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Genome-wide association studies (GWAS) have transformed our understanding of testicular germ 

cell tumour (TGCT) susceptibility but much of the heritability remains unexplained. Here we report 

a new GWAS, a meta-analysis with previous GWAS and a replication series, totalling 7,319 TGCT 

cases and 23,082 controls. We identify 19 new TGCT risk loci, approximately doubling the number 

of known TGCT risk loci to 44. By performing in-situ Hi-C in TGCT cells, we provide evidence for a 

network of physical interactions between all 44 TGCT risk SNPs and candidate causal genes. Our 

findings reveal widespread disruption of developmental transcriptional regulators as a basis of 

TGCT susceptibility, consistent with failed primordial germ cell differentiation as an initiating step 

in oncogenesis1. Defective microtubule assembly and dysregulation of KIT-MAPK signalling also 

feature as recurrently disrupted pathways. Our findings support a polygenic model of risk and 

provide insight into the biological basis of TGCT.  

 

 

 

 

 

 

  



 

 

Testicular germ cell tumour (TGCT) is the most common cancer in men aged 18-45, with over 52,000 

new cases diagnosed annually worldwide2. The development of TGCT is strongly influenced by 

inherited genetic factors, which contributes to nearly half of all disease risk3 and is reflected in the 4-

to-8 fold increased risk shown in siblings of cases4-7. Our understanding of TGCT susceptibility has 

been transformed by recent genome-wide association studies (GWAS), which have so far identified 

25 independent risk loci for TGCT8-18.  Although projections indicate that additional risk variants for 

TGCT can be discovered by GWAS19, studies to date have been based on comparatively small sample 

sizes which have had limited power to detect common risk variants20.  

To gain a more comprehensive insight into TGCT aetiology we performed a new GWAS with 

substantially increased power, followed by a meta-analysis with existing GWAS and replication 

genotyping (totalling 7,319 cases/23,082 controls). Here we report both the discovery of 19 new 

TGCT susceptibility loci and refined risk estimates for the previously reported loci. In addition, we 

have investigated the gene regulatory mechanisms underlying the genetic associations observed at 

all 44 TGCT GWAS risk loci by performing in-situ chromosome conformation capture in TGCT cells 

(Hi-C) to characterize chromatin interactions between predisposition SNPs and target genes, 

integrating these data with a range of publicly available TGCT functional genomics data. 

 

We conducted a new GWAS using the Oncoarray platform (3,206 UK TGCT cases/7,422 UK controls), 

followed by a meta-analysis combining the two largest published TGCT GWAS datasets11,16 (986 UK 

cases/4,946 UK controls, 1,327 Scandinavian cases/6,687 Scandinavian controls) (Fig. 1).  To increase 

genomic resolution, we imputed >10 million SNPs using the 1000 Genomes Project as a reference 

panel. Quantile-Quantile (Q-Q) plots for SNPs with minor allele frequency (MAF) >5% post 

imputation did not show evidence of substantive over-dispersion (λ1000=1.03, Supplementary Fig. 1). 

We derived joint odds ratios (ORs) and 95% confidence intervals (CIs) under a fixed-effects model for 

each SNP with MAF >0.01. Finally we sought validation of 37 SNPs associated at P < 5.0 x 10-6, which 



 

 

did not map to known TGCT risk loci and displayed a consistent OR across all GWAS datasets, by 

genotyping an additional 1,801 TGCT cases and 4,027 controls from the UK. After meta-analysis of 

the three GWAS and replication series, we identified genome-wide significant associations (i.e. P < 5 

x 10-8) at 19 new loci (Table 1). We found no evidence for significant interactions between risk loci.  

To the extent that they have been deciphered, many GWAS risk loci map to non-coding regions of 

the genome and influence gene regulation. Across the 44 independent TGCT risk loci (19 new and 25 

previously reported), we confirmed a significant enrichment of enhancer/promoter associated 

histone marks, including H3K4me1, H3K4me3 and H3K9ac, using available ChIP-Seq data from the 

TGCT cell line NTERA2 (P<5.0x10-3) (Supplementary Table 1). Moreover this enrichment showed 

tissue specificity when compared to 41 other cell lines from the ENCODE21 project (Supplementary 

Fig. 2). These observations support the assertion that the TGCT predisposition loci influence risk 

through effects on cis-regulatory networks, and are involved in transcriptional initiation and 

enhancement. Since genomic spatial proximity and chromatin looping interactions are fundamental 

for regulation of gene expression we performed in situ capture Hi-C of promoters in NTERA2 cells to 

link risk loci to candidate target genes. We also sought to gain insight into the possible biological 

mechanisms for the associations by performing tissue-specific expression quantitative trait loci 

(eQTL) analysis for all risk SNP and target gene pairs (Supplementary Fig. 3, Supplementary Table 2). 

We analysed RNA-seq data from both normal testis (GTEx project22) and TGCT (TCGA), 

acknowledging that the latter may be affected by the issue of tumour purity, in addition to 

dysregulated gene expression that typifies cancer. Accepting this limitation and that further 

validation may be required, eQTL analysis was conducted in both datasets based on the established 

network of enhancer/ promoter variants, to maximise our ability to find statistically significant 

associations after correcting for multiple testing. We additionally annotated risk loci with variants 

predicted to disrupt binding motifs of germ cell specific transcription factors (TF) (see methods). 

Finally, direct promoter variants and non-synonymous coding mutations for genes within the 44 risk 

loci were denoted (Table 2, Fig. 2).  



 

 

 

Although preliminary and requiring functional validation, three candidate disease mechanisms 

emerge from analysis across the 44 loci. Firstly, 10 of the risk loci contain candidate genes linked to 

developmental transcriptional regulation, as evidenced by Hi-C looping interactions (at 8p23.1, 

20q13.2), eQTL effects (at 4q22.3, 8p23.1), promoter variants (at 8q13.3, 9p24.3, 12q15, 17q12, 

19p12) and coding variants (at 2p13.3, 16q24.2) (Table 2). Notably the new TGCT risk locus at 8p23.1 

features a looping chromatin interaction from risk SNP rs17153755 to the promoter of GATA4, which 

is supported by an overlapping predicted strong enhancer region and a nominal eQTL effect (TCGA 

data, P=3.1 x 10-2) (Fig. 3a). The rs17153755 risk allele was associated with down-regulation of 

GATA4 expression, consistent with the hypothesised role of GATA4 as a tumor suppressor gene23,24. 

In addition the risk locus at 16q24.2 only contains a single gene ZFPM1 (alias FOG, Friend of GATA1), 

which encodes an essential regulator of GATA125, in which we noted a predicted damaging 26 

missense polymorphism (rs3751673, NP_722520.2:p.Arg22Gly). The GATA family of transcription 

factors are expressed throughout postnatal testicular development27, and play a key role in ensuring 

correct tissue specification and differentiation28. We also observed promoter variants at 8q13.3 and 

9p24.3, providing support respectively for the role of PRDM14 and DMRT1 in TGCT oncogenesis, 

both of which encode important transcriptional regulators of germ cell specification and sex 

determination29-32. Of final note the new locus at 20q13.2 was characterized by a predicted 

disrupted POU5F1 binding motif, together with a looping Hi-C contact from risk SNP rs12481572 to 

the promoter of SALL4, a gene associated with the maintenance of pluripotency in embryonic stem 

cells33.   

