among patients who discontinue their randomised treatment and
switch to the standard treatment. In this way we can arrive at an ITT treatment estimate. This
approach is described in some detail by Little and Yau (1996). We can also use expert opinion
to inform a model for the change in the pattern of patient response following withdrawal, and
hence an ITT analysis. In Chapter 6 we describe possible approaches, and consider these is-
sues further. As usual, there is a key role for sensitivity analysis in exploring the robustness of
conclusions to modelling assumptions.

9If missing data — due to patients who withdraw — are MAR and observed data are from patients who adhere
to the protocol.
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1.8.4 Composite hypotheses

When patients withdraw, Shih and Quan (1997) advocate an ITT analysis based on a joint test
of (i) whether patients who complete, benefit from the intervention and (ii) whether those who
withdraw have excessive adverse effects. As an illustration, consider a trial to reduce blood
pressure. Suppose some patients withdraw from the trial, and subsequently some of these die
of a heart attack. This approach divides patients into two groups (i) those who complete and
(ii) those who do not. Amongst group (i) we compare the effect of the intervention on blood
pressure, as originally intended. Amongst group (ii) we compare the effect of the intervention
(or intending to give the intervention) on the risk of death.

This approach is attractive as it hard to conceive of a patient’s ITT blood pressure after they
have died. However, it entails a unified definition of ‘intervention benefit’ across groups (i)
and (ii) so a null hypothesis can be specified and tested. This means explicitly weighing the
benefits of, for example, blood pressure reductions and heart attacks. When faced with multiple
interventions, factorial designs, and/or unexpected adverse events, we anticipate such defini-
tions of ‘intervention benefit’ are increasingly intricate, difficult to define in advance, difficult
to communicate to non-statisticians and difficult to defend.

It is impossible to give completely general guidance, as, clearly, a lot depends on the interplay
between the treatment and the adverse event. However, we feel that usually greater clarity
emerges by keeping the analysis of the primary response separate from the adverse event rate.
Nevertheless, the relevance of the ITT hypothesis becomes questionable.

Returning to the blood pressure reduction trial illustration, heart attack is not wholly attributable
to blood pressure. If the predominant reason for withdrawal is a heart attack, a per-protocol
analysis together with a comparison of the heart attack rate may provide a clear basis to interpret
the trial. Here the per-protocol analysis estimates the effect of treatment if no heart attack
occurs.

When the heart attack occurs after withdrawal, there is no substitute for post-protocol adherence
follow-up data. With this, we can make progress towards evaluating the ITT hypothesis. Again,
the ITT analysis estimates the effect of treatment if no adverse event occurs.

On the other hand, if heart attack might be directly linked to the treatment, by whatever mecha-
nism, the primary focus switches to the end point of heart attack and composite hypotheses are
of secondary interest.

In summary, without ruling out this approach, we believe that a trial can usually be more clearly
interpreted by separating, rather than combining, the response of interest and adverse events.
Composite hypotheses sidestep, rather than address, the ITT hypothesis. We therefore do not
consider composite hypotheses further here.

1.9 A critique of CPMP guidelines

The Committee for Proprietary Medicinal Products (CPMP) (2001) adopted some ‘points to
consider on missing data’ (henceforth referred to as the CPMP-PTC), which aim to put flesh on
the ICH E9 bones. We now review these in the light of the principles discussed in this Chapter.
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First, this Chapter reinforces the important points made in CPMP-PTC that it is necessary

(i) to take care, in both design and implementation, to try to minimise the number of missing
observations;

(ii) to consider how to cope with missing data when drawing up the analysis plan;

(iii) where possible, to agree in advance the nature and scope of sensitivity analysis, and

(iv) to look closely at the data, especially the proportion of missing data by time of withdrawal
and treatment arm.

The CPMP-PTC is also surely right to make the point that there can be no universal analysis
when data are missing. However, unfortunately, it overlooks the fact that there are general
principles to follow in the analysis of missing data, and these principles can and should inform
specific analyses. It is these principles that we have aimed to set out in this Chapter. Without
clear principles to inform the document, the motivation of various statements is unclear, and the
application of the guidelines to specific problems unnecessarily difficult.

Perhaps this goes some way to explain a key misunderstanding on the effect of a relationship
between treatment and missing outcome data. On page 4, at the top, the guidelines say

“mixed effects models ... assume that there is no relationship between treatment
and missing outcome, and this generally cannot be assumed”

This is incorrect. Mixed models are a form of multivariate regression models; these do not
rely on there being no association between missing outcome and treatment. Instead, the MAR
principle described above applies directly: if outcome data are MCAR given treatment alone
(i.e. MAR), then including treatment in the model (i.e. conditioning on it) gives a valid treatment
estimate. Almost all primary analyses include treatment in this way.

In addition, the above statement implicitly contradicts page 2 of the guidelines, where it states:

“In principle missing values will not be expected to lead to bias if they are only
related to the treatment...”

However, the principles described in this Chapter show this is only true if data are MAR. We
can never know if this is the case; indeed often, as discussed above, it will not be. As it stands,
therefore, this statement is of very limited usefulness for informing the analysis of a trial with
missing data.

A further point of concern is the discussion of the need to impute missing data to perform an
analysis. Yet, we have seen that under MAR this is not necessary. In Chapter 6 we also see that
this is not necessary for MNAR analyses. Of course, one way to do MAR and MNAR analyses
is via imputation, but that is a separate issue.

Considerable space is also given to the discussion of Last Observation Carried Forward (see
Chapter 2), and imputing the best or worst values for missing data. Again, this is unhelpful. The
principled approach set out here clearly shows that if data are missing, extra assumptions are
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needed to estimate the probability distribution of patients’ missing data given their observed
data. Only under very implausible scenarios will this probability distribution be focused en-
tirely on a single value. Away from the case of binary data, additional, yet more implausible
assumptions, are needed if this value is the best or worst possible. Even the definition of best or
worst values is problematic in many settings, and triggers extensive, unilluminating, debate.

To impute single values of any kind is to lose sight of the principles underpinning sensible
analyses with missing data. From another viewpoint, in the analysis of observed data we always
allow for the fact measurements are made with error; that is why we use regression methods.
To assume that, if data are missing, we can impute the missing value without error (i.e. impute
a single value) is consequently illogical.

A similar concern runs through the discussion of sensitivity analysis. Here the document fo-
cuses on exploring sensitivity to methods, rather than assumptions. Unfortunately, a large num-
ber of methods (e.g. mixed models, multiple imputation, mean score imputation, EM algorithm,
hot-deck imputation, . . . ) all usually rely on the same assumption: that data are MAR. There-
fore, following the guidelines, sensitivity analysis using a variety of methods could lead to a
misleadingly optimistic view of the robustness of the conclusions.

Instead, sensitivity analysis needs to vary the assumptions, then use appropriate techniques to
estimate the effect of intervention under these alternative assumptions. The aim is to establish
how robust such intervention estimates are to such alternatives.

Thus, while these guidelines attempt to answer some very important questions, and put neces-
sary flesh on the bones provided by the paragraph in the ICH E9 guideline on missing data, they
fall well short of their goal. Indeed, to the extent that the ICH E9 guideline calls for a princi-
pled approach to the analyses of trials with missing data, it conflicts with the CPMP points to
consider. A substantial revision of the latter is overdue.

1.10 Inferential approach

Although Bayesian approaches are gaining ground in the analysis of clinical trials (Spiegelhal-
ter et al., 2003), a frequentist approach still predominates. Thus this monograph mainly adopts a
frequentist approach, especially when analysing data under the assumption of MAR. However,
all the mixed models we describe when data are MAR (for both continuous and discrete data)
can be fitted using Bayesian methods (e.g. winBUGS). In this case, all the missing observations
are treated as unknown parameters and their posterior distribution sampled from. However, fit-
ting such models in winBUGS is both more complex and has more pitfalls than using maximum
likelihood methods in SAS. Moreover, it does not get around the issue of population averaged
versus subject specific parameter estimates for discrete data. Also, the distribution of individual
missing observations is not usually of much interest10, rather the focus is on treatment param-
eters. Thus, unless we wish to incorporate prior beliefs about certain parameters, a likelihood
analysis is in many ways preferable to a Bayesian one. Note though that multiple imputation
is essentially a Bayesian method which approximates frequentist inference under certain con-
ditions. Thus, where analysts have prior beliefs about certain parameters, under MAR this can
often be most naturally handled using multiple imputation.

10In any case, they can be easily approximated from a likelihood analysis.
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When analysing data under the MNAR mechanism, it is often useful to bring in expert opinion,
for example about likely differences in response between patients who complete and those who
do not. This essentially requires a Bayesian approach, and the methods in Chapter 6 reflect this.

Whether Bayesian or frequentist, the methods we discuss in Chapters 3–6 below are centred
around the likelihood. Another approach is centred around weighting by the inverse probability
of withdrawal. We have considered this elsewhere (Carpenter et al., 2006) and found that simple
inverse probability weighting is usually quite inefficient relative to likelihood methods. Methods
to improve efficiency are promising, but not yet sufficiently developed to cope with more than
a few special situations. We refer to them from time to time, but do not describe them in detail.

1.11 Summary

This Chapter has sought to flesh out the ICH E9 guideline relating to missing data and discuss
its implications for trial design, analysis and regulatory guidelines. We have seen that there
can be no universal statistical method when data are missing, but there are universal principles
which apply to every situation. We have further seen that with missing data we require extra,
unavoidable, assumptions to inform the analysis. Such assumptions take the form of specifying
the mechanism by which the data become missing, and/or the differences in the distribution of
the data between patients who do, and do not, complete.

As when there are no missing data, the aim remains obtaining valid inferences about the inter-
vention effect. With missing data, we must additionally show that inferences about the interven-
tion are robust to different assumptions about the reason for missing data, or patient withdrawal.
Such sensitivity analyses inevitably entail additional work at both the design and analysis stage.
However, the cost of this additional work is marginal to the overall cost of the trial, and the
benefits — especially if missing data and appropriate analysis are considered from the design
stage onwards — substantial. A least we know what we have to assume to infer an intervention
effect; more often we will be able to infer an intervention effect robust to the missing data. In
short, even with missing data, a principled approach leads to valid inferences about treatment
effects. It should be adopted as a matter of course.



Chapter 2

A critique of common approaches to missing
data

2.1 Introduction

In this Chapter we consider some commonly used approaches to handling missing data in clini-
cal trials. These methods share computational simplicity, but this comes at a price: the resulting
analyses and conclusions are often not sensible, or only sensible in particular circumstances or
under an extremely restrictive missingness mechanism. However, we saw in Chapter 1 that we
can never know the missingness mechanism. In practice, therefore, we advocate using meth-
ods that give sensible inferences when the missingness mechanism belongs to the broad class
of MAR mechanisms (which includes MCAR mechanisms), before going on to explore the
sensitivity of inferences to possible MNAR mechanisms.

EXAMPLE 2.1 Isolde trial

Throughout this Chapter, we illustrate the various methods with data from the Isolde trial (Burge
et al., 2000). 751 patients with chronic obstructive pulmonary disease (COPD) were randomised
to receive either 50 mg/day of fluticasone propionate (FP) or an identical placebo. Patients were
followed up for 3 years, and their FEV1 (litres) was recorded every 3 months, although here we
only use the 6 monthly measures. Interest focuses on how patients respond to treatment over
time; especially in any treatment by time interaction. Patients with COPD are also liable to suf-
fer acute exacerbations, and the number occurring between follow-up visits was also recorded.

Visit Number of patients attending visit in
Placebo arm FP arm

Baseline 376 374
6 months 298 288
12 months 269 241
18 months 246 222
24 months 235 194
30 months 216 174
36 months 168 141

Table 2.1: Isolde trial: Number of patients attending follow-up visits, by treatment group

As Table 2.1 indicates, only 45% of FP patients completed, compared with 38% of placebo
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patients. Of these, many had interim missing values. To identify key predictors of withdrawal,
we carried out a logistic regression of the probability of completion on the available baseline
variables together with the post-randomisation exacerbation rate and rate of change in FEV1.
Table 2.2 shows the results after excluding variables with p-values > 0.06. The effect of age,
sex and BMI are all in line with expectations from other studies. After adjusting for these, it
is clear that the response to treatment is a key predictor of patient withdrawal. In particular,
discussions with the trialists suggested that high exacerbation rates were probably acting as a
direct trigger for withdrawal. ¤

Variable Odds ratio (95% CI) p-value

Exacerbation rate (no./year) 1.51 (1.35, 1.69) < 0.001
BMI (kg/m2) 0.95 (0.92, 0.99) 0.025
FEV1 slope (ml/year) 0.98 (0.96, 0.99) 0.003
Age (years) 1.03 (1.01, 1.06) 0.011
Sex (Male vs Female) 1.51 (0.99, 2.32) 0.057

Table 2.2: Isolde trial: Adjusted odds ratios for withdrawal

2.2 Complete cases

Consider a clinical trial where some patients withdraw, so their response is missing. A complete
case analysis excludes these patients, including only patients who did not withdraw. If the
missingness mechanism is MCAR, a complete case analysis is sensible, although it may well
not use all the available information in the data. However, if the missingness mechanism is not
MCAR, complete case analysis is not sensible.

EXAMPLE 2.1 Isolde trial (ctd)

Suppose we wish to estimate the effect of treatment at 3 years. Table 2.3 shows the results of a
t-test to estimate this, using data from complete cases only.

There does not appear to be a treatment effect. However, of the 705 patients randomised, only
309 (44%) completed and are included in this analysis. Further, Table 2.2 shows the data from
the patients who withdrew is very unlikely MCAR. The unseen data could substantially change
the conclusions. A complete case analysis is therefore not sensible. ¤
Like Isolde, many trials follow up patients longitudinally, obtaining several measurements over
the course of the trial. Suppose the trial has finished, and that we wish to estimate the treatment
effect half way through the follow up. A complete case analysis would only include data from
patients who went on to complete the trial. An available case analysis (sometimes called an all
observed data analysis) includes data from all patients who have not withdrawn from the trial at
the half way point. If the missingness mechanism is MCAR, both the complete case analysis and
the available case analysis will give sensible answers. In this case, the available case analysis
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Group No. of patients Mean FEV1 (litres) SD

Active treatment (FP) 168 1.33 0.46
Placebo 141 1.30 0.49

t = 0.48, 307 degrees of freedom, p = 0.63
95% CI for difference (−0.08,0.13) litres

Table 2.3: Isolde trial, complete case analysis: t-test of treatment effect 3 years after randomi-
sation

would be preferable, as it will include more patients and so give more precise estimates of
treatment effects. However, if the missingness mechanism is not MCAR, then neither method
is sensible. Only if data were MCAR in the early part of the trial and not MCAR later would
observed case analysis be sensible but complete case analysis not sensible. This is very unlikely
in practice.

2.3 Last observation carried forward

Suppose a trial has longitudinal follow up, and that patients withdraw over the course of the
follow up. After a patient withdraws, their subsequent responses are missing. Suppose that,
for each patient who withdraws, we set their missing responses equal to their last observed
response. This is called Last Observation Carried Forward (LOCF). If some patients withdraw
before the first follow-up visit, then their baseline observation can be carried forward. Using
LOCF gives a data set with no missing values, to which the analysis method intended for the
fully observed data can be directly applied. We say the missing values have been imputed using
LOCF. We refer to the assumption that a missing patient’s responses are equal to their last
observed response as the LOCF assumption.

EXAMPLE 2.1 Isolde (ctd)

Table 2.4 shows follow-up data from 4 patients. The first completed the trial. The subsequent 3
have had their missing data imputed using LOCF (values shown in italics).

To illustrate the use of LOCF, we impute the missing responses for every patient following their
withdrawal, apart from the 134 who withdrew before the first follow-up visit. Figure 2.1 shows
the mean FEV1 at each follow-up visit, by treatment group, using (i) all available data at each
follow-up visit and (ii) LOCF to impute the missing data. The LOCF imputed means are similar
for the FP arm, but markedly lower for the placebo arm. The exception is the last visit, where
LOCF gives a higher mean for the FP arm. Table 2.5 shows a t-test for treatment effect using the
LOCF imputed data. In contrast to Table 2.3, the estimated treatment effect is now significant
at the 5% level.

However, this raises a number of questions. Under which missing data models is LOCF sen-
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Patient Years of follow-up FEV1 (litres) at follow-up visit:
6 months 1 year 1.5 years 2 years 2.5 years 3 years

1 3 1.3 1.2 1.0 1.0 1.0 1.1
2 0.5 0.7 0.7 0.7 0.7 0.7 0.7
3 1 1.7 1.5 1.5 1.5 1.5 1.5
4 1.5 0.9 1.0 1.2 1.2 1.2 1.2

Table 2.4: Isolde trial: After withdrawal, patients have had their missing data imputed using
LOCF (imputed values shown in italics)

sible, and are these plausible here? We need to be confident about the answers to these before
concluding a treatment effect actually exists. ¤

Group No. of patients Mean FEV1 (litres) SD

Active treatment (FP) 316 1.35 0.47
Placebo 301 1.26 0.48

t = 2.28, 615 degrees of freedom, p = 0.02
95% CI for difference (0.01,0.16) litres

Table 2.5: Isolde study, LOCF imputed data: t-test of treatment effect 3 years after randomisa-
tion

LOCF is a popular method for handling missing data. The above example illustrates its sim-
plicity, and it can be argued that much of its popularity is due to this. We now consider whether
it is a sensible method.

Two principles emerged in Chapter 1. First, when a patient withdraws, we can rarely hope to
recover their missing values. Second, suppose we assume the withdrawn patient’s missing data
are MAR. Then, suppose we can find a group of patients whose members, prior to the patient
withdrawing, share similar responses to the patient who withdrew. Then, at least under the
per-protocol hypothesis (§1.8.2), the subsequent responses of this group give an estimate of the
likely distribution of the withdrawn patient’s missing responses (e.g. Figure 2.2, left panel).

LOCF generally goes against both these principles. It imputes a single value for each miss-
ing response. The subsequent analysis gives these imputed responses the same status as actual
observed responses. This is unsatisfactory, as a single value is being used as an estimate of a
distribution. This can only be generally correct in the extremely implausible event that the dis-
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Figure 2.1: Isolde trial: mean FEV1 (litres) at each follow-up visit, by treatment arm. Solid
line, means calculated using all available data at each visit. Broken line, means calculated after
imputing missing data using LOCF. Note that 134 patients with no readings after baseline are
omitted

tribution is degenerate1. Such a degenerate distribution will never be implied by the multivariate
normal distribution, or any standard distributions.

At best, estimating a distribution by a single value potentially underestimates its variance2. This
explains why LOCF analyses for the per-protocol hypothesis may underestimate the informa-
tion lost due to missing data, resulting in standard errors that are too small and confidence
intervals that are too narrow.3 Further, under the per-protocol hypothesis, suppose the with-
drawn patient’s data are approximately MAR. Then the group of patients who complete, but
who share similar characteristics and responses to this patient prior to withdrawal, will usually
give a better estimate of the distribution of the missing values than the last response before
the patient withdrew. Yet LOCF ignores this information. Thus LOCF is likely to give biased
imputations for the missing data leading in turn to biased estimates of treatment effect.

On the other hand, if we focus on the ITT analysis, and believe the distribution around the
marginal (i.e. treatment group) mean stays the same for patients who withdraw, we should
perform a ‘principled LOCF’ and ‘carry forward’ this distribution, not the last observation. The

1A probability distribution which says a single particular value is certain to occur is termed degenerate. With
missing data, all we can estimate is the distribution of the missing data given the observed data, under certain as-
sumptions. Imputing a single, worst/best value, usually therefore implicitly assumes a very implausible degenerate
distribution for the missing data given the observed data.

2As response variability usually increases over time.
3Some have described hypotheses where the LOCF analysis has the correct size (Shao and Zhong, 2003), but

these are not the per-protocol or ITT hypotheses (Carpenter et al., 2004).
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one exception is if we are prepared to accept that for each patient who drops out, before their
last observation, their condition had stabilised — so that the distribution of their responses does
not change at all for the remainder of the study4. Under this strong assumption, the patient’s
last observation is a genuine observation from their stable response distribution, and could have
equally been seen just before withdrawal as at the end of the study. We can therefore use this
last observation as the patient’s response in the cross sectional analysis of treatment effect at the
end of the trial follow-up. However, this corresponds to a very counter-intuitive missingness
mechanism. Indeed it is hard to think of why patients would withdraw after they had stabilised
unless either the protocol were very demanding or they had no expectation that their condition
would change whether they were in or out of the trial. We reiterate that in most settings this
is very implausible. Patients often change intervention when they withdraw from a trial (the
desire to do this may well trigger withdrawal) in the hope of getting a better response.

It is sometimes suggested that, where the focus is on estimated treatment differences at the
end of the follow-up, because ITT analyses ‘need’ a response from each randomised patient,
LOCF is appropriate. We disagree. As discussed in §1.8.3, when patients withdraw, and almost
certainly change their intervention regime, an ITT analysis needs to estimate the distribution of
their unseen response at the end of the trial under this new regime. It is highly implausible that
this distribution is adequately represented by their last observation.

Defenders of LOCF sometimes argue that it leads to conservative estimates of treatment effects.
However, it is easy to show that this cannot be true in general (Molenberghs et al., 2004).
Rather, the direction of the bias depends on the (unknown) true treatment effect and the missing
value mechanism. In general, LOCF is biased even when a complete case analysis is sensible
(Molenberghs et al., 2004). If investigators or regulators have strong prior beliefs about the
relationship between missing and observed responses, the correct way to allow for these is
through a sensitivity analysis, examples of which which we discuss in Chapter 6.

EXAMPLE 2.2 LOCF is not sensible when data are MCAR

Consider a hypothetical study where we have a placebo and an active treatment group, both
with 100 patients. At the first post-randomisation visit, both groups have a mean FEV1 of 1.2
litres. At the second, and final, visit, the true mean in active treatment group is 1.5 litres, but
that in the placebo arm remains 1.2 litres. However, suppose that 50 of the patients in the active
arm withdrew, completely at random.

A complete case analysis is sensible. The mean for the active group, estimated from the 50
patients who complete, is around 1.5 litres; that in the placebo group around 1.2 litres. The
estimated treatment effect is 0.3 litres.

Now consider the LOCF analysis. In the active group, we observe 50 patients, with a mean
FEV1 of around 1.5 litres. However, LOCF carries forward the first visit responses of the 50
who withdrew. These are around 1.2 litres. So the LOCF average response at the final visit is
around (50× 1.2 + 50× 1.5)/100 = 1.35 litres. As no patients drop out of the placebo arm,
the mean response at the final visit is the same under LOCF, around 1.2 litres. So the estimated
treatment effect is 0.15 litres.

Thus LOCF is not sensible, even when data are MCAR. Further, it is hard to see how the LOCF
analysis is a meaningful sensitivity analysis to the complete case analysis. ¤

4Such an assumption of exchangeability is rarely appropriate for longitudinal data, irrespective of any missing
data issues.
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In fact, as pointed out by Heyting et al. (1993), it is possible to see from the observed data
whether LOCF is plausible. We first make the assumption that responses are not missing due
to a MNAR missingness mechanism which is totally unrelated to prior responses. In other
words we assume that the missingness mechanism is not too far from MAR. Now consider a
group of patients with similar measurements. At each observation time, a proportion of them
withdraw. As the missingness mechanism is approximately MAR, the unseen responses of
these patients are distributed roughly according to the observed responses of patients in the
group who have not yet withdrawn. Figure 2.2 illustrates this graphically. Only in the right
panel, where individual patients’ responses are virtually constant, is the LOCF assumption
plausible. However, in both panels of Figure 2.2 a MAR analysis is sensible. Just because
one may use LOCF as a “poor man’s” MAR analysis in situations like the right panel is not
sufficient to justify it — although it is the probable source of occasional anecdotes that LOCF
tends to agree with MAR analysis. In this case, though it would be addressing the per-protocol
not ITT hypothesis!

Note too that it does not follow that if the mean profile is approximately constant, individual pa-
tient profiles are approximately constant. In real life, approximately constant individual patient
profiles are rarely seen.
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Figure 2.2: Panels show a group of patients with similar responses (dashed lines), one of whom
(solid line) drops out. In the left panel, the group responses suggest the LOCF assumption is
false. In the right panel, the group responses suggest it is less implausible

Another point sometimes made in favour of LOCF is that if there is no treatment effect it pre-
serves the ‘Type I error’ (i.e. the chance of finding a statistically significant treatment effect
when none in fact exists) at 5%. Although in a limited sense this is true (if both groups have
identical distributions of response and withdrawal) the problem lies rather under the alternative
hypothesis. There are many possible patterns of treatment effect and withdrawal for which the
power of the LOCF test is the same as the test size. Further, merely maintaining the test size is
not sufficient to justify a test procedure: if it were we could use the throw of a 20-sided die to
calculate a test statistic with perfect nominal 5% type I error! Clearly we also need to consider
the behaviour of the statistic under the range of alternative hypotheses. In this the LOCF test
falls down badly, as it is unable to detect a wide range of actual treatment effects (Carpenter
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et al., 2004). Further, in situations where the treatment effect can be detected by the LOCF
procedure, the likelihood based analyses described Chapter 3 will usually be more powerful.

In summary, if we really wish to ‘carry forward’ information after withdrawal, then the appro-
priate distribution should be carried forward, not the observation. This is not difficult to do, and
will give valid inference much more generally than carrying forward the last observation. While
one could attempt to delineate specific circumstances where LOCF may perform reasonably, as
we are writing generally (as this seems the best way of being relevant to most analyses) we do
not attempt to do this.

As LOCF is neither valid under general assumptions nor based on statistical principles, it is
not a sensible method, and should not be used. It is therefore unfortunate that Wood et al.
(2004) found that LOCF is commonly used as a sensitivity analysis when the principal analysis
is complete cases. In effect, LOCF is actually just an analysis of each patient’s last observed
value (so called Last Observation Analysis, LOA). If LOA is really of interest then by definition
the last observed measurement needs to be analysed, but in this setting it is equally obvious that
the time to this event must also be relevant, yet this is almost never considered in such analyses.
When estimating treatment effects at the end of a trial, though, LOA is not useful, as it may well
reflect misleading transient effects. Although there has been some confusion on this point (Shao
and Zhong, 2003), seeing LOCF in this light helps expose its lack of credibility (Carpenter et al.,
2004). It is definitely not a sensitivity analysis in the sense described in Chapters 1 and 6. Lastly,
Lavori (1992) comprehensively refutes LOCF in the context of psychiatry, and Pocock (1996)
reinforces Heyting et al. (1992), noting ‘it is doubtful whether this [LOCF] actually answers a
scientifically relevant question’.

2.4 Missing indicator method

Sometimes, replacing the missing values with a value indicating ‘missing data’ is proposed.
Once this is done the ‘full data’ analysis can be performed. This is known as the missing
indicator method. This method can potentially be applied a range of settings. We consider
pre-randomisation (i.e. baseline) variables first.

2.4.1 Missing indicator method with pre-randomisation variables

Suppose we wish to adjust an analysis for baseline response. This is often desirable as it gives
a more precise estimate of the treatment effect. Now suppose some baseline responses are
missing. Although this is unlikely in some settings, in others — for example psychiatric trials
— it happens quite often.

First, consider possible reasons for missing baseline variables. By definition, these are measured
before randomisation. Thus — assuming randomisation has been adequate — it is implausible
that intervention allocation, or response to intervention, are causing missing baseline values.

Thus, in contrast to missing responses, it is often quite plausible that unseen baseline values are
MCAR. In this case, analysis restricted to those with observed baseline will be unbiased, though
as we shall see some efficiency may be gained by either (i) a full likelihood analysis (Chapter
3) or (ii) by using the missing indicator method and weighting — which we discuss below.
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These methods both gain information from the correlation of baseline and post-randomisation
variables in the model.

When unseen baseline values are MAR the argument above shows the MAR mechanism must
depend on other baseline variables. However, because of randomisation, patients with any
combination of missing and observed values must be equally likely in each intervention arm.
Indeed, this holds true even if unseen baseline values are NMAR. Thus, as in the previous
paragraph, an analysis restricted to those with observed baseline data will still be unbiased,
though as before some some efficiency may be gained by a full likelihood analysis or by using
the missing indicator method and weighting.

However, some more information can also be obtained by including in the analysis those fully
observed baseline variables that are predictive of whether we observe the partially observed
baseline variables. Again, this can be done by a direct likelihood analysis, or by using a condi-
tional mean imputation with weighting (Section 2.5).

EXAMPLE 2.3 Indicator for missing categorical baseline

Consider hypothetical asthma data in which we wish to estimate the effect of a treatment (vs
placebo) on 12 week post-randomisation FEV1, adjusted for for baseline lung function (cate-
gorised as low or high). With no missing baseline, the model is

12 week FEV1 = β0 +β11[active treatment]+β21[high baseline lung function], (2.1)

where

1[active treatment] =
{

1 if the patient is on active treatment
0 if the patient is on placebo

,

and so on.

Variables
Baseline

Patient lung function week 12
0=low, 1=high FEV1(litres)

1 0 5.67
2 0 4.81
3 0 4.93
4 0 6.21
5 ? 6.83
6 1 5.61
7 1 5.45
8 1 4.94
9 ? 5.73

10 ? 5.58
...

...
...

Variables
Baseline

Patient lung function week 12
0=low, 1=high FEV1(litres)

1 0 5.67
2 0 4.81
3 0 4.93
4 0 6.21
5 2 6.83
6 1 5.61
7 1 5.45
8 1 4.94
9 2 5.73

10 2 5.58
...

...
...

Table 2.6: Replacing missing categorical baseline data with an additional category. Left, ob-
served data; right, after replacing missing values with an additional category, ‘2’
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However, suppose that we do not observe baseline lung function on all patients; rather the top
of the data looks like the left column of Table 2.6. The missing indicator method replaces the
missing baseline values by an additional category, ‘2’, as in the right column, and then fits
model (2.1), with the extra category:

12 week lung function = β0 +β11[active treatment]+β21[high baseline lung function]
+β31[missing baseline lung function].

Assuming the randomisation worked, the reason for the missing baseline does not depend on
post-randomisation measures. So the proportion of patients with a ‘2’ should be balanced across
the two groups. Thus it is not a confounder, in the epidemiological sense.

Therefore the estimated treatment effect is unbiased, whether baseline lung function is MCAR,
MAR (given other fully observed baselines) or NMAR. Whichever mechanism is operating,
some additional efficiency may be recovered by weighting, as described below. ¤
Suppose now both the partially observed baseline and the fully observed response are quanti-
tative. Denote patient i’s (baseline, response) data by (Xi,Yi) and let Ri = 1 if Xi is observed,
and 0 if Xi is missing. Further let Ti = 1 if patient i is on active treatment and Ti = 0 if they
are on placebo. We wish to estimate the treatment effect adjusted for baseline. Among those
with observed baseline, let µx = E X and µy = E [Y |T = 0] (i.e. the mean placebo response).
Following White and Thompson (2005), the usual regression model for the observed data is

Yi|Xi,Ri = 1,Ti ∼ N[(µy−β µx)+βXi + γTi,σ2(1−ρ2)], (2.2)

where σ2 = VarY, and ρ is the correlation of (X ,Y ). For those with missing baseline, we have

Yi|Xi,Ri = 0,Ti ∼ N[(µy−β µx +δ )+ γTi,σ2]. (2.3)

Here, δ represents the difference in the mean of Y between the groups with observed and miss-
ing baseline.

Notice that the treatment effect is the same in both (2.2) and (2.3), suggesting we could fit them
together. This can be done if we define two new variables: Mi = 1−Ri and

Zi =
{

Xi if Ri = 1
x̄ if Ri = 0

.

These two covariates are defined for all patients, regardless of whether x is observed. So we
simply regress Y on T, M and Z to obtain the estimated treatment effect.5 However, as the
variance is different in (2.2) and (2.3), the estimated treatment effect will be inefficient. This
can be addressed by weighting the regression, with weights

wi =
{

1 if Ri = 1
(1−ρ2) if Ri = 0

,

where the sample estimate of ρ from the observed (Xi,Yi) pairs can be used to calculate the
weights.

In fact, White and Thompson (2005) show that with 30% missing baselines and ρ < 0.6, the
relative efficiency of an unweighted versus a weighted analysis is over 95%. Although ideally

5In fact, looking carefully at the model shows we can set Zi to be any value if baseline is missing — provided
it is the same value for each patient.
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the uncertainty in estimating the weights should also be taken into account, their empirical
study suggests this often makes little difference. If this is a concern, a likelihood analysis with
corrected standard errors and degrees of freedom (Kenward and Roger, 1997) should be used,
as described in Chapter 3.

Variables
Patient FEV1(litres)

baseline 6 months

1 0.98 1.30
2 ? 0.98
3 0.84 0.82
4 ? 1.42
5 ? 1.31
6 0.65 ?
7 ? 2.04
8 2.40 2.42
9 1.47 ?

10 ? 1.63

Variables
Patient Missing base- FEV1(litres)

line indicator new baseline 6 months

1 0 0.98 1.30
2 1 999 0.98
3 0 0.84 0.82
4 1 999 1.42
5 1 999 1.31
6 0 0.65 ?
7 1 999 2.04
8 0 2.40 2.42
9 0 1.47 ?

10 1 999 1.63

Table 2.7: Isolde trial. Replacing missing quantitative baseline data with an additional category.
Left, original data. Right, after creating a new indicator variable that is ‘1’ if baseline FEV1
is missing and ‘0’ otherwise, and replacing missing baseline FEV1 values by ‘999’ (any value
gives the same treatment estimate)

EXAMPLE 2.4 Indicator for missing quantitative baseline

For this example, we use baseline and 6 month follow-up data from the Isolde trial. Excluding
one patient with missing baseline, we have 750 patients (376 active drug, 374 placebo) of whom
586 (298 active drug, 288 placebo) have FEV1 observed at 6 months.

We first analyse the observed data, and then make some of the baseline FEV1 values MAR given
body mass index, and compare analyses of the remaining observations using (i) the remaining
observed data, (ii) the missing indicator method and (iii) maximum likelihood.

In the observed data, we see that patients with higher body mass index (BMI) are more likely to
be observed. This suggests the following model for observing baseline FEV1 (i ∈ 1, . . . ,750):

logit pi = logit{Pr(Observe baseline FEV1i)}=−0.5+0.05×body mass indexi. (2.4)

The probability of observing baseline under (2.4) is shown in Figure 2.3.

For each patient we then draw a random number ui from a U [0,1] distribution and observe their
baseline FEV1 if ui ≤ pi. Table 2.8 shows the data available for analysis after making some
baseline FEV1 missing in this way.

We now estimate the treatment effect at 6 months by (i) fitting an ANCOVA to the original data
before any baseline values were made missing (586 patients); (ii) fitting an ANCOVA using
data from the 400 patients with no missing data, (iii) using the missing indicator method (with
and without weighting) on the 400 + 186 = 586 patients with at most a missing baseline and
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Figure 2.3: Left panel: histogram of probabilities generated by (2.4). Right panel: how these
probabilities increase with baseline BMI

Treatment Data available
arm Neither Baseline only 6 month only Both Total
Active 31 47 96 202 376
Placebo 27 59 90 198 374
Total 58 106 186 400 750

Table 2.8: Number of patients with data available after making some baseline values missing
using (2.4)

(iv) using direct maximum likelihood on the 586+106 = 692 patients with some data. The data
arrangement for the missing indicator method is shown in Table 2.7. The maximum likelihood
analysis uses the same data arrangement as Table 3.10, and the code of Example 3.4.

Table 2.9 shows the results. Comparing analyses (i) and (ii) notice that, unlike when responses
are MAR, as missing baselines are balanced across treatment arms by randomisation they cause
remarkably little bias. In this example at least, they also result in little loss of information.
Indeed, even the most efficient analysis (iv) barely gets more information here. Analysis (iiia)
gives a slightly different point estimate here, but is strikingly inefficient. This is because there is
a strong correlation between baseline and 6-month FEV1 (ρ̂ = 0.93 from the 400 patients with
both observed). White and Thompson (2005) show we need to weight in this case; the weighted
analysis (iiib) gives a point estimate close to (i) and is almost as efficient as (ii). Lastly, analysis
(iv) allows us to include a little extra information from the 106 patients with baseline only. The
result is a tiny gain in information — satisfyingly here we do better than the complete data
analysis.

