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Abstract

Noroviruses are a leading cause of human gastroenteritis worldwide. The norovirus geno-

type GII.4 is the most prevalent genotype in the human population and has caused six pan-

demics since 1995. A novel norovirus lineage containing the GII.P16 polymerase and

pandemic GII.4 Sydney 2012 capsid was recently detected in Asia and Germany. We dem-

onstrate that this lineage is also circulating within the UK and USA and has been circulating

since October 2014 or earlier. While the lineage does not contain unique substitutions in the

capsid, it does contain polymerase substitutions close to positions known to influence poly-

merase function and virus transmission. These polymerase substitutions are shared with a

GII.P16-GII.2 virus that dominated outbreaks in Germany in Winter 2016. We suggest that

the substitutions in the polymerase may have resulted in a more transmissible virus and the

combination of this polymerase and the pandemic GII.4 capsid may result in a highly trans-

missible virus. Further surveillance efforts will be required to determine whether the GII.

P16-GII.4 Sydney 2012 lineage increases in frequency over the coming months.

Introduction

Noroviruses are the leading cause of human gastroenteritis worldwide and are estimated to be

responsible for 900,000 clinic visits amongst children in industrialized countries and up to

200,000 deaths of children in developing countries annually [1,2]. Noroviruses belong to the

Caliciviridae family and their ~7.5Kb RNA genome contains three open reading frames

(ORFs): ORF1 encodes a nonstructural polyprotein that is cleaved into six proteins including

an RNA-dependent RNA polymerase (RdRp), ORF2 encodes the VP1 capsid protein and

ORF3 encodes a minor structural protein, VP2. Recombination frequently occurs close to the
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junction between ORF1 and ORF2, necessitating independent genotyping of the RdRp and

capsid [3]. While noroviruses are divided into seven genogroups and further into more than

30 genotypes based on capsid sequence, the majority of cases and outbreaks are caused by

viruses associated with a single capsid genotype, GII.4, which has also caused six pandemics of

gastroenteritis since 1995 [4,5]. Each pandemic has been caused by a distinct strain of GII.4.

While the first five pandemic strains contained the GII.P4 RdRp, the most recent pandemic

strain (Sydney 2012) circulated more commonly with the GII.Pe RdRp. Recent reports demon-

strated circulation of the Sydney 2012 capsid with a GII.P16 RdRp in South Korea, Japan and

Germany [6–8]. While the GII.P16 RdRp is not typically highly prevalent, a GII.P16-GII.2

virus was the dominant strain amongst a large peak of norovirus infections in Germany in

Winter 2016 [8]. Here, we demonstrate using whole genome sequencing [9] and phylogenetic

analyses that the GII.P16-GII.4 Sydney 2012 lineage is also circulating within the UK and

USA. While the lineage does not contain unique capsid substitutions, it does contain RdRp

substitutions that are shared with the GII.P16-GII.2 RdRp and are close to positions known to

influence RdRp function and viral transmission.

Materials and methods

Sample collection and sequencing

We identified noroviruses with the GII.P16 RdRp in ten stool samples collected as part of rou-

tine surveillance from South East and North West England between June 2015 and April 2016;

samples were from both sporadic cases and outbreaks. Four of these faecal specimens were

referred to the Virus Reference Department, Public Health England, as part of a sentinel noro-

virus strain surveillance programme, which collects norovirus-positive specimens from geo-

graphically disparate regions across England. The other six faecal specimens were collected

from a tertiary referral paediatric hospital in London, UK. These six specimens were residual

diagnostic specimens obtained from patients with confirmed norovirus infections. Specimens

were collected as part of the FP7 PATHSEEK study and submitted to the UCL Infection DNA

Bank. The samples were supplied to the study in an anonymised form; the use of these speci-

mens for research was approved by the NRES Committee London—Fulham (REC reference:

12/LO/1089). Other specimens used were sent to the Enteric Virus Unit at Public Health

England in the course of routine surveillance and diagnosis work. RNA was extracted and

whole genome sequencing performed as described previously [9]. Sample genotypes were

obtained using the norovirus genotyping tool, available at http://www.rivm.nl/mpf/norovirus/

typingtool [10]. The GenBank accession numbers for viruses sequenced in this study are as fol-

lows: KY887597-KY887606.