Secondly, candidate genes with roles related to microtubule/chromosomal assembly were 

implicated at five TGCT risk loci, supported by Hi-C looping interactions (at 1q22, 15q25.2), eQTL 

effects (at 15q25.2, 17q22), promoter variants (at 1q22, 4q24) and coding variants (at 21q22.3). 

Notably at locus 17q22 we observed a promoter variant (rs302875) which displays a strong eQTL 



 

 

effect (GTEx data, P=4.9 x 10-7) on TEX14 (Testis-Expressed 14), which encodes an important 

regulator of kinetochore-microtubule assembly in testicular germ cells14,34,35. At new risk locus 

15q25.2 we identified a nominal eQTL association (rs2304416, TCGA data, P=3.2 x 10-2) and 

accompanying chromatin looping interaction with mitotic spindle assembly related gene WDR7336 

(Fig. 3b). WDR73 encodes a protein with a crucial role in the regulation of microtubule organization 

during interphase37 and biallelic mutations cause Galloway-Mowat Syndrome, a human syndrome of 

nephrosis and neuronal dysmigration.  Finally the functional analysis also highlighted microtubule 

assembly related genes PMF1, CENPE and PCNT 38-41 as candidates at 1q22, 4q24 and 21q22.3 

respectively. 

Thirdly, the central role of KIT-MAPK signalling in TGCT oncogenesis was further supported at four 

loci, by Hi-C looping interactions (at 11q14.1, 15q22.31), eQTL effects (at 6p21.31) and promoter 

variants (at 6p21.31, 11q14.1, 15q22.31). Recent tumour sequencing studies have established that 

KIT is the major somatic driver gene for TGCT42 and a relationship between the previously identified 

risk SNP rs995030 (12q21) and KITLG expression has been demonstrated through allele-specific p53 

binding by Zeron-Medina et al43. Here we report a new locus at 15q22.31, containing a variant within 

the promoter of MAP2K1 (Fig. 3c), which raises the prospect of further elucidating mechanisms of 

KIT-MAPK signalling in driving TGCTs. MAP2K1 (alias MEK1) is downstream of c-Kit and MEK1 

inhibition slows primordial germ cell growth in the presence of KIT ligand44. If MAP2K1 is confirmed 

as a causal gene at 15q22.31, the study of somatic KIT mutational status in patients carrying the risk 

allele at 15q22.31 should be highly informative. In addition, within the 11q14.1 risk locus, we 

identify a candidate promoter variant for GAB2, which encodes a docking protein for signal 

transduction to MAPK and PI3K pathways which interacts directly with KIT45. Finally in our analysis 

we identify both a candidate promoter variant and a nominal eQTL effect for BAK1 (6p21.31)(TCGA 

data, P=1.9 x 10-2), which encodes a protein regulating apoptosis which binds with KIT 40. While we 

have sought to decipher the functional basis of risk loci based on the cumulative weight of evidence 

across eQTL, Hi-C and ChIP-seq  data, a limitation has been reliance on relatively small sample size 



 

 

for eQTL analysis. Access to larger eQTL datasets in testicular tissue are likely in the future to address 

this deficiency enabling a better definition of the causal basis of TGCT risk at each locus. 

 

The 44 risk loci which have now been identified for TGCT collectively account for 34% of the (father-

to-son) familial risk and hence have potential clinical utility for personalized risk profiling. To assess 

this potential, we constructed polygenic risk scores (PRS) for TGCT, considering the combined effect 

of all risk SNPs modelled under a log-normal relative risk distribution. Using this approach the men in 

the top 1% of genetic risk have a relative risk of 14 which translates to a 7% lifetime risk of TGCT 

(Supplementary Fig. 4).  

 

In summary, we have performed a new TGCT GWAS, identifying 19 new risk loci for TGCT, 

approximately doubling the number of previously reported SNPs. Using capture Hi-C we have 

generated a chromatin interaction map for TGCT, providing direct physical interactions between 

non-coding risk SNPs and target gene promoters. Moreover integration of these data together with 

ChIP-seq chromatin profiling and RNA-seq eQTL analysis, accepting certain caveats, has allowed us to 

gain preliminary but unbiased tissue-specific insight into the biological basis of TGCT susceptibility. 

This analysis suggests a model of TGCT susceptibility based on transcriptional dysregulation, which is 

likely to contribute to the developmental arrest of primordial germ cells coupled with chromosomal 

instability through defective microtubule function and accompanied upregulation of KIT-MAPK 

signalling. 

 

  



 

 

METHODS 

 

Sample description 

TGCT cases were from the UK (n=5,992) and Scandinavia (n=1,327). The UK cases were ascertained 

from two studies (1) a UK study of familial testicular cancer and (2) a systematic collection of UK 

collection of TGCT cases. Case recruitment was via the UK Testicular Cancer Collaboration, a group of 

oncologists and surgeons treating TGCT in the UK (Supplementary note 1). The studies were co-

ordinated at the Institute of Cancer Research (ICR). Samples and information were obtained with full 

informed consent and Medical Research and Ethics Committee approval (MREC02/06/66 and 

06/MRE06/41).  Additional (n=1,327) case samples of Scandinavian origin were used from a 

previously published GWAS16. 

Control samples for the primary GWAS were all taken from within the UK. Specifically 2,976 cancer-

free, male controls were recruited through two studies within the PRACTICAL Consortium 

(Supplementary note 2): (1) the UK Genetic Prostate Cancer Study (UKGPCS) (age <65), a study 

conducted through the Royal Marsden NHS Foundation Trust and (2) SEARCH (Study of Epidemiology 

& Risk Factors in Cancer), recruited via GP practices in East Anglia (2003-2009). 4,446 cancer-free 

female controls from across the UK were recruited via the Breast Cancer Association Consortium 

(BCAC). Controls from the UK previously published GWAS11 were from two sources within the UK: 

2,482 controls were from the 1958 Birth Cohort (1958BC), and 2,587 controls were identified 

through the UK National Blood Service (NBS) and were genotyped as part of the Wellcome Trust 

Case Control Consortium. Additional (n=6,687) control samples of Scandinavian origin were used in 

the meta-analysis, and have been previously described16. Control samples for replication genotyping 

(n=4,027) were taken from two studies, the national study of colorectal cancer genetics (NSCCG)46 

and GEnetic Lung CAncer Predisposition Study (GELCAPS)47. NSCCG and GELCAP controls were 

spouses of cancer patients with no personal history of cancer at time of ascertainment. 



 

 

 

Primary GWAS 

Genotyping was conducted using a custom Infinium OncoArray-500K BeadChip (Oncoarray) from 

Illumina (Illumina, San Diego, CA, USA), comprising a 250K SNP genome-wide backbone and 250K 

SNP custom content selected across multiple consortia within COGS (Collaborative Oncological 

Gene-environment Study). Oncoarray genotyping was conducted in accordance with the 

manufacturer’s recommendations by the Edinburgh Clinical Research Facility, Wellcome Trust CRF, 

Western General Hospital, Edinburgh EH4 2XU.  