In summary, even though a non-trivial number of baseline values were made missing in this
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Analysis Treatment Standard d.f. t-statistic p-value
estimate error

(i) Original data 0.0692 0.0135 583 5.12 4.2×10−7

(n=586 observations)
(ii) Missing some baseline values 0.0698 0.0164 397 4.26 2.6×10−5

(n=400 observations)
(iiia) Missing indicator analysis 0.0635 0.0264 582 2.40 0.017
(n=586 observations)
(iiib) Weighted indicator analysis 0.0686 0.0167 582 4.10 4.7×10−5

(n=586 observations)
(iv) Maximum likelihood 0.0686 0.0160 433 4.28 2.3×10−5

(n=186 6-month only + n=106 baseline only + n=400 with both)

Table 2.9: Estimated 6 month treatment effect, adjusted for baseline. Row 1: all observed
data; row 2: after making baselines missing according to (2.4); rows 3 & 4: missing indicator
analysis, and row 5: maximum likelihood analysis using SAS PROC MIXED (code of Example
3.4)

analysis, and baseline is highly correlated with response, this causes negligible bias in the treat-
ment estimate (unsurprisingly) but also negligible loss of power. This suggests that analysis (ii)
is likely to be sufficient if only a small number of baseline values are missing. The missing
indicator method is computationally simple, but needs weighting — at least in this example. In
practice, given the cost of the trial relative to the difficulty of weighting, the weighted analysis
is always preferable. Whether the maximum likelihood analysis is superior is debatable. If the
assumption of bivariate normality is appropriate, we believe the more complex maximum like-
lihood analysis using the small sample correction to the standard error and degrees of freedom
available in SAS PROC MIXED has a slight advantage. It also implicitly adjusts for the fact the
weights in the weighted indicator analysis are estimated. ¤

2.4.2 Other settings

The missing indicator method can potentially be used for post-randomisation variables, or in
non-randomised studies with missing covariates. Unfortunately, in these broader settings it is
rarely sensible.

Consider Example 2.3 again. The ‘missing data’ category, ‘2’, does not represent a homoge-
neous group of patients. In general, a missing indicator category represents an unknown mix of
the other categories. Without the protection of randomisation, we have no guarantee that miss-
ing values are balanced with respect to intervention/exposure. Therefore, if we wish to include
the covariate to adjust for confounding, including the extra ‘missing data’ category can lead to
severe bias in estimated intervention/exposure effects, and this bias can be in any direction. The
exception is when the mechanism causing baseline to be missing is independent of outcome
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given true (but possibly unobserved in some cases) baselines6. Thus in general the missing
indicator method should be avoided (Greenland and Finkle, 1995).

2.4.3 Summary

When the response is quantitative, the missing indicator method is a convenient way to han-
dle missing baseline values in clinical trials. Although weighting a missing indicator analysis
will often give little gain, it is preferable given the relatively little extra effort involved. Pro-
vided randomisation has worked, this method can be used whether baseline is MCAR, MAR or
MNAR.

Maximum likelihood methods can also be used in this case. If the missing baseline is discrete,
then the missing indicator method has the edge, because available maximum likelihood methods
usually rely on multivariate normality of the data, and thus model the categorical variable as
continuous. However, if baseline is quantitative and we are prepared to assume multivariate
normality, arguably maximum likelihood methods have a slight advantage (see Example 2.4).
Maximum likelihood analysis also provides protection if randomisation is suspect (see Example
3.4).

When the response is discrete, as far as we are aware the missing indicator method has not
been carefully investigated. It appears less attractive, not least because in logistic or Poisson
regression introducing the missing indicator variable changes the interpretation of the estimated
treatment effect. In practice, with a few missing baselines and a discrete response, omitting
patients with missing baselines is probably satisfactory. Multiple imputation could be used,
although this is not straightforward with non-monotone missing discrete data (see Chapter 5).

Away from the protection of randomisation (i.e. for response data in trials or in non-randomised
studies) the missing indicator method should not be used.

2.5 Marginal and conditional mean imputation

These methods again replace each missing observation by a single value, leading to a ‘com-
pleted’ data set. The originally intended complete data analysis is then used. As above, we call
these replaced values imputed values.

Marginal mean imputation, as its name suggests, ignores other variables. Missing values are
imputed by the average of the observed values for that variable. It is also sometimes referred to
as simple mean imputation or just mean imputation.

Clearly, marginal mean imputation is problematic for categorical variables, where the ‘average
category’ has no meaning. However, the problems go far beyond this. As marginal mean
imputation ignores all the other variables in the data set, using it reduces the associations in the
data set. Also, imputing all the missing observations to the same value is clearly wrong, and
will underestimate the variability in the unseen data. It further goes against the principles of
Chapter 1, where we saw the best we could hope for was a good estimate of the distribution of
the missing observations.

6In other words baseline may be MAR or NMAR, but in neither case, given baseline data, must the missingness
mechanism additionally depend on outcome.
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Figure 2.4: Isolde trial, placebo arm: plot of baseline FEV1 against 6 month FEV1 with missing
6 month FEV1’s imputed by the marginal mean

EXAMPLE 2.1 Isolde trial (ctd)

Consider the FEV1 response 6 months after randomisation for the 375 patients in the placebo
group. Eighty seven have a missing response. The mean FEV1 of the remaining 288 is 1.36
litres. Marginal mean imputation sets each of the missing values equal to 1.36.

Figure 2.4 shows, for the 375 placebo patients, a plot of baseline FEV1 against 6 month FEV1.
The 87 patients with marginal mean imputed values are shown with a ‘4’. The shortcomings of
marginal mean imputation are immediately obvious. Unless a patient’s baseline FEV1 is close
to the mean baseline FEV1, the marginal mean is very unlikely to be close to the unobserved
value. ¤
We now consider conditional mean imputation. In the simplest case, suppose we have one fully
observed variable, x, linearly related to the variable with missing data, y. Using the observed
pairs, (xi,yi), i ∈ (1, . . . ,n1), fit the regression of y on x:

average value of yi = α +βxi, (2.5)

obtaining estimates (α̂ , β̂ ) of (α,β ). Then, for the missing yi’s, i ∈ (n1 +1, . . . ,n), impute them
as yi = α̂ + β̂xi.

EXAMPLE 2.1 Isolde study (ctd)

Consider again the baseline (denoted x) and 6 month (denoted y) FEV1 measurements for the
375 placebo patients. Fitting (2.5) to the 288 patients with both values observed gives

average value of yi = 0.024+0.947× xi. (2.6)

We can use this to calculate the mean imputation for each patient with missing 6 month FEV1.
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Figure 2.5: Isolde trial, placebo arm: plots of baseline FEV1 against 6 month FEV1 with
missing 6 month FEV1’s imputed by the conditional mean (2.6). Left panel: Observed and
imputed data; right panel: imputed data only

For example, a patient with baseline 0.645 litres is imputed a 6 month value of 0.024+0.947×
0.645 = 0.635 litres.

Figure 2.5 shows the results of using (2.6) for the 88 placebo patients with missing 6 month
FEV1. Conditional mean imputed values are shown with a ‘4’. It’s clear that the conditional
imputations are much more plausible than the marginal imputations. However, as the right
panel indicates, they are much less variable than the observed data. Thus, regarding the condi-
tional mean imputations as ‘observed data’ and using them in an analysis will generally lead to
underestimated standard errors, and p-values. ¤

One setting where the underestimation of the variance with conditional mean imputation may
not be such a problem is when we have a quantitative response and missing baseline values. As
with the missing indicator method, this is because randomisation ensures that baseline is not a
confounder. As with the missing indicator method, we may need to weight as the variance of
response given baseline will different in the group whose missing baselines have been replaced
by the conditional mean imputations. To estimate the weights:

1. Using data from patients with both baseline and response observed, regress response on
baseline and treatment. Note the residual standard error; call this r̂b.

2. Using data from patients with observed response but missing baseline, whose missing
baselines are replaced by their conditional mean imputations, regress response on baseline
and treatment. Note the residual standard error; call this r̂m.
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3. Weights for patients with baseline and response observed are r̂2
m, and those for patients

with missing baseline replaced by the conditional mean imputation are r̂2
p. Note r̂2

m is used
in the weights for those with both baseline and response observed and vice-versa.

As with the missing indicator method, weighting is probably advisable, if not always necessary.

EXAMPLE 2.4 Missing baseline values (ctd)

We revisit Example 2.4, where we artificially made some baseline FEV1 missing. There we
considered the missing indicator method. Now though, we use baseline BMI (which drives the
missingness mechanism (2.4)) to conditionally impute missing baseline FEV1.

The conditional mean imputation model for baseline FEV1 is

Expected baseline FEV1i = α +β ×baseline BMIi, (2.7)

which we fit to the i ∈ (1, . . . ,506) patients with baseline FEV1 and BMI observed. (BMI is
observed on all 750 patients). This gives estimates (α̂, β̂ ) = (1.2268,0.007542). For the 186
patients with only 6-month FEV1 observed we then impute their baseline FEV1 values as

1.2268+0.007542×baseline BMIi.

For these data, r̂b = 0.1638 and r̂m = 0.5007, giving weights of 0.2507 for patients with both
baseline and response observed and 0.02683 for those with missing baseline.

We then perform three analyses: (a) ANCOVA with conditional mean imputation for missing
baseline values; (b) weighted ANCOVA with conditional mean imputation for missing baseline
values, and (c) maximum likelihood analysis. Analysis (b) uses the weights calculated above.
However, as the variance of the conditional mean imputations of baseline FEV1’s is very small
compared to the variance of the observed baseline FEV1’s, normalised weights are virtually
identical to those used in the weighted missing indicator method (analysis (iiib) in Table 2.9).
Analysis (c) includes baseline BMI, but does not condition the treatment estimates on it. Effec-
tively, it assumes that baseline and 6-month FEV1 are MAR given fully observed BMI. Such
maximum likelihood analyses are discussed in detail Chapter 3; this example uses the data
arrangement in Table 3.12 and the code for Example 3.6.

Table 2.10 shows the results. The big differences are in the standard errors; because of the high
correlation between baseline and 6-month FEV1, weighting is essential. The weighted analysis
(b) is very similar to the weighted analysis (iiib) in Table 2.9, but the point estimate is fraction-
ally closer to the original data analysis (i) and the standard error is slightly smaller, possibly
indicative of a little gain through conditional imputation with missing baselines. Analysis (c)
has similar efficiency but a slightly different point estimate. This is probably because it makes
the slightly different assumption that both 6-month and baseline FEV1 are MAR given BMI.

The results suggest that if we wish to avoid a maximum likelihood analysis, the weighted miss-
ing indicator method — which gives estimates from a single model fit — is likely to be sufficient
in practice. ¤
The conditional imputation above just used one variable. In general, we can use as many vari-
ables as we like, and form complicated, possibly non-linear imputation models. These can
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Analysis Treatment Standard d.f. t p-value
estimate error

(a) Conditional imputation 0.0641 0.0261 583 2.46 0.0143
(n=586 observations)
(b) Weighted conditional imputation 0.0689 0.0160 583 4.30 2.0×10−5

(n=586 observations)
(c) Maximum likelihood 0.0680 0.0161 434 4.24 2.7×10−5

(n=186 6-month only + n=106 baseline only + n=400 with both)

Table 2.10: Estimated 6 month treatment effect, adjusted for baseline. Row 1: missing baselines
(made missing according to (2.4)) imputed using conditional imputation; row 2: weighted con-
ditional imputation, and row 3: maximum likelihood analysis using SAS PROC MIXED (same
code as Example 3.6). Note degrees of freedom for the maximum likelihood analysis are from
option ddfm=kr in SAS PROC MIXED

improve the accuracy of the prediction. This is particularly so if the data is assumed MAR
and we include in our imputation model all the variables, conditional on which the response
is MCAR. In this case, the mean of the imputed data will be sensible. However, we are still
imputing single values for the missing data, when as we have seen what we need to do is to
estimate the distribution of the missing data.

We therefore need an additional step to correctly estimate the variability of quantities estimated
from a ‘completed’ data set obtained using conditional mean imputation. It is possible, but
often non-trivial, to do this on a case-by-case basis. Alternatively, the attraction of Multiple
Imputation (MI) (Rubin, 1987) is that it provides a simple, yet both general and sufficient,
approach for accounting for the variability of the estimated distribution of the missing data
given the observed data.

To do this, MI does not treat any one set of imputations as the true ‘unobserved’ values of the
missing data. Rather, taking into account the uncertainty in estimating both (i) the relationship
between y and x variables (i.e. α̂, β̂ in (2.5)), and (ii) the residual variability, several ‘complete’
data sets are imputed. These then provide a convenient representation of the distribution of the
missing data given the observed. Each is analysed using the method intended had there been
no missing data. Then, in a key second stage, the results are combined in order to give sensible
results, which are unbiased and have approximately the correct standard error. Rubin derived
rules for doing this, and it is the generality and simplicity of these rules that has placed multiple
imputation at the centre of methods for handling missing data.

EXAMPLE 2.1 Isolde study (ctd)

We now refine the conditional mean imputations above, to reflect (i) the variability in our esti-
mates (0.024,0.947) of (α,β ) and (ii) the variability of 6 month FEV1 given baseline FEV1.

Taking (i), statistical theory shows that (α ,β ) are normally distributed about (0.024,0.947),
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and gives an estimate of their variance and covariance. We can then draw from this distribution.
Statistical theory also shows that 6 month FEV1 has a conditional normal distribution given
baseline FEV1, and estimates the variance of this distribution. This enables us to address (ii).

An algorithm that uses this information to generate the imputed data sets is described in Chapter
4. Here, we simply note that taking into account (i) and (ii) in generating a series of imputed data
sets, gives a representation of the estimated distribution of the missing data given the observed
data. Each of these imputed ‘complete’ data sets can be analysed using the method intended
for the fully observed data. The results must then be combined, using Rubin’s rules, to give
sensible inferences. ¤
Notice that mean imputation, and its multiple imputation counterpart, can be used at any stage
in the longitudinal trial follow-up. Further, the imputation model can include baseline, and other
variables, which we do not wish to include in the eventual trial analysis.

2.6 Conclusions

This Chapter has reviewed a number of imputation methods for missing data. With the excep-
tion of complete case analysis, these methods impute a single value for the missing data. This is
their common weakness, for this alone cannot provide an adequate estimate of the distribution
of the missing data given the observed.

On top of this, we saw that LOCF makes a strong, and to us inappropriate, assumption about the
expected behaviour of a patient post-withdrawal. Besides almost never being supported by the
data, this does not correspond to any meaningful, well-defined, statistical model. Indeed, even
under the assumption that data are MCAR, LOCF gives biased treatment estimates and the bias
depends on the unknown treatment effect. It is therefore not sensible.

Likewise, the missing category method makes the strong assumption that the true category for
all the missing observations is the same. Again, this is most unlikely. Thus, away from the
special case of missing baselines in randomised clinical trials, this method generally leads to
unpredictable biases in estimated intervention effects.

Apart from complete case analysis, the only method that uses the information in an assumed
missingness mechanism is conditional imputation. Even there, we showed that, away from the
special case of missing baselines in randomised clinical trials, a single conditional imputation
is not sufficient. However, repeated conditional imputations, drawn to reflect the uncertainty in
estimating the conditional imputation model and the residual variation, can lead to a sensible
representation of the distribution of the missing data given the observed. This leads directly to
multiple imputation.

The remainder of this book is concerned with likelihood and multiple imputation based methods
for the analysis of partially observed data sets when (a) data are assumed to be MAR (Part II)
and (b) data are assumed to be MNAR (Part III).

In Part II, Chapter 3 discusses model based methods for quantitative data, and Chapter 4 mul-
tiple imputation for quantitative data. The use of both approaches for discrete data is described
in Chapter 5. Throughout, we aim to bring out the relationships between the methods. In par-
ticular we outline why, when model based approaches and MI are both applicable, they can be
approximately equivalent.
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Chapter 3

MAR Methods for Quantitative Data

3.1 Introduction

In Part I we reviewed the issues raised by missing data in clinical trials and outlined a systematic
approach for appropriate analyses. We saw that when data are missing, additional assumptions
are needed for an analysis to be sensible. These we summarise in the the missing data model.
One way of understanding the implications of a missing data model for the intended full-data
analysis is to consider the missingness mechanism it implies. As described in Chapter 1 these
can be broadly classified as MCAR, MAR and MNAR. In Chapter 2 we reviewed a number of
well known but ad-hoc methods for imputing data, and concluded that none of them generally
lead to sensible analysis if data are MAR, although some (e.g. missing indicator) give valid
inference for missing baseline data. However, some of them (such as LOCF) are not sensible
even if the data are MCAR.

In Part II we focus on methods for sensible analyses when data are MAR. In this Chapter we de-
scribe a model based approach for quantitative data. It will become apparent that this approach
is much more flexible than sometimes supposed. Chapter 4 describes multiple imputation, and
outlines how the approaches described here relate to multiple imputation, particularly as im-
plemented in SAS. Then, Chapter 5 describes the analogue of these approaches for discrete
response data.

As discussed in Part I, before modelling the data it is important for the statisticians involved
to take time (together with the investigators) to understand why observations might be missing,
and to uncover any information in the data that helps explain this. As Chapter 1 shows, a
sensible MAR analysis must condition or adjust for variables predictive of withdrawal. Some
useful exploratory techniques are using t-tests or cross tabulations to investigate the association
between baseline variables and withdrawal. It can also be useful to look, at each time point,
whether there is a difference in response between patients who do, and do not, return for further
visits. More formally, logistic regression and/or survival (withdrawal) analysis can be useful to
establish key independent predictors of withdrawal. See, for example, Carpenter et al. (2002).
In this Chapter, we assume that such exploratory data analysis has been done.

Table 3.1 provides an overview of various missing data scenarios and where they are discussed
in this Chapter. For estimating treatment effects, we start with a simple situation with only one
follow-up visit, and describe how to handle missing response, missing baseline, and additional
variables predictive of withdrawal. We then show how these ideas extend naturally to handle the
more usual setting of longitudinal follow-up. Readers unfamiliar with the ideas would benefit
from following the development rather than jumping straight to the Section most relevant for
their problem. A more detailed description of the ideas underpinning this Chapter, set in a trials
context, is given in the Appendix A. This additional material may be useful to develop a deeper
intuition.
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Data structure What’s missing? Analysis aim See

baseline and longitudinal some baseline values, some summarise data by mean, §3.3
follow-up follow-up responses SD, at each follow-up time

baseline and 1 follow-up some follow-up data estimate treatment effect §3.4.1,
§3.4.2

baseline and 1 follow-up both baseline and follow-up estimate treatment effect §3.4.3
data

baseline and 1 follow-up both baseline and follow-up estimate treatment effect §3.5.1
plus additional baseline data
variable predictive of
withdrawal

baseline and 1 follow-up baseline and follow-up data estimate treatment effect §3.5.2
plus post-randomisation
variable predictive of
withdrawal

baseline and longitudinal some baseline values, some estimate treatment effect at §3.6
follow-up follow-up responses final follow-up visit

baseline, longitudinal some baseline values, some estimate treatment effect at §3.6
follow-up and additional follow-up responses final follow-up visit
follow-up data predictive of
withdrawal

Table 3.1: Overview of Chapter 3. In each case, we discuss the estimation of treatment effects
with and without baseline adjustment

3.2 Some modelling issues

Throughout this Chapter, we model the data with the multivariate normal distribution.1 This
presupposes the response data approximately follow this distribution, or can be transformed to
do so. For longitudinal follow-up, it also raises the issue of the appropriate choice of covariance
matrix. We advocate in the settings considered here the use of an unstructured covariance
matrix. This provides a natural way to handle variables predictive of withdrawal on which we do
not wish to condition (i.e. adjust) our treatment estimate. As will become clear by the end of the

1One advantage of multiple imputation is that individual variables can be transformed so the joint distribution
is approximately multivariate normal, and imputation carried out assuming multivariate normality, before back
transforming (see p. 91).
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Chapter, a structured covariance matrix would be awkward in this context, as different structures
would be required for different parts of the response. Using an unstructured covariance matrix
also means analyses are almost equivalent to those using SAS PROC MI, as described in Chapter
4. One objection sometimes raised to the use of an unstructured matrix is potential inefficiency.
We show in the next Section that the loss of power under an unstructured covariance matrix
as compared with a more parsimonious choice is negligible for a final time point analysis with
withdrawal.

All the analyses in this Chapter use SAS PROC MIXED. We always use the adjustment to the
standard errors and degrees of freedom derived by Kenward and Roger (1997). This gives more
accurate standard errors when the sample size is small, and corrects the default estimate of the
degrees of freedom. One desirable consequence of this correction is, if no data are missing, the
degrees of freedom for treatment estimates from SAS PROC MIXED will be identical to those
from standard analyses, such as t-tests or ANCOVA.

3.2.1 Comparative power under different covariance structures

In advocating the use of the unstructured covariance matrix for analysing repeated measure-
ments data we need to be sure that this is not an excessively inefficient procedure. Here we
show that the loss of power for the final time point treatment comparison is negligible when
moving from a structured to an unstructured covariance matrix. Such a comparison can only
be made meaningfully for tests with the correct nominal size and to ensure this we need each
test to be valid under a given true covariance matrix. This implies that all structures compared
directly must be nested, with the true matrix the most parsimonious. We consider here a set of
four such nested structures, with the number of parameters expressed in terms of the number of
follow-up times (T ):

AR(1) first order autoregressive, 2 parameters;
ARH(1) heterogeneous first order autoregressive, T +1 parameters;
AD(1) first order ante-dependence structure, 2T −1 parameters, and
UN unstructured, T (T +1)/2 parameters.

It is assumed that the data actually follow an AR(1) structure with a correlation of 0.5. To
compare the power of the final time point comparison under the different structures we consider
the set of alternative hypotheses which generate a power of 80% under the AR(1) structure. The
other structures must have less power than this (under the same alternatives): we are interested
in the size of these differences. Two values of T are considered, 5 and 10; and four sample sizes
(N): 12, 24, 48 and 96. We are assuming that 1/3 of subjects drop out in the following patterns
(in sets of 12, ‘.’ implies missing) with withdrawal distributed evenly between the two groups
(Table 3.2).

Table 3.3 shows the results, as a percentage, under all combinations of structure, number of
times, and number of subjects.

Apart from the very small sample size (N = 12) the loss of power is clearly negligible. It should
also be noted that the assumption of a true AR(1) structure is unrealistically simple for most
settings so the differences will effectively be even smaller in practice than those observed here.
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T = 5:

Time
1 2 3 4 5 replication
X X X X X 8
X X X X · 1
X X X · · 1
X X · · · 1
X · · · · 1

T = 10:

Time
1 2 3 4 5 6 7 8 9 10 replication
X X X X X X X X X X 8
X X X X X X X X X · 1
X X X X X X X · · · 1
X X X X X · · · · · 1
X X X · · · · · · · 1

Table 3.2: Power calculations: withdrawal pattern in the two treatment groups

N
T Structure 12 24 48 96
5 AR(1) 80 80 80 80

ARH(1) 69 76 78 79
AD(1) 68 76 78 79
UN 68 76 78 79

10 AR(1) 80 80 80 80
ARH(1) 68 76 78 79
AD(1) 67 75 78 79
UN 67 75 78 79

Table 3.3: Estimated power, as a percentage, under all combinations of structure, number of
times, and number of subjects

3.3 Summary statistics

Suppose we wish to summarise the quantitative response data in different treatment arms with
means and standard deviations (SDs) at baseline and subsequent follow-up visits. If no data
were missing, then for each treatment arm in turn, at baseline and subsequent follow-up times,
we would calculate the sample mean and SD.

When some of the observations are missing, such marginal estimates are generally biased. We
describe how to use a simple model to obtain unbiased estimates for each treatment arm in turn.
This assumes missing data are MAR. That is to say, for each patient, we assume their missing
data are MCAR conditional on their observed data.

Consider baseline and response data from a single treatment arm, and suppose we wish to
estimate the mean and SD at each follow-up time.
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3.3.1 Approach

We assume the data can be modelled by the multivariate normal distribution. For illustration,
suppose there are baseline and two follow-up times, and write data from patient i, i ∈ (1, . . . ,n)
as (xi,yi1,yi2). Using all the observed data, fit a multivariate normal distribution with an un-
structured mean and covariance matrix. The estimated means, variances and covariances are all
sensible under MAR.

Specifically, for the subset of patients with complete data, we fit the full distribution,
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For patients with missing data, we fit the appropriate marginal distribution. For example, if a
patient has only baseline observed, it is xi ∼N(µ0,σ2

0 ). If a patient is missing the first follow-up
observation, it is (
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∼ N
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)}
.

Other patterns of observed/missing data follow in the obvious way. For a more detailed argu-
ment, see Appendix A.

3.3.2 Further details and examples

In practice, using SAS, or other packages, we do not need to isolate and fit the different marginal
models, for the different missing data patterns, separately. We simply put all the observed data
into the analysis; the software handles the rest automatically.

As we regard each patient as independent of all the others, the key assumption is that, for each
patient, their missing observations are MAR given their observed data. From a theoretical view,
there is no need for the MAR mechanism to be the same for different patients, whether or not
they have the same pattern of missing data. In summary, the analysis assumes nothing about the
withdrawal mechanism for each patient except it depends, at most, on their observed data.

Specifically, this analysis is sensible with interim missing data assumed MCAR and after with-
drawal, MAR. However, it is also valid if interim missing data are assumed MAR. This raises an
interesting issue. For example, at first glance, it is difficult to justify mechanisms whereby base-
line is MAR given subsequent responses, for we have the future affecting the past. However,
what is actually being argued is that, for patients with these responses, the chance of observing
his/her particular baseline was random. So it is not inherently illogical, although it may be
practically unlikely. For this reason, MAR is often considered more plausible if missing data
are mainly due to withdrawal, with a scattering of interim missing data.

A different issue arises if the data cannot be regarded as multivariate normal. In this case,
we need to transform the data. The easiest approach (though it is not always possible) is to
find a transformation f such that f (x), f (y1), etc. are approximately normal. Working with
the transformed data, we can then use the above approach to find the means and SDs of the
transformed data, and back transform using the ‘delta’ method (see (A.16) for an example of
this).
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Patients observed at N (%)
Baseline 0.5 years 1 year 1.5 years 2 years 2.5 years 3 years

X X X X X X X 95 (25%)
X X X X X X 39 (10%)
X X X X X 19 (5%)
X X X X 24 (6%)
X X X 19 (5%)
X X 42 (11%)
X 74 (20%)

Completers, but with sporadic interim missing data 39 (10%)
Withdraw before end, but with sporadic interim missing data 24 (6%)

Table 3.4: Pattern of missing data in placebo arm of Isolde trial. Observed data denoted by ‘X’

EXAMPLE 3.1 Isolde data, placebo arm

We illustrate this approach with data from the placebo arm of the Isolde trial. The missing
data pattern is summarised in Table 3.4. Withdrawal predominates, but there are a non-trivial
number of interim missing values.

To estimate the means and SDs at each time point, assuming observations are MAR, we fit a 7-
dimensional multivariate normal distribution with an unstructured covariance matrix, using SAS

PROC MIXED. The resulting means and SDs are compared with those from the observed data in
Table 3.5. In this example, both methods give similar estimates for the SDs. This is not always
the case; sometimes under MAR the observed data underestimates the variance. Comparing the
means, the methods give similar results at baseline (when there is virtually no missing data), but
diverge later in the trial. The data are clearly not MCAR; further investigation shows patients
with low FEV1 are more likely to withdraw. Therefore sample estimates, which assume missing
data are MCAR, are markedly biased. Assuming data are MAR, if patients continued taking
placebo as per the protocol, we would expect a reduction in FEV1 of 190 ml. ¤

Mean (SD) of FEV1 (litres)
Baseline 0.5 years 1 year 1.5 years 2 years 2.5 years 3 years

S 1.41 (0.49) 1.36 (0.49) 1.36 (0.50) 1.34 (0.50) 1.33 (0.50) 1.34 (0.54) 1.30 (0.49)
E 1.41 (0.49) 1.35 (0.49) 1.33 (0.49) 1.29 (0.49) 1.27 (0.48) 1.25 (0.52) 1.22 (0.49)

Table 3.5: Isolde trial, placebo arm: mean (SD) FEV1 (litres), at baseline and follow-up vis-
its. Top row: Sample values using all observed data (valid assuming MCAR); bottom row:
Estimated using joint multivariate normal model (valid assuming MAR)
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3.4 Estimating treatment effects when follow-up and/or baseline values are missing

We now consider the simplest realistic problem: two treatment groups, baseline and response
measured once at a single follow-up visit. We suppose that all the baseline values are observed,
but that some responses are missing. Initially we assume the responses are MCAR given treat-
ment, then MCAR given both treatment and baseline. In each case we describe how to estimate
the effect of treatment (i) unadjusted for baseline and (ii) adjusted for baseline.

3.4.1 Follow-up MCAR given treatment

As motivated in Chapter 1 regression analysis gives sensible answers if the response is MCAR
given the covariates included. Since we always wish to include treatment, if the response is
MCAR given treatment, simply omitting from the analysis all patients with missing responses
gives sensible answers. If, further, we wish to adjust the treatment estimate for baseline, we just
include this as another covariate.

EXAMPLE 3.2 Isolde trial: baseline and 6 month response data

Consider the baseline and 6 month response data, from both treatment arms. We have 750 base-
line values, 269/376 active treatment group responses and 240/374 placebo group responses. A
logistic regression confirms 1-year response depends on treatment, but not baseline FEV1. We
therefore analyse the data assuming it is MCAR given treatment.

To estimate the effect of treatment, we regress response on treatment for the 509 patients with
both observed. The adjusted estimate is obtained from the same data, simply by including
baseline as a covariate. Both estimates are shown in Table 3.6; as expected given the strong
correlation between baseline and follow-up FEV1, the conditional analysis has a much reduced
standard error. ¤

Model Estimated gain in FEV1 (litres) std. error p-value
due to treatment

Unadjusted 0.058 0.0429 0.175
Adjusting for baseline 0.074 0.0149 < 0.001

Table 3.6: Estimated effect of treatment, marginal and conditional on baseline, assuming 1-year
response is MCAR given treatment

3.4.2 Follow-up MCAR given treatment and baseline

Still considering only missing responses, suppose that the missingness mechanism can depend
on both treatment and baseline value. Following the argument in §3.4.1, regressing response
on both baseline and treatment, using data from all patients with observed responses, gives a
sensible estimate of the treatment effect adjusted for baseline.
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Obtaining an estimate unadjusted for baseline in this setting is a little more tricky. As discussed
in more detail in Appendix A, implicit in the approach for estimating marginal means and SDs
(§3.3), where we used a multivariate response model, is that a patient’s missing responses are
MCAR given their observed responses. In other words, it is not necessary to have the variables
that the missingness mechanism depends on as covariates; they can also be additional responses.
Here, therefore, we need to include baseline as a second response, and treatment as a covariate.

Letting T = 1,0 respectively denote the active and placebo treatments, y the response and x the
baseline, the model is

(
x
y

)
∼ N

{(
α0 +α1T
β0 +β1T

)
,

(
σ2

x σxy

σxy σ2
y

)}
, (3.1)

where β1 is the estimated treatment effect marginal to baseline. By analogy with §3.3.1, for
patients whose response is missing, we fit (3.1) marginalised over y, i.e.

x∼ N(α0 +α1T,σ2
x ). (3.2)

If there were no missing data, and we fitted (3.1), the estimated treatment effect, and corre-
sponding test, would be the same as a t-test using a pooled estimate of variance.

EXAMPLE 3.3 Isolde data: baseline and 2.5 year follow up

Two and a half years after randomisation, logistic regression indicates the probability of re-
sponse depends on both treatment (p=0.002) and, to a lesser extent, baseline (p=0.05). In the
placebo group, 173/374 patients remain, while in the active group 216/376 remain.

To estimate the treatment effect conditional on baseline, we use data from the (173+216)=389
patients with observed 2.5y response, adjusting for baseline and treatment. This can be done
using standard least squares regression. The first row of Table 3.7 shows the results.

Model Estimated treatment effect (l) Standard error p-value

Conditional on baseline 0.064 0.0214 0.003
(n=389 patients with complete data)
Marginal to baseline 0.018 0.0514 0.725
(n=389 patients with complete data)
Marginal to baseline 0.081 0.0391 0.038
(joint model, all observed data)

Table 3.7: Isolde data: estimates of treatment effect 2.5 years after randomisation, assuming
response is MCAR given baseline and treatment

We now use the approach above to estimate the effect of treatment marginal to baseline, when
data are MCAR given baseline and treatment. Thus we fit model (3.1). To fit this model in SAS

PROC MIXED, the data need to be arranged as shown in Table 3.8. Note the missing response. In
order to fit four means, we need to define both treatment and time to be class variables (factors)
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Variable
Patient identifier Time Treatment FEV1

(1=baseline, 2=2.5 years) (1=active) (litres)

1 1 0 0.980
1 2 0 Missing
2 1 1 0.890
2 2 1 0.910
3 1 0 1.770
3 2 0 1.150
...

...
...

...

Table 3.8: Isolde trial: arrangement of baseline and 2.5 year response data for estimating treat-
ment effect marginal to baseline. The 2.5 year response data is assumed MCAR given baseline
and treatment

with two levels, and fit the interaction between them. SAS PROC MIXED code for this model is
given in Appendix C. The resulting treatment estimate is shown in the bottom row of Table 3.7.
Finally, for comparison, Table 3.7 shows the estimated treatment effect from an OLS regression
of response on treatment, omitting baseline. The latter uses data from the 389 patients with
both observed. Were the data to be MCAR given treatment alone, this result should be similar
to the estimate from the joint model. It is not, because, as we noted at the start of this example,
response at 2.5 years is strongly predicted by baseline.

This example underlines the importance of adjusting (either by conditioning or having as an
additional response) using all variables predictive of withdrawal. In practice, we usually wish
to condition on baseline. However, frequently there will be other variables, predictive of with-
drawal, which we do not wish to condition on. This example motivates a general approach to
such settings. ¤

3.4.3 Missing baseline and follow-up

We continue to consider the simple setting of two treatment groups, with baseline and a single
response. Here we suppose that some patients are missing baseline, while others are missing the
response. As usual, we assume the data are MAR. Here, this means that for patients with miss-
ing response, this is MCAR given baseline and treatment, while for those with missing baseline,
this is MCAR given response. Although theoretically this could also depend on treatment, this
is implausible as it would imply a failure of randomisation.

First consider estimating the treatment effect unadjusted for baseline. Model (3.1) enables
this to be done directly. Before, when we only considered missing responses, such patients
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contributed information through the marginal distribution (3.2). However, the approach extends
directly to patients with missing baseline. They contribute information through the marginal
distribution y ∼ N(β0 + β1T,σ2

y ). Thus, we can use exactly the same data arrangement as in
Table 3.8, and exactly the same SAS code as before.

Second, consider the more usual situation where an estimate of treatment effect conditional
on baseline is required. We need to fit a joint model to baseline and response, using all the
observed data, and use this to estimate the conditional mean of interest. This can be done using
the following model (Roger, 2005). The key is to fit the same mean to baseline, x, regardless of
treatment group. This is equivalent to (3.1) with α1 = 0, that is modelling placebo patients as

(
x
y

)
∼ N

{(
µx

µ p
y

)
,Σ =

(
σ2

x σxy

σxy σ2
y

)}
,

and patients receiving intervention as
(

x
y

)
∼ N

{(
µx

µ t
y

)
,Σ =

(
σ2

x σxy

σxy σ2
y

)}
. (3.3)

Fitting this model to intervention and treatment group in SAS PROC MIXED gives estimates of
all three µ parameters. In particular, as we show in Appendix A.4, estimates of µ t

y and µ p
y are

conditional on baseline. Thus if we use the LSMEANS option to calculate the estimated interven-
tion effect, µ t

y− µ p
y and its standard error, this is equivalent to the baseline adjusted estimate

when there are no missing data. With some data MAR, each patient contributes information
through the appropriate marginal distribution for their observations.

EXAMPLE 3.4 Isolde study: baseline and 6 month follow-up

We illustrate this approach with the baseline and 6 month data from the Isolde study. Using
a different mechanism in the placebo and active arms, we make some of the baseline values
MCAR given 6 month response, and compare various analyses.

For the placebo patients with observed 6 month response, let the probability of observing base-
line be:

Pr(observe baseline from patient i) = pi =
1

1+ e0.4×(6 month FEV1) . (3.4)

The effect of this is shown in Figure 3.1. Then, for each placebo patient, generate a uniform
variable on [0,1] and set the baseline response to be missing if ui > pi. The resulting pattern of
missing data is shown in Table 3.9 (right column).

In the active arm, we use the model

Pr(observe baseline from patient i) = pi =
1

1+ e−5×(6 month FEV1)
, (3.5)

which gives a high probability of baseline values being observed, and use the same method to
set baseline observations missing.

Such a differential mechanism between the treatment arms is artificial. However, it serves to
indicate that (i) when baseline is MAR, the modelling approach above gives sensible results, and
(ii) the modelling approach is valid when different patients have different MAR mechanisms.
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Figure 3.1: Left panel: histogram of probabilities generated by (3.4); right panel: how these
probabilities increase with 6-month FEV1

Note that in contrast to the missing baselines in Chapter 2, as the chance of seeing baseline
depends on treatment, the missing indicator method (§2.4) and conditional imputation method
(2.5) will not work here.

Using this mechanism, the resulting data available for analysis are summarised in Table 3.9. In
order to fit this model, we arrange the data as shown in Table 3.10 and use the code shown in
Appendix C.

