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Abstract 

Background: Human papillomavirus vaccines have demonstrated remarkable efficacy against 

persistent infection and disease associated with vaccine-incorporated genotypes and a degree of 

efficacy against some genetically related, non-vaccine-incorporated genotypes. The vaccines differ 

in the extent of cross-protection against these non-vaccine genotypes. Data supporting the role for 

neutralizing antibodies as a correlate or surrogate of cross-protection are lacking, as is a robust 

assessment of the seroconversion rates against these non-vaccine genotypes.  

Methods: We performed a systematic review and meta-analysis of available data on vaccine-

induced neutralizing antibody seropositivity to non-vaccine incorporated HPV genotypes.  

Results: Of 304 articles screened, 9 were included in the analysis representing ca. 700 individuals. 

The pooled estimate for seropositivity against HPV31 for the bivalent vaccine (86%; 95%CI 78 – 

91%) was higher than that for the quadrivalent vaccine (61%; 39 – 79%; p=0.011). The pooled 

estimate for seropositivity against HPV45 for the bivalent vaccine (50%; 37 – 64%) was also higher 

than that for the quadrivalent vaccine (16%; 6 – 36%; p=0.007). Seropositivity against HPV33, 

HPV52 and HPV58 were similar between the vaccines. Mean seropositivity rates across non-

vaccine genotypes were positively associated with the corresponding vaccine efficacy data reported 

from vaccine trials.  

Conclusions: These data improve our understanding of vaccine-induced functional antibody 

specificity against non-vaccine incorporated genotypes and may help to parameterize vaccine-

impact models and improve patient management in a post-vaccine setting. 
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Introduction 

Human papillomavirus (HPV) is associated with 5% of all human cancers worldwide and around 

30% of those cancers attributed to infectious agents [1]. The bivalent (Cervarix®) and quadrivalent 

(Gardasil®) prophylactic HPV vaccines comprise virus-like particles (VLP) based upon the major 

capsid protein (L1) of HPV16 and HPV18 [2], which are the two genotypes associated with the 

majority (ca. 70%) of cervical cancers [3]. Gardasil® also contains VLP representing genotypes 

associated with the development of genital warts (HPV6 and HPV11). Both vaccines are highly 

efficacious at preventing persistent infection and cervical cancer precursors associated with HPV16 

and HPV18 in vaccine trials [4-6]. These findings are starting to be reflected in post-licensure impact 

surveillance data following the implementation of national HPV immunization programmes [7]. 

Neutralizing antibodies against HPV16 and HPV18 genotypes can be detected in the serum and 

genital secretions of vaccinees [8], appearing to corroborate pre-clinical animal model data that 

support type-specific protection being mediated by neutralizing antibodies [9-11].  

 

A degree of cross-protection has also been demonstrated in vaccine trials against persistent 

infection and disease associated with some non-vaccine genotypes that are genetically related to 

the vaccine genotypes [4, 12], a phenomenon that is also starting to be seen in vaccinated 

populations [7, 13]. The vaccines exhibit differential efficacy in this respect such that Cervarix® 

appears to be more protective against HPV31 (related to HPV16) than Gardasil® and this difference 

in efficacy is more marked for HPV45 (related to HPV18). These two non-vaccine genotypes alone 

are associated with ca. 10% of cervical cancers [3]. Cross-neutralizing antibodies can be detected in 

the serum and, in one study, the genital secretions of vaccinees [14-20]. These data are derived 

from relatively small immunogenicity studies, using one or both vaccines and carried out in different 

age groups, factors that may affect interpretation of whether the detection of such antibodies may 

be useful as a correlate or surrogate of vaccine-induced cross-protection. This report presents a 

systematic review and meta-analysis of available data on vaccine-induced neutralizing antibody 
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seropositivity to non-vaccine incorporated HPV genotypes in order to provide a robust estimate of 

seroconversion rates against non-vaccine incorporated genotypes.  
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Methods 

Search Strategy and Selection Criteria 

A systematic search was undertaken of PubMed to identify papers reporting seropositivity data in 

conjunction with cross-neutralizing antibody titers against HPV non-vaccine genotypes. A 

combination of the following free terms were used to search titles and abstracts: (“HPV” or “Human 

Papillomavirus”) and “Vaccine” and “Antibod*” and “Neutrali*”. Two of the authors (SLB and AG) 

independently identified papers for analysis that were returned by the search terms up until June 

2016. The a priori exclusion criteria were (i) description of a novel antigen, not a licensed HPV 

vaccine; (ii) description of antibodies elicited by natural infection, not vaccination; (iii) no 

neutralization data were presented; (iv) no cross-neutralization data were presented in the same or 

linked study specific paper; (v) not the primary evaluation of study neutralization data. Papers were 

initially excluded based upon title only, followed by a second round of exclusion based upon 

abstract content. Where the abstract stated or implied the inclusion of neutralization data within the 

published study the full text of the paper was reviewed. 