 

Published GWAS 

The UK and Scandinavian GWAS have been previously reported8,11,13. Briefly the UK GWAS comprised 

986 cases genotyped on the Illumina HumanCNV370-Duo bead array (Ilumina, San Diego, CA, USA) 

and 4,946 controls genotyped on the Illumina Infinium 1.2M array. We analysed  data on a common 

set of 314,861 SNPs successfully genotyped by  both arrays.  The Scandinavian GWAS 16, comprised 

1,326 cases and 6,687 controls genotyped using the Human OmniExpressExome-8v1 Illumina array.   

 

Quality Control of GWAS  

Oncoarray data was filtered as follows, we excluded individuals with low call rate (<95%), with 

abnormal autosomal heterozygosity or with >10% non-European ancestry (based on multi-

dimensional scaling). We filtered out all SNPs with minor allele frequency <1%, a call rate of <95% in 

cases or controls or with a minor allele frequency of 1–5% and a call rate of <99%, and SNPs 

deviating from Hardy-Weinberg equilibrium (10-12 in controls and 10-5 in cases). The final number of 

SNPs passing quality control filters was 371,504. Quality control (QC) procedures for the UK and 

Scandinavian GWAS have been previously described8,11,13,16. 



 

 

 

Imputation 

Genome-wide imputation was performed for all GWAS datasets. The 1000 genomes phase 1 data 

(Sept-13 release) was used as a reference panel, with haplotypes pre-phased using SHAPEIT248. 

Imputation was performed using IMPUTE2 software49 and association between imputed genotype 

and TGCT was tested using SNPTEST 50, under a frequentist model of association. QC was performed 

on the imputed SNPs; excluding those with INFO score < 0.8 and MAF < 0.01. 

 

Replication genotyping  

Replication genotyping of the 37 SNPs was performed by allele-specific KASPar allele-specific SNV 

primers51. Genotyping was conducted by LGC Limited, Unit 1-2 Trident Industrial Estate, Pindar Road, 

Hoddesdon, UK.  

 

Statistical Analysis  

Study sample size was chosen in order to achieve >50% power to detect common variants, defined 

as MAF > 5%, OR > 1.320. For Oncoarray data tests of association between imputed SNPs and TGCT 

was performed under a probabilistic dosage model in in SNPTESTv2.552, adjusting for principal 

components. Inflation in the test statistics was observed at only modest levels, λ1000=1.03. The 

inflation factor λ was based on the 90% least-significant SNPs53. The adequacy of the case-control 

matching and possibility of differential genotyping of cases and controls were formally evaluated 

using Q-Q plots of test statistics (Supplementary Fig. 1). Population ancestry structure for the UK 

and Scandinavian cohorts was assessed through visualisation of the first two principle components 

(Supplementary Fig. 5); stable ancestral clustering was observed (Supplementary Table 3). 



 

 

Statistical analysis of previously reported GWAS was performed as previously described8,11,13,16,54.  

Meta-analyses were performed using the fixed-effects inverse-variance method based on the β 

estimates and standard errors from each study using META v1.655. Cochran's Q-statistic to test for 

heterogeneity and the I2 statistic to quantify the proportion of the total variation due to 

heterogeneity were calculated56. For each new locus we examined evidence of departure from a log-

additive (multiplicative) model, to assess any genotype specific effect. Using the Oncoarray data 

individual genotype data ORs were calculated for heterozygote (ORhet) and homozygote (ORhom) 

genotypes, which were compared to the per allele ORs. We tested for a difference in these 1d.f. and 

2d.f. logistic regression models to assess for evidence of deviation (P<0.05) from a log-additive 

model. Using Oncoarray data we examined for statistical interaction between any of the 44 TGCT 

predisposition loci by evaluating the effect of adding an interaction term to the regression model, 

adjusted for stage, using a likelihood ratio test (using a significance threshold of P < 2.58 x 10-5 to 

account for 1,936 tests). Regional plots were generated using visPIG software57 (Supplementary Fig. 

6).  Polygenic risk scores (PRS) were constructed using the methodology of Pharoah et al58, based on 

a log-normal distribution LN (µ, 2) with mean µ and variance 2 (i.e. relative risk is normally 

distributed on a logarithmic scale).  The 0.5% lifetime risk of TGCT risk was based on 2014 UK data59, 

multiplied by relative risk to give lifetime risk per percentile of the PRS. For calculation of the 

proportion of TGCT genetic risk explained by the 44 loci, a father-to-son relative risk of four was 

used. 

 

Chromatin mark enrichment analysis 

To examine enrichment in specific ChIP-seq tracks across risk loci we adapted the variant set 

enrichment method of Cowper-Sal lari et al60. Briefly, for each risk locus, a region of strong LD was 

defined (i.e. R2 > 0.8 and D’ > 0.8), and SNPs mapping to these regions were termed the associated 

variant set (AVS). Histone ChIP-seq uniform peak data was obtained from ENCODE21 for the NTERA2 



 

 

cell line, and data was included for four histone marks. For each of these marks, the overlap of the 

SNPs in the AVS and the binding sites was determined to produce a mapping tally. A null distribution 

was produced by randomly selecting SNPs with the same LD structure as the risk associated SNPs, 

and the null mapping tally calculated. This process was repeated 10,000 times, and approximate P-

values were calculated as the proportion of permutations where null mapping tally was greater or 

equal to the AVS mapping tally. An enrichment score was calculated by normalizing the tallies to the 

median of the null distribution. Thus the enrichment score is the number of standard deviations of 

the AVS mapping tally from the mean of the null distribution tallies. Tissue specificity was assessed 

by comparison of enrichment levels in NTERA2, compared to 41 other cell lines from ENCODE21, with 

analysis performed using the same method as above (Supplementary Fig. 2).  

 

Promoter Hi-C 

In situ Hi-C libraries were prepared as described by Rao et al.61 with the following modifications: (i) 

25 million cells were fixed and processed; (ii) HindIII enzyme (NEB, Ipswich, MA, USA) was used and 

digestion was performed overnight; (iii) ligation was performed overnight at 16C; (iv) 3 µl of 15 µM 

annealed PE adaptors were ligated incubating 3 µl of T4 DNA ligase (NEB, Ipswich, MA, USA) for 2h at 

RT; (vi) 6 cycles of PCR were performed to amplify the libraries before capture. A Sure Select 

(Agilent, Santa Clara, CA, USA) custom promoter kit was used to perform capture with the same 

design as described by Misfud et al.62. For each capture reaction, 750 µg of Hi-C libraries were used. 