Table 3.11 shows the results of estimating the treatment effect, conditional on baseline, using (i)
the original data, before any of the baseline values were artificially set to be missing; (ii) using
only patients with both baseline and response observed, and (iii) using all the observed data and
model (3.3). Relative to the analysis of the original data, a complete case analysis is markedly
biased, so even though the standard error increases, the t-statistic is greater than for the original
data! Conversely, the treatment estimate from model is close to the full data estimate, and the
increased standard error reflects the information lost by the missing baseline values. ¤

3.4.4 Summary

1. Variables with missing data need to be included as additional responses in the model
alongside — or together with — the primary outcome.

2. If we wish to estimate a treatment effect conditional on such a response variable, that
variable needs to have the same mean across treatment groups.

3. To estimate treatment effect marginal to such a response variable, it needs a different
mean in each treatment group.
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Data Treatment arm
available Active Placebo

Baseline only 78 86
6 month only 1 187
Both 297 101

Total 376 374

Table 3.9: Number of patients with
data available for fitting (3.3)

Variables
id treat time FEV1

1 2 1 0.98
1 2 2 1.30
2 1 1 1.46
2 1 2 missing
3 2 1 missing
3 2 2 2.97
...

...
...

...

Table 3.10: Data arrangement
for fitting model (3.3). Baseline
is indicated by time=1; follow-
up by time=2. Placebo patients
are treat=2

3.5 Missing baseline/follow-up: handling additional covariates predictive of missing data

We now apply the above principles to two situations that frequently occur, namely:

1. The existence of a baseline variable, aside from baseline response and treatment, which
is predictive of patient withdrawal. Under MAR we need to include such a variable in the
analysis, but we may not wish to condition our estimate of treatment on it.

2. The existence of additional post-randomisation data, predictive of withdrawal. Again,
under MAR such information needs to be included in the analysis, but we do not wish to
condition our estimate of treatment on it.

EXAMPLE 3.5 Isolde study: estimating treatment effect at last follow-up

A natural analysis of the Isolde data is to use the 3 year data (final follow-up) to estimate
the effect of treatment conditional on baseline (ANCOVA). However, a substantial number of
patients withdrew (e.g. Table 3.4). We use logistic regression to relate the probability of a
patient completing to baseline values. As might be expected, this shows that patients in the
placebo group are much more likely to withdraw. However, in addition to treatment, baseline
body mass index (BMI) and age are independently associated with withdrawal. Both these
findings make clinical sense. Patients in this trial are chronically ill, and low BMI indicates a
more serious phase of the disease, associated with an increased chance of withdrawal. Older
patients are also more likely to withdraw.
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Model/Data Estimated treatment effect Standard error t-statistic

Original data 0.07 0.014 5.12
Complete data 0.13 0.019 6.79
Model (3.3), all observed data 0.08 0.018 4.46

Table 3.11: Results of various analyses of 6 month and baseline data when some baseline data
are made missing

However, there are also some additional post-randomisation variables, one of which is the num-
ber of asthma exacerbations a patient has experienced since the last follow-up visit. This is also
highly predictive of withdrawal, with a high rate of exacerbation associated with withdrawal.

Assuming data from patients who withdraw is MAR, we wish to obtain the original ‘intended’
estimate of the effect of treatment, adjusted only for baseline. However, to be valid, our model
has to take into account the information about withdrawal in these additional variables. ¤

We extend our modelling approach above to answer this question. We do this in two stages.
First, we show how to include information from baseline variables predictive of withdrawal.
Then we consider how to use information from post-randomisation variables predictive of with-
drawal, which turns out to be exactly the same problem.

3.5.1 Additional baseline variables predictive of withdrawal

Suppose initially we only have one additional variable to include. The extension to this case
is straightforward, following the same pattern adopted when we moved from having baseline
as a covariate to having baseline as a response. Recall from §3.4.3 that, when we did this, if
we wanted an estimate of treatment conditional on baseline, then we fitted a common mean to
baseline across treatment groups. However, when we wanted an estimate marginal to baseline,
we fitted different means for each treatment group.

Therefore, here we bring in the additional baseline variable as a response. As we do not (usu-
ally) want to condition on it, we fit a separate mean to it, for each treatment group. The following
example illustrates how this works. Additional baseline variables predictive of withdrawal are
handled in exactly the same way.

EXAMPLE 3.6 Isolde trial: Including BMI in MAR estimates of treatment

We have seen that baseline BMI is predictive of patient withdrawal. We now show how to obtain
an estimate of treatment conditional on baseline and marginal to BMI. As discussed above, we
have to bring baseline BMI in as a response. Further, we have to fit a separate mean for the two
treatment groups. Table 3.12 shows the arrangement of the data, and the new treatment variable
newtreat. The ‘response indicator’ variable was previously the observation time. Now, values
of 1, 2 and 3 indicate respectively baseline BMI, baseline FEV1 and 3 year FEV1. The variable
newtreat has (i) separate values for BMI in each treatment group (1, 2) (ii) a shared value for
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baseline FEV1 (3) and (iii) separate values for post-randomisation FEV1’s (4, 5), depending on
treatment arm.

Variables
patient treatment response response newtreat

identifier group indicator

1 2 1 22.3 1
1 2 2 0.98 3
1 2 3 1.30 4
2 1 1 25.3 2
2 1 2 1.46 3
2 1 3 missing 5
3 2 1 23.4 1
3 2 2 missing 3
3 2 3 2.97 4
...

...
...

...
...

Table 3.12: Data arrangement for estimating treatment effect, assuming missing data are MAR
and allowing for the dependence of withdrawal on BMI. Treatment group 2 is the placebo group

We fit this model using SAS PROC MIXED, setting newtreat as a class (factor) variable. The
difference between the estimated means for newtreat=4 and newtreat=5 is the estimated
treatment effect, conditional on baseline, allowing for the fact that seeing the response can
depend on BMI (as well as adjusting for baseline and treatment).

Table 3.13 shows the results of fitting three models. In the first row, we use data from only
308 patients with baseline and 3 year FEV1 observed. The t-statistic for the baseline adjusted
estimate of treatment therefore has 305 degrees of freedom. The second model is fitted in SAS

PROC MIXED. Again, we use data from the 309 patients with FEV1 observed at baseline and 3y.
However, we also include baseline BMI, for these 309 patients, as a response too. As expected,
the results are virtually identical to the first row. The final model is fitted using exactly the
same SAS PROC MIXED code, merely including in the data baseline FEV1 and BMI from the
(751-309)=442 patients who withdrew before 3 years. In this example, the treatment estimate
is only slightly changed (by about 20% of its standard error). We also have fractionally more
information, as indicated by the slight decline in standard error, and the increase in degrees
of freedom for the t-statistic. As discussed in §3.2, it is important to estimate these degrees
of freedom using the method of Kenward and Roger (1997); the default method in SAS PROC

MIXED gives quite different values.

Note that for this model SAS does not output the regression coefficient for baseline, as we are
modelling baseline as a response. If the estimate of the regression coefficient for baseline is
desired, this can readily be computed from the SAS PROC MIXED output. This is the ratio of the
covariance of baseline and response divided by the variance of baseline. Using the data from



3.5 Missing baseline/follow-up: handling additional covariates predictive of missing data 65

Model Estimated treatment effect Std. error d.f. t-statistic

OLS 0.089 0.0231 305 3.85
SAS 1 0.089 0.0231 306 3.85
SAS 2 0.085 0.0230 310 3.70

Table 3.13: Estimated 3 year treatment effect, adjusted for baseline. Row 1: all patients with
observed baseline and 3 month treatment, estimated using OLS; row 2: estimates from SAS

PROC MIXED, including BMI as a response, but using same data as row 1; row 3: using all
observed data (i.e. additional BMI and baseline data for patients who withdraw)

model 2, from SAS PROC MIXED, this is estimated to be 0.2044/0.2264 = 0.9028. The standard
error is estimated as discussed in Appendix A, equation (A.17). Substituting the estimates of
ν1,ν12,ν2,σ2

x ,σ2
xy, from this analysis gives a variance of

1
0.22642 (0.000302−2×0.9028×0.000301+0.000334×0.90282) = 0.02452.

The corresponding coefficient and standard error from analysis 1 are 0.9028 and 0.02422, show-
ing good agreement (as we have only taken 3 significant figures from the estimates of ν1 etc.)
¤
Although the effect of adjusting for BMI does not alter the conclusions in this example, our
approach shows how a baseline predictor of withdrawal may be included in the model, in such
a way that (i) if there are no missing data, the estimated treatment effect is equivalent to what
we would get from the intended ‘full data’ analysis (ii) if there are missing data, the estimate
is valid under MAR. The approach is simple and straightforward computationally. It extends
readily to include other covariates predictive of withdrawal.

3.5.2 Post-randomisation variables predictive of withdrawal

We could develop the above model to show the inclusion of more than one covariate predictive
of withdrawal. Rather than do this, however, we show this is equivalent to extending the model
to allow for a post-randomisation variable that is predictive of withdrawal.

The key observation is that our models are all built around assuming the joint distribution of
all variables is multivariate normal. We parameterise this distribution in such a way that the
effect of treatment adjusted for baseline is readily estimable. However, the multivariate normal
distribution does not depend on time in any way. Therefore there is no difference between
including baseline variables predictive of withdrawal and post-randomisation values predictive
of withdrawal. We simply include them as another response in the model, estimating a separate
mean for each treatment group. As in the example above, if the data are complete, our model
gives the same estimated treatment effect as an ANCOVA fitted to the response and baseline
data. If the data are not complete, our model gives a sensible estimate of the treatment effect
under MAR.
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Variable Estimate Std. Error t-value Pr(> |t|)

Intercept 0.642 0.233 2.753 0.006
treatment: placebo -0.047 0.039 -1.205 0.229
baseline FEV1 -0.034 0.045 -0.750 0.453
BMI 0.014 0.004 3.138 1.78×10−3

mean exacerbation rate -0.069 0.015 -4.750 2.53×10−6

sex: male -0.072 0.047 -1.528 0.127
age -0.004 0.003 -1.365 0.173

Table 3.14: Log odds ratios from a logistic regression of patient withdrawal (0=withdrawal) on
baseline variables and exacerbation rate

EXAMPLE 3.7 Isolde data: adjusting for post-randomisation exacerbation rate

For each patient, we calculate their mean exacerbation rate as their total number of exacer-
bations before withdrawal divided by their time on trial. We then included this in a logistic
regression of withdrawal before the end of the study, together with treatment, BMI, sex, age
and baseline FEV1. As Table 3.14 shows, patients with high exacerbation rates are much more
likely to withdraw; this is therefore an important variable to adjust for in a MAR analysis.
Figure 3.2 shows that exacerbation rate is quite non-normal. As our model is multivariate nor-
mal, and we are not concerned with interpreting changes in exacerbation rates directly, we use√

exacerbation rate, which is more normally distributed (right panel, Figure 3.2).

To fit this model, we follow the previous arrangement of data (Table 3.12), giving Table 3.15.
Note the extra response (4), for mean exacerbation rate, which has to have a different mean
for the two treatment groups (newtreat= 6, 7). Fitting this model, using in turn mean ex-
acerbations and their square root, gives the results in Table 3.16. Comparing the second row
with Table 3.13, we see the estimated treatment effect is closer to that obtained before adjusting
for BMI, but we now have fractionally more information. The difference between the results
in Table 3.16 is very small; the assumption of normality for exacerbation rate does not appear
important in this example. Nevertheless, it is preferable, where possible, to transform variables
to approximate normality. Finally, the results underline the importance of adjusting for all the
key predictors of withdrawal, including post-randomisation ones. ¤

So far we have obtained estimates of treatment conditional only on baseline. If we wish to
condition on variables that we have included as responses, as previously observed, we simply
fit a single mean for that variable across treatment groups, following the logic of (3.3). Of
course, fully observed baseline values can be included as covariates in the model in the usual
way. We will generally need an interaction of such a covariate with newtreat. The precise
form this takes must be carefully chosen to ensure the desired conditioning on (adjustment for)
each of the response variables.

The difference in handling baseline variables predictive of withdrawal, and post-randomisation
variables such as exacerbations, is that with baseline variables we can either condition on (i.e.
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Figure 3.2: Histograms of mean exacerbation rate, and its square-root

adjust for) them, or marginalise over them. Conditioning on them may sometimes provide
more precise estimates. Further, usually there are relatively few baseline values missing and the
reason for them being missing does not depend on treatment. Thus conditioning on them by
including them as a covariate in the analysis (and thus implicitly excluding from the analysis
patients with them unobserved) is unlikely to bias the estimate of treatment effect. However,
we do not usually wish to condition on post-randomisation responses. E.g. in Isolde, we do
not want an estimate of the effect of treatment on FEV1 conditional on exacerbations. Thus,
we have to marginalise over post-randomisation responses, by including them in the model as
shown above.

3.5.3 Summary

1. Baseline and post-randomisation variables predictive of withdrawal can be handled in
the same way.

2. To obtain treatment estimates unadjusted for them, we include them as additional re-
sponses with separate means for each treatment group.

3. Usually, baseline variables predictive of withdrawal have relatively few missing values.
Therefore, to adjust treatment estimates for them, it is best to include them as covariates.

4. If they have many missing values, include them as an additional response, but with the
same mean across treatment arms.
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Variables
patient treatment response response newtreat

identifier group indicator

1 2 1 22.3 1
1 2 2 0.98 3
1 2 3 1.30 4
1 2 4 1.3 6
2 1 1 25.3 2
2 1 2 1.46 3
2 1 3 missing 5
2 1 4 0.3 7
3 2 1 23.4 1
3 2 2 missing 3
3 2 3 2.97 4
3 2 4 0.5 6
...

...
...

...
...

Table 3.15: Data arrangement for estimating treatment effect, extending Table 3.12 to include
mean exacerbation rate

3.6 Extension to longitudinal follow-up

We now illustrate how the framework we have set up extends naturally to include more follow-
up visits. Although the primary analysis (were no data missing) is often ANCOVA at the last
follow-up visit, when patients withdraw before the end of the study there is clearly valuable
information in the previous observed values. Specifically, the previous observed values can
provide valuable information about the reason for withdrawal, for example those who are per-
forming poorly are more likely to withdrawal.

We can simply include the additional responses in the model, exactly the same way as mean
exacerbation rate was included above, extending our newtreat variable accordingly. Assuming
data are MAR, such an analysis is attractive because

1. if there were no missing observations, the estimated treatment effect, standard error, etc.
would agree exactly with estimates obtained from an ANCOVA using only data from the
final follow-up visit;

2. when end of follow-up data are missing, we make the best use of other measurements,
under the missing at random assumption, and
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Estimated treatment effect Std. error d.f. t-statistic p-value

0.08794 0.02306 310 3.81 0.0002
0.08856 0.02301 312 3.85 0.0001

Table 3.16: Estimated 3 year treatment effect, including mean exacerbation in the model. Row
1: results using exacerbation rate; row 2: results using square-root exacerbation rate

3. interim missing observations, and observations missing after patient withdrawal, are both
handled without any additional work.

EXAMPLE 3.8 Isolde study: analysis including all follow-up data

We illustrate this approach with Isolde. Our estimate of interest is the treatment effect at 3
years, adjusted for baseline. We have already seen that withdrawal depends on baseline BMI
and exacerbations. Even so, including 6 month FEV1 in the model shown in Table 3.14 shows
the odds of not withdrawing are 3% higher for each 100 ml increase in 6 month FEV1 (p=0.03).

We therefore extend the analyses above to include data from all follow-up measurements, to-
gether with the number of exacerbations reported at each visit. For patients who withdrawal,
this variable is sometimes reported after their last per-protocol FEV1 measure. As a patient’s
withdrawal is often triggered by an exacerbation leading to a visit to the GP who advises with-
drawal, this provides potentially valuable information in support of MAR withdrawal. Note,
though, that exacerbations are not that close to normally distributed, even with a square-root
transformation. In the absence of joint non-linear and linear modelling (which itself raises
further questions about appropriate covariance structures), as before we use the square-root of
exacerbation data.

As only one baseline FEV1 value is, in fact, missing, we use baseline as a covariate in this
analysis. This means we do not need a variable that estimates a joint mean for baseline and
different means for different treatment groups for other variables. The data are arranged as
shown in Table 3.17. Here, newtreat shows the order of the response variable: 1 = BMI; 2–7
= number of exacerbations since last follow-up, recorded half yearly from 6 months to 3 years,
and 8–13 = FEV1 recorded at half yearly follow-up visits from 6 months to 3 years. In the SAS
PROC MIXED analysis, we include newtreat as a class variable, together with ‘treatment’. We
include a newtreat ‘treatment’ interaction to obtain the estimate of treatment at each follow-
up visit. We further include a newtreat ‘baseline’ interaction to get a different adjustment
for baseline at each time point. Likewise, to adjust for on age and sex, again with a different
adjustment at each time point, we fit a newtreat ‘sex’ and newtreat ‘age’ interaction.

Table 3.18 shows the results of fitting three models. Each has all the post-randomisation FEV1
measures as responses (6 scheduled for each patient). In addition, as BMI is predictive of with-
drawal, but we do not wish to condition on it, all the models have BMI as an additional response.
Models 1 and 2 are simplified. They replace the 6 follow-up exacerbation readings with a single
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Variables
patient sex age baseline FEV1 treatment newtreat response
identifier (1=male) (years) (litres) (2=placebo)

1 1 63.98 0.98 2 1 22.3
1 1 63.98 0.98 2 2 0
1 1 63.98 0.98 2 3 1
1 1 63.98 0.98 2 4 1
1 1 63.98 0.98 2 5 2
1 1 63.98 0.98 2 6 0
1 1 63.98 0.98 2 7 0
1 1 63.98 0.98 2 8 1.30
1 1 63.98 0.98 2 9 1.15
1 1 63.98 0.98 2 10 1.03
1 1 63.98 0.98 2 11 0.98
1 1 63.98 0.98 2 12 0.96
1 1 63.98 0.98 2 13 1.10
2 2 64.33 0.89 1 1 25.3
2 2 64.33 0.89 1 2 0
2 2 64.33 0.89 1 3 0
2 2 64.33 0.89 1 4 0
...

...
...

...
...

...
...

Table 3.17: Data arrangement for estimating treatment effect, including longitudinal follow-up
data on exacerbations and FEV1

value,
√

mean exacerbation rate, derived as described in Example 3.7. Thus models 1 and 2 fit
an 8-dimensional normal distribution. Model 1 has the same covariance matrix for both treat-
ment groups (36 parameters); but, as there is some evidence of more variability in the placebo
group, model 2 fits a separate covariance matrix for each treatment group (72 parameters).

Model 3 attempts to use all possible information about withdrawal in the exacerbation rate data.
Instead of using mean exacerbation rate, we have as 6 additional responses the exacerbation
rates observed at each of the clinic visits. Combined with the 6 FEV1 measures and BMI this
makes 13 responses per patient. Again, we fit an unstructured covariance matrix, this time with
91 parameters.

Reassuringly, all three models give similar results, suggesting that, after including mean exacer-
bation rate in the model, there is little gained by including the number of exacerbations at each
visit. As

√
mean exacerbation rate is roughly normal, but the number of exacerbations is very

far from normal, models 1 and 2 are slightly preferable.

A further question of interest to the investigators was whether the treatment effect could be
summarised by a straight line, for each treatment group, and whether the slope of these lines
was different. All these patients have declining FEV1, but a slower rate of decline in the active
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Model Estimated treatment effect Std. error df t-value p-value
(litres increase in FEV1)

1 0.090 0.02040 436 4.44 < .0001
2 0.091 0.02032 432 4.48 < .0001
3 0.088 0.02049 435 4.29 < .0001

Table 3.18: Isolde data: Estimated treatment effect 3 years after randomisation, obtained using
the full longitudinal follow-up, adjusting for baseline, sex, age and including BMI and exacer-
bations as additional responses to obtain valid estimates assuming MAR

treatment would be interesting to know about. Appendix C gives code for fitting this model.
The treatment effect can be summarised by a straight line for each group but there is no evidence
of a different slope between the groups. The estimated difference in rate of decline is 4 ml per
year (se 0.35), giving t = 1.14 (435 df) and p=0.25. ¤

3.7 Inverse probability weighting methods

The methods described in this Chapter are likelihood based. An alternative approach uses in-
verse probability weighting. For example, suppose that we are interested in the treatment effect
at the final time point. Suppose too that given baseline variables (e.g. treatment and baseline
response) the probability of withdrawal does not depend on post-randomisation responses.

Then we can proceed as follows:

1. Fit a logistic regression of a binary indicator for the final response being observed (1 if
it is observed, 0 if not) on baseline variables. Obtain the predicted probabilities for each
patient, pi, i ∈ (1, . . . ,n).

2. Using data, and fitted probabilities pi, from those patients whose final response is ob-
served, fit a weighted regression of response on treatment (adjusting for baseline if de-
sired) weighting by 1/pi.

Assuming our weighting model is correct, this will give a consistent estimate of the treatment
effect. However, to estimate the standard errors we need to take into account the fact that
we have estimated the weights. Such standard errors are not produced automatically by most
regression software, which assumes the weights are known without error. One option is to
use the bootstrap. The other is to use a sandwich estimator of variance, which incorporates
uncertainty due to the weights.

Unfortunately, such inverse probability weighting methods are usually quite inefficient relative
to likelihood methods. This is because — unlike in the likelihood methods described above —
no use is made of information from patients who have some post-randomisation responses but
not the final post-randomisation response. Further, it sometimes happens that some individuals
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can get relatively high weights. The conclusions can then be sensitive to these weights, which
is a concern if we are not confident they are estimated accurately.

Inverse probability weighting methods can be extended to allow for post-randomisation vari-
ables, provided we have no interim missing data (so that patients are observed till they with-
draw). Suppose the response is measured at three time points after randomisation, and let
Ri1,Ri2,Ri3 be indicators for seeing the first, second and third response from patient i.

Then the weight required for an estimate of the treatment effect at the final time point is the
inverse of Pr(Ri1 = 1 and Ri2 = 1 and Ri3 = 1 | baseline data), since all patients with data in the
final regression are observed at all three time points. This can be estimated by noting that

Pr(Ri1 = 1 and Ri2 = 1 and Ri3 = 1|baseline data)
= Pr(Ri3 = 1|Ri2 = 1 and Ri1 = 1 and baseline data) (3.6)
×Pr(Ri2 = 1|Ri3 = 1 and baseline data) (3.7)
×Pr(Ri1 = 1|baseline data). (3.8)

The first term of the product on the right hand side (i.e. adjacent to (3.6)) can be estimated
from a logistic regression using all patients whose responses are observed at times 1 and 2. The
second term of the product (i.e. adjacent to (3.7)) can be estimated from a logistic regression
using all patients observed at time 1, and the third term of the product (i.e. adjacent to (3.7)) can
be estimated from a logistic regression using all the patients with baseline data.

Hence the weights for inverse probability weighting the regression can be obtained. However,
all the issues discussed four paragraphs above remain — indeed they are of greater concern here.
In practice, the lack of efficiency of IPW methods relative to likelihood methods is the greatest
concern. Although methods to improve efficiency and robustness have been proposed, they are
not yet sufficiently developed to cope with more than a few special situations (Carpenter et al.,
2006). Therefore, we do not pursue inverse probability weighting methods further.

3.8 Summary

1. Under MAR, it is desirable to include all the longitudinal follow-up data on the primary
response of interest, up to the end point of the analysis.

2. Likewise, it is desirable to include any post-randomisation data predictive of this re-
sponse being missing.

3. This can be done by direct extension of the approach in §3.5.1, §3.5.2.

3.9 Conclusions

In this Chapter, we have considered quantitative outcomes. Using the multivariate normal model
and assuming unseen data are MAR, we have shown how sensible estimates of treatment effects,
adjusted for other variables if desired, in most of the commonly occurring settings (Table 3.1).
We have shown how the direct modelling approach using the multivariate normal distribution is
far more flexible than it may first appear.
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One possible drawback of this approach is that mixed models sometimes encounter convergence
difficulties. Such difficulties are more likely to occur as the number of parameters in the mixed
model increases, especially if this is combined with non-trivial missing information on some of
these parameters. However, we did not encounter any convergence problems with any of the
models in this Chapter (we used SAS 9). Note that missing baselines, if handled as discussed
in this Chapter, do not cause any particular computational problems as they are effectively
included in the model as another outcome. Of course, analyses involving multiple follow-up
times are much more processor and memory intensive. Thus we needed to increase the default
memory allocation for Example 3.8, but the analysis was still completed in much less time (the
most complex model fitted in 10 minutes) than that required for the large MI models described
in the next Chapter.

In the next Chapter we will give an intuitive review of multiple imputation (MI). As available
in SAS, and most other software, this assumes a multivariate normal distribution for the data.
We show how MI can be used in a trials setting, and re-analyse some of the examples in this
Chapter.

However, it is worth noting that the imputation model is multivariate normal, as are the mod-
els we fit in this Chapter. Thus the treatment effects can always, in principle, be estimated
directly through modelling. The advantages of modelling are that it is quicker, involves fewer
judgements (such as whether the MCMC sampler has converged) and yields a unique maximum
likelihood estimate. By contrast, inferences from MI are slightly different each time. Where
the precise answer is critical for decision making, a substantial number of imputations may be
necessary to get the Monte-Carlo variability acceptably low.

We therefore advocate direct modelling, if possible. Our hope is that the principles, examples
and SAS code in this Chapter will enable readers to set up appropriate models for their data,
assuming missing observations are MAR. Of course, there are other issues, such as model
checking, we have not discussed here. In particular, it may be that some variables predictive of
missingness are not at all normal, like exacerbations in the Isolde data. In day-to-day practice,
the best one can do is to transform them to approximate normality. The examples considered
here suggest this is an acceptable approach.





Chapter 4

Multiple imputation for quantitative data

4.1 Introduction

In Chapter 3 we assumed data were MAR and discussed how, using a direct modelling ap-
proach with the multivariate normal distribution, sensible estimates of treatment effects could
be obtained when baseline and/or responses were missing. We further showed how the models
could be extended to include variables predictive of withdrawal, but for which we do not wish
to adjust our estimated treatment effects.

A feature of all the models was that variables with missing values were treated as responses,
and the model was parameterised to enable the treatment effect to be estimated. The underlying
justification for this approach followed from (A.9) which showed that joint modelling gave
sensible estimates provided all the variables predictive of withdrawal were included either as
responses (if partially observed) or as either responses or covariates.

Although this approach is flexible, and computationally relatively straightforward, one disad-
vantage is that the underlying simplicity of the model of interest is often obscured. For example,
in the Isolde trial, to estimate the effect of treatment at 3 years, we ended up including in the
model all responses from randomisation to 3 years, baseline BMI and the post-randomisation
exacerbation rate. Our approach also relied critically on the flexibility of the multivariate normal
distribution, which has no analogue for discrete data.

At the end of Chapter 2 we discussed conditional mean imputation, and gave an intuitive mo-
tivation for multiple imputation. We now develop this further. The following example shows
how multiple imputation relates to the modelling approach of the previous Chapter.

EXAMPLE 4.1 Multivariate normal modelling and multiple imputation

Consider again the setup in §3.3. There we had data from 375 placebo patients. On 288 of
these, baseline (x) and response (y) were observed, while on the remaining (375− 288) = 87
only baseline was observed. Suppose that y is MCAR given x, and we wish to estimate the
marginal (i.e. unadjusted) mean of y.

Multiple imputation divides this problem into two parts. Broadly, speaking, the first part

1. uses 288 patients with response and baseline observed to obtain a sensible estimate of
[y|x], and then

2. for each patient with missing response draws (or imputes) K values from this estimated
distribution. Here we take K = 5. These are put together with the observed data as shown
in Table 4.1 in order to make K imputed or ‘completed’ data sets.

75
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Observed Imputed data set
Data

1 2 3 4 5

(0.980, 1.300) (0.980, 1.300) (0.980, 1.300) (0.980, 1.300) (0.980, 1.300) (0.980, 1.300)
(1.770, 1.310) (1.770, 1.310) (1.770, 1.310) (1.770, 1.310) (1.770, 1.310) (1.770, 1.310)
...

...
...

...
...

...
(0.630, 0.930) (0.630, 0.930) (0.630, 0.930) (0.630, 0.930) (0.630, 0.930) (0.630, 0.930)
(0.645, ? ) (0.645, 0.769) (0.645, 0.877) (0.645, 1.720) (0.645, 0.789) (0.645, 0.399)
(0.980, ? ) (0.980, 0.776) (0.980, 1.060) (0.980, 1.126) (0.980, 0.661) (0.980, 1.118)
...

...
...

...
...

...
(1.660, ? ) (1.660, 1.560) (1.660, 1.566) (1.660, 1.624) (1.660, 1.641) (1.660, 1.487)

Table 4.1: Isolde data: imputation of 6 month FEV1 (l) (imputed observations in italics)

In the second step, we

1. perform the analysis we would have carried out, were the data complete, on each of the
K imputed data sets. This gives K estimates and their corresponding standard errors.

2. Combine these estimates into an overall estimated effect and standard error, using certain
rules.

Conversely, the approach of Chapter 3 seeks to parameterise the model for the missing and
observed data in such a way that we obtain the desired estimate of the marginal mean of y as
a by-product of estimating [y|x] in the initial step above. Proceeding through the rest of the
multiple imputation steps is then unnecessary; we merely arrive at a less precise version of the
same estimate. ¤
Of course, in many cases the approach of Chapter 3 is not possible. This may be because the
model of interest and the imputation model assume different distributions (one may be logistic,
the other multivariate normal) or it may be because the model of interest includes non-linear
adjustments for the covariates. Such situations arise frequently in the survey setting for which
MI was originally developed, but less often in modelling quantitative outcomes in clinical trials.
Nevertheless, MI is a very useful tool for analysis of clinical trials, especially so for sensitivity
analysis.

In the remainder of this Chapter, we give some more details of MI, and then re-visit some of the
examples from Chapter 3. Besides illustrating MI, our aim is to describe

1. when MI gives the same answer as a direct modelling approach, and hence is unnecessary,
and

2. when the additional flexibility of MI makes it preferable.
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In this regard, the first point to note is that MI as implemented in SAS, is based around the
multivariate normal model. Thus, using MI in SAS does not avoid assuming variables (such as
mean exacerbation rate in Example 3.7) are normally distributed. Of course the user can turn
to other implementations of multiple imputation where other distributions are incorporated or
program the necessary steps him/herself.1 The advantage of multiple imputation is that it can,
given some approximation, be comparatively straightforward to program. A fairly recent review
of implementations of MI is given by Horton and Lipsitz (2001).

4.2 Brief outline of multiple imputation

4.2.1 The MI procedure

We first describe the MI procedure in a very simple setting, that of missing baseline mea-
surements with a completely observed post-randomisation response. We then provide a brief,
intuitive, justification for MI. The details on which this is based were developed by Rubin and
are brought together in Rubin (1987).

As above, let xi denote the baseline and yi response. Suppose xi is MCAR given response, yi,
so that we can ignore the model for the missingness mechanism. Our model of interest, which
we would fit directly if no data were missing, is

yi = α +βxi +θ ti + ei, ei
iid∼N(0,σ2

y|x), (4.1)

where ti = 1 for patients receiving the active treatment and 0 for those on placebo and interest
focuses on θ , the baseline adjusted treatment effect. For MI we also need an imputation model,
which describes the conditional distribution of the potentially missing observations (here xi) in
terms of other variables in the data model (here yi and ti) and possibly other variables predictive
of missingness, whether pre- or post-randomisation. Here the imputation model is another
simple regression model:

xi = δ +ηyi +ξ ti + fi, fi
iid∼N(0,σ2

x|y). (4.2)

For the MI procedure we (i) draw, ‘appropriately’ the missing xi from (4.2) to make a ‘com-
pleted’ data set and then (ii) repeat this process K times giving K ‘completed’ data sets. We
define ‘appropriate’ more exactly below, but here we just note two important points.

1. We need estimates of the parameters in the imputation model (4.2). As we saw in Chapter
3, under MAR we can obtain consistent estimators of these using patients with complete
data only. Assuming MAR, this holds in all imputation models, however complex, which
makes MI very attractive in practice.

2. Proper multiple imputation requires that the imputed data are drawn from the Bayesian
posterior distribution, with likelihood defined by (4.2) and uninformative priors for the
parameters. This means in practice that each set of imputed data will be based on a dif-
ferent set of model parameters, themselves drawn for each imputation from the Bayesian
posterior. We return to this in more detail on p. 80.

1This is likely to be necessary for less routine settings, such as zero inflated data, where the imputation model
is a mixture model.



78 Multiple imputation for quantitative data

A key assumption of MI is that if there were no missing data, the sampling distribution of θ̂
is normal. Thus, if the model of interest is a generalised linear model, we need to work with
the parameters in the linear predictor, not their transforms. So for logistic regression we would
apply the MI procedure to log-odds ratios, not odds ratios. Here, given sufficient patients, if
there were no missing observations, the assumptions of model (4.1) give θ̂ a normal distribution.
We can therefore proceed with MI.

Suppose we have appropriately constructed our K ‘completed’ sets of data. We fit the model of
interest, here (4.1), to each in turn, and denote by θ̃ k the estimate of θ from the kth completed
set, and by Vk the corresponding conventional estimate of the variance of θ̃ k, calculated as
though the ‘completed’ dataset was actually observed. Thus, in practice, Vk is the usual estimate
of the variance of θ̃ k produced by the software.

The MI estimator of θ is the average of the individual estimators

θ̃MI =
1
K

K

∑
k=1

θ̃ k. (4.3)

The estimated variance of this combines between- and within-imputation variability as follows

VMI =
1
K

K

∑
k=1

Vk +
(

1+
1
K

)(
1

K−1

) K

∑
k=1

(θ̃ k− θ̃MI)2. (4.4)

This is a a very intuitive expression. On the right hand side, the left hand term,

1
K

K

∑
k=1

Vk = W, say, (4.5)

is an estimate of the variability that would be obtained from a single complete sample. To this
is added a term which represents the variability across the imputations, the between-imputation
variance: (

1
K−1

) K

∑
k=1

(θ̃ k− θ̃MI)2 = B, say. (4.6)

This introduces the increase in variability due to the incompleteness of the data. The multiplier
(1+1/K) arises because inference actually conditions on the finite number, K, of imputed data
sets used (Rubin, 1987, p. 88 and ff). What is remarkable about (4.3)–(4.6) is that they only
involve what are termed ‘complete data quantities’, that is, statistics which are calculated after
fitting the model of interest to each of the ‘completed’ data sets in turn. Together we refer to
(4.3) and (4.4) as called ‘Rubin’s combination rules’ or simply ‘Rubin’s rules’ for MI.

It turns out (Rubin, 1987) that
θ̃MI−θ√

VMI

has an approximate tv distribution where

v = (K−1)
(

1+
W
B

)2

. (4.7)

Under this distribution, hypothesis tests, and confidence intervals, can then be carried out in the
usual way.
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4.2.2 Quantification of the information lost with missing data

If there were no missing data, and we ‘used’ multiple imputation, all the ‘imputed’ data sets
would be the same, so there would be no between-imputation variance, i.e. B would be equal to
zero. In this sense we can say that the percentage increase in variance due to the missing data is

(
W +B

W

)
100% =

(
1+

B
W

)
100%. (4.8)

Alternatively, recalling that ‘information’ is 1/variance, the percentage of missing information
is (

W +B
W

)−1

100% =
W

W +B
100%. (4.9)

In fact, it turns out (Rubin, 1987) that a better estimate of this quantity is

B/W +2/(v+3)
1+B/W

,

but we find (4.9) more intuitive and sufficient for practical work.

Given that the unseen data are MAR, this therefore quantifies the lost information. Notice that
this quantity can only be calculated after the model of interest has been fitted to each imputed
data set. In other words, it depends on what we are estimating. Thus, as noted in Chapter
1, away from a particular data set, quantity of interest and assumed missingness mechanism,
the question ‘how many observations should be missing before we have to worry’ cannot be
meaningfully answered.

4.2.3 Justifying the MI procedure

Although the MI procedure is very intuitively appealing and comparatively simple, a rigorous
justification of the sampling distribution of the MI estimator from the frequentist viewpoint is
surprisingly subtle. For details see Rubin (1987); Wang and Robins (1998); Robins and Wang
(2000).

Arguably, MI is at heart a Bayesian procedure; it is certainly easiest to understand from this
perspective. The following justification assumes data are MAR. Suppose we have two parame-
ters γ1,γ2 about which we wish to draw inferences using the Bayesian paradigm. Given a joint
prior distribution for these, the observed data, y, and the data model, we then have a posterior
distribution for γ1 and γ2 which we write [γ1,γ2 | y]. Now suppose that our focus is on γ2, with
γ1 being regarded as a nuisance. The posterior can be partitioned as

[γ1,γ2 | y] = [γ1 | y][γ2 | γ1,y, ]

so that the marginal posterior for γ2 can be written

[γ2 | y] = Eγ1([γ2 | γ1,y]).

In particular, using the standard formulae for conditional expectations and variances, the poste-
rior mean and variance for γ2 can be expressed

E(γ2 | y) = Eγ1{Eγ2(γ2 | γ1,y)}
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and
V(γ2 | y) = Eγ1{Vγ2(γ2 | γ1,y)}+Vγ1{Eγ2(γ2 | γ1,y)}.

