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ABSTRACT 

Background 

Recent studies have discovered that -globin is expressed in blood vessel 

walls where it plays a role in regulating vascular tone. We tested the 

hypothesis that blood pressure might differ between normal individuals and 

those with +thalassemia, in whom the production of -globin is reduced.  

Methods and Results 

The study was conducted in Nairobi, Kenya, among 938 adolescents aged 

11-17 years. 24-hour ambulatory blood pressure monitoring (ABPM) and 

arterial stiffness measurements were performed using an arteriograph device. 

We genotyped for +thalassemia by PCR. Complete data for analysis were 

available for 623 subjects; 223 (36%) were heterozygous (-α/αα) and 47 (8%) 

were homozygous (-α/-α) for +thalassemia while the remaining 353 (55%) 

subjects were normal (αα/αα). Mean 24-hour systolic BP±SD was 118±12 

mmHg in αα/αα, 117±11 mmHg in -α/αα and 118±11 mmHg in -α/-α subjects 

respectively. Mean 24-hour diastolic BP ±SD in these groups was 64±8 

mmHg, 63±7 mmHg and 65±8 mmHg respectively. Mean pulse wave velocity 

(PWV)±SD was 7±0.8 ms-1, 7±0.8 ms-1 and 7±0.7 ms-1 respectively. No 

differences were observed in PWV and any of the 24-hour ABPM derived 

measures between those with and without +thalassemia.  

Conclusion 

These data suggest that the presence of +thalassemia does not affect blood 

pressure and/or arterial stiffness in Kenyan adolescents. 

Keywords 

+thalassemia, ambulatory blood pressure monitoring, adolescents



 3 

INTRODUCTION 

The thalassemias, in which there is disordered or absent production of the - 

or -globin chains that make up normal hemoglobin, are the most common 

monogenic disorders of humans.1 The geographical distribution of 

+thalassemia, in which there is deletion of one or more of the HBA genes 

that encode -globin (Hb) production, closely mirrors that of malaria 

transmission2 and it has been demonstrated that these deletions confer 

protection against both severe and non-severe malaria.2-5 

While it has long been believed that Hb expression is limited to red blood 

cells, it has recently been demonstrated that Hb is also expressed in mouse 

endothelial cells where it plays a role in nitric oxide (NO) signaling, influencing 

vascular smooth muscle tone in resistance arteries.6, 7 A macromolecular 

complex formed by Hb and endothelial Nitric Oxide Synthase (eNOS), 

regulates NO signaling at myoendothelial junctions (MEJ).8 Disruption of this 

complex lowers BP in both normotensive and hypertensive mice.8 It has also 

been shown that resistance arteries from mice lacking 2 of the 4 globin 

genes (- have reduced contractility after treatment with the 

vasoconstrictor phenylephrine.9 Individuals with +thalassemia have been 

shown to have higher microvasculature tortuosity.10 From the foregoing it 

could be expected that individuals with +thalassemia might have lower BP 

compared to those with normal hemoglobin. However the few studies 

conducted in humans have yielded inconsistent results. While one review11 

suggested that +thalassemic individuals have moderate hypotension, other 

investigators have found elevated BPs in subjects with this condition.12, 13 
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These studies were limited by small sample sizes and the failure to use 24-

hour ambulatory blood pressure monitoring (ABPM) to measure BP. It is 

known that one-off office/clinic BP measurements can be influenced by a 

variety of environmental and psychological factors14, limitations that are 

overcome by the use of ABPM, which is considered the reference standard 

for BP measurement.14, 15  

If arterial stiffness and/or BP are influenced by Hbα genotype, this would an 

important step that could aid the development of compounds either mimicking 

or antagonizing Hbα as potential therapies for hypertension. In the current 

study, we have tested the hypothesis that 24-hour BP and arterial stiffness is 

different in subjects with +thalassemia than in normal individuals.  

METHODS 

This population-based study was a cross-sectional sample of residents of the 

Nairobi Urban Health and Demographic Surveillance System (NUHDSS)16 in 

Kenya, and was conducted between December 2015 and June 2016. Nairobi, 

the capital city of Kenya was chosen for this study for 2 reasons. First, Nairobi 

is located at high altitude (1800 meters above sea-level) and there is no 

evidence of malaria transmission.17 This made it possible to study the effect of 

+thalassemia on BP unconfounded by the presence of malaria, which could 

potentially influence BP18 and which +thalassemia protects against. Second, 

the population of Nairobi is composed of ethnic groups originating from all 

parts of the country including those whose ancestral lands were endemic for 

malaria (e.g. Luhya, Luo, Teso, Mijikenda), in whom the frequency of 
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+thalassemia is significantly higher.2 In order to increase our efficiency in 

recruiting participants with +thalassemia, we limited our recruitment to those 

who identified themselves as genetically derived from one of these ethnic 

groups.  