Capture was performed following the manufacture protocol and employing a custom reagent kit 

(Agilent, Santa Clara, CA, USA). Final PCR amplification was performed using 5 cycles to minimise PCR 

duplicates. 2x100bp sequencing was performed using Illumina HiSeq2000 or 2500 technology 

(Illumina, San Diego, CA, USA). The HiCUP pipeline63 was used to process raw sequencing reads, map 

di-tag positions against the reference human genome and remove duplicate reads. The protocol was 

performed for two independent NTERA2 biological replicates, with cells obtained from the 



 

 

laboratory of Prof. Janet Shipley (The Institute of Cancer Research, London) and their identity 

independently confirmed through STR typing at an external laboratory (Public Health England, 

Porton Down, UK). Cells were tested and found to be negative for mycoplasma contamination. Both 

Hi-C libraries achieving the following quality control thresholds: >80% reads uniquely aligning, >80% 

valid pair rate, >85% unique di-tag rate and >80% of interactions being cis (Supplementary Table 4).  

Statistically significant interactions were called using the CHiCAGO pipeline64, with both biological 

replicates processed in parallel to obtain a unique list of reproducible NTERA2 contacts. Stability of 

results across replicates was also verified by processing each sample individually and comparing the 

significance scores of called interactions; strong correlation was observed between the replicates (r 

= 0.8, P < 5.0 x 10-10, Supplementary Fig. 7). Interactions with a -log(weighted P-value) > 5 were 

considered significant. To avoid short-range proximity bias interactions of <40kb were excluded. The 

distribution of interaction distances closely matched the prior published dataset of Misfud et al.62 

(Supplementary Fig. 8). A Hi-C track plotting read pair counts per HindIII fragment has been added 

to region plot figures to demonstrate the underlying signal strength of significant Hi-C contacts. 

 

3C Validation 

3C was used to validate selected chromatin interactions detected by CHi-C (3p24.3, 4q24, 11q14.1, 

15q22.31, 15q25.2, 16q12.1, and 16q23.1) (Supplementary Fig. 9, Supplementary Table 5). Three 

replicates of in situ 3C libraries were prepared using NTERA2 cells. Cell pellets were crosslinked, 

digested with HindIII, and ligated. Libraries were purified by phenol-chloroform extraction. 

For each loci one or more bacterial artificial chromosomes (BACs; Source BioScience, Nottingham, 

UK) were used as an internal standard (Supplementary Table 6). Clones were streaked and grown 

before extracting DNA using a QIAGEN Plasmid Maxi Kit (QIAGEN, Hilden, Germany) which was  

purified by phenol-chloroform extraction. In loci covered by more than one clone, equimolar 



 

 

solutions of clones were prepared. Randomly ligated 3C libraries were generated for each BAC or 

equimolar solution of BACs.  

Unidirectional primer pairs were designed to amplify ligation junctions of the bait and other 

interacting HindIII fragment (promoter-element, P-E) and around the bait and a flanking control 

HindIII fragment in between the promoter and distal element (promoter-control, P-C) using 

Primer365 (Supplementary Tables 7 and 8). Regions were amplified using both P-E and P-C primer 

pairs in BAC and NTERA2 libraries using a QIAGEN Multiplex PCR Kit (QIAGEN, Hilden, Germany). 5 ng 

and 100 ng of BAC and NTERA2 library template DNA, respectively, were amplified using the 

following procedure: initial 15 minute denaturation at 95°C followed by 38 cycles of 94°C for 0.5 

minutes, annealing temperature specific to primer pair for 1.5 minutes seconds, 72°C extension for 

1.5 minutes, followed by a final 10 minute extension at 72°C extension. 5 µl of each PCR reaction 

was visualised on 2% agarose gels stained with ethidium bromide. ImageJ66 was used to quantify 

intensities of PCR products and normalise for differential primer efficiency by comparing to 

equimolar BAC PCR products.  

P-E fragments were Sanger sequenced in NTERA2 libraries to confirm fragments visualised on   

agarose gels as expected  (Supplementary Fig. 10). 

 

Chromatin state annotation 

We used ChromHMM67 to infer chromatin states by integrating information on histone modifications 

and DNaseI hypersensitivity data to identify combinatorial and spatial patterns of epigenetic marks. 

Aligned next generation sequencing reads from ChIP-Seq and DNAse-Seq experiments on the 

NTERA2 cells were downloaded from ENCODE21. Read-shift parameters for ChIP-Seq data were 

calculated using PHANTOMPEAKQUALTOOLS. Genome-wide signal tracks were binarized (including 

input controls for ChIP-Seq data) and a set of learned models were generated using ChromHMM 

software67. The parameters of the highest scoring model were retained and model states were 



 

 

iteratively reduced down from 30 to 5 states. A 27-state model found to be stable and was 

subsequently used for segmenting the genome at 200bp resolution (Supplementary Fig. 11).  

 

Expression quantitative trait locus analysis 

We investigated for evidence of association between the SNPs at each locus and tissue specific 

changes in gene expression using two publically available resources: (i) RNAseq and Affymetrix 6.0 

SNP data for 150 TGCT patients from The Cancer Genome Atlas and (ii) normal testicular tissue data 

from GTEx from 157 samples22.  Associations between normalized RNA counts per-gene and 

genotype were quantified using R package ‘Matrix eQTL’. Box plots of all eQTL associations are 

presented in Supplementary Fig. 3 and the tissue in which the association was observed (TGCT or 

normal testis), along with any other tissues resulting in a positive association, are denoted in 

Supplementary Table 2. To reduce multiple testing, association tests were only performed between 

SNP and gene pairs where either: (i) a direct promoter variant was observed (as per column six of 

Table 2) or (ii) a Hi-C contact to a gene promoter was observed (as per column nine of Table 2), 

together with functionally active chromatin (as per column seven of Table 2). The SNP used for 

testing at each locus was selected based on the closest available proxy (highest R2) to the functional 

variant (i.e. the promoter or Hi-C contact variant), rather than using the sentinel SNP with the 

strongest TGCT association. Finally, as a comparison all possible gene/variant eQTL combinations 

were also tested at each locus (ignoring the functional Hi-C/promoter/CHiP-seq data), to provide a 

reference overview of all possible eQTL associations at each locus (Supplementary Table 9).  

 

Transcription factor binding motif analysis 

The impact of variants on regulatory motifs was assessed for a set of transcription factors (TF) 

associated with germ cell development. A germ cell specific TF set was utilized, rather than all TF 



 

 

globally, to provide increased specificity. An OMIM68 search-term-driven method was used to define 

the germ cell development TF set, using the following search terms: “germ cell” AND “development” 

AND “transcription factor” (n=46). The TF list was then intersected with predicted TF binding motifs 

based on a library of position weight matrices computed by Kheradpour and Kellis (2014)69 70. The 

intersected dataset contained motif position data for 10 TFs:  DMRT1, GATA, KLF4, LHX8, NANOG, 

POU5F1, PRDM1, SOX2, SOX9, and CTCF. To validate the specificity of these motifs for TGCT we 

conducted variant set enrichment analysis, using the same method as detailed above (based on 

Cowper-Sal lari et al60), which confirmed enrichment for disruption of these 10 motifs in the 44 TGCT 

risk loci compared to the null distribution (Supplementary Table 10). 