 

Data Extraction 

Key information retrieved for analysis included: participant characteristics (sex, age group), study 

characteristics (study setting, vaccine(s) used, sample collection times) and assay characteristics 

(assay format, target antigens, seropositivity, titers). The primary outcome measure was 

seropositivity to the two oncogenic vaccine incorporated genotypes (HPV16 and HPV18) and five 

non-vaccine incorporated genotypes (HPV31, HPV33, HPV45, HPV52 and HPV58) for which both 

efficacy and seropositivity have been consistently evaluated. The secondary outcome measure was 

the antibody titer to vaccine (HPV16, HPV18) and non-vaccine genotypes (HPV31, HPV45). Two of 

the authors (SBL and AG) performed the data extraction into a template spreadsheet and a data 

integrity check was performed (SB) before use.  

 

Statistical methods 

Estimates of seropositivity to each genotype following vaccination with either Gardasil® or 

Cervarix® were pooled using a DerSimonian-Laird random effects model, with logit transformed 

outcome variables. Cochran’s Q-test was used as a test of interaction to see if the type of vaccine 

(or other variable) had a significant impact on seropositivity by genotype. 

 

The association between vaccine efficacy (against persistent infection and CIN2+) as reported from 

clinical trials [12] and the mean seropositivity generated in this study was investigated. To propagate 

the uncertainty in these variables to the uncertainty in the linear relationship, we used a resampling 

technique known as the bootstrap [21]. To do this, we randomly sampled with replacement 1000 
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times from the set of positive and negative individuals in the populations of the studies used to 

estimate efficacy and seroprevalence. Each random sample was then used to construct a related 

estimate of vaccine efficacy, to construct a set of 1000 bootstrap estimates of vaccine efficacy. This 

was associated to 1000 similarly constructed estimates of seroprevalence using linear regression. 

 

Vaccine efficacy and seropositivity were plotted on graphs. The uncertainty in the graphs represents 

the 95% range of predictions across the models. Exact 95% confidence intervals for data points 

were calculated using the Fisher’s exact method for vaccine efficacy (1-odds ratio) and Clopper-

Pearson for seroprevalence. Significance was taken at the 5% level and 95% confidence intervals 

used. Two-sided significance tests were used. R version 3.1.2 (R Development Core Team) was 

used for the analyses. 

 

Results 

We identified 304 articles of which 9 (representing 7 discrete studies) were included for this analysis 

(Figure 1) [14-20, 22, 23]. Details on the individual studies can be found in Table 1. All studies 

included females (>95% of total assessed population) while one study [18, 23] also included males. 

Three studies [14, 16, 19] included adolescent girls at the approximate target age for vaccination 

(11 - 15 years old) while four studies [15, 17, 18, 20, 22, 23] included women over 18 years of age. 

Two studies [16, 19] collected serum from adolescent girls taking part in national vaccination 

programmes, while five studies [14, 15, 17, 18, 20, 22, 23] collected serum from individuals in the 

context of a vaccination trial. Post-vaccination seropositivity was assessed at month 7 (1 month post 

third vaccine dose; M7) [14, 17, 18, 20, 22, 23], month 12 (6 months post third vaccine dose; M12) 

[14-16, 18, 20, 23], or in one study [19], using data collected between month 7 and month 12. All 

studies [14-20, 22, 23] evaluated Cervarix® vaccinees while five studies [14, 17-20, 22, 23] also 

included Gardasil® vaccinees. All studies [14-20, 22, 23] used HPV pseudovirus targets HPV16, 

HPV18, HPV31 and HPV45 in neutralizing antibody tests with five studies [14-16, 18, 20, 23] 

including one or more additional Alpha-7 (related to HPV18) and Alpha-9 (related to HPV16) 

genotypes.  

 

Seropositivity against HPV16 and HPV18 was essentially 100% following three doses of either 

Cervarix® or Gardasil® vaccine; a slightly lower (98%) HPV18 seropositivity was reported by one 

study following Gardasil® vaccination (data not shown). A higher proportion of Cervarix® vaccinees 

(86%; 95%CI 78 – 91%; pooled estimate using the random effects model) were seropositive against 

HPV31 than Gardasil® vaccinees (61%; 39 – 79%; p=0.011) (Figure 2). Cervarix® vaccinees (50%; 

37 – 64%) also exhibited a markedly higher proportion of seropositivity against HPV45 than 
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Gardasil® vaccinees (16%; 6 – 36%; p=0.007). Pooled estimates for seropositivity against HPV33, 

HPV52 and HPV58 demonstrated no significant difference between the vaccines.  