These can be approximated using empirical moments. Let γk
1 , k = 1, . . . ,K, be draws from the

marginal posterior distribution of γ1, then approximately:

E(γ2 | y)' 1
K

K

∑
k=1
{Eγ2(γ2 | γk

1 ,y)}= γ̃2 say, (4.10)

and

V(γ2 | y) =
1
K

K

∑
k=1
{Vγ2(γ2 | γk

1 ,y)}+
1

K−1

K

∑
k=1
{Eγ2(γ2 | γk

1 ,y)− γ̃2}2. (4.11)

The parallel between (4.10)–(4.11) and (4.3)–(4.4) is clear. The final link between these expres-
sions and the MI procedure is then to use γ2 to represent the parameters of the original model
of interest and γ1 to represent the unobserved measurements. Thus, in the example on p. 77, we
need to identify γ2 with the parameters of model (4.1), y with the observed data and γ1 with the
missing baseline data.

We have already noted that MI assumes the full data distribution of the parameter of interest is
normal. This is more than sufficient to ensure that the conditional posterior moments for γ2 can
be approximated by maximum likelihood, or equivalent efficient, estimators from the completed
data sets.

Notice that the MAR assumption means that we can impute the missing data directly from
the marginal posterior of the imputation model. This above argument also indicates why, for
Rubin’s formulae, (4.3)–(4.4), to hold, we need to use imputation draws from a proper Bayesian
posterior. It follows that (4.3) and (4.4) approximate the mean and variance of the posterior
distribution in a fully Bayesian analysis. Assuming this is normal, the mean and variance define
the distribution uniquely.

However, as we commented above, justifying the frequentist tests and confidence intervals rig-
orously is non-trivial. Wang and Robins (1998); Robins and Wang (2000) give details and in
the process compare the implications of proper and improper methods of imputation, providing
a very careful analysis of the properties of Rubin’s variance expression. This level of detail is
probably not necessary for routine practical application of MI however.

4.2.4 Proper imputation

We have seen that for MI to work successfully we need to make proper imputations. In partic-
ular these need to be (or approximate) draws from a Bayesian posterior distribution in which
uncertainty about the parameters in the imputation model is properly represented. This is rarely
established rigorously in applications, but typically the following broad guidelines, extracted
from Rubin (1987), p. 126–127, are followed:

1. ‘Draw imputations following the Bayesian paradigm as repetitions from a Bayesian poste-
rior distribution of the missing values under the chosen models for nonresponse and data,
or an approximation to this posterior distribution that incorporates appropriate between-
imputation variability’
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2. ‘Choose models for the data that are appropriate for the complete-data statistics likely
to be used — if the model for the data is correct, then the model is appropriate for all
complete-data statistics’

In other words point (1) tells us that both the missing data and parameters of the imputation
model have distributions, and we must not condition on any particular value of the imputation
model when drawing our imputations. If we impute using procedures or software for fitting
Bayesian models, then it is hard to get this wrong. However, as the example below shows, if we
approximate the Bayesian approach, we can go wrong if we are not careful.

EXAMPLE 4.1 Estimating the mean and variance of a partially observed response (ctd)

Suppose we have fully observed baseline, x, and partially observed response, y. We wish to esti-
mate µy, and its standard error. We have already seen how this can be done by direct modelling.
Here we use MI and compare the results. We again use data from the 374 patients in the placebo
arm of the Isolde trial, of whom 288 have 6 month FEV1.

First, we need a suitable imputation model i.e. in this case for [y|x]. We use the linear regression

yi = α +βxi + εi, εi ∼ N(0,σ2
y|x).

Fitting this model to the 288 patients with both 6 month and baseline FEV1 gives

yi = 0.024+0.947xi + εi, εi ∼ N(0,0.0281). (4.12)

Recall that under MAR this is a consistent estimate of the imputation model.

We first describe an ‘improper’ imputation algorithm, then an approximation to the proper im-
putation algorithm and finally proper Bayesian imputation. In each case we create K = 5 impu-
tations.

Improper imputation algorithm

To impute a ‘complete’ data set, for each patient, i = 289, . . . ,374, with missing 6 month follow
up,

1. draw ε?
i from N(0,0.0281);

2. impute the 6 month response as 0.024+0.947xi + e?
i .

We repeat this process 5 times to create our 5 imputed data sets.

Approximate proper imputation algorithm

To impute a ‘complete’ data set,

1. Draw σ2? from its estimated sampling distribution, 0.0281×286/χ2
286

2. Define X as the 288× 2 matrix with first column all 1 and second column x1, . . . ,x288.
Draw (α?,β ?) from their estimated sampling distribution

N
((

0.024
0.947

)
,σ2?(XT X)−1

)
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3. draw ε?
i from N(0,σ2?);

4. for each patient, i = 289, . . . ,374, with missing 6 month follow up impute the 6 month
response as

α? +0.947β ?xi + ε?
i .

We repeat the whole process to obtain imputations 2, . . . ,5.

Bayesian (proper) imputation

1. Choose an uninformative prior distribution for the mean and variance of the bivariate
normal distribution of (baseline, 6 month) FEV1, denoted [µ,Σ] (this implicitly includes
the parameters α,β ,σ2

y|x).

2. Obtain the posterior distribution,

[µ ,Σ,{yi}374
i=289|{yi}288

i=1,{xi}374
i=1]

3. Sample µ,Σ,{yi}374
i=289 from this distribution; discard µ ,Σ and combine {yi}374

i=289 with the
observed data {yi}288

i=1,{xi}374
i=1 to impute the ‘complete’ data set.

4. Repeat the previous step to create imputed data sets 2–5.

Usually, we have to use Markov Chain Monte Carlo (MCMC) methods to obtain and sample
from the posterior distribution. For bivariate normal models, this is implemented in SAS PROC

MI. By default this uses an uninformative prior for µ ,Σ, known as the Jeffreys prior (Schafer,
1997, p. 154). The missing values in Table 4.1 have been filled in using SAS PROC MI.

Notice that neither the full Bayesian model, nor the maximum likelihood approximation, con-
dition on µ,Σ,σ2. Rather, new values are drawn for each imputation. This is one key element
in making them proper.

Suppose, as in Chapter 3 we are interested in the marginal mean 6 month FEV1. In this case,
the multiple imputation rules are applied as follows. For each completed data set we have

θ̃ k =
1

374

374

∑
i=1

yi, and Vk =
1

373

374

∑
i=1

(yi− θ̃ k)2.

giving the results in Table 4.2. From (4.3),

θ̃MI =
1
5
(1.354+1.362+1.357+1.361+1.354) = 1.358.

From (4.5), the within imputation variance is

W =
1
5
(0.025532 +0.025262 +0.025432 +0.026142 +0.025822) = 0.025642

and from (4.6), the between imputation variance is

B =
1
4

({1.354−1.358}2 +{1.362−1.358}2 +{1.357−1.358}2 +{1.361−1.358}2

+{1.354−1.358}2 ) = 0.00378152.



4.2 Brief outline of multiple imputation 83

Imputation, k θ̃ k Vk

1 1.354 0.025532

2 1.362 0.025262

3 1.357 0.025432

4 1.361 0.026142

5 1.354 0.025822

Table 4.2: Estimates of mean and its variance from each of the 5 imputed data sets

Thus, from (4.4) the estimated variance is

0.025642 +(1+1/4)×0.00378152 = 0.02602.

From (4.7), the degrees of freedom for the t-distribution for inference are

4×
[

1+
0.025642

1.2×0.00378152

]2

= 6181.5.

From (4.8), in the increase in variability due to the missing data is estimated as

0.025642 +1.2×0.00378152

0.025642 = 1.026,

so that the fraction of information missing is (1−1/1.026)×100 = 2.5%.

To interpret this, suppose, for some constant, A, the variance of θ̃ MI is approximately A/n. If
there are no missing data, n = 374. However, with missing data assumed MAR, the relative
increase in variance is 1.026 = 374/ñ, where ñ is the new effective sample size. Therefore
ñ = 365, so, using multiple imputation, the loss of precision in estimating 6 month FEV1 is
equivalent to roughly 374−365 = 9 patients. Compare the complete case analysis (which needs
the stronger MCAR to be sensible), where the loss of information is 374− 288 = 86 patients,
and the value of using multiple imputation (or equivalently maximum likelihood, as in Chapter
3) becomes clear. Note that the same comparison can be derived from the maximum likelihood
(ML) approach described in Chapter 3 by comparing the (Kenward-Roger) estimate of degrees
of freedom associated with the two estimates. Fitting the model to observed baseline and 6
month responses by ML gives 368 degrees of freedom for the 6 month mean FEV1 suggesting
the loss of information is equivalent to 374− 368 = 6 patients, slightly less than by multiple
imputation, as expected.

Table 4.3 compares estimates of the (marginal) mean 6 month response from maximum like-
lihood and the three imputation methods. They all agree very well here. SAS PROC MI agrees
well with maximum likelihood, because the between imputation variance is small relative to the
within, so a small number of imputations is sufficient. Improper imputation is similar here too,
for the same reason.

In practice, we rarely need to combine imputed estimates and variances manually; most software
packages for MI perform this automatically. Finally note that the distribution of the multiple
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imputation estimator is different from that of the maximum likelihood estimator. Hence the
degrees of freedom from (4.7) tend to increase with the number of imputations. Thus they
bear no direct relation to the degrees of freedom for an effect in SAS PROC MIXED, which, as
discussed two paragraphs above, relate to the information available to estimate a parameter.2 ¤

Method Estimate standard error 95% confidence interval

Maximum likelihood 1.356 0.026 (1.305, 1.407)
SAS PROC MI 1.358 0.026 (1.307, 1.409)
Improper MI 1.358 0.026 (1.307, 1.410)
Approximate proper MI 1.354 0.026 (1.304, 1.404)

Table 4.3: Estimates of 6 month marginal mean FEV1, from various methods. Maximum like-
lihood (ML) uses the Kenward-Roger estimate of the degrees of freedom. Note ML estimates
are slightly different from Table 3.5 because only baseline and 6 month observations are used
here

The second aspect of proper imputations concerns the choice of imputation model. Broadly
speaking, this must be at least as complex as the substantive model (from which the complete
data statistic is calculated). For example, if we are interested in the effect of baseline on re-
sponse, then baseline must be included in our imputation model. Likewise, if we are interested
in a treatment-by-time interaction, then the treatment-by-time interaction must be included in
our imputation model. In particular, a treatment effect must always be included in the imputa-
tion model, and when imputing a covariate, the response variable must always be included. This
makes sense; if we ignore a relationship between the variables when creating imputed data, we
cannot hope to accurately estimate that relationship from the imputed data.

4.2.5 Multi-dimensional estimators

So far we have only considered using MI to estimate a single parameter and its variance. How-
ever, Rubin’s rules generalise in the expected way to parameter vectors. Thus, suppose now that
θ̃ k is a p×1 vector of parameter estimates calculated from imputation k, with estimated p× p
variance covariance matrix Vk. Then

θ̃MI =
1
K

K

∑
i=1

θ̃ k,

W =
1
K

K

∑
i=1

Vk,

B =
1

K−1

K

∑
i=1

(θ̃ k− θ̃ MI)(θ̃ k− θ̃ MI)T , (4.13)

2For a correction to the MI degrees of freedom when the sample size (of the data we intended to collect) is
small — the MI degrees of freedom would otherwise tend to increase indefinitely with the number of imputations
— see Barnard and Rubin (1999).
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where both W and B are now p× p matrices. By analogy with (4.4),

V(θ̃ MI) = VMI = W +
(

1+
1
K

)
B.

Inferences are now based on the F rather than t distribution through

(θ̃ MI−θ)V−1
MI (θ̃ MI−θ)T ∼ Fp,v,

where, as above, p is the dimension of θ , and the residual degrees of freedom v are calculated
using formulae given by, for example, Schafer (1997), p. 115. Usually when we are interested
in multidimensional problems we will be looking at a subset of the parameters in θ , say of
dimension q < p, and then a similar expression to that above can be constructed in an obvious
way.

In practice, handling a multidimensional θ is slightly more difficult than the above analogy
would suggest. This is because accurately estimating (4.13) is problematic with small K. In-
deed, our estimate will be singular (so not invertible) if q ≥ K. Clearly considerably larger
values of K are required in such settings. Thus, when a multidimensional problem is of interest,
one of the attractions of MI — that relatively few imputations are needed — is compromised to
some extent.

Various approaches for improving the estimate of ΣMI are described by Schafer (1997), p. 115
onwards. Our advice is, if possible, to avoid these and instead choose K to be about 10×q(q+
1)/2. Schafer (1997), Chapter 4, also gives rules for combining p-values and likelihood ratio
statistics across imputations. However, none of these have become established like the approach
described here (which is based on Wald test statistics).

4.2.6 Non-parametric multiple imputation

When there is a substantial quantity of data available, one can consider a non-parametric ap-
proximation to the imputation distribution. In a trials context, the idea is as follows. Suppose,
as usual, we observe baseline and response on patients 1, . . .n1, but only baseline on patients
n1 +1, . . .n. For i = n1 +1, . . .n,

1. find a group of patients with (i) observed response and (ii) the same, or similar, baseline
values to patient i.

2. Draw a response at random from this group, and allocate this to patient i.

In this way we form our first imputed data set; we repeat this process to form subsequent
imputed data sets.

This is a version of ‘hot-deck’ imputation (Reilly, 1993). The attraction is that, compared with a
parametric model, fewer constraints are placed on the distribution of the missing data; these now
depend on the particular definition of ‘similar’ used. Some additional resampling is required to
provide the necessary Bayesian formulation, and in this context the approach is known as the
‘approximate Bayesian bootstrap’ (Rubin and Schenker, 1987). The method can be viewed as
using a smoothed non-parametric estimate of the imputation distribution. Another approach,
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discussed further on p. 115, is the ‘propensity score’ method for multiple imputation (Little and
Rubin, 2002).

These approaches can work well in large survey problems, for which they were developed,
especially if the observed values are discrete (e.g. sex, social class) for then the matching step,
(1) above, is likely to produce a reasonable size group to draw the missing data from. However,
most clinical trials are an order of magnitude smaller than this, which makes non-parametric
methods much more variable than their parametric counterparts. We do not consider them
further here, or recommend them for routine use in the analysis of trials.

4.2.7 Some further issues

With multiple imputation, a fair amount of discussion focuses around the question of how many
imputations are required. Consider the case of a single parameter. First note that, provided we
use two or more imputations, our estimates, confidence intervals and inferences will be sensible.
This is because, as we noted on p. 78, Rubin’s variance formulae condition on the number of
imputations (Rubin, 1987, p. 88 and ff), so are valid (provided the number of imputations is
greater than the number of variance parameters to be estimated). Nevertheless they will be
imprecise. Rubin (1987), p. 114, shows that the relative variance of using only K imputations
instead of an infinite number is approximately

(1+λ/K),

where λ is the rate of missing information (4.9), expressed as a fraction, not a percentage. So,
with 20% missing information, using 2 imputations this gives a standard deviation that is about√

1+0.2/2≈ 1.05 that obtained with an infinite number of imputations. Hence, as commented
by Schafer (1999), 10 imputations is likely to be enough for practical purposes. Nevertheless, as
the example below shows, for close agreement with results from mixed modelling rather more
may be needed.

Recently, there has been considerable interest in the ‘chained equations’ method for imputing
missing data. Implementations of this vary in certain details, but the following example illus-
trates the central idea. Suppose we have two variables, x, y, both with some missing values. We
proceed as follows:

1. preparatory step: fill in the missing values of x with randomly chosen observed values
from x;

2. regress observed y on ‘filled-in’ x, then fill in the missing y values using regression impu-
tation (i.e. the ‘approximate proper imputation’ algorithm on p. 81);

3. regress observed x on ‘filled in’ y, then replace the previously imputed missing x values
using regression imputation;

4. regress observed y on ‘filled in’ x, then replace the previously imputed missing y values
using regression imputation, and

5. repeat steps 3-4 typically 10 times (to obtain convergence) then a further K times to obtain
K imputed data sets.
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This approach is described by Raghunathan et al. (2001), for data which are approximately
monotone missing. In clinical trials, a monotone missing pattern corresponds to patients be-
ing observed until they withdraw, then no longer (baseline and/or interim missing values are
not allowed). An epidemiological example is given by Taylor et al. (2002); this approach is due
originally to van Buuren et al. (1999). These articles show how the approach extends to discrete
and other forms of data, basically by replacing the linear regression steps with a more appropri-
ate response model. A version of this approach can be validly used with monotone missing data.
When data is non-monotone missing, however, although a computationally attractive approach,
it lacks a well established theoretical basis, so that even those who propose it suggest it is used
cautiously. Thus, van Buuren et al. (2006) write in their abstract

The theoretical weakness of this approach is that the specified conditional den-
sities can be incompatible, and therefore the stationary distribution...may not ex-
ist...[Nevertheless it] appears that, despite the theoretical weaknesses, the actual
performance of conditional model specification for multivariate imputation can be
quite good, and therefore deserves further study.

As the above quote suggests, the key issue is that the sequence of regression imputations defines
many conditional distributions, and these do not guarantee the existence of a unique joint dis-
tribution (Gelman and Raghunathan, 2001). As the theoretical basis of this approach is not well
understood, and theoretically validated MCMC methods (such as programmed in SAS PROC

MI) are suitable for most trials settings, we do not think this approach is ready for definitive
(e.g. regulatory) analyses at this time. Of course, if we have non-monotone missing discrete
data, then the multivariate normal approximation of SAS PROC MI may be inappropriate. Some
suggestions for this setting are discussed in Chapter 5; results from these methods could usefully
be cross-checked with chained equations multiple imputation.

4.3 Application to examples in Chapter 3

In this section we re-analyse some of the examples obtained in Chapter 3 using multiple impu-
tation, and compare the results with those obtained earlier.

EXAMPLE 4.2 Isolde analyses revisited

First, we consider again the example on p. 63, where we sought to estimate the 3 year treatment
effect conditional on baseline. Recall we found that BMI was predictive of withdrawal, and
included it in our analysis as a marginal variable. To make our multiple imputation compara-
ble, we therefore include baseline and follow-up data, together with BMI. SAS PROC MI fits a
3-dimensional multivariate normal model to these data using MCMC, and then samples from
the posterior of this to impute the missing 3 year responses. It uses the EM algorithm to obtain
starting values for the MCMC process. SAS PROC MI does not allow any structure in the mul-
tivariate normal model. So we cannot have treatment as a covariate. Rather, we must carry out
the imputation separately in the two treatment groups. This obviously fits a separate covariance
matrix to each treatment group. The effect of this is to allow a different adjustment for BMI in
each treatment group.3

3Arguably this is not ideal, but in most examples it will probably not make much difference.
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Method Estimated Std. Model MI 95% CI CI
treatment error based df, ν length
effect (l) df

MI, 5 imputations 0.079 0.0199 N/A 22 (0.038, 0.120) 0.082
burn=100; between=200

MI, 5 imputations 0.087 0.0200 N/A 18 (0.045, 0.130) 0.085
burn=1000; between=1000

MI, 10 imputations 0.088 0.0295 N/A 16 (0.026, 0.151) 0.125
burn=1000; between=1000

MI, 10 imputations 0.088 0.0204 N/A 39 (0.047, 0.129) 0.082
burn=5000; between=5000

MI, 50 imputations 0.088 0.0233 N/A 132 (0.042, 0.134) 0.092
burn=5000; between=5000

Maximum likelihood, 0.085 0.0230 310 N/A (0.040, 0.130) 0.090
baseline as response

Maximum likelihood, 0.086 0.0229 305 N/A (0.041, 0.131) 0.090
baseline as covariate

MI, 200 imputations 0.087 0.0229 N/A 579 (0.042, 0.132) 0.090
burn=5000; between=5000

Table 4.4: Isolde data: estimates of effect of treatment at 3 years, adjusting for baseline and
marginal to BMI

The results of MI are shown in Table 4.4, together with likelihood analyses using multivariate
linear models, which we discuss further below. For a sharper comparison, the seed was the
same for each run of SAS PROC MI. In each row, we show the values of ‘burn’ and ‘between’.
These are, respectively, the number of MCMC updates allowed for the sampler to converge
to the posterior, and the number of updates between each saved draw from the posterior, i.e.
each imputation. The greater the value of ‘burn’, the more likely the MCMC sampler has
converged to the true posterior distribution before the first imputation is drawn. The number
of updates between each imputation needs to be sufficient for the imputations to be statistically
independent. Again, the greater the value of ‘between’, the more likely the imputations are
independent.

Comparing the estimated treatment effect in the first row, obtained using the default burn in and
between imputation values, with the others, we see the MCMC sampler has not converged. The
results are not reliable. Note, though, that no warning to this effect is issued by SAS!

Increasing the burn in and between imputation values stabilises the estimated treatment effect
at 0.088 (rows 2–5). However, with 5 or 10 imputations, the estimated standard error is quite
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variable (rows 2–4). Only when the number of imputations is increased to 50 does the standard
error appear to settle down at a value slightly above that for the mixed model, which is what we
would expect.

Rows 6–7 give the results for two multivariate linear models. The first is that described on
p. 63. There we had baseline as a response, as well as BMI. This model allows a different
(marginal) adjustment for BMI in each treatment group, but otherwise constrains the variance
to be the same in both treatment groups. The second model takes baseline as a covariate, and
fits a separate covariance matrix for each treatment group. Thus this model is exactly the same
as the imputation model.

We see that both models give similar results, though the second gives a treatment estimate
slightly closer to that obtained with MI. Both have standard errors below that for MI with 50
imputations. Finally, the last row of the table gives the results from 200 imputations. In line
with theory, these are virtually identical to those from the mixed model above.

We conclude the following. First, for practical applications, the default burn in and the number
of between imputation draws should be substantially increased from the SAS defaults. The extra
computational time this takes is negligible. Secondly, in line with our discussion above, 5–10
imputations is sufficient to get a reasonably accurate answer. However, different runs may still
vary noticeably. While this does not invalidate the MI inference, which takes account of this
extra uncertainty, it may be considered undesirable, especially if any resulting decisions are
finely balanced. Lastly, to be sure of getting results which are virtually equal to those from a
likelihood analysis with just a single MI analysis, substantially more imputations are needed.
This number would have to be increased by a further order of magnitude if we were looking a
joint test rather than a single parameter. ¤

EXAMPLE 4.3 Longitudinal Isolde analysis revisited using multiple imputation

We now revisit the full analysis of the Isolde study, as described in Example 3.8, using multiple
imputation. Again, baseline FEV1 is used as a covariate4. As before, we include body mass
index (BMI) as a marginal predictor of missing FEV1 (but we do not adjust our treatment
estimate for it). Unlike in Example 3.8, in this analysis, we do not adjust the treatment estimate
for sex and age.

As in the above example, SAS PROC MI is used to create the multiple imputations, implying a
joint multivariate normal distribution for the variables, which are baseline FEV1, the six follow
up FEV1 measurements, baseline BMI and the mean exacerbation rate (see p. 66 for details).
As before, the square root transform is used for the mean exacerbation rate.

Table 4.5 shows baseline-adjusted treatment estimates, from various MI runs and maximum
likelihood, together with their measures of precision and degrees of freedom. For MI, we ran
analyses with 5, 10, 50 and 200 imputations respectively. Each analysis burned in the sampler
for 5000 updates and updates a further 5000 times between drawing each imputation. The cor-
responding maximum likelihood analysis is shown in the final row (with a separate covariance
matrix for each treatment arm).

As we are using a joint multivariate normal distribution for the incomplete variables we should
expect similar results from the two approaches, with a slight decrease in precision for the multi-
ple imputation based analysis. This is indeed what we see. There is also a suggestion that there

4The single patient with a missing baseline FEV1 is omitted from all analyses.
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is some change from 10 to 50 imputations, suggesting that 10 may be too few. The differences
in the treatment estimate itself between the multiple imputation and likelihood vanish as the
number of imputations increases, in line with theory. The conclusions are identical: adjusting
for baseline FEV1, patients on the active treatment have a FEV1 that is 86 ml higher after 3
years. ¤

Method Estimated Std. Model MI 95% CI CI
treatment error based df, ν length
effect (l) df

MI, 5 imputations 0.093 0.021 N/A 18 (0.049, 0.137) 0.088
burn=5000; between=5000

MI, 10 imputations 0.095 0.020 N/A 56 (0.055, 0.134) 0.079
burn=5000; between=5000

MI, 50 imputations 0.089 0.022 N/A 190 (0.046, 0.132) 0.086
burn=5000; between=5000

MI, 200 imputations 0.090 0.021 N/A 924 (0.049, 0.131) 0.082
burn=5000; between=5000

Maximum likelihood 0.090 0.020 433 N/A (0.050, 0.129) 0.079

Table 4.5: Isolde data: various estimates of effect of treatment at 3 years, each using all longi-
tudinal follow-up, conditional on baseline and marginal to BMI and mean exacerbation rate

4.4 Conclusions

From the analyses presented above we see little difference between the likelihood and multi-
ple imputation approaches. This similarity is anticipated. As long as we confine ourselves to
analyses — by either maximum likelihood or multiple imputation — which are based on the
multivariate normal distribution, we know from the underlying theory that the two approaches
are closely related, indeed there is a sense is which the multiple imputation is providing an
approximation to the likelihood analysis. In these circumstances there is little point in using
multiple imputation and we would recommend that the likelihood approach be the first choice.

This does not mean that multiple imputation has no additional role to play. We see four settings
where its use might be considered, although the latter three raise further questions that do not,
as yet, have definitive answers. The first is when we wish to take advantage of the relative
ease of using more complex models with multiple imputation. This is useful when we wish to
increase the complexity of the imputation model to make the MAR assumption more plausible.
Model criticism is also easier with the imputed data. The second is non-parametric imputa-
tion, discussed in §4.2.6. Here questions revolve around the definition of ‘similar’, the sample
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size necessary for the method to work well, and when it is likely to substantially improve the
accuracy of inferences.

The third setting is when, because of one or more variables, the joint distribution of the data is
not multivariate normal. For example, we have seen with the measure of exacerbation in the
Isolde example above that the use of a normal distribution is not necessarily convincing for all
variables, even after transformation. It has been argued that such approximations are less of an
issue when used within multiple imputation rather than likelihood, because the approximation is
applied only to the distribution of the imputed values, rather than all the values, observed or not.
This appears plausible when we use a form of regression imputation, so fully observed variables
are treated as fixed (see also the discussion of the chained equation method in §4.2.7). However,
it remains to be demonstrated theoretically. The argument does not apply, though, when using,
for example SAS PROC MI with the MCMC option (as we have in this Chapter), for then all the
variables, fully observed or not, are treated as responses in a multivariate normal distribution.
To an extent such concerns are academic; our own experience is that both approaches tend to
give very similar results.

The fourth setting is sensitivity analysis. One important strength of multiple imputation is that
the imputation model need not be formally consistent with the substantive model. That is, it
can contain structure or variables not in the substantive model. In this way it can be used
to do analyses that cannot be readily accommodated within a formal likelihood or Bayesian
framework. Under the assumption of MAR there is little advantage to be gained in this, provided
we can manage to fit an appropriate joint model for the relevant variables. When we move to
exploring sensitivity to nonrandom withdrawal however, multiple imputation does provide a
simple and attractive route for this. For example, it allows us to formulate appropriate ITT
analyses when withdrawal is associated with treatment termination. This is an example of
MNAR missing data in the sense that the model for the data for a subject who continues in a
trial is not the same as one who drops out. A range of problems like this can be handled by
fitting a pattern-mixture model to the observed data, and imputing from models derived from
this. We outline such approaches when we look at sensitivity analysis in Chapter 6.





Chapter 5

Discrete data

5.1 Introduction

In this Chapter we consider the analysis of discrete data, assuming missing data are missing
at random. We use mixed models and multiple imputation. Once again we have in mind that
the primary analysis, if no data were missing, would use data from one of the follow-up visits
(usually the last), and estimate the intervention effect adjusted for baseline. However, when data
are missing at random, we seek to use additional follow-up data and baseline to obtain sensible
estimates of the intervention effect. We show how to do this in a series of steps, which mirror
those in Chapter 3 but are more involved because of the additional issues that arise with discrete
data.

We develop and illustrate our approach using the logistic model for binary and binomial data.
This is a very common example of discrete data and the ideas carry over directly to common
models for ordinal data such as the proportional odds, and for nominal data such as the Poisson
log-linear.

Unfortunately, the analysis of discrete data is complicated by the fact that there is no natural,
analytically tractable, analogue of the multivariate normal distribution. Thus some of the prop-
erties of the multivariate normal distribution used in Chapter 3 — for example to estimate an
intervention effect conditional on baseline when some baseline values are missing — cannot
be used here. There are instead several alternative ways of modelling dependent non-normal
data and these lead, in general, to parameter estimates with quite different interpretations. An
important manifestation of this is the distinction between so-called subject-specific (henceforth
SS)1 and population-averaged (henceforth PA) models. Apart from certain special cases, the
estimated treatment effects that result from these two modelling approaches are not equivalent.
This distinction, which does not arise with linear models (i.e. in Chapters 3, 4) has important
implications for the handling of missing values, so we begin with this.

5.2 Subject-specific versus population averaged models

As the name suggests, a subject-specific (SS) treatment effect represents the effect of treatment
on a particular subject’s outcome. For example, if the outcome is binary (pain/no pain), the
odds of no pain in the placebo group might be 1. Now if a subject in the placebo group has
the treatment, their odds of no pain might be 2, giving an odds-ratio of 2. However, there is
another way to define an odds-ratio for the effect of treatment. For this we take the proportion
of subjects with no pain under placebo, and the associated odds of this, and the corresponding

1In our context subject-specific means patient-specific, but we refer to the former for consistency with the
literature.
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proportion and associated odds under treatment. The ratio of these two odds, the population
averaged (PA) odds-ratio is different from the SS odds-ratio, indeed, we know that it will be
closer to one (Zeger and Liang, 1986). Further, because it involves averaging over a specific
population, if we move from one population to another, the PA odds-ratio may well change,
even when the SS odds-ratio does not.

In other words, a SS model estimates the effect on a subject of changing his or her treatment,
while the PA model estimates the effect averaged over a population of changing the treatment.
Under a multivariate normal linear model for quantitative data, the two things are the same. For
discrete data they are not.

To illustrate this difference, suppose yi j is the response from subject i ∈ (1, . . . , I), at time j ∈
(1, . . . ,J). Let Ti = 1 if subject i is treated, and 0 otherwise. Table 5.1 contrasts a simple model
for continuous yi j with a logistic model for binary yi j. For the normal model (left column), the
expected SS treatment effect is equal to the PA treatment effect. This is because the response,
yi j, is not a function of α +βTi +ui + ei j, but is exactly equal to it. This means that SS and PA
estimates are always the same, which is why we did not distinguish between them in Chapter 3.

By contrast, for the logistic model (right column) this is not the case, because the response is
now a non-linear function of α + βTi + ui. Thus the SS and PA estimates of treatment only
agree if all ui = 0, i.e. σ2

u = 0. As this is a consequence of the non-linear relationship between
the covariates and expected value of the response, this result applies to almost all models for
discrete data using non-linear relationships between response and covariates (e.g. logistic, com-
plementary log-log, probit). An exception is models for count data using a log link (Zeger and
Liang, 1986; Zeger et al., 1988).

A further complication for analysing discrete data is that different statistical procedures are
commonly used for the two types of model. SS models are typically expressed in the form
of Generalised Linear Mixed Models (GLMMs) a natural extension of the class of likelihood-
based random effects models used in Chapter 3. There we saw that likelihood methods are
relatively convenient to use and, provided the appropriate variables are included in the model,
they give sensible parameter estimates when data are MAR. However, for PA models, likeli-
hood methods are rather inconvenient and usually non-likelihood methods, called Generalised
Estimating Equations (GEEs) are used (Liang and Zeger, 1986). Roughly speaking, GEEs es-
timate the parameter values to match the mean and variance of the observed data. To do this, a
working assumption is usually made about the variance/covariance structure. For example, we
may assume independence or a auto-regressive order 1 correlation structure. It turns out that
even if this working assumption is wrong, the estimates will still be consistent (although they
may be somewhat inefficient).

The standard errors of these estimates are then subsequently calculated in a way that adjusts
for any incorrect working assumptions about the variance/covariance structure. These so-
called ‘robust’ or ‘empirical’ standard errors are obtained from an empirical estimate, known
as a sandwich estimator, of the covariance matrix. For a comprehensive discussion of the de-
tails of these types of models see, e.g. Diggle et al. (2002). Unfortunately, because of their
non-likelihood nature, such estimating equation methods raise additional issues when data are
missing. We return to this in §5.2.3.
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Normal response Binary response, logistic model

Model: Model:
yi j = α +βTi +ui + ei j, logit{Pr(yi j = 1)}= α +βTi +ui,

ui ∼ N(0,σ2
u ), ei j ∼ N(0,σ2

e ), ui ∼ N(0,σ2
u )

ui independent of ei j

Expected value of response given Expected value of response given
subject-specific ui: subject-specific ui:
E [yi j|Ti = 1,ui] = α +β +ui E [Pr(yi j = 1)|Ti = 1,ui]

= 1/{1+ exp[−(α +β +ui)]}
= expit(α +β +ui), say†

E [yi j|Ti = 0,ui] = α +ui E [Pr(yi j = 1)|Ti = 0,ui]
= 1/{1+ exp[−(α +ui)]}
= expit(α +ui), say.

Expected subject-specific treatment effect Expected subject-specific risk-difference
due to treatment

E [yi j|Ti = 1,ui]−E [yi j|Ti = 0,ui] E [Pr(yi j = 1)|Ti = 1,ui]−E [Pr(yi j = 1)|Ti = 0,ui]
= β = expit(α +β +ui)− expit(α +ui)

Expected value of response averaged over Expected value of response averaged over
subject-specific ui (population averaged): subject-specific ui (population averaged):
Eu[E [yi j|Ti = 1,ui] ] Eu[E [Pr(yi j = 1)|Ti = 1,ui] ]

= Eu[α +β +ui] = Eu[expit(α +β +ui) ];
= α +β ;

Eu[E [yi j|Ti = 0,ui] ] Eu[E [Pr(yi j = 1)|Ti = 0,ui ]
= Eu[α +ui] = Eu[expit(α +ui)]
= α

Population averaged treatment effect Population averaged risk-difference
due to treatment

Eu[E [yi j|Ti = 1,ui] ]−Eu[E [yi j|Ti = 0,ui] ] Eu[expit(α +β +ui) ]−Eu[expit(α +ui) ]
= β 6= subject-specific risk-difference due

to treatment

Table 5.1: Comparison of model for quantitative and binary response, yi j, illustrating the im-
plications for SS and PA estimates of treatment effect. For details, see §5.2. (†) – expit is the
inverse of the logit function
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Figure 5.1: Longitudinal binary data: distribution of number of tests undertaken by each subject
in each period

EXAMPLE 5.1 Longitudinal binary data

To illustrate these differences in practice we use longitudinal binary data, which we simulated
from a real clinical trial. Two hundred and forty one subjects were randomised to receive either
a placebo or active treatment. There are three treatment periods, each several weeks in length.
In each of these periods, each subject undergoes a series of tests (the number varying from
subject to subject) with each test having a binary outcome (1=success). Figure 5.1 shows the
distribution of the number of tests undertaken by each subject in each period. As Table 5.2
indicates, a number of patients withdrew before the end of the study.

We now compare three estimates of the treatment effect using data from period 3 alone. The
first uses logistic regression, assuming that the results of the repeated tests undertaken by an
individual are independent. Standard errors are obtained from the information matrix in the
usual way. Let yi j be the response from patient i (189 at period 3) to test j (ranging from 4 to
44). The model, adjusting for baseline (basei) and treatment (treati = 1 for active, 0 for placebo),
is

E yi j = µi j,

Varyi j = µi j(1−µi j),
logit(µi j) = α0 +α1basei +α2treati,

Cor [(yi j,yi j′)] = 0. (5.1)

The second model is a PA model, allowing a fixed correlation between the different test results
from the same subject (i.e. an exchangeable correlation structure). This model uses the empiri-
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Treatment
Placebo Active

Withdrew before period 1 0 0
Withdrew before period 2 10 5
Withdrew before period 3 25 12
Completers 82 107

Table 5.2: Longitudinal binary data:
patient withdrawal by treatment arm

Model Estimates (std. errors) of
β0 β1 β2

(5.1) 1.54 (0.141) 0.02 (0.003) 0.64 (0.145)
(5.2) 1.66 (0.399) 0.02 (0.009) 0.57 (0.372)
(5.3) 3.16 (0.667) 0.03 (0.011) 1.10 (0.574)

Table 5.3: Parameter estimates from fitting (5.1),
(5.2) and (5.3) to the data from period 3

cal sandwich estimate of variance discussed above. The superscript p differentiates coefficients
in this model from those in the subject specific model below:

E yi j = µi j,

Varyi j = µi j(1−µi j),
logit(µi j) = β p

0 +β p
1 basei +β p

2 treati
= η p, the population averaged linear predictor

Cor [(yi j,yi j′)] = ρ. (5.2)

The third model is a SS model, with linear predictors from the same subject sharing a common
SS random effect:

E [yi j|u0 j] = µi j,

Var [yi j|u0 j] = µi j(1−µi j),
logit(µi j) = β0 +ui +β1basei +β2treati

= η , the subject specific linear predictor

ui ∼ N(0,σ2
u ),

Var logitµi j = σ2
u . (5.3)

We call the inverse of the logistic function expit. Notice that in model (5.2)

E [yi j] = expit(β p
0 +β p

1 basei +β p
2 treati),

whereas in model (5.3)

E [yi j] = E u[E [yi j|u]] = E u[expit(β0 +ui +β1basei +β2treati)].