 

Integration of functional data 

For the integrated functional annotation of risk loci LD blocks were defined as all SNPs in R2 > 0.8 

with the sentinel SNP. Risk loci were then annotated with six types of functional data: (i) presence of 

a Hi-C contact linking to a gene promoter, (ii) presence of an expression quantitative trait locus, (iii) 

presence of a ChIP-seq peak, (iv) presence of a disrupted transcription factor binding motif, (v) 

presence of a variant within a gene promoter boundary, with boundaries defined using the Ensembl 

regulatory build71, (vi) presence of a non-synonymous coding change. Candidate causal genes were 

then assigned to TGCT risk loci using the target genes implicated in annotation tracks (i), (ii), (v) and 

(vi). Where the data supported multiple gene candidates, the gene with the highest number of 

individual functional data points was assigned to be the candidate. Where multiple genes have the 

same number of data points all genes are listed. Competing mechanisms for the same gene (e.g. 

both coding and promoter variants) were allowed. 
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FIGURES AND TABLE LEGENDS 

Figure 1 - Study design. 

Figure 2 - Circos plot of integrated functional analysis for all 44 TGCT risk loci. Inner-most ring 
represents the presence of a Hi-C contact in the NTERA2 cell line, the next four rings are narrow-
peak histone ChIP-seq tracks for NTERA2, the sixth ring represents -log P values of TGCT risk 
association from the Oncoarray GWAS data with green line denoting genome-wide significance and 
the seventh ring (outer-most) is the functional annotation and classification of candidate causal 
genes. 

Figure 3A-C – Regional plots of three new TGCT loci at A) 8p23.1, B) 15q25.2 and C) 15q22.31. 
Shown by triangles are the −log10 association P values of genotyped SNPs, based on Oncoarray data. 
Shown by circles are imputed SNPs at each locus. The intensity of red shading indicates the strength 
of LD with the sentinel SNP (labelled). Also shown are the SNP build 37 coordinates in mega-bases, 
recombination rates in centi-morgans (in light blue) and the genes in the region. Below the gene 
transcripts are Hi-C next generation sequencing read pair counts (gaps represent bait locations) and 
significant Hi-C interactions. Below the axis is a zoomed-in section displaying the surrounding genes 
for each SNP, the predicted chromHMM states along with an arc depiction of the same Hi-C 
contact(s). 

Table 1 – Summary of genotyping results for all genome-wide TGCT risk SNPs (n=44). 

Table 2 – Summary of functional annotation. 
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rs070F66F 6 2F6F86686 ABG F/55 F/58 F/55 F/59 F/56 F/62

rs4862848 4 188921440 A/G 0.38 0.35 0.38 0.34 0.37 0.32

rs07562FF 8 2086826 CBA F/68 F/8F F/65 F/82 F/66 F/8F

rs58F8665 8 25656070F CBA F/58 F/57 F/55 F/58 F/55 F/58

rs660680F 8 262682788 GBA F/57 F/66 F/57 F/66 F/6F F/69

rs02F258 6 55860858 ABG F/08 F/29 F/07 F/29 F/08 F/28

rs11155671 6 149972132 G/A 0.31 0.35 0.32 0.34 0.33 0.36

rs20699677 7 2968985 TBC F/60 F/57 F/60 F/58 F/58 F/58

rs17689040 7 40920313 C/G 0.46 0.42 0.44 0.42 0.44 0.40

rs17153755 8 11611500 C/G 0.32 0.36 0.34 0.35 0.36 0.40

rs7F2F260 8 7F9768F8 CBT F/58 F/58 F/58 F/59 F/57 F/62

rs7F6FF06 9 868826 ABC F/28 F/08 F/26 F/08 F/29 F/08

rs72F7276 22 779966F5 CBA F/28 F/26 F/27 F/28 F/29 F/27

rs648090 11 125071163 A/G 0.27 0.30 0.27 0.29 0.28 0.31

rs09FF555 20 26685867 CBT F/56 F/58 F/50 F/58 F/58 F/57

rs4931000 12 32141495 A/G 0.24 0.22 0.24 0.22 0.22 0.19

rs7315956 12 70563865 A/G 0.35 0.33 0.36 0.33 0.33 0.30

rs5780282 20 88985862 CBA F/2F F/00 F/22 F/00 F/F7 F/27

rs1009647 14 55880047 G/A 0.25 0.27 0.24 0.28 0.26 0.27

rs11071896 15 66821250 A/G 0.28 0.25 0.29 0.25 0.27 0.25

rs56046484 15 85605427 G/T 0.18 0.21 0.18 0.21 0.21 0.22

rs6862685 26 2290FF57 ABG F/57 F/58 F/58 F/56 F/56 F/55

rs7404843 16 15530708 T/G 0.13 0.11 0.14 0.11 0.15 0.12

rs8F66268 26 8F260966 ABG F/0F F/02 F/28 F/00 F/27 F/29

rs6888060 26 7667F688 CBT F/67 F/8F F/67 F/82 F/66 F/82

rs88657667 26 88869066 CBG F/62 F/58 F/60 F/57 F/57 F/58

rs78F2959 27 562F2286 TBC F/58 F/6F F/58 F/62 F/55 F/58

rs99F87F6 27 86650865 GBT F/07 F/55 F/08 F/55 F/06 F/09

rs9966612 18 649311 A/G 0.36 0.34 0.31 0.28 0.31 0.30

rs0298987 29 06269868 CBT F/20 F/25 F/0F F/05 F/28 F/05

rs2241024 19 28257393 G/A 0.18 0.22 0.18 0.20 0.17 0.21

rs4599029 19 54284689 G/T 0.24 0.27 0.25 0.26 0.26 0.28

rs12481572 20 50708054 A/T 0.21 0.18 0.22 0.20 0.20 0.18

rs0859286 02 6769FF68 CBT F/8F F/66 F/80 F/67 F/68 F/66

rs739525 22 21332441 T/C 0.45 0.48 0.44 0.47 0.44 0.46



SupplementaryPtablePV >PNGSPmetricsPforPCHiCPlibraries5PThePtablePreportsPHiCPlibrariesPmetricsPobtainedPusingPHICUPPpipeline5

TotalPReadsP
ProcessedP TruncatedP qTruncated NotPtruncated qNotPtruncated

AveragePlengthP
truncatedPsequence

NTERA6_CHiC_replicate6_R6 6267626<M27F-P MF62FM-26kzP M657 <Wk2<-W2<F<P zk57 -z5MF
NTERA6_CHiC_replicate6_RM 6267626<M27F-P MMW2F-z2MF7P M75W <zV2<MV2<7-P zk5V -W5Vz
NTERA6_CHiC_replicateM_R6 -Fk2WkW2kkVP 67<2M--2kzVP M756 VF62VV627M7P zk5k -z5V
NTERA6_CHiC_replicateM_RM -Fk2WkW2kkVP 67M2k-72zWkP 6k56 VFW2zVW2MM-P <75k -W5z