 

One of these studies [18, 23] examined bivalent and quadrivalent vaccine immunogenicity in a 

cohort of human immunodeficiency virus (HIV-1) infected individuals. Pooled estimates for 

seropositivity against HPV31 (Cervarix®: 87%; 95%CI 78 – 92%; Gardasil®: 63%; 38 – 83%; 

p=0.027) and HPV45 (Cervarix®: 47%; 33 – 62%; Gardasil®: 11%; 4 – 28%; p=0.002) not including 

these individuals were similar to the overall estimates.  

 

There was a significant positive association between the overall seropositivity rates against non-

vaccine incorporated genotypes and the vaccine efficacy data [12] against 6 month persistent 

infection (mean line coefficient 1.017; 95% range 0.100 – 2.241; Figure 3a) and positive but non-

significant association with cervical intraepithelial neoplasia grade 2 or greater (CIN2+) (mean line 

coefficient 1.781; 95% range -0.636 – 9.212; Figure 3a) reported from vaccine trials.  

 

These immunogenicity studies were carried out in adolescent girls (<18 years old) and adults (18 

years or older) and included samples collected between one (M7) and six (M12) months after the 

third dose of vaccine. There were too few studies to allow a subset analysis, whereby the influence 

of vaccine, age group, and sampling time on genotype-specific seropositivity could be evaluated 

independently. Instead, seropositivity to HPV31 or HPV45 was evaluated using age group 

(irrespective of vaccine and sampling time) and sampling time (irrespective of vaccine and age 

group) as composite variables (Supplementary figure). This was a similar approach to that taken 

for the evaluation of seropositivity stratified by vaccine, irrespective of age group and sampling time 

(Figure 2). The pooled estimate for seropositivity against HPV31 in the adolescent age group (87%; 

71 – 95%) was slightly higher than that achieved in adults (66%; 50 – 80%; p=0.045). Seropositivity 

against HPV45 for adolescents (31%; 15 – 52%) was similar to that in adults (38%; 19 – 61%; 

p=0.613). Overall, seropositivity against HPV31 (M7: 76%; 57 – 89% vs. M12: 81%; 65 – 91%; 

p=0.636) and HPV45 (M7: 35%; 19 – 56% vs. M12: 51%; 33 – 69%; 0.268) was similar regardless 

of sampling time.  

 

The magnitude of the vaccine antibody responses were reported as the median or geometric mean 

titers for both vaccine (HPV16 and HPV18) and non-vaccine (HPV31 and HPV45) genotypes. 

Although the magnitude of the titers for both vaccine and non-vaccine genotypes varied widely 

between studies, the non-vaccine genotype titers appeared to track their respective vaccine-type 

titers with some consistency (Figure 4). HPV16 titers were a median 170 (inter-quartile range, IQR, 

134 - 262) fold higher than HPV31 titers for Cervarix® and a median 337 (201 - 365) fold for 
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Gardasil®. HPV18 titers were a median 478 (296 - 1,413) fold higher than HPV45 titers for 

Cervarix® and a median 146 (108 - 1,377) fold for Gardasil®.  

 

Discussion 

We performed a systematic review and meta-analysis of available seropositivity data against non-

vaccine genotypes representing seven studies and approximately seven hundred individuals 

vaccinated with three doses of either Cervarix® or Gardasil® HPV vaccine [14-20, 22, 23].  

 

The estimated seroconversion rate for neutralizing antibodies against HPV31 was higher than that 

for HPV45, with Cervarix® vaccinees exhibiting higher rates of seroconversion against both of these 

genotypes than Gardasil® vaccinees. For HPV33, HPV52 and HPV58 the seroconversion rates 

were similar between the vaccines. There was a strong association between the seropositivity rates 

for these non-vaccine genotypes and the efficacy data reported from HPV vaccine trials [24, 25]. 

HPV31 seropositivity has been shown to be coincident with a reduced risk of HPV31 acquisition 

post-vaccination with Cervarix®, although data supporting a similar relationship for HPV45 and 

HPV58 were lacking [26].  