The NUHDSS conducts population-wide censuses within the study area 4 

times each year.16 Using NUHDSS data we selected all children currently 

aged 11-17 years who had a continuous record of residence within the study 

area since birth. Continuous residency was a requirement in order to minimize 

potential exposure to malaria as a result of migration. Trained staff visited all 

subjects who had been selected to participate in the study at their homes. 

Parents of the children were then asked to bring them to the nearer of two 

study clinics within the area to undergo study procedures. Up to three 

attempts were made at finding a selected subject before concluding that they 

could not be found. Subjects who failed to come to the clinic within 3 months 

of being invited were considered to have declined to participate in the study.  

Recruited subjects first underwent an interview where they answered 

questions about their past medical history and their socioeconomic status 

based on the multi-dimensional poverty (MDP) index.19 Weight and height 

were measured using a validated SECA 874™ weighing machine and a 

portable stadiometer (SECA 213™), respectively. Mid-upper-arm 

circumference (MUAC) was measured in a standardized manner using 

TALC™ MUAC tapes. We then took a screening BP measurement using a 

validated Omron™ M10-IT sphygmomanometer. An appropriately sized cuff 
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was placed on the non-dominant arm after the subject had been seated for at 

least 5 minutes. Three BP measurements were taken over a 5-minute period 

and the mean of the last 2 measurements was recorded as the screening BP 

value. All participants were subsequently fitted with a validated 

Arteriograph24™ device for 24-hour ABPM as well as pulse wave velocity 

(PWV) determination.20 These devices were programmed to take 

measurements every 20 minutes from 0600-2200 hrs and every 40 minutes 

from 2200-0600 hrs. 

 As there are no published criteria for acceptable ABPM data in children, we 

used guidelines for completeness of ABPM data in adults from the 

International Database of Ambulatory blood pressure in relation to 

Cardiovascular Outcomes (IDACO) study.21 Specifically, ABPM data were 

considered of acceptable quality if they included a minimum 10 daytime and 

minimum 5 nighttime readings, where daytime was defined as 1000-2200 hrs 

and nighttime as 0000-0600 hrs.21 The same time periods were used to 

determine average daytime and nighttime blood pressures and to evaluate 

dipping status. Time weighting was applied in calculating average BP values 

for all time periods.22  

We defined screen positives for hypertension as individuals whose mean of 

the last 2 clinic BP measurements was above the 95th percentile for their age, 

sex and height.15 Confirmed hypertensives were those whose 24hr systolic 

and/or diastolic BP averages respectively were above the 95th percentile for 

their sex, age and height.15  
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We categorized all subjects who were not on anti-hypertensive medication 

using the combination of clinic BP measurements and ABPM into four 

categories: sustained hypertensives (screen positive and confirmed 

hypertensive on ABPM); white coat hypertensives (screen positive, not 

confirmed hypertensive on ABPM); masked hypertensives (screen negative, 

confirmed hypertensive on ABPM) or normotensives (screen negative, not 

confirmed hypertensive on ABPM).23  

Dipping status was defined using ABPM data only, using day and night 

periods as defined above. Subjects were classified using the following four 

categories, based on the night/day ratio of mean systolic and/or diastolic BPs: 

rising or absence of dipping (ratio ≥1.0); mild dipping (0.9 < ratio ≤1.0); 

dipping (0.8 < ratio ≤ 0.9); and extreme dipping (ratio≤0.8).24 

Laboratory procedures 

We collected 10ml of blood from participants for full blood count, 

determination of +thalassemia genotype and serum electrolytes. After 

performing automated full blood counts using an ACT 5™ machine, whole 

blood samples were frozen at -80ºC and then transported to the KEMRI-

Wellcome Trust Research Programme laboratories in Kilifi, Kenya for 

genotyping. DNA was extracted retrospectively from the frozen samples by 

use of Qiagen™ DNA blood mini-kits (Qiagen, Crawley, United Kingdom) and 

typed for the common African -3.7kb HBA deletion by PCR.25 

Serum and urine samples collected from participants were frozen at -80ºC 

within 4 hours of collection and later transported to Kilifi, Kenya for 
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subsequent analysis. We determined sodium and potassium, urea and 

creatinine levels in these samples using ion electrophoresis and the Jaffe 

method, respectively.26 We additionally determined albumin levels in the urine 

samples by immunoturbidometry using a Quantex™ microalbumin kit. 