Phylogenetic analyses

We combined our sequences with all GII.P16 ORF1 sequences and all GII.4 Sydney 2012 cap-

sid and VP2 sequences available on GenBank. We reconstructed maximum likelihood trees

using RAxML [11] and time trees using BEAST 2 [12]. GII.P16 dating analyses were carried

out using the RdRp as there are many more GII.P16 sequences containing the RdRp (n = 165)

compared with the complete ORF1 (n = 45), enabling estimation of more accurate dates. The

GII.4 Sydney 2012 capsid maximum likelihood tree was used to identify a well-supported

monophyletic clade (bootstrap support 81) containing 70 samples that includes all of the sam-

ples with the GII.P16 RdRp. The GII.4 Sydney 2012 time tree was reconstructed using the sam-

ples in this clade. Ancestral reconstruction to identify nonsynonymous changes occurring

along particular branches was carried out using PAML [13].
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Data availability

All alignments, phylogenetic trees and BEAST XML files are included as supporting informa-

tion (S1–S6 Files).

Results

We identified ten viruses collected in routine surveillance in the UK containing the GII.P16

RdRp. Of these, seven were found with the GII.4 Sydney 2012 capsid and three were found

with the GII.3 capsid. The ten RdRp sequences formed a well-supported monophyletic clade

(Fig 1), that also contains GII.P16-GII.4 Sydney 2012 samples from the USA and Japan,

including the GII.P16-GII.4 Sydney 2012 sample described in 2016 from Kawasaki City, Japan

[7]. These samples also cluster in the phylogenetic tree of available GII.P16 ORF1 samples. The

GII.P16-GII.4 Sydney 2012 RdRps cluster with the GII.P16-GII.2 RdRps that dominated noro-

virus outbreaks in Germany in winter 2016 (Fig 1) [8]. The common ancestor of the GII.

P16-GII.4 Sydney 2012 and GII.P16-GII.2 RdRps occurred in March 2013 (95% highest proba-

bility density (HPD) January 2012-May 2014).

In a phylogenetic tree containing all available GII.4 Sydney 2012 capsid sequences, the GII.

P16-GII.4 Sydney 2012 samples from the UK again cluster with samples from the USA and

Japan containing the GII.P16 RdRp (Fig 2). This clade contains additional samples from the

USA where the RdRp was not sequenced. However, all of the RdRps sequenced within this

clade are of the GII.P16 genotype. It is therefore likely that these samples also contain the GII.

P16 RdRp, although without genotyping this is uncertain. The common ancestor of this clade

occurred in October 2014 (95% HPD June 2014-February 2015).

No nonsynonymous substitutions occurred in the capsid along the branch leading to the

GII.P16-GII.4 Sydney 2012 clade and there are no amino acid changes shared amongst capsids

in this clade that are not found in the remainder of the GII.4 Sydney 2012 capsids. However,

14 nonsynonymous substitutions occurred within ORF1 along the branch leading to the com-

mon ancestor of the GII.P16-GII.4 Sydney 2012/GII.3 clade (Fig 1, Table 1). Eleven of these

changes are shared amongst all of the samples in the GII.P16-GII.4 Sydney 2012/GII.3 clade.

Five of these changes occurred in the RdRp, with several of the changes occurring close to posi-

tions known to impact polymerase function and transmission (Fig 3) [14,15]. Only four of the

positions that change leading to the GII.P16-GII.4 Sydney 2012/GII.3 clade are in the partial

RdRp region sequenced by Niendorf et al in the GII.P16-GII.2 samples [8]. All four of these

nonsynonymous changes are also present in the GII.P16-GII.2 samples and were therefore

acquired by the common ancestor of the RdRp clade containing the samples with the GII.4

Sydney 2012, GII.3 and GII.2 capsids. Additionally, a single nonsynonymous change (S157N)

occurred in VP2 along the branch leading to the GII.P16-GII.4 Sydney 2012 clade.

Discussion

Here, we demonstrate that the emerging GII.P16-GII.4 Sydney 2012 norovirus lineage is circu-

lating in the UK and USA, in addition to previous reports of circulation in Asia and Germany

[6–8]. Analysis of available sequences suggests that this lineage has been circulating since

October 2014 or earlier (Fig 2). The lack of amino acid substitutions in the capsid suggests that

this lineage will not be able to escape existing herd immunity generated against Sydney 2012

since its emergence as a pandemic in 2012. However, previous studies have implicated the

RdRp as an important component of viral fitness and demonstrated that RdRp changes can

influence viral transmission by modulating the replication fidelity, and thus the viral diversity

[14,15]. Several of the changes in the RdRp are in the palm subunit that contains most of the

catalytic residues (Fig 3). Little is currently known about whether changes in the other proteins
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Fig 1. Evolutionary history of the GII.P16 lineage. Time tree of 179 GII.P16 RdRp sequences

reconstructed using BEAST 2. The GII.P16 samples found with the GII.4 Sydney 2012 capsid are highlighted

red. The GII.P16 samples found with the GII.3 capsid are highlighted in magenta. The GII.P16-GII.2 samples
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encoded by ORF1 have the ability to influence viral transmission. However, as the GII.P16

RdRp found with the GII.4 Sydney 2012 capsid has acquired several nonsynonymous changes

close to positions known to influence RdRp function and viral transmission, this RdRp may

have different properties and/or a greater ability to transmit compared with other GII.P16

RdRps. Only four of the RdRp changes occur in the genome region sequenced from the GII.