TotalPreadsP
processedP

ReadsPtooP
shortPtoPmapP

qReadsPtooPshortP
toPmap

UniqueP
alignments

qUniquePalignments MultiplePalignments
qMultipleP

alignments
FailedPtoPalign

qfailedPtoP
align

Paired qPaired

NTERA6_CHiC_replicate6_R6 6267626<M27F-P 672<Vk2<kFP 657 k6M2FkM2M7FP <M5k <-27M<2WzMP z5z kM2k662MWzP <5V zW72VW-2F6zP Wk56
NTERA6_CHiC_replicate6_RM 6267626<M27F-P 672kW62FWVP 657 <kk2VFk2M<zP <65z <-2<V72MVFP z5< 67V2kV626V6P k5- zW72VW-2F6zP Wk56
NTERA6_CHiC_replicateM_R6 -Fk2WkW2kkVP -2MV<2WW<P 657 VW-2k<62Wk-P <W5F F-2<Mz2<z<P W5W FM2WF<2z-FP W57 V762FF72FFFP zV5V
NTERA6_CHiC_replicateM_RM -Fk2WkW2kkVP -26--27<6P 657 V-z2<-V2-z<P <V5< FW2FFV2F6WP W5z V72F-F276kP z5- V762FF72FFFP zV5V

TotalPpairsP ValidPpairsP
SameP

circularised
SamePdanglingP

ends SamePinternal Re3ligation
ContiguousP
sequence WrongPsize

NTERAM_CHiC_replicate6 zW72VW-2F6zP WM<2k7F2FkMP W2MVW2<WWP F27Vk2-MWP F72z<z2MFFP MM2<WF2kz<P 62k-<2<7FP WW2W--2-6kP
NTERAM_CHiC_replicateM V762FF72FFFP FFV2W6-2WM7P F2Fkk2777P 62F6727<WP M62W7F2FzkP 6W2z6<2zVkP 62FFM26FMP MM2F-62FWzP

TotalPpairsP ValidPpairsP
SameP

circularised
SamePdanglingP

ends SamePinternal Re3ligation
ContiguousP
sequence WrongPsize

NTERAM_CHiC_replicate6 zW72VW-2F6zP <M5zP 75<P 75VP V57P F57P 75FP <5<P
NTERAM_CHiC_replicateM V762FF72FFFP <F5VP 75<P 75FP -5VP V5MP 75FP -5WP

ReadPpairsP
processedP UniquePdi3tagsP

CisP<67kbpPofP
uniques

CisP>67kbpPofP
uniques TransPofPuniques

NTERAM_CHiC_replicate6 WM<2k7F2FkMP -FV2kzk2MM<P -W2k-V2MVkP FzV2zz<2kk6P 67F2MV-2k<<P
NTERAM_CHiC_replicateM FFV2W6-2WM7P M<k26k<27MzP FM2V-V2W6FP M7M2z6F2<W6P -V27Mk2--FP

ReadPpairsP
processedP UniquePdi3tagsP

CisP<67kbpPofP
uniques

CisP>67kbpPofP
uniques TransPofPuniques

NTERAM_CHiC_replicate6 MW<2W-z2V6zP <-56P 675W z756 6k5F
NTERAM_CHiC_replicateM F6F2<zF2<6WP <W5VP 665M z756 6<5z



Supplementary Table 5. 3C PCR raw densitometry values. 
 

Region Gene Library 

Promoter-Element Promoter-Control 

Area 
Ave 
RIF 

SD Area 
Ave 
RIF 

SD 

3p24.3 OXNAD1 

BAC 28912 

0.6 0.04 

26922 

0.3 0.06 
NTERA 3C 1 17588 9514 

NTERA 3C 2 18555 8319 

NTERA 3C 3 16175 6337 

4q24 MANBA 

BAC 11332 

0.4 0.14 

12847 

0.1 0.11 
NTERA 3C 1 2817 801 

NTERA 3C 2 3922 0 

NTERA 3C 3 5986 2850 

11q14.1 GAB2 

BAC 18938 

0.5 0.05 

20513 

0.3 0.02 
NTERA 3C 1 7931 5114 

NTERA 3C 2 8181 5693 

NTERA 3C 3 9834 4996 

15q22.31 MAP2K1 

BAC 13082 

1.0 0.27 

18873 

0.4 0.19 
NTERA 3C 1 11778 6703 

NTERA 3C 2 9764 3794 

NTERA 3C 3 16525 10980 

15q25.2 WDR73 

BAC 10260 

0.3 0.05 

8498 

0.1 0.03 
NTERA 3C 1 3086 1459 

NTERA 3C 2 2077 940 

NTERA 3C 3 2623 1217 

16q12.1 HEATR3 

BAC 18000 

0.8 0.05 

12470 

0.4 0.14 
NTERA 3C 1 12946 2843 

NTERA 3C 2 14069 5914 

NTERA 3C 3 14747 5786 

16q23.1 RFWD3 

BAC 16783 

0.8 0.04 

18294 

0.4 0.16 
NTERA 3C 1 12543 4654 

NTERA 3C 2 13042 8216 

NTERA 3C 3 13857 10492 

 
RIF, relative interaction frequency; area, area under the graph; SD, standard deviation. 

 



Supplementary Table 6. Bacterial artificial chromosomes (BACs) from the RPCI human BAC library 11 
(RP11) used in 3C validation of selected CHi-C interactions 

 Region BAC 

3p24.3 
RP11-66J2 
RP11-1044H7 

4q24 
RP11-10L12 
RP11-671L17 

11q14.1 
RP11-1149C10 
RP11-767F3 

15q22.3 RP11-962J19 

15q25.2 
RP11-106C19 
RP11-418F16 

16q12.1 RP11-625L17 

16q23.1 RP11-1113K6 



Supplementary Table 7. PCR primers used to amplify promoter-control interactions in 3C validation 
of selected CHi-C interactions.  

 
 
 
 

Primer Sequence (5’-3’) 

3p24.3 promoter ACCTACCCCATCACTCTTACTCCCTTTATC 

3p24.3 control  AAGATGGGAATTTGTAAAATGCAGCAGTGT 

4q24 promoter TACAGACTCAGATGAAGTTCCATGCCACAG 

4q24 control  CTGTTGCTCCGTACCCTTGCCAAGATTTAG 

11q14.1 promoter CCTGTCTGGGAGTTGAGGGTTTGTGGCC 

11q14.1 control  GGGGTCTGGGAGCTTCACCTGAAAAGTAAC 

15q22.3 promoter TGTTCTCTTCACTCATGCACTCTAGCCACA 

15q22.3 control  TACTTGTGAAAGAGATGACTGTGTGGCCCT 

15q25.2 promoter CCAAGTTGTGTTTATGTATCTCAGGAGG 

15q25.2 control  ATGTTGTGTATCCTTTCATAGCAATTCT 

16q12.1 promoter TCAGTATGGTTATTTCACTTTCCATAGACA 

16q12.1 control  CGTGGTTCTAATAGGAAGTTCTTGGTT 

16q23.1 promoter AATAAATTGTTAGTTGTAGAATTTAGGTGG 

16q23.1 control GTATAAAAGAAGTCATCATGGTACTCAAG 



Supplementary Table 8. PCR primers used to amplify promoter-element interactions in 3C validation 
of selected CHi-C interactions.  