Estimated glomerular filtration rate (eGFR) was calculated using the Schwarz 

formula.27 

Statistical methods 

Based on an expected minimum prevalence for heterozygous +thalassemia 

(-α/αα) of 20% in the ethnic groups we were studying, a systolic BP standard 

deviation of 15 mmHg, and 30% attrition due to poor quality ABPM data, we 

estimated that a total of 472 participants would provide 80% power to detect 

1/3rd of a standard deviation (5 mmHg) difference in 24 hour systolic BP 

between -α/αα and αα/αα individuals.  

Summary statistics that were computed included means, medians and 

proportions as appropriate. We used Student’s t-test to separately compare 

continuous variables in –α/αα  and –α/–α  to αα/αα individuals. The 2 test 

was used to compare categorical variables. We conducted multiple regression 

analyses to determine whether inclusion of α+thalassemia genotype predicted 

24-hour systolic and/or diastolic BP. Age, sex, BMI, eGFR, and PWV, which 

have all been previously associated with BP were included as covariates in 

the base model. To determine whether α+thalassemia genotype influenced 

24-hour BP, we added it to the base model and used the likelihood ratio test 

to determine if it improved the fit. We additionally tested for interaction with 
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the sickle cell trait, as it has previously been associated with cardiovascular 

and renal events28-31. All analyses were conducted using Stata™ Version 12 

software (College Station, Texas). 

The Kenya Medical Research Institute’s Ethical Review Committee approved 

the study. Written informed consent was obtained from parents of study 

participants. Participating children also provided written assent.  

RESULTS 

Of the 938 subjects invited to participate in the study, 686 completed 

enrollment (Figure 1). None of the participants were previously aware of their 

α+thalassemia status. The 252 adolescents that were not recruited into the 

study were 0.6 years (95% CI 0.3-0.9) older than study participants, but with a 

similar sex distribution (53% female) to those that participated in the study. 

Data on α+thalassemia genotype were available for 664 (97%) participants. 

246 (37%) were heterozygous (-α/αα) and 49 (7%) were homozygous (-α/-α) 

for +thalassemia while the remaining 369 (56%) of subjects were normal 

(αα/αα). One hundred and three (15.5%) of the adolescents were carriers of 

the sickle cell trait, distributed equally among the +thalassemia genotypic 

groups (14%, 17% and 16% in αα/αα, -α/αα and -α/-α subjects respectively, 

p=0.652). After excluding those with poor quality ABPM data, 623 (94%) 

subjects provided quality data for the analysis (Figure 1). A slightly lower 

proportion of -α/αα participants had complete ABPM data (91%) compared to 

αα/αα (95%) and -α/-α subjects (97%). Mean clinic BP±SD among all 

participants was 98±11 mmHg systolic and 64±8 mmHg diastolic. The mean 
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24-hour BP±SD for all participants was 117±12 mmHg systolic and 64±8 

mmHg diastolic. Mean 24-hour Pulse Wave Velocity (PWV)±SD was 7±0.8 

ms-1. The study had >98% power to detect 1/3rd of a standard deviation (SD) 

difference in either systolic or diastolic BP (4mmHg and 2.7mmHg 

respectively) between αα/αα individuals and those with -α/αα, and a 0.3 ms-1 

(1/3rd SD) difference in PWV between αα/αα individuals and those with -α/αα. 

The study had >90% power to detect differences equivalent to 0.5 SDs in BP 

and PWV between αα/αα and  -α/-α individuals. 

Table 1 displays the characteristics of study participants according to 

+thalassemia genotype. As expected, hemoglobin concentrations were 

significantly lower in -α/-α than in -α/αα or αα/αα subjects. BMI was lower in   -

α/αα than in αα/αα individuals (18.2 vs 19.2;  p=0.0004) while mid upper arm 

circumference was significantly smaller in -α/αα compared to αα/αα 

individuals. There were no statistically significant differences in the 

prevalence of masked hypertension, white coat hypertension or in the pattern 

of non-dipping BP by +thalassemia genotype. PWV was also similar in all 3 

groups. 

Figure 2 displays mean 24-hour, daytime and nighttime blood pressures in 

study participants by +thalassemia genotype. All measures were similar for 

all three groups.  

The results of regression analyses are displayed in Table 2. Age, sex, BMI, 

eGFR and PWV were all independent predictors of 24-hour systolic BP while 
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PWV was the only independent predictor of 24-hour diastolic BP. 24-hour BP 

values were not associated with +thalassemia genotype in any of our 

regression models and its inclusion in the final model did not improve the fit 

(likelihood ratio test p=0.96 for systolic BP and p=0.75 for diastolic BP). 