For the fitted means, µi j from (5.2) and (5.3) to be equal, the parameter estimates will be dif-
ferent in the two models (unless σ2

u = 0). The differences will increase with σ2
u . Also, while

the Cor (yi j,yi j′) is a parameter in (5.2), to estimate this from (5.3) involves taking expectations
over u. Further, in (5.3) the correlation will vary with the covariates, e.g. baseline.
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Table 5.3 gives the results of fitting these three models to the data from period 3 alone. The
parameter estimates from (5.1) are similar to those from (5.2). However, the standard errors are
much larger for (5.2), as it allows for the correlation between test results from the same subject,
estimated to be 0.30. By contrast, the parameter estimates from (5.3) are considerably larger,
but notice as well how the standard errors have also increased although not quite as much.
Consequently the treatment effect becomes significant at the 5% level. In part, this reflects
the fact that maximum likelihood estimates extract more information from the data than GEE
estimates.

This large increase in absolute size of the parameters estimates and the accompanying increase
in standard errors reflects the substantial between subject variability (σ2

u = 7.60). The larger
this variance, the larger the difference in the size of the corresponding parameters from the two
approaches. ¤

5.2.1 Obtaining population-averaged coefficients from subject-specific coefficients

We have seen already, and will see again below, that there are advantages from a missing value
perspective in using a likelihood analysis. In the current setting this implies that there are
advantages in using the SS model. However, it may well be in some settings that PA effects are
of more clinical interest. On some occasions therefore we may wish to derive the appropriate
PA estimates from the corresponding SS estimates. Strictly (from a mathematical viewpoint)
the PA and SS models cannot both be correct (i.e. logistic), except in some very special cases.
This creates difficulties in moving from SS to PA odds-ratios in some settings. Fortunately, for
the type of generalised linear mixed model we consider here, logistic models can be applied
approximately for both types of model and we show now how we can use this to move from SS
to PA estimates.

For a simple random subject effect model, that is, one of the form of (5.3) where there is a
single common subject effect, or intercept, (ui) with variance σ2

u , the kth PA parameter, β p
k ,

and the corresponding SS parameter, βk, (typically log odds-ratios in the logistic setting) are
approximately related as follows (Zeger et al., 1988):

β p
k ≈

βk√
1+0.34584×σ2

u
. (5.4)

More generally, if we have a set of q random effects ui = {ui1, . . . ,uiq}T ∼ N(0,Σu) with coef-
ficients z = {z1, . . .zq}T in the linear predictor, i.e.:

zT u =
q

∑
k=1

zkuk

the same expression can be used except that the variance σ2
u is replaced by the variance of

the ensemble, V(zT u) = zT Σuz. An impression of the accuracy of this approximation can be
gained from Figure 5.2. This shows the relationship between the PA linear predictor, η p, and
the transformed SS linear predictor, under a random intercepts model with a range of variances,
σ2

u . We see that the approximation is excellent for small variances and worsens as the variance
increases.

These approximations depend on the unknown (co)variance parameter(s), Σu, which must be
estimated in practice. This introduces a further degree of approximation. Standard errors are
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Figure 5.2: Accuracy of approximation of population averaged linear predictor, ηp, by transfor-
mation of subject-specific linear predictor, η , using (5.4). Solid line is equality

also needed for the estimates, β̂ p
k . To a first order of approximation these can be obtained by

scaling standard errors from the SS model in the same way we scaled the coefficient estimates.
In other words we divide the SS standard error by the denominator of (5.4). This has the
advantage of preserving test statistics and relative length of confidence intervals, but ignores
the uncertainty in the estimated (co)variance parameter(s).

EXAMPLE 5.2 Moving from SS to PA coefficients

Using the data from the previous example, we fit model (5.2), and compare the resulting PA
coefficients with those obtained by fitting model (5.3) and then using the approximation (5.4).

In this case — recalling from the previous example that σ2
u was estimated as 7.60 — using (5.4)

we get
1.10/

√
1+0.34584×7.60 = 0.577.

This is compared with the other estimates in Table 5.42. The agreement is not perfect, but may
nevertheless be adequate in many settings. The Table also compares the robust standard errors
from the PA model (5.2) with the transformed SS standard errors. The effect of treatment is
not significant at the 5% level under the PA model, but it is under the SS model. This may
partly reflect the fact that likelihood models extract more information from the data, but note
too that rescaling the SS standard errors by dividing by the denominator of (5.4) is only first
order approximate, as we do not take into account the variability in estimating σ2

u . ¤

2The difference in the SS to PA conversion is due to retaining higher precision in the calculations.
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PA, model (5.2) PA (Transformed SS) SS, model (5.3)
Method

Estimate (SE) Estimate (SE) Estimate (SE)

0.57 (0.372) 0.57 (0.301) 1.10 (0.574)

Table 5.4: Comparison of PA treatment effect estimates from a GEE with those obtained by
transforming SS estimates, using (5.4)

5.2.2 Population Averaged or Subject-Specific models

In the absence of missing data, should a PA or SS model be specified as the primary analysis?
The debate between advocates of PA and SS models is ongoing, and not always informative. A
useful discussion is given by Diggle et al. (2002), p. 131–140. We note the following. Suppose
the intended full data analysis estimates a baseline adjusted treatment effect using data from the
end of the study, by fitting a GLM to data from the final follow-up. This will give the same
estimated treatment effect as fitting a GEE with an independence correlation structure to the
longitudinal follow-up data, including the full treatment-time and baseline-time interactions.
The robust standard errors from the GEE should also be similar, but will not agree precisely.

SS models allow the variance structure to be modelled, rather than just regarded as a nuisance
parameter. If the variance is well modelled, then SS models give more precise estimates of
(SS) treatment effects, because they are likelihood based. However, the down-side is that the
estimated treatment effects may be sensitive to the chosen variance model. Unfortunately, for
many trials with binary outcome there is insufficient information for a detailed assessment of
the variance structure.

If the focus is on the response of a subject to treatment, then SS models are appropriate. PA
models are arguably more appropriate in population based studies in epidemiology. Of course,
PA treatment effects depend on the characteristics of the population over which averaging is
done. As we remarked above, the same SS treatment effect (same underlying physiological
effect of treatment) will give different PA estimates of treatment effect over populations with
different heterogeneity (Zeger et al., 1988).

In summary, the appropriate analysis depends on (i) the precise question and (ii) to what extent
the subjects in the trial are ‘representative’ of a population. Below, we therefore consider both
PA and SS analyses when data are missing.

5.2.3 Implications for missing data

As SS models are typically estimated by maximum likelihood, for the reasons given in Chapters
3 and 4 inferences are still valid if some responses are MAR. However, the GEE based estimat-
ing procedures that are normally used for PA models are moment based estimators in which
the estimates of the β p’s are chosen to minimise the difference between the marginal mean of
the data and that of the model, weighted by the variance. However, we have already seen that
marginal means (and variances) are not sensible estimators if data are MAR. Under MAR, like-
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lihood estimation implicitly uses the dependence structure to correct for the bias caused by the
missing data. With GEEs the dependence structure is only a working approximation (i.e. known
to be mis-specified), so this correction is not available. Although corrections can be made using
suitable weighting, such methods, in their simple form at least, are very inefficient (Carpenter
et al., 2006). We do not pursue such approaches here.

It follows in our context that if data are MAR, it is not sensible to use GEEs directly for pa-
rameter estimation. Depending on the analysis we would have performed were no data missing,
there are several options. These are summarised in Figure 5.3 which also outlines the structure
of the rest of this Chapter.

Is missing data basically due to withdrawal

(ie a monotone missingness pattern) or are
there interim missing observations?

Use sequential multiple imputation, and then

use a generalised linear model to estimate
the treatment effect

Are population averaged estimates of

the treatment effect required? 

time and baseline time interactions and

all response data, with full treatment 
Fit a subject (ie patient) specific model to 

a general covariance structure

Yes

Yes

linear model to estimate the treatment effect

No

No

multiple imputation and then use a generalised
Use a subject (ie patient) specific model for

For missing baselines, or withdrawal depending on concomitant
variables, fit a joint subject (ie patient) specific model. If population

averaged estimates are required, use multiple imputation from this
joint model and then fit a generalised linear model to estimate the

treatment effect

Figure 5.3: Overview of MAR methods for discrete data

First, if the intended analysis with no missing data was SS, then we can proceed in a similar
way to that outlined in Chapter 3. In other words, we begin by looking for covariates that are
predictive of withdrawal, and then either condition on these (by fitting them as covariates) or,
if such covariates are post-randomisation so we cannot condition on them, they can be jointly
modelled with the outcome variable or incorporated in a multiple imputation procedure. As-
suming data are MAR, using this likelihood approach will give sensible parameter estimates
and inferences.

Secondly, if the intended analysis with no missing data was either to (i) use the observations
at the end of the trial and fit the discrete-data equivalent of an ANCOVA, or (ii) fit a GEE to
estimate longitudinal PA treatment effects, then we have two options:

(i) obtain estimates from a SS model, as in the previous paragraph, and convert them to PA
estimates as described in §5.2.1, or

(ii) fit a SS model and then use multiple imputation. That is, use the fitted SS model to obtain
(approximate) proper imputations for the missing data and then fit the original PA model
of interest to each imputed data set, combining the estimates using the MI rules.
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If data are monotone missing (so that each subject is observed till he or she withdraws) we need
not fit a repeated measures SS model to all the data and then impute from this. Rather, we can
fit a sequence of GLM’s, logistic regressions in the binary/binomial setting, and impute from
these.

In the remainder of this Chapter, we discuss and illustrate all these approaches in more detail.

5.3 Subject-specific analyses with missing data

When considering quantitative data in Chapter 3, we used the multivariate normal distribution
with an unstructured covariance matrix. There is no direct analogue of this for discrete data. Our
approach is to use normally distributed SS random effects, chosen with the aim of minimising
the variance structure imposed on the data. In other words, as in Chapter 3, we wish to let the
data ‘speak for itself’ on the variance structure. As with quantitative data (§3.2.1), we anticipate
minimal loss of power for moderate sample sizes.

However, this is less straightforward in the current setting than with the multivariate normal lin-
ear model. First, unless we are assuming that the data are over-dispersed, the variance of each
observation is determined by its mean. For example, a binary observation with success probabil-
ity π has variance π(1−π) irrespective of other aspects of the dependence structure. Secondly,
the correlation between two observations also depends on their means. So the concept of a
particular correlation or covariance structure, independent of the mean structure, does not apply
here. Using the structure of a generalised linear mixed model we instead focus on the covari-
ance structure of the random effects. We can then think of these as underlying latent variables
that are thresholded to give the binary responses. Although features of the dependence struc-
ture of the random effects carry through, in a qualitative sense, to that of the binary/binomial
observations, there is no simple equivalence.

The covariance structure of the random effects can be treated in principle like that in the linear
model setting. In practice however, with binary data, we have much less information on this
structure and usually only very specific and parsimonious structures can be successfully used.
Two are frequently considered, (i) random intercepts (simple subject effects) and (ii) random
intercepts and slopes.

As in §5.2, let i index patients and j index observation times. Let δi = 1 if patient i is randomised
to active treatment, and 0 otherwise. Let basei be patient i’s baseline response. A logistic model
for binary data, in which the mean is equal to the success probability, and which has a different
treatment effect and baseline adjustment at each time j, is given by:

E (yi j) = µi j,

logit(µi j) = α j +δiβ j +baseiγ j +ui,

ui ∼ N(0,Σu). (5.5)

The corresponding random intercepts and slopes model is:

E (yi j) = µi j,

logit(µi j) = α j +δiβ j +baseiγ j +u0i + ju1i,

(
u0i

u1i

)
∼ N

{(
0
0

)
,

(
σ2

u0

σu0u1 σ2
u1

)}
. (5.6)
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The simple random intercepts model (5.5) will often suffice when the response is fairy stable
over the duration of the trial. The introduction of the random slopes allows some more flex-
ibility in the dependence structure, in particular correlations will tend to be higher for pairs
of measurements that are closer together. In practice, the fit of models (5.5) and (5.6) can be
compared using the change in twice the log-likelihood ratio, which follows a χ2

2 distribution
approximately3.

EXAMPLE 5.3 Longitudinal binary data: fitting random intercepts and random intercepts and
slopes models

We now compare the results of fitting (5.5) and (5.6) to the data discussed in Example 5.2.
Recall there are 241 subjects, two treatment groups and three periods. Before we restricted
ourselves to period 3 data only, but now we use data from all 3 periods. We omit the baseline
period interaction, as it is not present in these data (which we simulated — see Example 5.1).

Model
Random intercepts Random int./sl.

Parameter Estimates (SE) Estimate (SE)

intercept 2.65 (0.43) 3.28 (0.53)
baseline 0.03 (0.001) 0.03 (0.01)
treatment 1.15 (0.41) 1.25 (0.53)
period 1 −0.97 (0.14) −1.12 (0.49)
treatment × period 1 1.04 (0.22) 1.56 (0.65)
period 2 −0.39 (0.14) −0.75 (0.30)
treatment × period 2 0.55 (0.23) 0.39 (0.41)

Varu0 5.90 (0.94) 18.25 (3.76)
Varu1 — 2.46 (0.49)
Cov (u0,u1) — −0.80 (0.053)

−2× log-likelihood 4941.6 4671.2

Table 5.5: Longitudinal binary data: results of fitting random intercepts model (5.5) and random
intercepts and slopes model (5.6)

Table 5.5 shows the results. It is clear from the log-likelihoods that the random intercepts and
slopes model fits substantially better. The variance/correlation matrix of the linear predictor
implied by the random components of the model is




9.99
0.86 6.76
0.46 0.83 8.29


 . (5.7)

3Approximately, because under the null hypothesis σ2
u1

= 0, on the boundary of values for a variance.
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Notice how the correlation declines as the time between observations increases; with random
intercepts alone it is constant. Further notice that the random effects variance under this model is
greater at each time point than under the random intercepts model, (5.5). This is interwoven with
the fact that, relative to the random intercepts model, the parameter estimates are larger under
this model, implying the fitted probabilities are more extreme, so that the component of variance
due to the binomial distribution, µi j(1− µi j), is smaller. However, although the estimated
treatment effects are larger under the random intercepts and slopes model, their significance is
reduced in all cases.

Now compare the estimated treatment effect (std. error) for period 3 from the random intercepts
and slopes model, 1.25 (0.532), with that from fitting the random intercepts model to data from
the last period alone, 1.10 (0.574) (last row of Table 5.3). If missing patient responses are
MAR, then the estimate in Table 5.3, based on only the observed data at the last time period,
will be biased and the standard error wrong. However, as described in Chapter 3, a model for
all the data, allowing for the correlation between observations on the same person, will remove
this bias, and recover some of the lost information. This is exactly what we see here; there
is a slight increase in the treatment effect, and a slight decrease in the standard error and the
z-statistic changes from 1.92 to 2.34. ¤
The model (5.6) does not require repeated observations on each subject at each time. Rather,
it can be fitted with a single observation from each subject at each time. For SS analyses with
missing data, and one observation on each subject at each time, we therefore recommend fitting
(5.5) and extending it to (5.6) if possible.

Sometimes, however, we have sufficient repeated observations, k = 1, . . .Ki on each subject at
each time to allow us to fit a more general covariance structure than random intercepts and
slopes. This is shown in (5.8).

E (yi jk) = µi j,

logit(µi j) = α j +δiβ j +baseiγ j +ui j,




ui1

ui2
...

uiJ


∼ N








0
0
...
0


 ,




σ2
u1

σu0u2 σ2
u2

...
... . . .

σu1uJ . . . σuJ−1u j σ2
uJ








. (5.8)

To have sufficient information to fit this model, we need a sufficient number of observations on
each subject at each time; thus we have explicitly included the subscript k in the response, al-
though the mean is the same for each k. Alternatively, suppose we only have one observation on
each subject at each time, but that the times are reasonably close together, so that the responses
can be considered to have the same mean. Then, if we group observations close together in time
into the same ‘periods’, so we can estimate a variance term for each period, we can again fit
(5.8).

In practice, a simpler form of (5.8), where we assume σ2
u1 = σ2

u2 = · · · = σ2
uJ, is often much

easier to fit. Unless the variance is changing markedly with time, which is unusual in most
clinical trials, such a simplified model is likely to prove adequate. Likewise, whereas in Chapter
3, we advocated fitting a separate correlation matrix to each treatment arm in general, while
this remains preferable, it will usually be impractical in the current setting because of lack of
information, which often causes computational difficulties.
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EXAMPLE 5.4 Longitudinal binary data

We fit two versions of (5.8) to these data. The second constrains σ2
u1 = σ2

u2 = σ2
u3, which makes

fitting considerably faster. The estimated variances from random intercepts and slopes (5.7)
suggest this is plausible. Table 5.6 shows the results. The difference in −2×log-likelihood of
1.3 supports this.

Model
Parameter Unstructured variance Restrict σ2

u1 = σ2
u2 = σ2

u3

intercept 3.06 (0.575) 3.21 (0.550)
baseline 0.03 (0.008) 0.03 (0.008)
treatment 1.24 (0.543) 1.38 (0.586)
period 1 −0.91 (0.53) −1.25 (0.444)
treatment × period 1 1.42 (0.675) 1.18 (0.659)
period 2 −0.38 (0.489) −0.56 (0.391)
treatment × period 2 0.74 (0.582) 0.64 (0.586)

Varu1 10.0 (1.95) 8.87 (1.27)
Varu2 8.50 (1.85) 8.87 (1.27)
Varu3 7.26 (1.83) 8.87 (1.27)
Cor (u1,u2) 0.72 (0.066) 0.72 (0.066)
Cor (u1,u3) 0.45 (0.107) 0.46 (0.105)
Cor (u2,u3) 0.66 (0.091) 0.68 (0.089)

−2 log likelihood 4580.7 4582.0

Table 5.6: Results of fitting (5.8) to the longitudinal binary data

Note the sensitivity of the estimated treatment effects to the estimated variance/covariances. As
the variance increases, the treatment effects tend to increase. Thus, when modelling data of this
kind, it is important to spend some time considering an appropriate random effects structure,
and it is important this structure does not impose inappropriate constraints. ¤

5.3.1 Concomitant variables predictive of withdrawal

We now consider how to extend this subject-specific model to include a concomitant variable
(and by direct extension several such variables) that is predictive of withdrawal, but which we
do not want to adjust (condition) our treatment estimate on (if we did, then it would simply be
included in the linear predictor in the usual way). Our approach is to jointly fit (i) a SS model for
the concomitant variable, and (ii) a SS model for the response, and allow them to be correlated.
Then, if the response is MAR given the concomitant variable, the resulting estimated treatment
effects will be valid, provided we include in the model subjects who only have the concomitant
variable observed.
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Suppose the concomitant variable from subject i is denoted vi. Possible examples might be
subject age, disease history, concomitant diseases. We suppose vi can be modelled as normal,
or transformed so it is approximately normal. This makes computation easier, and does not
affect the interpretation of the treatment estimates for the response. To keep the algebra simple
suppose we only have binary responses, yi j, from one period, with (common) binary indicator
of treatment effect, treati, as before. The model is

logit{Pr(yi j = 1)}= β0 +ui +β1treati

vi = α0 +wi +α1treati
(

ui

wi

)
∼ N

[(
0
0

)
,

(
σ2

u
σuw σ2

w

)]
(5.9)

Note that, for some subjects with missing responses, we will only have vi. These data must be
included in the analysis for the treatment effects to be valid under MAR, though.

EXAMPLE 5.5 Longitudinal binary data: analysis of period 1 responses with baseline as a
concomitant variable

We illustrate this approach by fitting (5.9) using data from period 1 of the longitudinal binary
data set, with baseline as the concomitant variable, v. As there is no possible treatment effect at
baseline, we set α1 = 0.

Table 5.7 shows the results, with the covariance matrix for (u,ν) parameterised in terms of the
correlation. For comparison, column 2 shows the results of fitting a random intercepts model
to the binary data alone. As there are no missing data at period 1, we expect the parameter
estimates to be very similar, and indeed they are. ¤

Estimates (std. errors)
Parameters

logistic model only joint model

β0 3.77 (0.422) 3.73 (0.418)
β1 2.89 (0.626) 2.80 (0.587)
α0 — 51.1 (1.77)
σ2

u 12.1 (2.36) 11.7 (2.43)
σ2

ν — 758 (69.0)
ρ — 0.27 (0.078)

Table 5.7: Results of fitting random intercepts model only (column 2) and joint model (5.9)
(column 3) to baseline and period 1 responses from the longitudinal binary data

5.4 Population-averaged analyses with missing data

We now assume that, were the data complete, the desired analysis would be a logistic regression
using data from the final time point, in which the effect of treatment is adjusted for baseline. As
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we have already discussed, in contrast to the analysis of continuous data, the results of such an
analysis cannot be taken directly from an appropriate SS model, even if the data are complete.

Here we discus two alternatives, both of which involve multiple imputation (MI). In each case
an imputation model will be set up to create appropriate sets of imputations at the final time
point, and the completed datasets are then analysed using the original intended method (i.e.
logistic regression), and the results combined in the conventional MI manner.

The first option applies when we have no interim missing data; that is to say subjects withdrawal
and we have no subsequent data on them. The second approach is valid when we have interim
missing data as well, and extends to handling missing baseline values.

5.4.1 No interim missing data

If, after subjects withdraw, there are no further data on them — that is to say there are no interim
missing data — then (p. 87) we say we have a monotone withdrawal pattern. In this case we
do not need to specify a joint model for the imputed data. Rather we can specify a series of
conditional models and impute from these.

Specifically, suppose we intend to observe 50 subjects in the placebo arm at times j = 1,2,3 but
that we have monotone withdrawal as in Table 5.8. Before describing the imputation strategy,

Subject Last observation Observation time No. of subjects
identifiers at time 1 2 3

1–35 3 X X X 35
36–45 2 X X . 10
46–50 1 X . . 5

Table 5.8: Monotone missing data due to subject withdrawal. An ‘X’ denotes the observation
is seen, and a ‘.’ that it is missing

we note that all our imputations are assumed to be proper, or asymptotically proper, in the
sense described in Chapter 4, p. 80. What we call monotone regression imputation proceeds as
follows, with K sets of imputations.

1. Use data from the 45 subjects observed at times 1 and 2 to estimate the logistic regression

logitPr(yi2 = 1) = α0 +α1yi1. (5.10)

Then, for each of the 5 subjects missing at time 2, (approximately) properly impute K
missing values. Denote these by yk

i2, k = 1, . . . ,K, and i = 46, . . .50.

2. Use data from the 35 subjects with no missing data to estimate the logistic regression

logitPr(yi3 = 1) = β0 +β1yi1 +β2yi2. (5.11)



108 Discrete data

3. For each k,

Using data from the 10 subjects observed only at time 1 and 2, together with the kth

set of imputations, yk
46,2, . . .y

k
50,2, the estimated parameters from (5.11) and their vari-

ance/covariance matrix to give a single (approximately) proper imputation of the missing
data at time 3, denoted yk

36,3, . . . ,y
k
50,3.

4. Putting these imputations together gives K imputed data sets.

If we have a monotone withdrawal pattern over more time points, this algorithm extends in the
obvious way.

Note that we should adjust for any baseline covariates predictive of withdrawal in our imputa-
tion models (5.10) and (5.11), in order to ensure the imputations are valid under MAR. Further,
as treatment allocation is usually predictive of withdrawal, we should have different imputation
models for each treatment arm. In practice, if there are sufficient data, we would therefore rec-
ommend fitting a full interaction with treatment, baseline and each of the regressors in models
(5.10) and (5.11).

Thus, if there were two treatment groups, 0 and 1, (5.10) becomes

logitPr(yi2 = 1) = α0 +α1yi1 +α2×1[treati = 1]+α3×1[treati = 1]yi1, (5.12)

where 1[ . ] is an indicator for the event in brackets. Likewise (5.11) becomes

logitPr(yi3 = 1) = β0 +β1yi1 +β2yi2 +β3×1[treati = 1]+β4×1[treati = 1]yi1

+β5×1[treati = 1]yi2. (5.13)

EXAMPLE 5.6 Dental pain data

Three hundred and sixty six subjects who had moderate or severe post-surgical pain following
extraction of their third molar were randomised to receive a single dose of one of five increasing
doses of a test drug, or an active control, or a placebo. The response was degree of pain relief,
measured on an ordinal scale from 0 (none) to 4 (complete). This was measured before the
extraction, and 18 times in the 24 hours following extraction. In the latter part of the trial, many
subjects withdrew, particularly in the low dose and placebo arms.

Here, we focus on pain relief 6 hours after randomisation. To illustrate the use of the monotone
logistic option in SAS PROC MI (v. 9.1), we dichotomise the pain relief score to 0 if the
original scale was 0, 1, 2 and 1 if the original scale was 3, 4. Thus a response of 1 means some,
or complete, pain relief. We now impute the missing values using the algorithm above.

Subjects reported their degree of pain 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5 and 6 hours after ran-
domisation. For these analyses we ignore all subsequent measurements (which were increas-
ingly missing). Five out of 366 subjects had interim missing values and are excluded from this
analysis. All subjects were observed up to 1.5 hours. Subsequently, Table 5.9 shows the drop
out pattern.

At 6 hours, 179 out of 212 subjects remaining had a response of 1. Further, subjects often
keep the same response for several visits. Indeed, 162 have the same response until withdrawal
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No. of Hours after tooth extraction
subjects 2 3 4 5 6

212 X X X X X
11 X X X X .
8 X X X . .
10 X X . . .
33 X . . . .
87 . . . . .

361 patients in total

Table 5.9: Withdrawal pattern for dental data, for observations up to 6 hours after extraction.
Unseen observations are denoted ‘·’. Five patients with interim missing data are excluded

(152 always 0), and of the remainder 80% make only 1 transition. Thus there is not enough
information in the data to fit the appropriate extensions of (5.12) and (5.13) to several time
points and treatments. Rather, we fit a simpler model. Let δik = 1 if subject i has treatment k.
At each time j = 2, . . . ,6, hours, the model is

logitPr(yi j = 1) = α jkδik +β jkδikyi( j−1), (5.14)

in other words, a different linear dependence on the previous observation, on the logistic scale,
for each treatment group.

After imputing the missing data 6 hours after tooth extraction, we fit a logistic regression to
estimate the treatment effects. Table 5.10 compares the results of a complete data analysis,
and multiple imputation using SAS PROC MI with 5, 50 and 500 imputations. Looking first at
the complete case analysis, there is little to choose between the treatments; the only borderline
significant comparison is between drug A at 1800mcg and drug A at 450mcg. The degree of
pain relief increases with each increase in dose of A with the exception of the highest dose when
there is a suggestion it falls back.

Turning to the SAS PROC MI results in the 3rd column, it is clear that using 5 imputations is
nowhere near enough for these data. The standard errors are very large (and the degrees of
freedom for the reference t-distribution are small) and the parameter estimates are erratic. The
latter two columns show the results of using 50 and 500 imputations respectively. Compared
with the complete case analysis, the probability of pain relief now increases steadily with dose,
as expected. However, the standard errors are all about twice those for the complete case anal-
ysis. The number of imputations needed for the results to settle down and the increase in the
standard errors are both surprising.

Further analysis by Daniel (2007) showed that problems occur because, at certain observation
times in certain treatment groups, when we stratify by previous observation to fit (5.14) the
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Parameter Observed data Multiple imputation, with K imputations
(n=212) K = 5 K = 50 K = 500

Estimate (se) Estimate (se) Estimate (se) Estimate (se)
A, 450mcg −0.43 (0.92) 0.54 (2.14) −1.03 (1.72) −0.90 (1.83)
A, 900mcg 0.43 (0.94) 1.09 (2.96) −0.41 (2.05) −0.07 (2.03)
A, 1350mcg 0.54 (0.94) 0.62 (2.90) −0.27 (1.93) −0.01 (1.97)
A, 1800mcg 1.46 (1.08) 1.79 (2.70) 0.46 (2.12) 0.69 (2.07)
A, 2250mcg 1.23 (1.00) 2.07 (2.95) 0.80 (2.19) 1.01 (2.10)
C, 400mcg 0.05 (0.89) 0.82 (3.38) −0.53 (2.20) −0.33 (2.10)

Placebo, 1.25 0.27 1.53 1.29
log(odds)

Table 5.10: Results of multiple imputation (using SAS) for estimation of the treatment effects 6
hours after tooth extraction. All parameter estimates are log-odds ratios vs the placebo (i.e. not
adjusted for baseline)

maximum likelihood estimate of the probability of relief at the current observation time is 0 or
1. In other words for some k and j one or both of α jk, β jk should be estimated as ±∞. PROC
LOGISTIC’s attempt to do this triggers a warning message, but unfortunately the default option
in PROC MI is to hide this from the user, and continue.

Besides giving a large (or small) parameter estimate, when this occurs the corresponding stan-
dard error is very large. The effect of this is that the resulting imputed data can sometimes be
very wrong. Looking at Table 5.10, this is the cause of both the variation in the results as the
number of imputations increases, and also the increase in the standard error.

To address this, we did the following. For each time, j, before fitting (5.14) we checked if any
of the estimates α jk, β jk were ±∞. If they were, for the group defined by that time, j, treatment
group, k, and previous observation yi( j−1), we added a one-off observation with a 0 or 1 outcome
as appropriate. This is sufficient to prevent the problems described in the previous paragraph
occurring. Having thus avoided the numerical problems in fitting (5.14), multiple imputation
proceeds in the usual way.

The results of this analysis are shown in Table 5.11. Again, they show we need far more than
5 imputations. As before, after MI for treatment A the effect estimates increase with dose —
in line with our intuition. Now, though, the MI and observed standard errors are similar, in line
with what we might expect.

A natural next step would be to use monotone regression with an ordinal model, such as the
proportional odds. This can be readily done with the monotone option of SAS PROC MI, which
detects if the response has more than two categories and substitutes the proportional odds model
for the logistic automatically. Additional options permit a more general multinomial model to
be fitted. ¤
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Parameter Observed data Multiple imputation, with K imputations
(n=212) K = 5 K = 50 K = 500

Estimate (se) Estimate (se) Estimate (se) Estimate (se)
A, 450mcg −0.43 (0.92) −0.33 (0.90) −0.29 (0.90) −0.41 (0.95)
A, 900mcg 0.43 (0.94) 0.57 (0.99) 0.53 (0.95) 0.37 (0.96)
A, 1350mcg 0.54 (0.94) 0.65 (1.03) 0.65 (0.96) 0.48 (0.97)
A, 1800mcg 1.46 (1.08) 1.21 (1.30) 1.04 (1.04) 0.92 (1.02)
A, 2250mcg 1.23 (1.00) 1.19 (1.03) 1.13 (0.96) 1.00 (0.98)
C, 400mcg 0.05 (0.89) −0.04 (1.12) −0.01 (0.88) −0.13 (0.91)

Placebo, 1.25 0.93 0.92 1.06
log(odds)

Table 5.11: Results of multiple imputation for estimation of the treatment effects 6 hours after
tooth extraction when we add observations to avoid (α̂ jk, β̂ jk) being±∞. Details in the text. All
parameter estimates are log-odds ratios vs the placebo. The same starting random number seed
was used for K = 5, 50, 500

5.5 Interim missing data

The problem caused by interim missing data is more difficult to handle in the discrete case.
Consequently if — as in Example 5.6 above — the withdrawal pattern is predominantly mono-
tone, so that omitting the small number of subjects with interim missing data is unlikely to be
misleading, we would do this.

However, if a substantial number of subjects have interim missing data, this approach is unsat-
isfactory. A practical alternative is as follows. Suppose, as above, the analysis of interest is the
estimated treatment effect at the end of the trial, adjusted for baseline. We fit an appropriate SS
model to the data, as discussed above; this gives sensible parameter estimates under the MAR
assumption. Then we can use MI, imputing the missing data at the end of the trial from the
mixed model, to obtain the marginal estimate of treatment at the end of the trial.

In effect, we are using the SS model to draw appropriate imputations for the missing data. We
need the SS model because the data are discrete, so imputations from software that assumes
multivariate normality are likely to be inappropriate, particularly if the data are binary and the
fitted probabilities are close to 0 or 1.

The difficulty with this approach is that, unlike in the continuous case, it is no longer entirely
clear how to draw approximate proper imputations for the missing observations, aside from
fitting a Bayesian model and sampling from the appropriate posterior. This is because the
joint distribution for a subject’s responses implied by the SS model is no longer analytically
tractable, so unlike with the multivariate normal distribution for continuous data, the appropriate
conditional distributions cannot be readily derived. Instead, an approximate approach for binary
data is as follows.
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1. Fit the mixed model to the data, obtaining estimates of the fixed parameters, β̂ , their co-
variance matrix, Σ̂β , the subject-specific random effects, ûi, and their covariance matrix,
Σ̂ui , i ∈ 1, . . . I.

2. For each of the K imputations:

(a) Draw β ? from N(β̂ , Σ̂β ).

(b) For each subject i with missing data at the end of the study, draw u?
i from N(ûi, Σ̂ui).

Denote the ith patient’s column-vectors of covariates for the fixed and random ef-
fects at the end of the study (time J) by xiJ and ziJ respectively. Then calculate the
predicted probability of a positive response at the end of the study as

π?
iJ = expit(x′iJβ ? + z′iJu?

i ).

Finally draw the imputed yiJ from the binomial distribution

yiJ ∼ Bin(π?
iJ,1) (5.15)

(c) Put the imputed and observed data together to obtain the kth imputed data set.

3. Analyse each of the K imputed data sets, and combine the results using the usual rules for
multiple imputation.

This procedure is only approximate, for a number of reasons. The principal one is that ûi
and Σ̂ui are a function of the data and β̂ . Thus, when we draw β ?, we should really update
the estimate of ûi and Σ̂ui before drawing the u?

i . In practice, doing this entails considerable
additional programming. Our intuition is that the benefit from this extra work may often be
small — especially if (as will often be the case) the variance of β̂ is small relative to that of ûi.
However, this remains to be formally investigated.

If we are imputing missing data from another discrete distribution, this approach can still be
used. Clearly the underlying SS model needs to be for data from that distribution. In addition,
we replace the binomial distribution in (5.15) with the appropriate discrete distribution.

Before illustrating this approach on the longitudinal binary data, consider how this algorithm
works if we fit an unstructured covariance matrix for the random effects over time (5.8). Sup-
pose subject i is observed at time 1 and 2 but not at time 3. Then we will not have û3i and
Σ̂u3i. By contrast, if we fitted a model without a separate random effect at each period, such as
random intercepts and slopes, we would have an estimate of the random effect for each subject,
regardless of whether they were observed on all occasions.

Fortunately, SAS PROC NLMIXED will predict û3i, regardless of whether the subject was ob-
served at period i. Otherwise, we can proceed as follows. As we have fitted the unstructured
covariance matrix for the random effects over time (5.8), we can draw u?

3i from the conditional
normal distribution of u3i given û2i, û1i, knowing that the joint distribution is




u1

u2

u3


∼ N(0,Ω̂u),

where Ω̂u is the estimated variance covariance matrix of the random effects.
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EXAMPLE 5.7 Longitudinal binary data

Recall the longitudinal binary data has a monotone withdrawal pattern at the subject level, but
that each subject has a different number of tests in each period. This means that the missing data
is not monotone. For this example, we assume our intended analysis, were the data complete,
would be to use only the data from period 3, and to fit a marginal, or population-averaged,
estimate of the treatment effect adjusted for baseline, using generalised estimating equations
with an exchangeable correlation structure.

As the number of tests varies in each period for each subject, when subjects withdraw, we do
not know how many tests they have missed. To cope with this we need to insert an extra step
into the algorithm above, as shown below.

To use the approach described above, we first fit model (5.8) to the data, giving the parameter
estimates shown in Table 5.6, right column. In addition we request the variance/covariance
matrix of these parameter estimates. We also ask SAS PROC NLMIXED to predict the ui3 and its
standard error, which it will do for every subject regardless of whether they were observed at
period 3 or not.

Then, as described above, for the 52 subjects missing data at period 3 we proceed as follows.
For each of the K imputations, we use the above algorithm to impute the probability of a positive
response, π?

i3. Before imputing a subject’s missing response, we first impute the number of tests
they underwent.