 
 

Primer Sequence (5’-3’) 

3p24.3 promoter ATCTCAGCCAAGGTGTCATCACTGGAGAG 

3p24.3 element  TGGAGACATAGCCCAAGGCTCTTAAACTCA 

4q24 promoter TACAGACTCAGATGAAGTTCCATGCCACAG 

4q24 element  AGCTCCACTGTACTCCACACCTACTTCCT 

11q14.1 promoter GGTTCTAAAGGGTGCACTGTGGCTTTGA 

11q14.1 element  TGCATTTGGAGCTGTCCCTTAATACTGGA 

15q22.3 promoter TGTTCTCTTCACTCATGCACTCTAGCCACA 

15q22.3 element  AGCTGGTAGGAAGGTGGTTAATGGAGAGTT 

15q25.2 promoter TCCCTAAACCACACCCACTCCCATTGTACC 

15q25.2 element  AGTAGGGGCTTTATGAATGGTTGTGCATCC 

16q12.1 promoter GGAATATCAGTATGGTTATTTCACTTTCCA 

16q12.1 element  CACATGTACTAAGGGTTGAGATCCAAGA 

16q23.1 promoter CAATTGTACTGACTTTTCTGTGTATCTGGA 

16q23.1 element CTTCATGAGCCATCACTAGAGAAACAGTA 



Locus (Cytoband)

Reported sentinal SNP 

(strongest association 

with TGCT)

P -value 

association with 

TGCT

eQTL gene eQTL SNP 

P -value for 

eQTL 

association

P -value 

association with 

TGCT

RNA-seq 

dataset

14q22.3 rs1009647 3.4E-08 ATG14 rs1538257 1.7E-05 1.7E-05 GTEx

14q22.3 rs1009647 3.4E-08 RP11-665C16.6 rs34727214 6.0E-08 2.1E-06 GTEx

14q22.3 rs1009647 3.4E-08 RP11-665C16.6 rs12885227 6.3E-08 2.9E-07 GTEx

14q22.3 rs1009647 3.4E-08 RP11-665C16.6 rs12885245 6.3E-08 3.0E-07 GTEx

14q22.3 rs1009647 3.4E-08 RP11-665C16.6 rs7153619 9.7E-08 2.2E-06 GTEx

14q22.3 rs1009647 3.4E-08 RP11-665C16.6 rs35502084 1.6E-07 3.5E-07 GTEx

14q22.3 rs1009647 3.4E-08 RP11-665C16.6 rs1009647 5.8E-07 5.0E-07 GTEx

14q22.3 rs1009647 3.4E-08 RP11-665C16.6 rs1009648 8.6E-07 3.2E-06 GTEx

14q22.3 rs1009647 3.4E-08 RP11-665C16.6 rs946056 8.6E-07 3.2E-06 GTEx

14q22.3 rs1009647 3.4E-08 RP11-665C16.6 rs1890256 8.7E-07 4.6E-07 GTEx

16q12.1 rs8046148 4.5E-07 HEATR3 rs12930079 6.0E-26 1.0E-09 GTEx

16q12.1 rs8046148 4.5E-07 HEATR3 rs1008815 5.5E-12 1.7E-06 GTEx

16q12.1 rs8046148 4.5E-07 HEATR3 rs2356837 5.5E-12 3.2E-06 GTEx

16q12.1 rs8046148 4.5E-07 HEATR3 rs8047421 5.2E-12 2.9E-06 GTEx

16q12.1 rs8046148 4.5E-07 HEATR3 rs2058813 5.5E-12 2.9E-06 GTEx

16q12.1 rs8046148 4.5E-07 HEATR3 rs8062151 5.2E-12 3.0E-06 GTEx

16q12.1 rs8046148 4.5E-07 HEATR3 rs11076512 2.7E-12 3.0E-06 GTEx

16q12.1 rs8046148 4.5E-07 HEATR3 rs11642579 4.6E-12 3.0E-06 GTEx

16q12.1 rs8046148 4.5E-07 HEATR3 rs4785381 4.0E-12 3.1E-06 GTEx

16q12.1 rs8046148 4.5E-07 HEATR3 rs11355227 4.0E-12 3.1E-06 GTEx

16q12.1 rs8046148 4.5E-07 HEATR3 rs11640627 3.3E-12 3.5E-06 GTEx

16q12.1 rs8046148 4.5E-07 HEATR3 rs8052350 2.6E-12 3.8E-06 GTEx

16q12.1 rs8046148 4.5E-07 HEATR3 rs1558813 3.2E-12 3.5E-06 GTEx

16q12.1 rs8046148 4.5E-07 HEATR3 rs12934889 4.4E-12 3.7E-06 GTEx

16q12.1 rs8046148 4.5E-07 HEATR3 rs4785382 7.5E-14 3.5E-07 GTEx

16q12.1 rs8046148 4.5E-07 HEATR3 rs8045354 2.8E-12 9.7E-07 GTEx

16q12.1 rs8046148 4.5E-07 HEATR3 rs8046148 4.1E-12 5.2E-07 GTEx

16q12.1 rs8046148 4.5E-07 HEATR3 rs9933767 4.0E-12 5.7E-07 GTEx

16q12.1 rs8046148 4.5E-07 HEATR3 rs4632126 2.6E-11 5.7E-07 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs58136167 7.6E-24 2.0E-06 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs11642283 1.5E-12 1.6E-10 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs12716769 1.4E-10 9.5E-13 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs150095922 1.9E-12 8.3E-13 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs8058133 4.0E-14 8.3E-13 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs8052367 4.6E-14 5.0E-13 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs7188880 2.1E-12 1.2E-11 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs9929496 1.5E-12 1.3E-11 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs9930188 2.7E-11 1.5E-11 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs9929931 1.5E-11 2.0E-11 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs9922988 1.2E-11 4.5E-11 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs4888262 1.5E-12 1.2E-11 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs7188581 3.2E-11 6.9E-12 GTEx

Supplementary Table 9 -  All possible eQTL associations per locus. 

Listed in bold font are the eQTL associations reported in this manuscript, which were supported by either promoter variants or looping Hi-C contacts from 

the eQTL SNP (putative enhancer) to the eQTL gene promoter. For reference purposes all other possible variant/gene eQTL results at these loci are also 

listed below (non-bold), ignoring the Hi-C contact/promoter variant data, and using the following criteria: i) genes within 1Mb & variants within R2>0.8 of 

sentinal SNP, ii) P <0.05, iii) same RNA-seq dataset.