Adjustment for proxy markers of hemolysis (hemoglobin level, mean 

corpuscular volume and mean corpuscular hemoglobin concentration) made 

no difference to the results, and neither did the inclusion of interaction terms 

for sex and sickle cell trait status. 

DISCUSSION 

The +thalassemias are the most common human monogenic disorders1. 

Demonstration of altered BP in individuals with any of the mutations would be 

of immense importance, as it would improve the understanding of BP 

regulation and aid the development of new drugs. In this detailed study of BP 

phenotypes and arterial stiffness among adolescents, we did not find any 

differences between those with and without +thalassemia. Because the 

exposure measurement was a genetic trait acquired at conception and the 

participants were ascertained to have remained in the same malaria-free 

environment since birth we believe that this study suggests that a direct effect 

of +thalassemia on BP and indices of arterial stiffness within the first 11-17 

years of life is highly improbable. 

On the face of it, our results do not align with findings from other studies that 

have suggested the possibility that expression of Hbα might affect blood 

pressure.6, 8, 11 These studies were either done in-vitro or in mouse models 
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with very limited sample sizes (N=6).8 The review by Butcher et al11 that 

reported an association between +thalassemia and moderate hypotension 

did not refer to a primary publication. It is possible that the lower BPs 

observed in subjects with +thalassemia who are relatively protected from 

malaria could actually be a confirmation that malaria raises blood pressure as 

we have previously hypothesized.18 An alternative explanation for similar BP 

despite the presence of Hbα deletions could be due to canalization, a 

phenomenon where individuals or organisms develop the same phenotype 

despite differences in their genetic make up.32 Reddy et al33 have shown that 

infusion of HbH (levels of which are elevated in +thalassemia) into rats 

results in elevation of BP as a result of HbH having higher affinity for Nitric 

Oxide than HbA.34 It is therefore possible that the BP lowering effect of 

+thalassemia is cancelled out by the opposing effect of elevated levels of 

HbH. This would also suggest that recently developed molecules that mimic 

alpha globin35, may have reduced effectiveness in individuals with 

+thalassemia. Additional studies are needed to fully understand these 

seemingly contrasting effects and generate a unified model incorporating both 

environmental conditions and genetic effects. 

A major strength of this study was the use of ABPM, which is considered the 

reference standard for blood pressure measurement in children.15 The study 

was well powered to detect very small differences in BP and PWV. Although it 

could be argued that PWV is predominantly a measure of large conduit 

arteries which do not express Hb alpha  integrates the 

interface between small arteries and resistance vessels-as for instance in 
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diabetes where small vessel damage is as frequent as large.36 An additional 

strength of the study is that we used health and demographic surveillance 

system (HDSS) records that were prospectively collected in order to ascertain 

residence in a non-malaria zone, there being no better method of doing this in 

sub-Saharan Africa. 

One limitation of this study was the limited age range of subjects recruited, 

necessitated by the fact that there were no long-term residency records for 

older individuals. Most HDSSs in sSA were established in the late 1990’s to 

early 2000’s.37 Recruiting older individuals would have compromised data on 

residency status in childhood, the period when malaria risk is highest. While 

BP differences are likely to be larger at older ages, it is known that differences 

in adult BP emerge in childhood38, 39 and that childhood BP levels are 

predictive of adult BP.40 The absence of even a small difference in carefully 

measured BP and arterial stiffness in our study of adolescents therefore 

suggests that it is very unlikely such differences would emerge in future. 

A second limitation of the study is the fact that we did not measure levels of 

markers of hemolysis such as HbH and haptoglobin and other potential 

compensatory mechanisms such as (decreased) eNOS or guanylyl cyclase 

expression, or increased catecholamine levels among study participants. This 

would have helped to either confirm or refute the possibility of canalization 

explaining the lack of an effect of +thalassemia on BP levels. This could form 

the basis of future studies to better understand the seemingly contrasting 

findings of experimental and human studies. 
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It is also important to note that no studies have to date established whether 

alpha hemoglobin is expressed in endothelial cells of human subjects and if 

the 3.7kb deletion, the most common defect causing + thalassemia1 in 

humans, also results in reduced endothelial expression of alpha hemoglobin. 

Additional studies are required to determine if there is endothelial expression 

of alpha hemoglobin in humans, whether the 3.7kb deletion results in reduced 

endothelial  globin expression and whether other defects resulting in 

thalassemia present with the same vascular phenotype that we observed. 