We impute the number of tests within treatment arm; if desired this imputation model could be
refined to take account of possible dependence on previous responses. In the active treatment
arm, the number of tests is approximately N(19,7.752); in the placebo arm it is approximately
N(20,7.072), irrespective of period. To impute the number of visits, we draw from the appro-
priate normal distribution and round to the nearest integer. Values less than 2 are replaced by
2.

Suppose in imputation k we impute nik tests for subject i in period 3. Implementing the algo-
rithm above, We then

1. draw β ’s

2. draw u’s

3. calculate linear predictor

4. impute the nik missing y’s

We use this algorithm to impute completed data sets at time 3, then analyse each one by fitting
a GEE, to obtain an estimate of treatment adjusted for baseline. These estimates are then com-
bined in the usual way. Note the GEE program gave robust standard errors, and these were used
to calculate the ‘within’ component of variance. Table 5.12 shows the results.

As the number of tests a subject undergoes varies between imputations, the results can vary
considerably. Thus, 5 imputations is not nearly sufficient. In this case, 5 similar data sets
give an over-estimate of the treatment effect and an underestimate of its variance. With 50
imputations, the results have settled down. Compared with the observed data, the treatment
estimate is increased, as is its statistical significance. With 100 imputations, the treatment effect
is borderline significant at the 5% level.
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Model/method Estimated treatment effect Std. Err. D.F. Z p-value

Observed data 0.57 0.334 N/App 1.71 0.09
5 imputations 0.95 0.345 959 2.76 0.006
10 imputations 0.87 0.389 150 2.23 0.03
50 imputations 0.73 0.417 361 1.76 0.08
100 imputations 0.78 0.401 966 1.94 0.052

Rescaled SS 0.69 0.293 N/App 2.35 0.02
(details in text)

Table 5.12: ‘Population averaged’ estimates of treatment effect (log odds ratio) at period
3, obtained using multiple imputation from the SS model. ‘N/App’: not applicable for the
model/method

We compare this with the re-scaled SS treatment effect, derived from the estimated treatment
coefficient in column 3, row 3 of Table 5.6. Here, the scale parameter is

√
1+0.3458×8.87≈

2, so the point estimate is similar. The standard error is a little smaller. This is probably due to
a combination of likelihood methods being more efficient and not correcting for the variance of
the estimate of σ2

u . ¤

5.5.1 Extension to missing baseline

In principle the methods described above can be readily extended to handle missing baselines,
although in practice fitting the models may not be easy. If a baseline is missing, it can be
included in a mixed model as a response, and then the mixed model used for imputation, along
the lines described in the previous Section. Alternatively, if baseline is continuous, the model
described in §5.3.1 can be used, and missing baselines imputed.

5.6 Additional issues

In this Chapter we have considered methods for binary and binomial data, which are the most
common form of discrete data that arise. In principle, the methods extend directly to other
discrete data, by simply changing the response distribution and link function. Such SS models
can be fitted in SAS PROC NLMIXED. Further, if data are monotone missing, SAS PROC MI will
automatically detect if the response has more than two levels and replace the logistic regres-
sion model with the proportional odds model (McCullagh, 1980). Additional options give the
general multinomial model.

Currently, the only option to impute in the non-monotone setting available in SAS PROC MI uses
the multivariate normal distribution. After imputation, this procedure will also round imputa-
tions to the nearest integer for discrete data. While this makes the imputations more palatable for
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some ‘consumers’, and may well be an essential pre-requisite to fitting the substantive model,
it does not make the underlying assumption of normality more plausible. In particular, prob-
lems are likely to arise where the link function is not approximately linear. For logistic models,
therefore, bias may be induced when many of the fitted probabilities are < 0.1 or > 0.9. Using
SAS PROC MI with a multivariate normal imputation model for binary data is the same as using
it for continuous data, so we have not discussed it here.

SAS PROC MI also offers a discriminant imputation method and a propensity score imputation
method for binary data with a monotone missing pattern. Discriminant imputation can be shown
to be a close approximation to logistic regression (Carpenter, 1983), so we prefer the latter.
Regarding propensity score imputation, our experience chimes with the comment in the SAS v9
manual,

The propensity score method does not use correlations among variables and is not
appropriate for analyses involving relationship among variables, such as a regres-
sion analysis (Schafer (1999), p. 11). It can also produce badly biased estimates
of regression coefficients when data on predictor variables are missing (Allison,
2000).

As discussed in more detail in Chapter 4, there is a routine in stata, called ice, which im-
plements the method for monotone missing data when the missing pattern is not monotone. A
similar macro is also available in SAS. We reiterate our comments in Chapter 4, that this method
is still in its infancy and lacks a theoretical basis. Until it is more fully understood, and as there
exist theoretically sound alternatives, it cannot be recommended for regulatory analysis.

5.7 Conclusions

In this Chapter we have developed methods for handling missing continuous data from Chapters
3 and 4 for discrete data, illustrating the various methods with longitudinal binary data. All the
methods are valid under the assumption the data are MAR; only one of the methods strictly
requires a monotone pattern of missingness.

Figure 5.3 gives an overview of our conclusions. Broadly speaking, if SS estimates are re-
quired, then fitting the appropriate SS model will give sensible answers even if subjects have
non-monotone missing observations. However, care needs to be taken over the random effects
component of the model, as this can affect estimated treatment effects quite substantially. As for
continuous data, we favour as little structure as possible. Based on results for continuous data,
§3.2.1, with more than 50 subjects in each group any loss of power is likely to be negligible.

For PA estimates, if the missing data follow a monotone pattern, we recommend monotone
sequential imputation. If this is not desirable, for example because excluding subjects with non-
monotone withdrawal potentially causes serious bias, multiple imputation with a SS imputation
model is a natural alternative.

Finally, the examples in this Chapter suggest that re-scaling SS point-estimates to obtain approx-
imate PA ones can work quite well, but does ignore uncertainty in the estimated scale factor.
It does however have the advantage of preserving the inferences obtained from the likelihood
based subject-specific analysis.





Part III

117





Chapter 6

Sensitivity analysis

In part II we discussed the analysis of data under the ‘Missing At Random’ (MAR) assumption.
Here we look at some methods for investigating the sensitivity of inference to this assumption.
This usually means introducing into the problem, by one route or another, departures from this
assumption and this in turn means that we need to consider MNAR models. There are three
main routes for this, and we begin by outlining the generic forms of these.

Let YO denote the observed data, YM data we intended to collect but could not, and R the indicator
of whether data were collected or not. Suppose we are interested in some parametric quantity
θ(YO,YM) which, ideally (were all the data observed), would be estimated from the observed
and missing data. This might for example be the principal treatment comparison. To estimate
θ in practice using maximum likelihood applied to the observed data we need to integrate (i.e.
average) out the missing observations from the joint likelihood of the observed and missing
data:

θ̂ =
∫

θ(YO,YM)[YM,YO,R]dYM.

As we are no longer assuming MAR, we cannot eliminate the withdrawal mechanism from this.
We can approach this problem by factoring [YM,YO,R] in one of two ways:

θ̂ =
∫

θ(YO,YM)[YM,YO,R]dYM.

=
∫

θ(YO,YM)[YM,YO|R][R]dYM (6.1)

=
∫

θ(YO,YM)[R|YM,YO][YM,YO]dYM (6.2)

Option (6.1) is called a ‘pattern mixture’ model. In contrast to the MAR setting, the distribution
(or pattern) of the data is different for the observed and unobserved portions. In the simplest
case, when R is a scalar, this approach models the two portions (or patterns) separately, and then
calculates a weighted average (or mixture), with weights Pr(R = 1) and Pr(R = 0).

Option (6.2) is known as a selection model. Suppose we draw a candidate YM from the distri-
bution of YM|YO. As data are MNAR, this draw is weighted by its probability of being observed
(or selected for observation).

A third approach, which we discuss a little further in §6.2.4, introduces latent variables upon
which both the measurement and withdrawal process depend. Integration is then required over
this latent structure. For a discussion of these three views of the modelling problem, and for a
description of a framework that incorporates them all, see Diggle (1998).

Looking at (6.1) and (6.2), it is clear that there is enormous scope for different kinds of pat-
tern mixture and selection models. For example, a natural starting point for the pattern in the
unobserved data is the pattern in the observed data, but there are many possible modifications
to go from one to the other. Figure 6.1 illustrates this. We suppose that we have a trial with
longitudinal follow-up, and if a patient is observed at each follow-up visit we will fit a straight
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FEV

TIME1 2 3 4

x
Observed data

missing given observed under MAR

Line of mean of conditional distribution of

Predicted mean values under MAR

x

missing follow−up data

Three (of many) possible
models/patterns for the

Figure 6.1: Hypothetical asthma trial: illustration of three of the many models/patterns possible
for the missing data, when a patient withdraws after the second follow-up

line to their data. The figure shows a patient who withdrew after their first two visits, together
with four options for the ‘pattern’ of their response after withdrawal: the MAR option (same
pattern as for those who do not withdraw) and three others.

Figure 6.1 makes explicit the key issue — with no data, we cannot say which pattern is more
likely. The problem is not alleviated if we adopt a ‘selection model’ instead of a ‘pattern mix-
ture’ approach. This is because the relationship between response and the unseen data can only
be estimated subject to uncheckable modelling and distributional assumptions (Kenward, 1998).
Again, once we start thinking about models for the withdrawal process, there are many possi-
bilities. Any suggestion that the selection model is a less arbitrary framework for sensitivity
analysis is therefore illusory. In the light of this, it is no surprise that the missing data literature
contains hundreds of proposals for sensitivity analysis.

In order for sensitivity analyses not to be completely arbitrary, some guiding principles are
needed. The following may be useful:

1. sensitivity analyses should be pre-defined, addressing the impact of clinically plausible
departures from MAR;

2. sensitivity analyses should be as transparent as possible to clinical investigators and reg-
ulators, and

3. the statistical methods should be applicable to a wide range of settings.

To address the first point, possible sensitivity analyses should be discussed with investigators
and regulators as part of the trial planning, and described in the protocol where possible. This
helps avoid the evidence provided by a trial being devalued by post-hoc, arbitrary sensitivity
analyses. As part of this process, it may be desirable to formally collect opinion on the differ-
ences between responders and non-responders. We describe an approach for this below.
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The second point is very important; the greater the understanding of the methods amongst
investigators and regulators, the more likely (i) they will be able to inform/direct the analysis to
address their concerns and (ii) they will accept the results.

The third issue is related to the second, and concerns the necessity of becoming familiar with
how an approach performs in a variety of settings if one is to be aware of problems that may
arise and how they can be addressed. Such awareness is essential if one is to have confidence in
a method.

The methods we describe in this Chapter are ones we think can be used in the principled way
described above. We note that what we term the ‘transparency’ of the method should not be
equated with technical simplicity. The selection models we describe below are an example of
this: while we believe they are fairly transparent, quite complex statistical machinery is needed
to fit them.

For other approaches that have been suggested for sensitivity analysis in a clinical trial setting,
related in varying degrees to those suggested here, see Molenberghs and Kenward (2007) part V,
Molenberghs et al. (2006), Verbeke and Molenberghs (2000), Ch. 19–20 and Scharfstein et al.
(1999).

The plan for the remainder of this Chapter is as follows. First, we briefly discuss the CPMP
guideline on sensitivity analysis. Then we discuss sensitivity analysis via (i) selection models
and (ii) pattern mixture models. In each case we give examples and code to illustrate our
approach.

6.1 A note on the CPMP guideline

The CPMP points to consider on missing data (Committee for Proprietary Medicinal Products
(CPMP), 2001) stress the importance of sensitivity analysis and agreeing its nature and scope
in advance. However, their focus is very much on comparing the results of certain ‘methods’,
rather than comparing the sensitivity of the conclusions to varying the assumptions about the
missingness mechanism.

This distinction is potentially important, as it is possible to implement a range of methods, all
of which make very similar assumptions about the missingness mechanism. This both misses
the point of sensitivity analysis, and can lead to misleading conclusions.

Several of the methods discussed in the guidelines are ‘degenerate’. In other words, they
explicitly or implicitly replace missing values by a single value, i.e. a degenerate statistical
distribution. LOCF and best/worst case imputation are examples of these. All the statistical
methodology surrounding trials has been developed to allow correct inference in the presence
of uncertainty. It is therefore strange to adopt the ‘certainty’ of a best or worst value when it
comes to sensitivity analysis. Once we view such methods as examples of degenerate impu-
tation, it follows that the imputations are extremely implausible, and therefore the conclusions
are likely to be misleading. This applies both to resulting estimates of treatment effects and
standard errors.

Further, when data are continuous, allocation of a ‘best’ or ‘worst’ value in inherently difficult.
Should it be the worst possible physiological value, or the worst one observed in that particular
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intervention arm, or the worst observed in the trial? Fruitless debate over such artificial ques-
tions is avoided when we impute distributions, when discussion moves to the relative likelihood
of such values (amongst others). As we show below, such information can be obtained from
investigators, synthesised, and combined with the trial information, all in a scientifically valid
way.

We therefore do not consider LOCF, best or worst case imputation further in this Chapter.

6.2 Selection models

If we used a mixed model for the MAR analysis of the responses, as in Chapter 3, this is a very
natural approach for sensitivity analysis. This is because we can continue with the same model
for the responses. The difference is now we have to add a model for the reason for missing
data. Then the two models need to be fitted together, which is most readily done using MCMC
methods in winBUGS (Spiegelhalter et al., 1999).

Depending on the context, different forms may be more appropriate for the model for with-
drawal or non-response. We term these selection models to differentiate them from the model
of interest for Yi j. We now discuss some selection models. Suppose we have a trial which in-
tends to collect data at follow-up visits j = 1, . . . ,J on each of i = 1, . . . , I patients. Let Ri j = 1
if patient i attends follow-up visit j.

6.2.1 Model I: no withdrawal — observing a patient is always possible

Our first model assumes that patients do not ‘withdraw’, rather there is always the chance they
may be observed at the next follow-up visit. In this case at each time point, we can use a logistic
model for response. A simple model is:

logitPr(Ri j = 1) = α j +δYi j, i = 1, . . . I, j = 1, . . .J. (6.3)

In words, the log odds of observing patient i at visit j depends on the visit, (α j), but also on
the response, Yi j. Thus a positive value of δ implies the log-odds of observing the response
increases with the value of the response.

Clearly, model (6.3) cannot be fitted alone, for Ri j = 1 if Yi j is observed. However, using
numerical integration (over the unseen Yi j’s), it can be fitted in conjunction with a mixed model
for the response that we used for the MAR analysis. The numerical integration can either be
done in a frequentist framework (Diggle and Kenward, 1994) or using MCMC methods, such
as in winBUGS (Carpenter et al., 2002; Spiegelhalter et al., 1999). Further although δ can
be estimated, the estimated value and its standard error depend critically on the distributional
assumption made for the missing data. Unfortunately, we cannot assess the plausibility of this
assumption, as we have not seen these data. Thus, we conclude (cf Kenward (1998); Carpenter
et al. (2002)) it is better not to estimate δ . Rather, from the observed data and in discussion with
investigators and regulators, we identify a set of possible values for the (log) odds of response
per unit change in Yi j. We then fit the model with each of these values for δ in turn, and explore
how sensitive our estimated treatment varies.
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Follow-up Response seen Value of Ri j under
visit from patient i? model 1 model II

1 Yes 1 1
2 Yes 1 1
3 Yes 1 1
4 No 0 0
5 No 0 –
6 No 0 –

Response seen Value of Ri j under
from patient i? model 1 model II

Yes 1 1
No 0 1
Yes 1 1
Yes 1 1
No 0 0
No 0 –

Table 6.1: Values of Ri j under models I and II when (left) a patient is observed at each follow-up
visit until they withdraw and (right) a patient has an interim missing value, is subsequently seen
and then withdraws

Note that if we constrain δ = 0, then model (6.3) can be fitted alone; this corresponds to a
MAR assumption, that the probability of response does not depend on the unseen observation.
This shows that the model is too simple, for we have seen that MAR means that given the
observed data, there is no further dependence of withdrawal on the unseen data. However, the
only ‘observed’ data in (6.3) is current response, Yi j. A more plausible model includes treatment
and previous visit:

logitPr(Ri j = 1) =α j +βk1[Patient i has treatment k]
+ γYi, j−1 +δ (Yi j−Yi, j−1), i = 1, . . . I, j = 1, . . .J. (6.4)

In this parameterisation, conditional on visit, treatment and response at last visit, δ is the ad-
ditional change in the log odds of a patient’s response per 1 unit increase/decrease in Yi from
the last visit. While, from the the point of view of the resulting treatment estimates, having
{δ (Yi j−Yi j−1)+ γYi j−1} in (6.4) is equivalent to having {δYi j + γ ′Yi j−1}, we find (6.4) easier
to explain to investigators and regulators.

In many applications we may want to extend (6.4) to include other variables too. Theoretically,
any variables that are included (conditionally or as responses) in the mixed model to maximise
the plausibility of MAR should be included in the response model. This is likely to make
treatment estimates less sensitive to MNAR. To see this, note that δ is the change in the log-
odds of response per 1 unit change in Yi j conditional on all the other variables in the model.
Thus, if (aside from Yi j), the model gives good predictions for the probability of withdrawal,
then it is in turn plausible that the residual dependence of response Yi j on withdrawal is likely
to be small. In other words plausible values of δ are likely to be close to 0. Thus the treatment
estimates are less likely to be very sensitive to MNAR.

6.2.2 Model II: no data available after patient withdrawal

Model I always has a non-zero probability that a patient might be seen at a visit. This is ob-
viously wrong if the patient has withdrawn from follow-up altogether. Adopting the following
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model addresses this:

logitPr(Ri j = 1|Ri( j−1) = 1) = α j +βk1[Patient i has treatment k]+ γYi, j−1 +δ (Yi j−Yi, j−1),

Pr(Ri j = 1|Ri( j−1) = 0) = 0, i = 1, . . . , I; j = 2, . . .J. (6.5)

Note that, for simplicity, we start from follow up visit 2, j = 2. Otherwise, we need to include
baseline, or drop the dependence on the previous observation at j = 1. Computationally, as the
code for the example below shows, this model is no more difficult than model I. However, for
many trials, where interim withdrawal is a secondary issue to patient withdrawal, it is more
satisfactory.

If we change the logit link to the ‘complementary log-log’ link, log(− logPr(Ri j = 1)), then the
model turns out to be a discrete time proportional hazards model (Aitkin et al., 1989), and the
coefficients can be interpreted as log-hazard ratios. In practice, they are likely to be similar as
the logistic and complementary log-log functions are similar unless probabilities are close to 0
or 1.

Although this is a model for withdrawal, it is possible to include patients with interim missing
values. A simple approach is to assume that these interim missing values are MAR, while
withdrawal is MNAR. Depending on the context, this may or may not be plausible. To include
such patients, we just have to (re-)define Ri j to be 1 until the visit when the patient withdraws:
see Table 6.1. Note that, under model II, for visits following withdrawal there is no point in
including Ri j in the model as the probability of seeing the patient is 0.

6.2.3 Comparison of models I and II

Suppose that a trial has no interim missing data, and that the higher a response, the less likely
the patient is to withdraw. Then model II, with δ > 0, is appropriate. If we instead fit model I,
then we will tend to impute lower values for the missing observations. This follows because at
each visit after withdrawal model I has a non-zero probability of observing the patient. If they
are not observed, their imputed response will be lower. This effect will increase over time as
the model tries to fit the true probability of observing the response, 0, for that patient.

Thus, if treatment improves response, and withdrawal is predominantly in the treatment arm,
model I might yield a conservative estimate of treatment effect. If, as is more likely, withdrawal
is predominantly in the placebo arm, the model will tend to over estimate the treatment effect.
Neither is desirable in practice.

6.2.4 Some other models

We have encountered trials where the response is highly variable and withdrawal depends on
the trend over follow-up rather than the last couple of observations. In this case, on option is
to model the covariance of Yi j with random intercepts and slopes, and then replace Yi j in (6.5)
with the random slope for patient i, or preferably the random slope multiplied by time since
randomisation (since otherwise the effect of the slope on the probability of withdrawal is the
same at all follow-up times). While these models can be slightly easier computationally, they
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are usually more difficult to explain to investigators and regulators, who are often unfamiliar
with the implications of random intercepts and slopes in continuous and discrete models. They
are special cases of the latent variable models mentioned earlier; for an example see Verzilli and
Carpenter (2002), and a more general discussion see Diggle (1998).

6.2.5 Software

All these models require integration over the missing data. This can be done using conventional
numerical integration. Molenberghs et al. (2006) provide SAS code for fitting selection models
using the EM algorithm with numerical integration as part of the E step. Some simpler models
can also be fitted using SAS PROC NLMIXED and some of the random coefficient models can
also be fitted in MLwiN (Rasbash et al., 2004). In practice, we have found the most convenient
route is to adopt a Bayesian model, with vague priors, so that posterior means will approximate
maximum likelihood estimates. Markov Chain Monte Carlo (MCMC) methods (Gilks et al.,
1996), as implemented in WinBUGS, provide a convenient tool for fitting such models, especially
if one can work from code for a similar model in a different setting. We therefore give the code
for the examples below in Appendix C.

MCMC methods work by setting up a simulation process which converges over time to the true
Bayesian posterior distribution. The speed of convergence can be greatly increased by mean-
centreing quantitative covariates in the model. This can be important, as realistic models for
even moderate trials can take a considerable time to fit.

6.2.6 Bells and whistles

There are many possible refinements of the selection model that could be included. While each
makes the model more plausible, each also makes the model more complex, so less interpretable
by non-statisticians. As this devalues the point of sensitivity analysis, in practice such additional
refinements should be avoided, or kept to a minimum.

For example, we have already noted that variables included in the response model to maximise
the plausibility of missing at random should ideally also be included in the selection model.
In practice, including every past observation as a predictor for response at visit j is likely to
lead to large selection models which are complicated to fit and interpret. Thus we recommend
concentrating on visit, treatment, previous and current response, plus perhaps one or two other
key variables.

Likewise the effect of variables on the probability of response could vary as the trial progresses.
However, unless such interactions are identified as highly likely before the data are collected, it
is best not to try and estimate them as part of the sensitivity analysis.

Again, one can imagine that, within the same trial, some patients’ response pattern might be
best described by Model I above, but others by Model II. Although possible, fitting both models
simultaneously as part of a sensitivity analysis is more tricky computationally. We therefore
recommend focusing on one of the models, which can be chosen either because it best describes
the behaviour of the majority of patients or because it will give more conservative estimates of
treatment efficacy.
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EXAMPLE 6.1 Sensitivity analysis with the Isolde data

We illustrate the selection model approach on the Isolde data, comparing Models I and II.
Recall this dataset has two treatment groups, and 6 follow-up visits. As in Chapter 3, we fit
a normal model to FEV1, fitting time as a class (factor) variable with a full treatment×time
and baseline×time interaction. As before we have an unstructured covariance matrix. Thus the
model is:

EYi j = φ j +η j1[patient i has active treatment]+ν j(baseline FEV1)i; j = 1, . . . ,6

Var




Yi1
...

Yi6


 = Σ,a 6×6 matrix,

where we denote coefficients by φ ,η ,ν to differentiate them from those in (6.5). Thus this
model has 18 parameters for the mean of Y and 21 in the covariance. We will focus on the
baseline adjusted estimate of treatment at the final visit, η6.

In this data set, around 45% of patients have interim missing values; however in terms of the
total number of missing values, those due to withdrawal predominate. It is therefore of interest
to compare the results of fitting model (6.4) with model (6.5) for the selection process. For the
latter model, we keep patients with interim missing observations within the model, assuming
these values are MAR and defining R is as shown in the right half of Table 6.1.

We fit the model in winBUGS (Appendix C). To improve convergence we mean centred baseline
FEV1 and response. For all the models we had a ‘burn in’ of 3000 samples. Then to get a
reasonably uncorrelated sample from the posterior, we then sampled a further 50,000 but only
included every 10th sample in the estimates of the posterior means, SDs and 95% credible
intervals in Table 6.2.

As a check on the winBUGS code we first fitted the model with δ = 0, and compared the results
with SAS PROC MIXED. They were very similar. In this model, the coefficient estimating the
log-odds of response on FEV1 at the previous visit was estimated as 0.31 (std. error 0.12).
Recalling that FEV1 is measured in litres, this means that, after adjusting for treatment group
and visit, the odds of responding at the next visit are 3% higher for every 100 ml increase in
FEV1. For the sensitivity analysis, for both models, we therefore set δ = 0.1. This gives an
additional 1% increase in the odds of response per 100ml increase in FEV1 between the last and
current visit.

Table 6.2 gives the results. As noted in the previous paragraph, the MAR estimates from SAS

PROC MIXED and winBUGS agree closely, as do the other MAR parameter estimates (not shown).
At visit 6, adjusting for baseline, patients with active treatment have an FEV1 90 ml higher on
average, with p < 0.001. Under MNAR both models show an increased effect of treatment. This
is because more patients withdraw, and they withdraw earlier, in the placebo arm. Their imputed
values are lower under MNAR than MAR, and hence the final treatment effect is greater. As
discussed above, the fact that the estimated treatment effect is fractionally greater with model
I (6.4) is expected; we anticipate the difference between the models to increase with greater
values of δ . Note the standard error is little changed here. If however, we sampled δ from
a distribution (possibly obtained from experts), with known mean and variance (akin to the
approach in §6.5) we would expect the standard error to increase.
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Coefficient MAR estimates (δ = 0) MNAR estimates (δ = 0.1)
SAS PROC MIXED winBUGS winBUGS winBUGS

Model (6.5) Model (6.4)

Baseline 0.888 (0.021) 0.888 (0.021) 0.887 (0.021) 0.888 (0.022)
Treatment 0.092 (0.020) 0.092 (0.021) 0.093 (0.021) 0.094 (0.020)

Table 6.2: Isolde data: estimated coefficients (standard errors) for baseline and treatment at visit
6, from MAR and MNAR models

6.3 Extension to discrete data

The models fitted in winBUGS above can be extended for longitudinal discrete data, by changing
the mixed model for the response to a non-linear mixed model. Binomial, Poisson and ordinal
responses can all be handled this way. One caution is that experience shows that this approach
works best when the MAR model can be fitted fairly simply by maximum likelihood (using SAS

PROC NLMIXED) or penalised quasi-likelihood methods (for a comparison see Ng et al. (2006)).
If the MAR model is hard to fit, then obtaining convergence of the MCMC sampler for the
MNAR model will be more tricky.

6.4 Pattern mixture models

We now discuss an alternative approach to sensitivity analysis, via the pattern mixture approach.
We shall see below that this approach can be readily combined with multiple imputation. It can
also be readily used with other approaches.

A pattern mixture model conditions the joint density, [YM,YO,R] as

[YM,YO,R] = [YM,YO|R][R].

Under MAR, [YM,YO|R = 1] = [YM,YO|R = 0], that is to say the joint density of patient’s re-
sponses is the same for patients those with full and partially observed data. Under MNAR, the
two are different.

A natural way to perform sensitivity analysis is to model the observed data, then assume the
model for the missing data is a slight modification of this. By varying the modification, we
can often rapidly perform a range of sensitivity analyses. We describe a method for doing this
below. Further, we show how expert opinion, from investigators or regulators, on differences
between responders and non-responders can be incorporated into the analysis.

Our approach is based on that described by White et al. (2007), who give the technical de-
tails. Here, we describe the central ideas, and illustrate the method using data from a trial of
interventions to improve the quality of peer review. The application to clinical data is direct.
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Figure 6.2: Progress of patients through the peer review trial

EXAMPLE 6.2 Peer review trial

While there are many studies illustrating the inadequacies of peer review (Rennie, 1999), there
have been few evaluations of interventions that try to improve peer review and no randomised
controlled trials of the effects of training Callaham et al. (2002, 1998). This motivated Schroter
et al. (2004) to carry out a single blind randomised controlled trial among reviewers for a general
medical journal, comparing two different types of training (face-to-face training or a self-taught
package) with a control group.

Each participating reviewer was sent a baseline article to review (paper 1). If this was re-
turned, one intervention group received a full day’s face-to-face training, and the other group
was mailed a self-taught training package. Two to three months later participants who had com-
pleted their first review were sent a further article to review (paper 2); if this was returned a
third paper was sent three months later (paper 3).

Reviewers were sent manuscripts in a similar style to the standard BMJ request for a review, but
were told these articles were part of the study and were not paid. The three articles were based
on three previously published papers, with original author names, titles and location changed.
In addition 9 major and 5 minor errors were introduced.

The principal outcome considered here is the mean Review Quality Index (RQI) (van Rooyen
et al., 1999a). This is a 7-item validated instrument, with each item ranging between 1 and 5
(van Rooyen et al., 1998, 1999b; Walsh et al., 2000). Each review was rated independently by
two editors and then the mean score of the 7 items, averaged over the two editors, was used.
Full details are given in Schroter et al. (2004).

The progress of participants through the trial is summarised in Figure 6.2. Note that a sub-
stantially higher proportion of reviewers dropped out in the self-taught arm. Here, we focus
on the results for paper 2. This is because analysis of the complete data for paper 2 suggested
the postal intervention was beneficial (first row Table 6.3) whereas the review of paper 3 (six
months after intervention) did not show any significant differences between the arms in terms
of RQI or number of major errors detected.

Table 6.4 shows the mean RQI at paper 1 for those who did, and did not, review the second
paper. It suggests that the missing observations may not be missing completely at random;



6.4 Pattern mixture models 129

Postal vs. control Face-to-face vs. control
Posterior 95% credible Posterior 95% credible

mean sd interval mean sd interval

Complete cases 0.291 0.077 0.140 0.442 0.160 0.071 0.021 0.299
c=0 Approximation 0.246 0.153 -0.053 0.545 0.144 0.100 -0.052 0.341

MCMC 0.246 0.151 -0.042 0.564 0.144 0.100 -0.050 0.344
c=0.5 Approximation 0.246 0.140 -0.028 0.520 0.144 0.091 -0.033 0.322
c=1 Approximation 0.246 0.126 -0.001 0.493 0.144 0.080 -0.013 0.301

MCMC 0.246 0.126 0.004 0.505 0.145 0.080 -0.014 0.302

Table 6.3: Peer review trial: posterior mean intervention effect, standard deviation and 95%
credible intervals. Results are unadjusted for covariates. Uncertainty in posterior means due to
Monte Carlo estimation is less than 0.0006

furthermore, in contrast to the control group, in the intervention groups reviewers who dropped
out tended to have worse RQI scores for paper 1. This is particularly important in the postal
arm, because the number of reviewers dropping out in this arm is substantially greater.

When the investigators saw these results, they decided to approach BMJ editorial staff to try and
elicit prior information on the difference between non-responders and responders in this study,
with a view to performing a Bayesian sensitivity analysis to assess the impact of non-response.
Further details about how this was done are described below. ¤

6.4.1 Pattern mixture model for MNAR

For simplicity, we first consider the case of a randomised trial with two arms (intervention and
control), a single, normally distributed outcome and no covariates. The extension to more arms
involves no new concepts. We outline how to include covariates below.

Suppose nC subjects are randomised to the control arm. Let YiC be the response for the ith subject
in the control arm, i ∈ (1, . . . ,nC), and let RiC = 1 if this subject completes the trial. Conversely,
let RiC = 0 if this subject drops out, so that YiC is unseen. Denote by πC the probability of
withdrawal in the control arm, so πC = Pr(RiC = 0). For the intervention arm, define nI,YiI,RiI
and πI analogously.

For the control arm, our model is that those responses that are observed come from a distri-
bution with mean µC, and variance σ2, while those that are unobserved come from a shifted
distribution, with mean (µC +δC) and variance σ2

M. We write this as

YiC|RiC = 1 ∼ (µC,σ2)
YiC|RiC = 0 ∼ (µC +δC,σ2

M). (6.6)

For the intervention arm, we define µI,δI analogously, and assume the variances are equal to
those in the control arm (although this can readily be relaxed if desired).

Under our model, the average response in the control arm is (1−πC)µC + πC(µC + δC). Like-
wise, the average response in the intervention arm is (1−πI)µI + πI(µI + δI). We see that δC
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Control group Postal group Face-to-face group

Returned review of n 162 120 158
paper 2 mean 2.65 2.80 2.75

SD 0.81 0.62 0.70

Did not return review n 11 46 25
of paper 2 mean 3.02 2.55 2.51

SD 0.50 0.75 0.73

Table 6.4: Review Quality Index of paper 1 by whether or not paper 2 was reviewed

and δI govern the degree of informative missingness. In this case, with no covariates, the MAR
assumption corresponds to the case δC = δI = 0. Of course, δI and δC will generally differ.
For example, missingness may well be more informative among individuals who have been
encouraged to change their behaviour than among controls.

The average effect of the intervention is then

∆ = (1−πI)µI +πI(µI +δI)−{(1−πC)µC +πC(µC +δC)}
= (µI−µC)+(δIπI−δCπC). (6.7)

Note that (µI − µC), the average treatment effect amongst completers, can be estimated using
the usual complete case analysis. If we denote this by ∆CC, then we simply have

∆ = ∆CC +(δIπI−δCπC), (6.8)

i.e. treatment effect = treatment effect in completers +bias due to informative withdrawal.

We take a Bayesian approach, which allows us to assume a prior distribution for the informative
missingness parameters. For the control arm, we assume δC ∼ N(mC,s2

C). Likewise, for the
intervention arm we assume δI ∼ N(mI,s2

I ). Usually, δC and δI will be correlated, so let

c = Cor (δC,δI). (6.9)

6.4.2 Analysis

To obtain the posterior distribution we assume non-informative priors, independent of δ , for
(µI,µC,πI,πC,σ2). Note it turns out that σM does not appear in expressions for the posterior
mean and variance of the overall treatment effect, and therefore requires no prior.

By replacing the observed prior with a normal approximation, White et al. (2007) derive the
following formulae for the posterior mean and variance, enabling the calculations to be per-
formed as a simple modification of an analysis of complete cases. They also present an exact
Bayesian analysis (with code) using the winBUGS program, which uses the discrete prior dis-
tribution implicit in the questionnaire. Both analyses assume normality for the trial response
data.
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The formulae below give the posterior mean and posterior standard deviation (standard error)
in intervention arm compared to the control arm. These are modified in the obvious way if
comparisons between other interventions are required.

First, estimate the probabilities of non-response, πI, πC, by the observed fractions of non-
responders in the intervention and control arms. Denote these fractions pI, pC. Recalling the
treatment effect (6.8), and the definitions of the mean, variance and correlation of δI,δC, given
above equation (6.9), we can estimate the posterior mean and variance of the treatment effect
by correcting the usual complete-cases estimates to take account of informative withdrawal:

Posterior mean = ∆̂CC +C (6.10)
Posterior variance = se(∆̂CC)2 +V1 +V2, (6.11)

where se(∆̂CC) is the estimated standard error of the ‘complete cases’ treatment estimate. From
(6.8), the correction term for the point estimate in (6.10) is

C = mI pI−mC pC (6.12)

which uses the experts’ best estimates of the mean of δC and δI, together with the observed
withdrawal proportions. The first variance correction term in (6.11) is

V1 = p2
I s2

I −2csCsI pC pI + p2
Cs2

C, (6.13)

which allows for uncertainty about δC and δI using the prior variances sC,sI and their correlation
c. The second variance correction term in (6.11) is

V2 = (m2
I + s2

I )
pI(1− pI)

nI
+(m2

C + s2
C)

pC(1− pC)
nC

, (6.14)

which allows for uncertainty about pC and pI . This term decreases with sample size and will of-
ten be negligible compared with V1. Approximate posterior credible intervals can be calculated
as ‘posterior mean’ ± 1.96 ×√‘posterior variance’.

In the special case where the missing data are known to be equally informative in each trial arm
(δC = δI = δ ), the mean correction C becomes m(pI− pC) and the main variance correction V1
becomes s2(pC− pI)2, so the adjustments depend only on imbalance in missingness probabili-
ties in the two arms. If δC and δI are allowed to be unequal, but assumed to have the same prior
variance s2, then the second term of the posterior variance is s2[(pI − pC)2 + 2(1− c)pC pI].
This is typically very sensitive to the correlation c, and increases as the correlation decreases.

6.4.3 Eliciting priors

Several writers have argued that priors for (δI,δC) should be elicited from experts in the field
(Kadane and Wolfson, 1998; O’Hagan, 1998). Ideally, prior beliefs would express the view-
point of an uncommitted observer or consumer of the research, suggesting the choice of experts
unconnected with the trial. In practice, it is the trial investigators who are best informed about
the circumstances of the trial and most likely to be prepared to have their opinions elicited, and
they are therefore the most realistic source of expert opinion.

We consider the elicitation of the prior in two stages. We begin by considering how to elicit
prior beliefs in a single arm of a trial, for example for the parameter δC in (6.6).
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Recall from (6.6) that δC is the difference in the control arm between the true mean of the unob-
served data and the true mean of the observed data. As there is uncertainty about this parameter,
we need to elicit prior information from experts on the distribution of plausible values. There
are two principal sources of confusion here. First, we need opinions on the difference in true
means, not the difference in the sample means. Secondly, we require information on the distri-
bution of possible values of the parameter, not the distribution of the unobserved data. These
points must be stressed to the experts.