 

This review incorporated data from adolescent girls around the target age for vaccination in national 

immunization programmes and from older women and included data collected between one and six 

months after the third vaccine dose. Of these variables, only the younger age at vaccination was 

shown to be associated with a higher seropositivity against HPV31. Where individual studies have 

compared the immune response to HPV vaccines in populations of similar ages, and using samples 

collected at the same time point post-vaccination, they have consistently demonstrated higher rates 

of seroconversion and/or higher titers against both HPV16 and HPV18 [14, 20, 22, 23] and non-

vaccine genotypes [14, 17, 18, 20] following Cervarix® vaccination. Similarly, where studies 

compared serological responses between one and six months following the third vaccine dose, a 

small decline in seropositivity and/or titers was seen for both adolescents [14] and older women [17, 

18, 20, 22, 23]. The issue of age is more problematic. Only one study in this review examined age-

dependent immune responses against vaccine and non-vaccine genotypes by stratifying a cohort of 

18 – 45 year old mid adult women into three sub-groups (18 – 26, 27 – 35 and 36 – 45 years) and 

demonstrated some degree of age-related influence on responses against vaccine genotypes [22], 

but the influence on responses against non-vaccine genotypes was less clear [17]. A stronger 

serological response elicited in adolescents compared to adult women has been demonstrated for 

both vaccines [27-30], but only against vaccine-incorporated genotypes using binding assays. The 

removal of data from one study [18, 23] comprising HIV-infected subjects made little difference to 

the pooled estimates for seropositivity against HPV31 and HPV45 suggesting, based on these 
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limited study data, that the HIV serostatus of vaccine recipients may have little impact on HPV 

vaccine immunogenicity [31].  

 

The magnitude of the neutralizing antibody response varied between studies with responses against 

non-vaccine genotypes at least two orders of magnitude lower than those elicited against vaccine-

incorporated genotypes. The long-term durability of cross-neutralizing antibodies is unclear; thus far, 

antibodies against HPV31 and HPV45 have been detected out to twenty-four months post-

vaccination [17, 22]. In the same vaccine comparison study, responses against HPV16 and HPV18 

remain robust out to 5 years [32].  

 

There are several shortcomings to this study. The small number of available studies limited a robust 

evaluation for some non-vaccine genotypes, notably HPV33, HPV52 and HPV58. This is particularly 

true for estimating seroconversion rates for Gardasil® vaccinees, which were represented by a 

single study or pair of studies in some cases. The small number of available studies also precluded 

an analysis of the influence of each variable (vaccine, age group, sampling time) independently. 

Thus, the differences in seropositivity due to the vaccine may have been confounded by the 

influence of the age at vaccination and the sampling time post third dose. This confounding likely led 

to the high heterogeneity scores seen here and potentially obscured more subtle effects of age and 

sampling time on seropositivity.  

 

This review evaluated studies incorporating a three-dose schedule. Reduced dose arms in vaccine 

trials have demonstrated non-inferior seropositivity to vaccine genotypes and similar vaccine 

efficacy [33, 34], resulting in a recommendation for a two dose schedule to be adopted worldwide 

[35]. However, reduced seropositivity to HPV31 has been demonstrated for less than three doses 

[36], which is likely to be a factor in the reduced vaccine efficacy observed against non-vaccine 

genotypes HPV31 and HPV45 in a post-hoc analysis of Cervarix® trial data [37]. Nevertheless, this 

report represents an analysis of the only available functional data with which to evaluate 

seroconversion rates against non-vaccine incorporated genotypes.  

 

Recently, the nonavalent Gardasil®9 vaccine comprising additional genetically related genotypes 

HPV31, HPV33, HPV45, HPV52 and HPV58 has demonstrated efficacy in a three dose schedule 

[38] and non-inferiority of antibody responses for two doses [39]. A nonavalent vaccine has the 

potential to reduce the incidence of cervical cancer by over 90% [3, 40], is expected to be cost 

effective [41, 42]. Nonavalent vaccine efficacy against persistent infection or low grade disease 

associated with any of these additional genotypes in the per protocol population was ≥96% which is 

considerably higher than any beneficial cross-protective vaccine efficacy induced by either the 
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bivalent or quadrivalent vaccines against these genotypes [24, 25, 43]. Although national 

immunization programmes will likely adopt the nonavalent vaccine in time, to date tens of millions of 

adolescent girls have been vaccinated with the bivalent or quadrivalent vaccine [44], for which a 

better understanding of their immunogenic properties including the seroconversion rates, breadth, 

magnitude and durability of the antibody responses against vaccine and non-vaccine genotypes is 

warranted.  
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Figure 1. Flowchart of the study selection process 

 

Figure 2. Pooled estimates for seroconversion against non-vaccine incorporated genotypes 

Estimates of seropositivity to each genotype following vaccination with either Gardasil® or 

Cervarix® pooled using a DerSimonian-Laird random effects model, with logit transformed outcome 

variables. Test for subgroup differences using Cochran’s Q-test.  