P16-GII.2 virus that recently dominated norovirus outbreaks in Germany [8]. However, all

four of these changes are also present in the GII.P16-GII.2 virus. We therefore suggest that the

worldwide circulation of the GII.P16-GII.4 Sydney 2012 lineage and the high prevalence of the

associated with most norovirus cases in Germany in winter 2016 are highlighted in blue. The starred node is

the common ancestor of this clade. Posterior supports are shown at key nodes.

https://doi.org/10.1371/journal.pone.0179572.g001

Fig 2. Evolutionary history of the GII.4 Sydney 2012 capsid. A maximum likelihood tree was reconstructed for 781 GII.4 Sydney 2012 capsid samples.

From this, a well supported clade (bootstrap support 81) containing the GII.P16-GII.4 Sydney 2012 lineage and several other samples was selected and a

time tree reconstructed on this smaller dataset using BEAST 2. The starred node is the common ancestor of the GII.P16-GII.4 Sydney 2012 lineage and the

samples in this lineage are coloured based on the country from which they were isolated: blue—UK, purple—USA, green—Japan. Posterior supports are

shown at key nodes.

https://doi.org/10.1371/journal.pone.0179572.g002
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Table 1. Sites in ORF1 that change leading to the GII.P16-GII.4 Sydney 2012 clade.

Change Protein Polymerase position Shared by all GII.P16-GII.4 Sydney 2012 samples

N52E P48 (NS1/2) N/A Yes

S53P P48 (NS1/2) N/A No

K165R P48 (NS1/2) N/A Yes

S644P NTPase (NS3) N/A No

R731K P22 (NS4) N/A Yes

K750R P22 (NS4) N/A Yes

P845Q P22 (NS4) N/A Yes

A853T P22 (NS4) N/A Yes

V1057I Protease (NS6) N/A Yes

D1362E RdRp (NS7) 173 Yes

S1482T RdRp (NS7) 293 Yes

V1521I RdRp (NS7) 332 No

K1546Q RdRp (NS7) 357 Yes

T1549A RdRp (NS7) 360 Yes

Each nonsynonymous change that occurred along the branch in the ORF1 and RdRp phylogenetic trees leading to the GII.P16-GII.4 Sydney 2012/GII.3/

GII.2 clade is shown. N/A—not applicable.

https://doi.org/10.1371/journal.pone.0179572.t001

Fig 3. Location of RdRp sites that change leading to the GII.P16-GII.4 Sydney 2012 clade. Sites are highlighted on PDB structure 1SH0. The sites

that change leading to the GII.P16-GII.4 Sydney 2012 clade are shown in red. The sites that form the RdRp active site are shown in blue. Sites previously

demonstrated to alter RdRp function and/or transmission when mutated are shown in magenta (14,15).

https://doi.org/10.1371/journal.pone.0179572.g003

The emerging GII.P16-GII.4 norovirus

PLOS ONE | https://doi.org/10.1371/journal.pone.0179572 June 29, 2017 6 / 9

https://doi.org/10.1371/journal.pone.0179572.t001
https://doi.org/10.1371/journal.pone.0179572.g003
https://doi.org/10.1371/journal.pone.0179572


GII.P16-GII.2 virus are due to increased transmissibility driven by RdRp changes in GII.P16.

Importantly, the GII.2 capsid is typically rare and is therefore unlikely to be as fit as the preva-

lent GII.4 capsid. It is therefore possible that combining an advantageous RdRp with the GII.4

Sydney 2012 capsid may result in a highly transmissible virus, despite the lack of antigenic

changes in the capsid. Importantly, surveillance strategies based on capsid genotyping alone

would be unable to distinguish between the GII.P16-GII.4 Sydney 2012 lineage and other Syd-

ney 2012 viruses. It is therefore vital that surveillance efforts genotyping both the capsid and

RdRp assess whether the GII.P16-GII.4 Sydney 2012 lineage replaces the GII.Pe-GII.4 Sydney

2012 strain over the coming months.
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