We used the questionnaire shown in Appendix B to elicit this information. We asked experts to
assign a total weight of 100 over 9 categories in which the difference in the average outcome
(review quality index) between responders and non-responders varied from ≤ 1 to ≥ 1 in steps
of 0.25.

Most of the questionnaires were completed at a BMJ research seminar, following a short de-
scription of the trial methods and a brief presentation explaining the reason for eliciting prior
information and introducing the questionnaire.

The questionnaire in Appendix B does not attempt to collect information on the correlation, c,
between δC and δI. Our pilot questionnaire attempted to do this with a further table for inves-
tigators to complete. This sought information on the average difference between responders
and non-responders in the control arm for each average difference between responders and non-
responders in an intervention arm. Unfortunately, it quickly became apparent that this was too
unfamiliar for investigators to readily tackle. We therefore had to make do with the same prior
for δ in each arm. While this is a limitation, we can still examine the sensitivity of results to a
range of values of c.

An alternative, simpler, approach for obtaining an estimate of the correlation that subsequently
occurred to us is the following. We ask the expert first to suppose that δC (the value in the
control arm) takes a specific small value — say −0.5 — and then ask for their best guess of the
mean of δI . Secondly, we ask the expert to suppose that δC takes a specific large value — say
+0.5 — and then ask for their best guess of the mean of δI.

If we denote the proposed values by LC and HC, and the expert’s conditional mean values by LI
and HI , then an estimate of c = Cor (δC,δI) is

HI−LI

HC−LC
× sC

sI
,

where sC, sI are defined above equation (6.9).

6.4.4 Some additional issues

White et al. (2007) describe how the analysis above should be modified to adjust for covari-
ates, both in the prediction of withdrawal and in the estimation of the treatment effect. They
also discuss the subtle, and in practice usually minor, implications this has for obtaining and
interpreting the prior.

EXAMPLE 6.2 Application to peer review trial (ctd)

Twenty two questionnaires were completed, 2 by investigators who had seen the data, 12 by
BMJ editors and editorial staff who had not seen the data and 8 by various other BMJ staff, who
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Figure 6.3: Editors’ prior distribution for δ , the difference between mean RQI of non-
responders and responders

had likewise not seen the data. The two investigators who had seen the data before completing
the questionnaire gave priors broadly in line with the others, so they were retained in the sample.
95% of priors had a mean ≤ 0; of these 50% were between -.3 and -0.05. It was therefore
reasonable to pool the experts’ opinions. The resulting pooled prior distribution is shown in
Figure 6.3: it has mean−0.21 and variance 0.462. The average within questionnaire variance is
0.42, so an approximate intra-class correlation is 0.76, suggesting reasonable consensus among
the experts.

As we were unable to elicit information about the correlation between δ ’s (see §6.4.3), for the
approximate analysis we explored the sensitivity of the results to correlations of 0, 0.5 and 1.

Figure 6.4 shows the estimated effect of the postal intervention as c ranges from 0 to 1. Nu-
merical results for c = 0,0.5 and 1, are shown in Table 6.3, where for comparison we include
the results of the full Bayesian analysis. This only used correlations of 0 or 1, since fractional
values are difficult to implement. winBUGS code and further details (including baseline adjusted
estimates) are given in White et al. (2007).

The unadjusted complete case analyses shows a significant difference at the 5% level in favour
of both interventions compared with control. Adjusting for MNAR, with a correlation, c = 1,
the lower end of the 95% credible interval touches 0. As c declines to zero, the interval width
increases further, as expected.

Including prior information on differences between responders and non-responders has two
main effects. Firstly, it reduces all the estimated effects, because of the greater degree of miss-
ingness in the intervention groups (Table 6.4) together with the prior belief that missing out-
comes were on average worse than observed outcomes (Figure 6.3). Secondly, it increases the
standard deviation, reflecting the uncertainty about non-response bias. The results are relatively
insensitive to the assumed value of c because most of the missing data are in the intervention
arm.
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Figure 6.4: Estimated effect of postal intervention compared with control: complete cases anal-
ysis (right hand end of figure) and adjusted for informative missingness, showing effect of vary-
ing the correlation c between informative missingness in control and postal arm. This analysis
uses the approximate method and is unadjusted for covariates

Reassuringly, the results for the approximate method, which summarises Figure 6.3 by a normal
distribution, are very similar to the MCMC results, which treat the prior as a discrete distribu-
tion. We would expect differences to occur mainly in the 95% credible intervals, and the results
in Table 6.3 support this view. In practice, it would appear that the analytic ‘exact method’ is
unlikely to be misleading unless the prior is exceptionally skew.

We conclude that the experts we consulted would interpret this trial as failing to reject the null
hypothesis of no effect of intervention. ¤

6.4.5 Pros and cons of prior elicitation

This method allows the sensitivity of conclusions to MNAR to be investigated relatively trans-
parently. Investigators and regulators usually have a clear idea of the differences between non
responders and responders, so this approach is accessible to them. Further, in our experience the
full implementation of this model in winBUGS is not necessary; the approximate method works
well. We have programmed an EXCEL spreadsheet to implement it. If no prior information
is available, we can adopt a working value of c, usually 0 as this gives the widest confidence
intervals, and find δ which causes the treatment effect to be non-significant. The plausibility of
this value of δ can then be assessed.

Note that, relative to an MAR analysis, this method always widens credible intervals, and in
this respect provides a more stringent test of a treatment effect than the common analysis which
assumes MAR.

Here we have discussed quantitative outcomes, but the method could also be applied to binary
outcomes. Here, Magder (2003) has measured informative missingness via the response proba-
bility ratio, while Higgins et al. (2006) have proposed a similar Bayesian analysis based on an
‘Informative Missing Odds Ratio’1.

1i.e. the ratio of the odds of response in patients whose data are observed to the odds of response in patients
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Figure 6.5: Schematic illustration of increasing the rate of decline by δ after withdrawal

6.5 Pattern mixture approach with longitudinal data via MI

The above approach has the potential to be extended to longitudinal data in several ways.
Perhaps the easiest is to start with the conditional distribution of the missing given the observed
data under MAR, and then modify this after a patient has dropped out.

A natural approach is to suppose that patients who withdrawal have a different, usually poorer
response than predicted by MAR. For example in an asthma trial, we might suppose that FEV1
improves more slowly (or declines more quickly) after withdrawal. If the change in rate of
decline is denoted δ , then the conditional mean for the first response after withdrawal is reduced
by δ , the second by 2δ and so on. This is schematically illustrated in Figure 6.5.

As discussed above, if possible we can elicit from experts the mean and variance of δl in the
treatment group l, which is assumed to be normally distributed, and Cor (δl,δl′), for all treat-
ment groups l and l′. In practice, the theory above shows the widest confidence intervals occur
when the correlation is zero (assuming it is not negative), and useful information can be obtained
by assuming the distribution of δ is the same in both arms.

We can use this approach with multiple imputation as follows. First, we create the K imputations
under MAR. Suppose we have two treatment groups. Then, for each imputation, k, we sample

(
d1k

d2k

)
∼ N

((
δ1

δ2

)
,

(
σ2

1 σ12

σ12 σ2
2

))
.

For each patient, in each treatment arm, l = 1,2, for each imputation, we then decrease/increase
the first MAR imputed observation by dlk, the second by 2dlk and so on. We then analyse the
resulting datasets and combine the estimates using Rubin’s rules. If the time between observa-
tions is not constant, we may want to change the multipliers of d from 1,2,3, . . . , to maintain
a linear change. We can handle interim missing observations by decreasing them by dl , or
simply leaving them with their MAR imputed values. The latter is consistent with a different
mechanism driving interim missing data and patient withdrawal.

whose data are missing. Under MAR, this would be 1.
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Coefficient Parameter estimates when δ =
0 (MAR) −0.01 −0.02 −0.03 −0.04

Treatment −0.086 (0.021) −0.088 (0.026) −0.098 (0.026) −0.095 (0.028) −0.101 (0.029)
Baseline 0.89 (0.021) 0.89 (0.021) 0.89 (0.021) 0.89 (0.021) 0.89 (0.022)
Intercept 0.14 (0.042) 0.12 (0.047) 0.11 (0.048) 0.09 (0.051) 0.08 (0.051)

Table 6.5: Estimates of treatment effect at the final time point when patients who withdraw have
each subsequent MAR imputed FEV1 value reduced by δ ,2δ and so on. The reference group
is those on active treatment. All values are in litres

As the theory above suggests, the confidence intervals are going to be narrower the greater the
correlation between the d’s for different treatment arms. In practice, information on this corre-
lation is unlikely to be available, so as the correlation is unlikely to be negative, a conservative
approach is to set it to zero, i.e. set σ12 = 0. Likewise often, in the absence of prior information,
we can set δ1 = δ2.

EXAMPLE 6.3 Isolde data: sensitivity analysis through MI

We illustrate the above approach which is implemented in a SAS macro by Roger (2006) (see
Appendix C). Recall there is an active and placebo arm in this trial. We will use the above
approach, sampling for imputation k = 1, . . . ,50, (d1k,d2k) from

(
d1k
d2k

)
∼ N

((
δ
δ

)
,

(
σ2 0
0 σ2

))
.

We compare the results of multiple imputation under MAR with values−10,−20,−30,−40 ml
for δ and σ2 = 0.0052. Note that the Isolde trial has a large number of patients (just under half)
with some interim missing data. Imputed interim missing data is left unchanged by the macro
(in other words it is assumed the MAR model is correct). Only when a patient has withdrawn
do we start to change the MAR imputations.

Table 6.5 shows the results, for the treatment estimate at the final time point. We used K = 50
imputations. We see that the treatment estimate increases with δ , but the standard error also
increases, so that the significance of treatment slightly declines (z =−4.1 for δ = 0 and−3.5 for
δ = 0.04). The intercept also decreases as δ increases. This makes sense as the MNAR model
reduces the FEV1, but more patients withdraw, and withdraw earlier, in the placebo arm. Thus
the effect of increasing the rate of decline when patients withdraw results in a greater reduction
in final FEV1 values in the placebo arm than the active arm, and hence a larger estimated
treatment effect. The increase in standard error, resulting from the increased variability of the
final FEV1’s, warns that this sensitivity analysis cannot be interpreted to say that the MAR
analysis underestimates the significance of the treatment effect. ¤

6.5.1 Further points

This approach can be readily generalised to discrete data. In that case, though, we have to
work with the mean of the underlying distribution (Binomial, Poisson etc.) rather than working
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directly with the imputed data (both have the same effect for the normal distribution).

An alternative way to obtain prior information on the post-withdrawal distribution would be to
present experts with a graph of the MAR predictions for a ‘typical’ patient in each treatment arm
and ask them to sketch how they expect those who do not withdraw to differ. The information
could then be summarised, either to estimate the parameters of (6.5) or non-parametrically. The
latter option would require a modification to the SAS macro, or implementation in winBUGS,
along the lines described by White et al. (2007).

6.6 Pattern-mixture models and intention to treat analyses

The above shows the pattern mixture approach to modelling in the presence of missing data is
an intuitive framework when we wish to consider associations between withdrawal and subjects’
post-withdrawal behaviour. This arises naturally when we consider the implication for analysis
of a subject both withdrawing and discontinuing, or otherwise changing in an unplanned way,
his or her treatment regime. It is implicit when using an MAR based analysis, as we have done in
Chapters 3–5, that the same model for future behaviour — given the past — applies to subjects’
outcomes whether they withdraw or not. This assumption is probably behind much of the
unease that has been expressed towards such MAR modelling in the past. If withdrawal is likely
to be associated with a change in treatment regime then the MAR analysis does not provide an
estimate of the desired treatment comparison. As argued in §1.8.2, the MAR assumption is
compatible with a per protocol analysis.

Further, treatment change at withdrawal, in particular discontinuation, is an MNAR process:
a different model is needed for those who withdraw and those who do not. Thus, to provide
an intention to treat (ITT) analysis it is necessary to specify how we assign treatment to with-
drawals and how we believe that future behaviour under the new regime should be modelled.
In any particular setting we may or may not actually have information on treatment adherence
following withdrawal. In this way an ITT analysis can be viewed in the missing data setting as
a particular MNAR analysis constructed under specific assumptions and, further, can therefore
be considered as part of a sensitivity analysis.

As Little and Yau (1996) show, under moderately simple assumptions about the behaviour of
withdrawals, it is straightforward to construct such ITT analyses using multiple imputation.
Two key features are exploited.

1. For multiple imputation the imputation model need not be completely compatible with
the model used for the analysis (the substantive model). The word “uncongenial” is used
in this setting to describe such a difference. Here the substantive model uses the ITT rule
that allocates subjects to their randomised groups irrespective of subsequent compliance,
but the imputation model incorporates compliance (known or postulated).

2. If we make simple but reasonable assumptions about the consequence of treatment change
on future behaviour, then the MNAR pattern-mixture imputation model can be con-
structed from components that can be estimated from an MAR model, so greatly sim-
plifying the modelling process.

We illustrate these points with a simple example. Suppose we wish to estimate the ITT treatment
effect at the final time point in a two-armed trial of an active drug versus placebo, under the
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assumption that withdrawals discontinue treatment and the future behaviour of their outcomes
(conditional on the past) is the same as those in the placebo group (with the same past). The
appropriate pattern-mixture model for this setup can be constructed in an obvious way, by using
the estimated model from the placebo group to represent future behaviour of withdrawals from
the active group. This model is identical to the MAR model for all observed data and so can
be consistently estimated from the observed data. The models differ only with respect to their
implications for the unobserved behaviour of the withdrawals from the active group. Hence
imputations for the future outcomes differ between the two models, and this in turn affects the
estimated final treatment comparison. Using the same basic idea a variety of alternative pattern-
mixture models can be constructed to examine in a very simple way the impact of different
behaviours of the withdrawals on the results from ITT analyses. For further details see Little
and Yau (1996); Kenward et al. (2003).

6.7 Conclusions

In this Chapter we have outlined methods for sensitivity analysis via (i) selection models and (ii)
pattern mixture models. To an extent, the attraction of each approach depends on the problem
at hand. However, as we have shown, the pattern-mixture approach lends itself to approximate
inference either analytically (for a single post-randomisation measurement) or using MI (for
longitudinal follow-up). As usual with multiple imputation, we can fit any model of interest to
the imputed data — e.g. a mixed model to estimate a trend over time or a model that combines
aspects from different treatment groups for an ITT analysis.

In conclusion, we would stress the advantages of pre-planning the sensitivity analysis. Besides
allowing the time for appropriate code to be developed, pre-defining the scope of the sensitivity
analysis makes it much easier to interpret the results. The aim should always be to assess the
sensitivity of the conclusions to plausible departures from MAR, rather than to assert that a
particular MNAR analysis is correct.



Appendix A

Justification for the approach in Chapter 3

Here, we give a slightly more detailed justification of the modelling approach in Chapter 3. To
avoid unnecessary algebra, we do this initially in a very simple situation, namely data from one
arm of a trial. We first consider the case of missing responses (§A.1), and then missing baseline
and responses (§A.3). Lastly, in §A.4, we show in generality why the approach in §3.4.3 can be
used to obtain estimates conditional on baseline when some baseline values are missing. This
is sufficient to justify all the analyses in Chapter 3.

A.1 Key ideas: data from a single trial arm, missing responses

Consider data from a single trial arm, and let (xi,yi) be the baseline and response from patient
i, (i = 1, . . . ,n). For now we suppose that baseline, xi, is always observed and that the response,
yi, is only observed on n1 out of the n patients. When the response is missing we refer to it as
Yi. We introduce a further variable, ri, which is 1 if yi is observed, and 0 otherwise. We think
of ri as indicating whether yi is missing, and refer to it as the missingness indicator. The model
for Pr(ri = 1) is the algebraic version of the missingness mechanism introduced in Chapter
1. Finally, we suppose the data have been ordered, so that the n1 patients whose response is
observed are grouped together at the top.

EXAMPLE A.1 Isolde trial

Table A.1 illustrates the notation with n = 4 patients from the placebo arm of the Isolde trial
(described at the beginning of Chapter 2). ¤

Patient identifier baseline FEV1, 6 month FEV1, Missingness
xi, (litres) yi, (litres) indicator, ri

1 0.98 1.30 1
3 1.77 1.31 1
2 1.66 missing 0
4 2.11 missing 0

Table A.1: Isolde trial: data from 4 placebo patients. Here n = 4, n1 = 2 and note we have
rearranged the order of patients so the n1 with fully observed data appear first

We have already seen that the choice of sensible analyses when data are missing depends on
assumptions about the missingness mechanism, Pr(ri = 1). In this Subsection, we have baseline
and a single response only. Thus, we have one of three possibilities:

139
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1. The response is MCAR. So, the probability of observing the response, Pr(ri = 1), is
number between 0 and 1 and does not depend on yi or xi.

2. The response is MAR. So Pr(Ri = 1) depends on xi.

3. The response is MNAR. Even after allowing for baseline, xi, Pr(Ri = 1) depends on yi
too.

Since the model for Pr(Ri = 1) has such a key role, it follows that we should no longer think
of a patient’s data as just (xi,yi), (i ∈ 1, . . . ,n), but include the missingness indicator too. The
statistical model for the data is then a model for their joint distribution. Leaving out for a
moment the index i, we write this as [x,y,r], or [x,Y,r] if the response is missing. In order to
consider the implications for the analysis of the missingness mechanisms above, it is useful to
write

[x,y,r] = [r|x,y][x,y], (A.1)

in other words, the joint distribution of baseline, response and missingness indicator is the
conditional distribution of missingness indicator given baseline and response, multiplied by the
joint distribution of baseline and response.

We focus on estimating (i) the (marginal) distribution of the response, [y], particularly its mean
and variance, and (ii) the conditional distribution of response given baseline, [y|x]. We do this
when some responses are MCAR, MAR and MNAR.

Response MCAR

For a patient with observed response, following (A.1) their density is [ri = 1|yi,xi][yi,xi]. Under
MCAR, [ri = 1|yi,xi], the probability of observing the response, is constant, say η . So their
density is η [yi,xi].

If response is missing, we have to integrate (or sum) (A.1) over the range of unseen response
values: ∫

[ri = 0|Yi,xi][Yi,xi]dYi.

Now, [ri = 0|Yi,xi] is the probability of not observing the response, which under MCAR is
constant, and (1−η). So the density of the data is

∫
(1−η)[Yi,xi]dYi = (1−η)[xi].

The log-likelihood for the data is simply the sum of the log-distributions for each patient
(viewed as a function of the model parameters):

` =
n1

∑
i=1

log(η [yi,xi])+
n

∑
i=n1+1

log((1−η)[xi]).

However notice that the joint distribution [yi,xi] can be written as [yi|xi][xi]. This gives

` =

{
n1

∑
i=1

log[yi|xi]

}
+

{
n

∑
i=1

log[xi]

}
+{n1 logη +(n−n1) log(1−η)} . (A.2)

The third term in curly brackets is the log-likelihood for the missingness model. None of the
parameters of the distribution of baseline and response appear here, so when the log-likelihood
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is differentiated to find maximum likelihood estimates of these parameters, this term vanishes.
For inferences about response and baseline, we can therefore ignore it.

Now consider the first two terms of (A.2). The first tells us that the information about the
distribution of response given baseline resides in data from the n1 patients from whom both
were observed. The second term tells us that if we are interested in the response distribution,
marginal to baseline, we should average our estimated parameters of [y|x] over [x] with the latter
estimated using baseline data from all n patients.

EXAMPLE A.2 Isolde trial

Consider baseline and 6 month data from the placebo arm of the Isolde study, available from
374 and 288 patients respectively1. Although the data have a slight negative skewness, we use
a bivariate normal model. Assume the missingness mechanism is MCAR.

Following the above, we can use the data from the 288 patients to estimate the effect on 6 month
FEV1 of having a higher baseline FEV1. Fitting the linear regression gives:

6 month FEV1 given baseline FEV1 = [Y |x]
= 0.024+0.947×baseline FEV1 + ε, ε ∼ N(0,0.028).

(A.3)

To obtain the average 6 month FEV1 marginal to baseline FEV1, we average (A.3) over all 374
baseline values. Letting x̄ = (x1 + x+2+ · · ·+ xn)/n = 1.407 we have

average 6 month FEV1 = E X E [Y |x] = 0.024+0.947x̄ = 0.024+0.947×1.407 = 1.356.
(A.4)

Further, the marginal variance of Y is (using the conditional variance formula)

Var [Y ] = EX Var [Y |x]+ VarX E [Y |x]
= EX σ2

y|x + VarX [α +βx] (σ2
y|x is the residual variance of

= σ2
y|x +β 2σ2

x . the regression of Y on x) (A.5)

Now, β and σ2
y|x are estimated from the 288 patients with baseline and 6 month response. From

(A.3) they are 0.947, 0.028 repectively. However, σ2
x is estimated from 374 baseline values as

0.243. Putting in estimates from the data we see

Var [Y ] = 0.028+0.9472×0.243 = 0.246.

The standard error of the mean of Y is thus
√

0.246/377 = 0.026.

In practice, performing the conditional calculations above would be cumbersome in a more
realistic model. Fortunately, it is not necessary. Any program for fitting repeated measures data
will maximise (A.2). We ask for an estimate of the mean and variance at each time point, using
all available data. Using SAS PROC MIXED gives the following estimates (standard errors of
means in parentheses):

(
baseline FEV1

6 month FEV1

)
∼ N

{(
1.407(0.025)
1.356(0.026)

)
,

(
0.243 0.230
0.230 0.246

)}

11 patient is missing both baseline and 6 month FEV1, though they later return to the trial.
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Note the agreement with the results above. The off diagonal term in the matrix is the covariance
of baseline and response, σxy. ¤
Does the above argument depend P(Ri = 1) being the same for each patient, or can it vary? The
answer is, provided that it does not depend on (xi,yi) it can be different for each patient. To see
this, look at (A.2) and note that if η becomes ηi, these values still do not affect the likelihood
for the parameters of the distribution of (xi,yi). In other words, one patient may be MCAR
with probability 100%, another with probability 0%, another with probability 37%, and so on.
Provided they are all MCAR, the above analysis is sensible.

How does the above relate to the ‘obvious’ MCAR analysis, where, if we want to estimate
the marginal mean of Y we only use the n1 observed values? Then, the log-likelihood (A.2)
becomes

` =

{
n1

∑
i=1

log[yi|xi]

}
+

{
n1

∑
i=1

log[xi]

}
+{n1 logη} (A.6)

=

{
n1

∑
i=1

log[yi]

}
+

{
n1

∑
i=1

log[xi|yi]

}
+{n1 logη} . (A.7)

Note how, as there are only n1 observations here, we can re-write (A.6) to obtain (A.7). It
follows that to estimate the marginal distribution of Y we only need the n1 observed values of
y, and no longer the baseline observations x. To consider which is preferable, we re-visit the
example.

EXAMPLE 2.1 Isolde trial (ctd)

If we just use the 288 complete cases, we can calculate the marginal mean and variance of 6
month FEV1 directly from the observed yi. However, in order to see how this compares with the
previous analysis, we work through this again, but now with n = n1 = 288. The mean baseline
for the 288 patients whose 6 month reading is also seen is x̄288 = 1.411. So (A.4) becomes

average 6 month FEV1 = E X E [Y |x] = 0.024+0.947x̄288 = 0.024+0.947×1.411 = 1.360.
(A.8)

As the regression of y on x estimated from the 288 patinets on whom both are observed passes
through (x̄288, ȳ288), 1.360 = (y1 + y2 + · · ·+ y288)/288 exactly. Under MCAR, any difference
between x̄ and x̄288 is down to chance, so the difference between (A.4) and (A.8) is chance.

Now consider the variance of Y. Before, (A.5), this was

σ2
y|x +β 2σ2

x ,

with σ2
y|x,β estimated from the 288 patients with (y,x) observed and σ2

x estimated from the 374
patients with baseline. Now, though, we can only use data from the 288 patients to estimate σ2

x .
Doing this gives

Var [Y ] = 0.028+0.9472×0.237 = 0.241,

which is exactly the usual sampling standard error,
{
(y1−1.360)2 +(y2−1.360)2 + · · ·+(y288−1.360)2}/286.

Which is better? In this case the standard error is smaller using only the 288 patients with
complete data. However, the estimate of σ2

x from the complete data will likely be closer to the
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true value, as it uses 86 more observations. This is reflected in the degrees of freedom of the
t-distribution for estimating confidence intervals: 287 (observed data only) versus 373 (include
information from 88 patients with only basline values). The resulting confidence intervals are:

use only 288 observed values of y: (1.304,1.417),
in addition use 374 baseline values: (1.305,1.407).

Using the extra information gives a narrower confidence interval. We conclude that, even if we
really believe data are MCAR, it is more sensible to use all observed data in an analysis than
data from patients who have no missing values (complete cases). ¤
Response MAR

Here, the density [ri|xi,yi] = [ri|xi], that is to say the probability of observing the 6 month re-
sponse depends on baseline. So, if ri = 1, the distribution of the patient’s data is [ri = 1|xi][yi,xi].
If ri = 0, the distribution of a patient’s data is

∫
[ri = 0|xi][Yi,xi] dYi = [ri = 0][xi].

Following (A.2), the log likelihood of the data is

` =

{
n1

∑
i=1

log[yi|xi]

}
+

{
n

∑
i=1

log[xi]

}
+

{
n1

∑
i=1

log[ri = 1|xi]+
n

∑
i=n1+1

log[ri = 0|xi]

}
. (A.9)

Comparing with (A.2) we see the only difference is that the likelihood for the probability of
missing data is no longer a constant (e.g. η), but now depends on xi. However, provided the
parameters of the model for [yi,xi] are not shared by the model for the missingness mechanism,
the terms involving ri do not affect the maximum likelihood estimates of parameters of [yi,xi].

EXAMPLE 2.1 Isolde data: MAR model (ctd)

As before, we take a bivariate normal model for [yi,xi], with parameters (µy,σ2
y ,σyx,σ2

x ,µx).
Suppose the model for observing yi is logistic:

logitPr(ri = 1) = γ0 + γ1xi.

The parameters of this model, (γ0,γ1), are clearly different from the parameters of the model
for [yi,xi]. So we can ignore the missingness model when estimating (µy,σ2

y ,σyx,σ2
x ,µx).

However, suppose for some uncommon reason the model for observing yi was

logitPr(ri = 1) = µy + γ1xi. (A.10)

Now there is a shared parameter, µy, between the missingness model and the model for (yi,xi).
This means we cannot ignore the missingness model when estimating (µy,σ2

y ,σyx,σ2
x ,µx). For-

tunately, shared parameter models like (A.10) are not usually sensible for trials, let alone nec-
essary. We do not consider them further. ¤
The above shows that the likelihood of the data with the missingness mechanism is MAR is
effectively the same as when it is MCAR. Thus, when estimating the distribution of [yi|xi],
we again use data from the n1 patients with both observed. When estimating the marginal
distribution [yi] we use all the data, as shown in the example on p. 141.
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Figure A.1: Isolde trial, placebo arm: plot of 3 year FEV1 against baseline FEV1. 234 patients
with missing 3 year FEV1 have their baseline value shown by a ‘|’

Notice that, unlike the situation when data is MCAR, it is no longer sensible just to use data
from n1 patients with both baseline and response to estimate the distribution of [y]. Whereas
with MCAR data, doing this just lost some information, with MAR data it introduces bias.

As with MCAR, it is not necessary that the missingness mechanism should be the same for all
patients. For example, for different patients the chance of dropout can depend in different ways,
and in different degrees, on baseline. All that is required is that, once we have used the baseline
information, there is no further information about the missingness mechanism in the unseen
response. Thus, some patients may be MCAR, and some MAR, but using the likelihood of all
the observed data is still sensible.

EXAMPLE A.2 Isolde trial (ctd)

Figure A.1 shows 3 year FEV1 against baseline FEV1. Only 141 out of 374 patients have both
measurements. Further, the ‘rug’ of the 234 baseline values for which there are no 3 year values
suggest that patients with lower baseline FEV1 are much more likely to withdraw. We therefore
assume data are MAR, dependent on baseline.

The estimate of the mean and variance of 3 year FEV1, obtained from the n1 = 141 patients
whose values are observed, are (1.30,0.239) respectively. Regressing the 141 3-year values on
baseline values gives

3 year FEV1 given baseline FEV1 = [Y |x]
=−0.06+0.927×baseline FEV1 + ε, ε ∼ N(0,0.037).

(A.11)
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As we saw before, taking expectations over (A.11) using only data from the n1 = 141 gives the
marginal mean and variance for y obtained from the 141 observed 3-year responses. However,
whereas before, when MCAR was plausible, x̄n1 ≈ x̄ and σ̂2

x,n1
∼ σ̂2, this is no longer the case

under MAR (Table A.2).

Parameter Estimate obtained using data from
141 patients with yi observed all 374 placebo patients

µx 1.47 1.41
σ2

x 0.235 0.243

Table A.2: Estimates of mean and variance of baseline obtained with and without including
patients with 3-year response

Such results are to be expected when data are MAR, because the patients from whom yi is
observed are selected non-randomly. However, likelihood (A.9) shows that, as under MCAR,
using a conditional expectation and variance approach on (A.11) to estimate the marginal mean
and variance of y gives the same answer as fitting a a bivariate normal model. SAS proc MIXED
gives:

(
baseline FEV1

3 year FEV1

)
∼ N

{(
1.41(0.025)
1.24(0.029)

)
,

(
0.243 0.225
0.225 0.247

)}

For estimating marginal means and variances (i.e. mean and variance of the response) we have
seen that fitting the bivariate normal model is preferable if data are MCAR, and essential if data
are MAR. We have also noted it has the further advantage that different patients can have dif-
ferent missingness mechanisms, so long as none of them are MNAR. We conclude the bivariate
normal model is the best way to estimate marginal means and variances. ¤
Before moving on, we consider the effect of missing data on the difference between using the
observed and expected information to estimate the variance of parameter estimates. If we denote
all the parameters of the model for [y,x] by θ , the observed information can be written

− ∂ 2

∂θ 2 `(θ),

whereas the expected information is

−EX ,Y,R
∂ 2

∂θ 2 `(θ).

As the full data are [y,x,r], the expectation must be taken over this distribution. Write this as

EX ,Y,R
∂ 2

∂θ 2 `(θ) =
{

EX ,Y |R=1
∂ 2

∂θ 2 `(θ)
}

Pr(R = 1)+
{

EX ,Y |R=0
∂ 2

∂θ 2 `(θ)
}

Pr(R = 0),

and note that, under MAR, the distributions [Y,X |R = 1] and [Y,X |r = 0] are different. It follows
that, to calculate the expected information, we must explicitly specify a model for [R]. This
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becomes yet more difficult if we wish to maintain the option of allowing different patients to
have different missingness mechanisms.

Thus, with missing data, the observed information should always be used. It is worth checking
that your statistical package uses this, to avoid the possibility of misleading variance estimates.
This point was noted by Jennrich and Schluchter (1986) and developed by Kenward and Molen-
berghs (1998).

Response MNAR

We very briefly discuss the MNAR case, which we focus on in Chapter 6. If yi is MNAR,
then we cannot simplify [ri|yi,xi] further. So, if ri = 1, the distribution of the patient’s data is
[ri = 1|yi,xi][yi,xi]. If ri = 0, the distribution of a patient’s data is

∫
[ri = 0|Yi,xi][Yi,xi] dYi 6= [ri = 0|xi] as before. (A.12)

The missingness mechanism is now inseperable from [y,x], so we cannot express the likelhood
as (A.9). Thus, in order to obtain maximum likelihood estimates of the parameters of [y,x] we
must also specify a model for [r|y,x], and, for those with r = 0, obtain their contribution to the
likelihood by calculating the integral on the left of (A.12).

However, even if one suspects that some patients are MNAR, the degree of remaining depen-
dence of r|x on y may be small, so that an MAR analysis will not be too misleading. Thus, an
MAR analysis is usually a good starting point.

A.2 Summary of findings

We have considered a single follow-up visit, which may be missing, and baseline. We found
the following analyses were most sensible, if some responses are MCAR and some MAR:

1. To estimate the marginal mean and variance of the response, use a joint model, using all
available data. The marginal means of the partially observed response are ‘corrected’
through their correlation with the fully observed baseline, and

2. To estimate the distribution of the response conditional on fully observed baseline, use
only the data from patients with both observed.

Of course, the parameters of the conditional distribution in (2) can be estimated from the pa-
rameter estimates in (1), but this gives the same answer as fitting (2), which is usually simpler.

A.3 Missing baselines and responses

Here we suppose that some baseline observations are missing, and some 6 month responses are
missing. We suppose that, where it is missing, baseline is MCAR given response. Likewise,
where it is missing, response is MCAR given baseline. Then, as above, the likelihood for the
missingness mechanism does not affect the likelihood of [y,x]. Suppose we re-order the data
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so that patients i = 1, . . . ,n0 have only [yi], patients i = (n0 + 1, . . .n1) have both and patients
i = (n1 +1, . . . ,n) have only [xi]. Omitting the likelihood of the missingness mechanism, we can
adapt (A.2) to see the log likelihood is

` =

{
n0

∑
i=1

log[yi]

}
+

{
n1

∑
i=n0+1

log[yi|xi]

}
+

{
n

∑
i=n0

log[xi]

}

+

{
n1

∑
i=1

log[ri = 1|xi]+
n

∑
i=n1+1

log[ri = 0|xi]

}
. (A.13)

Here, though, we cannot use only data from the (n1− n0) patients with both observations to
estimate the distribution of [y|x]. This is because the parameters of [y] are shared with those
of [y|x]. Assuming the y’s are not missing randomly, ignoring this extra information leads to
bias in the estimates of parameters of [y|x]. Rather, in general, we must proceed by maximising
(A.13). We may need to use the parameterisation dictated by the software, and then calculate
the parameters of interest from this. Often, though, we shall see that this can be avoided.

EXAMPLE A.2 Isolde study: missing baseline and 6 month data (ctd)

Recall that of the 374 patients in the placebo arm, 86 have missing 6 month data. We now make
some of the baseline values missing for the remaining 288, and then illustrate the use of the
methods above to estimate the regression of y on x.

First, for these 288 patients we say the probability of observing baseline is

Pr(observe baseline from patient i) = pi =
1

1+ e0.4×(6 month FEV1) . (A.14)

The effect of this is shown in Figure A.2. Then, for each patient, we generate a uniform variable
on [0,1] and set the baseline response to be missing if ui > pi. We already had 86 patients with
baseline only, of the 288 with both we now have 194 with both baseline and response, and 94
with response only.

Maximising the log-likelihood (A.13) using SAS PROC MIXED estimates the parameters as:

(
baseline FEV1

3 year FEV1

)
∼ N

{(
1.41
1.35

)
,

(
0.243 0.230
0.230 0.246

)}
. (A.15)

From the properties of the conditional normal distribution it follows that all the parameters of
the regression model

yi = α +βxi + εi, εi ∼ N(0,σ2
y|x),

can be estimated from (A.15). For instance, using the notation of previous examples,

β̂ = σ̂xy/σ̂2
xx = 0.230/0.243 = 0.947.

To obtain the standard error, we use a 1-term Taylor expansion (the ‘δ -method’):

Var
σ̂xy

σ̂2
x

= Var f (σ̂xy, σ̂2
x )≈

(
∂

∂σxy
f , ∂

∂σ2
x

f
)

Var(σ̂xy, σ̂2
x )

( ∂
∂σxy

f
∂

∂σ2
x

f

)
. (A.16)



148 Justification for the approach in Chapter 3

Probability of observing baseline

F
re

qu
en

cy

0.5 0.7 0.9

0
10

30
50

0.5 1.5 2.5
0.

55
0.

65
0.

75

Baseline FEV1 (litres)

P
ro

ba
bi

lit
y 

of
 o

bs
er

vi
ng

 b
as

el
in

e

Figure A.2: Left panel: histogram of probabilities generated by (A.14). The right panel how
these probabilities increase with 6-month FEV1

Let Var σ̂xy = ν1, Var σ̂2
x = ν2 and Cov (σ̂2

x , σ̂xy) = ν12. From SAS PROC MIXED, ν̂1 =
0.000311, ν̂2 = 0.000335 and ν̂12 = 0.000306. Evaluating the derivatives and multiplying up,
(A.16) gives

Var
σ̂xy

σ̂2
x

=
1

(σ̂2
x )2

(
ν̂1−2β̂ ν̂12− β̂ 2ν̂2

)
(A.17)

=
1

0.2432

(
0.000311−2×0.947×0.000306+0.9472×0.000335

)

= 0.0232.

Note that, as the distribution of β̂ is nearly normal, the likelihood is close to quadratic. Thus
the δ -method approximation is accurate.

Table A.3 compares estimates of β̂ (i) before the extra 94 baseline values were made missing,
(ii) after they have been made missing, but just using data from the 194 patients with both
baseline and response, and (iii) after they have been made missing, deriving β̂ from the model
for the joint data as above. Relative to (i) we see that (ii) is biased, as expected. Analysis
(iii) removes this bias. The standard error is much wider for analysis (ii) reflecting the lost
information. It is fractionally less (beyond shown precision) with analysis (iii), reflecting the
extra observations used in this analysis.