Locus (Cytoband)

Reported sentinal SNP 

(strongest association 

with TGCT)

P -value 

association with 

TGCT

eQTL gene eQTL SNP 

P -value for 

eQTL 

association

P -value 

association with 

TGCT

RNA-seq 

dataset

16q23.1 rs4888262 6.9E-12 RFWD3 rs8059780 3.6E-12 1.6E-11 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs12924948 2.5E-11 1.1E-11 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs4888264 9.4E-13 1.3E-11 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs28681530 1.5E-12 1.0E-11 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs4888265 1.6E-12 8.5E-12 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs9923145 1.5E-12 1.0E-11 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs4888267 1.5E-12 1.0E-11 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs7191665 1.5E-12 1.1E-11 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs8062783 1.5E-12 1.0E-11 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs8061942 1.5E-12 1.1E-11 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs7201320 1.5E-12 9.8E-12 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs56099065 9.9E-11 9.1E-10 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs9931225 1.4E-11 3.0E-10 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs62053585 1.3E-06 2.3E-07 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs4888271 1.7E-10 5.9E-10 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs4887783 2.7E-13 2.9E-10 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs5817922 3.0E-10 4.6E-13 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs4888274 3.3E-12 1.3E-12 GTEx

16q23.1 rs4888262 6.9E-12 RFWD3 rs4072222 3.3E-12 1.6E-10 GTEx

1q22 rs2072499 1.9E-10 CCT3 rs1052067 1.2E-06 3.3E-08 GTEx

1q22 rs2072499 1.9E-10 N/A N/A N/A GTEx

17q22 rs9905704 3.4E-20 TEX14 rs654778 4.9E-07 3.1E-20 GTEx

17q22 rs9905704 3.4E-20 N/A N/A N/A GTEx

4q22.3 rs17021463 3.3E-08 SMARCAD1 rs2865350 6.4E-03 1.8E-07 TCGA

4q22.3 rs17021463 3.3E-08 ATOH1 rs2865350 3.7E-02 TCGA

4q24 rs2720460 6.6E-20 MANBA rs2720460 1.7E-02 4.8E-20 TCGA

4q24 rs2720460 6.6E-20 N/A N/A N/A TCGA

6p21.31 rs210138 3.5E-37 BAK1 rs210138 2.0E-02 2.9E-37 TCGA

6p21.31 rs210138 3.5E-37 ITPR3 rs210138 3.1E-02 2.9E-37 TCGA

6p21.31 rs210138 3.5E-37 HLA-DOB rs210138 1.3E-03 2.9E-37 TCGA

6p21.31 rs210138 3.5E-37 HLA-DOB rs210138 9.5E-04 2.9E-37 TCGA

8p23.1 rs17153755 4.4E-08 GATA4 rs1004712 3.2E-02 1.7E-09 TCGA

8p23.1 rs17153755 4.4E-08 GATA4 rs1466785 4.3E-02 3.5E-06 TCGA

8p23.1 rs17153755 4.4E-08 FDFT1 rs1004712 5.2E-03 1.7E-09 TCGA

8p23.1 rs17153755 4.4E-08 FDFT1 rs1466785 7.7E-03 3.5E-06 TCGA

8p23.1 rs17153755 4.4E-08 ZNF705D rs1466785 1.0E-02 3.5E-06 TCGA

8p23.1 rs17153755 4.4E-08 ZNF705D rs1004712 1.3E-02 1.7E-09 TCGA

8p23.1 rs17153755 4.4E-08 CTSB rs1466785 2.2E-02 3.5E-06 TCGA

8p23.1 rs17153755 4.4E-08 SOX7 rs17153755 2.8E-02 1.5E-08 TCGA

8p23.1 rs17153755 4.4E-08 DEFB135 rs1466785 3.6E-02 3.5E-06 TCGA

8p23.1 rs17153755 4.4E-08 LONRF1 rs1004712 3.9E-02 1.7E-09 TCGA

15q22.31 rs11071896 8.4E-13 SNAPC5 rs11629783 3.2E-02 5.3E-10 TCGA



Locus (Cytoband)
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(strongest association 

with TGCT)

P -value 

association with 

TGCT
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association with 
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15q22.31 rs11071896 8.4E-13 N/A N/A N/A TCGA

15q25.2 rs56046484 4.6E-08 WDR73 rs2304416 3.2E-02 1.0E-06 TCGA

15q25.2 rs56046484 4.6E-08 SH3GL3 rs2304416 4.8E-02 1.0E-06 TCGA

15q25.2 rs56046484 4.6E-08 SH3GL3 rs17541572 4.1E-02 5.9E-05 TCGA



Supplementary Table 10.  Transcription factor motif enrichment.

TF Motif
Fold-

Enrichment
P -value

GATA 1.8        1.2E-02

KLF4 1.8        1.2E-03

NANOG 1.8        5.0E-02

LHX8 3.0        3.2E-02

SOX2 2.5        2.4E-03

POU5F1 1.8        6.0E-03

DMRT1 1.8        4.1E-02

SOX9 1.3        2.5E-01

PRDM1 1.3        2.2E-01

CTCF 1.8        2.4E-03



Supplementary Figure 1 – Quantile-quantile plot 

 

 

 



Supplementary Figure 2 – Evidence of tissue specific histone mark enrichment.  
The heatmap shows enrichment scores for histone marks H3k4me3, H3k9ac, H3k4me1 and 
H3k9me3, using ChIP-Seq data from 42 encode cell-types. Enrichment is measured as the 
fold-increase in ChIP-Seq signal peaks at the TGCT risk loci compared to a series of randomly 
generated null distributions. The key markers of functionally active chromatin, H3K4me3, 
H3K9ac and H3K4me1 (first 3 columns), were  most strongly enriched in the Nt2d1 TGCT cell 
line. White coloring means no data was available. 
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Supplementary Figure 6 - Regional plots of remaining 16 new TGCT loci, not depicted in main text. 

The -log10 P values of genotyped SNPs based on Oncoarray data (triangles) and imputed SNPs 
(circles) are plotted alongside recombination rates (centi-morgans per mega-base). The intensity of 
red shading indicates the strength of LD with the labelled sentinel SNP. Gene transcripts within the 
region are shown below. Below the gene transcripts are Hi-C next generation sequencing read pair 
counts (intervals are determined by HindIII cut points, with average 3Kb resolution), where gaps 
represent bait locations, which are plotted. Looping contacts are depicted in regions with significant 
Hi-C interactions, where colour and depth of ribbons represent the score. Significant Hi-C interctions 
are present in four regions (rs7581030, rs6821144, rs9966612, and rs12481572) and absent in 12 
regions (rs648090, rs4931000, rs7315956, rs1009647, rs7404843, rs2241024, rs4599029, rs4240895, 
rs739525, rs4862848, rs11155671, rs17689040). A zoomed-in section displays the gene transcripts, 
predicted chromHMM states (coloured as per the legend), and contacts in regions with significant 
Hi-C contacts.  
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Supplementary Figure  7  – Scatterplot of Hi-C interaction scores (-log(weighted P-value)) for 

independent biological replicates one and two.



Supplementary Figure 8 – Density plot of Hi-C interaction distances detected in this study compared 

to previously published data. 
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Supplementary Figure 9. 

Validation of Hi-C data by 

3C PCR assay. 

 

Bar charts show the gel 

quantified relative interaction 

frequency between a given 

gene promoter and promoter-

interacting HindIII block 

(promoter-element, P-E) vs a 

control HindIII block 

(promoter-control, PC). Error 

bars represent the standard 

deviation of three replicates. 

Abbreviations: P-E, promoter-

element; P-C, promoter-

control; L, ladder; B, BAC 

library; N1-3, NTERA2 3C 

libraries; NTC, no template 

control. 

 



Supplementary Figure 10. Sanger chromatograms of P-E fragments of Chi-C 
interactions validated by 3C sequenced in an NTERA2 library. Promoters are 
shown to be ligated to their expected elements, separated by a HindIII cutting site 
(between dotted lines).  
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