 

Figure 3. Comparison of neutralizing antibody seropositivity and reported vaccine efficacy 

Mean seropositivity data from this meta-analysis, derived using the random effects model are 

plotted against (a) efficacy against persistent infection and (b) efficacy against CIN2+ reported from 

trials of Cervarix® (blue points) and Gardasil® (red points) vaccinees for each non-vaccine HPV 

type (HPV31, HPV33, HPV45, HPV52 and HPV58). Vertical error bars represent exact 95% 

confidence intervals for the efficacy data, while horizontal error bars represent exact 95% 

confidence intervals for the neutralization seropositivity data. The best fitting linear relationship 

between the two variables (black line) and the 95% range of bootstrap estimates for this relationship 

(dotted lines) is also shown. Exact 95% confidence intervals for data points were calculated using 

the Fisher’s exact method for vaccine efficacy (1-odds ratio) and Clopper-Pearson for seropositivity. 

 

Figure 4. Vaccine and non-vaccine neutralizing antibody titers 

Neutralizing antibody titers against (a) HPV16 (dark shade) and HPV31 (light shade) and (b) HPV18 

(dark shade) and HPV45 (light shade) for Cervarix® (blue) and Gardasil® (red) vaccinees. First 

author name and year of publication given for each article with target age group (G, girls <18 years; 

W, women 18 or more years old) and sampling time (7 or 12 months post first dose; 7+ represents a 

range from 7-12 months for one study). Data represent the geometric mean (95%CI) neutralizing 

antibody titers apart from Kemp (2011) and Draper (2011) which represent the median (IQR) 

neutralizing antibody titers. Size of data points reflect approximate sample sizes in each study.  

 

Supplementary Figure. Pooled estimates for age group and sampling time 

Pooled estimates of seropositivity to (a, c) HPV31 and (b, d) HPV45 stratified by (a, b) age group or 

(c, d) sampling time following vaccination with either Cervarix® (denoted by an asterisk) or  

Gardasil® using a DerSimonian-Laird random effects model, with logit transformed outcome 

variables. Test for subgroup differences using Cochran’s Q-test.  
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Table 1. Study characteristics 

Author Year Sex 
Age 

group 
a
 

Medical 

exclusion 

criteria 

Setting HPV status 
Vaccines 

assessed 

Months 

post 1st 

dose 

HPV targets Reporter 
b
 

Assay 

threshold 
c
 

No. sera per 

target  

(Min – Max) 
d
 

Kemp 2011 F 18 - 25 Yes Trial Unselected Cervarix® M12 
16 18 31 45 52 

58 
seAP 10 (50%) 46 

Draper 2011 F 13 - 14 No Programme Unselected Cervarix® M12 
16 18 31 33 45 

52 58 
Luc 20 (80%) 69 

Einstein 2011 F 18 - 26 Yes Trial 

Seronegative 

and DNA 

negative 

Cervarix® 

and 

Gardasil® 

M7 16 18 31 45 seAP 40 (50%) 103 - 131 

Draper 2013 F 12 - 15 Yes Trial Unselected 

Cervarix® 

and 

Gardasil® 

M7 & M12 
16 18 31 33 45 

52 58 
Luc 20 (80%) 91 - 97 

Toft 2014 MF >18 Yes Trial 

Seronegative 

and DNA 

negative 

Cervarix® 

and 

Gardasil® 

M7 & M12 16 18 31 33 45 Luc 40 (50%) 12 - 26 

Barzon 2014 F 11 - 13 Yes Programme Unselected 

Cervarix® 

and 

Gardasil® 

M7 - M12 16 18 31 45 seAP 40 (50%) 50 - 126 

Herrin 2015 F 18 - 25 Yes Trial Unselected 

Cervarix® 

and 

Gardasil® 

M7 & M12 16 18 31 45 58 seAP 10 (50%) 7 - 12 

a 
Age range of participants except for Toft_2014 where median ages of Cervarix® vaccinees (47.0; IQR 38.6 – 54.2) and Gardasil® (44.5; 38.2 – 51.9) were given. 

b 
Assay readout makes use of Luciferase (Luc) or Secreted embryonic alkaline phosphatase (seAP) reporter gene expression 

c 
Assay threshold defined by lowest antibody titer considered positive and in parentheses the percentage reduction in reporter activity required to be considered positive 

d 
Number of serum used varies in some studies so numbers are presented as the minimum used (against any target type for any vaccine) to the maximum used. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Supplemental Figure 

 

 