We conclude patients with missing baseline but observed follow-up measurement should be
included in the analysis, for estimating both [y] and [y|x]. ¤



A.4 Justification of using model in 3.4.3 to obtain conditional treatment estimates 149

Data β̂ (std. error)

Original data, before extra 94 baselines made missing 0.947 (0.020)
Only using 194 with both baseline and 6-month observed 0.958 (0.024)
Using all observations, as described in the text 0.947 (0.024)

Table A.3: Estimates of β using various subsets of data

A.4 Justification of using model in 3.4.3 to obtain conditional treatment estimates

We now develop the argument of the previous Section more formally to show the equivalance
of REML (GLS) and analysis of covariance in a repeated measurements setting with baseline
observation. Note first that it is sufficent to show the equivalence in the case of no missing
data. With missing data assumed MAR, each patient simply contributes through the marginal
distribution of their observations.

First a relationship between generalized least squares and covariate adjustment is shown in a
generic multivariate normal setting. It is then shown how this applies to the repeated measure-
ment setting with a baseline observation.

I. Generic result

Suppose that we have one observation Y from a T dimensional multivariate normal distribution
with covariance matrix ΣΣΣ. Further, suppose that we can partition Y such that

E{Y}= E
{(

Y1

Y2

)}
=

(
0
µµµ

)

for Y1 and Y2 with dimensions p and q respectively, p+q = T , and µµµ unconstrained. Then the
generalized least squares estimator of µµµ for ΣΣΣ known is

µ̃µµ = Y2−ΣΣΣ21ΣΣΣ−1
11 Y1 (A.18)

for

ΣΣΣ =
(

ΣΣΣ11 ΣΣΣ12

ΣΣΣ21 ΣΣΣ22

)
.

That is, µ̃µµ is the covariate adjusted estimator of µµµ with Y1 as covariate.

Now suppose that ΣΣΣ must be estimated. Assume that there are an additional m independent
observations, whose mean can be assumed 0 without loss of generality,

Zi =
(

Z1i

Z2i

)
∼ N(0,ΣΣΣ), i = 1, . . .m,

where the partition conforms to that for Y. Define

A =
(

A11 A12

A21 A22

)
=

m

∑
i=1

ZiZT
i .
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Applying standard REML theory to the complete dataset, Y and {Zi}, i = 1, . . .m, we find that
the REML estimator of ΣΣΣ11 is

Σ̂ΣΣ11 =
1

m+1
(
A11 +Y1YT

1
)
.

Similary, the REML estimator of ΣΣΣ21 is

Σ̂ΣΣ21 = A21Σ̂ΣΣ11A−1
11 ,

which implies that the REML estimator of the regression coefficient in (A.18) can be written

Σ̂ΣΣ21Σ̂ΣΣ−1
11 = A21Σ̂ΣΣ11A−1

11 Σ̂ΣΣ−1
11 .

In the special case that Y1 has dimension p = 1 this reduces to

Σ̂ΣΣ21Σ̂ΣΣ−1
11 = A21A−1

11

which is equivalent to the estimator that we would obtain from an analysis of covariance of Y2
and {Z2i} on Y1 and {Z1i}, i = 1, . . . ,m. In conclusion, in the generic setting given here, the
REML (GLS) estimator of µµµ is identical to the covariate adjusted estimator, provided that Y1
has dimension 1.

II. Application to the repeated measurements setting

Suppose that the ith subject in a two group trial supplies a baseline measurement Yi0 and T
repeated measurements Y1i, . . . ,Y1T . There are n1 and n2 subjects respectively in the two arms.
Assume that the subjects are ordered according to treatment group, so that we can define for
t = 0,1, . . . ,T , for treatment group 1:

S1t =
1
n1

n1

∑
i=1

Yit

and for treatment group 2:

S2t =
1
n2

n

∑
i=1+n1

Yit .

From these we define

Dt =
(

1
n1

+
1
n2

)−1/2

(S1t −S2t), t = 0,1, . . . ,T,

the scaled mean treatment differences, for which

E[D0,D1, . . . ,DT ] = (0,δ1, . . . ,δT ),

where the δt are assumed to be unconstrained. Similarly we define

Mt =
(

1
n1 +n2

)−1/2

(n1S1 +n2S2), t = 0, . . . ,T

for which
E[M0,M1, . . . ,MT ] = (ψ0,ψ1, . . . ,ψT ),
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with the ψt assumed to be unconstrained.

Let X be the n×2 design matrix for (Dt ,Mt) that applies to any time point for t > 0 and choose
any n× (n−2) matrix H that satisfies

HT X = 0 and HT H = I.

Define

Vt = HT




Y1t

Y2t
...

Ynt


 , t = 0,1, . . . ,T.

The sets of derived variables {Dt ,St ,Vt} are mutually independent within time points and have
a common (unstructured) covariance matrix across times. The transformation from the original
data to these is of full rank, and the treatment effects of interest are proportional to the δt’s.

As a final step we just need to map these quantities onto those in the part I. First, because the
means of the Mt are saturated, and because of the mutual independence, these contribute nothing
to the estimation of the other parameters and so can be ignored. Second, we identify the Dt’s
above with the Yt’s in part I. Third, the ith element of Vt (i ∈ 1, . . . ,n−2) is identified with the
tth element of Zi in I (where m = n−2). Fourth, and finally, the scaled treatment effects δt are
equated with the elements of µµµ in part I. We can now apply the result from part I to show that the
baseline adjusted treatment difference for any time t > 0 will be identical to that obtained from a
REML analysis applied to the whole data set treating all the observations including the baseline
as responses, provided we ensure the same mean (across treatment groups) for baseline.

A.5 Summary

1. When baseline and responses are missing, and assumed MAR, we need to fit a bivariate
normal response model.

2. Patients from whom we only observe the response contribute the marginal normal like-
lihood for the responses.

3. Patients from whom we only observe baseline contribute the marginal normal likelihood
for the baselines.

4. Means and variances are estimated by default; other parameters can be estimated from
these (see the example on p. 147) and standard errors estimated using the delta method
(e.g. (A.16). Alternatively, as described in Chapter 3, the model can often be parame-
terised so the estimates of interest are obtained directly.





Appendix B

Prior eliciting questionnaire (Subsection 6.4.3)

Questionnaire on differences between responders
and non-responders in reviewer trial

James Carpenter & Stephen Evans, 14th Jan 2003

The trial
Compares the effect of reviewer training by face-to-face workshop or postal tuition pack with control
(i.e. no intervention). Participating reviewers were sent three papers (one baseline and two post
randomisation) each of which contained a number of errors. Principal outcomes are quality or review
(a score summed over 7 items) and number of major errors identified. Here we focus on the quality
of review.

Missing outcome data
In any trial, missing outcome data are likely. If non-responders differ systematically from responders
then we may get biased estimates of the benefit of the intervention.

Many statisticians now advocate performing sensitivity analysis to allow for systematic differences
between responders and non-responders.

We wish to use a Bayesian method that requires researchers to guess the magnitude of this systematic
difference, even though it cannot be estimated from data. We will use this information both in the
main analysis of the trial and in methodological work for a more statistical audience.

What we want to do
We wish to ask all the investigators to think about plausible values of the mean difference between
responders and non-responders. We would like to stress that we are asking about the average differ-
ences that you would expect to observe over many thousands of responders and non-responders, not
the random differences that you might expect to observe between individual responses. Naturally you
are not sure what the differences between responders and non-responders are (if any). Nonetheless
you may feel that some differences are more plausible than others. We therefore ask you to enter your
weight of belief for each of the possible differences shown in the table overleaf. On a scale of 0 (im-
possible) to 100 (certainty), the more strongly you believe the plausibility of a particular difference,
the greater should be your weight for that difference. Your weights should sum to 100.

If anything is not clear, or you have any comments then please contact James on (+44) (0)20 7927
2033 or by email on james.carpenter@lshtm.ac.uk

Please turn over

Questionnaire, page 1
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Job title:................................................................................

Question 1: Have you seen the data? Circle your answer: YES / NO

Question 2: Suppose the mean review quality for reviewers who respond to the second and third
(i.e. final) paper is 3, with standard deviation 0.5, so that about 95% of these responders have values
between 2 and 4. [These numbers are completely invented.]

What is your expectation for the mean review quality for those who do not respond to the either the
second or the third paper?

To help you, the hypothetical example shows a rather idiosyncratic statistician who is convinced that
non-responders will differ on average from responders by 1/2 or 3/4 points, but is not sure whether
they will be better or worse than responders.

Mean review quality of reviewers who do not respond to either the 2nd
or the 3rd paper (minimum 0, maximum 5)

Non-responders
worse than same as better than

responders by responders responders by TOTAL
1 or more 0.75 0.5 0.25 0.25 0.5 0.75 1 or more

Hypothetical
example 0 25 25 0 0 0 25 25 0 100

Your
answers

PLEASE CHECK YOUR WEIGHTS SUM TO 100

THANK YOU FOR YOUR HELP

Questionnaire, page 2
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Code for examples

The code for each of the examples in Chapters 3–6 is given below. With the exception of two
examples, all the code is SAS.

C.1 Code for Chapter 3

Example 3.1

* Input placebo arm data only

data first;

infile "...";

input id time fev;

run;

proc mixed data=first;

class id time;

model fev = time/ ddfm=kr htype=2 noint;

repeated time/subject=id type=un ;

lsmeans time;

run;

Example 3.2

* Adjusted for baseline

data second;

infile "...";

input fev fevbl treat;

run;

proc reg data=second;

model fev=treat;

run;

proc reg data=second;

model fev=treat fevbl;

run;
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Example 3.3

* Adjusted for (=conditional on) baseline

data thirda;

infile "...";

input fev fevbl treat;

run;

prog reg data=thirda;

model fev=fevbl treat;

run;

* Data MCAR given baseline and treatment.

* Note time indexes baseline and response

data third;

infile "...";

input id time fev treat ;

run;

*Treatment estimate marginal to baseline

proc mixed data=third;

class time treat subject;

model fev = time*treat/s ddfm=kr htype=2;

repeated time/subject=id type=un;

run;

Example 3.4

data four;

infile "...";

input id treat time fev ;

if time=1 then mytreat=0;

else mytreat=treat;

run;

proc mixed data=four;

class id time mytreat;

model fev = mytreat/ s htype=2 noint ddfm=kr;

repeated time/subject=id type=un ;

lsmeans mytreat / diff;

run;
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Example 3.6

data five;

infile "...";

input id treat rinidc fev newtreat;

run;

proc mixed data=five;

class id time newtreat;

model fev = newtreat/ s htype=2 noint ddfm=kr;

repeated rinidc/subject=id type=un ;

lsmeans newtreat / diff;

run;

Example 3.7

This uses the same code as Example 3.6, but with a different data arrangement, shown in Ta-
ble 3.12.

Example 3.8

data six;

infile "...";

input id sex age baseline treat newtreat resp ;

run;

*Model with all exacerbations as separate responses

proc mixed data=six maxit=50 ;

class id sex treat newtreat;

model resp = newtreat treat age sex baseline

newtreat*treat newtreat*age

newtreat*sex newtreat*baseline /s Htype=2 Ddfm=Kr;

repeated newtreat/Subject=Id Type=Un ;

run;
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C.2 Code for Chapter 4

Example 4.1

*i) Maximum likelihood

* time indexes baseline and 6 month fev

data first;

infile "...";

input id time fev;

run;

proc mixed data=first;

class id time;

model fev = time/ ddfm=kr htype=2 noint;

repeated time/subject=id type=un ;

lsmeans time;

run;

*ii) SAS proc MI

data second;

infile "...";

input id base fev;

run;

proc mi data=second seed=1 out=full;

var pfev fev;

mcmc impute=full;

run;

proc print data=full;

run;

proc means data=full;

output out=full2 mean(fev)=m1 stderr(fev)=s1;

by _Imputation_;

run;

proc mianalyze data=full2;

stderr s1;

modeleffect m1;

run;
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Example 4.4

data third;

infile "..";

input id treat bmi base fev;

* Make treatment 1/0 for simplicity

treat=treat-1;

run;

proc sort data=third out=thirdsort;

by treat;

run;

proc reg data=thirdsort;

model fev = base treat;

run;

proc mi data=thirdsort seed=1 out=full nimpute=200;

by treat;

MCMC nbiter=5000 niter=5000;

var bmi base fev;

mcmc impute=full;

run;

proc sort data=full;

by _imputation_ id;

run;

proc reg data=full outest=outreg covout noprint ;

model fev= base treat;

by _Imputation_;

run;

proc mianalyze data=outreg;

modeleffects Intercept base treat;

run;

*Proc mixed alternative:

data fourth;

infile "...";

* order indexes response: BMI and 3 year FEV

input id treat baseline order resp ;

run;

proc mixed data=fourth asycov;

class id treat order;

model resp = order treat baseline baseline*order

treat*order/ s htype=2 ddfm=kr;

repeated order/subject=id type=un group=treat;

run;
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Example 4.5

data fifth;

infile "...";

input id treat bmi base mexas fev1-fev6;

* smexas is the square root of the mean exacerbation rate

smexas=sqrt(mexas);

run;

proc sort data=fifth out=fifthsort;

by treat;

run;

* Model using observe data only

proc reg data=fifthsort;

model fev6 = base treat;

run;

proc mi data =fifthsort seed=1 out=full nimpute=50;

by treat;

MCMC nbiter=5000 niter=5000;

var bmi smexas base fev1-fev6;

mcmc impute=full;

run;

proc sort data=full;

by _imputation_ id;

run;

proc reg data=full outest=outreg covout noprint ;

model fev6= base treat;

by _Imputation_;

run;

proc mianalyze data=outreg;

modeleffects Intercept base treat;

run;

* Maximum likelihood analysis

data fifthml;

infile "...";

* Note we need a different arrangement of the

* data from multiple imputation

input id treat base order resp ;

run;
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proc mixed data=fifthml maxit=50 ;

class id treat order;

model resp = order treat base order*treat order*base

/s Htype=2 Ddfm=Kr;

repeated order/subject=id type=un group=treat;

run;

C.3 Code for Chapter 5

Example 5.1

data first;

infile ’..’;

* The data set only contains observations from period three

input sub base period treat resp;

run;

* Fit generalised linear model

proc genmod data=first descending;

class sub;

model resp = base treat / d=bin;

run;

* Fit population averaged model by GEE, with exchangeable correlation

proc genmod data=first descending;

class sub;

model resp = base treat / d=bin;

repeated subject=sub / type=exch corrw;

run;

* Fit random intercepts model by maximum likelihood

* Note model was fitted three times, each time starting from

* the estimates from the previous fit. At the third time,

* estimation left the parameters little changed.

proc nlmixed data = example2;

parms interc=1.7 b=0.016 t=0.5443 lnsig=0.6535;

* linear predictor:

eta = interc + t*treat + b*base + u;

* model:

pi = probnorm(eta);

model resp ~ binomial(1,pi);

* distribution of random effects

s = exp(lnsig);

random u ~ normal([0],[s]) subject=sub;

run;
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Example 5.3

data second;

infile ’...’;

input sub base period treat resp;

* Create dummy variables for the three periods

if period=1 then pr1 = 1; else pr1=0;

if period=2 then pr2 = 1; else pr2=0;

if period=3 then pr3 = 1; else pr3=0;

output;

run;

* Random intercepts model

* note log parameterisation of variance

proc nlmixed data = second;

* parameter starting values; b is baseline, t is treatment and

* pt1 pt2 are period treatment interactions

parms interc=2.7 b=0.04 p1=-1 p2=-0.4 t=1.15 pt1=1.0 pt2=0.5

lnsig=1.8;

* linear predictor

eta = interc + t*treat + b*base + p1*pr1 + p2*pr2+ pt1*pr1*treat

+ pt2*pr2*treat + u;

* model

expeta = exp(eta); pi = expeta/(1+expeta);

model resp ~ binomial(1,pi);

* random intercepts

random u ~ normal(0,exp(lnsig)) subject=sub;

run;

* Random intercepts and slopes model

* Note parameterisation of correlation

proc nlmixed data = second;

* starting values

parms interc=3.3 b=0.03 p1=-1.12 p2=-0.75 t=1.25 pt1=1.56 pt2=0.39

lnsig0=2.90 lnsig1=0.90 lncorr=-2.21;

* linear predictor

eta = interc + t*treat + b*base + p1*pr1 + p2*pr2+ pt1*pr1*treat

+ pt2*pr2*treat + u0 + u1*period;

expeta = exp(eta); pi = expeta/(1+expeta);

model resp ~ binomial(1,pi);

* random intercepts and slopes

s0=exp(lnsig0);

s1=exp(lnsig1);

r01=( -1 + exp(lncorr) ) /( 1 + exp(lncorr) );

random u0 u1~ normal([0,0],[s0,sqrt(s0*s1)*r01,s1]) subject=sub;

run;
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Example 5.4

data third;

infile ’...’;

input sub bascov per trt resp;

* generate dummy variables for the periods

if per=1 then pr1 = 1; else pr1=0;

if per=2 then pr2 = 1; else pr2=0;

if per=3 then pr3 = 1; else pr3=0;

run;

* Multivariate subject effect

proc nlmixed data = third;

parms interc=2.65 b=0.026 p1=-0.972 p2=-0.39 t=1.15

pt1=1.035 pt2=0.546 lnsig0=2 lgcr12=1

lgcr13=1 lgcr23=1 lnsig1=2 lnsig2=2 ;

* linear predictor

eta = interc + t*trt + b*bascov + p1*pr1 + p2*pr2+ pt1*pr1*trt

+ pt2*pr2*trt + u1*pr1 + u2*pr2 + u3*pr3;

expeta = exp(eta); pi = expeta/(1+expeta);

model resp ~ binomial(1,pi);

* random structure

s0 = exp(lnsig0);

s1 = exp(lnsig1);

s2 = exp(lnsig2);

r12 = ( exp(lgcr12) )/(1+exp(lgcr12));

r13 = ( exp(lgcr13) )/(1+exp(lgcr13));

r23 = ( exp(lgcr23) )/(1+exp(lgcr23));

random u1 u2 u3 ~ normal([0,0,0],[s0,sqrt(s0*s1)*r12,s1,

sqrt(s0*s2)*r13,

sqrt(s1*s2)*r23,s2]) subject=sub;

run;

* For the second analysis, we replace the random statement by

* s0 = exp(lnsig0);

* r12 = ( exp(lgcr12) )/(1+exp(lgcr12));

* r13 = ( exp(lgcr13) )/(1+exp(lgcr13));

* r23 = ( exp(lgcr23) )/(1+exp(lgcr23));

*

* random u1 u2 u3 ~ normal([0,0,0],[s0,s0*r12,s0,s0*r13,

* s0*r23,s0]) subject=sub;
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Example 5.5

data fourth;

infile ’...’;

input id treat respind resp;

* Note response indicator shows whether response is

* baseline or test results for period 1.

run;

proc nlmixed data = fourth;

* starting values

parms intnorm=51.12 intbin=3.73 t=2.80 lgvbin=2.46

trcorr=0.56 lgvnorm=6.63;

* covariance parameters of the bivariate latent structure

vbin = exp(lgvbin);

vnorm = exp(lgvnorm);

cov = sqrt(vnorm)*sqrt(vbin)*(exp(trcorr)-1)/(exp(trcorr)+1) ;

* linear predictor for the normal observation, conditional on ubin

* note third term on right: conditional mean of normal given ubin

etanorm = intnorm + ubin*cov/vbin;

* linear predictor for the binary observations, conditional on ubin

etabin = intbin + t*treat + ubin;

* User defined log-likelihood function

* respind=0 indicates baseline

if (respind=0) then do;

* conditional variance of baseline

v = vnorm-cov*cov/vbin;

logl = -0.5*(log(v)+(resp-etanorm)*(resp-etanorm)/v);

end;

else if (respind=1) then do;

* contribution for binary data

pi = exp(etabin)/(1+exp(etabin));

logl = resp*log(pi)+(1-resp)*log(1-pi);

end;

model resp ~ general(logl);

random ubin ~ normal(0,vbin) subject=id;

* For ease of interpretation, request back-transformed

* estimates of variances and correlations

estimate ’correlation’ (exp(trcorr)-1)/(exp(trcorr)+1);

estimate ’normal variance’ exp(lgvnorm);

estimate ’binary variance’ exp(lgvbin);

run;
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Example 5.6

data fifth;

infile ’...’;

* variables: wt is weight, pr1-pr10 is pain relief at observation

* times 1-10

input id age wt treat base pr1-pr10;

* make dummy variables for the treatment groups;

* this seems to be necessary for PROC MIANALYZE to work properly

if treat=1 then t1=1;

else t1=0;

if treat=2 then t2=1;

else t2=0;

if treat=3 then t3=1;

else t3=0;

if treat=4 then t4=1;

else t4=0;

if treat=5 then t5=1;

else t5=0;

if treat=6 then t6=1;

else t6=0;

* make data set monotone missing

if (pr4=. and pr5 ne .) then delete;

if (pr5=. and pr6 ne .) then delete;

if (pr6=. and pr7 ne .) then delete;

if (pr7=. and pr8 ne .) then delete;

if (pr8=. and pr9 ne .) then delete;

if (pr9=. and pr10 ne .) then delete;

output;

run;

proc mi data=fifth seed=1 out=imputed nimpute=50;

class treat pr1 pr2 pr3 pr4 pr5 pr6 pr7 pr8 pr9 pr10;

* specification of imputation models

monotone logistic( pr6 = pr5 treat pr5*treat / details);

monotone logistic( pr7 = pr6 treat pr6*treat / details);

monotone logistic( pr8 = pr7 treat pr7*treat / details);

monotone logistic( pr9 = pr8 treat pr8*treat / details);

monotone logistic( pr10= pr9 treat pr9*treat / details);

var treat pr1 pr2 pr3 pr4 pr5 pr6 pr7 pr8 pr9 pr10;

run;
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* Model to estimate treatment effect at visit 10 from

* each imputation

proc genmod data=imputed descending ;

class id treat;

model pr10 = t1 t2 t3 t4 t5 t6 / covb d=bin;

by _Imputation_;

ods output ParameterEstimates=gmparms

ParmInfo=gmpinfo

CovB=gmcovb;

run;

proc mianalyze parms=gmparms covb=gmcovb parminfo=gmpinfo;

modeleffects Intercept t1 t2 t3 t4 t5 t6 ;

run;

proc genmod data=dental descending;

class id treat;

model pr10 = t1 t2 t3 t4 t5 t6 / covb d=bin;

ods output ParameterEstimates=gmparms

ParmInfo=gmpinfo

CovB=gmcovb;

run;

Example 5.7

Fit model with common variance (cf code for example 5.4 above) and predict the u3’s and their
standard errors.

data sixth;

infile ’...’;

* NB this version of the data includes the missing

* responses, denoted with a .

input sub base period treat resp;

* Create dummy variables for different periods

if period=1 then pr1 = 1; else pr1=0;

if period=2 then pr2 = 1; else pr2=0;

if period=3 then pr3 = 1; else pr3=0;

output;

run;
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proc nlmixed data = sixth cov cor;

* starting values

parms interc=2.65 b=0.026 p1=-0.972 p2=-0.39 t=1.15

pt1=1.035 pt2=0.546

lnsig0=2 lgcr12=1 lgcr13=1 lgcr23=1 ;

* linear predictor

eta = interc + t*treat + b*base + p1*pr1 + p2*pr2+ pt1*pr1*treat

+ pt2*pr2*treat + u1*pr1 + u2*pr2 + u3*pr3;

expeta = exp(eta); pi = expeta/(1+expeta);

model resp ~ binomial(1,pi);

s0 = exp(lnsig0);

r12 = ( exp(lgcr12) )/(1+exp(lgcr12));

r13 = ( exp(lgcr13) )/(1+exp(lgcr13));

r23 = ( exp(lgcr23) )/(1+exp(lgcr23));

random u1 u2 u3 ~ normal([0,0,0],[s0,s0*r12,s0,

s0*r13,s0*r23,s0]) subject=sub;

* Predict the u3’s and their standard errors for imputation

predict u3 out=missthree;

run;

proc print data=missthree;

run;

* The output is then saved and the remaining

* calculations carried out in R.

* Thus the following code is R code

# Read in missthree

# Variables of interest are pred and se

u.three<-data.frame(scan("missthree.dat",list(obs=0,sub=0,base=0,

period=0,treat=0,resp=0,pr1=0,pr2=0,

pr3=0,pred=0,se=0,df=0,

tval=0,probt=0,alpha=0,low=0,up=0)))

# Only keep columns of interest

u.three<-u.three[,c(1,2,10,11)]
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# Rows are repeats of the same data (for each observation)

# Only keep first of each set of 3

u.three.id<-unique(u.three$sub)

for (i in seq(along=u.three.id)) {

if (i==1) { u3.per3sim<-u.three[u.three$sub==u.three.id[i],][1,]

} else {

u3.per3sim<-rbind(u3.per3sim,u.three[u.three$sub==u.three.id[i],][1,])

} }

rm(u.three)

u3.per3sim<-data.frame(u3.per3sim)

# Now have the u3’s and their SEs for each subject.

# For treatment three, the linar predictor is

intercept + baseline + treat

# Parameter estimates from NLMIXED run above

mean.pars<-c(3.2118,0.03040,1.3778)

vmat<-matrix(c( 0.3021, -0.00264, -0.1637,

-0.00264, 0.000058, 0.000215,

-0.1637 , 0.000215 ,0.3434 ),ncol=3 )

# Imputation function preliminaries:

# Note column names of data per3sim

# "id" "base" "period" "treat" "resp"

# vector miss.per3 has ids of the 52 subjects

# with missing data at period 3

# first extract their treatment group and baseline

treat.missper3<-rep(52,0)

treat.missbase<-rep(52,0)

for (i in seq(along=miss.per3)) {

treat.missper3[i]<-per3sim[per3sim$id==miss.per3[i],4][1]

treat.missbase[i]<-per3sim[per3sim$id==miss.per3[i],2][1]

}

# Imputation function

impute.per3sim<-function() {

# simulate the number of tests

no.tests<- round(rnorm(52,mean=19+treat.missper3,

sd=sqrt(60-10*treat.missper3)))

no.tests[no.tests<=2]<-2 # agrees with original data minimum
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# Draw sample from multivariate normal distribution

# Create imputed linear predictor (length 52

# as 52 patients have missing data)

imp.pars<-mvrnorm(1,mu=mean.pars,Sigma=vmat)

imp.lp<-rep(0,52)

for (i in 1:52){

imp.lp[i]<-sum( imp.pars*c(1,treat.missbase[i],treat.missper3[i]) ) +

rnorm(1, mean=u3.per3sim[u3.per3sim$sub==miss.per3[i],3],

sd=u3.per3sim[u3.per3sim$sub==miss.per3[i],4] )

}

# Expand it by the number of tests

expand.lp<-rep(imp.lp,no.tests)

s

# Sample from binomial distribution (n=1) for the responses

# to these tests

imp.response<-rbinom(n=sum(no.tests),

size=rep(1,sum(no.tests)),

prob=expit(expand.lp))

#

#make data frame for results

temp<-data.frame(cbind( rep(miss.per3,no.tests),

rep(treat.missbase,no.tests),

rep(rep(3,52),no.tests),

rep(treat.missper3,no.tests),

imp.response ))

names(temp)<-names(per3sim)

# output the data frame at the end of the function

temp

}

# Create and analyse each imputed data

# set in turn using this function

set.seed(1)

no.imputations<-100

imp.treat<-rep(0,no.imputations)

imp.se<-rep(0,no.imputations)

for (j in 1:no.imputations) {

temp.analysis<-data.frame(rbind(impute.per3sim(),

per3sim[per3sim$period==3,]) )



170 Code for examples

gee.mod<- gee(resp~treat+base,data=temp.analysis,id=id,

family=binomial(logit),corstr="independence")

imp.treat[j]<-gee.mod$coefficients[2]

imp.se[j]<-sqrt(diag(gee.mod$robust.variance))[2]

}

# Combine the results using Rubin’s rules

mi.est<-mean(imp.treat)

with.var<- mean(imp.se^2)

bet.var<-var(imp.treat)

mi.se<-sqrt( with.var + (1 + 1/no.imputations)*bet.var)

mi.df<- (no.imputations -1) * (

1 + with.var/ ( (1+ 1/no.imputations)*bet.var) )^2

C.4 Code for Chapter 6

Example 6.1

winBUGS code for selction modelling.

First, model for the reponse alone:

model{ # model is enclosed in curly brackets

for (i in 1: npatients) { # 751 patients which we index by i

# Model of for the 6 post randomisation FEV measurments is

# multivariate normal

fev[i, 1:6] ~ dmnorm(mu[i, ], R[ , ] )

# Parameterise mean with full treatment time and

# baseline time interaction

for (j in 1:6) {

mu[i,j]<- betacon.time[j] + betacon.treat[j]*treat[i]

+ betacon.base[j]*base[i]

}

}

# Wishart prior for precision matrix R

R[1:6 , 1:6] ~ dwish(lambda[1:6 , 1:6 ], 6)
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# create an estimate of variance/covariance matrix:

vcov.mat[1:6 ,1:6 ] <-inverse(R[ 1:6, 1:6 ])

# priors for coefficients: vague normal:

for (j in 1:6) {

betacon.time[j]~dnorm(0.0,1.0E-6)

betacon.treat[j]~dnorm(0.0,1.0E-6)

betacon.base[j]~dnorm(0.0,1.0E-6)

}

}

Second, joint model for response and withdrawal, under

Model 1 - all misssing data treated as interim missing.

model {

for (i in 1: npatients) { # 751 patients which we index by i

# Model of for the 6 post randomisation FEV measurments is

# multivariate normal

fev[i, 1:6] ~ dmnorm(mu[i, ], R[ , ] )

# Parameterise mean with full treatment time and

# baseline time interaction

for (j in 1:6) {

mu[i,j]<- betacon.time[j] + betacon.treat[j]*treat[i]

+ betacon.base[j]*base[i]

}

}

# Model for observing the response

for(j in 2:6) {

resp[i,j] ~ dbin(p[i,j],1) # Response is 1 (yes) or

#0 (no) on each occasion

# linear predictor depends on visit, treatment, previous reading

# and the difference between the previous and current reading

logit(p[i,j]) <- alpha[j] + betadrop*treat[i] + gamma*fev[i,j-1] +

0.1*(fev[i,j]-fev[i,j-1])

# last term is log odds ratio of difference

# which is fixed at 0.1

}
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# Wishart prior for precision matrix R

R[1:6 , 1:6] ~ dwish(lambda[1:6 , 1:6 ], 6)

# create an estimate of variance/covariance matrix:

vcov.mat[1:6 ,1:6 ] <-inverse(R[ 1:6, 1:6 ])

# priors for coefficients: vague normal:

for (j in 1:6) {

betacon.time[j]~dnorm(0.0,1.0E-6)

betacon.treat[j]~dnorm(0.0,1.0E-6)

betacon.base[j]~dnorm(0.0,1.0E-6)

alpha[j]~dnorm(0.0,1.0E-6)

}

betadrop~dnorm(0.0,1.0E-6)

gamma~dnorm(0.0,1.0E-6)

}

Third, model 2 for non-response: after a patient withdraws,

they do not return.

model {

for (i in 1: npatients) { # 751 patients which we index by i

# Model of for the 6 post randomisation FEV measurments is

# multivariate normal

fev[i, 1:6] ~ dmnorm(mu[i, ], R[ , ] )

# Parameterise mean with full treatment time and

# baseline time interaction

for (j in 1:6) {

mu[i,j]<- betacon.time[j] + betacon.treat[j]*treat[i]

+ betacon.base[j]*base[i]

}

}
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# Model for observing the response

for (j in 2:lvisit[i]) { # variable lvisit is time of

# list visit (2...6)

resp[i,j] ~ dbin(p[i,j],1) # Response is 1 (yes) till

# withdrawal, then 0

# linear predictor depends on visit, treatment,

# previous reading and the difference between the

# previous and current reading

logit(p[i,j]) <- alpha[j] + betadrop*treat[i] + gamma*fev[i,j-1] +

0.1*(fev[i,j]-fev[i,j-1])

# last term is log odds ratio of difference

# which is fixed at 0.1

}

# Wishart prior for precision matrix R

R[1:6 , 1:6] ~ dwish(lambda[1:6 , 1:6 ], 6)

# create an estimate of variance/covariance matrix:

vcov.mat[1:6 ,1:6 ] <-inverse(R[ 1:6, 1:6 ])

# priors for coefficients: vague normal:

for (j in 1:6) {

betacon.time[j]~dnorm(0.0,1.0E-6)

betacon.treat[j]~dnorm(0.0,1.0E-6)

betacon.base[j]~dnorm(0.0,1.0E-6)

alpha[j]~dnorm(0.0,1.0E-6)

}

betadrop~dnorm(0.0,1.0E-6)

gamma~dnorm(0.0,1.0E-6)

}

Example 6.1

Code given in White et al. (2007).
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Example 6.3

* First the SAS macro for adapting the imputations:

* Author: Prof James H. Roger, james.h.roger@gsk.com

/*

Macro name: Modify

Parameters;

Data= Name of original data set

Imp= Name of imputed data set

Out= Name of Output data set

Var= List of variables as used in Var statement for MI

Delta= The amount to decrease imputed value by

S= SD for Normal distribution from which Change is

sampled with mean Delta for each imputation

Trx= Name of variable holding treatment classification

*/

%macro modify(data= ,imp= ,out= ,var= ,delta= ,s= ,trx= );

%local i n;

%* Get number of elements in the Var List as macro variable n;

%let i=1;

%let txt=%scan(&var, &i, %str( ));

%do %while(%length(&txt)) ;

%let i=%eval(&i +1);

%let txt=%scan(&var, &i, %str( ));

%end;

%let n=%eval(&i -1);

* Delete data sets before we use them;

Proc datasets library=work;

delete Temp1 Temp2 Temp3;

quit;

* Set up data set with indicator of whether data is missing;

* This gets around issue of variables having same names in

* original and imputed data sets;

* Add Row number so we can merge this with every imputed

* data set;

data Temp1;

set &data;

array My_Var[1:&n] &Var;

array My_Ind[1:%eval(&n+1)] My_Ind1-My_Ind&n No;

keep My_row My_ind1-My_Ind&n;

My_Row=_N_;

* Note that No is My_Ind[&n+1];

No=0;



C.4 Code for Chapter 6 175

do i= &n to 1 by -1;

My_ind[i]= ( ((My_Var[i] > .z) + (My_ind[i+1])) > 0 );

end;

run;

* Add Row number of each record in the imputed data set

* within the Imputation number;

data Temp2;

set &imp;

by _imputation_;

retain My_Row 0;

if first._imputation_ then My_Row=0;

My_Row=My_Row+1;

run;

* Merge the two data sets based on this Row number;

proc sql;

create table Temp3 as

select A.*, B.*

from Temp2 A left join Temp1 B

on A.My_Row = B.My_Row

order by _imputation_, &Trx;

quit;

* Now calculate the required changes in imputed values;

* My_Ind=1 if data is Real;

* My_Ind=0 if data is Imputed;

data &out;

set Temp3;

by _imputation_ &trx;

array My_Var[1:&n] &Var;

array My_Ind[1:&n] My_Ind1-My_Ind&n;

drop My_Row Change i My_ind1-My_Ind&n;

retain delta;

*** Here is where the modfication is done ***;

* Change allows us to build up delta

* within the subject;

* Reset Delta for each Imputation * Treatment level;

if first.&trx then do;

Delta=&delta+&s*rannor(0);

end;

Change=0;

do i=1 to &n;

* If it is imputed then increase

* Change by delta;

if My_ind[i]=0 then do;

Change=Change + delta;

end;
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* Do the change;

My_Var[i]=My_Var[i]-Change;

end;

run;

%mend modify;

* Now we apply it to the example:

data two;

infile "...";

input id treat base fev1-fev6;

run;

proc sort data=two out=twosort;

by treat;

run;

* Multiple imputation

proc mi data =twosort seed=1 out=full nimpute=50;

by treat;

MCMC nbiter=5000 niter=5000;

var fev1-fev6;

mcmc impute=full;

run;

proc sort data=full;

by _imputation_ id;

run;

* Estimate treatment effect at final time point using each

* imputed data set

proc reg data=full outest=outreg covout noprint ;

model fev6= base treat;

by _Imputation_;

run;

proc mianalyze data=outreg;

modeleffects Intercept base treat;

run;

* Now use modify macro (above) and redo analysis

* delta is the mean of the difference in slope after withdrawal, with

* standard error s (ctd...)
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* For example, to obtain same results as MAR, set delta=0

and s to be tiny:

%modify(data=tensort, imp=full,

out=james, var= fev1 fev2 fev3 fev4 fev5 fev6,

delta=0.0, trx=treat, s=0.0000005);

proc reg data=james outest=outreg covout noprint ;

model fev6= base treat;

by _Imputation_;

run;

proc mianalyze data=outreg;

modeleffects Intercept base treat;

run;
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