In summary, we have demonstrated that there are no differences in BP and 

arterial stiffness based on +thalassemia genotype in Kenyan adolescents 

living within a non-malaria-endemic environment. Additional studies are 

required to explain the apparent contradictory results of experimental studies. 
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Table 1: Characteristics of study participants (N=623) 
 

Characteristic Normal 
(αα/αα) 
N=353 

Heterozy
gous 
(-α/αα) 
N=223 

Homo
zygou

s 
(-α/-α) 
N=47 

p-
value1 

p-
value2 

Age, years 
13.4 
(2.2) 

13.0 
(2.2) 

13.4 
(2.4) 0.0289 0.9 

Female, No. (%) 
187 
(53) 

132 
(59) 

28 
(58) 0.3 0.3 

BMI1, kg/m2 
19.2 
(3.2) 

18.3 
(2.6) 

19.2 
(3.6) 0.0004 0.9 

MUAC2, cm 
23.7 
(3.9) 

22.7 
(3.1) 

23.2 
(4) 0.0007 0.4 

Hemoglobin, mg/dL 
13.5 
(1.5) 

13.1 
(1.4) 

12.2 
(1.6) 0.0004 <0.0001 

Mean cell volume (fL) 
84 
(5) 

79 
(5) 

70 
(5) <0.0001 <0.0001 

Mean corpuscular hemoglobin 
concentration (g/dL) 

32 
(2) 

31 
(2) 

31 
(2) 0.0003 <0.0001 

Socioeconomic status (MDPI3 
score) 

2.0 
(1.2) 

2.3 
(1.4) 

2.4 
(1.1) 0.0126 0.3 

24-hour SBP (mmHg) 
118 
(12) 

117 
(11) 

118 
(11) 0.1 1.0 

24-hour DBP (mmHg) 
64 
(8) 

63 
(7) 

65 
(8) 0.1 0.6 

24-hour Pulse wave velocity 
(ms-1) 

7.0 
(0.8) 

7.0 
(0.8) 

7.0 
(0.7) 0.2 0.5 

Systolic Morning BP surge, 
mmHg 
 

9 
(12) 

8 
(12) 

11 
(10) 0. 6 0.2 

Augmentation index, % 
17 
(6) 

17 
(6) 

16 
(5) 0.8 0.4 

White coat hypertension, No 
(%) 

15 
(4) 

8 
(4) 

3 
(6) 0.2 0.4 

Masked hypertension, No (%) 
25 
(7) 

21 
(9) 

7 
(15) 1.0 0.073 

Non dipping BP pattern 
24 
(7) 

7 
(3) 

2 
(4) 0.1 0.9 

eGFR4  (mls/min/1.73m2) 
109 
(15) 

111 
(14) 

110 
(13) 0.1 0.6 

Log10UACr  
0.4 

(0.6) 
0.3 

(0.7) 
0.2 
(1) 0.4 0.1 

Urine sodium (mmol/L) 
137 
(82) 

130 
(53) 

128 
(51) 0.3 0.5 

Urine potassium (mmol/L) 
48 

(32) 
46 

(29) 
42 

(20) 0.4 0.2 

Data are mean (SD) unless specified 
P-values are for comparisons between normal and heterozygous1 and normal and homozygous2 

1BMI=Body mass index 
2MUAC=mid upper arm circumference 
3MDPI=multi-dimensional poverty index 
4eGFR=estimated glomerular filtration rate 

 
 
 



 21 

 
 
 
 

 
Table 2: Regression analyses investigating possible effect of thalassemia 
status on 24-hour systolic and diastolic BP 
 
 

 

24hr SBP 24 hr- DBP 

, 95% CI p-value , 95% CI p-value 

Age (years) 0.6 (0.1 to 1.2) 0.021 0.03(-0.3 to 0.4) 0.9 

Male sex 2.6(0.7 to 4.5) 0.009 0.2(-1.1 to 1.4) 0.9 

BMI (kg/m2) 0.6 (0.2 to 1) 0.001 0.2(-0.1 to 0.4) 0.2 

PWV (ms-1) 2.8(1.6 to 4.1) <0.001 2.7(1.9 to 3.6) <0.001 

eGFR 
(mls/min/1.73m2) 0.1(0.03 to 0.2) 0.006 0.02(-0.02 to 0.06) 0.4 

+thalassemia 
genotype 0.04(-1.4 to1.5) 1.0 0.1(-0.8 to 1.1) 0.8 

Likelihood ratio test for models including vs excluding +thalassemia genotype p= 1.0 for SBP 
and p=0.8 for DBP. 
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Figures 

Figure 1: Study flow chart 
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Figure 2: 24-hour ABPM measures by alpha thalassemia status 

Data are mean and 95% Confidence Intervals 

 

 

 

 


